Merge branches 'work.misc' and 'work.dcache' of git://git.kernel.org/pub/scm/linux...
[sfrench/cifs-2.6.git] / fs / jbd2 / transaction.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30
31 #include <trace/events/jbd2.h>
32
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39         J_ASSERT(!transaction_cache);
40         transaction_cache = kmem_cache_create("jbd2_transaction_s",
41                                         sizeof(transaction_t),
42                                         0,
43                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44                                         NULL);
45         if (transaction_cache)
46                 return 0;
47         return -ENOMEM;
48 }
49
50 void jbd2_journal_destroy_transaction_cache(void)
51 {
52         kmem_cache_destroy(transaction_cache);
53         transaction_cache = NULL;
54 }
55
56 void jbd2_journal_free_transaction(transaction_t *transaction)
57 {
58         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
59                 return;
60         kmem_cache_free(transaction_cache, transaction);
61 }
62
63 /*
64  * jbd2_get_transaction: obtain a new transaction_t object.
65  *
66  * Simply allocate and initialise a new transaction.  Create it in
67  * RUNNING state and add it to the current journal (which should not
68  * have an existing running transaction: we only make a new transaction
69  * once we have started to commit the old one).
70  *
71  * Preconditions:
72  *      The journal MUST be locked.  We don't perform atomic mallocs on the
73  *      new transaction and we can't block without protecting against other
74  *      processes trying to touch the journal while it is in transition.
75  *
76  */
77
78 static transaction_t *
79 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
80 {
81         transaction->t_journal = journal;
82         transaction->t_state = T_RUNNING;
83         transaction->t_start_time = ktime_get();
84         transaction->t_tid = journal->j_transaction_sequence++;
85         transaction->t_expires = jiffies + journal->j_commit_interval;
86         spin_lock_init(&transaction->t_handle_lock);
87         atomic_set(&transaction->t_updates, 0);
88         atomic_set(&transaction->t_outstanding_credits,
89                    atomic_read(&journal->j_reserved_credits));
90         atomic_set(&transaction->t_handle_count, 0);
91         INIT_LIST_HEAD(&transaction->t_inode_list);
92         INIT_LIST_HEAD(&transaction->t_private_list);
93
94         /* Set up the commit timer for the new transaction. */
95         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
96         add_timer(&journal->j_commit_timer);
97
98         J_ASSERT(journal->j_running_transaction == NULL);
99         journal->j_running_transaction = transaction;
100         transaction->t_max_wait = 0;
101         transaction->t_start = jiffies;
102         transaction->t_requested = 0;
103
104         return transaction;
105 }
106
107 /*
108  * Handle management.
109  *
110  * A handle_t is an object which represents a single atomic update to a
111  * filesystem, and which tracks all of the modifications which form part
112  * of that one update.
113  */
114
115 /*
116  * Update transaction's maximum wait time, if debugging is enabled.
117  *
118  * In order for t_max_wait to be reliable, it must be protected by a
119  * lock.  But doing so will mean that start_this_handle() can not be
120  * run in parallel on SMP systems, which limits our scalability.  So
121  * unless debugging is enabled, we no longer update t_max_wait, which
122  * means that maximum wait time reported by the jbd2_run_stats
123  * tracepoint will always be zero.
124  */
125 static inline void update_t_max_wait(transaction_t *transaction,
126                                      unsigned long ts)
127 {
128 #ifdef CONFIG_JBD2_DEBUG
129         if (jbd2_journal_enable_debug &&
130             time_after(transaction->t_start, ts)) {
131                 ts = jbd2_time_diff(ts, transaction->t_start);
132                 spin_lock(&transaction->t_handle_lock);
133                 if (ts > transaction->t_max_wait)
134                         transaction->t_max_wait = ts;
135                 spin_unlock(&transaction->t_handle_lock);
136         }
137 #endif
138 }
139
140 /*
141  * Wait until running transaction passes T_LOCKED state. Also starts the commit
142  * if needed. The function expects running transaction to exist and releases
143  * j_state_lock.
144  */
145 static void wait_transaction_locked(journal_t *journal)
146         __releases(journal->j_state_lock)
147 {
148         DEFINE_WAIT(wait);
149         int need_to_start;
150         tid_t tid = journal->j_running_transaction->t_tid;
151
152         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
153                         TASK_UNINTERRUPTIBLE);
154         need_to_start = !tid_geq(journal->j_commit_request, tid);
155         read_unlock(&journal->j_state_lock);
156         if (need_to_start)
157                 jbd2_log_start_commit(journal, tid);
158         jbd2_might_wait_for_commit(journal);
159         schedule();
160         finish_wait(&journal->j_wait_transaction_locked, &wait);
161 }
162
163 static void sub_reserved_credits(journal_t *journal, int blocks)
164 {
165         atomic_sub(blocks, &journal->j_reserved_credits);
166         wake_up(&journal->j_wait_reserved);
167 }
168
169 /*
170  * Wait until we can add credits for handle to the running transaction.  Called
171  * with j_state_lock held for reading. Returns 0 if handle joined the running
172  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
173  * caller must retry.
174  */
175 static int add_transaction_credits(journal_t *journal, int blocks,
176                                    int rsv_blocks)
177 {
178         transaction_t *t = journal->j_running_transaction;
179         int needed;
180         int total = blocks + rsv_blocks;
181
182         /*
183          * If the current transaction is locked down for commit, wait
184          * for the lock to be released.
185          */
186         if (t->t_state == T_LOCKED) {
187                 wait_transaction_locked(journal);
188                 return 1;
189         }
190
191         /*
192          * If there is not enough space left in the log to write all
193          * potential buffers requested by this operation, we need to
194          * stall pending a log checkpoint to free some more log space.
195          */
196         needed = atomic_add_return(total, &t->t_outstanding_credits);
197         if (needed > journal->j_max_transaction_buffers) {
198                 /*
199                  * If the current transaction is already too large,
200                  * then start to commit it: we can then go back and
201                  * attach this handle to a new transaction.
202                  */
203                 atomic_sub(total, &t->t_outstanding_credits);
204
205                 /*
206                  * Is the number of reserved credits in the current transaction too
207                  * big to fit this handle? Wait until reserved credits are freed.
208                  */
209                 if (atomic_read(&journal->j_reserved_credits) + total >
210                     journal->j_max_transaction_buffers) {
211                         read_unlock(&journal->j_state_lock);
212                         jbd2_might_wait_for_commit(journal);
213                         wait_event(journal->j_wait_reserved,
214                                    atomic_read(&journal->j_reserved_credits) + total <=
215                                    journal->j_max_transaction_buffers);
216                         return 1;
217                 }
218
219                 wait_transaction_locked(journal);
220                 return 1;
221         }
222
223         /*
224          * The commit code assumes that it can get enough log space
225          * without forcing a checkpoint.  This is *critical* for
226          * correctness: a checkpoint of a buffer which is also
227          * associated with a committing transaction creates a deadlock,
228          * so commit simply cannot force through checkpoints.
229          *
230          * We must therefore ensure the necessary space in the journal
231          * *before* starting to dirty potentially checkpointed buffers
232          * in the new transaction.
233          */
234         if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
235                 atomic_sub(total, &t->t_outstanding_credits);
236                 read_unlock(&journal->j_state_lock);
237                 jbd2_might_wait_for_commit(journal);
238                 write_lock(&journal->j_state_lock);
239                 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
240                         __jbd2_log_wait_for_space(journal);
241                 write_unlock(&journal->j_state_lock);
242                 return 1;
243         }
244
245         /* No reservation? We are done... */
246         if (!rsv_blocks)
247                 return 0;
248
249         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
250         /* We allow at most half of a transaction to be reserved */
251         if (needed > journal->j_max_transaction_buffers / 2) {
252                 sub_reserved_credits(journal, rsv_blocks);
253                 atomic_sub(total, &t->t_outstanding_credits);
254                 read_unlock(&journal->j_state_lock);
255                 jbd2_might_wait_for_commit(journal);
256                 wait_event(journal->j_wait_reserved,
257                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
258                          <= journal->j_max_transaction_buffers / 2);
259                 return 1;
260         }
261         return 0;
262 }
263
264 /*
265  * start_this_handle: Given a handle, deal with any locking or stalling
266  * needed to make sure that there is enough journal space for the handle
267  * to begin.  Attach the handle to a transaction and set up the
268  * transaction's buffer credits.
269  */
270
271 static int start_this_handle(journal_t *journal, handle_t *handle,
272                              gfp_t gfp_mask)
273 {
274         transaction_t   *transaction, *new_transaction = NULL;
275         int             blocks = handle->h_buffer_credits;
276         int             rsv_blocks = 0;
277         unsigned long ts = jiffies;
278
279         if (handle->h_rsv_handle)
280                 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
281
282         /*
283          * Limit the number of reserved credits to 1/2 of maximum transaction
284          * size and limit the number of total credits to not exceed maximum
285          * transaction size per operation.
286          */
287         if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
288             (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
289                 printk(KERN_ERR "JBD2: %s wants too many credits "
290                        "credits:%d rsv_credits:%d max:%d\n",
291                        current->comm, blocks, rsv_blocks,
292                        journal->j_max_transaction_buffers);
293                 WARN_ON(1);
294                 return -ENOSPC;
295         }
296
297 alloc_transaction:
298         if (!journal->j_running_transaction) {
299                 /*
300                  * If __GFP_FS is not present, then we may be being called from
301                  * inside the fs writeback layer, so we MUST NOT fail.
302                  */
303                 if ((gfp_mask & __GFP_FS) == 0)
304                         gfp_mask |= __GFP_NOFAIL;
305                 new_transaction = kmem_cache_zalloc(transaction_cache,
306                                                     gfp_mask);
307                 if (!new_transaction)
308                         return -ENOMEM;
309         }
310
311         jbd_debug(3, "New handle %p going live.\n", handle);
312
313         /*
314          * We need to hold j_state_lock until t_updates has been incremented,
315          * for proper journal barrier handling
316          */
317 repeat:
318         read_lock(&journal->j_state_lock);
319         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
320         if (is_journal_aborted(journal) ||
321             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
322                 read_unlock(&journal->j_state_lock);
323                 jbd2_journal_free_transaction(new_transaction);
324                 return -EROFS;
325         }
326
327         /*
328          * Wait on the journal's transaction barrier if necessary. Specifically
329          * we allow reserved handles to proceed because otherwise commit could
330          * deadlock on page writeback not being able to complete.
331          */
332         if (!handle->h_reserved && journal->j_barrier_count) {
333                 read_unlock(&journal->j_state_lock);
334                 wait_event(journal->j_wait_transaction_locked,
335                                 journal->j_barrier_count == 0);
336                 goto repeat;
337         }
338
339         if (!journal->j_running_transaction) {
340                 read_unlock(&journal->j_state_lock);
341                 if (!new_transaction)
342                         goto alloc_transaction;
343                 write_lock(&journal->j_state_lock);
344                 if (!journal->j_running_transaction &&
345                     (handle->h_reserved || !journal->j_barrier_count)) {
346                         jbd2_get_transaction(journal, new_transaction);
347                         new_transaction = NULL;
348                 }
349                 write_unlock(&journal->j_state_lock);
350                 goto repeat;
351         }
352
353         transaction = journal->j_running_transaction;
354
355         if (!handle->h_reserved) {
356                 /* We may have dropped j_state_lock - restart in that case */
357                 if (add_transaction_credits(journal, blocks, rsv_blocks))
358                         goto repeat;
359         } else {
360                 /*
361                  * We have handle reserved so we are allowed to join T_LOCKED
362                  * transaction and we don't have to check for transaction size
363                  * and journal space.
364                  */
365                 sub_reserved_credits(journal, blocks);
366                 handle->h_reserved = 0;
367         }
368
369         /* OK, account for the buffers that this operation expects to
370          * use and add the handle to the running transaction. 
371          */
372         update_t_max_wait(transaction, ts);
373         handle->h_transaction = transaction;
374         handle->h_requested_credits = blocks;
375         handle->h_start_jiffies = jiffies;
376         atomic_inc(&transaction->t_updates);
377         atomic_inc(&transaction->t_handle_count);
378         jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
379                   handle, blocks,
380                   atomic_read(&transaction->t_outstanding_credits),
381                   jbd2_log_space_left(journal));
382         read_unlock(&journal->j_state_lock);
383         current->journal_info = handle;
384
385         rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
386         jbd2_journal_free_transaction(new_transaction);
387         /*
388          * Ensure that no allocations done while the transaction is open are
389          * going to recurse back to the fs layer.
390          */
391         handle->saved_alloc_context = memalloc_nofs_save();
392         return 0;
393 }
394
395 /* Allocate a new handle.  This should probably be in a slab... */
396 static handle_t *new_handle(int nblocks)
397 {
398         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
399         if (!handle)
400                 return NULL;
401         handle->h_buffer_credits = nblocks;
402         handle->h_ref = 1;
403
404         return handle;
405 }
406
407 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
408                               gfp_t gfp_mask, unsigned int type,
409                               unsigned int line_no)
410 {
411         handle_t *handle = journal_current_handle();
412         int err;
413
414         if (!journal)
415                 return ERR_PTR(-EROFS);
416
417         if (handle) {
418                 J_ASSERT(handle->h_transaction->t_journal == journal);
419                 handle->h_ref++;
420                 return handle;
421         }
422
423         handle = new_handle(nblocks);
424         if (!handle)
425                 return ERR_PTR(-ENOMEM);
426         if (rsv_blocks) {
427                 handle_t *rsv_handle;
428
429                 rsv_handle = new_handle(rsv_blocks);
430                 if (!rsv_handle) {
431                         jbd2_free_handle(handle);
432                         return ERR_PTR(-ENOMEM);
433                 }
434                 rsv_handle->h_reserved = 1;
435                 rsv_handle->h_journal = journal;
436                 handle->h_rsv_handle = rsv_handle;
437         }
438
439         err = start_this_handle(journal, handle, gfp_mask);
440         if (err < 0) {
441                 if (handle->h_rsv_handle)
442                         jbd2_free_handle(handle->h_rsv_handle);
443                 jbd2_free_handle(handle);
444                 return ERR_PTR(err);
445         }
446         handle->h_type = type;
447         handle->h_line_no = line_no;
448         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
449                                 handle->h_transaction->t_tid, type,
450                                 line_no, nblocks);
451
452         return handle;
453 }
454 EXPORT_SYMBOL(jbd2__journal_start);
455
456
457 /**
458  * handle_t *jbd2_journal_start() - Obtain a new handle.
459  * @journal: Journal to start transaction on.
460  * @nblocks: number of block buffer we might modify
461  *
462  * We make sure that the transaction can guarantee at least nblocks of
463  * modified buffers in the log.  We block until the log can guarantee
464  * that much space. Additionally, if rsv_blocks > 0, we also create another
465  * handle with rsv_blocks reserved blocks in the journal. This handle is
466  * is stored in h_rsv_handle. It is not attached to any particular transaction
467  * and thus doesn't block transaction commit. If the caller uses this reserved
468  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
469  * on the parent handle will dispose the reserved one. Reserved handle has to
470  * be converted to a normal handle using jbd2_journal_start_reserved() before
471  * it can be used.
472  *
473  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
474  * on failure.
475  */
476 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
477 {
478         return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
479 }
480 EXPORT_SYMBOL(jbd2_journal_start);
481
482 void jbd2_journal_free_reserved(handle_t *handle)
483 {
484         journal_t *journal = handle->h_journal;
485
486         WARN_ON(!handle->h_reserved);
487         sub_reserved_credits(journal, handle->h_buffer_credits);
488         jbd2_free_handle(handle);
489 }
490 EXPORT_SYMBOL(jbd2_journal_free_reserved);
491
492 /**
493  * int jbd2_journal_start_reserved() - start reserved handle
494  * @handle: handle to start
495  * @type: for handle statistics
496  * @line_no: for handle statistics
497  *
498  * Start handle that has been previously reserved with jbd2_journal_reserve().
499  * This attaches @handle to the running transaction (or creates one if there's
500  * not transaction running). Unlike jbd2_journal_start() this function cannot
501  * block on journal commit, checkpointing, or similar stuff. It can block on
502  * memory allocation or frozen journal though.
503  *
504  * Return 0 on success, non-zero on error - handle is freed in that case.
505  */
506 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
507                                 unsigned int line_no)
508 {
509         journal_t *journal = handle->h_journal;
510         int ret = -EIO;
511
512         if (WARN_ON(!handle->h_reserved)) {
513                 /* Someone passed in normal handle? Just stop it. */
514                 jbd2_journal_stop(handle);
515                 return ret;
516         }
517         /*
518          * Usefulness of mixing of reserved and unreserved handles is
519          * questionable. So far nobody seems to need it so just error out.
520          */
521         if (WARN_ON(current->journal_info)) {
522                 jbd2_journal_free_reserved(handle);
523                 return ret;
524         }
525
526         handle->h_journal = NULL;
527         /*
528          * GFP_NOFS is here because callers are likely from writeback or
529          * similarly constrained call sites
530          */
531         ret = start_this_handle(journal, handle, GFP_NOFS);
532         if (ret < 0) {
533                 handle->h_journal = journal;
534                 jbd2_journal_free_reserved(handle);
535                 return ret;
536         }
537         handle->h_type = type;
538         handle->h_line_no = line_no;
539         return 0;
540 }
541 EXPORT_SYMBOL(jbd2_journal_start_reserved);
542
543 /**
544  * int jbd2_journal_extend() - extend buffer credits.
545  * @handle:  handle to 'extend'
546  * @nblocks: nr blocks to try to extend by.
547  *
548  * Some transactions, such as large extends and truncates, can be done
549  * atomically all at once or in several stages.  The operation requests
550  * a credit for a number of buffer modifications in advance, but can
551  * extend its credit if it needs more.
552  *
553  * jbd2_journal_extend tries to give the running handle more buffer credits.
554  * It does not guarantee that allocation - this is a best-effort only.
555  * The calling process MUST be able to deal cleanly with a failure to
556  * extend here.
557  *
558  * Return 0 on success, non-zero on failure.
559  *
560  * return code < 0 implies an error
561  * return code > 0 implies normal transaction-full status.
562  */
563 int jbd2_journal_extend(handle_t *handle, int nblocks)
564 {
565         transaction_t *transaction = handle->h_transaction;
566         journal_t *journal;
567         int result;
568         int wanted;
569
570         if (is_handle_aborted(handle))
571                 return -EROFS;
572         journal = transaction->t_journal;
573
574         result = 1;
575
576         read_lock(&journal->j_state_lock);
577
578         /* Don't extend a locked-down transaction! */
579         if (transaction->t_state != T_RUNNING) {
580                 jbd_debug(3, "denied handle %p %d blocks: "
581                           "transaction not running\n", handle, nblocks);
582                 goto error_out;
583         }
584
585         spin_lock(&transaction->t_handle_lock);
586         wanted = atomic_add_return(nblocks,
587                                    &transaction->t_outstanding_credits);
588
589         if (wanted > journal->j_max_transaction_buffers) {
590                 jbd_debug(3, "denied handle %p %d blocks: "
591                           "transaction too large\n", handle, nblocks);
592                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
593                 goto unlock;
594         }
595
596         if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
597             jbd2_log_space_left(journal)) {
598                 jbd_debug(3, "denied handle %p %d blocks: "
599                           "insufficient log space\n", handle, nblocks);
600                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
601                 goto unlock;
602         }
603
604         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
605                                  transaction->t_tid,
606                                  handle->h_type, handle->h_line_no,
607                                  handle->h_buffer_credits,
608                                  nblocks);
609
610         handle->h_buffer_credits += nblocks;
611         handle->h_requested_credits += nblocks;
612         result = 0;
613
614         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
615 unlock:
616         spin_unlock(&transaction->t_handle_lock);
617 error_out:
618         read_unlock(&journal->j_state_lock);
619         return result;
620 }
621
622
623 /**
624  * int jbd2_journal_restart() - restart a handle .
625  * @handle:  handle to restart
626  * @nblocks: nr credits requested
627  * @gfp_mask: memory allocation flags (for start_this_handle)
628  *
629  * Restart a handle for a multi-transaction filesystem
630  * operation.
631  *
632  * If the jbd2_journal_extend() call above fails to grant new buffer credits
633  * to a running handle, a call to jbd2_journal_restart will commit the
634  * handle's transaction so far and reattach the handle to a new
635  * transaction capable of guaranteeing the requested number of
636  * credits. We preserve reserved handle if there's any attached to the
637  * passed in handle.
638  */
639 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
640 {
641         transaction_t *transaction = handle->h_transaction;
642         journal_t *journal;
643         tid_t           tid;
644         int             need_to_start, ret;
645
646         /* If we've had an abort of any type, don't even think about
647          * actually doing the restart! */
648         if (is_handle_aborted(handle))
649                 return 0;
650         journal = transaction->t_journal;
651
652         /*
653          * First unlink the handle from its current transaction, and start the
654          * commit on that.
655          */
656         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
657         J_ASSERT(journal_current_handle() == handle);
658
659         read_lock(&journal->j_state_lock);
660         spin_lock(&transaction->t_handle_lock);
661         atomic_sub(handle->h_buffer_credits,
662                    &transaction->t_outstanding_credits);
663         if (handle->h_rsv_handle) {
664                 sub_reserved_credits(journal,
665                                      handle->h_rsv_handle->h_buffer_credits);
666         }
667         if (atomic_dec_and_test(&transaction->t_updates))
668                 wake_up(&journal->j_wait_updates);
669         tid = transaction->t_tid;
670         spin_unlock(&transaction->t_handle_lock);
671         handle->h_transaction = NULL;
672         current->journal_info = NULL;
673
674         jbd_debug(2, "restarting handle %p\n", handle);
675         need_to_start = !tid_geq(journal->j_commit_request, tid);
676         read_unlock(&journal->j_state_lock);
677         if (need_to_start)
678                 jbd2_log_start_commit(journal, tid);
679
680         rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
681         handle->h_buffer_credits = nblocks;
682         /*
683          * Restore the original nofs context because the journal restart
684          * is basically the same thing as journal stop and start.
685          * start_this_handle will start a new nofs context.
686          */
687         memalloc_nofs_restore(handle->saved_alloc_context);
688         ret = start_this_handle(journal, handle, gfp_mask);
689         return ret;
690 }
691 EXPORT_SYMBOL(jbd2__journal_restart);
692
693
694 int jbd2_journal_restart(handle_t *handle, int nblocks)
695 {
696         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
697 }
698 EXPORT_SYMBOL(jbd2_journal_restart);
699
700 /**
701  * void jbd2_journal_lock_updates () - establish a transaction barrier.
702  * @journal:  Journal to establish a barrier on.
703  *
704  * This locks out any further updates from being started, and blocks
705  * until all existing updates have completed, returning only once the
706  * journal is in a quiescent state with no updates running.
707  *
708  * The journal lock should not be held on entry.
709  */
710 void jbd2_journal_lock_updates(journal_t *journal)
711 {
712         DEFINE_WAIT(wait);
713
714         jbd2_might_wait_for_commit(journal);
715
716         write_lock(&journal->j_state_lock);
717         ++journal->j_barrier_count;
718
719         /* Wait until there are no reserved handles */
720         if (atomic_read(&journal->j_reserved_credits)) {
721                 write_unlock(&journal->j_state_lock);
722                 wait_event(journal->j_wait_reserved,
723                            atomic_read(&journal->j_reserved_credits) == 0);
724                 write_lock(&journal->j_state_lock);
725         }
726
727         /* Wait until there are no running updates */
728         while (1) {
729                 transaction_t *transaction = journal->j_running_transaction;
730
731                 if (!transaction)
732                         break;
733
734                 spin_lock(&transaction->t_handle_lock);
735                 prepare_to_wait(&journal->j_wait_updates, &wait,
736                                 TASK_UNINTERRUPTIBLE);
737                 if (!atomic_read(&transaction->t_updates)) {
738                         spin_unlock(&transaction->t_handle_lock);
739                         finish_wait(&journal->j_wait_updates, &wait);
740                         break;
741                 }
742                 spin_unlock(&transaction->t_handle_lock);
743                 write_unlock(&journal->j_state_lock);
744                 schedule();
745                 finish_wait(&journal->j_wait_updates, &wait);
746                 write_lock(&journal->j_state_lock);
747         }
748         write_unlock(&journal->j_state_lock);
749
750         /*
751          * We have now established a barrier against other normal updates, but
752          * we also need to barrier against other jbd2_journal_lock_updates() calls
753          * to make sure that we serialise special journal-locked operations
754          * too.
755          */
756         mutex_lock(&journal->j_barrier);
757 }
758
759 /**
760  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
761  * @journal:  Journal to release the barrier on.
762  *
763  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
764  *
765  * Should be called without the journal lock held.
766  */
767 void jbd2_journal_unlock_updates (journal_t *journal)
768 {
769         J_ASSERT(journal->j_barrier_count != 0);
770
771         mutex_unlock(&journal->j_barrier);
772         write_lock(&journal->j_state_lock);
773         --journal->j_barrier_count;
774         write_unlock(&journal->j_state_lock);
775         wake_up(&journal->j_wait_transaction_locked);
776 }
777
778 static void warn_dirty_buffer(struct buffer_head *bh)
779 {
780         printk(KERN_WARNING
781                "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
782                "There's a risk of filesystem corruption in case of system "
783                "crash.\n",
784                bh->b_bdev, (unsigned long long)bh->b_blocknr);
785 }
786
787 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
788 static void jbd2_freeze_jh_data(struct journal_head *jh)
789 {
790         struct page *page;
791         int offset;
792         char *source;
793         struct buffer_head *bh = jh2bh(jh);
794
795         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
796         page = bh->b_page;
797         offset = offset_in_page(bh->b_data);
798         source = kmap_atomic(page);
799         /* Fire data frozen trigger just before we copy the data */
800         jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
801         memcpy(jh->b_frozen_data, source + offset, bh->b_size);
802         kunmap_atomic(source);
803
804         /*
805          * Now that the frozen data is saved off, we need to store any matching
806          * triggers.
807          */
808         jh->b_frozen_triggers = jh->b_triggers;
809 }
810
811 /*
812  * If the buffer is already part of the current transaction, then there
813  * is nothing we need to do.  If it is already part of a prior
814  * transaction which we are still committing to disk, then we need to
815  * make sure that we do not overwrite the old copy: we do copy-out to
816  * preserve the copy going to disk.  We also account the buffer against
817  * the handle's metadata buffer credits (unless the buffer is already
818  * part of the transaction, that is).
819  *
820  */
821 static int
822 do_get_write_access(handle_t *handle, struct journal_head *jh,
823                         int force_copy)
824 {
825         struct buffer_head *bh;
826         transaction_t *transaction = handle->h_transaction;
827         journal_t *journal;
828         int error;
829         char *frozen_buffer = NULL;
830         unsigned long start_lock, time_lock;
831
832         if (is_handle_aborted(handle))
833                 return -EROFS;
834         journal = transaction->t_journal;
835
836         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
837
838         JBUFFER_TRACE(jh, "entry");
839 repeat:
840         bh = jh2bh(jh);
841
842         /* @@@ Need to check for errors here at some point. */
843
844         start_lock = jiffies;
845         lock_buffer(bh);
846         jbd_lock_bh_state(bh);
847
848         /* If it takes too long to lock the buffer, trace it */
849         time_lock = jbd2_time_diff(start_lock, jiffies);
850         if (time_lock > HZ/10)
851                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
852                         jiffies_to_msecs(time_lock));
853
854         /* We now hold the buffer lock so it is safe to query the buffer
855          * state.  Is the buffer dirty?
856          *
857          * If so, there are two possibilities.  The buffer may be
858          * non-journaled, and undergoing a quite legitimate writeback.
859          * Otherwise, it is journaled, and we don't expect dirty buffers
860          * in that state (the buffers should be marked JBD_Dirty
861          * instead.)  So either the IO is being done under our own
862          * control and this is a bug, or it's a third party IO such as
863          * dump(8) (which may leave the buffer scheduled for read ---
864          * ie. locked but not dirty) or tune2fs (which may actually have
865          * the buffer dirtied, ugh.)  */
866
867         if (buffer_dirty(bh)) {
868                 /*
869                  * First question: is this buffer already part of the current
870                  * transaction or the existing committing transaction?
871                  */
872                 if (jh->b_transaction) {
873                         J_ASSERT_JH(jh,
874                                 jh->b_transaction == transaction ||
875                                 jh->b_transaction ==
876                                         journal->j_committing_transaction);
877                         if (jh->b_next_transaction)
878                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
879                                                         transaction);
880                         warn_dirty_buffer(bh);
881                 }
882                 /*
883                  * In any case we need to clean the dirty flag and we must
884                  * do it under the buffer lock to be sure we don't race
885                  * with running write-out.
886                  */
887                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
888                 clear_buffer_dirty(bh);
889                 set_buffer_jbddirty(bh);
890         }
891
892         unlock_buffer(bh);
893
894         error = -EROFS;
895         if (is_handle_aborted(handle)) {
896                 jbd_unlock_bh_state(bh);
897                 goto out;
898         }
899         error = 0;
900
901         /*
902          * The buffer is already part of this transaction if b_transaction or
903          * b_next_transaction points to it
904          */
905         if (jh->b_transaction == transaction ||
906             jh->b_next_transaction == transaction)
907                 goto done;
908
909         /*
910          * this is the first time this transaction is touching this buffer,
911          * reset the modified flag
912          */
913        jh->b_modified = 0;
914
915         /*
916          * If the buffer is not journaled right now, we need to make sure it
917          * doesn't get written to disk before the caller actually commits the
918          * new data
919          */
920         if (!jh->b_transaction) {
921                 JBUFFER_TRACE(jh, "no transaction");
922                 J_ASSERT_JH(jh, !jh->b_next_transaction);
923                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
924                 /*
925                  * Make sure all stores to jh (b_modified, b_frozen_data) are
926                  * visible before attaching it to the running transaction.
927                  * Paired with barrier in jbd2_write_access_granted()
928                  */
929                 smp_wmb();
930                 spin_lock(&journal->j_list_lock);
931                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
932                 spin_unlock(&journal->j_list_lock);
933                 goto done;
934         }
935         /*
936          * If there is already a copy-out version of this buffer, then we don't
937          * need to make another one
938          */
939         if (jh->b_frozen_data) {
940                 JBUFFER_TRACE(jh, "has frozen data");
941                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
942                 goto attach_next;
943         }
944
945         JBUFFER_TRACE(jh, "owned by older transaction");
946         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
947         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
948
949         /*
950          * There is one case we have to be very careful about.  If the
951          * committing transaction is currently writing this buffer out to disk
952          * and has NOT made a copy-out, then we cannot modify the buffer
953          * contents at all right now.  The essence of copy-out is that it is
954          * the extra copy, not the primary copy, which gets journaled.  If the
955          * primary copy is already going to disk then we cannot do copy-out
956          * here.
957          */
958         if (buffer_shadow(bh)) {
959                 JBUFFER_TRACE(jh, "on shadow: sleep");
960                 jbd_unlock_bh_state(bh);
961                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
962                 goto repeat;
963         }
964
965         /*
966          * Only do the copy if the currently-owning transaction still needs it.
967          * If buffer isn't on BJ_Metadata list, the committing transaction is
968          * past that stage (here we use the fact that BH_Shadow is set under
969          * bh_state lock together with refiling to BJ_Shadow list and at this
970          * point we know the buffer doesn't have BH_Shadow set).
971          *
972          * Subtle point, though: if this is a get_undo_access, then we will be
973          * relying on the frozen_data to contain the new value of the
974          * committed_data record after the transaction, so we HAVE to force the
975          * frozen_data copy in that case.
976          */
977         if (jh->b_jlist == BJ_Metadata || force_copy) {
978                 JBUFFER_TRACE(jh, "generate frozen data");
979                 if (!frozen_buffer) {
980                         JBUFFER_TRACE(jh, "allocate memory for buffer");
981                         jbd_unlock_bh_state(bh);
982                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
983                                                    GFP_NOFS | __GFP_NOFAIL);
984                         goto repeat;
985                 }
986                 jh->b_frozen_data = frozen_buffer;
987                 frozen_buffer = NULL;
988                 jbd2_freeze_jh_data(jh);
989         }
990 attach_next:
991         /*
992          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
993          * before attaching it to the running transaction. Paired with barrier
994          * in jbd2_write_access_granted()
995          */
996         smp_wmb();
997         jh->b_next_transaction = transaction;
998
999 done:
1000         jbd_unlock_bh_state(bh);
1001
1002         /*
1003          * If we are about to journal a buffer, then any revoke pending on it is
1004          * no longer valid
1005          */
1006         jbd2_journal_cancel_revoke(handle, jh);
1007
1008 out:
1009         if (unlikely(frozen_buffer))    /* It's usually NULL */
1010                 jbd2_free(frozen_buffer, bh->b_size);
1011
1012         JBUFFER_TRACE(jh, "exit");
1013         return error;
1014 }
1015
1016 /* Fast check whether buffer is already attached to the required transaction */
1017 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1018                                                         bool undo)
1019 {
1020         struct journal_head *jh;
1021         bool ret = false;
1022
1023         /* Dirty buffers require special handling... */
1024         if (buffer_dirty(bh))
1025                 return false;
1026
1027         /*
1028          * RCU protects us from dereferencing freed pages. So the checks we do
1029          * are guaranteed not to oops. However the jh slab object can get freed
1030          * & reallocated while we work with it. So we have to be careful. When
1031          * we see jh attached to the running transaction, we know it must stay
1032          * so until the transaction is committed. Thus jh won't be freed and
1033          * will be attached to the same bh while we run.  However it can
1034          * happen jh gets freed, reallocated, and attached to the transaction
1035          * just after we get pointer to it from bh. So we have to be careful
1036          * and recheck jh still belongs to our bh before we return success.
1037          */
1038         rcu_read_lock();
1039         if (!buffer_jbd(bh))
1040                 goto out;
1041         /* This should be bh2jh() but that doesn't work with inline functions */
1042         jh = READ_ONCE(bh->b_private);
1043         if (!jh)
1044                 goto out;
1045         /* For undo access buffer must have data copied */
1046         if (undo && !jh->b_committed_data)
1047                 goto out;
1048         if (jh->b_transaction != handle->h_transaction &&
1049             jh->b_next_transaction != handle->h_transaction)
1050                 goto out;
1051         /*
1052          * There are two reasons for the barrier here:
1053          * 1) Make sure to fetch b_bh after we did previous checks so that we
1054          * detect when jh went through free, realloc, attach to transaction
1055          * while we were checking. Paired with implicit barrier in that path.
1056          * 2) So that access to bh done after jbd2_write_access_granted()
1057          * doesn't get reordered and see inconsistent state of concurrent
1058          * do_get_write_access().
1059          */
1060         smp_mb();
1061         if (unlikely(jh->b_bh != bh))
1062                 goto out;
1063         ret = true;
1064 out:
1065         rcu_read_unlock();
1066         return ret;
1067 }
1068
1069 /**
1070  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1071  * @handle: transaction to add buffer modifications to
1072  * @bh:     bh to be used for metadata writes
1073  *
1074  * Returns: error code or 0 on success.
1075  *
1076  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1077  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1078  */
1079
1080 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1081 {
1082         struct journal_head *jh;
1083         int rc;
1084
1085         if (jbd2_write_access_granted(handle, bh, false))
1086                 return 0;
1087
1088         jh = jbd2_journal_add_journal_head(bh);
1089         /* We do not want to get caught playing with fields which the
1090          * log thread also manipulates.  Make sure that the buffer
1091          * completes any outstanding IO before proceeding. */
1092         rc = do_get_write_access(handle, jh, 0);
1093         jbd2_journal_put_journal_head(jh);
1094         return rc;
1095 }
1096
1097
1098 /*
1099  * When the user wants to journal a newly created buffer_head
1100  * (ie. getblk() returned a new buffer and we are going to populate it
1101  * manually rather than reading off disk), then we need to keep the
1102  * buffer_head locked until it has been completely filled with new
1103  * data.  In this case, we should be able to make the assertion that
1104  * the bh is not already part of an existing transaction.
1105  *
1106  * The buffer should already be locked by the caller by this point.
1107  * There is no lock ranking violation: it was a newly created,
1108  * unlocked buffer beforehand. */
1109
1110 /**
1111  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1112  * @handle: transaction to new buffer to
1113  * @bh: new buffer.
1114  *
1115  * Call this if you create a new bh.
1116  */
1117 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1118 {
1119         transaction_t *transaction = handle->h_transaction;
1120         journal_t *journal;
1121         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1122         int err;
1123
1124         jbd_debug(5, "journal_head %p\n", jh);
1125         err = -EROFS;
1126         if (is_handle_aborted(handle))
1127                 goto out;
1128         journal = transaction->t_journal;
1129         err = 0;
1130
1131         JBUFFER_TRACE(jh, "entry");
1132         /*
1133          * The buffer may already belong to this transaction due to pre-zeroing
1134          * in the filesystem's new_block code.  It may also be on the previous,
1135          * committing transaction's lists, but it HAS to be in Forget state in
1136          * that case: the transaction must have deleted the buffer for it to be
1137          * reused here.
1138          */
1139         jbd_lock_bh_state(bh);
1140         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1141                 jh->b_transaction == NULL ||
1142                 (jh->b_transaction == journal->j_committing_transaction &&
1143                           jh->b_jlist == BJ_Forget)));
1144
1145         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1146         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1147
1148         if (jh->b_transaction == NULL) {
1149                 /*
1150                  * Previous jbd2_journal_forget() could have left the buffer
1151                  * with jbddirty bit set because it was being committed. When
1152                  * the commit finished, we've filed the buffer for
1153                  * checkpointing and marked it dirty. Now we are reallocating
1154                  * the buffer so the transaction freeing it must have
1155                  * committed and so it's safe to clear the dirty bit.
1156                  */
1157                 clear_buffer_dirty(jh2bh(jh));
1158                 /* first access by this transaction */
1159                 jh->b_modified = 0;
1160
1161                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1162                 spin_lock(&journal->j_list_lock);
1163                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1164                 spin_unlock(&journal->j_list_lock);
1165         } else if (jh->b_transaction == journal->j_committing_transaction) {
1166                 /* first access by this transaction */
1167                 jh->b_modified = 0;
1168
1169                 JBUFFER_TRACE(jh, "set next transaction");
1170                 spin_lock(&journal->j_list_lock);
1171                 jh->b_next_transaction = transaction;
1172                 spin_unlock(&journal->j_list_lock);
1173         }
1174         jbd_unlock_bh_state(bh);
1175
1176         /*
1177          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1178          * blocks which contain freed but then revoked metadata.  We need
1179          * to cancel the revoke in case we end up freeing it yet again
1180          * and the reallocating as data - this would cause a second revoke,
1181          * which hits an assertion error.
1182          */
1183         JBUFFER_TRACE(jh, "cancelling revoke");
1184         jbd2_journal_cancel_revoke(handle, jh);
1185 out:
1186         jbd2_journal_put_journal_head(jh);
1187         return err;
1188 }
1189
1190 /**
1191  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1192  *     non-rewindable consequences
1193  * @handle: transaction
1194  * @bh: buffer to undo
1195  *
1196  * Sometimes there is a need to distinguish between metadata which has
1197  * been committed to disk and that which has not.  The ext3fs code uses
1198  * this for freeing and allocating space, we have to make sure that we
1199  * do not reuse freed space until the deallocation has been committed,
1200  * since if we overwrote that space we would make the delete
1201  * un-rewindable in case of a crash.
1202  *
1203  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1204  * buffer for parts of non-rewindable operations such as delete
1205  * operations on the bitmaps.  The journaling code must keep a copy of
1206  * the buffer's contents prior to the undo_access call until such time
1207  * as we know that the buffer has definitely been committed to disk.
1208  *
1209  * We never need to know which transaction the committed data is part
1210  * of, buffers touched here are guaranteed to be dirtied later and so
1211  * will be committed to a new transaction in due course, at which point
1212  * we can discard the old committed data pointer.
1213  *
1214  * Returns error number or 0 on success.
1215  */
1216 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1217 {
1218         int err;
1219         struct journal_head *jh;
1220         char *committed_data = NULL;
1221
1222         JBUFFER_TRACE(jh, "entry");
1223         if (jbd2_write_access_granted(handle, bh, true))
1224                 return 0;
1225
1226         jh = jbd2_journal_add_journal_head(bh);
1227         /*
1228          * Do this first --- it can drop the journal lock, so we want to
1229          * make sure that obtaining the committed_data is done
1230          * atomically wrt. completion of any outstanding commits.
1231          */
1232         err = do_get_write_access(handle, jh, 1);
1233         if (err)
1234                 goto out;
1235
1236 repeat:
1237         if (!jh->b_committed_data)
1238                 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1239                                             GFP_NOFS|__GFP_NOFAIL);
1240
1241         jbd_lock_bh_state(bh);
1242         if (!jh->b_committed_data) {
1243                 /* Copy out the current buffer contents into the
1244                  * preserved, committed copy. */
1245                 JBUFFER_TRACE(jh, "generate b_committed data");
1246                 if (!committed_data) {
1247                         jbd_unlock_bh_state(bh);
1248                         goto repeat;
1249                 }
1250
1251                 jh->b_committed_data = committed_data;
1252                 committed_data = NULL;
1253                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1254         }
1255         jbd_unlock_bh_state(bh);
1256 out:
1257         jbd2_journal_put_journal_head(jh);
1258         if (unlikely(committed_data))
1259                 jbd2_free(committed_data, bh->b_size);
1260         return err;
1261 }
1262
1263 /**
1264  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1265  * @bh: buffer to trigger on
1266  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1267  *
1268  * Set any triggers on this journal_head.  This is always safe, because
1269  * triggers for a committing buffer will be saved off, and triggers for
1270  * a running transaction will match the buffer in that transaction.
1271  *
1272  * Call with NULL to clear the triggers.
1273  */
1274 void jbd2_journal_set_triggers(struct buffer_head *bh,
1275                                struct jbd2_buffer_trigger_type *type)
1276 {
1277         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1278
1279         if (WARN_ON(!jh))
1280                 return;
1281         jh->b_triggers = type;
1282         jbd2_journal_put_journal_head(jh);
1283 }
1284
1285 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1286                                 struct jbd2_buffer_trigger_type *triggers)
1287 {
1288         struct buffer_head *bh = jh2bh(jh);
1289
1290         if (!triggers || !triggers->t_frozen)
1291                 return;
1292
1293         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1294 }
1295
1296 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1297                                struct jbd2_buffer_trigger_type *triggers)
1298 {
1299         if (!triggers || !triggers->t_abort)
1300                 return;
1301
1302         triggers->t_abort(triggers, jh2bh(jh));
1303 }
1304
1305 /**
1306  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1307  * @handle: transaction to add buffer to.
1308  * @bh: buffer to mark
1309  *
1310  * mark dirty metadata which needs to be journaled as part of the current
1311  * transaction.
1312  *
1313  * The buffer must have previously had jbd2_journal_get_write_access()
1314  * called so that it has a valid journal_head attached to the buffer
1315  * head.
1316  *
1317  * The buffer is placed on the transaction's metadata list and is marked
1318  * as belonging to the transaction.
1319  *
1320  * Returns error number or 0 on success.
1321  *
1322  * Special care needs to be taken if the buffer already belongs to the
1323  * current committing transaction (in which case we should have frozen
1324  * data present for that commit).  In that case, we don't relink the
1325  * buffer: that only gets done when the old transaction finally
1326  * completes its commit.
1327  */
1328 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1329 {
1330         transaction_t *transaction = handle->h_transaction;
1331         journal_t *journal;
1332         struct journal_head *jh;
1333         int ret = 0;
1334
1335         if (is_handle_aborted(handle))
1336                 return -EROFS;
1337         if (!buffer_jbd(bh)) {
1338                 ret = -EUCLEAN;
1339                 goto out;
1340         }
1341         /*
1342          * We don't grab jh reference here since the buffer must be part
1343          * of the running transaction.
1344          */
1345         jh = bh2jh(bh);
1346         /*
1347          * This and the following assertions are unreliable since we may see jh
1348          * in inconsistent state unless we grab bh_state lock. But this is
1349          * crucial to catch bugs so let's do a reliable check until the
1350          * lockless handling is fully proven.
1351          */
1352         if (jh->b_transaction != transaction &&
1353             jh->b_next_transaction != transaction) {
1354                 jbd_lock_bh_state(bh);
1355                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1356                                 jh->b_next_transaction == transaction);
1357                 jbd_unlock_bh_state(bh);
1358         }
1359         if (jh->b_modified == 1) {
1360                 /* If it's in our transaction it must be in BJ_Metadata list. */
1361                 if (jh->b_transaction == transaction &&
1362                     jh->b_jlist != BJ_Metadata) {
1363                         jbd_lock_bh_state(bh);
1364                         if (jh->b_transaction == transaction &&
1365                             jh->b_jlist != BJ_Metadata)
1366                                 pr_err("JBD2: assertion failure: h_type=%u "
1367                                        "h_line_no=%u block_no=%llu jlist=%u\n",
1368                                        handle->h_type, handle->h_line_no,
1369                                        (unsigned long long) bh->b_blocknr,
1370                                        jh->b_jlist);
1371                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1372                                         jh->b_jlist == BJ_Metadata);
1373                         jbd_unlock_bh_state(bh);
1374                 }
1375                 goto out;
1376         }
1377
1378         journal = transaction->t_journal;
1379         jbd_debug(5, "journal_head %p\n", jh);
1380         JBUFFER_TRACE(jh, "entry");
1381
1382         jbd_lock_bh_state(bh);
1383
1384         if (jh->b_modified == 0) {
1385                 /*
1386                  * This buffer's got modified and becoming part
1387                  * of the transaction. This needs to be done
1388                  * once a transaction -bzzz
1389                  */
1390                 if (handle->h_buffer_credits <= 0) {
1391                         ret = -ENOSPC;
1392                         goto out_unlock_bh;
1393                 }
1394                 jh->b_modified = 1;
1395                 handle->h_buffer_credits--;
1396         }
1397
1398         /*
1399          * fastpath, to avoid expensive locking.  If this buffer is already
1400          * on the running transaction's metadata list there is nothing to do.
1401          * Nobody can take it off again because there is a handle open.
1402          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1403          * result in this test being false, so we go in and take the locks.
1404          */
1405         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1406                 JBUFFER_TRACE(jh, "fastpath");
1407                 if (unlikely(jh->b_transaction !=
1408                              journal->j_running_transaction)) {
1409                         printk(KERN_ERR "JBD2: %s: "
1410                                "jh->b_transaction (%llu, %p, %u) != "
1411                                "journal->j_running_transaction (%p, %u)\n",
1412                                journal->j_devname,
1413                                (unsigned long long) bh->b_blocknr,
1414                                jh->b_transaction,
1415                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1416                                journal->j_running_transaction,
1417                                journal->j_running_transaction ?
1418                                journal->j_running_transaction->t_tid : 0);
1419                         ret = -EINVAL;
1420                 }
1421                 goto out_unlock_bh;
1422         }
1423
1424         set_buffer_jbddirty(bh);
1425
1426         /*
1427          * Metadata already on the current transaction list doesn't
1428          * need to be filed.  Metadata on another transaction's list must
1429          * be committing, and will be refiled once the commit completes:
1430          * leave it alone for now.
1431          */
1432         if (jh->b_transaction != transaction) {
1433                 JBUFFER_TRACE(jh, "already on other transaction");
1434                 if (unlikely(((jh->b_transaction !=
1435                                journal->j_committing_transaction)) ||
1436                              (jh->b_next_transaction != transaction))) {
1437                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1438                                "bad jh for block %llu: "
1439                                "transaction (%p, %u), "
1440                                "jh->b_transaction (%p, %u), "
1441                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1442                                journal->j_devname,
1443                                (unsigned long long) bh->b_blocknr,
1444                                transaction, transaction->t_tid,
1445                                jh->b_transaction,
1446                                jh->b_transaction ?
1447                                jh->b_transaction->t_tid : 0,
1448                                jh->b_next_transaction,
1449                                jh->b_next_transaction ?
1450                                jh->b_next_transaction->t_tid : 0,
1451                                jh->b_jlist);
1452                         WARN_ON(1);
1453                         ret = -EINVAL;
1454                 }
1455                 /* And this case is illegal: we can't reuse another
1456                  * transaction's data buffer, ever. */
1457                 goto out_unlock_bh;
1458         }
1459
1460         /* That test should have eliminated the following case: */
1461         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1462
1463         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1464         spin_lock(&journal->j_list_lock);
1465         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1466         spin_unlock(&journal->j_list_lock);
1467 out_unlock_bh:
1468         jbd_unlock_bh_state(bh);
1469 out:
1470         JBUFFER_TRACE(jh, "exit");
1471         return ret;
1472 }
1473
1474 /**
1475  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1476  * @handle: transaction handle
1477  * @bh:     bh to 'forget'
1478  *
1479  * We can only do the bforget if there are no commits pending against the
1480  * buffer.  If the buffer is dirty in the current running transaction we
1481  * can safely unlink it.
1482  *
1483  * bh may not be a journalled buffer at all - it may be a non-JBD
1484  * buffer which came off the hashtable.  Check for this.
1485  *
1486  * Decrements bh->b_count by one.
1487  *
1488  * Allow this call even if the handle has aborted --- it may be part of
1489  * the caller's cleanup after an abort.
1490  */
1491 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1492 {
1493         transaction_t *transaction = handle->h_transaction;
1494         journal_t *journal;
1495         struct journal_head *jh;
1496         int drop_reserve = 0;
1497         int err = 0;
1498         int was_modified = 0;
1499
1500         if (is_handle_aborted(handle))
1501                 return -EROFS;
1502         journal = transaction->t_journal;
1503
1504         BUFFER_TRACE(bh, "entry");
1505
1506         jbd_lock_bh_state(bh);
1507
1508         if (!buffer_jbd(bh))
1509                 goto not_jbd;
1510         jh = bh2jh(bh);
1511
1512         /* Critical error: attempting to delete a bitmap buffer, maybe?
1513          * Don't do any jbd operations, and return an error. */
1514         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1515                          "inconsistent data on disk")) {
1516                 err = -EIO;
1517                 goto not_jbd;
1518         }
1519
1520         /* keep track of whether or not this transaction modified us */
1521         was_modified = jh->b_modified;
1522
1523         /*
1524          * The buffer's going from the transaction, we must drop
1525          * all references -bzzz
1526          */
1527         jh->b_modified = 0;
1528
1529         if (jh->b_transaction == transaction) {
1530                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1531
1532                 /* If we are forgetting a buffer which is already part
1533                  * of this transaction, then we can just drop it from
1534                  * the transaction immediately. */
1535                 clear_buffer_dirty(bh);
1536                 clear_buffer_jbddirty(bh);
1537
1538                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1539
1540                 /*
1541                  * we only want to drop a reference if this transaction
1542                  * modified the buffer
1543                  */
1544                 if (was_modified)
1545                         drop_reserve = 1;
1546
1547                 /*
1548                  * We are no longer going to journal this buffer.
1549                  * However, the commit of this transaction is still
1550                  * important to the buffer: the delete that we are now
1551                  * processing might obsolete an old log entry, so by
1552                  * committing, we can satisfy the buffer's checkpoint.
1553                  *
1554                  * So, if we have a checkpoint on the buffer, we should
1555                  * now refile the buffer on our BJ_Forget list so that
1556                  * we know to remove the checkpoint after we commit.
1557                  */
1558
1559                 spin_lock(&journal->j_list_lock);
1560                 if (jh->b_cp_transaction) {
1561                         __jbd2_journal_temp_unlink_buffer(jh);
1562                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1563                 } else {
1564                         __jbd2_journal_unfile_buffer(jh);
1565                         if (!buffer_jbd(bh)) {
1566                                 spin_unlock(&journal->j_list_lock);
1567                                 jbd_unlock_bh_state(bh);
1568                                 __bforget(bh);
1569                                 goto drop;
1570                         }
1571                 }
1572                 spin_unlock(&journal->j_list_lock);
1573         } else if (jh->b_transaction) {
1574                 J_ASSERT_JH(jh, (jh->b_transaction ==
1575                                  journal->j_committing_transaction));
1576                 /* However, if the buffer is still owned by a prior
1577                  * (committing) transaction, we can't drop it yet... */
1578                 JBUFFER_TRACE(jh, "belongs to older transaction");
1579                 /* ... but we CAN drop it from the new transaction if we
1580                  * have also modified it since the original commit. */
1581
1582                 if (jh->b_next_transaction) {
1583                         J_ASSERT(jh->b_next_transaction == transaction);
1584                         spin_lock(&journal->j_list_lock);
1585                         jh->b_next_transaction = NULL;
1586                         spin_unlock(&journal->j_list_lock);
1587
1588                         /*
1589                          * only drop a reference if this transaction modified
1590                          * the buffer
1591                          */
1592                         if (was_modified)
1593                                 drop_reserve = 1;
1594                 }
1595         }
1596
1597 not_jbd:
1598         jbd_unlock_bh_state(bh);
1599         __brelse(bh);
1600 drop:
1601         if (drop_reserve) {
1602                 /* no need to reserve log space for this block -bzzz */
1603                 handle->h_buffer_credits++;
1604         }
1605         return err;
1606 }
1607
1608 /**
1609  * int jbd2_journal_stop() - complete a transaction
1610  * @handle: transaction to complete.
1611  *
1612  * All done for a particular handle.
1613  *
1614  * There is not much action needed here.  We just return any remaining
1615  * buffer credits to the transaction and remove the handle.  The only
1616  * complication is that we need to start a commit operation if the
1617  * filesystem is marked for synchronous update.
1618  *
1619  * jbd2_journal_stop itself will not usually return an error, but it may
1620  * do so in unusual circumstances.  In particular, expect it to
1621  * return -EIO if a jbd2_journal_abort has been executed since the
1622  * transaction began.
1623  */
1624 int jbd2_journal_stop(handle_t *handle)
1625 {
1626         transaction_t *transaction = handle->h_transaction;
1627         journal_t *journal;
1628         int err = 0, wait_for_commit = 0;
1629         tid_t tid;
1630         pid_t pid;
1631
1632         if (!transaction) {
1633                 /*
1634                  * Handle is already detached from the transaction so
1635                  * there is nothing to do other than decrease a refcount,
1636                  * or free the handle if refcount drops to zero
1637                  */
1638                 if (--handle->h_ref > 0) {
1639                         jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1640                                                          handle->h_ref);
1641                         return err;
1642                 } else {
1643                         if (handle->h_rsv_handle)
1644                                 jbd2_free_handle(handle->h_rsv_handle);
1645                         goto free_and_exit;
1646                 }
1647         }
1648         journal = transaction->t_journal;
1649
1650         J_ASSERT(journal_current_handle() == handle);
1651
1652         if (is_handle_aborted(handle))
1653                 err = -EIO;
1654         else
1655                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1656
1657         if (--handle->h_ref > 0) {
1658                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1659                           handle->h_ref);
1660                 return err;
1661         }
1662
1663         jbd_debug(4, "Handle %p going down\n", handle);
1664         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1665                                 transaction->t_tid,
1666                                 handle->h_type, handle->h_line_no,
1667                                 jiffies - handle->h_start_jiffies,
1668                                 handle->h_sync, handle->h_requested_credits,
1669                                 (handle->h_requested_credits -
1670                                  handle->h_buffer_credits));
1671
1672         /*
1673          * Implement synchronous transaction batching.  If the handle
1674          * was synchronous, don't force a commit immediately.  Let's
1675          * yield and let another thread piggyback onto this
1676          * transaction.  Keep doing that while new threads continue to
1677          * arrive.  It doesn't cost much - we're about to run a commit
1678          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1679          * operations by 30x or more...
1680          *
1681          * We try and optimize the sleep time against what the
1682          * underlying disk can do, instead of having a static sleep
1683          * time.  This is useful for the case where our storage is so
1684          * fast that it is more optimal to go ahead and force a flush
1685          * and wait for the transaction to be committed than it is to
1686          * wait for an arbitrary amount of time for new writers to
1687          * join the transaction.  We achieve this by measuring how
1688          * long it takes to commit a transaction, and compare it with
1689          * how long this transaction has been running, and if run time
1690          * < commit time then we sleep for the delta and commit.  This
1691          * greatly helps super fast disks that would see slowdowns as
1692          * more threads started doing fsyncs.
1693          *
1694          * But don't do this if this process was the most recent one
1695          * to perform a synchronous write.  We do this to detect the
1696          * case where a single process is doing a stream of sync
1697          * writes.  No point in waiting for joiners in that case.
1698          *
1699          * Setting max_batch_time to 0 disables this completely.
1700          */
1701         pid = current->pid;
1702         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1703             journal->j_max_batch_time) {
1704                 u64 commit_time, trans_time;
1705
1706                 journal->j_last_sync_writer = pid;
1707
1708                 read_lock(&journal->j_state_lock);
1709                 commit_time = journal->j_average_commit_time;
1710                 read_unlock(&journal->j_state_lock);
1711
1712                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1713                                                    transaction->t_start_time));
1714
1715                 commit_time = max_t(u64, commit_time,
1716                                     1000*journal->j_min_batch_time);
1717                 commit_time = min_t(u64, commit_time,
1718                                     1000*journal->j_max_batch_time);
1719
1720                 if (trans_time < commit_time) {
1721                         ktime_t expires = ktime_add_ns(ktime_get(),
1722                                                        commit_time);
1723                         set_current_state(TASK_UNINTERRUPTIBLE);
1724                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1725                 }
1726         }
1727
1728         if (handle->h_sync)
1729                 transaction->t_synchronous_commit = 1;
1730         current->journal_info = NULL;
1731         atomic_sub(handle->h_buffer_credits,
1732                    &transaction->t_outstanding_credits);
1733
1734         /*
1735          * If the handle is marked SYNC, we need to set another commit
1736          * going!  We also want to force a commit if the current
1737          * transaction is occupying too much of the log, or if the
1738          * transaction is too old now.
1739          */
1740         if (handle->h_sync ||
1741             (atomic_read(&transaction->t_outstanding_credits) >
1742              journal->j_max_transaction_buffers) ||
1743             time_after_eq(jiffies, transaction->t_expires)) {
1744                 /* Do this even for aborted journals: an abort still
1745                  * completes the commit thread, it just doesn't write
1746                  * anything to disk. */
1747
1748                 jbd_debug(2, "transaction too old, requesting commit for "
1749                                         "handle %p\n", handle);
1750                 /* This is non-blocking */
1751                 jbd2_log_start_commit(journal, transaction->t_tid);
1752
1753                 /*
1754                  * Special case: JBD2_SYNC synchronous updates require us
1755                  * to wait for the commit to complete.
1756                  */
1757                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1758                         wait_for_commit = 1;
1759         }
1760
1761         /*
1762          * Once we drop t_updates, if it goes to zero the transaction
1763          * could start committing on us and eventually disappear.  So
1764          * once we do this, we must not dereference transaction
1765          * pointer again.
1766          */
1767         tid = transaction->t_tid;
1768         if (atomic_dec_and_test(&transaction->t_updates)) {
1769                 wake_up(&journal->j_wait_updates);
1770                 if (journal->j_barrier_count)
1771                         wake_up(&journal->j_wait_transaction_locked);
1772         }
1773
1774         rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1775
1776         if (wait_for_commit)
1777                 err = jbd2_log_wait_commit(journal, tid);
1778
1779         if (handle->h_rsv_handle)
1780                 jbd2_journal_free_reserved(handle->h_rsv_handle);
1781 free_and_exit:
1782         /*
1783          * Scope of the GFP_NOFS context is over here and so we can restore the
1784          * original alloc context.
1785          */
1786         memalloc_nofs_restore(handle->saved_alloc_context);
1787         jbd2_free_handle(handle);
1788         return err;
1789 }
1790
1791 /*
1792  *
1793  * List management code snippets: various functions for manipulating the
1794  * transaction buffer lists.
1795  *
1796  */
1797
1798 /*
1799  * Append a buffer to a transaction list, given the transaction's list head
1800  * pointer.
1801  *
1802  * j_list_lock is held.
1803  *
1804  * jbd_lock_bh_state(jh2bh(jh)) is held.
1805  */
1806
1807 static inline void
1808 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1809 {
1810         if (!*list) {
1811                 jh->b_tnext = jh->b_tprev = jh;
1812                 *list = jh;
1813         } else {
1814                 /* Insert at the tail of the list to preserve order */
1815                 struct journal_head *first = *list, *last = first->b_tprev;
1816                 jh->b_tprev = last;
1817                 jh->b_tnext = first;
1818                 last->b_tnext = first->b_tprev = jh;
1819         }
1820 }
1821
1822 /*
1823  * Remove a buffer from a transaction list, given the transaction's list
1824  * head pointer.
1825  *
1826  * Called with j_list_lock held, and the journal may not be locked.
1827  *
1828  * jbd_lock_bh_state(jh2bh(jh)) is held.
1829  */
1830
1831 static inline void
1832 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1833 {
1834         if (*list == jh) {
1835                 *list = jh->b_tnext;
1836                 if (*list == jh)
1837                         *list = NULL;
1838         }
1839         jh->b_tprev->b_tnext = jh->b_tnext;
1840         jh->b_tnext->b_tprev = jh->b_tprev;
1841 }
1842
1843 /*
1844  * Remove a buffer from the appropriate transaction list.
1845  *
1846  * Note that this function can *change* the value of
1847  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1848  * t_reserved_list.  If the caller is holding onto a copy of one of these
1849  * pointers, it could go bad.  Generally the caller needs to re-read the
1850  * pointer from the transaction_t.
1851  *
1852  * Called under j_list_lock.
1853  */
1854 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1855 {
1856         struct journal_head **list = NULL;
1857         transaction_t *transaction;
1858         struct buffer_head *bh = jh2bh(jh);
1859
1860         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1861         transaction = jh->b_transaction;
1862         if (transaction)
1863                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1864
1865         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1866         if (jh->b_jlist != BJ_None)
1867                 J_ASSERT_JH(jh, transaction != NULL);
1868
1869         switch (jh->b_jlist) {
1870         case BJ_None:
1871                 return;
1872         case BJ_Metadata:
1873                 transaction->t_nr_buffers--;
1874                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1875                 list = &transaction->t_buffers;
1876                 break;
1877         case BJ_Forget:
1878                 list = &transaction->t_forget;
1879                 break;
1880         case BJ_Shadow:
1881                 list = &transaction->t_shadow_list;
1882                 break;
1883         case BJ_Reserved:
1884                 list = &transaction->t_reserved_list;
1885                 break;
1886         }
1887
1888         __blist_del_buffer(list, jh);
1889         jh->b_jlist = BJ_None;
1890         if (transaction && is_journal_aborted(transaction->t_journal))
1891                 clear_buffer_jbddirty(bh);
1892         else if (test_clear_buffer_jbddirty(bh))
1893                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1894 }
1895
1896 /*
1897  * Remove buffer from all transactions.
1898  *
1899  * Called with bh_state lock and j_list_lock
1900  *
1901  * jh and bh may be already freed when this function returns.
1902  */
1903 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1904 {
1905         __jbd2_journal_temp_unlink_buffer(jh);
1906         jh->b_transaction = NULL;
1907         jbd2_journal_put_journal_head(jh);
1908 }
1909
1910 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1911 {
1912         struct buffer_head *bh = jh2bh(jh);
1913
1914         /* Get reference so that buffer cannot be freed before we unlock it */
1915         get_bh(bh);
1916         jbd_lock_bh_state(bh);
1917         spin_lock(&journal->j_list_lock);
1918         __jbd2_journal_unfile_buffer(jh);
1919         spin_unlock(&journal->j_list_lock);
1920         jbd_unlock_bh_state(bh);
1921         __brelse(bh);
1922 }
1923
1924 /*
1925  * Called from jbd2_journal_try_to_free_buffers().
1926  *
1927  * Called under jbd_lock_bh_state(bh)
1928  */
1929 static void
1930 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1931 {
1932         struct journal_head *jh;
1933
1934         jh = bh2jh(bh);
1935
1936         if (buffer_locked(bh) || buffer_dirty(bh))
1937                 goto out;
1938
1939         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1940                 goto out;
1941
1942         spin_lock(&journal->j_list_lock);
1943         if (jh->b_cp_transaction != NULL) {
1944                 /* written-back checkpointed metadata buffer */
1945                 JBUFFER_TRACE(jh, "remove from checkpoint list");
1946                 __jbd2_journal_remove_checkpoint(jh);
1947         }
1948         spin_unlock(&journal->j_list_lock);
1949 out:
1950         return;
1951 }
1952
1953 /**
1954  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1955  * @journal: journal for operation
1956  * @page: to try and free
1957  * @gfp_mask: we use the mask to detect how hard should we try to release
1958  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1959  * code to release the buffers.
1960  *
1961  *
1962  * For all the buffers on this page,
1963  * if they are fully written out ordered data, move them onto BUF_CLEAN
1964  * so try_to_free_buffers() can reap them.
1965  *
1966  * This function returns non-zero if we wish try_to_free_buffers()
1967  * to be called. We do this if the page is releasable by try_to_free_buffers().
1968  * We also do it if the page has locked or dirty buffers and the caller wants
1969  * us to perform sync or async writeout.
1970  *
1971  * This complicates JBD locking somewhat.  We aren't protected by the
1972  * BKL here.  We wish to remove the buffer from its committing or
1973  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1974  *
1975  * This may *change* the value of transaction_t->t_datalist, so anyone
1976  * who looks at t_datalist needs to lock against this function.
1977  *
1978  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1979  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1980  * will come out of the lock with the buffer dirty, which makes it
1981  * ineligible for release here.
1982  *
1983  * Who else is affected by this?  hmm...  Really the only contender
1984  * is do_get_write_access() - it could be looking at the buffer while
1985  * journal_try_to_free_buffer() is changing its state.  But that
1986  * cannot happen because we never reallocate freed data as metadata
1987  * while the data is part of a transaction.  Yes?
1988  *
1989  * Return 0 on failure, 1 on success
1990  */
1991 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1992                                 struct page *page, gfp_t gfp_mask)
1993 {
1994         struct buffer_head *head;
1995         struct buffer_head *bh;
1996         int ret = 0;
1997
1998         J_ASSERT(PageLocked(page));
1999
2000         head = page_buffers(page);
2001         bh = head;
2002         do {
2003                 struct journal_head *jh;
2004
2005                 /*
2006                  * We take our own ref against the journal_head here to avoid
2007                  * having to add tons of locking around each instance of
2008                  * jbd2_journal_put_journal_head().
2009                  */
2010                 jh = jbd2_journal_grab_journal_head(bh);
2011                 if (!jh)
2012                         continue;
2013
2014                 jbd_lock_bh_state(bh);
2015                 __journal_try_to_free_buffer(journal, bh);
2016                 jbd2_journal_put_journal_head(jh);
2017                 jbd_unlock_bh_state(bh);
2018                 if (buffer_jbd(bh))
2019                         goto busy;
2020         } while ((bh = bh->b_this_page) != head);
2021
2022         ret = try_to_free_buffers(page);
2023
2024 busy:
2025         return ret;
2026 }
2027
2028 /*
2029  * This buffer is no longer needed.  If it is on an older transaction's
2030  * checkpoint list we need to record it on this transaction's forget list
2031  * to pin this buffer (and hence its checkpointing transaction) down until
2032  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2033  * release it.
2034  * Returns non-zero if JBD no longer has an interest in the buffer.
2035  *
2036  * Called under j_list_lock.
2037  *
2038  * Called under jbd_lock_bh_state(bh).
2039  */
2040 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2041 {
2042         int may_free = 1;
2043         struct buffer_head *bh = jh2bh(jh);
2044
2045         if (jh->b_cp_transaction) {
2046                 JBUFFER_TRACE(jh, "on running+cp transaction");
2047                 __jbd2_journal_temp_unlink_buffer(jh);
2048                 /*
2049                  * We don't want to write the buffer anymore, clear the
2050                  * bit so that we don't confuse checks in
2051                  * __journal_file_buffer
2052                  */
2053                 clear_buffer_dirty(bh);
2054                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2055                 may_free = 0;
2056         } else {
2057                 JBUFFER_TRACE(jh, "on running transaction");
2058                 __jbd2_journal_unfile_buffer(jh);
2059         }
2060         return may_free;
2061 }
2062
2063 /*
2064  * jbd2_journal_invalidatepage
2065  *
2066  * This code is tricky.  It has a number of cases to deal with.
2067  *
2068  * There are two invariants which this code relies on:
2069  *
2070  * i_size must be updated on disk before we start calling invalidatepage on the
2071  * data.
2072  *
2073  *  This is done in ext3 by defining an ext3_setattr method which
2074  *  updates i_size before truncate gets going.  By maintaining this
2075  *  invariant, we can be sure that it is safe to throw away any buffers
2076  *  attached to the current transaction: once the transaction commits,
2077  *  we know that the data will not be needed.
2078  *
2079  *  Note however that we can *not* throw away data belonging to the
2080  *  previous, committing transaction!
2081  *
2082  * Any disk blocks which *are* part of the previous, committing
2083  * transaction (and which therefore cannot be discarded immediately) are
2084  * not going to be reused in the new running transaction
2085  *
2086  *  The bitmap committed_data images guarantee this: any block which is
2087  *  allocated in one transaction and removed in the next will be marked
2088  *  as in-use in the committed_data bitmap, so cannot be reused until
2089  *  the next transaction to delete the block commits.  This means that
2090  *  leaving committing buffers dirty is quite safe: the disk blocks
2091  *  cannot be reallocated to a different file and so buffer aliasing is
2092  *  not possible.
2093  *
2094  *
2095  * The above applies mainly to ordered data mode.  In writeback mode we
2096  * don't make guarantees about the order in which data hits disk --- in
2097  * particular we don't guarantee that new dirty data is flushed before
2098  * transaction commit --- so it is always safe just to discard data
2099  * immediately in that mode.  --sct
2100  */
2101
2102 /*
2103  * The journal_unmap_buffer helper function returns zero if the buffer
2104  * concerned remains pinned as an anonymous buffer belonging to an older
2105  * transaction.
2106  *
2107  * We're outside-transaction here.  Either or both of j_running_transaction
2108  * and j_committing_transaction may be NULL.
2109  */
2110 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2111                                 int partial_page)
2112 {
2113         transaction_t *transaction;
2114         struct journal_head *jh;
2115         int may_free = 1;
2116
2117         BUFFER_TRACE(bh, "entry");
2118
2119         /*
2120          * It is safe to proceed here without the j_list_lock because the
2121          * buffers cannot be stolen by try_to_free_buffers as long as we are
2122          * holding the page lock. --sct
2123          */
2124
2125         if (!buffer_jbd(bh))
2126                 goto zap_buffer_unlocked;
2127
2128         /* OK, we have data buffer in journaled mode */
2129         write_lock(&journal->j_state_lock);
2130         jbd_lock_bh_state(bh);
2131         spin_lock(&journal->j_list_lock);
2132
2133         jh = jbd2_journal_grab_journal_head(bh);
2134         if (!jh)
2135                 goto zap_buffer_no_jh;
2136
2137         /*
2138          * We cannot remove the buffer from checkpoint lists until the
2139          * transaction adding inode to orphan list (let's call it T)
2140          * is committed.  Otherwise if the transaction changing the
2141          * buffer would be cleaned from the journal before T is
2142          * committed, a crash will cause that the correct contents of
2143          * the buffer will be lost.  On the other hand we have to
2144          * clear the buffer dirty bit at latest at the moment when the
2145          * transaction marking the buffer as freed in the filesystem
2146          * structures is committed because from that moment on the
2147          * block can be reallocated and used by a different page.
2148          * Since the block hasn't been freed yet but the inode has
2149          * already been added to orphan list, it is safe for us to add
2150          * the buffer to BJ_Forget list of the newest transaction.
2151          *
2152          * Also we have to clear buffer_mapped flag of a truncated buffer
2153          * because the buffer_head may be attached to the page straddling
2154          * i_size (can happen only when blocksize < pagesize) and thus the
2155          * buffer_head can be reused when the file is extended again. So we end
2156          * up keeping around invalidated buffers attached to transactions'
2157          * BJ_Forget list just to stop checkpointing code from cleaning up
2158          * the transaction this buffer was modified in.
2159          */
2160         transaction = jh->b_transaction;
2161         if (transaction == NULL) {
2162                 /* First case: not on any transaction.  If it
2163                  * has no checkpoint link, then we can zap it:
2164                  * it's a writeback-mode buffer so we don't care
2165                  * if it hits disk safely. */
2166                 if (!jh->b_cp_transaction) {
2167                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2168                         goto zap_buffer;
2169                 }
2170
2171                 if (!buffer_dirty(bh)) {
2172                         /* bdflush has written it.  We can drop it now */
2173                         __jbd2_journal_remove_checkpoint(jh);
2174                         goto zap_buffer;
2175                 }
2176
2177                 /* OK, it must be in the journal but still not
2178                  * written fully to disk: it's metadata or
2179                  * journaled data... */
2180
2181                 if (journal->j_running_transaction) {
2182                         /* ... and once the current transaction has
2183                          * committed, the buffer won't be needed any
2184                          * longer. */
2185                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2186                         may_free = __dispose_buffer(jh,
2187                                         journal->j_running_transaction);
2188                         goto zap_buffer;
2189                 } else {
2190                         /* There is no currently-running transaction. So the
2191                          * orphan record which we wrote for this file must have
2192                          * passed into commit.  We must attach this buffer to
2193                          * the committing transaction, if it exists. */
2194                         if (journal->j_committing_transaction) {
2195                                 JBUFFER_TRACE(jh, "give to committing trans");
2196                                 may_free = __dispose_buffer(jh,
2197                                         journal->j_committing_transaction);
2198                                 goto zap_buffer;
2199                         } else {
2200                                 /* The orphan record's transaction has
2201                                  * committed.  We can cleanse this buffer */
2202                                 clear_buffer_jbddirty(bh);
2203                                 __jbd2_journal_remove_checkpoint(jh);
2204                                 goto zap_buffer;
2205                         }
2206                 }
2207         } else if (transaction == journal->j_committing_transaction) {
2208                 JBUFFER_TRACE(jh, "on committing transaction");
2209                 /*
2210                  * The buffer is committing, we simply cannot touch
2211                  * it. If the page is straddling i_size we have to wait
2212                  * for commit and try again.
2213                  */
2214                 if (partial_page) {
2215                         jbd2_journal_put_journal_head(jh);
2216                         spin_unlock(&journal->j_list_lock);
2217                         jbd_unlock_bh_state(bh);
2218                         write_unlock(&journal->j_state_lock);
2219                         return -EBUSY;
2220                 }
2221                 /*
2222                  * OK, buffer won't be reachable after truncate. We just set
2223                  * j_next_transaction to the running transaction (if there is
2224                  * one) and mark buffer as freed so that commit code knows it
2225                  * should clear dirty bits when it is done with the buffer.
2226                  */
2227                 set_buffer_freed(bh);
2228                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2229                         jh->b_next_transaction = journal->j_running_transaction;
2230                 jbd2_journal_put_journal_head(jh);
2231                 spin_unlock(&journal->j_list_lock);
2232                 jbd_unlock_bh_state(bh);
2233                 write_unlock(&journal->j_state_lock);
2234                 return 0;
2235         } else {
2236                 /* Good, the buffer belongs to the running transaction.
2237                  * We are writing our own transaction's data, not any
2238                  * previous one's, so it is safe to throw it away
2239                  * (remember that we expect the filesystem to have set
2240                  * i_size already for this truncate so recovery will not
2241                  * expose the disk blocks we are discarding here.) */
2242                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2243                 JBUFFER_TRACE(jh, "on running transaction");
2244                 may_free = __dispose_buffer(jh, transaction);
2245         }
2246
2247 zap_buffer:
2248         /*
2249          * This is tricky. Although the buffer is truncated, it may be reused
2250          * if blocksize < pagesize and it is attached to the page straddling
2251          * EOF. Since the buffer might have been added to BJ_Forget list of the
2252          * running transaction, journal_get_write_access() won't clear
2253          * b_modified and credit accounting gets confused. So clear b_modified
2254          * here.
2255          */
2256         jh->b_modified = 0;
2257         jbd2_journal_put_journal_head(jh);
2258 zap_buffer_no_jh:
2259         spin_unlock(&journal->j_list_lock);
2260         jbd_unlock_bh_state(bh);
2261         write_unlock(&journal->j_state_lock);
2262 zap_buffer_unlocked:
2263         clear_buffer_dirty(bh);
2264         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2265         clear_buffer_mapped(bh);
2266         clear_buffer_req(bh);
2267         clear_buffer_new(bh);
2268         clear_buffer_delay(bh);
2269         clear_buffer_unwritten(bh);
2270         bh->b_bdev = NULL;
2271         return may_free;
2272 }
2273
2274 /**
2275  * void jbd2_journal_invalidatepage()
2276  * @journal: journal to use for flush...
2277  * @page:    page to flush
2278  * @offset:  start of the range to invalidate
2279  * @length:  length of the range to invalidate
2280  *
2281  * Reap page buffers containing data after in the specified range in page.
2282  * Can return -EBUSY if buffers are part of the committing transaction and
2283  * the page is straddling i_size. Caller then has to wait for current commit
2284  * and try again.
2285  */
2286 int jbd2_journal_invalidatepage(journal_t *journal,
2287                                 struct page *page,
2288                                 unsigned int offset,
2289                                 unsigned int length)
2290 {
2291         struct buffer_head *head, *bh, *next;
2292         unsigned int stop = offset + length;
2293         unsigned int curr_off = 0;
2294         int partial_page = (offset || length < PAGE_SIZE);
2295         int may_free = 1;
2296         int ret = 0;
2297
2298         if (!PageLocked(page))
2299                 BUG();
2300         if (!page_has_buffers(page))
2301                 return 0;
2302
2303         BUG_ON(stop > PAGE_SIZE || stop < length);
2304
2305         /* We will potentially be playing with lists other than just the
2306          * data lists (especially for journaled data mode), so be
2307          * cautious in our locking. */
2308
2309         head = bh = page_buffers(page);
2310         do {
2311                 unsigned int next_off = curr_off + bh->b_size;
2312                 next = bh->b_this_page;
2313
2314                 if (next_off > stop)
2315                         return 0;
2316
2317                 if (offset <= curr_off) {
2318                         /* This block is wholly outside the truncation point */
2319                         lock_buffer(bh);
2320                         ret = journal_unmap_buffer(journal, bh, partial_page);
2321                         unlock_buffer(bh);
2322                         if (ret < 0)
2323                                 return ret;
2324                         may_free &= ret;
2325                 }
2326                 curr_off = next_off;
2327                 bh = next;
2328
2329         } while (bh != head);
2330
2331         if (!partial_page) {
2332                 if (may_free && try_to_free_buffers(page))
2333                         J_ASSERT(!page_has_buffers(page));
2334         }
2335         return 0;
2336 }
2337
2338 /*
2339  * File a buffer on the given transaction list.
2340  */
2341 void __jbd2_journal_file_buffer(struct journal_head *jh,
2342                         transaction_t *transaction, int jlist)
2343 {
2344         struct journal_head **list = NULL;
2345         int was_dirty = 0;
2346         struct buffer_head *bh = jh2bh(jh);
2347
2348         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2349         assert_spin_locked(&transaction->t_journal->j_list_lock);
2350
2351         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2352         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2353                                 jh->b_transaction == NULL);
2354
2355         if (jh->b_transaction && jh->b_jlist == jlist)
2356                 return;
2357
2358         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2359             jlist == BJ_Shadow || jlist == BJ_Forget) {
2360                 /*
2361                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2362                  * instead of buffer_dirty. We should not see a dirty bit set
2363                  * here because we clear it in do_get_write_access but e.g.
2364                  * tune2fs can modify the sb and set the dirty bit at any time
2365                  * so we try to gracefully handle that.
2366                  */
2367                 if (buffer_dirty(bh))
2368                         warn_dirty_buffer(bh);
2369                 if (test_clear_buffer_dirty(bh) ||
2370                     test_clear_buffer_jbddirty(bh))
2371                         was_dirty = 1;
2372         }
2373
2374         if (jh->b_transaction)
2375                 __jbd2_journal_temp_unlink_buffer(jh);
2376         else
2377                 jbd2_journal_grab_journal_head(bh);
2378         jh->b_transaction = transaction;
2379
2380         switch (jlist) {
2381         case BJ_None:
2382                 J_ASSERT_JH(jh, !jh->b_committed_data);
2383                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2384                 return;
2385         case BJ_Metadata:
2386                 transaction->t_nr_buffers++;
2387                 list = &transaction->t_buffers;
2388                 break;
2389         case BJ_Forget:
2390                 list = &transaction->t_forget;
2391                 break;
2392         case BJ_Shadow:
2393                 list = &transaction->t_shadow_list;
2394                 break;
2395         case BJ_Reserved:
2396                 list = &transaction->t_reserved_list;
2397                 break;
2398         }
2399
2400         __blist_add_buffer(list, jh);
2401         jh->b_jlist = jlist;
2402
2403         if (was_dirty)
2404                 set_buffer_jbddirty(bh);
2405 }
2406
2407 void jbd2_journal_file_buffer(struct journal_head *jh,
2408                                 transaction_t *transaction, int jlist)
2409 {
2410         jbd_lock_bh_state(jh2bh(jh));
2411         spin_lock(&transaction->t_journal->j_list_lock);
2412         __jbd2_journal_file_buffer(jh, transaction, jlist);
2413         spin_unlock(&transaction->t_journal->j_list_lock);
2414         jbd_unlock_bh_state(jh2bh(jh));
2415 }
2416
2417 /*
2418  * Remove a buffer from its current buffer list in preparation for
2419  * dropping it from its current transaction entirely.  If the buffer has
2420  * already started to be used by a subsequent transaction, refile the
2421  * buffer on that transaction's metadata list.
2422  *
2423  * Called under j_list_lock
2424  * Called under jbd_lock_bh_state(jh2bh(jh))
2425  *
2426  * jh and bh may be already free when this function returns
2427  */
2428 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2429 {
2430         int was_dirty, jlist;
2431         struct buffer_head *bh = jh2bh(jh);
2432
2433         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2434         if (jh->b_transaction)
2435                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2436
2437         /* If the buffer is now unused, just drop it. */
2438         if (jh->b_next_transaction == NULL) {
2439                 __jbd2_journal_unfile_buffer(jh);
2440                 return;
2441         }
2442
2443         /*
2444          * It has been modified by a later transaction: add it to the new
2445          * transaction's metadata list.
2446          */
2447
2448         was_dirty = test_clear_buffer_jbddirty(bh);
2449         __jbd2_journal_temp_unlink_buffer(jh);
2450         /*
2451          * We set b_transaction here because b_next_transaction will inherit
2452          * our jh reference and thus __jbd2_journal_file_buffer() must not
2453          * take a new one.
2454          */
2455         jh->b_transaction = jh->b_next_transaction;
2456         jh->b_next_transaction = NULL;
2457         if (buffer_freed(bh))
2458                 jlist = BJ_Forget;
2459         else if (jh->b_modified)
2460                 jlist = BJ_Metadata;
2461         else
2462                 jlist = BJ_Reserved;
2463         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2464         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2465
2466         if (was_dirty)
2467                 set_buffer_jbddirty(bh);
2468 }
2469
2470 /*
2471  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2472  * bh reference so that we can safely unlock bh.
2473  *
2474  * The jh and bh may be freed by this call.
2475  */
2476 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2477 {
2478         struct buffer_head *bh = jh2bh(jh);
2479
2480         /* Get reference so that buffer cannot be freed before we unlock it */
2481         get_bh(bh);
2482         jbd_lock_bh_state(bh);
2483         spin_lock(&journal->j_list_lock);
2484         __jbd2_journal_refile_buffer(jh);
2485         jbd_unlock_bh_state(bh);
2486         spin_unlock(&journal->j_list_lock);
2487         __brelse(bh);
2488 }
2489
2490 /*
2491  * File inode in the inode list of the handle's transaction
2492  */
2493 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2494                                    unsigned long flags)
2495 {
2496         transaction_t *transaction = handle->h_transaction;
2497         journal_t *journal;
2498
2499         if (is_handle_aborted(handle))
2500                 return -EROFS;
2501         journal = transaction->t_journal;
2502
2503         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2504                         transaction->t_tid);
2505
2506         /*
2507          * First check whether inode isn't already on the transaction's
2508          * lists without taking the lock. Note that this check is safe
2509          * without the lock as we cannot race with somebody removing inode
2510          * from the transaction. The reason is that we remove inode from the
2511          * transaction only in journal_release_jbd_inode() and when we commit
2512          * the transaction. We are guarded from the first case by holding
2513          * a reference to the inode. We are safe against the second case
2514          * because if jinode->i_transaction == transaction, commit code
2515          * cannot touch the transaction because we hold reference to it,
2516          * and if jinode->i_next_transaction == transaction, commit code
2517          * will only file the inode where we want it.
2518          */
2519         if ((jinode->i_transaction == transaction ||
2520             jinode->i_next_transaction == transaction) &&
2521             (jinode->i_flags & flags) == flags)
2522                 return 0;
2523
2524         spin_lock(&journal->j_list_lock);
2525         jinode->i_flags |= flags;
2526         /* Is inode already attached where we need it? */
2527         if (jinode->i_transaction == transaction ||
2528             jinode->i_next_transaction == transaction)
2529                 goto done;
2530
2531         /*
2532          * We only ever set this variable to 1 so the test is safe. Since
2533          * t_need_data_flush is likely to be set, we do the test to save some
2534          * cacheline bouncing
2535          */
2536         if (!transaction->t_need_data_flush)
2537                 transaction->t_need_data_flush = 1;
2538         /* On some different transaction's list - should be
2539          * the committing one */
2540         if (jinode->i_transaction) {
2541                 J_ASSERT(jinode->i_next_transaction == NULL);
2542                 J_ASSERT(jinode->i_transaction ==
2543                                         journal->j_committing_transaction);
2544                 jinode->i_next_transaction = transaction;
2545                 goto done;
2546         }
2547         /* Not on any transaction list... */
2548         J_ASSERT(!jinode->i_next_transaction);
2549         jinode->i_transaction = transaction;
2550         list_add(&jinode->i_list, &transaction->t_inode_list);
2551 done:
2552         spin_unlock(&journal->j_list_lock);
2553
2554         return 0;
2555 }
2556
2557 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2558 {
2559         return jbd2_journal_file_inode(handle, jinode,
2560                                        JI_WRITE_DATA | JI_WAIT_DATA);
2561 }
2562
2563 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2564 {
2565         return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA);
2566 }
2567
2568 /*
2569  * File truncate and transaction commit interact with each other in a
2570  * non-trivial way.  If a transaction writing data block A is
2571  * committing, we cannot discard the data by truncate until we have
2572  * written them.  Otherwise if we crashed after the transaction with
2573  * write has committed but before the transaction with truncate has
2574  * committed, we could see stale data in block A.  This function is a
2575  * helper to solve this problem.  It starts writeout of the truncated
2576  * part in case it is in the committing transaction.
2577  *
2578  * Filesystem code must call this function when inode is journaled in
2579  * ordered mode before truncation happens and after the inode has been
2580  * placed on orphan list with the new inode size. The second condition
2581  * avoids the race that someone writes new data and we start
2582  * committing the transaction after this function has been called but
2583  * before a transaction for truncate is started (and furthermore it
2584  * allows us to optimize the case where the addition to orphan list
2585  * happens in the same transaction as write --- we don't have to write
2586  * any data in such case).
2587  */
2588 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2589                                         struct jbd2_inode *jinode,
2590                                         loff_t new_size)
2591 {
2592         transaction_t *inode_trans, *commit_trans;
2593         int ret = 0;
2594
2595         /* This is a quick check to avoid locking if not necessary */
2596         if (!jinode->i_transaction)
2597                 goto out;
2598         /* Locks are here just to force reading of recent values, it is
2599          * enough that the transaction was not committing before we started
2600          * a transaction adding the inode to orphan list */
2601         read_lock(&journal->j_state_lock);
2602         commit_trans = journal->j_committing_transaction;
2603         read_unlock(&journal->j_state_lock);
2604         spin_lock(&journal->j_list_lock);
2605         inode_trans = jinode->i_transaction;
2606         spin_unlock(&journal->j_list_lock);
2607         if (inode_trans == commit_trans) {
2608                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2609                         new_size, LLONG_MAX);
2610                 if (ret)
2611                         jbd2_journal_abort(journal, ret);
2612         }
2613 out:
2614         return ret;
2615 }