Merge tag 'fsnotify_for_v4.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / fs / namei.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  * Some corrections by tytso.
10  */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 #include <linux/build_bug.h>
43
44 #include "internal.h"
45 #include "mount.h"
46
47 /* [Feb-1997 T. Schoebel-Theuer]
48  * Fundamental changes in the pathname lookup mechanisms (namei)
49  * were necessary because of omirr.  The reason is that omirr needs
50  * to know the _real_ pathname, not the user-supplied one, in case
51  * of symlinks (and also when transname replacements occur).
52  *
53  * The new code replaces the old recursive symlink resolution with
54  * an iterative one (in case of non-nested symlink chains).  It does
55  * this with calls to <fs>_follow_link().
56  * As a side effect, dir_namei(), _namei() and follow_link() are now 
57  * replaced with a single function lookup_dentry() that can handle all 
58  * the special cases of the former code.
59  *
60  * With the new dcache, the pathname is stored at each inode, at least as
61  * long as the refcount of the inode is positive.  As a side effect, the
62  * size of the dcache depends on the inode cache and thus is dynamic.
63  *
64  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65  * resolution to correspond with current state of the code.
66  *
67  * Note that the symlink resolution is not *completely* iterative.
68  * There is still a significant amount of tail- and mid- recursion in
69  * the algorithm.  Also, note that <fs>_readlink() is not used in
70  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71  * may return different results than <fs>_follow_link().  Many virtual
72  * filesystems (including /proc) exhibit this behavior.
73  */
74
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77  * and the name already exists in form of a symlink, try to create the new
78  * name indicated by the symlink. The old code always complained that the
79  * name already exists, due to not following the symlink even if its target
80  * is nonexistent.  The new semantics affects also mknod() and link() when
81  * the name is a symlink pointing to a non-existent name.
82  *
83  * I don't know which semantics is the right one, since I have no access
84  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86  * "old" one. Personally, I think the new semantics is much more logical.
87  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88  * file does succeed in both HP-UX and SunOs, but not in Solaris
89  * and in the old Linux semantics.
90  */
91
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93  * semantics.  See the comments in "open_namei" and "do_link" below.
94  *
95  * [10-Sep-98 Alan Modra] Another symlink change.
96  */
97
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99  *      inside the path - always follow.
100  *      in the last component in creation/removal/renaming - never follow.
101  *      if LOOKUP_FOLLOW passed - follow.
102  *      if the pathname has trailing slashes - follow.
103  *      otherwise - don't follow.
104  * (applied in that order).
105  *
106  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108  * During the 2.4 we need to fix the userland stuff depending on it -
109  * hopefully we will be able to get rid of that wart in 2.5. So far only
110  * XEmacs seems to be relying on it...
111  */
112 /*
113  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
115  * any extra contention...
116  */
117
118 /* In order to reduce some races, while at the same time doing additional
119  * checking and hopefully speeding things up, we copy filenames to the
120  * kernel data space before using them..
121  *
122  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123  * PATH_MAX includes the nul terminator --RR.
124  */
125
126 #define EMBEDDED_NAME_MAX       (PATH_MAX - offsetof(struct filename, iname))
127
128 struct filename *
129 getname_flags(const char __user *filename, int flags, int *empty)
130 {
131         struct filename *result;
132         char *kname;
133         int len;
134         BUILD_BUG_ON(offsetof(struct filename, iname) % sizeof(long) != 0);
135
136         result = audit_reusename(filename);
137         if (result)
138                 return result;
139
140         result = __getname();
141         if (unlikely(!result))
142                 return ERR_PTR(-ENOMEM);
143
144         /*
145          * First, try to embed the struct filename inside the names_cache
146          * allocation
147          */
148         kname = (char *)result->iname;
149         result->name = kname;
150
151         len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
152         if (unlikely(len < 0)) {
153                 __putname(result);
154                 return ERR_PTR(len);
155         }
156
157         /*
158          * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
159          * separate struct filename so we can dedicate the entire
160          * names_cache allocation for the pathname, and re-do the copy from
161          * userland.
162          */
163         if (unlikely(len == EMBEDDED_NAME_MAX)) {
164                 const size_t size = offsetof(struct filename, iname[1]);
165                 kname = (char *)result;
166
167                 /*
168                  * size is chosen that way we to guarantee that
169                  * result->iname[0] is within the same object and that
170                  * kname can't be equal to result->iname, no matter what.
171                  */
172                 result = kzalloc(size, GFP_KERNEL);
173                 if (unlikely(!result)) {
174                         __putname(kname);
175                         return ERR_PTR(-ENOMEM);
176                 }
177                 result->name = kname;
178                 len = strncpy_from_user(kname, filename, PATH_MAX);
179                 if (unlikely(len < 0)) {
180                         __putname(kname);
181                         kfree(result);
182                         return ERR_PTR(len);
183                 }
184                 if (unlikely(len == PATH_MAX)) {
185                         __putname(kname);
186                         kfree(result);
187                         return ERR_PTR(-ENAMETOOLONG);
188                 }
189         }
190
191         result->refcnt = 1;
192         /* The empty path is special. */
193         if (unlikely(!len)) {
194                 if (empty)
195                         *empty = 1;
196                 if (!(flags & LOOKUP_EMPTY)) {
197                         putname(result);
198                         return ERR_PTR(-ENOENT);
199                 }
200         }
201
202         result->uptr = filename;
203         result->aname = NULL;
204         audit_getname(result);
205         return result;
206 }
207
208 struct filename *
209 getname(const char __user * filename)
210 {
211         return getname_flags(filename, 0, NULL);
212 }
213
214 struct filename *
215 getname_kernel(const char * filename)
216 {
217         struct filename *result;
218         int len = strlen(filename) + 1;
219
220         result = __getname();
221         if (unlikely(!result))
222                 return ERR_PTR(-ENOMEM);
223
224         if (len <= EMBEDDED_NAME_MAX) {
225                 result->name = (char *)result->iname;
226         } else if (len <= PATH_MAX) {
227                 const size_t size = offsetof(struct filename, iname[1]);
228                 struct filename *tmp;
229
230                 tmp = kmalloc(size, GFP_KERNEL);
231                 if (unlikely(!tmp)) {
232                         __putname(result);
233                         return ERR_PTR(-ENOMEM);
234                 }
235                 tmp->name = (char *)result;
236                 result = tmp;
237         } else {
238                 __putname(result);
239                 return ERR_PTR(-ENAMETOOLONG);
240         }
241         memcpy((char *)result->name, filename, len);
242         result->uptr = NULL;
243         result->aname = NULL;
244         result->refcnt = 1;
245         audit_getname(result);
246
247         return result;
248 }
249
250 void putname(struct filename *name)
251 {
252         BUG_ON(name->refcnt <= 0);
253
254         if (--name->refcnt > 0)
255                 return;
256
257         if (name->name != name->iname) {
258                 __putname(name->name);
259                 kfree(name);
260         } else
261                 __putname(name);
262 }
263
264 static int check_acl(struct inode *inode, int mask)
265 {
266 #ifdef CONFIG_FS_POSIX_ACL
267         struct posix_acl *acl;
268
269         if (mask & MAY_NOT_BLOCK) {
270                 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
271                 if (!acl)
272                         return -EAGAIN;
273                 /* no ->get_acl() calls in RCU mode... */
274                 if (is_uncached_acl(acl))
275                         return -ECHILD;
276                 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
277         }
278
279         acl = get_acl(inode, ACL_TYPE_ACCESS);
280         if (IS_ERR(acl))
281                 return PTR_ERR(acl);
282         if (acl) {
283                 int error = posix_acl_permission(inode, acl, mask);
284                 posix_acl_release(acl);
285                 return error;
286         }
287 #endif
288
289         return -EAGAIN;
290 }
291
292 /*
293  * This does the basic permission checking
294  */
295 static int acl_permission_check(struct inode *inode, int mask)
296 {
297         unsigned int mode = inode->i_mode;
298
299         if (likely(uid_eq(current_fsuid(), inode->i_uid)))
300                 mode >>= 6;
301         else {
302                 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
303                         int error = check_acl(inode, mask);
304                         if (error != -EAGAIN)
305                                 return error;
306                 }
307
308                 if (in_group_p(inode->i_gid))
309                         mode >>= 3;
310         }
311
312         /*
313          * If the DACs are ok we don't need any capability check.
314          */
315         if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
316                 return 0;
317         return -EACCES;
318 }
319
320 /**
321  * generic_permission -  check for access rights on a Posix-like filesystem
322  * @inode:      inode to check access rights for
323  * @mask:       right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
324  *
325  * Used to check for read/write/execute permissions on a file.
326  * We use "fsuid" for this, letting us set arbitrary permissions
327  * for filesystem access without changing the "normal" uids which
328  * are used for other things.
329  *
330  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
331  * request cannot be satisfied (eg. requires blocking or too much complexity).
332  * It would then be called again in ref-walk mode.
333  */
334 int generic_permission(struct inode *inode, int mask)
335 {
336         int ret;
337
338         /*
339          * Do the basic permission checks.
340          */
341         ret = acl_permission_check(inode, mask);
342         if (ret != -EACCES)
343                 return ret;
344
345         if (S_ISDIR(inode->i_mode)) {
346                 /* DACs are overridable for directories */
347                 if (!(mask & MAY_WRITE))
348                         if (capable_wrt_inode_uidgid(inode,
349                                                      CAP_DAC_READ_SEARCH))
350                                 return 0;
351                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
352                         return 0;
353                 return -EACCES;
354         }
355
356         /*
357          * Searching includes executable on directories, else just read.
358          */
359         mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
360         if (mask == MAY_READ)
361                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
362                         return 0;
363         /*
364          * Read/write DACs are always overridable.
365          * Executable DACs are overridable when there is
366          * at least one exec bit set.
367          */
368         if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
369                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
370                         return 0;
371
372         return -EACCES;
373 }
374 EXPORT_SYMBOL(generic_permission);
375
376 /*
377  * We _really_ want to just do "generic_permission()" without
378  * even looking at the inode->i_op values. So we keep a cache
379  * flag in inode->i_opflags, that says "this has not special
380  * permission function, use the fast case".
381  */
382 static inline int do_inode_permission(struct inode *inode, int mask)
383 {
384         if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
385                 if (likely(inode->i_op->permission))
386                         return inode->i_op->permission(inode, mask);
387
388                 /* This gets set once for the inode lifetime */
389                 spin_lock(&inode->i_lock);
390                 inode->i_opflags |= IOP_FASTPERM;
391                 spin_unlock(&inode->i_lock);
392         }
393         return generic_permission(inode, mask);
394 }
395
396 /**
397  * sb_permission - Check superblock-level permissions
398  * @sb: Superblock of inode to check permission on
399  * @inode: Inode to check permission on
400  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
401  *
402  * Separate out file-system wide checks from inode-specific permission checks.
403  */
404 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
405 {
406         if (unlikely(mask & MAY_WRITE)) {
407                 umode_t mode = inode->i_mode;
408
409                 /* Nobody gets write access to a read-only fs. */
410                 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
411                         return -EROFS;
412         }
413         return 0;
414 }
415
416 /**
417  * inode_permission - Check for access rights to a given inode
418  * @inode: Inode to check permission on
419  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
420  *
421  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
422  * this, letting us set arbitrary permissions for filesystem access without
423  * changing the "normal" UIDs which are used for other things.
424  *
425  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
426  */
427 int inode_permission(struct inode *inode, int mask)
428 {
429         int retval;
430
431         retval = sb_permission(inode->i_sb, inode, mask);
432         if (retval)
433                 return retval;
434
435         if (unlikely(mask & MAY_WRITE)) {
436                 /*
437                  * Nobody gets write access to an immutable file.
438                  */
439                 if (IS_IMMUTABLE(inode))
440                         return -EPERM;
441
442                 /*
443                  * Updating mtime will likely cause i_uid and i_gid to be
444                  * written back improperly if their true value is unknown
445                  * to the vfs.
446                  */
447                 if (HAS_UNMAPPED_ID(inode))
448                         return -EACCES;
449         }
450
451         retval = do_inode_permission(inode, mask);
452         if (retval)
453                 return retval;
454
455         retval = devcgroup_inode_permission(inode, mask);
456         if (retval)
457                 return retval;
458
459         return security_inode_permission(inode, mask);
460 }
461 EXPORT_SYMBOL(inode_permission);
462
463 /**
464  * path_get - get a reference to a path
465  * @path: path to get the reference to
466  *
467  * Given a path increment the reference count to the dentry and the vfsmount.
468  */
469 void path_get(const struct path *path)
470 {
471         mntget(path->mnt);
472         dget(path->dentry);
473 }
474 EXPORT_SYMBOL(path_get);
475
476 /**
477  * path_put - put a reference to a path
478  * @path: path to put the reference to
479  *
480  * Given a path decrement the reference count to the dentry and the vfsmount.
481  */
482 void path_put(const struct path *path)
483 {
484         dput(path->dentry);
485         mntput(path->mnt);
486 }
487 EXPORT_SYMBOL(path_put);
488
489 #define EMBEDDED_LEVELS 2
490 struct nameidata {
491         struct path     path;
492         struct qstr     last;
493         struct path     root;
494         struct inode    *inode; /* path.dentry.d_inode */
495         unsigned int    flags;
496         unsigned        seq, m_seq;
497         int             last_type;
498         unsigned        depth;
499         int             total_link_count;
500         struct saved {
501                 struct path link;
502                 struct delayed_call done;
503                 const char *name;
504                 unsigned seq;
505         } *stack, internal[EMBEDDED_LEVELS];
506         struct filename *name;
507         struct nameidata *saved;
508         struct inode    *link_inode;
509         unsigned        root_seq;
510         int             dfd;
511 } __randomize_layout;
512
513 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
514 {
515         struct nameidata *old = current->nameidata;
516         p->stack = p->internal;
517         p->dfd = dfd;
518         p->name = name;
519         p->total_link_count = old ? old->total_link_count : 0;
520         p->saved = old;
521         current->nameidata = p;
522 }
523
524 static void restore_nameidata(void)
525 {
526         struct nameidata *now = current->nameidata, *old = now->saved;
527
528         current->nameidata = old;
529         if (old)
530                 old->total_link_count = now->total_link_count;
531         if (now->stack != now->internal)
532                 kfree(now->stack);
533 }
534
535 static int __nd_alloc_stack(struct nameidata *nd)
536 {
537         struct saved *p;
538
539         if (nd->flags & LOOKUP_RCU) {
540                 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
541                                   GFP_ATOMIC);
542                 if (unlikely(!p))
543                         return -ECHILD;
544         } else {
545                 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
546                                   GFP_KERNEL);
547                 if (unlikely(!p))
548                         return -ENOMEM;
549         }
550         memcpy(p, nd->internal, sizeof(nd->internal));
551         nd->stack = p;
552         return 0;
553 }
554
555 /**
556  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
557  * @path: nameidate to verify
558  *
559  * Rename can sometimes move a file or directory outside of a bind
560  * mount, path_connected allows those cases to be detected.
561  */
562 static bool path_connected(const struct path *path)
563 {
564         struct vfsmount *mnt = path->mnt;
565         struct super_block *sb = mnt->mnt_sb;
566
567         /* Bind mounts and multi-root filesystems can have disconnected paths */
568         if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
569                 return true;
570
571         return is_subdir(path->dentry, mnt->mnt_root);
572 }
573
574 static inline int nd_alloc_stack(struct nameidata *nd)
575 {
576         if (likely(nd->depth != EMBEDDED_LEVELS))
577                 return 0;
578         if (likely(nd->stack != nd->internal))
579                 return 0;
580         return __nd_alloc_stack(nd);
581 }
582
583 static void drop_links(struct nameidata *nd)
584 {
585         int i = nd->depth;
586         while (i--) {
587                 struct saved *last = nd->stack + i;
588                 do_delayed_call(&last->done);
589                 clear_delayed_call(&last->done);
590         }
591 }
592
593 static void terminate_walk(struct nameidata *nd)
594 {
595         drop_links(nd);
596         if (!(nd->flags & LOOKUP_RCU)) {
597                 int i;
598                 path_put(&nd->path);
599                 for (i = 0; i < nd->depth; i++)
600                         path_put(&nd->stack[i].link);
601                 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
602                         path_put(&nd->root);
603                         nd->root.mnt = NULL;
604                 }
605         } else {
606                 nd->flags &= ~LOOKUP_RCU;
607                 if (!(nd->flags & LOOKUP_ROOT))
608                         nd->root.mnt = NULL;
609                 rcu_read_unlock();
610         }
611         nd->depth = 0;
612 }
613
614 /* path_put is needed afterwards regardless of success or failure */
615 static bool legitimize_path(struct nameidata *nd,
616                             struct path *path, unsigned seq)
617 {
618         int res = __legitimize_mnt(path->mnt, nd->m_seq);
619         if (unlikely(res)) {
620                 if (res > 0)
621                         path->mnt = NULL;
622                 path->dentry = NULL;
623                 return false;
624         }
625         if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
626                 path->dentry = NULL;
627                 return false;
628         }
629         return !read_seqcount_retry(&path->dentry->d_seq, seq);
630 }
631
632 static bool legitimize_links(struct nameidata *nd)
633 {
634         int i;
635         for (i = 0; i < nd->depth; i++) {
636                 struct saved *last = nd->stack + i;
637                 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
638                         drop_links(nd);
639                         nd->depth = i + 1;
640                         return false;
641                 }
642         }
643         return true;
644 }
645
646 /*
647  * Path walking has 2 modes, rcu-walk and ref-walk (see
648  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
649  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
650  * normal reference counts on dentries and vfsmounts to transition to ref-walk
651  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
652  * got stuck, so ref-walk may continue from there. If this is not successful
653  * (eg. a seqcount has changed), then failure is returned and it's up to caller
654  * to restart the path walk from the beginning in ref-walk mode.
655  */
656
657 /**
658  * unlazy_walk - try to switch to ref-walk mode.
659  * @nd: nameidata pathwalk data
660  * Returns: 0 on success, -ECHILD on failure
661  *
662  * unlazy_walk attempts to legitimize the current nd->path and nd->root
663  * for ref-walk mode.
664  * Must be called from rcu-walk context.
665  * Nothing should touch nameidata between unlazy_walk() failure and
666  * terminate_walk().
667  */
668 static int unlazy_walk(struct nameidata *nd)
669 {
670         struct dentry *parent = nd->path.dentry;
671
672         BUG_ON(!(nd->flags & LOOKUP_RCU));
673
674         nd->flags &= ~LOOKUP_RCU;
675         if (unlikely(!legitimize_links(nd)))
676                 goto out2;
677         if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
678                 goto out1;
679         if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
680                 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
681                         goto out;
682         }
683         rcu_read_unlock();
684         BUG_ON(nd->inode != parent->d_inode);
685         return 0;
686
687 out2:
688         nd->path.mnt = NULL;
689         nd->path.dentry = NULL;
690 out1:
691         if (!(nd->flags & LOOKUP_ROOT))
692                 nd->root.mnt = NULL;
693 out:
694         rcu_read_unlock();
695         return -ECHILD;
696 }
697
698 /**
699  * unlazy_child - try to switch to ref-walk mode.
700  * @nd: nameidata pathwalk data
701  * @dentry: child of nd->path.dentry
702  * @seq: seq number to check dentry against
703  * Returns: 0 on success, -ECHILD on failure
704  *
705  * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
706  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
707  * @nd.  Must be called from rcu-walk context.
708  * Nothing should touch nameidata between unlazy_child() failure and
709  * terminate_walk().
710  */
711 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
712 {
713         BUG_ON(!(nd->flags & LOOKUP_RCU));
714
715         nd->flags &= ~LOOKUP_RCU;
716         if (unlikely(!legitimize_links(nd)))
717                 goto out2;
718         if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
719                 goto out2;
720         if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
721                 goto out1;
722
723         /*
724          * We need to move both the parent and the dentry from the RCU domain
725          * to be properly refcounted. And the sequence number in the dentry
726          * validates *both* dentry counters, since we checked the sequence
727          * number of the parent after we got the child sequence number. So we
728          * know the parent must still be valid if the child sequence number is
729          */
730         if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
731                 goto out;
732         if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
733                 rcu_read_unlock();
734                 dput(dentry);
735                 goto drop_root_mnt;
736         }
737         /*
738          * Sequence counts matched. Now make sure that the root is
739          * still valid and get it if required.
740          */
741         if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
742                 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
743                         rcu_read_unlock();
744                         dput(dentry);
745                         return -ECHILD;
746                 }
747         }
748
749         rcu_read_unlock();
750         return 0;
751
752 out2:
753         nd->path.mnt = NULL;
754 out1:
755         nd->path.dentry = NULL;
756 out:
757         rcu_read_unlock();
758 drop_root_mnt:
759         if (!(nd->flags & LOOKUP_ROOT))
760                 nd->root.mnt = NULL;
761         return -ECHILD;
762 }
763
764 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
765 {
766         if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
767                 return dentry->d_op->d_revalidate(dentry, flags);
768         else
769                 return 1;
770 }
771
772 /**
773  * complete_walk - successful completion of path walk
774  * @nd:  pointer nameidata
775  *
776  * If we had been in RCU mode, drop out of it and legitimize nd->path.
777  * Revalidate the final result, unless we'd already done that during
778  * the path walk or the filesystem doesn't ask for it.  Return 0 on
779  * success, -error on failure.  In case of failure caller does not
780  * need to drop nd->path.
781  */
782 static int complete_walk(struct nameidata *nd)
783 {
784         struct dentry *dentry = nd->path.dentry;
785         int status;
786
787         if (nd->flags & LOOKUP_RCU) {
788                 if (!(nd->flags & LOOKUP_ROOT))
789                         nd->root.mnt = NULL;
790                 if (unlikely(unlazy_walk(nd)))
791                         return -ECHILD;
792         }
793
794         if (likely(!(nd->flags & LOOKUP_JUMPED)))
795                 return 0;
796
797         if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
798                 return 0;
799
800         status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
801         if (status > 0)
802                 return 0;
803
804         if (!status)
805                 status = -ESTALE;
806
807         return status;
808 }
809
810 static void set_root(struct nameidata *nd)
811 {
812         struct fs_struct *fs = current->fs;
813
814         if (nd->flags & LOOKUP_RCU) {
815                 unsigned seq;
816
817                 do {
818                         seq = read_seqcount_begin(&fs->seq);
819                         nd->root = fs->root;
820                         nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
821                 } while (read_seqcount_retry(&fs->seq, seq));
822         } else {
823                 get_fs_root(fs, &nd->root);
824         }
825 }
826
827 static void path_put_conditional(struct path *path, struct nameidata *nd)
828 {
829         dput(path->dentry);
830         if (path->mnt != nd->path.mnt)
831                 mntput(path->mnt);
832 }
833
834 static inline void path_to_nameidata(const struct path *path,
835                                         struct nameidata *nd)
836 {
837         if (!(nd->flags & LOOKUP_RCU)) {
838                 dput(nd->path.dentry);
839                 if (nd->path.mnt != path->mnt)
840                         mntput(nd->path.mnt);
841         }
842         nd->path.mnt = path->mnt;
843         nd->path.dentry = path->dentry;
844 }
845
846 static int nd_jump_root(struct nameidata *nd)
847 {
848         if (nd->flags & LOOKUP_RCU) {
849                 struct dentry *d;
850                 nd->path = nd->root;
851                 d = nd->path.dentry;
852                 nd->inode = d->d_inode;
853                 nd->seq = nd->root_seq;
854                 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
855                         return -ECHILD;
856         } else {
857                 path_put(&nd->path);
858                 nd->path = nd->root;
859                 path_get(&nd->path);
860                 nd->inode = nd->path.dentry->d_inode;
861         }
862         nd->flags |= LOOKUP_JUMPED;
863         return 0;
864 }
865
866 /*
867  * Helper to directly jump to a known parsed path from ->get_link,
868  * caller must have taken a reference to path beforehand.
869  */
870 void nd_jump_link(struct path *path)
871 {
872         struct nameidata *nd = current->nameidata;
873         path_put(&nd->path);
874
875         nd->path = *path;
876         nd->inode = nd->path.dentry->d_inode;
877         nd->flags |= LOOKUP_JUMPED;
878 }
879
880 static inline void put_link(struct nameidata *nd)
881 {
882         struct saved *last = nd->stack + --nd->depth;
883         do_delayed_call(&last->done);
884         if (!(nd->flags & LOOKUP_RCU))
885                 path_put(&last->link);
886 }
887
888 int sysctl_protected_symlinks __read_mostly = 0;
889 int sysctl_protected_hardlinks __read_mostly = 0;
890
891 /**
892  * may_follow_link - Check symlink following for unsafe situations
893  * @nd: nameidata pathwalk data
894  *
895  * In the case of the sysctl_protected_symlinks sysctl being enabled,
896  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
897  * in a sticky world-writable directory. This is to protect privileged
898  * processes from failing races against path names that may change out
899  * from under them by way of other users creating malicious symlinks.
900  * It will permit symlinks to be followed only when outside a sticky
901  * world-writable directory, or when the uid of the symlink and follower
902  * match, or when the directory owner matches the symlink's owner.
903  *
904  * Returns 0 if following the symlink is allowed, -ve on error.
905  */
906 static inline int may_follow_link(struct nameidata *nd)
907 {
908         const struct inode *inode;
909         const struct inode *parent;
910         kuid_t puid;
911
912         if (!sysctl_protected_symlinks)
913                 return 0;
914
915         /* Allowed if owner and follower match. */
916         inode = nd->link_inode;
917         if (uid_eq(current_cred()->fsuid, inode->i_uid))
918                 return 0;
919
920         /* Allowed if parent directory not sticky and world-writable. */
921         parent = nd->inode;
922         if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
923                 return 0;
924
925         /* Allowed if parent directory and link owner match. */
926         puid = parent->i_uid;
927         if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
928                 return 0;
929
930         if (nd->flags & LOOKUP_RCU)
931                 return -ECHILD;
932
933         audit_inode(nd->name, nd->stack[0].link.dentry, 0);
934         audit_log_link_denied("follow_link");
935         return -EACCES;
936 }
937
938 /**
939  * safe_hardlink_source - Check for safe hardlink conditions
940  * @inode: the source inode to hardlink from
941  *
942  * Return false if at least one of the following conditions:
943  *    - inode is not a regular file
944  *    - inode is setuid
945  *    - inode is setgid and group-exec
946  *    - access failure for read and write
947  *
948  * Otherwise returns true.
949  */
950 static bool safe_hardlink_source(struct inode *inode)
951 {
952         umode_t mode = inode->i_mode;
953
954         /* Special files should not get pinned to the filesystem. */
955         if (!S_ISREG(mode))
956                 return false;
957
958         /* Setuid files should not get pinned to the filesystem. */
959         if (mode & S_ISUID)
960                 return false;
961
962         /* Executable setgid files should not get pinned to the filesystem. */
963         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
964                 return false;
965
966         /* Hardlinking to unreadable or unwritable sources is dangerous. */
967         if (inode_permission(inode, MAY_READ | MAY_WRITE))
968                 return false;
969
970         return true;
971 }
972
973 /**
974  * may_linkat - Check permissions for creating a hardlink
975  * @link: the source to hardlink from
976  *
977  * Block hardlink when all of:
978  *  - sysctl_protected_hardlinks enabled
979  *  - fsuid does not match inode
980  *  - hardlink source is unsafe (see safe_hardlink_source() above)
981  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
982  *
983  * Returns 0 if successful, -ve on error.
984  */
985 static int may_linkat(struct path *link)
986 {
987         struct inode *inode = link->dentry->d_inode;
988
989         /* Inode writeback is not safe when the uid or gid are invalid. */
990         if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
991                 return -EOVERFLOW;
992
993         if (!sysctl_protected_hardlinks)
994                 return 0;
995
996         /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
997          * otherwise, it must be a safe source.
998          */
999         if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1000                 return 0;
1001
1002         audit_log_link_denied("linkat");
1003         return -EPERM;
1004 }
1005
1006 static __always_inline
1007 const char *get_link(struct nameidata *nd)
1008 {
1009         struct saved *last = nd->stack + nd->depth - 1;
1010         struct dentry *dentry = last->link.dentry;
1011         struct inode *inode = nd->link_inode;
1012         int error;
1013         const char *res;
1014
1015         if (!(nd->flags & LOOKUP_RCU)) {
1016                 touch_atime(&last->link);
1017                 cond_resched();
1018         } else if (atime_needs_update_rcu(&last->link, inode)) {
1019                 if (unlikely(unlazy_walk(nd)))
1020                         return ERR_PTR(-ECHILD);
1021                 touch_atime(&last->link);
1022         }
1023
1024         error = security_inode_follow_link(dentry, inode,
1025                                            nd->flags & LOOKUP_RCU);
1026         if (unlikely(error))
1027                 return ERR_PTR(error);
1028
1029         nd->last_type = LAST_BIND;
1030         res = inode->i_link;
1031         if (!res) {
1032                 const char * (*get)(struct dentry *, struct inode *,
1033                                 struct delayed_call *);
1034                 get = inode->i_op->get_link;
1035                 if (nd->flags & LOOKUP_RCU) {
1036                         res = get(NULL, inode, &last->done);
1037                         if (res == ERR_PTR(-ECHILD)) {
1038                                 if (unlikely(unlazy_walk(nd)))
1039                                         return ERR_PTR(-ECHILD);
1040                                 res = get(dentry, inode, &last->done);
1041                         }
1042                 } else {
1043                         res = get(dentry, inode, &last->done);
1044                 }
1045                 if (IS_ERR_OR_NULL(res))
1046                         return res;
1047         }
1048         if (*res == '/') {
1049                 if (!nd->root.mnt)
1050                         set_root(nd);
1051                 if (unlikely(nd_jump_root(nd)))
1052                         return ERR_PTR(-ECHILD);
1053                 while (unlikely(*++res == '/'))
1054                         ;
1055         }
1056         if (!*res)
1057                 res = NULL;
1058         return res;
1059 }
1060
1061 /*
1062  * follow_up - Find the mountpoint of path's vfsmount
1063  *
1064  * Given a path, find the mountpoint of its source file system.
1065  * Replace @path with the path of the mountpoint in the parent mount.
1066  * Up is towards /.
1067  *
1068  * Return 1 if we went up a level and 0 if we were already at the
1069  * root.
1070  */
1071 int follow_up(struct path *path)
1072 {
1073         struct mount *mnt = real_mount(path->mnt);
1074         struct mount *parent;
1075         struct dentry *mountpoint;
1076
1077         read_seqlock_excl(&mount_lock);
1078         parent = mnt->mnt_parent;
1079         if (parent == mnt) {
1080                 read_sequnlock_excl(&mount_lock);
1081                 return 0;
1082         }
1083         mntget(&parent->mnt);
1084         mountpoint = dget(mnt->mnt_mountpoint);
1085         read_sequnlock_excl(&mount_lock);
1086         dput(path->dentry);
1087         path->dentry = mountpoint;
1088         mntput(path->mnt);
1089         path->mnt = &parent->mnt;
1090         return 1;
1091 }
1092 EXPORT_SYMBOL(follow_up);
1093
1094 /*
1095  * Perform an automount
1096  * - return -EISDIR to tell follow_managed() to stop and return the path we
1097  *   were called with.
1098  */
1099 static int follow_automount(struct path *path, struct nameidata *nd,
1100                             bool *need_mntput)
1101 {
1102         struct vfsmount *mnt;
1103         int err;
1104
1105         if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1106                 return -EREMOTE;
1107
1108         /* We don't want to mount if someone's just doing a stat -
1109          * unless they're stat'ing a directory and appended a '/' to
1110          * the name.
1111          *
1112          * We do, however, want to mount if someone wants to open or
1113          * create a file of any type under the mountpoint, wants to
1114          * traverse through the mountpoint or wants to open the
1115          * mounted directory.  Also, autofs may mark negative dentries
1116          * as being automount points.  These will need the attentions
1117          * of the daemon to instantiate them before they can be used.
1118          */
1119         if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1120                            LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1121             path->dentry->d_inode)
1122                 return -EISDIR;
1123
1124         nd->total_link_count++;
1125         if (nd->total_link_count >= 40)
1126                 return -ELOOP;
1127
1128         mnt = path->dentry->d_op->d_automount(path);
1129         if (IS_ERR(mnt)) {
1130                 /*
1131                  * The filesystem is allowed to return -EISDIR here to indicate
1132                  * it doesn't want to automount.  For instance, autofs would do
1133                  * this so that its userspace daemon can mount on this dentry.
1134                  *
1135                  * However, we can only permit this if it's a terminal point in
1136                  * the path being looked up; if it wasn't then the remainder of
1137                  * the path is inaccessible and we should say so.
1138                  */
1139                 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1140                         return -EREMOTE;
1141                 return PTR_ERR(mnt);
1142         }
1143
1144         if (!mnt) /* mount collision */
1145                 return 0;
1146
1147         if (!*need_mntput) {
1148                 /* lock_mount() may release path->mnt on error */
1149                 mntget(path->mnt);
1150                 *need_mntput = true;
1151         }
1152         err = finish_automount(mnt, path);
1153
1154         switch (err) {
1155         case -EBUSY:
1156                 /* Someone else made a mount here whilst we were busy */
1157                 return 0;
1158         case 0:
1159                 path_put(path);
1160                 path->mnt = mnt;
1161                 path->dentry = dget(mnt->mnt_root);
1162                 return 0;
1163         default:
1164                 return err;
1165         }
1166
1167 }
1168
1169 /*
1170  * Handle a dentry that is managed in some way.
1171  * - Flagged for transit management (autofs)
1172  * - Flagged as mountpoint
1173  * - Flagged as automount point
1174  *
1175  * This may only be called in refwalk mode.
1176  *
1177  * Serialization is taken care of in namespace.c
1178  */
1179 static int follow_managed(struct path *path, struct nameidata *nd)
1180 {
1181         struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1182         unsigned managed;
1183         bool need_mntput = false;
1184         int ret = 0;
1185
1186         /* Given that we're not holding a lock here, we retain the value in a
1187          * local variable for each dentry as we look at it so that we don't see
1188          * the components of that value change under us */
1189         while (managed = READ_ONCE(path->dentry->d_flags),
1190                managed &= DCACHE_MANAGED_DENTRY,
1191                unlikely(managed != 0)) {
1192                 /* Allow the filesystem to manage the transit without i_mutex
1193                  * being held. */
1194                 if (managed & DCACHE_MANAGE_TRANSIT) {
1195                         BUG_ON(!path->dentry->d_op);
1196                         BUG_ON(!path->dentry->d_op->d_manage);
1197                         ret = path->dentry->d_op->d_manage(path, false);
1198                         if (ret < 0)
1199                                 break;
1200                 }
1201
1202                 /* Transit to a mounted filesystem. */
1203                 if (managed & DCACHE_MOUNTED) {
1204                         struct vfsmount *mounted = lookup_mnt(path);
1205                         if (mounted) {
1206                                 dput(path->dentry);
1207                                 if (need_mntput)
1208                                         mntput(path->mnt);
1209                                 path->mnt = mounted;
1210                                 path->dentry = dget(mounted->mnt_root);
1211                                 need_mntput = true;
1212                                 continue;
1213                         }
1214
1215                         /* Something is mounted on this dentry in another
1216                          * namespace and/or whatever was mounted there in this
1217                          * namespace got unmounted before lookup_mnt() could
1218                          * get it */
1219                 }
1220
1221                 /* Handle an automount point */
1222                 if (managed & DCACHE_NEED_AUTOMOUNT) {
1223                         ret = follow_automount(path, nd, &need_mntput);
1224                         if (ret < 0)
1225                                 break;
1226                         continue;
1227                 }
1228
1229                 /* We didn't change the current path point */
1230                 break;
1231         }
1232
1233         if (need_mntput && path->mnt == mnt)
1234                 mntput(path->mnt);
1235         if (ret == -EISDIR || !ret)
1236                 ret = 1;
1237         if (need_mntput)
1238                 nd->flags |= LOOKUP_JUMPED;
1239         if (unlikely(ret < 0))
1240                 path_put_conditional(path, nd);
1241         return ret;
1242 }
1243
1244 int follow_down_one(struct path *path)
1245 {
1246         struct vfsmount *mounted;
1247
1248         mounted = lookup_mnt(path);
1249         if (mounted) {
1250                 dput(path->dentry);
1251                 mntput(path->mnt);
1252                 path->mnt = mounted;
1253                 path->dentry = dget(mounted->mnt_root);
1254                 return 1;
1255         }
1256         return 0;
1257 }
1258 EXPORT_SYMBOL(follow_down_one);
1259
1260 static inline int managed_dentry_rcu(const struct path *path)
1261 {
1262         return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1263                 path->dentry->d_op->d_manage(path, true) : 0;
1264 }
1265
1266 /*
1267  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1268  * we meet a managed dentry that would need blocking.
1269  */
1270 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1271                                struct inode **inode, unsigned *seqp)
1272 {
1273         for (;;) {
1274                 struct mount *mounted;
1275                 /*
1276                  * Don't forget we might have a non-mountpoint managed dentry
1277                  * that wants to block transit.
1278                  */
1279                 switch (managed_dentry_rcu(path)) {
1280                 case -ECHILD:
1281                 default:
1282                         return false;
1283                 case -EISDIR:
1284                         return true;
1285                 case 0:
1286                         break;
1287                 }
1288
1289                 if (!d_mountpoint(path->dentry))
1290                         return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1291
1292                 mounted = __lookup_mnt(path->mnt, path->dentry);
1293                 if (!mounted)
1294                         break;
1295                 path->mnt = &mounted->mnt;
1296                 path->dentry = mounted->mnt.mnt_root;
1297                 nd->flags |= LOOKUP_JUMPED;
1298                 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1299                 /*
1300                  * Update the inode too. We don't need to re-check the
1301                  * dentry sequence number here after this d_inode read,
1302                  * because a mount-point is always pinned.
1303                  */
1304                 *inode = path->dentry->d_inode;
1305         }
1306         return !read_seqretry(&mount_lock, nd->m_seq) &&
1307                 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1308 }
1309
1310 static int follow_dotdot_rcu(struct nameidata *nd)
1311 {
1312         struct inode *inode = nd->inode;
1313
1314         while (1) {
1315                 if (path_equal(&nd->path, &nd->root))
1316                         break;
1317                 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1318                         struct dentry *old = nd->path.dentry;
1319                         struct dentry *parent = old->d_parent;
1320                         unsigned seq;
1321
1322                         inode = parent->d_inode;
1323                         seq = read_seqcount_begin(&parent->d_seq);
1324                         if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1325                                 return -ECHILD;
1326                         nd->path.dentry = parent;
1327                         nd->seq = seq;
1328                         if (unlikely(!path_connected(&nd->path)))
1329                                 return -ENOENT;
1330                         break;
1331                 } else {
1332                         struct mount *mnt = real_mount(nd->path.mnt);
1333                         struct mount *mparent = mnt->mnt_parent;
1334                         struct dentry *mountpoint = mnt->mnt_mountpoint;
1335                         struct inode *inode2 = mountpoint->d_inode;
1336                         unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1337                         if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1338                                 return -ECHILD;
1339                         if (&mparent->mnt == nd->path.mnt)
1340                                 break;
1341                         /* we know that mountpoint was pinned */
1342                         nd->path.dentry = mountpoint;
1343                         nd->path.mnt = &mparent->mnt;
1344                         inode = inode2;
1345                         nd->seq = seq;
1346                 }
1347         }
1348         while (unlikely(d_mountpoint(nd->path.dentry))) {
1349                 struct mount *mounted;
1350                 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1351                 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1352                         return -ECHILD;
1353                 if (!mounted)
1354                         break;
1355                 nd->path.mnt = &mounted->mnt;
1356                 nd->path.dentry = mounted->mnt.mnt_root;
1357                 inode = nd->path.dentry->d_inode;
1358                 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1359         }
1360         nd->inode = inode;
1361         return 0;
1362 }
1363
1364 /*
1365  * Follow down to the covering mount currently visible to userspace.  At each
1366  * point, the filesystem owning that dentry may be queried as to whether the
1367  * caller is permitted to proceed or not.
1368  */
1369 int follow_down(struct path *path)
1370 {
1371         unsigned managed;
1372         int ret;
1373
1374         while (managed = READ_ONCE(path->dentry->d_flags),
1375                unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1376                 /* Allow the filesystem to manage the transit without i_mutex
1377                  * being held.
1378                  *
1379                  * We indicate to the filesystem if someone is trying to mount
1380                  * something here.  This gives autofs the chance to deny anyone
1381                  * other than its daemon the right to mount on its
1382                  * superstructure.
1383                  *
1384                  * The filesystem may sleep at this point.
1385                  */
1386                 if (managed & DCACHE_MANAGE_TRANSIT) {
1387                         BUG_ON(!path->dentry->d_op);
1388                         BUG_ON(!path->dentry->d_op->d_manage);
1389                         ret = path->dentry->d_op->d_manage(path, false);
1390                         if (ret < 0)
1391                                 return ret == -EISDIR ? 0 : ret;
1392                 }
1393
1394                 /* Transit to a mounted filesystem. */
1395                 if (managed & DCACHE_MOUNTED) {
1396                         struct vfsmount *mounted = lookup_mnt(path);
1397                         if (!mounted)
1398                                 break;
1399                         dput(path->dentry);
1400                         mntput(path->mnt);
1401                         path->mnt = mounted;
1402                         path->dentry = dget(mounted->mnt_root);
1403                         continue;
1404                 }
1405
1406                 /* Don't handle automount points here */
1407                 break;
1408         }
1409         return 0;
1410 }
1411 EXPORT_SYMBOL(follow_down);
1412
1413 /*
1414  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1415  */
1416 static void follow_mount(struct path *path)
1417 {
1418         while (d_mountpoint(path->dentry)) {
1419                 struct vfsmount *mounted = lookup_mnt(path);
1420                 if (!mounted)
1421                         break;
1422                 dput(path->dentry);
1423                 mntput(path->mnt);
1424                 path->mnt = mounted;
1425                 path->dentry = dget(mounted->mnt_root);
1426         }
1427 }
1428
1429 static int path_parent_directory(struct path *path)
1430 {
1431         struct dentry *old = path->dentry;
1432         /* rare case of legitimate dget_parent()... */
1433         path->dentry = dget_parent(path->dentry);
1434         dput(old);
1435         if (unlikely(!path_connected(path)))
1436                 return -ENOENT;
1437         return 0;
1438 }
1439
1440 static int follow_dotdot(struct nameidata *nd)
1441 {
1442         while(1) {
1443                 if (path_equal(&nd->path, &nd->root))
1444                         break;
1445                 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1446                         int ret = path_parent_directory(&nd->path);
1447                         if (ret)
1448                                 return ret;
1449                         break;
1450                 }
1451                 if (!follow_up(&nd->path))
1452                         break;
1453         }
1454         follow_mount(&nd->path);
1455         nd->inode = nd->path.dentry->d_inode;
1456         return 0;
1457 }
1458
1459 /*
1460  * This looks up the name in dcache and possibly revalidates the found dentry.
1461  * NULL is returned if the dentry does not exist in the cache.
1462  */
1463 static struct dentry *lookup_dcache(const struct qstr *name,
1464                                     struct dentry *dir,
1465                                     unsigned int flags)
1466 {
1467         struct dentry *dentry = d_lookup(dir, name);
1468         if (dentry) {
1469                 int error = d_revalidate(dentry, flags);
1470                 if (unlikely(error <= 0)) {
1471                         if (!error)
1472                                 d_invalidate(dentry);
1473                         dput(dentry);
1474                         return ERR_PTR(error);
1475                 }
1476         }
1477         return dentry;
1478 }
1479
1480 /*
1481  * Parent directory has inode locked exclusive.  This is one
1482  * and only case when ->lookup() gets called on non in-lookup
1483  * dentries - as the matter of fact, this only gets called
1484  * when directory is guaranteed to have no in-lookup children
1485  * at all.
1486  */
1487 static struct dentry *__lookup_hash(const struct qstr *name,
1488                 struct dentry *base, unsigned int flags)
1489 {
1490         struct dentry *dentry = lookup_dcache(name, base, flags);
1491         struct dentry *old;
1492         struct inode *dir = base->d_inode;
1493
1494         if (dentry)
1495                 return dentry;
1496
1497         /* Don't create child dentry for a dead directory. */
1498         if (unlikely(IS_DEADDIR(dir)))
1499                 return ERR_PTR(-ENOENT);
1500
1501         dentry = d_alloc(base, name);
1502         if (unlikely(!dentry))
1503                 return ERR_PTR(-ENOMEM);
1504
1505         old = dir->i_op->lookup(dir, dentry, flags);
1506         if (unlikely(old)) {
1507                 dput(dentry);
1508                 dentry = old;
1509         }
1510         return dentry;
1511 }
1512
1513 static int lookup_fast(struct nameidata *nd,
1514                        struct path *path, struct inode **inode,
1515                        unsigned *seqp)
1516 {
1517         struct vfsmount *mnt = nd->path.mnt;
1518         struct dentry *dentry, *parent = nd->path.dentry;
1519         int status = 1;
1520         int err;
1521
1522         /*
1523          * Rename seqlock is not required here because in the off chance
1524          * of a false negative due to a concurrent rename, the caller is
1525          * going to fall back to non-racy lookup.
1526          */
1527         if (nd->flags & LOOKUP_RCU) {
1528                 unsigned seq;
1529                 bool negative;
1530                 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1531                 if (unlikely(!dentry)) {
1532                         if (unlazy_walk(nd))
1533                                 return -ECHILD;
1534                         return 0;
1535                 }
1536
1537                 /*
1538                  * This sequence count validates that the inode matches
1539                  * the dentry name information from lookup.
1540                  */
1541                 *inode = d_backing_inode(dentry);
1542                 negative = d_is_negative(dentry);
1543                 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1544                         return -ECHILD;
1545
1546                 /*
1547                  * This sequence count validates that the parent had no
1548                  * changes while we did the lookup of the dentry above.
1549                  *
1550                  * The memory barrier in read_seqcount_begin of child is
1551                  *  enough, we can use __read_seqcount_retry here.
1552                  */
1553                 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1554                         return -ECHILD;
1555
1556                 *seqp = seq;
1557                 status = d_revalidate(dentry, nd->flags);
1558                 if (likely(status > 0)) {
1559                         /*
1560                          * Note: do negative dentry check after revalidation in
1561                          * case that drops it.
1562                          */
1563                         if (unlikely(negative))
1564                                 return -ENOENT;
1565                         path->mnt = mnt;
1566                         path->dentry = dentry;
1567                         if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1568                                 return 1;
1569                 }
1570                 if (unlazy_child(nd, dentry, seq))
1571                         return -ECHILD;
1572                 if (unlikely(status == -ECHILD))
1573                         /* we'd been told to redo it in non-rcu mode */
1574                         status = d_revalidate(dentry, nd->flags);
1575         } else {
1576                 dentry = __d_lookup(parent, &nd->last);
1577                 if (unlikely(!dentry))
1578                         return 0;
1579                 status = d_revalidate(dentry, nd->flags);
1580         }
1581         if (unlikely(status <= 0)) {
1582                 if (!status)
1583                         d_invalidate(dentry);
1584                 dput(dentry);
1585                 return status;
1586         }
1587         if (unlikely(d_is_negative(dentry))) {
1588                 dput(dentry);
1589                 return -ENOENT;
1590         }
1591
1592         path->mnt = mnt;
1593         path->dentry = dentry;
1594         err = follow_managed(path, nd);
1595         if (likely(err > 0))
1596                 *inode = d_backing_inode(path->dentry);
1597         return err;
1598 }
1599
1600 /* Fast lookup failed, do it the slow way */
1601 static struct dentry *__lookup_slow(const struct qstr *name,
1602                                     struct dentry *dir,
1603                                     unsigned int flags)
1604 {
1605         struct dentry *dentry, *old;
1606         struct inode *inode = dir->d_inode;
1607         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1608
1609         /* Don't go there if it's already dead */
1610         if (unlikely(IS_DEADDIR(inode)))
1611                 return ERR_PTR(-ENOENT);
1612 again:
1613         dentry = d_alloc_parallel(dir, name, &wq);
1614         if (IS_ERR(dentry))
1615                 return dentry;
1616         if (unlikely(!d_in_lookup(dentry))) {
1617                 if (!(flags & LOOKUP_NO_REVAL)) {
1618                         int error = d_revalidate(dentry, flags);
1619                         if (unlikely(error <= 0)) {
1620                                 if (!error) {
1621                                         d_invalidate(dentry);
1622                                         dput(dentry);
1623                                         goto again;
1624                                 }
1625                                 dput(dentry);
1626                                 dentry = ERR_PTR(error);
1627                         }
1628                 }
1629         } else {
1630                 old = inode->i_op->lookup(inode, dentry, flags);
1631                 d_lookup_done(dentry);
1632                 if (unlikely(old)) {
1633                         dput(dentry);
1634                         dentry = old;
1635                 }
1636         }
1637         return dentry;
1638 }
1639
1640 static struct dentry *lookup_slow(const struct qstr *name,
1641                                   struct dentry *dir,
1642                                   unsigned int flags)
1643 {
1644         struct inode *inode = dir->d_inode;
1645         struct dentry *res;
1646         inode_lock_shared(inode);
1647         res = __lookup_slow(name, dir, flags);
1648         inode_unlock_shared(inode);
1649         return res;
1650 }
1651
1652 static inline int may_lookup(struct nameidata *nd)
1653 {
1654         if (nd->flags & LOOKUP_RCU) {
1655                 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1656                 if (err != -ECHILD)
1657                         return err;
1658                 if (unlazy_walk(nd))
1659                         return -ECHILD;
1660         }
1661         return inode_permission(nd->inode, MAY_EXEC);
1662 }
1663
1664 static inline int handle_dots(struct nameidata *nd, int type)
1665 {
1666         if (type == LAST_DOTDOT) {
1667                 if (!nd->root.mnt)
1668                         set_root(nd);
1669                 if (nd->flags & LOOKUP_RCU) {
1670                         return follow_dotdot_rcu(nd);
1671                 } else
1672                         return follow_dotdot(nd);
1673         }
1674         return 0;
1675 }
1676
1677 static int pick_link(struct nameidata *nd, struct path *link,
1678                      struct inode *inode, unsigned seq)
1679 {
1680         int error;
1681         struct saved *last;
1682         if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1683                 path_to_nameidata(link, nd);
1684                 return -ELOOP;
1685         }
1686         if (!(nd->flags & LOOKUP_RCU)) {
1687                 if (link->mnt == nd->path.mnt)
1688                         mntget(link->mnt);
1689         }
1690         error = nd_alloc_stack(nd);
1691         if (unlikely(error)) {
1692                 if (error == -ECHILD) {
1693                         if (unlikely(!legitimize_path(nd, link, seq))) {
1694                                 drop_links(nd);
1695                                 nd->depth = 0;
1696                                 nd->flags &= ~LOOKUP_RCU;
1697                                 nd->path.mnt = NULL;
1698                                 nd->path.dentry = NULL;
1699                                 if (!(nd->flags & LOOKUP_ROOT))
1700                                         nd->root.mnt = NULL;
1701                                 rcu_read_unlock();
1702                         } else if (likely(unlazy_walk(nd)) == 0)
1703                                 error = nd_alloc_stack(nd);
1704                 }
1705                 if (error) {
1706                         path_put(link);
1707                         return error;
1708                 }
1709         }
1710
1711         last = nd->stack + nd->depth++;
1712         last->link = *link;
1713         clear_delayed_call(&last->done);
1714         nd->link_inode = inode;
1715         last->seq = seq;
1716         return 1;
1717 }
1718
1719 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1720
1721 /*
1722  * Do we need to follow links? We _really_ want to be able
1723  * to do this check without having to look at inode->i_op,
1724  * so we keep a cache of "no, this doesn't need follow_link"
1725  * for the common case.
1726  */
1727 static inline int step_into(struct nameidata *nd, struct path *path,
1728                             int flags, struct inode *inode, unsigned seq)
1729 {
1730         if (!(flags & WALK_MORE) && nd->depth)
1731                 put_link(nd);
1732         if (likely(!d_is_symlink(path->dentry)) ||
1733            !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1734                 /* not a symlink or should not follow */
1735                 path_to_nameidata(path, nd);
1736                 nd->inode = inode;
1737                 nd->seq = seq;
1738                 return 0;
1739         }
1740         /* make sure that d_is_symlink above matches inode */
1741         if (nd->flags & LOOKUP_RCU) {
1742                 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1743                         return -ECHILD;
1744         }
1745         return pick_link(nd, path, inode, seq);
1746 }
1747
1748 static int walk_component(struct nameidata *nd, int flags)
1749 {
1750         struct path path;
1751         struct inode *inode;
1752         unsigned seq;
1753         int err;
1754         /*
1755          * "." and ".." are special - ".." especially so because it has
1756          * to be able to know about the current root directory and
1757          * parent relationships.
1758          */
1759         if (unlikely(nd->last_type != LAST_NORM)) {
1760                 err = handle_dots(nd, nd->last_type);
1761                 if (!(flags & WALK_MORE) && nd->depth)
1762                         put_link(nd);
1763                 return err;
1764         }
1765         err = lookup_fast(nd, &path, &inode, &seq);
1766         if (unlikely(err <= 0)) {
1767                 if (err < 0)
1768                         return err;
1769                 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1770                                           nd->flags);
1771                 if (IS_ERR(path.dentry))
1772                         return PTR_ERR(path.dentry);
1773
1774                 path.mnt = nd->path.mnt;
1775                 err = follow_managed(&path, nd);
1776                 if (unlikely(err < 0))
1777                         return err;
1778
1779                 if (unlikely(d_is_negative(path.dentry))) {
1780                         path_to_nameidata(&path, nd);
1781                         return -ENOENT;
1782                 }
1783
1784                 seq = 0;        /* we are already out of RCU mode */
1785                 inode = d_backing_inode(path.dentry);
1786         }
1787
1788         return step_into(nd, &path, flags, inode, seq);
1789 }
1790
1791 /*
1792  * We can do the critical dentry name comparison and hashing
1793  * operations one word at a time, but we are limited to:
1794  *
1795  * - Architectures with fast unaligned word accesses. We could
1796  *   do a "get_unaligned()" if this helps and is sufficiently
1797  *   fast.
1798  *
1799  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1800  *   do not trap on the (extremely unlikely) case of a page
1801  *   crossing operation.
1802  *
1803  * - Furthermore, we need an efficient 64-bit compile for the
1804  *   64-bit case in order to generate the "number of bytes in
1805  *   the final mask". Again, that could be replaced with a
1806  *   efficient population count instruction or similar.
1807  */
1808 #ifdef CONFIG_DCACHE_WORD_ACCESS
1809
1810 #include <asm/word-at-a-time.h>
1811
1812 #ifdef HASH_MIX
1813
1814 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1815
1816 #elif defined(CONFIG_64BIT)
1817 /*
1818  * Register pressure in the mixing function is an issue, particularly
1819  * on 32-bit x86, but almost any function requires one state value and
1820  * one temporary.  Instead, use a function designed for two state values
1821  * and no temporaries.
1822  *
1823  * This function cannot create a collision in only two iterations, so
1824  * we have two iterations to achieve avalanche.  In those two iterations,
1825  * we have six layers of mixing, which is enough to spread one bit's
1826  * influence out to 2^6 = 64 state bits.
1827  *
1828  * Rotate constants are scored by considering either 64 one-bit input
1829  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1830  * probability of that delta causing a change to each of the 128 output
1831  * bits, using a sample of random initial states.
1832  *
1833  * The Shannon entropy of the computed probabilities is then summed
1834  * to produce a score.  Ideally, any input change has a 50% chance of
1835  * toggling any given output bit.
1836  *
1837  * Mixing scores (in bits) for (12,45):
1838  * Input delta: 1-bit      2-bit
1839  * 1 round:     713.3    42542.6
1840  * 2 rounds:   2753.7   140389.8
1841  * 3 rounds:   5954.1   233458.2
1842  * 4 rounds:   7862.6   256672.2
1843  * Perfect:    8192     258048
1844  *            (64*128) (64*63/2 * 128)
1845  */
1846 #define HASH_MIX(x, y, a)       \
1847         (       x ^= (a),       \
1848         y ^= x, x = rol64(x,12),\
1849         x += y, y = rol64(y,45),\
1850         y *= 9                  )
1851
1852 /*
1853  * Fold two longs into one 32-bit hash value.  This must be fast, but
1854  * latency isn't quite as critical, as there is a fair bit of additional
1855  * work done before the hash value is used.
1856  */
1857 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1858 {
1859         y ^= x * GOLDEN_RATIO_64;
1860         y *= GOLDEN_RATIO_64;
1861         return y >> 32;
1862 }
1863
1864 #else   /* 32-bit case */
1865
1866 /*
1867  * Mixing scores (in bits) for (7,20):
1868  * Input delta: 1-bit      2-bit
1869  * 1 round:     330.3     9201.6
1870  * 2 rounds:   1246.4    25475.4
1871  * 3 rounds:   1907.1    31295.1
1872  * 4 rounds:   2042.3    31718.6
1873  * Perfect:    2048      31744
1874  *            (32*64)   (32*31/2 * 64)
1875  */
1876 #define HASH_MIX(x, y, a)       \
1877         (       x ^= (a),       \
1878         y ^= x, x = rol32(x, 7),\
1879         x += y, y = rol32(y,20),\
1880         y *= 9                  )
1881
1882 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1883 {
1884         /* Use arch-optimized multiply if one exists */
1885         return __hash_32(y ^ __hash_32(x));
1886 }
1887
1888 #endif
1889
1890 /*
1891  * Return the hash of a string of known length.  This is carfully
1892  * designed to match hash_name(), which is the more critical function.
1893  * In particular, we must end by hashing a final word containing 0..7
1894  * payload bytes, to match the way that hash_name() iterates until it
1895  * finds the delimiter after the name.
1896  */
1897 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1898 {
1899         unsigned long a, x = 0, y = (unsigned long)salt;
1900
1901         for (;;) {
1902                 if (!len)
1903                         goto done;
1904                 a = load_unaligned_zeropad(name);
1905                 if (len < sizeof(unsigned long))
1906                         break;
1907                 HASH_MIX(x, y, a);
1908                 name += sizeof(unsigned long);
1909                 len -= sizeof(unsigned long);
1910         }
1911         x ^= a & bytemask_from_count(len);
1912 done:
1913         return fold_hash(x, y);
1914 }
1915 EXPORT_SYMBOL(full_name_hash);
1916
1917 /* Return the "hash_len" (hash and length) of a null-terminated string */
1918 u64 hashlen_string(const void *salt, const char *name)
1919 {
1920         unsigned long a = 0, x = 0, y = (unsigned long)salt;
1921         unsigned long adata, mask, len;
1922         const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1923
1924         len = 0;
1925         goto inside;
1926
1927         do {
1928                 HASH_MIX(x, y, a);
1929                 len += sizeof(unsigned long);
1930 inside:
1931                 a = load_unaligned_zeropad(name+len);
1932         } while (!has_zero(a, &adata, &constants));
1933
1934         adata = prep_zero_mask(a, adata, &constants);
1935         mask = create_zero_mask(adata);
1936         x ^= a & zero_bytemask(mask);
1937
1938         return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1939 }
1940 EXPORT_SYMBOL(hashlen_string);
1941
1942 /*
1943  * Calculate the length and hash of the path component, and
1944  * return the "hash_len" as the result.
1945  */
1946 static inline u64 hash_name(const void *salt, const char *name)
1947 {
1948         unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1949         unsigned long adata, bdata, mask, len;
1950         const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1951
1952         len = 0;
1953         goto inside;
1954
1955         do {
1956                 HASH_MIX(x, y, a);
1957                 len += sizeof(unsigned long);
1958 inside:
1959                 a = load_unaligned_zeropad(name+len);
1960                 b = a ^ REPEAT_BYTE('/');
1961         } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1962
1963         adata = prep_zero_mask(a, adata, &constants);
1964         bdata = prep_zero_mask(b, bdata, &constants);
1965         mask = create_zero_mask(adata | bdata);
1966         x ^= a & zero_bytemask(mask);
1967
1968         return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1969 }
1970
1971 #else   /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1972
1973 /* Return the hash of a string of known length */
1974 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1975 {
1976         unsigned long hash = init_name_hash(salt);
1977         while (len--)
1978                 hash = partial_name_hash((unsigned char)*name++, hash);
1979         return end_name_hash(hash);
1980 }
1981 EXPORT_SYMBOL(full_name_hash);
1982
1983 /* Return the "hash_len" (hash and length) of a null-terminated string */
1984 u64 hashlen_string(const void *salt, const char *name)
1985 {
1986         unsigned long hash = init_name_hash(salt);
1987         unsigned long len = 0, c;
1988
1989         c = (unsigned char)*name;
1990         while (c) {
1991                 len++;
1992                 hash = partial_name_hash(c, hash);
1993                 c = (unsigned char)name[len];
1994         }
1995         return hashlen_create(end_name_hash(hash), len);
1996 }
1997 EXPORT_SYMBOL(hashlen_string);
1998
1999 /*
2000  * We know there's a real path component here of at least
2001  * one character.
2002  */
2003 static inline u64 hash_name(const void *salt, const char *name)
2004 {
2005         unsigned long hash = init_name_hash(salt);
2006         unsigned long len = 0, c;
2007
2008         c = (unsigned char)*name;
2009         do {
2010                 len++;
2011                 hash = partial_name_hash(c, hash);
2012                 c = (unsigned char)name[len];
2013         } while (c && c != '/');
2014         return hashlen_create(end_name_hash(hash), len);
2015 }
2016
2017 #endif
2018
2019 /*
2020  * Name resolution.
2021  * This is the basic name resolution function, turning a pathname into
2022  * the final dentry. We expect 'base' to be positive and a directory.
2023  *
2024  * Returns 0 and nd will have valid dentry and mnt on success.
2025  * Returns error and drops reference to input namei data on failure.
2026  */
2027 static int link_path_walk(const char *name, struct nameidata *nd)
2028 {
2029         int err;
2030
2031         while (*name=='/')
2032                 name++;
2033         if (!*name)
2034                 return 0;
2035
2036         /* At this point we know we have a real path component. */
2037         for(;;) {
2038                 u64 hash_len;
2039                 int type;
2040
2041                 err = may_lookup(nd);
2042                 if (err)
2043                         return err;
2044
2045                 hash_len = hash_name(nd->path.dentry, name);
2046
2047                 type = LAST_NORM;
2048                 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2049                         case 2:
2050                                 if (name[1] == '.') {
2051                                         type = LAST_DOTDOT;
2052                                         nd->flags |= LOOKUP_JUMPED;
2053                                 }
2054                                 break;
2055                         case 1:
2056                                 type = LAST_DOT;
2057                 }
2058                 if (likely(type == LAST_NORM)) {
2059                         struct dentry *parent = nd->path.dentry;
2060                         nd->flags &= ~LOOKUP_JUMPED;
2061                         if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2062                                 struct qstr this = { { .hash_len = hash_len }, .name = name };
2063                                 err = parent->d_op->d_hash(parent, &this);
2064                                 if (err < 0)
2065                                         return err;
2066                                 hash_len = this.hash_len;
2067                                 name = this.name;
2068                         }
2069                 }
2070
2071                 nd->last.hash_len = hash_len;
2072                 nd->last.name = name;
2073                 nd->last_type = type;
2074
2075                 name += hashlen_len(hash_len);
2076                 if (!*name)
2077                         goto OK;
2078                 /*
2079                  * If it wasn't NUL, we know it was '/'. Skip that
2080                  * slash, and continue until no more slashes.
2081                  */
2082                 do {
2083                         name++;
2084                 } while (unlikely(*name == '/'));
2085                 if (unlikely(!*name)) {
2086 OK:
2087                         /* pathname body, done */
2088                         if (!nd->depth)
2089                                 return 0;
2090                         name = nd->stack[nd->depth - 1].name;
2091                         /* trailing symlink, done */
2092                         if (!name)
2093                                 return 0;
2094                         /* last component of nested symlink */
2095                         err = walk_component(nd, WALK_FOLLOW);
2096                 } else {
2097                         /* not the last component */
2098                         err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2099                 }
2100                 if (err < 0)
2101                         return err;
2102
2103                 if (err) {
2104                         const char *s = get_link(nd);
2105
2106                         if (IS_ERR(s))
2107                                 return PTR_ERR(s);
2108                         err = 0;
2109                         if (unlikely(!s)) {
2110                                 /* jumped */
2111                                 put_link(nd);
2112                         } else {
2113                                 nd->stack[nd->depth - 1].name = name;
2114                                 name = s;
2115                                 continue;
2116                         }
2117                 }
2118                 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2119                         if (nd->flags & LOOKUP_RCU) {
2120                                 if (unlazy_walk(nd))
2121                                         return -ECHILD;
2122                         }
2123                         return -ENOTDIR;
2124                 }
2125         }
2126 }
2127
2128 static const char *path_init(struct nameidata *nd, unsigned flags)
2129 {
2130         const char *s = nd->name->name;
2131
2132         if (!*s)
2133                 flags &= ~LOOKUP_RCU;
2134
2135         nd->last_type = LAST_ROOT; /* if there are only slashes... */
2136         nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2137         nd->depth = 0;
2138         if (flags & LOOKUP_ROOT) {
2139                 struct dentry *root = nd->root.dentry;
2140                 struct inode *inode = root->d_inode;
2141                 if (*s && unlikely(!d_can_lookup(root)))
2142                         return ERR_PTR(-ENOTDIR);
2143                 nd->path = nd->root;
2144                 nd->inode = inode;
2145                 if (flags & LOOKUP_RCU) {
2146                         rcu_read_lock();
2147                         nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2148                         nd->root_seq = nd->seq;
2149                         nd->m_seq = read_seqbegin(&mount_lock);
2150                 } else {
2151                         path_get(&nd->path);
2152                 }
2153                 return s;
2154         }
2155
2156         nd->root.mnt = NULL;
2157         nd->path.mnt = NULL;
2158         nd->path.dentry = NULL;
2159
2160         nd->m_seq = read_seqbegin(&mount_lock);
2161         if (*s == '/') {
2162                 if (flags & LOOKUP_RCU)
2163                         rcu_read_lock();
2164                 set_root(nd);
2165                 if (likely(!nd_jump_root(nd)))
2166                         return s;
2167                 nd->root.mnt = NULL;
2168                 rcu_read_unlock();
2169                 return ERR_PTR(-ECHILD);
2170         } else if (nd->dfd == AT_FDCWD) {
2171                 if (flags & LOOKUP_RCU) {
2172                         struct fs_struct *fs = current->fs;
2173                         unsigned seq;
2174
2175                         rcu_read_lock();
2176
2177                         do {
2178                                 seq = read_seqcount_begin(&fs->seq);
2179                                 nd->path = fs->pwd;
2180                                 nd->inode = nd->path.dentry->d_inode;
2181                                 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2182                         } while (read_seqcount_retry(&fs->seq, seq));
2183                 } else {
2184                         get_fs_pwd(current->fs, &nd->path);
2185                         nd->inode = nd->path.dentry->d_inode;
2186                 }
2187                 return s;
2188         } else {
2189                 /* Caller must check execute permissions on the starting path component */
2190                 struct fd f = fdget_raw(nd->dfd);
2191                 struct dentry *dentry;
2192
2193                 if (!f.file)
2194                         return ERR_PTR(-EBADF);
2195
2196                 dentry = f.file->f_path.dentry;
2197
2198                 if (*s) {
2199                         if (!d_can_lookup(dentry)) {
2200                                 fdput(f);
2201                                 return ERR_PTR(-ENOTDIR);
2202                         }
2203                 }
2204
2205                 nd->path = f.file->f_path;
2206                 if (flags & LOOKUP_RCU) {
2207                         rcu_read_lock();
2208                         nd->inode = nd->path.dentry->d_inode;
2209                         nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2210                 } else {
2211                         path_get(&nd->path);
2212                         nd->inode = nd->path.dentry->d_inode;
2213                 }
2214                 fdput(f);
2215                 return s;
2216         }
2217 }
2218
2219 static const char *trailing_symlink(struct nameidata *nd)
2220 {
2221         const char *s;
2222         int error = may_follow_link(nd);
2223         if (unlikely(error))
2224                 return ERR_PTR(error);
2225         nd->flags |= LOOKUP_PARENT;
2226         nd->stack[0].name = NULL;
2227         s = get_link(nd);
2228         return s ? s : "";
2229 }
2230
2231 static inline int lookup_last(struct nameidata *nd)
2232 {
2233         if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2234                 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2235
2236         nd->flags &= ~LOOKUP_PARENT;
2237         return walk_component(nd, 0);
2238 }
2239
2240 static int handle_lookup_down(struct nameidata *nd)
2241 {
2242         struct path path = nd->path;
2243         struct inode *inode = nd->inode;
2244         unsigned seq = nd->seq;
2245         int err;
2246
2247         if (nd->flags & LOOKUP_RCU) {
2248                 /*
2249                  * don't bother with unlazy_walk on failure - we are
2250                  * at the very beginning of walk, so we lose nothing
2251                  * if we simply redo everything in non-RCU mode
2252                  */
2253                 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2254                         return -ECHILD;
2255         } else {
2256                 dget(path.dentry);
2257                 err = follow_managed(&path, nd);
2258                 if (unlikely(err < 0))
2259                         return err;
2260                 inode = d_backing_inode(path.dentry);
2261                 seq = 0;
2262         }
2263         path_to_nameidata(&path, nd);
2264         nd->inode = inode;
2265         nd->seq = seq;
2266         return 0;
2267 }
2268
2269 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2270 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2271 {
2272         const char *s = path_init(nd, flags);
2273         int err;
2274
2275         if (IS_ERR(s))
2276                 return PTR_ERR(s);
2277
2278         if (unlikely(flags & LOOKUP_DOWN)) {
2279                 err = handle_lookup_down(nd);
2280                 if (unlikely(err < 0)) {
2281                         terminate_walk(nd);
2282                         return err;
2283                 }
2284         }
2285
2286         while (!(err = link_path_walk(s, nd))
2287                 && ((err = lookup_last(nd)) > 0)) {
2288                 s = trailing_symlink(nd);
2289                 if (IS_ERR(s)) {
2290                         err = PTR_ERR(s);
2291                         break;
2292                 }
2293         }
2294         if (!err)
2295                 err = complete_walk(nd);
2296
2297         if (!err && nd->flags & LOOKUP_DIRECTORY)
2298                 if (!d_can_lookup(nd->path.dentry))
2299                         err = -ENOTDIR;
2300         if (!err) {
2301                 *path = nd->path;
2302                 nd->path.mnt = NULL;
2303                 nd->path.dentry = NULL;
2304         }
2305         terminate_walk(nd);
2306         return err;
2307 }
2308
2309 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2310                            struct path *path, struct path *root)
2311 {
2312         int retval;
2313         struct nameidata nd;
2314         if (IS_ERR(name))
2315                 return PTR_ERR(name);
2316         if (unlikely(root)) {
2317                 nd.root = *root;
2318                 flags |= LOOKUP_ROOT;
2319         }
2320         set_nameidata(&nd, dfd, name);
2321         retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2322         if (unlikely(retval == -ECHILD))
2323                 retval = path_lookupat(&nd, flags, path);
2324         if (unlikely(retval == -ESTALE))
2325                 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2326
2327         if (likely(!retval))
2328                 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2329         restore_nameidata();
2330         putname(name);
2331         return retval;
2332 }
2333
2334 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2335 static int path_parentat(struct nameidata *nd, unsigned flags,
2336                                 struct path *parent)
2337 {
2338         const char *s = path_init(nd, flags);
2339         int err;
2340         if (IS_ERR(s))
2341                 return PTR_ERR(s);
2342         err = link_path_walk(s, nd);
2343         if (!err)
2344                 err = complete_walk(nd);
2345         if (!err) {
2346                 *parent = nd->path;
2347                 nd->path.mnt = NULL;
2348                 nd->path.dentry = NULL;
2349         }
2350         terminate_walk(nd);
2351         return err;
2352 }
2353
2354 static struct filename *filename_parentat(int dfd, struct filename *name,
2355                                 unsigned int flags, struct path *parent,
2356                                 struct qstr *last, int *type)
2357 {
2358         int retval;
2359         struct nameidata nd;
2360
2361         if (IS_ERR(name))
2362                 return name;
2363         set_nameidata(&nd, dfd, name);
2364         retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2365         if (unlikely(retval == -ECHILD))
2366                 retval = path_parentat(&nd, flags, parent);
2367         if (unlikely(retval == -ESTALE))
2368                 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2369         if (likely(!retval)) {
2370                 *last = nd.last;
2371                 *type = nd.last_type;
2372                 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2373         } else {
2374                 putname(name);
2375                 name = ERR_PTR(retval);
2376         }
2377         restore_nameidata();
2378         return name;
2379 }
2380
2381 /* does lookup, returns the object with parent locked */
2382 struct dentry *kern_path_locked(const char *name, struct path *path)
2383 {
2384         struct filename *filename;
2385         struct dentry *d;
2386         struct qstr last;
2387         int type;
2388
2389         filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2390                                     &last, &type);
2391         if (IS_ERR(filename))
2392                 return ERR_CAST(filename);
2393         if (unlikely(type != LAST_NORM)) {
2394                 path_put(path);
2395                 putname(filename);
2396                 return ERR_PTR(-EINVAL);
2397         }
2398         inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2399         d = __lookup_hash(&last, path->dentry, 0);
2400         if (IS_ERR(d)) {
2401                 inode_unlock(path->dentry->d_inode);
2402                 path_put(path);
2403         }
2404         putname(filename);
2405         return d;
2406 }
2407
2408 int kern_path(const char *name, unsigned int flags, struct path *path)
2409 {
2410         return filename_lookup(AT_FDCWD, getname_kernel(name),
2411                                flags, path, NULL);
2412 }
2413 EXPORT_SYMBOL(kern_path);
2414
2415 /**
2416  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2417  * @dentry:  pointer to dentry of the base directory
2418  * @mnt: pointer to vfs mount of the base directory
2419  * @name: pointer to file name
2420  * @flags: lookup flags
2421  * @path: pointer to struct path to fill
2422  */
2423 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2424                     const char *name, unsigned int flags,
2425                     struct path *path)
2426 {
2427         struct path root = {.mnt = mnt, .dentry = dentry};
2428         /* the first argument of filename_lookup() is ignored with root */
2429         return filename_lookup(AT_FDCWD, getname_kernel(name),
2430                                flags , path, &root);
2431 }
2432 EXPORT_SYMBOL(vfs_path_lookup);
2433
2434 static int lookup_one_len_common(const char *name, struct dentry *base,
2435                                  int len, struct qstr *this)
2436 {
2437         this->name = name;
2438         this->len = len;
2439         this->hash = full_name_hash(base, name, len);
2440         if (!len)
2441                 return -EACCES;
2442
2443         if (unlikely(name[0] == '.')) {
2444                 if (len < 2 || (len == 2 && name[1] == '.'))
2445                         return -EACCES;
2446         }
2447
2448         while (len--) {
2449                 unsigned int c = *(const unsigned char *)name++;
2450                 if (c == '/' || c == '\0')
2451                         return -EACCES;
2452         }
2453         /*
2454          * See if the low-level filesystem might want
2455          * to use its own hash..
2456          */
2457         if (base->d_flags & DCACHE_OP_HASH) {
2458                 int err = base->d_op->d_hash(base, this);
2459                 if (err < 0)
2460                         return err;
2461         }
2462
2463         return inode_permission(base->d_inode, MAY_EXEC);
2464 }
2465
2466 /**
2467  * try_lookup_one_len - filesystem helper to lookup single pathname component
2468  * @name:       pathname component to lookup
2469  * @base:       base directory to lookup from
2470  * @len:        maximum length @len should be interpreted to
2471  *
2472  * Look up a dentry by name in the dcache, returning NULL if it does not
2473  * currently exist.  The function does not try to create a dentry.
2474  *
2475  * Note that this routine is purely a helper for filesystem usage and should
2476  * not be called by generic code.
2477  *
2478  * The caller must hold base->i_mutex.
2479  */
2480 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2481 {
2482         struct qstr this;
2483         int err;
2484
2485         WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2486
2487         err = lookup_one_len_common(name, base, len, &this);
2488         if (err)
2489                 return ERR_PTR(err);
2490
2491         return lookup_dcache(&this, base, 0);
2492 }
2493 EXPORT_SYMBOL(try_lookup_one_len);
2494
2495 /**
2496  * lookup_one_len - filesystem helper to lookup single pathname component
2497  * @name:       pathname component to lookup
2498  * @base:       base directory to lookup from
2499  * @len:        maximum length @len should be interpreted to
2500  *
2501  * Note that this routine is purely a helper for filesystem usage and should
2502  * not be called by generic code.
2503  *
2504  * The caller must hold base->i_mutex.
2505  */
2506 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2507 {
2508         struct dentry *dentry;
2509         struct qstr this;
2510         int err;
2511
2512         WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2513
2514         err = lookup_one_len_common(name, base, len, &this);
2515         if (err)
2516                 return ERR_PTR(err);
2517
2518         dentry = lookup_dcache(&this, base, 0);
2519         return dentry ? dentry : __lookup_slow(&this, base, 0);
2520 }
2521 EXPORT_SYMBOL(lookup_one_len);
2522
2523 /**
2524  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2525  * @name:       pathname component to lookup
2526  * @base:       base directory to lookup from
2527  * @len:        maximum length @len should be interpreted to
2528  *
2529  * Note that this routine is purely a helper for filesystem usage and should
2530  * not be called by generic code.
2531  *
2532  * Unlike lookup_one_len, it should be called without the parent
2533  * i_mutex held, and will take the i_mutex itself if necessary.
2534  */
2535 struct dentry *lookup_one_len_unlocked(const char *name,
2536                                        struct dentry *base, int len)
2537 {
2538         struct qstr this;
2539         int err;
2540         struct dentry *ret;
2541
2542         err = lookup_one_len_common(name, base, len, &this);
2543         if (err)
2544                 return ERR_PTR(err);
2545
2546         ret = lookup_dcache(&this, base, 0);
2547         if (!ret)
2548                 ret = lookup_slow(&this, base, 0);
2549         return ret;
2550 }
2551 EXPORT_SYMBOL(lookup_one_len_unlocked);
2552
2553 #ifdef CONFIG_UNIX98_PTYS
2554 int path_pts(struct path *path)
2555 {
2556         /* Find something mounted on "pts" in the same directory as
2557          * the input path.
2558          */
2559         struct dentry *child, *parent;
2560         struct qstr this;
2561         int ret;
2562
2563         ret = path_parent_directory(path);
2564         if (ret)
2565                 return ret;
2566
2567         parent = path->dentry;
2568         this.name = "pts";
2569         this.len = 3;
2570         child = d_hash_and_lookup(parent, &this);
2571         if (!child)
2572                 return -ENOENT;
2573
2574         path->dentry = child;
2575         dput(parent);
2576         follow_mount(path);
2577         return 0;
2578 }
2579 #endif
2580
2581 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2582                  struct path *path, int *empty)
2583 {
2584         return filename_lookup(dfd, getname_flags(name, flags, empty),
2585                                flags, path, NULL);
2586 }
2587 EXPORT_SYMBOL(user_path_at_empty);
2588
2589 /**
2590  * mountpoint_last - look up last component for umount
2591  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2592  *
2593  * This is a special lookup_last function just for umount. In this case, we
2594  * need to resolve the path without doing any revalidation.
2595  *
2596  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2597  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2598  * in almost all cases, this lookup will be served out of the dcache. The only
2599  * cases where it won't are if nd->last refers to a symlink or the path is
2600  * bogus and it doesn't exist.
2601  *
2602  * Returns:
2603  * -error: if there was an error during lookup. This includes -ENOENT if the
2604  *         lookup found a negative dentry.
2605  *
2606  * 0:      if we successfully resolved nd->last and found it to not to be a
2607  *         symlink that needs to be followed.
2608  *
2609  * 1:      if we successfully resolved nd->last and found it to be a symlink
2610  *         that needs to be followed.
2611  */
2612 static int
2613 mountpoint_last(struct nameidata *nd)
2614 {
2615         int error = 0;
2616         struct dentry *dir = nd->path.dentry;
2617         struct path path;
2618
2619         /* If we're in rcuwalk, drop out of it to handle last component */
2620         if (nd->flags & LOOKUP_RCU) {
2621                 if (unlazy_walk(nd))
2622                         return -ECHILD;
2623         }
2624
2625         nd->flags &= ~LOOKUP_PARENT;
2626
2627         if (unlikely(nd->last_type != LAST_NORM)) {
2628                 error = handle_dots(nd, nd->last_type);
2629                 if (error)
2630                         return error;
2631                 path.dentry = dget(nd->path.dentry);
2632         } else {
2633                 path.dentry = d_lookup(dir, &nd->last);
2634                 if (!path.dentry) {
2635                         /*
2636                          * No cached dentry. Mounted dentries are pinned in the
2637                          * cache, so that means that this dentry is probably
2638                          * a symlink or the path doesn't actually point
2639                          * to a mounted dentry.
2640                          */
2641                         path.dentry = lookup_slow(&nd->last, dir,
2642                                              nd->flags | LOOKUP_NO_REVAL);
2643                         if (IS_ERR(path.dentry))
2644                                 return PTR_ERR(path.dentry);
2645                 }
2646         }
2647         if (d_is_negative(path.dentry)) {
2648                 dput(path.dentry);
2649                 return -ENOENT;
2650         }
2651         path.mnt = nd->path.mnt;
2652         return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2653 }
2654
2655 /**
2656  * path_mountpoint - look up a path to be umounted
2657  * @nd:         lookup context
2658  * @flags:      lookup flags
2659  * @path:       pointer to container for result
2660  *
2661  * Look up the given name, but don't attempt to revalidate the last component.
2662  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2663  */
2664 static int
2665 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2666 {
2667         const char *s = path_init(nd, flags);
2668         int err;
2669         if (IS_ERR(s))
2670                 return PTR_ERR(s);
2671         while (!(err = link_path_walk(s, nd)) &&
2672                 (err = mountpoint_last(nd)) > 0) {
2673                 s = trailing_symlink(nd);
2674                 if (IS_ERR(s)) {
2675                         err = PTR_ERR(s);
2676                         break;
2677                 }
2678         }
2679         if (!err) {
2680                 *path = nd->path;
2681                 nd->path.mnt = NULL;
2682                 nd->path.dentry = NULL;
2683                 follow_mount(path);
2684         }
2685         terminate_walk(nd);
2686         return err;
2687 }
2688
2689 static int
2690 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2691                         unsigned int flags)
2692 {
2693         struct nameidata nd;
2694         int error;
2695         if (IS_ERR(name))
2696                 return PTR_ERR(name);
2697         set_nameidata(&nd, dfd, name);
2698         error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2699         if (unlikely(error == -ECHILD))
2700                 error = path_mountpoint(&nd, flags, path);
2701         if (unlikely(error == -ESTALE))
2702                 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2703         if (likely(!error))
2704                 audit_inode(name, path->dentry, 0);
2705         restore_nameidata();
2706         putname(name);
2707         return error;
2708 }
2709
2710 /**
2711  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2712  * @dfd:        directory file descriptor
2713  * @name:       pathname from userland
2714  * @flags:      lookup flags
2715  * @path:       pointer to container to hold result
2716  *
2717  * A umount is a special case for path walking. We're not actually interested
2718  * in the inode in this situation, and ESTALE errors can be a problem. We
2719  * simply want track down the dentry and vfsmount attached at the mountpoint
2720  * and avoid revalidating the last component.
2721  *
2722  * Returns 0 and populates "path" on success.
2723  */
2724 int
2725 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2726                         struct path *path)
2727 {
2728         return filename_mountpoint(dfd, getname(name), path, flags);
2729 }
2730
2731 int
2732 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2733                         unsigned int flags)
2734 {
2735         return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2736 }
2737 EXPORT_SYMBOL(kern_path_mountpoint);
2738
2739 int __check_sticky(struct inode *dir, struct inode *inode)
2740 {
2741         kuid_t fsuid = current_fsuid();
2742
2743         if (uid_eq(inode->i_uid, fsuid))
2744                 return 0;
2745         if (uid_eq(dir->i_uid, fsuid))
2746                 return 0;
2747         return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2748 }
2749 EXPORT_SYMBOL(__check_sticky);
2750
2751 /*
2752  *      Check whether we can remove a link victim from directory dir, check
2753  *  whether the type of victim is right.
2754  *  1. We can't do it if dir is read-only (done in permission())
2755  *  2. We should have write and exec permissions on dir
2756  *  3. We can't remove anything from append-only dir
2757  *  4. We can't do anything with immutable dir (done in permission())
2758  *  5. If the sticky bit on dir is set we should either
2759  *      a. be owner of dir, or
2760  *      b. be owner of victim, or
2761  *      c. have CAP_FOWNER capability
2762  *  6. If the victim is append-only or immutable we can't do antyhing with
2763  *     links pointing to it.
2764  *  7. If the victim has an unknown uid or gid we can't change the inode.
2765  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2766  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2767  * 10. We can't remove a root or mountpoint.
2768  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2769  *     nfs_async_unlink().
2770  */
2771 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2772 {
2773         struct inode *inode = d_backing_inode(victim);
2774         int error;
2775
2776         if (d_is_negative(victim))
2777                 return -ENOENT;
2778         BUG_ON(!inode);
2779
2780         BUG_ON(victim->d_parent->d_inode != dir);
2781
2782         /* Inode writeback is not safe when the uid or gid are invalid. */
2783         if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2784                 return -EOVERFLOW;
2785
2786         audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2787
2788         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2789         if (error)
2790                 return error;
2791         if (IS_APPEND(dir))
2792                 return -EPERM;
2793
2794         if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2795             IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2796                 return -EPERM;
2797         if (isdir) {
2798                 if (!d_is_dir(victim))
2799                         return -ENOTDIR;
2800                 if (IS_ROOT(victim))
2801                         return -EBUSY;
2802         } else if (d_is_dir(victim))
2803                 return -EISDIR;
2804         if (IS_DEADDIR(dir))
2805                 return -ENOENT;
2806         if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2807                 return -EBUSY;
2808         return 0;
2809 }
2810
2811 /*      Check whether we can create an object with dentry child in directory
2812  *  dir.
2813  *  1. We can't do it if child already exists (open has special treatment for
2814  *     this case, but since we are inlined it's OK)
2815  *  2. We can't do it if dir is read-only (done in permission())
2816  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2817  *  4. We should have write and exec permissions on dir
2818  *  5. We can't do it if dir is immutable (done in permission())
2819  */
2820 static inline int may_create(struct inode *dir, struct dentry *child)
2821 {
2822         struct user_namespace *s_user_ns;
2823         audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2824         if (child->d_inode)
2825                 return -EEXIST;
2826         if (IS_DEADDIR(dir))
2827                 return -ENOENT;
2828         s_user_ns = dir->i_sb->s_user_ns;
2829         if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2830             !kgid_has_mapping(s_user_ns, current_fsgid()))
2831                 return -EOVERFLOW;
2832         return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2833 }
2834
2835 /*
2836  * p1 and p2 should be directories on the same fs.
2837  */
2838 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2839 {
2840         struct dentry *p;
2841
2842         if (p1 == p2) {
2843                 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2844                 return NULL;
2845         }
2846
2847         mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2848
2849         p = d_ancestor(p2, p1);
2850         if (p) {
2851                 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2852                 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2853                 return p;
2854         }
2855
2856         p = d_ancestor(p1, p2);
2857         if (p) {
2858                 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2859                 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2860                 return p;
2861         }
2862
2863         inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2864         inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2865         return NULL;
2866 }
2867 EXPORT_SYMBOL(lock_rename);
2868
2869 void unlock_rename(struct dentry *p1, struct dentry *p2)
2870 {
2871         inode_unlock(p1->d_inode);
2872         if (p1 != p2) {
2873                 inode_unlock(p2->d_inode);
2874                 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2875         }
2876 }
2877 EXPORT_SYMBOL(unlock_rename);
2878
2879 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2880                 bool want_excl)
2881 {
2882         int error = may_create(dir, dentry);
2883         if (error)
2884                 return error;
2885
2886         if (!dir->i_op->create)
2887                 return -EACCES; /* shouldn't it be ENOSYS? */
2888         mode &= S_IALLUGO;
2889         mode |= S_IFREG;
2890         error = security_inode_create(dir, dentry, mode);
2891         if (error)
2892                 return error;
2893         error = dir->i_op->create(dir, dentry, mode, want_excl);
2894         if (!error)
2895                 fsnotify_create(dir, dentry);
2896         return error;
2897 }
2898 EXPORT_SYMBOL(vfs_create);
2899
2900 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2901                 int (*f)(struct dentry *, umode_t, void *),
2902                 void *arg)
2903 {
2904         struct inode *dir = dentry->d_parent->d_inode;
2905         int error = may_create(dir, dentry);
2906         if (error)
2907                 return error;
2908
2909         mode &= S_IALLUGO;
2910         mode |= S_IFREG;
2911         error = security_inode_create(dir, dentry, mode);
2912         if (error)
2913                 return error;
2914         error = f(dentry, mode, arg);
2915         if (!error)
2916                 fsnotify_create(dir, dentry);
2917         return error;
2918 }
2919 EXPORT_SYMBOL(vfs_mkobj);
2920
2921 bool may_open_dev(const struct path *path)
2922 {
2923         return !(path->mnt->mnt_flags & MNT_NODEV) &&
2924                 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2925 }
2926
2927 static int may_open(const struct path *path, int acc_mode, int flag)
2928 {
2929         struct dentry *dentry = path->dentry;
2930         struct inode *inode = dentry->d_inode;
2931         int error;
2932
2933         if (!inode)
2934                 return -ENOENT;
2935
2936         switch (inode->i_mode & S_IFMT) {
2937         case S_IFLNK:
2938                 return -ELOOP;
2939         case S_IFDIR:
2940                 if (acc_mode & MAY_WRITE)
2941                         return -EISDIR;
2942                 break;
2943         case S_IFBLK:
2944         case S_IFCHR:
2945                 if (!may_open_dev(path))
2946                         return -EACCES;
2947                 /*FALLTHRU*/
2948         case S_IFIFO:
2949         case S_IFSOCK:
2950                 flag &= ~O_TRUNC;
2951                 break;
2952         }
2953
2954         error = inode_permission(inode, MAY_OPEN | acc_mode);
2955         if (error)
2956                 return error;
2957
2958         /*
2959          * An append-only file must be opened in append mode for writing.
2960          */
2961         if (IS_APPEND(inode)) {
2962                 if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2963                         return -EPERM;
2964                 if (flag & O_TRUNC)
2965                         return -EPERM;
2966         }
2967
2968         /* O_NOATIME can only be set by the owner or superuser */
2969         if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2970                 return -EPERM;
2971
2972         return 0;
2973 }
2974
2975 static int handle_truncate(struct file *filp)
2976 {
2977         const struct path *path = &filp->f_path;
2978         struct inode *inode = path->dentry->d_inode;
2979         int error = get_write_access(inode);
2980         if (error)
2981                 return error;
2982         /*
2983          * Refuse to truncate files with mandatory locks held on them.
2984          */
2985         error = locks_verify_locked(filp);
2986         if (!error)
2987                 error = security_path_truncate(path);
2988         if (!error) {
2989                 error = do_truncate(path->dentry, 0,
2990                                     ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2991                                     filp);
2992         }
2993         put_write_access(inode);
2994         return error;
2995 }
2996
2997 static inline int open_to_namei_flags(int flag)
2998 {
2999         if ((flag & O_ACCMODE) == 3)
3000                 flag--;
3001         return flag;
3002 }
3003
3004 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
3005 {
3006         struct user_namespace *s_user_ns;
3007         int error = security_path_mknod(dir, dentry, mode, 0);
3008         if (error)
3009                 return error;
3010
3011         s_user_ns = dir->dentry->d_sb->s_user_ns;
3012         if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3013             !kgid_has_mapping(s_user_ns, current_fsgid()))
3014                 return -EOVERFLOW;
3015
3016         error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3017         if (error)
3018                 return error;
3019
3020         return security_inode_create(dir->dentry->d_inode, dentry, mode);
3021 }
3022
3023 /*
3024  * Attempt to atomically look up, create and open a file from a negative
3025  * dentry.
3026  *
3027  * Returns 0 if successful.  The file will have been created and attached to
3028  * @file by the filesystem calling finish_open().
3029  *
3030  * Returns 1 if the file was looked up only or didn't need creating.  The
3031  * caller will need to perform the open themselves.  @path will have been
3032  * updated to point to the new dentry.  This may be negative.
3033  *
3034  * Returns an error code otherwise.
3035  */
3036 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3037                         struct path *path, struct file *file,
3038                         const struct open_flags *op,
3039                         int open_flag, umode_t mode,
3040                         int *opened)
3041 {
3042         struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3043         struct inode *dir =  nd->path.dentry->d_inode;
3044         int error;
3045
3046         if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3047                 open_flag &= ~O_TRUNC;
3048
3049         if (nd->flags & LOOKUP_DIRECTORY)
3050                 open_flag |= O_DIRECTORY;
3051
3052         file->f_path.dentry = DENTRY_NOT_SET;
3053         file->f_path.mnt = nd->path.mnt;
3054         error = dir->i_op->atomic_open(dir, dentry, file,
3055                                        open_to_namei_flags(open_flag),
3056                                        mode, opened);
3057         d_lookup_done(dentry);
3058         if (!error) {
3059                 /*
3060                  * We didn't have the inode before the open, so check open
3061                  * permission here.
3062                  */
3063                 int acc_mode = op->acc_mode;
3064                 if (*opened & FILE_CREATED) {
3065                         WARN_ON(!(open_flag & O_CREAT));
3066                         fsnotify_create(dir, dentry);
3067                         acc_mode = 0;
3068                 }
3069                 error = may_open(&file->f_path, acc_mode, open_flag);
3070                 if (WARN_ON(error > 0))
3071                         error = -EINVAL;
3072         } else if (error > 0) {
3073                 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3074                         error = -EIO;
3075                 } else {
3076                         if (file->f_path.dentry) {
3077                                 dput(dentry);
3078                                 dentry = file->f_path.dentry;
3079                         }
3080                         if (*opened & FILE_CREATED)
3081                                 fsnotify_create(dir, dentry);
3082                         if (unlikely(d_is_negative(dentry))) {
3083                                 error = -ENOENT;
3084                         } else {
3085                                 path->dentry = dentry;
3086                                 path->mnt = nd->path.mnt;
3087                                 return 1;
3088                         }
3089                 }
3090         }
3091         dput(dentry);
3092         return error;
3093 }
3094
3095 /*
3096  * Look up and maybe create and open the last component.
3097  *
3098  * Must be called with i_mutex held on parent.
3099  *
3100  * Returns 0 if the file was successfully atomically created (if necessary) and
3101  * opened.  In this case the file will be returned attached to @file.
3102  *
3103  * Returns 1 if the file was not completely opened at this time, though lookups
3104  * and creations will have been performed and the dentry returned in @path will
3105  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
3106  * specified then a negative dentry may be returned.
3107  *
3108  * An error code is returned otherwise.
3109  *
3110  * FILE_CREATE will be set in @*opened if the dentry was created and will be
3111  * cleared otherwise prior to returning.
3112  */
3113 static int lookup_open(struct nameidata *nd, struct path *path,
3114                         struct file *file,
3115                         const struct open_flags *op,
3116                         bool got_write, int *opened)
3117 {
3118         struct dentry *dir = nd->path.dentry;
3119         struct inode *dir_inode = dir->d_inode;
3120         int open_flag = op->open_flag;
3121         struct dentry *dentry;
3122         int error, create_error = 0;
3123         umode_t mode = op->mode;
3124         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3125
3126         if (unlikely(IS_DEADDIR(dir_inode)))
3127                 return -ENOENT;
3128
3129         *opened &= ~FILE_CREATED;
3130         dentry = d_lookup(dir, &nd->last);
3131         for (;;) {
3132                 if (!dentry) {
3133                         dentry = d_alloc_parallel(dir, &nd->last, &wq);
3134                         if (IS_ERR(dentry))
3135                                 return PTR_ERR(dentry);
3136                 }
3137                 if (d_in_lookup(dentry))
3138                         break;
3139
3140                 error = d_revalidate(dentry, nd->flags);
3141                 if (likely(error > 0))
3142                         break;
3143                 if (error)
3144                         goto out_dput;
3145                 d_invalidate(dentry);
3146                 dput(dentry);
3147                 dentry = NULL;
3148         }
3149         if (dentry->d_inode) {
3150                 /* Cached positive dentry: will open in f_op->open */
3151                 goto out_no_open;
3152         }
3153
3154         /*
3155          * Checking write permission is tricky, bacuse we don't know if we are
3156          * going to actually need it: O_CREAT opens should work as long as the
3157          * file exists.  But checking existence breaks atomicity.  The trick is
3158          * to check access and if not granted clear O_CREAT from the flags.
3159          *
3160          * Another problem is returing the "right" error value (e.g. for an
3161          * O_EXCL open we want to return EEXIST not EROFS).
3162          */
3163         if (open_flag & O_CREAT) {
3164                 if (!IS_POSIXACL(dir->d_inode))
3165                         mode &= ~current_umask();
3166                 if (unlikely(!got_write)) {
3167                         create_error = -EROFS;
3168                         open_flag &= ~O_CREAT;
3169                         if (open_flag & (O_EXCL | O_TRUNC))
3170                                 goto no_open;
3171                         /* No side effects, safe to clear O_CREAT */
3172                 } else {
3173                         create_error = may_o_create(&nd->path, dentry, mode);
3174                         if (create_error) {
3175                                 open_flag &= ~O_CREAT;
3176                                 if (open_flag & O_EXCL)
3177                                         goto no_open;
3178                         }
3179                 }
3180         } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3181                    unlikely(!got_write)) {
3182                 /*
3183                  * No O_CREATE -> atomicity not a requirement -> fall
3184                  * back to lookup + open
3185                  */
3186                 goto no_open;
3187         }
3188
3189         if (dir_inode->i_op->atomic_open) {
3190                 error = atomic_open(nd, dentry, path, file, op, open_flag,
3191                                     mode, opened);
3192                 if (unlikely(error == -ENOENT) && create_error)
3193                         error = create_error;
3194                 return error;
3195         }
3196
3197 no_open:
3198         if (d_in_lookup(dentry)) {
3199                 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3200                                                              nd->flags);
3201                 d_lookup_done(dentry);
3202                 if (unlikely(res)) {
3203                         if (IS_ERR(res)) {
3204                                 error = PTR_ERR(res);
3205                                 goto out_dput;
3206                         }
3207                         dput(dentry);
3208                         dentry = res;
3209                 }
3210         }
3211
3212         /* Negative dentry, just create the file */
3213         if (!dentry->d_inode && (open_flag & O_CREAT)) {
3214                 *opened |= FILE_CREATED;
3215                 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3216                 if (!dir_inode->i_op->create) {
3217                         error = -EACCES;
3218                         goto out_dput;
3219                 }
3220                 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3221                                                 open_flag & O_EXCL);
3222                 if (error)
3223                         goto out_dput;
3224                 fsnotify_create(dir_inode, dentry);
3225         }
3226         if (unlikely(create_error) && !dentry->d_inode) {
3227                 error = create_error;
3228                 goto out_dput;
3229         }
3230 out_no_open:
3231         path->dentry = dentry;
3232         path->mnt = nd->path.mnt;
3233         return 1;
3234
3235 out_dput:
3236         dput(dentry);
3237         return error;
3238 }
3239
3240 /*
3241  * Handle the last step of open()
3242  */
3243 static int do_last(struct nameidata *nd,
3244                    struct file *file, const struct open_flags *op,
3245                    int *opened)
3246 {
3247         struct dentry *dir = nd->path.dentry;
3248         int open_flag = op->open_flag;
3249         bool will_truncate = (open_flag & O_TRUNC) != 0;
3250         bool got_write = false;
3251         int acc_mode = op->acc_mode;
3252         unsigned seq;
3253         struct inode *inode;
3254         struct path path;
3255         int error;
3256
3257         nd->flags &= ~LOOKUP_PARENT;
3258         nd->flags |= op->intent;
3259
3260         if (nd->last_type != LAST_NORM) {
3261                 error = handle_dots(nd, nd->last_type);
3262                 if (unlikely(error))
3263                         return error;
3264                 goto finish_open;
3265         }
3266
3267         if (!(open_flag & O_CREAT)) {
3268                 if (nd->last.name[nd->last.len])
3269                         nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3270                 /* we _can_ be in RCU mode here */
3271                 error = lookup_fast(nd, &path, &inode, &seq);
3272                 if (likely(error > 0))
3273                         goto finish_lookup;
3274
3275                 if (error < 0)
3276                         return error;
3277
3278                 BUG_ON(nd->inode != dir->d_inode);
3279                 BUG_ON(nd->flags & LOOKUP_RCU);
3280         } else {
3281                 /* create side of things */
3282                 /*
3283                  * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3284                  * has been cleared when we got to the last component we are
3285                  * about to look up
3286                  */
3287                 error = complete_walk(nd);
3288                 if (error)
3289                         return error;
3290
3291                 audit_inode(nd->name, dir, LOOKUP_PARENT);
3292                 /* trailing slashes? */
3293                 if (unlikely(nd->last.name[nd->last.len]))
3294                         return -EISDIR;
3295         }
3296
3297         if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3298                 error = mnt_want_write(nd->path.mnt);
3299                 if (!error)
3300                         got_write = true;
3301                 /*
3302                  * do _not_ fail yet - we might not need that or fail with
3303                  * a different error; let lookup_open() decide; we'll be
3304                  * dropping this one anyway.
3305                  */
3306         }
3307         if (open_flag & O_CREAT)
3308                 inode_lock(dir->d_inode);
3309         else
3310                 inode_lock_shared(dir->d_inode);
3311         error = lookup_open(nd, &path, file, op, got_write, opened);
3312         if (open_flag & O_CREAT)
3313                 inode_unlock(dir->d_inode);
3314         else
3315                 inode_unlock_shared(dir->d_inode);
3316
3317         if (error <= 0) {
3318                 if (error)
3319                         goto out;
3320
3321                 if ((*opened & FILE_CREATED) ||
3322                     !S_ISREG(file_inode(file)->i_mode))
3323                         will_truncate = false;
3324
3325                 audit_inode(nd->name, file->f_path.dentry, 0);
3326                 goto opened;
3327         }
3328
3329         if (*opened & FILE_CREATED) {
3330                 /* Don't check for write permission, don't truncate */
3331                 open_flag &= ~O_TRUNC;
3332                 will_truncate = false;
3333                 acc_mode = 0;
3334                 path_to_nameidata(&path, nd);
3335                 goto finish_open_created;
3336         }
3337
3338         /*
3339          * If atomic_open() acquired write access it is dropped now due to
3340          * possible mount and symlink following (this might be optimized away if
3341          * necessary...)
3342          */
3343         if (got_write) {
3344                 mnt_drop_write(nd->path.mnt);
3345                 got_write = false;
3346         }
3347
3348         error = follow_managed(&path, nd);
3349         if (unlikely(error < 0))
3350                 return error;
3351
3352         if (unlikely(d_is_negative(path.dentry))) {
3353                 path_to_nameidata(&path, nd);
3354                 return -ENOENT;
3355         }
3356
3357         /*
3358          * create/update audit record if it already exists.
3359          */
3360         audit_inode(nd->name, path.dentry, 0);
3361
3362         if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3363                 path_to_nameidata(&path, nd);
3364                 return -EEXIST;
3365         }
3366
3367         seq = 0;        /* out of RCU mode, so the value doesn't matter */
3368         inode = d_backing_inode(path.dentry);
3369 finish_lookup:
3370         error = step_into(nd, &path, 0, inode, seq);
3371         if (unlikely(error))
3372                 return error;
3373 finish_open:
3374         /* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3375         error = complete_walk(nd);
3376         if (error)
3377                 return error;
3378         audit_inode(nd->name, nd->path.dentry, 0);
3379         error = -EISDIR;
3380         if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3381                 goto out;
3382         error = -ENOTDIR;
3383         if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3384                 goto out;
3385         if (!d_is_reg(nd->path.dentry))
3386                 will_truncate = false;
3387
3388         if (will_truncate) {
3389                 error = mnt_want_write(nd->path.mnt);
3390                 if (error)
3391                         goto out;
3392                 got_write = true;
3393         }
3394 finish_open_created:
3395         error = may_open(&nd->path, acc_mode, open_flag);
3396         if (error)
3397                 goto out;
3398         BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3399         error = vfs_open(&nd->path, file, current_cred());
3400         if (error)
3401                 goto out;
3402         *opened |= FILE_OPENED;
3403 opened:
3404         error = open_check_o_direct(file);
3405         if (!error)
3406                 error = ima_file_check(file, op->acc_mode, *opened);
3407         if (!error && will_truncate)
3408                 error = handle_truncate(file);
3409 out:
3410         if (unlikely(error) && (*opened & FILE_OPENED))
3411                 fput(file);
3412         if (unlikely(error > 0)) {
3413                 WARN_ON(1);
3414                 error = -EINVAL;
3415         }
3416         if (got_write)
3417                 mnt_drop_write(nd->path.mnt);
3418         return error;
3419 }
3420
3421 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3422 {
3423         struct dentry *child = NULL;
3424         struct inode *dir = dentry->d_inode;
3425         struct inode *inode;
3426         int error;
3427
3428         /* we want directory to be writable */
3429         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3430         if (error)
3431                 goto out_err;
3432         error = -EOPNOTSUPP;
3433         if (!dir->i_op->tmpfile)
3434                 goto out_err;
3435         error = -ENOMEM;
3436         child = d_alloc(dentry, &slash_name);
3437         if (unlikely(!child))
3438                 goto out_err;
3439         error = dir->i_op->tmpfile(dir, child, mode);
3440         if (error)
3441                 goto out_err;
3442         error = -ENOENT;
3443         inode = child->d_inode;
3444         if (unlikely(!inode))
3445                 goto out_err;
3446         if (!(open_flag & O_EXCL)) {
3447                 spin_lock(&inode->i_lock);
3448                 inode->i_state |= I_LINKABLE;
3449                 spin_unlock(&inode->i_lock);
3450         }
3451         return child;
3452
3453 out_err:
3454         dput(child);
3455         return ERR_PTR(error);
3456 }
3457 EXPORT_SYMBOL(vfs_tmpfile);
3458
3459 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3460                 const struct open_flags *op,
3461                 struct file *file, int *opened)
3462 {
3463         struct dentry *child;
3464         struct path path;
3465         int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3466         if (unlikely(error))
3467                 return error;
3468         error = mnt_want_write(path.mnt);
3469         if (unlikely(error))
3470                 goto out;
3471         child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3472         error = PTR_ERR(child);
3473         if (IS_ERR(child))
3474                 goto out2;
3475         dput(path.dentry);
3476         path.dentry = child;
3477         audit_inode(nd->name, child, 0);
3478         /* Don't check for other permissions, the inode was just created */
3479         error = may_open(&path, 0, op->open_flag);
3480         if (error)
3481                 goto out2;
3482         file->f_path.mnt = path.mnt;
3483         error = finish_open(file, child, NULL, opened);
3484         if (error)
3485                 goto out2;
3486         error = open_check_o_direct(file);
3487         if (error)
3488                 fput(file);
3489 out2:
3490         mnt_drop_write(path.mnt);
3491 out:
3492         path_put(&path);
3493         return error;
3494 }
3495
3496 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3497 {
3498         struct path path;
3499         int error = path_lookupat(nd, flags, &path);
3500         if (!error) {
3501                 audit_inode(nd->name, path.dentry, 0);
3502                 error = vfs_open(&path, file, current_cred());
3503                 path_put(&path);
3504         }
3505         return error;
3506 }
3507
3508 static struct file *path_openat(struct nameidata *nd,
3509                         const struct open_flags *op, unsigned flags)
3510 {
3511         const char *s;
3512         struct file *file;
3513         int opened = 0;
3514         int error;
3515
3516         file = get_empty_filp();
3517         if (IS_ERR(file))
3518                 return file;
3519
3520         file->f_flags = op->open_flag;
3521
3522         if (unlikely(file->f_flags & __O_TMPFILE)) {
3523                 error = do_tmpfile(nd, flags, op, file, &opened);
3524                 goto out2;
3525         }
3526
3527         if (unlikely(file->f_flags & O_PATH)) {
3528                 error = do_o_path(nd, flags, file);
3529                 if (!error)
3530                         opened |= FILE_OPENED;
3531                 goto out2;
3532         }
3533
3534         s = path_init(nd, flags);
3535         if (IS_ERR(s)) {
3536                 put_filp(file);
3537                 return ERR_CAST(s);
3538         }
3539         while (!(error = link_path_walk(s, nd)) &&
3540                 (error = do_last(nd, file, op, &opened)) > 0) {
3541                 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3542                 s = trailing_symlink(nd);
3543                 if (IS_ERR(s)) {
3544                         error = PTR_ERR(s);
3545                         break;
3546                 }
3547         }
3548         terminate_walk(nd);
3549 out2:
3550         if (!(opened & FILE_OPENED)) {
3551                 BUG_ON(!error);
3552                 put_filp(file);
3553         }
3554         if (unlikely(error)) {
3555                 if (error == -EOPENSTALE) {
3556                         if (flags & LOOKUP_RCU)
3557                                 error = -ECHILD;
3558                         else
3559                                 error = -ESTALE;
3560                 }
3561                 file = ERR_PTR(error);
3562         }
3563         return file;
3564 }
3565
3566 struct file *do_filp_open(int dfd, struct filename *pathname,
3567                 const struct open_flags *op)
3568 {
3569         struct nameidata nd;
3570         int flags = op->lookup_flags;
3571         struct file *filp;
3572
3573         set_nameidata(&nd, dfd, pathname);
3574         filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3575         if (unlikely(filp == ERR_PTR(-ECHILD)))
3576                 filp = path_openat(&nd, op, flags);
3577         if (unlikely(filp == ERR_PTR(-ESTALE)))
3578                 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3579         restore_nameidata();
3580         return filp;
3581 }
3582
3583 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3584                 const char *name, const struct open_flags *op)
3585 {
3586         struct nameidata nd;
3587         struct file *file;
3588         struct filename *filename;
3589         int flags = op->lookup_flags | LOOKUP_ROOT;
3590
3591         nd.root.mnt = mnt;
3592         nd.root.dentry = dentry;
3593
3594         if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3595                 return ERR_PTR(-ELOOP);
3596
3597         filename = getname_kernel(name);
3598         if (IS_ERR(filename))
3599                 return ERR_CAST(filename);
3600
3601         set_nameidata(&nd, -1, filename);
3602         file = path_openat(&nd, op, flags | LOOKUP_RCU);
3603         if (unlikely(file == ERR_PTR(-ECHILD)))
3604                 file = path_openat(&nd, op, flags);
3605         if (unlikely(file == ERR_PTR(-ESTALE)))
3606                 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3607         restore_nameidata();
3608         putname(filename);
3609         return file;
3610 }
3611
3612 static struct dentry *filename_create(int dfd, struct filename *name,
3613                                 struct path *path, unsigned int lookup_flags)
3614 {
3615         struct dentry *dentry = ERR_PTR(-EEXIST);
3616         struct qstr last;
3617         int type;
3618         int err2;
3619         int error;
3620         bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3621
3622         /*
3623          * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3624          * other flags passed in are ignored!
3625          */
3626         lookup_flags &= LOOKUP_REVAL;
3627
3628         name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3629         if (IS_ERR(name))
3630                 return ERR_CAST(name);
3631
3632         /*
3633          * Yucky last component or no last component at all?
3634          * (foo/., foo/.., /////)
3635          */
3636         if (unlikely(type != LAST_NORM))
3637                 goto out;
3638
3639         /* don't fail immediately if it's r/o, at least try to report other errors */
3640         err2 = mnt_want_write(path->mnt);
3641         /*
3642          * Do the final lookup.
3643          */
3644         lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3645         inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3646         dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3647         if (IS_ERR(dentry))
3648                 goto unlock;
3649
3650         error = -EEXIST;
3651         if (d_is_positive(dentry))
3652                 goto fail;
3653
3654         /*
3655          * Special case - lookup gave negative, but... we had foo/bar/
3656          * From the vfs_mknod() POV we just have a negative dentry -
3657          * all is fine. Let's be bastards - you had / on the end, you've
3658          * been asking for (non-existent) directory. -ENOENT for you.
3659          */
3660         if (unlikely(!is_dir && last.name[last.len])) {
3661                 error = -ENOENT;
3662                 goto fail;
3663         }
3664         if (unlikely(err2)) {
3665                 error = err2;
3666                 goto fail;
3667         }
3668         putname(name);
3669         return dentry;
3670 fail:
3671         dput(dentry);
3672         dentry = ERR_PTR(error);
3673 unlock:
3674         inode_unlock(path->dentry->d_inode);
3675         if (!err2)
3676                 mnt_drop_write(path->mnt);
3677 out:
3678         path_put(path);
3679         putname(name);
3680         return dentry;
3681 }
3682
3683 struct dentry *kern_path_create(int dfd, const char *pathname,
3684                                 struct path *path, unsigned int lookup_flags)
3685 {
3686         return filename_create(dfd, getname_kernel(pathname),
3687                                 path, lookup_flags);
3688 }
3689 EXPORT_SYMBOL(kern_path_create);
3690
3691 void done_path_create(struct path *path, struct dentry *dentry)
3692 {
3693         dput(dentry);
3694         inode_unlock(path->dentry->d_inode);
3695         mnt_drop_write(path->mnt);
3696         path_put(path);
3697 }
3698 EXPORT_SYMBOL(done_path_create);
3699
3700 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3701                                 struct path *path, unsigned int lookup_flags)
3702 {
3703         return filename_create(dfd, getname(pathname), path, lookup_flags);
3704 }
3705 EXPORT_SYMBOL(user_path_create);
3706
3707 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3708 {
3709         int error = may_create(dir, dentry);
3710
3711         if (error)
3712                 return error;
3713
3714         if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
3715             !ns_capable(dentry->d_sb->s_user_ns, CAP_MKNOD))
3716                 return -EPERM;
3717
3718         if (!dir->i_op->mknod)
3719                 return -EPERM;
3720
3721         error = devcgroup_inode_mknod(mode, dev);
3722         if (error)
3723                 return error;
3724
3725         error = security_inode_mknod(dir, dentry, mode, dev);
3726         if (error)
3727                 return error;
3728
3729         error = dir->i_op->mknod(dir, dentry, mode, dev);
3730         if (!error)
3731                 fsnotify_create(dir, dentry);
3732         return error;
3733 }
3734 EXPORT_SYMBOL(vfs_mknod);
3735
3736 static int may_mknod(umode_t mode)
3737 {
3738         switch (mode & S_IFMT) {
3739         case S_IFREG:
3740         case S_IFCHR:
3741         case S_IFBLK:
3742         case S_IFIFO:
3743         case S_IFSOCK:
3744         case 0: /* zero mode translates to S_IFREG */
3745                 return 0;
3746         case S_IFDIR:
3747                 return -EPERM;
3748         default:
3749                 return -EINVAL;
3750         }
3751 }
3752
3753 long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3754                 unsigned int dev)
3755 {
3756         struct dentry *dentry;
3757         struct path path;
3758         int error;
3759         unsigned int lookup_flags = 0;
3760
3761         error = may_mknod(mode);
3762         if (error)
3763                 return error;
3764 retry:
3765         dentry = user_path_create(dfd, filename, &path, lookup_flags);
3766         if (IS_ERR(dentry))
3767                 return PTR_ERR(dentry);
3768
3769         if (!IS_POSIXACL(path.dentry->d_inode))
3770                 mode &= ~current_umask();
3771         error = security_path_mknod(&path, dentry, mode, dev);
3772         if (error)
3773                 goto out;
3774         switch (mode & S_IFMT) {
3775                 case 0: case S_IFREG:
3776                         error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3777                         if (!error)
3778                                 ima_post_path_mknod(dentry);
3779                         break;
3780                 case S_IFCHR: case S_IFBLK:
3781                         error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3782                                         new_decode_dev(dev));
3783                         break;
3784                 case S_IFIFO: case S_IFSOCK:
3785                         error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3786                         break;
3787         }
3788 out:
3789         done_path_create(&path, dentry);
3790         if (retry_estale(error, lookup_flags)) {
3791                 lookup_flags |= LOOKUP_REVAL;
3792                 goto retry;
3793         }
3794         return error;
3795 }
3796
3797 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3798                 unsigned int, dev)
3799 {
3800         return do_mknodat(dfd, filename, mode, dev);
3801 }
3802
3803 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3804 {
3805         return do_mknodat(AT_FDCWD, filename, mode, dev);
3806 }
3807
3808 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3809 {
3810         int error = may_create(dir, dentry);
3811         unsigned max_links = dir->i_sb->s_max_links;
3812
3813         if (error)
3814                 return error;
3815
3816         if (!dir->i_op->mkdir)
3817                 return -EPERM;
3818
3819         mode &= (S_IRWXUGO|S_ISVTX);
3820         error = security_inode_mkdir(dir, dentry, mode);
3821         if (error)
3822                 return error;
3823
3824         if (max_links && dir->i_nlink >= max_links)
3825                 return -EMLINK;
3826
3827         error = dir->i_op->mkdir(dir, dentry, mode);
3828         if (!error)
3829                 fsnotify_mkdir(dir, dentry);
3830         return error;
3831 }
3832 EXPORT_SYMBOL(vfs_mkdir);
3833
3834 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3835 {
3836         struct dentry *dentry;
3837         struct path path;
3838         int error;
3839         unsigned int lookup_flags = LOOKUP_DIRECTORY;
3840
3841 retry:
3842         dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3843         if (IS_ERR(dentry))
3844                 return PTR_ERR(dentry);
3845
3846         if (!IS_POSIXACL(path.dentry->d_inode))
3847                 mode &= ~current_umask();
3848         error = security_path_mkdir(&path, dentry, mode);
3849         if (!error)
3850                 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3851         done_path_create(&path, dentry);
3852         if (retry_estale(error, lookup_flags)) {
3853                 lookup_flags |= LOOKUP_REVAL;
3854                 goto retry;
3855         }
3856         return error;
3857 }
3858
3859 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3860 {
3861         return do_mkdirat(dfd, pathname, mode);
3862 }
3863
3864 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3865 {
3866         return do_mkdirat(AT_FDCWD, pathname, mode);
3867 }
3868
3869 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3870 {
3871         int error = may_delete(dir, dentry, 1);
3872
3873         if (error)
3874                 return error;
3875
3876         if (!dir->i_op->rmdir)
3877                 return -EPERM;
3878
3879         dget(dentry);
3880         inode_lock(dentry->d_inode);
3881
3882         error = -EBUSY;
3883         if (is_local_mountpoint(dentry))
3884                 goto out;
3885
3886         error = security_inode_rmdir(dir, dentry);
3887         if (error)
3888                 goto out;
3889
3890         error = dir->i_op->rmdir(dir, dentry);
3891         if (error)
3892                 goto out;
3893
3894         shrink_dcache_parent(dentry);
3895         dentry->d_inode->i_flags |= S_DEAD;
3896         dont_mount(dentry);
3897         detach_mounts(dentry);
3898
3899 out:
3900         inode_unlock(dentry->d_inode);
3901         dput(dentry);
3902         if (!error)
3903                 d_delete(dentry);
3904         return error;
3905 }
3906 EXPORT_SYMBOL(vfs_rmdir);
3907
3908 long do_rmdir(int dfd, const char __user *pathname)
3909 {
3910         int error = 0;
3911         struct filename *name;
3912         struct dentry *dentry;
3913         struct path path;
3914         struct qstr last;
3915         int type;
3916         unsigned int lookup_flags = 0;
3917 retry:
3918         name = filename_parentat(dfd, getname(pathname), lookup_flags,
3919                                 &path, &last, &type);
3920         if (IS_ERR(name))
3921                 return PTR_ERR(name);
3922
3923         switch (type) {
3924         case LAST_DOTDOT:
3925                 error = -ENOTEMPTY;
3926                 goto exit1;
3927         case LAST_DOT:
3928                 error = -EINVAL;
3929                 goto exit1;
3930         case LAST_ROOT:
3931                 error = -EBUSY;
3932                 goto exit1;
3933         }
3934
3935         error = mnt_want_write(path.mnt);
3936         if (error)
3937                 goto exit1;
3938
3939         inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3940         dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3941         error = PTR_ERR(dentry);
3942         if (IS_ERR(dentry))
3943                 goto exit2;
3944         if (!dentry->d_inode) {
3945                 error = -ENOENT;
3946                 goto exit3;
3947         }
3948         error = security_path_rmdir(&path, dentry);
3949         if (error)
3950                 goto exit3;
3951         error = vfs_rmdir(path.dentry->d_inode, dentry);
3952 exit3:
3953         dput(dentry);
3954 exit2:
3955         inode_unlock(path.dentry->d_inode);
3956         mnt_drop_write(path.mnt);
3957 exit1:
3958         path_put(&path);
3959         putname(name);
3960         if (retry_estale(error, lookup_flags)) {
3961                 lookup_flags |= LOOKUP_REVAL;
3962                 goto retry;
3963         }
3964         return error;
3965 }
3966
3967 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3968 {
3969         return do_rmdir(AT_FDCWD, pathname);
3970 }
3971
3972 /**
3973  * vfs_unlink - unlink a filesystem object
3974  * @dir:        parent directory
3975  * @dentry:     victim
3976  * @delegated_inode: returns victim inode, if the inode is delegated.
3977  *
3978  * The caller must hold dir->i_mutex.
3979  *
3980  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3981  * return a reference to the inode in delegated_inode.  The caller
3982  * should then break the delegation on that inode and retry.  Because
3983  * breaking a delegation may take a long time, the caller should drop
3984  * dir->i_mutex before doing so.
3985  *
3986  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3987  * be appropriate for callers that expect the underlying filesystem not
3988  * to be NFS exported.
3989  */
3990 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3991 {
3992         struct inode *target = dentry->d_inode;
3993         int error = may_delete(dir, dentry, 0);
3994
3995         if (error)
3996                 return error;
3997
3998         if (!dir->i_op->unlink)
3999                 return -EPERM;
4000
4001         inode_lock(target);
4002         if (is_local_mountpoint(dentry))
4003                 error = -EBUSY;
4004         else {
4005                 error = security_inode_unlink(dir, dentry);
4006                 if (!error) {
4007                         error = try_break_deleg(target, delegated_inode);
4008                         if (error)
4009                                 goto out;
4010                         error = dir->i_op->unlink(dir, dentry);
4011                         if (!error) {
4012                                 dont_mount(dentry);
4013                                 detach_mounts(dentry);
4014                         }
4015                 }
4016         }
4017 out:
4018         inode_unlock(target);
4019
4020         /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4021         if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4022                 fsnotify_link_count(target);
4023                 d_delete(dentry);
4024         }
4025
4026         return error;
4027 }
4028 EXPORT_SYMBOL(vfs_unlink);
4029
4030 /*
4031  * Make sure that the actual truncation of the file will occur outside its
4032  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4033  * writeout happening, and we don't want to prevent access to the directory
4034  * while waiting on the I/O.
4035  */
4036 long do_unlinkat(int dfd, struct filename *name)
4037 {
4038         int error;
4039         struct dentry *dentry;
4040         struct path path;
4041         struct qstr last;
4042         int type;
4043         struct inode *inode = NULL;
4044         struct inode *delegated_inode = NULL;
4045         unsigned int lookup_flags = 0;
4046 retry:
4047         name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4048         if (IS_ERR(name))
4049                 return PTR_ERR(name);
4050
4051         error = -EISDIR;
4052         if (type != LAST_NORM)
4053                 goto exit1;
4054
4055         error = mnt_want_write(path.mnt);
4056         if (error)
4057                 goto exit1;
4058 retry_deleg:
4059         inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4060         dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4061         error = PTR_ERR(dentry);
4062         if (!IS_ERR(dentry)) {
4063                 /* Why not before? Because we want correct error value */
4064                 if (last.name[last.len])
4065                         goto slashes;
4066                 inode = dentry->d_inode;
4067                 if (d_is_negative(dentry))
4068                         goto slashes;
4069                 ihold(inode);
4070                 error = security_path_unlink(&path, dentry);
4071                 if (error)
4072                         goto exit2;
4073                 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4074 exit2:
4075                 dput(dentry);
4076         }
4077         inode_unlock(path.dentry->d_inode);
4078         if (inode)
4079                 iput(inode);    /* truncate the inode here */
4080         inode = NULL;
4081         if (delegated_inode) {
4082                 error = break_deleg_wait(&delegated_inode);
4083                 if (!error)
4084                         goto retry_deleg;
4085         }
4086         mnt_drop_write(path.mnt);
4087 exit1:
4088         path_put(&path);
4089         if (retry_estale(error, lookup_flags)) {
4090                 lookup_flags |= LOOKUP_REVAL;
4091                 inode = NULL;
4092                 goto retry;
4093         }
4094         putname(name);
4095         return error;
4096
4097 slashes:
4098         if (d_is_negative(dentry))
4099                 error = -ENOENT;
4100         else if (d_is_dir(dentry))
4101                 error = -EISDIR;
4102         else
4103                 error = -ENOTDIR;
4104         goto exit2;
4105 }
4106
4107 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4108 {
4109         if ((flag & ~AT_REMOVEDIR) != 0)
4110                 return -EINVAL;
4111
4112         if (flag & AT_REMOVEDIR)
4113                 return do_rmdir(dfd, pathname);
4114
4115         return do_unlinkat(dfd, getname(pathname));
4116 }
4117
4118 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4119 {
4120         return do_unlinkat(AT_FDCWD, getname(pathname));
4121 }
4122
4123 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4124 {
4125         int error = may_create(dir, dentry);
4126
4127         if (error)
4128                 return error;
4129
4130         if (!dir->i_op->symlink)
4131                 return -EPERM;
4132
4133         error = security_inode_symlink(dir, dentry, oldname);
4134         if (error)
4135                 return error;
4136
4137         error = dir->i_op->symlink(dir, dentry, oldname);
4138         if (!error)
4139                 fsnotify_create(dir, dentry);
4140         return error;
4141 }
4142 EXPORT_SYMBOL(vfs_symlink);
4143
4144 long do_symlinkat(const char __user *oldname, int newdfd,
4145                   const char __user *newname)
4146 {
4147         int error;
4148         struct filename *from;
4149         struct dentry *dentry;
4150         struct path path;
4151         unsigned int lookup_flags = 0;
4152
4153         from = getname(oldname);
4154         if (IS_ERR(from))
4155                 return PTR_ERR(from);
4156 retry:
4157         dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4158         error = PTR_ERR(dentry);
4159         if (IS_ERR(dentry))
4160                 goto out_putname;
4161
4162         error = security_path_symlink(&path, dentry, from->name);
4163         if (!error)
4164                 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4165         done_path_create(&path, dentry);
4166         if (retry_estale(error, lookup_flags)) {
4167                 lookup_flags |= LOOKUP_REVAL;
4168                 goto retry;
4169         }
4170 out_putname:
4171         putname(from);
4172         return error;
4173 }
4174
4175 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4176                 int, newdfd, const char __user *, newname)
4177 {
4178         return do_symlinkat(oldname, newdfd, newname);
4179 }
4180
4181 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4182 {
4183         return do_symlinkat(oldname, AT_FDCWD, newname);
4184 }
4185
4186 /**
4187  * vfs_link - create a new link
4188  * @old_dentry: object to be linked
4189  * @dir:        new parent
4190  * @new_dentry: where to create the new link
4191  * @delegated_inode: returns inode needing a delegation break
4192  *
4193  * The caller must hold dir->i_mutex
4194  *
4195  * If vfs_link discovers a delegation on the to-be-linked file in need
4196  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4197  * inode in delegated_inode.  The caller should then break the delegation
4198  * and retry.  Because breaking a delegation may take a long time, the
4199  * caller should drop the i_mutex before doing so.
4200  *
4201  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4202  * be appropriate for callers that expect the underlying filesystem not
4203  * to be NFS exported.
4204  */
4205 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4206 {
4207         struct inode *inode = old_dentry->d_inode;
4208         unsigned max_links = dir->i_sb->s_max_links;
4209         int error;
4210
4211         if (!inode)
4212                 return -ENOENT;
4213
4214         error = may_create(dir, new_dentry);
4215         if (error)
4216                 return error;
4217
4218         if (dir->i_sb != inode->i_sb)
4219                 return -EXDEV;
4220
4221         /*
4222          * A link to an append-only or immutable file cannot be created.
4223          */
4224         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4225                 return -EPERM;
4226         /*
4227          * Updating the link count will likely cause i_uid and i_gid to
4228          * be writen back improperly if their true value is unknown to
4229          * the vfs.
4230          */
4231         if (HAS_UNMAPPED_ID(inode))
4232                 return -EPERM;
4233         if (!dir->i_op->link)
4234                 return -EPERM;
4235         if (S_ISDIR(inode->i_mode))
4236                 return -EPERM;
4237
4238         error = security_inode_link(old_dentry, dir, new_dentry);
4239         if (error)
4240                 return error;
4241
4242         inode_lock(inode);
4243         /* Make sure we don't allow creating hardlink to an unlinked file */
4244         if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4245                 error =  -ENOENT;
4246         else if (max_links && inode->i_nlink >= max_links)
4247                 error = -EMLINK;
4248         else {
4249                 error = try_break_deleg(inode, delegated_inode);
4250                 if (!error)
4251                         error = dir->i_op->link(old_dentry, dir, new_dentry);
4252         }
4253
4254         if (!error && (inode->i_state & I_LINKABLE)) {
4255                 spin_lock(&inode->i_lock);
4256                 inode->i_state &= ~I_LINKABLE;
4257                 spin_unlock(&inode->i_lock);
4258         }
4259         inode_unlock(inode);
4260         if (!error)
4261                 fsnotify_link(dir, inode, new_dentry);
4262         return error;
4263 }
4264 EXPORT_SYMBOL(vfs_link);
4265
4266 /*
4267  * Hardlinks are often used in delicate situations.  We avoid
4268  * security-related surprises by not following symlinks on the
4269  * newname.  --KAB
4270  *
4271  * We don't follow them on the oldname either to be compatible
4272  * with linux 2.0, and to avoid hard-linking to directories
4273  * and other special files.  --ADM
4274  */
4275 int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4276               const char __user *newname, int flags)
4277 {
4278         struct dentry *new_dentry;
4279         struct path old_path, new_path;
4280         struct inode *delegated_inode = NULL;
4281         int how = 0;
4282         int error;
4283
4284         if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4285                 return -EINVAL;
4286         /*
4287          * To use null names we require CAP_DAC_READ_SEARCH
4288          * This ensures that not everyone will be able to create
4289          * handlink using the passed filedescriptor.
4290          */
4291         if (flags & AT_EMPTY_PATH) {
4292                 if (!capable(CAP_DAC_READ_SEARCH))
4293                         return -ENOENT;
4294                 how = LOOKUP_EMPTY;
4295         }
4296
4297         if (flags & AT_SYMLINK_FOLLOW)
4298                 how |= LOOKUP_FOLLOW;
4299 retry:
4300         error = user_path_at(olddfd, oldname, how, &old_path);
4301         if (error)
4302                 return error;
4303
4304         new_dentry = user_path_create(newdfd, newname, &new_path,
4305                                         (how & LOOKUP_REVAL));
4306         error = PTR_ERR(new_dentry);
4307         if (IS_ERR(new_dentry))
4308                 goto out;
4309
4310         error = -EXDEV;
4311         if (old_path.mnt != new_path.mnt)
4312                 goto out_dput;
4313         error = may_linkat(&old_path);
4314         if (unlikely(error))
4315                 goto out_dput;
4316         error = security_path_link(old_path.dentry, &new_path, new_dentry);
4317         if (error)
4318                 goto out_dput;
4319         error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4320 out_dput:
4321         done_path_create(&new_path, new_dentry);
4322         if (delegated_inode) {
4323                 error = break_deleg_wait(&delegated_inode);
4324                 if (!error) {
4325                         path_put(&old_path);
4326                         goto retry;
4327                 }
4328         }
4329         if (retry_estale(error, how)) {
4330                 path_put(&old_path);
4331                 how |= LOOKUP_REVAL;
4332                 goto retry;
4333         }
4334 out:
4335         path_put(&old_path);
4336
4337         return error;
4338 }
4339
4340 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4341                 int, newdfd, const char __user *, newname, int, flags)
4342 {
4343         return do_linkat(olddfd, oldname, newdfd, newname, flags);
4344 }
4345
4346 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4347 {
4348         return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4349 }
4350
4351 /**
4352  * vfs_rename - rename a filesystem object
4353  * @old_dir:    parent of source
4354  * @old_dentry: source
4355  * @new_dir:    parent of destination
4356  * @new_dentry: destination
4357  * @delegated_inode: returns an inode needing a delegation break
4358  * @flags:      rename flags
4359  *
4360  * The caller must hold multiple mutexes--see lock_rename()).
4361  *
4362  * If vfs_rename discovers a delegation in need of breaking at either
4363  * the source or destination, it will return -EWOULDBLOCK and return a
4364  * reference to the inode in delegated_inode.  The caller should then
4365  * break the delegation and retry.  Because breaking a delegation may
4366  * take a long time, the caller should drop all locks before doing
4367  * so.
4368  *
4369  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4370  * be appropriate for callers that expect the underlying filesystem not
4371  * to be NFS exported.
4372  *
4373  * The worst of all namespace operations - renaming directory. "Perverted"
4374  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4375  * Problems:
4376  *
4377  *      a) we can get into loop creation.
4378  *      b) race potential - two innocent renames can create a loop together.
4379  *         That's where 4.4 screws up. Current fix: serialization on
4380  *         sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4381  *         story.
4382  *      c) we have to lock _four_ objects - parents and victim (if it exists),
4383  *         and source (if it is not a directory).
4384  *         And that - after we got ->i_mutex on parents (until then we don't know
4385  *         whether the target exists).  Solution: try to be smart with locking
4386  *         order for inodes.  We rely on the fact that tree topology may change
4387  *         only under ->s_vfs_rename_mutex _and_ that parent of the object we
4388  *         move will be locked.  Thus we can rank directories by the tree
4389  *         (ancestors first) and rank all non-directories after them.
4390  *         That works since everybody except rename does "lock parent, lookup,
4391  *         lock child" and rename is under ->s_vfs_rename_mutex.
4392  *         HOWEVER, it relies on the assumption that any object with ->lookup()
4393  *         has no more than 1 dentry.  If "hybrid" objects will ever appear,
4394  *         we'd better make sure that there's no link(2) for them.
4395  *      d) conversion from fhandle to dentry may come in the wrong moment - when
4396  *         we are removing the target. Solution: we will have to grab ->i_mutex
4397  *         in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4398  *         ->i_mutex on parents, which works but leads to some truly excessive
4399  *         locking].
4400  */
4401 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4402                struct inode *new_dir, struct dentry *new_dentry,
4403                struct inode **delegated_inode, unsigned int flags)
4404 {
4405         int error;
4406         bool is_dir = d_is_dir(old_dentry);
4407         struct inode *source = old_dentry->d_inode;
4408         struct inode *target = new_dentry->d_inode;
4409         bool new_is_dir = false;
4410         unsigned max_links = new_dir->i_sb->s_max_links;
4411         struct name_snapshot old_name;
4412
4413         if (source == target)
4414                 return 0;
4415
4416         error = may_delete(old_dir, old_dentry, is_dir);
4417         if (error)
4418                 return error;
4419
4420         if (!target) {
4421                 error = may_create(new_dir, new_dentry);
4422         } else {
4423                 new_is_dir = d_is_dir(new_dentry);
4424
4425                 if (!(flags & RENAME_EXCHANGE))
4426                         error = may_delete(new_dir, new_dentry, is_dir);
4427                 else
4428                         error = may_delete(new_dir, new_dentry, new_is_dir);
4429         }
4430         if (error)
4431                 return error;
4432
4433         if (!old_dir->i_op->rename)
4434                 return -EPERM;
4435
4436         /*
4437          * If we are going to change the parent - check write permissions,
4438          * we'll need to flip '..'.
4439          */
4440         if (new_dir != old_dir) {
4441                 if (is_dir) {
4442                         error = inode_permission(source, MAY_WRITE);
4443                         if (error)
4444                                 return error;
4445                 }
4446                 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4447                         error = inode_permission(target, MAY_WRITE);
4448                         if (error)
4449                                 return error;
4450                 }
4451         }
4452
4453         error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4454                                       flags);
4455         if (error)
4456                 return error;
4457
4458         take_dentry_name_snapshot(&old_name, old_dentry);
4459         dget(new_dentry);
4460         if (!is_dir || (flags & RENAME_EXCHANGE))
4461                 lock_two_nondirectories(source, target);
4462         else if (target)
4463                 inode_lock(target);
4464
4465         error = -EBUSY;
4466         if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4467                 goto out;
4468
4469         if (max_links && new_dir != old_dir) {
4470                 error = -EMLINK;
4471                 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4472                         goto out;
4473                 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4474                     old_dir->i_nlink >= max_links)
4475                         goto out;
4476         }
4477         if (!is_dir) {
4478                 error = try_break_deleg(source, delegated_inode);
4479                 if (error)
4480                         goto out;
4481         }
4482         if (target && !new_is_dir) {
4483                 error = try_break_deleg(target, delegated_inode);
4484                 if (error)
4485                         goto out;
4486         }
4487         error = old_dir->i_op->rename(old_dir, old_dentry,
4488                                        new_dir, new_dentry, flags);
4489         if (error)
4490                 goto out;
4491
4492         if (!(flags & RENAME_EXCHANGE) && target) {
4493                 if (is_dir) {
4494                         shrink_dcache_parent(new_dentry);
4495                         target->i_flags |= S_DEAD;
4496                 }
4497                 dont_mount(new_dentry);
4498                 detach_mounts(new_dentry);
4499         }
4500         if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4501                 if (!(flags & RENAME_EXCHANGE))
4502                         d_move(old_dentry, new_dentry);
4503                 else
4504                         d_exchange(old_dentry, new_dentry);
4505         }
4506 out:
4507         if (!is_dir || (flags & RENAME_EXCHANGE))
4508                 unlock_two_nondirectories(source, target);
4509         else if (target)
4510                 inode_unlock(target);
4511         dput(new_dentry);
4512         if (!error) {
4513                 fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4514                               !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4515                 if (flags & RENAME_EXCHANGE) {
4516                         fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4517                                       new_is_dir, NULL, new_dentry);
4518                 }
4519         }
4520         release_dentry_name_snapshot(&old_name);
4521
4522         return error;
4523 }
4524 EXPORT_SYMBOL(vfs_rename);
4525
4526 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4527                         const char __user *newname, unsigned int flags)
4528 {
4529         struct dentry *old_dentry, *new_dentry;
4530         struct dentry *trap;
4531         struct path old_path, new_path;
4532         struct qstr old_last, new_last;
4533         int old_type, new_type;
4534         struct inode *delegated_inode = NULL;
4535         struct filename *from;
4536         struct filename *to;
4537         unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4538         bool should_retry = false;
4539         int error;
4540
4541         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4542                 return -EINVAL;
4543
4544         if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4545             (flags & RENAME_EXCHANGE))
4546                 return -EINVAL;
4547
4548         if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4549                 return -EPERM;
4550
4551         if (flags & RENAME_EXCHANGE)
4552                 target_flags = 0;
4553
4554 retry:
4555         from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4556                                 &old_path, &old_last, &old_type);
4557         if (IS_ERR(from)) {
4558                 error = PTR_ERR(from);
4559                 goto exit;
4560         }
4561
4562         to = filename_parentat(newdfd, getname(newname), lookup_flags,
4563                                 &new_path, &new_last, &new_type);
4564         if (IS_ERR(to)) {
4565                 error = PTR_ERR(to);
4566                 goto exit1;
4567         }
4568
4569         error = -EXDEV;
4570         if (old_path.mnt != new_path.mnt)
4571                 goto exit2;
4572
4573         error = -EBUSY;
4574         if (old_type != LAST_NORM)
4575                 goto exit2;
4576
4577         if (flags & RENAME_NOREPLACE)
4578                 error = -EEXIST;
4579         if (new_type != LAST_NORM)
4580                 goto exit2;
4581
4582         error = mnt_want_write(old_path.mnt);
4583         if (error)
4584                 goto exit2;
4585
4586 retry_deleg:
4587         trap = lock_rename(new_path.dentry, old_path.dentry);
4588
4589         old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4590         error = PTR_ERR(old_dentry);
4591         if (IS_ERR(old_dentry))
4592                 goto exit3;
4593         /* source must exist */
4594         error = -ENOENT;
4595         if (d_is_negative(old_dentry))
4596                 goto exit4;
4597         new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4598         error = PTR_ERR(new_dentry);
4599         if (IS_ERR(new_dentry))
4600                 goto exit4;
4601         error = -EEXIST;
4602         if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4603                 goto exit5;
4604         if (flags & RENAME_EXCHANGE) {
4605                 error = -ENOENT;
4606                 if (d_is_negative(new_dentry))
4607                         goto exit5;
4608
4609                 if (!d_is_dir(new_dentry)) {
4610                         error = -ENOTDIR;
4611                         if (new_last.name[new_last.len])
4612                                 goto exit5;
4613                 }
4614         }
4615         /* unless the source is a directory trailing slashes give -ENOTDIR */
4616         if (!d_is_dir(old_dentry)) {
4617                 error = -ENOTDIR;
4618                 if (old_last.name[old_last.len])
4619                         goto exit5;
4620                 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4621                         goto exit5;
4622         }
4623         /* source should not be ancestor of target */
4624         error = -EINVAL;
4625         if (old_dentry == trap)
4626                 goto exit5;
4627         /* target should not be an ancestor of source */
4628         if (!(flags & RENAME_EXCHANGE))
4629                 error = -ENOTEMPTY;
4630         if (new_dentry == trap)
4631                 goto exit5;
4632
4633         error = security_path_rename(&old_path, old_dentry,
4634                                      &new_path, new_dentry, flags);
4635         if (error)
4636                 goto exit5;
4637         error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4638                            new_path.dentry->d_inode, new_dentry,
4639                            &delegated_inode, flags);
4640 exit5:
4641         dput(new_dentry);
4642 exit4:
4643         dput(old_dentry);
4644 exit3:
4645         unlock_rename(new_path.dentry, old_path.dentry);
4646         if (delegated_inode) {
4647                 error = break_deleg_wait(&delegated_inode);
4648                 if (!error)
4649                         goto retry_deleg;
4650         }
4651         mnt_drop_write(old_path.mnt);
4652 exit2:
4653         if (retry_estale(error, lookup_flags))
4654                 should_retry = true;
4655         path_put(&new_path);
4656         putname(to);
4657 exit1:
4658         path_put(&old_path);
4659         putname(from);
4660         if (should_retry) {
4661                 should_retry = false;
4662                 lookup_flags |= LOOKUP_REVAL;
4663                 goto retry;
4664         }
4665 exit:
4666         return error;
4667 }
4668
4669 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4670                 int, newdfd, const char __user *, newname, unsigned int, flags)
4671 {
4672         return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4673 }
4674
4675 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4676                 int, newdfd, const char __user *, newname)
4677 {
4678         return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4679 }
4680
4681 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4682 {
4683         return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4684 }
4685
4686 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4687 {
4688         int error = may_create(dir, dentry);
4689         if (error)
4690                 return error;
4691
4692         if (!dir->i_op->mknod)
4693                 return -EPERM;
4694
4695         return dir->i_op->mknod(dir, dentry,
4696                                 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4697 }
4698 EXPORT_SYMBOL(vfs_whiteout);
4699
4700 int readlink_copy(char __user *buffer, int buflen, const char *link)
4701 {
4702         int len = PTR_ERR(link);
4703         if (IS_ERR(link))
4704                 goto out;
4705
4706         len = strlen(link);
4707         if (len > (unsigned) buflen)
4708                 len = buflen;
4709         if (copy_to_user(buffer, link, len))
4710                 len = -EFAULT;
4711 out:
4712         return len;
4713 }
4714
4715 /*
4716  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4717  * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4718  * for any given inode is up to filesystem.
4719  */
4720 static int generic_readlink(struct dentry *dentry, char __user *buffer,
4721                             int buflen)
4722 {
4723         DEFINE_DELAYED_CALL(done);
4724         struct inode *inode = d_inode(dentry);
4725         const char *link = inode->i_link;
4726         int res;
4727
4728         if (!link) {
4729                 link = inode->i_op->get_link(dentry, inode, &done);
4730                 if (IS_ERR(link))
4731                         return PTR_ERR(link);
4732         }
4733         res = readlink_copy(buffer, buflen, link);
4734         do_delayed_call(&done);
4735         return res;
4736 }
4737
4738 /**
4739  * vfs_readlink - copy symlink body into userspace buffer
4740  * @dentry: dentry on which to get symbolic link
4741  * @buffer: user memory pointer
4742  * @buflen: size of buffer
4743  *
4744  * Does not touch atime.  That's up to the caller if necessary
4745  *
4746  * Does not call security hook.
4747  */
4748 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4749 {
4750         struct inode *inode = d_inode(dentry);
4751
4752         if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4753                 if (unlikely(inode->i_op->readlink))
4754                         return inode->i_op->readlink(dentry, buffer, buflen);
4755
4756                 if (!d_is_symlink(dentry))
4757                         return -EINVAL;
4758
4759                 spin_lock(&inode->i_lock);
4760                 inode->i_opflags |= IOP_DEFAULT_READLINK;
4761                 spin_unlock(&inode->i_lock);
4762         }
4763
4764         return generic_readlink(dentry, buffer, buflen);
4765 }
4766 EXPORT_SYMBOL(vfs_readlink);
4767
4768 /**
4769  * vfs_get_link - get symlink body
4770  * @dentry: dentry on which to get symbolic link
4771  * @done: caller needs to free returned data with this
4772  *
4773  * Calls security hook and i_op->get_link() on the supplied inode.
4774  *
4775  * It does not touch atime.  That's up to the caller if necessary.
4776  *
4777  * Does not work on "special" symlinks like /proc/$$/fd/N
4778  */
4779 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4780 {
4781         const char *res = ERR_PTR(-EINVAL);
4782         struct inode *inode = d_inode(dentry);
4783
4784         if (d_is_symlink(dentry)) {
4785                 res = ERR_PTR(security_inode_readlink(dentry));
4786                 if (!res)
4787                         res = inode->i_op->get_link(dentry, inode, done);
4788         }
4789         return res;
4790 }
4791 EXPORT_SYMBOL(vfs_get_link);
4792
4793 /* get the link contents into pagecache */
4794 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4795                           struct delayed_call *callback)
4796 {
4797         char *kaddr;
4798         struct page *page;
4799         struct address_space *mapping = inode->i_mapping;
4800
4801         if (!dentry) {
4802                 page = find_get_page(mapping, 0);
4803                 if (!page)
4804                         return ERR_PTR(-ECHILD);
4805                 if (!PageUptodate(page)) {
4806                         put_page(page);
4807                         return ERR_PTR(-ECHILD);
4808                 }
4809         } else {
4810                 page = read_mapping_page(mapping, 0, NULL);
4811                 if (IS_ERR(page))
4812                         return (char*)page;
4813         }
4814         set_delayed_call(callback, page_put_link, page);
4815         BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4816         kaddr = page_address(page);
4817         nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4818         return kaddr;
4819 }
4820
4821 EXPORT_SYMBOL(page_get_link);
4822
4823 void page_put_link(void *arg)
4824 {
4825         put_page(arg);
4826 }
4827 EXPORT_SYMBOL(page_put_link);
4828
4829 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4830 {
4831         DEFINE_DELAYED_CALL(done);
4832         int res = readlink_copy(buffer, buflen,
4833                                 page_get_link(dentry, d_inode(dentry),
4834                                               &done));
4835         do_delayed_call(&done);
4836         return res;
4837 }
4838 EXPORT_SYMBOL(page_readlink);
4839
4840 /*
4841  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4842  */
4843 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4844 {
4845         struct address_space *mapping = inode->i_mapping;
4846         struct page *page;
4847         void *fsdata;
4848         int err;
4849         unsigned int flags = 0;
4850         if (nofs)
4851                 flags |= AOP_FLAG_NOFS;
4852
4853 retry:
4854         err = pagecache_write_begin(NULL, mapping, 0, len-1,
4855                                 flags, &page, &fsdata);
4856         if (err)
4857                 goto fail;
4858
4859         memcpy(page_address(page), symname, len-1);
4860
4861         err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4862                                                         page, fsdata);
4863         if (err < 0)
4864                 goto fail;
4865         if (err < len-1)
4866                 goto retry;
4867
4868         mark_inode_dirty(inode);
4869         return 0;
4870 fail:
4871         return err;
4872 }
4873 EXPORT_SYMBOL(__page_symlink);
4874
4875 int page_symlink(struct inode *inode, const char *symname, int len)
4876 {
4877         return __page_symlink(inode, symname, len,
4878                         !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4879 }
4880 EXPORT_SYMBOL(page_symlink);
4881
4882 const struct inode_operations page_symlink_inode_operations = {
4883         .get_link       = page_get_link,
4884 };
4885 EXPORT_SYMBOL(page_symlink_inode_operations);