doc: Update doc about journalling layer
[sfrench/cifs-2.6.git] / fs / jbd / transaction.c
1 /*
2  * linux/fs/jbd/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29
30 static void __journal_temp_unlink_buffer(struct journal_head *jh);
31
32 /*
33  * get_transaction: obtain a new transaction_t object.
34  *
35  * Simply allocate and initialise a new transaction.  Create it in
36  * RUNNING state and add it to the current journal (which should not
37  * have an existing running transaction: we only make a new transaction
38  * once we have started to commit the old one).
39  *
40  * Preconditions:
41  *      The journal MUST be locked.  We don't perform atomic mallocs on the
42  *      new transaction and we can't block without protecting against other
43  *      processes trying to touch the journal while it is in transition.
44  *
45  * Called under j_state_lock
46  */
47
48 static transaction_t *
49 get_transaction(journal_t *journal, transaction_t *transaction)
50 {
51         transaction->t_journal = journal;
52         transaction->t_state = T_RUNNING;
53         transaction->t_start_time = ktime_get();
54         transaction->t_tid = journal->j_transaction_sequence++;
55         transaction->t_expires = jiffies + journal->j_commit_interval;
56         spin_lock_init(&transaction->t_handle_lock);
57
58         /* Set up the commit timer for the new transaction. */
59         journal->j_commit_timer.expires =
60                                 round_jiffies_up(transaction->t_expires);
61         add_timer(&journal->j_commit_timer);
62
63         J_ASSERT(journal->j_running_transaction == NULL);
64         journal->j_running_transaction = transaction;
65
66         return transaction;
67 }
68
69 /*
70  * Handle management.
71  *
72  * A handle_t is an object which represents a single atomic update to a
73  * filesystem, and which tracks all of the modifications which form part
74  * of that one update.
75  */
76
77 /*
78  * start_this_handle: Given a handle, deal with any locking or stalling
79  * needed to make sure that there is enough journal space for the handle
80  * to begin.  Attach the handle to a transaction and set up the
81  * transaction's buffer credits.
82  */
83
84 static int start_this_handle(journal_t *journal, handle_t *handle)
85 {
86         transaction_t *transaction;
87         int needed;
88         int nblocks = handle->h_buffer_credits;
89         transaction_t *new_transaction = NULL;
90         int ret = 0;
91
92         if (nblocks > journal->j_max_transaction_buffers) {
93                 printk(KERN_ERR "JBD: %s wants too many credits (%d > %d)\n",
94                        current->comm, nblocks,
95                        journal->j_max_transaction_buffers);
96                 ret = -ENOSPC;
97                 goto out;
98         }
99
100 alloc_transaction:
101         if (!journal->j_running_transaction) {
102                 new_transaction = kzalloc(sizeof(*new_transaction),
103                                                 GFP_NOFS|__GFP_NOFAIL);
104                 if (!new_transaction) {
105                         ret = -ENOMEM;
106                         goto out;
107                 }
108         }
109
110         jbd_debug(3, "New handle %p going live.\n", handle);
111
112 repeat:
113
114         /*
115          * We need to hold j_state_lock until t_updates has been incremented,
116          * for proper journal barrier handling
117          */
118         spin_lock(&journal->j_state_lock);
119 repeat_locked:
120         if (is_journal_aborted(journal) ||
121             (journal->j_errno != 0 && !(journal->j_flags & JFS_ACK_ERR))) {
122                 spin_unlock(&journal->j_state_lock);
123                 ret = -EROFS;
124                 goto out;
125         }
126
127         /* Wait on the journal's transaction barrier if necessary */
128         if (journal->j_barrier_count) {
129                 spin_unlock(&journal->j_state_lock);
130                 wait_event(journal->j_wait_transaction_locked,
131                                 journal->j_barrier_count == 0);
132                 goto repeat;
133         }
134
135         if (!journal->j_running_transaction) {
136                 if (!new_transaction) {
137                         spin_unlock(&journal->j_state_lock);
138                         goto alloc_transaction;
139                 }
140                 get_transaction(journal, new_transaction);
141                 new_transaction = NULL;
142         }
143
144         transaction = journal->j_running_transaction;
145
146         /*
147          * If the current transaction is locked down for commit, wait for the
148          * lock to be released.
149          */
150         if (transaction->t_state == T_LOCKED) {
151                 DEFINE_WAIT(wait);
152
153                 prepare_to_wait(&journal->j_wait_transaction_locked,
154                                         &wait, TASK_UNINTERRUPTIBLE);
155                 spin_unlock(&journal->j_state_lock);
156                 schedule();
157                 finish_wait(&journal->j_wait_transaction_locked, &wait);
158                 goto repeat;
159         }
160
161         /*
162          * If there is not enough space left in the log to write all potential
163          * buffers requested by this operation, we need to stall pending a log
164          * checkpoint to free some more log space.
165          */
166         spin_lock(&transaction->t_handle_lock);
167         needed = transaction->t_outstanding_credits + nblocks;
168
169         if (needed > journal->j_max_transaction_buffers) {
170                 /*
171                  * If the current transaction is already too large, then start
172                  * to commit it: we can then go back and attach this handle to
173                  * a new transaction.
174                  */
175                 DEFINE_WAIT(wait);
176
177                 jbd_debug(2, "Handle %p starting new commit...\n", handle);
178                 spin_unlock(&transaction->t_handle_lock);
179                 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
180                                 TASK_UNINTERRUPTIBLE);
181                 __log_start_commit(journal, transaction->t_tid);
182                 spin_unlock(&journal->j_state_lock);
183                 schedule();
184                 finish_wait(&journal->j_wait_transaction_locked, &wait);
185                 goto repeat;
186         }
187
188         /*
189          * The commit code assumes that it can get enough log space
190          * without forcing a checkpoint.  This is *critical* for
191          * correctness: a checkpoint of a buffer which is also
192          * associated with a committing transaction creates a deadlock,
193          * so commit simply cannot force through checkpoints.
194          *
195          * We must therefore ensure the necessary space in the journal
196          * *before* starting to dirty potentially checkpointed buffers
197          * in the new transaction.
198          *
199          * The worst part is, any transaction currently committing can
200          * reduce the free space arbitrarily.  Be careful to account for
201          * those buffers when checkpointing.
202          */
203
204         /*
205          * @@@ AKPM: This seems rather over-defensive.  We're giving commit
206          * a _lot_ of headroom: 1/4 of the journal plus the size of
207          * the committing transaction.  Really, we only need to give it
208          * committing_transaction->t_outstanding_credits plus "enough" for
209          * the log control blocks.
210          * Also, this test is inconsistent with the matching one in
211          * journal_extend().
212          */
213         if (__log_space_left(journal) < jbd_space_needed(journal)) {
214                 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
215                 spin_unlock(&transaction->t_handle_lock);
216                 __log_wait_for_space(journal);
217                 goto repeat_locked;
218         }
219
220         /* OK, account for the buffers that this operation expects to
221          * use and add the handle to the running transaction. */
222
223         handle->h_transaction = transaction;
224         transaction->t_outstanding_credits += nblocks;
225         transaction->t_updates++;
226         transaction->t_handle_count++;
227         jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
228                   handle, nblocks, transaction->t_outstanding_credits,
229                   __log_space_left(journal));
230         spin_unlock(&transaction->t_handle_lock);
231         spin_unlock(&journal->j_state_lock);
232
233         lock_map_acquire(&handle->h_lockdep_map);
234 out:
235         if (unlikely(new_transaction))          /* It's usually NULL */
236                 kfree(new_transaction);
237         return ret;
238 }
239
240 static struct lock_class_key jbd_handle_key;
241
242 /* Allocate a new handle.  This should probably be in a slab... */
243 static handle_t *new_handle(int nblocks)
244 {
245         handle_t *handle = jbd_alloc_handle(GFP_NOFS);
246         if (!handle)
247                 return NULL;
248         handle->h_buffer_credits = nblocks;
249         handle->h_ref = 1;
250
251         lockdep_init_map(&handle->h_lockdep_map, "jbd_handle", &jbd_handle_key, 0);
252
253         return handle;
254 }
255
256 /**
257  * handle_t *journal_start() - Obtain a new handle.
258  * @journal: Journal to start transaction on.
259  * @nblocks: number of block buffer we might modify
260  *
261  * We make sure that the transaction can guarantee at least nblocks of
262  * modified buffers in the log.  We block until the log can guarantee
263  * that much space.
264  *
265  * This function is visible to journal users (like ext3fs), so is not
266  * called with the journal already locked.
267  *
268  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
269  * on failure.
270  */
271 handle_t *journal_start(journal_t *journal, int nblocks)
272 {
273         handle_t *handle = journal_current_handle();
274         int err;
275
276         if (!journal)
277                 return ERR_PTR(-EROFS);
278
279         if (handle) {
280                 J_ASSERT(handle->h_transaction->t_journal == journal);
281                 handle->h_ref++;
282                 return handle;
283         }
284
285         handle = new_handle(nblocks);
286         if (!handle)
287                 return ERR_PTR(-ENOMEM);
288
289         current->journal_info = handle;
290
291         err = start_this_handle(journal, handle);
292         if (err < 0) {
293                 jbd_free_handle(handle);
294                 current->journal_info = NULL;
295                 handle = ERR_PTR(err);
296         }
297         return handle;
298 }
299
300 /**
301  * int journal_extend() - extend buffer credits.
302  * @handle:  handle to 'extend'
303  * @nblocks: nr blocks to try to extend by.
304  *
305  * Some transactions, such as large extends and truncates, can be done
306  * atomically all at once or in several stages.  The operation requests
307  * a credit for a number of buffer modications in advance, but can
308  * extend its credit if it needs more.
309  *
310  * journal_extend tries to give the running handle more buffer credits.
311  * It does not guarantee that allocation - this is a best-effort only.
312  * The calling process MUST be able to deal cleanly with a failure to
313  * extend here.
314  *
315  * Return 0 on success, non-zero on failure.
316  *
317  * return code < 0 implies an error
318  * return code > 0 implies normal transaction-full status.
319  */
320 int journal_extend(handle_t *handle, int nblocks)
321 {
322         transaction_t *transaction = handle->h_transaction;
323         journal_t *journal = transaction->t_journal;
324         int result;
325         int wanted;
326
327         result = -EIO;
328         if (is_handle_aborted(handle))
329                 goto out;
330
331         result = 1;
332
333         spin_lock(&journal->j_state_lock);
334
335         /* Don't extend a locked-down transaction! */
336         if (handle->h_transaction->t_state != T_RUNNING) {
337                 jbd_debug(3, "denied handle %p %d blocks: "
338                           "transaction not running\n", handle, nblocks);
339                 goto error_out;
340         }
341
342         spin_lock(&transaction->t_handle_lock);
343         wanted = transaction->t_outstanding_credits + nblocks;
344
345         if (wanted > journal->j_max_transaction_buffers) {
346                 jbd_debug(3, "denied handle %p %d blocks: "
347                           "transaction too large\n", handle, nblocks);
348                 goto unlock;
349         }
350
351         if (wanted > __log_space_left(journal)) {
352                 jbd_debug(3, "denied handle %p %d blocks: "
353                           "insufficient log space\n", handle, nblocks);
354                 goto unlock;
355         }
356
357         handle->h_buffer_credits += nblocks;
358         transaction->t_outstanding_credits += nblocks;
359         result = 0;
360
361         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
362 unlock:
363         spin_unlock(&transaction->t_handle_lock);
364 error_out:
365         spin_unlock(&journal->j_state_lock);
366 out:
367         return result;
368 }
369
370
371 /**
372  * int journal_restart() - restart a handle.
373  * @handle:  handle to restart
374  * @nblocks: nr credits requested
375  *
376  * Restart a handle for a multi-transaction filesystem
377  * operation.
378  *
379  * If the journal_extend() call above fails to grant new buffer credits
380  * to a running handle, a call to journal_restart will commit the
381  * handle's transaction so far and reattach the handle to a new
382  * transaction capabable of guaranteeing the requested number of
383  * credits.
384  */
385
386 int journal_restart(handle_t *handle, int nblocks)
387 {
388         transaction_t *transaction = handle->h_transaction;
389         journal_t *journal = transaction->t_journal;
390         int ret;
391
392         /* If we've had an abort of any type, don't even think about
393          * actually doing the restart! */
394         if (is_handle_aborted(handle))
395                 return 0;
396
397         /*
398          * First unlink the handle from its current transaction, and start the
399          * commit on that.
400          */
401         J_ASSERT(transaction->t_updates > 0);
402         J_ASSERT(journal_current_handle() == handle);
403
404         spin_lock(&journal->j_state_lock);
405         spin_lock(&transaction->t_handle_lock);
406         transaction->t_outstanding_credits -= handle->h_buffer_credits;
407         transaction->t_updates--;
408
409         if (!transaction->t_updates)
410                 wake_up(&journal->j_wait_updates);
411         spin_unlock(&transaction->t_handle_lock);
412
413         jbd_debug(2, "restarting handle %p\n", handle);
414         __log_start_commit(journal, transaction->t_tid);
415         spin_unlock(&journal->j_state_lock);
416
417         lock_map_release(&handle->h_lockdep_map);
418         handle->h_buffer_credits = nblocks;
419         ret = start_this_handle(journal, handle);
420         return ret;
421 }
422
423
424 /**
425  * void journal_lock_updates () - establish a transaction barrier.
426  * @journal:  Journal to establish a barrier on.
427  *
428  * This locks out any further updates from being started, and blocks until all
429  * existing updates have completed, returning only once the journal is in a
430  * quiescent state with no updates running.
431  *
432  * We do not use simple mutex for synchronization as there are syscalls which
433  * want to return with filesystem locked and that trips up lockdep. Also
434  * hibernate needs to lock filesystem but locked mutex then blocks hibernation.
435  * Since locking filesystem is rare operation, we use simple counter and
436  * waitqueue for locking.
437  */
438 void journal_lock_updates(journal_t *journal)
439 {
440         DEFINE_WAIT(wait);
441
442 wait:
443         /* Wait for previous locked operation to finish */
444         wait_event(journal->j_wait_transaction_locked,
445                    journal->j_barrier_count == 0);
446
447         spin_lock(&journal->j_state_lock);
448         /*
449          * Check reliably under the lock whether we are the ones winning the race
450          * and locking the journal
451          */
452         if (journal->j_barrier_count > 0) {
453                 spin_unlock(&journal->j_state_lock);
454                 goto wait;
455         }
456         ++journal->j_barrier_count;
457
458         /* Wait until there are no running updates */
459         while (1) {
460                 transaction_t *transaction = journal->j_running_transaction;
461
462                 if (!transaction)
463                         break;
464
465                 spin_lock(&transaction->t_handle_lock);
466                 if (!transaction->t_updates) {
467                         spin_unlock(&transaction->t_handle_lock);
468                         break;
469                 }
470                 prepare_to_wait(&journal->j_wait_updates, &wait,
471                                 TASK_UNINTERRUPTIBLE);
472                 spin_unlock(&transaction->t_handle_lock);
473                 spin_unlock(&journal->j_state_lock);
474                 schedule();
475                 finish_wait(&journal->j_wait_updates, &wait);
476                 spin_lock(&journal->j_state_lock);
477         }
478         spin_unlock(&journal->j_state_lock);
479 }
480
481 /**
482  * void journal_unlock_updates (journal_t* journal) - release barrier
483  * @journal:  Journal to release the barrier on.
484  *
485  * Release a transaction barrier obtained with journal_lock_updates().
486  */
487 void journal_unlock_updates (journal_t *journal)
488 {
489         J_ASSERT(journal->j_barrier_count != 0);
490
491         spin_lock(&journal->j_state_lock);
492         --journal->j_barrier_count;
493         spin_unlock(&journal->j_state_lock);
494         wake_up(&journal->j_wait_transaction_locked);
495 }
496
497 static void warn_dirty_buffer(struct buffer_head *bh)
498 {
499         char b[BDEVNAME_SIZE];
500
501         printk(KERN_WARNING
502                "JBD: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
503                "There's a risk of filesystem corruption in case of system "
504                "crash.\n",
505                bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
506 }
507
508 /*
509  * If the buffer is already part of the current transaction, then there
510  * is nothing we need to do.  If it is already part of a prior
511  * transaction which we are still committing to disk, then we need to
512  * make sure that we do not overwrite the old copy: we do copy-out to
513  * preserve the copy going to disk.  We also account the buffer against
514  * the handle's metadata buffer credits (unless the buffer is already
515  * part of the transaction, that is).
516  *
517  */
518 static int
519 do_get_write_access(handle_t *handle, struct journal_head *jh,
520                         int force_copy)
521 {
522         struct buffer_head *bh;
523         transaction_t *transaction;
524         journal_t *journal;
525         int error;
526         char *frozen_buffer = NULL;
527         int need_copy = 0;
528
529         if (is_handle_aborted(handle))
530                 return -EROFS;
531
532         transaction = handle->h_transaction;
533         journal = transaction->t_journal;
534
535         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
536
537         JBUFFER_TRACE(jh, "entry");
538 repeat:
539         bh = jh2bh(jh);
540
541         /* @@@ Need to check for errors here at some point. */
542
543         lock_buffer(bh);
544         jbd_lock_bh_state(bh);
545
546         /* We now hold the buffer lock so it is safe to query the buffer
547          * state.  Is the buffer dirty?
548          *
549          * If so, there are two possibilities.  The buffer may be
550          * non-journaled, and undergoing a quite legitimate writeback.
551          * Otherwise, it is journaled, and we don't expect dirty buffers
552          * in that state (the buffers should be marked JBD_Dirty
553          * instead.)  So either the IO is being done under our own
554          * control and this is a bug, or it's a third party IO such as
555          * dump(8) (which may leave the buffer scheduled for read ---
556          * ie. locked but not dirty) or tune2fs (which may actually have
557          * the buffer dirtied, ugh.)  */
558
559         if (buffer_dirty(bh)) {
560                 /*
561                  * First question: is this buffer already part of the current
562                  * transaction or the existing committing transaction?
563                  */
564                 if (jh->b_transaction) {
565                         J_ASSERT_JH(jh,
566                                 jh->b_transaction == transaction ||
567                                 jh->b_transaction ==
568                                         journal->j_committing_transaction);
569                         if (jh->b_next_transaction)
570                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
571                                                         transaction);
572                         warn_dirty_buffer(bh);
573                 }
574                 /*
575                  * In any case we need to clean the dirty flag and we must
576                  * do it under the buffer lock to be sure we don't race
577                  * with running write-out.
578                  */
579                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
580                 clear_buffer_dirty(bh);
581                 set_buffer_jbddirty(bh);
582         }
583
584         unlock_buffer(bh);
585
586         error = -EROFS;
587         if (is_handle_aborted(handle)) {
588                 jbd_unlock_bh_state(bh);
589                 goto out;
590         }
591         error = 0;
592
593         /*
594          * The buffer is already part of this transaction if b_transaction or
595          * b_next_transaction points to it
596          */
597         if (jh->b_transaction == transaction ||
598             jh->b_next_transaction == transaction)
599                 goto done;
600
601         /*
602          * this is the first time this transaction is touching this buffer,
603          * reset the modified flag
604          */
605         jh->b_modified = 0;
606
607         /*
608          * If there is already a copy-out version of this buffer, then we don't
609          * need to make another one
610          */
611         if (jh->b_frozen_data) {
612                 JBUFFER_TRACE(jh, "has frozen data");
613                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
614                 jh->b_next_transaction = transaction;
615                 goto done;
616         }
617
618         /* Is there data here we need to preserve? */
619
620         if (jh->b_transaction && jh->b_transaction != transaction) {
621                 JBUFFER_TRACE(jh, "owned by older transaction");
622                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
623                 J_ASSERT_JH(jh, jh->b_transaction ==
624                                         journal->j_committing_transaction);
625
626                 /* There is one case we have to be very careful about.
627                  * If the committing transaction is currently writing
628                  * this buffer out to disk and has NOT made a copy-out,
629                  * then we cannot modify the buffer contents at all
630                  * right now.  The essence of copy-out is that it is the
631                  * extra copy, not the primary copy, which gets
632                  * journaled.  If the primary copy is already going to
633                  * disk then we cannot do copy-out here. */
634
635                 if (jh->b_jlist == BJ_Shadow) {
636                         DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
637                         wait_queue_head_t *wqh;
638
639                         wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
640
641                         JBUFFER_TRACE(jh, "on shadow: sleep");
642                         jbd_unlock_bh_state(bh);
643                         /* commit wakes up all shadow buffers after IO */
644                         for ( ; ; ) {
645                                 prepare_to_wait(wqh, &wait.wait,
646                                                 TASK_UNINTERRUPTIBLE);
647                                 if (jh->b_jlist != BJ_Shadow)
648                                         break;
649                                 schedule();
650                         }
651                         finish_wait(wqh, &wait.wait);
652                         goto repeat;
653                 }
654
655                 /* Only do the copy if the currently-owning transaction
656                  * still needs it.  If it is on the Forget list, the
657                  * committing transaction is past that stage.  The
658                  * buffer had better remain locked during the kmalloc,
659                  * but that should be true --- we hold the journal lock
660                  * still and the buffer is already on the BUF_JOURNAL
661                  * list so won't be flushed.
662                  *
663                  * Subtle point, though: if this is a get_undo_access,
664                  * then we will be relying on the frozen_data to contain
665                  * the new value of the committed_data record after the
666                  * transaction, so we HAVE to force the frozen_data copy
667                  * in that case. */
668
669                 if (jh->b_jlist != BJ_Forget || force_copy) {
670                         JBUFFER_TRACE(jh, "generate frozen data");
671                         if (!frozen_buffer) {
672                                 JBUFFER_TRACE(jh, "allocate memory for buffer");
673                                 jbd_unlock_bh_state(bh);
674                                 frozen_buffer =
675                                         jbd_alloc(jh2bh(jh)->b_size,
676                                                          GFP_NOFS);
677                                 if (!frozen_buffer) {
678                                         printk(KERN_ERR
679                                                "%s: OOM for frozen_buffer\n",
680                                                __func__);
681                                         JBUFFER_TRACE(jh, "oom!");
682                                         error = -ENOMEM;
683                                         jbd_lock_bh_state(bh);
684                                         goto done;
685                                 }
686                                 goto repeat;
687                         }
688                         jh->b_frozen_data = frozen_buffer;
689                         frozen_buffer = NULL;
690                         need_copy = 1;
691                 }
692                 jh->b_next_transaction = transaction;
693         }
694
695
696         /*
697          * Finally, if the buffer is not journaled right now, we need to make
698          * sure it doesn't get written to disk before the caller actually
699          * commits the new data
700          */
701         if (!jh->b_transaction) {
702                 JBUFFER_TRACE(jh, "no transaction");
703                 J_ASSERT_JH(jh, !jh->b_next_transaction);
704                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
705                 spin_lock(&journal->j_list_lock);
706                 __journal_file_buffer(jh, transaction, BJ_Reserved);
707                 spin_unlock(&journal->j_list_lock);
708         }
709
710 done:
711         if (need_copy) {
712                 struct page *page;
713                 int offset;
714                 char *source;
715
716                 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
717                             "Possible IO failure.\n");
718                 page = jh2bh(jh)->b_page;
719                 offset = offset_in_page(jh2bh(jh)->b_data);
720                 source = kmap_atomic(page);
721                 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
722                 kunmap_atomic(source);
723         }
724         jbd_unlock_bh_state(bh);
725
726         /*
727          * If we are about to journal a buffer, then any revoke pending on it is
728          * no longer valid
729          */
730         journal_cancel_revoke(handle, jh);
731
732 out:
733         if (unlikely(frozen_buffer))    /* It's usually NULL */
734                 jbd_free(frozen_buffer, bh->b_size);
735
736         JBUFFER_TRACE(jh, "exit");
737         return error;
738 }
739
740 /**
741  * int journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
742  * @handle: transaction to add buffer modifications to
743  * @bh:     bh to be used for metadata writes
744  *
745  * Returns an error code or 0 on success.
746  *
747  * In full data journalling mode the buffer may be of type BJ_AsyncData,
748  * because we're write()ing a buffer which is also part of a shared mapping.
749  */
750
751 int journal_get_write_access(handle_t *handle, struct buffer_head *bh)
752 {
753         struct journal_head *jh = journal_add_journal_head(bh);
754         int rc;
755
756         /* We do not want to get caught playing with fields which the
757          * log thread also manipulates.  Make sure that the buffer
758          * completes any outstanding IO before proceeding. */
759         rc = do_get_write_access(handle, jh, 0);
760         journal_put_journal_head(jh);
761         return rc;
762 }
763
764
765 /*
766  * When the user wants to journal a newly created buffer_head
767  * (ie. getblk() returned a new buffer and we are going to populate it
768  * manually rather than reading off disk), then we need to keep the
769  * buffer_head locked until it has been completely filled with new
770  * data.  In this case, we should be able to make the assertion that
771  * the bh is not already part of an existing transaction.
772  *
773  * The buffer should already be locked by the caller by this point.
774  * There is no lock ranking violation: it was a newly created,
775  * unlocked buffer beforehand. */
776
777 /**
778  * int journal_get_create_access () - notify intent to use newly created bh
779  * @handle: transaction to new buffer to
780  * @bh: new buffer.
781  *
782  * Call this if you create a new bh.
783  */
784 int journal_get_create_access(handle_t *handle, struct buffer_head *bh)
785 {
786         transaction_t *transaction = handle->h_transaction;
787         journal_t *journal = transaction->t_journal;
788         struct journal_head *jh = journal_add_journal_head(bh);
789         int err;
790
791         jbd_debug(5, "journal_head %p\n", jh);
792         err = -EROFS;
793         if (is_handle_aborted(handle))
794                 goto out;
795         err = 0;
796
797         JBUFFER_TRACE(jh, "entry");
798         /*
799          * The buffer may already belong to this transaction due to pre-zeroing
800          * in the filesystem's new_block code.  It may also be on the previous,
801          * committing transaction's lists, but it HAS to be in Forget state in
802          * that case: the transaction must have deleted the buffer for it to be
803          * reused here.
804          */
805         jbd_lock_bh_state(bh);
806         spin_lock(&journal->j_list_lock);
807         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
808                 jh->b_transaction == NULL ||
809                 (jh->b_transaction == journal->j_committing_transaction &&
810                           jh->b_jlist == BJ_Forget)));
811
812         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
813         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
814
815         if (jh->b_transaction == NULL) {
816                 /*
817                  * Previous journal_forget() could have left the buffer
818                  * with jbddirty bit set because it was being committed. When
819                  * the commit finished, we've filed the buffer for
820                  * checkpointing and marked it dirty. Now we are reallocating
821                  * the buffer so the transaction freeing it must have
822                  * committed and so it's safe to clear the dirty bit.
823                  */
824                 clear_buffer_dirty(jh2bh(jh));
825
826                 /* first access by this transaction */
827                 jh->b_modified = 0;
828
829                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
830                 __journal_file_buffer(jh, transaction, BJ_Reserved);
831         } else if (jh->b_transaction == journal->j_committing_transaction) {
832                 /* first access by this transaction */
833                 jh->b_modified = 0;
834
835                 JBUFFER_TRACE(jh, "set next transaction");
836                 jh->b_next_transaction = transaction;
837         }
838         spin_unlock(&journal->j_list_lock);
839         jbd_unlock_bh_state(bh);
840
841         /*
842          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
843          * blocks which contain freed but then revoked metadata.  We need
844          * to cancel the revoke in case we end up freeing it yet again
845          * and the reallocating as data - this would cause a second revoke,
846          * which hits an assertion error.
847          */
848         JBUFFER_TRACE(jh, "cancelling revoke");
849         journal_cancel_revoke(handle, jh);
850 out:
851         journal_put_journal_head(jh);
852         return err;
853 }
854
855 /**
856  * int journal_get_undo_access() - Notify intent to modify metadata with non-rewindable consequences
857  * @handle: transaction
858  * @bh: buffer to undo
859  *
860  * Sometimes there is a need to distinguish between metadata which has
861  * been committed to disk and that which has not.  The ext3fs code uses
862  * this for freeing and allocating space, we have to make sure that we
863  * do not reuse freed space until the deallocation has been committed,
864  * since if we overwrote that space we would make the delete
865  * un-rewindable in case of a crash.
866  *
867  * To deal with that, journal_get_undo_access requests write access to a
868  * buffer for parts of non-rewindable operations such as delete
869  * operations on the bitmaps.  The journaling code must keep a copy of
870  * the buffer's contents prior to the undo_access call until such time
871  * as we know that the buffer has definitely been committed to disk.
872  *
873  * We never need to know which transaction the committed data is part
874  * of, buffers touched here are guaranteed to be dirtied later and so
875  * will be committed to a new transaction in due course, at which point
876  * we can discard the old committed data pointer.
877  *
878  * Returns error number or 0 on success.
879  */
880 int journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
881 {
882         int err;
883         struct journal_head *jh = journal_add_journal_head(bh);
884         char *committed_data = NULL;
885
886         JBUFFER_TRACE(jh, "entry");
887
888         /*
889          * Do this first --- it can drop the journal lock, so we want to
890          * make sure that obtaining the committed_data is done
891          * atomically wrt. completion of any outstanding commits.
892          */
893         err = do_get_write_access(handle, jh, 1);
894         if (err)
895                 goto out;
896
897 repeat:
898         if (!jh->b_committed_data) {
899                 committed_data = jbd_alloc(jh2bh(jh)->b_size, GFP_NOFS);
900                 if (!committed_data) {
901                         printk(KERN_ERR "%s: No memory for committed data\n",
902                                 __func__);
903                         err = -ENOMEM;
904                         goto out;
905                 }
906         }
907
908         jbd_lock_bh_state(bh);
909         if (!jh->b_committed_data) {
910                 /* Copy out the current buffer contents into the
911                  * preserved, committed copy. */
912                 JBUFFER_TRACE(jh, "generate b_committed data");
913                 if (!committed_data) {
914                         jbd_unlock_bh_state(bh);
915                         goto repeat;
916                 }
917
918                 jh->b_committed_data = committed_data;
919                 committed_data = NULL;
920                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
921         }
922         jbd_unlock_bh_state(bh);
923 out:
924         journal_put_journal_head(jh);
925         if (unlikely(committed_data))
926                 jbd_free(committed_data, bh->b_size);
927         return err;
928 }
929
930 /**
931  * int journal_dirty_data() - mark a buffer as containing dirty data to be flushed
932  * @handle: transaction
933  * @bh: bufferhead to mark
934  *
935  * Description:
936  * Mark a buffer as containing dirty data which needs to be flushed before
937  * we can commit the current transaction.
938  *
939  * The buffer is placed on the transaction's data list and is marked as
940  * belonging to the transaction.
941  *
942  * Returns error number or 0 on success.
943  *
944  * journal_dirty_data() can be called via page_launder->ext3_writepage
945  * by kswapd.
946  */
947 int journal_dirty_data(handle_t *handle, struct buffer_head *bh)
948 {
949         journal_t *journal = handle->h_transaction->t_journal;
950         int need_brelse = 0;
951         struct journal_head *jh;
952         int ret = 0;
953
954         if (is_handle_aborted(handle))
955                 return ret;
956
957         jh = journal_add_journal_head(bh);
958         JBUFFER_TRACE(jh, "entry");
959
960         /*
961          * The buffer could *already* be dirty.  Writeout can start
962          * at any time.
963          */
964         jbd_debug(4, "jh: %p, tid:%d\n", jh, handle->h_transaction->t_tid);
965
966         /*
967          * What if the buffer is already part of a running transaction?
968          *
969          * There are two cases:
970          * 1) It is part of the current running transaction.  Refile it,
971          *    just in case we have allocated it as metadata, deallocated
972          *    it, then reallocated it as data.
973          * 2) It is part of the previous, still-committing transaction.
974          *    If all we want to do is to guarantee that the buffer will be
975          *    written to disk before this new transaction commits, then
976          *    being sure that the *previous* transaction has this same
977          *    property is sufficient for us!  Just leave it on its old
978          *    transaction.
979          *
980          * In case (2), the buffer must not already exist as metadata
981          * --- that would violate write ordering (a transaction is free
982          * to write its data at any point, even before the previous
983          * committing transaction has committed).  The caller must
984          * never, ever allow this to happen: there's nothing we can do
985          * about it in this layer.
986          */
987         jbd_lock_bh_state(bh);
988         spin_lock(&journal->j_list_lock);
989
990         /* Now that we have bh_state locked, are we really still mapped? */
991         if (!buffer_mapped(bh)) {
992                 JBUFFER_TRACE(jh, "unmapped buffer, bailing out");
993                 goto no_journal;
994         }
995
996         if (jh->b_transaction) {
997                 JBUFFER_TRACE(jh, "has transaction");
998                 if (jh->b_transaction != handle->h_transaction) {
999                         JBUFFER_TRACE(jh, "belongs to older transaction");
1000                         J_ASSERT_JH(jh, jh->b_transaction ==
1001                                         journal->j_committing_transaction);
1002
1003                         /* @@@ IS THIS TRUE  ? */
1004                         /*
1005                          * Not any more.  Scenario: someone does a write()
1006                          * in data=journal mode.  The buffer's transaction has
1007                          * moved into commit.  Then someone does another
1008                          * write() to the file.  We do the frozen data copyout
1009                          * and set b_next_transaction to point to j_running_t.
1010                          * And while we're in that state, someone does a
1011                          * writepage() in an attempt to pageout the same area
1012                          * of the file via a shared mapping.  At present that
1013                          * calls journal_dirty_data(), and we get right here.
1014                          * It may be too late to journal the data.  Simply
1015                          * falling through to the next test will suffice: the
1016                          * data will be dirty and wil be checkpointed.  The
1017                          * ordering comments in the next comment block still
1018                          * apply.
1019                          */
1020                         //J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1021
1022                         /*
1023                          * If we're journalling data, and this buffer was
1024                          * subject to a write(), it could be metadata, forget
1025                          * or shadow against the committing transaction.  Now,
1026                          * someone has dirtied the same darn page via a mapping
1027                          * and it is being writepage()'d.
1028                          * We *could* just steal the page from commit, with some
1029                          * fancy locking there.  Instead, we just skip it -
1030                          * don't tie the page's buffers to the new transaction
1031                          * at all.
1032                          * Implication: if we crash before the writepage() data
1033                          * is written into the filesystem, recovery will replay
1034                          * the write() data.
1035                          */
1036                         if (jh->b_jlist != BJ_None &&
1037                                         jh->b_jlist != BJ_SyncData &&
1038                                         jh->b_jlist != BJ_Locked) {
1039                                 JBUFFER_TRACE(jh, "Not stealing");
1040                                 goto no_journal;
1041                         }
1042
1043                         /*
1044                          * This buffer may be undergoing writeout in commit.  We
1045                          * can't return from here and let the caller dirty it
1046                          * again because that can cause the write-out loop in
1047                          * commit to never terminate.
1048                          */
1049                         if (buffer_dirty(bh)) {
1050                                 get_bh(bh);
1051                                 spin_unlock(&journal->j_list_lock);
1052                                 jbd_unlock_bh_state(bh);
1053                                 need_brelse = 1;
1054                                 sync_dirty_buffer(bh);
1055                                 jbd_lock_bh_state(bh);
1056                                 spin_lock(&journal->j_list_lock);
1057                                 /* Since we dropped the lock... */
1058                                 if (!buffer_mapped(bh)) {
1059                                         JBUFFER_TRACE(jh, "buffer got unmapped");
1060                                         goto no_journal;
1061                                 }
1062                                 /* The buffer may become locked again at any
1063                                    time if it is redirtied */
1064                         }
1065
1066                         /*
1067                          * We cannot remove the buffer with io error from the
1068                          * committing transaction, because otherwise it would
1069                          * miss the error and the commit would not abort.
1070                          */
1071                         if (unlikely(!buffer_uptodate(bh))) {
1072                                 ret = -EIO;
1073                                 goto no_journal;
1074                         }
1075                         /* We might have slept so buffer could be refiled now */
1076                         if (jh->b_transaction != NULL &&
1077                             jh->b_transaction != handle->h_transaction) {
1078                                 JBUFFER_TRACE(jh, "unfile from commit");
1079                                 __journal_temp_unlink_buffer(jh);
1080                                 /* It still points to the committing
1081                                  * transaction; move it to this one so
1082                                  * that the refile assert checks are
1083                                  * happy. */
1084                                 jh->b_transaction = handle->h_transaction;
1085                         }
1086                         /* The buffer will be refiled below */
1087
1088                 }
1089                 /*
1090                  * Special case --- the buffer might actually have been
1091                  * allocated and then immediately deallocated in the previous,
1092                  * committing transaction, so might still be left on that
1093                  * transaction's metadata lists.
1094                  */
1095                 if (jh->b_jlist != BJ_SyncData && jh->b_jlist != BJ_Locked) {
1096                         JBUFFER_TRACE(jh, "not on correct data list: unfile");
1097                         J_ASSERT_JH(jh, jh->b_jlist != BJ_Shadow);
1098                         JBUFFER_TRACE(jh, "file as data");
1099                         __journal_file_buffer(jh, handle->h_transaction,
1100                                                 BJ_SyncData);
1101                 }
1102         } else {
1103                 JBUFFER_TRACE(jh, "not on a transaction");
1104                 __journal_file_buffer(jh, handle->h_transaction, BJ_SyncData);
1105         }
1106 no_journal:
1107         spin_unlock(&journal->j_list_lock);
1108         jbd_unlock_bh_state(bh);
1109         if (need_brelse) {
1110                 BUFFER_TRACE(bh, "brelse");
1111                 __brelse(bh);
1112         }
1113         JBUFFER_TRACE(jh, "exit");
1114         journal_put_journal_head(jh);
1115         return ret;
1116 }
1117
1118 /**
1119  * int journal_dirty_metadata() - mark a buffer as containing dirty metadata
1120  * @handle: transaction to add buffer to.
1121  * @bh: buffer to mark
1122  *
1123  * Mark dirty metadata which needs to be journaled as part of the current
1124  * transaction.
1125  *
1126  * The buffer is placed on the transaction's metadata list and is marked
1127  * as belonging to the transaction.
1128  *
1129  * Returns error number or 0 on success.
1130  *
1131  * Special care needs to be taken if the buffer already belongs to the
1132  * current committing transaction (in which case we should have frozen
1133  * data present for that commit).  In that case, we don't relink the
1134  * buffer: that only gets done when the old transaction finally
1135  * completes its commit.
1136  */
1137 int journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1138 {
1139         transaction_t *transaction = handle->h_transaction;
1140         journal_t *journal = transaction->t_journal;
1141         struct journal_head *jh = bh2jh(bh);
1142
1143         jbd_debug(5, "journal_head %p\n", jh);
1144         JBUFFER_TRACE(jh, "entry");
1145         if (is_handle_aborted(handle))
1146                 goto out;
1147
1148         jbd_lock_bh_state(bh);
1149
1150         if (jh->b_modified == 0) {
1151                 /*
1152                  * This buffer's got modified and becoming part
1153                  * of the transaction. This needs to be done
1154                  * once a transaction -bzzz
1155                  */
1156                 jh->b_modified = 1;
1157                 J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1158                 handle->h_buffer_credits--;
1159         }
1160
1161         /*
1162          * fastpath, to avoid expensive locking.  If this buffer is already
1163          * on the running transaction's metadata list there is nothing to do.
1164          * Nobody can take it off again because there is a handle open.
1165          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1166          * result in this test being false, so we go in and take the locks.
1167          */
1168         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1169                 JBUFFER_TRACE(jh, "fastpath");
1170                 J_ASSERT_JH(jh, jh->b_transaction ==
1171                                         journal->j_running_transaction);
1172                 goto out_unlock_bh;
1173         }
1174
1175         set_buffer_jbddirty(bh);
1176
1177         /*
1178          * Metadata already on the current transaction list doesn't
1179          * need to be filed.  Metadata on another transaction's list must
1180          * be committing, and will be refiled once the commit completes:
1181          * leave it alone for now.
1182          */
1183         if (jh->b_transaction != transaction) {
1184                 JBUFFER_TRACE(jh, "already on other transaction");
1185                 J_ASSERT_JH(jh, jh->b_transaction ==
1186                                         journal->j_committing_transaction);
1187                 J_ASSERT_JH(jh, jh->b_next_transaction == transaction);
1188                 /* And this case is illegal: we can't reuse another
1189                  * transaction's data buffer, ever. */
1190                 goto out_unlock_bh;
1191         }
1192
1193         /* That test should have eliminated the following case: */
1194         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1195
1196         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1197         spin_lock(&journal->j_list_lock);
1198         __journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1199         spin_unlock(&journal->j_list_lock);
1200 out_unlock_bh:
1201         jbd_unlock_bh_state(bh);
1202 out:
1203         JBUFFER_TRACE(jh, "exit");
1204         return 0;
1205 }
1206
1207 /*
1208  * journal_release_buffer: undo a get_write_access without any buffer
1209  * updates, if the update decided in the end that it didn't need access.
1210  *
1211  */
1212 void
1213 journal_release_buffer(handle_t *handle, struct buffer_head *bh)
1214 {
1215         BUFFER_TRACE(bh, "entry");
1216 }
1217
1218 /**
1219  * void journal_forget() - bforget() for potentially-journaled buffers.
1220  * @handle: transaction handle
1221  * @bh:     bh to 'forget'
1222  *
1223  * We can only do the bforget if there are no commits pending against the
1224  * buffer.  If the buffer is dirty in the current running transaction we
1225  * can safely unlink it.
1226  *
1227  * bh may not be a journalled buffer at all - it may be a non-JBD
1228  * buffer which came off the hashtable.  Check for this.
1229  *
1230  * Decrements bh->b_count by one.
1231  *
1232  * Allow this call even if the handle has aborted --- it may be part of
1233  * the caller's cleanup after an abort.
1234  */
1235 int journal_forget (handle_t *handle, struct buffer_head *bh)
1236 {
1237         transaction_t *transaction = handle->h_transaction;
1238         journal_t *journal = transaction->t_journal;
1239         struct journal_head *jh;
1240         int drop_reserve = 0;
1241         int err = 0;
1242         int was_modified = 0;
1243
1244         BUFFER_TRACE(bh, "entry");
1245
1246         jbd_lock_bh_state(bh);
1247         spin_lock(&journal->j_list_lock);
1248
1249         if (!buffer_jbd(bh))
1250                 goto not_jbd;
1251         jh = bh2jh(bh);
1252
1253         /* Critical error: attempting to delete a bitmap buffer, maybe?
1254          * Don't do any jbd operations, and return an error. */
1255         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1256                          "inconsistent data on disk")) {
1257                 err = -EIO;
1258                 goto not_jbd;
1259         }
1260
1261         /* keep track of whether or not this transaction modified us */
1262         was_modified = jh->b_modified;
1263
1264         /*
1265          * The buffer's going from the transaction, we must drop
1266          * all references -bzzz
1267          */
1268         jh->b_modified = 0;
1269
1270         if (jh->b_transaction == handle->h_transaction) {
1271                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1272
1273                 /* If we are forgetting a buffer which is already part
1274                  * of this transaction, then we can just drop it from
1275                  * the transaction immediately. */
1276                 clear_buffer_dirty(bh);
1277                 clear_buffer_jbddirty(bh);
1278
1279                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1280
1281                 /*
1282                  * we only want to drop a reference if this transaction
1283                  * modified the buffer
1284                  */
1285                 if (was_modified)
1286                         drop_reserve = 1;
1287
1288                 /*
1289                  * We are no longer going to journal this buffer.
1290                  * However, the commit of this transaction is still
1291                  * important to the buffer: the delete that we are now
1292                  * processing might obsolete an old log entry, so by
1293                  * committing, we can satisfy the buffer's checkpoint.
1294                  *
1295                  * So, if we have a checkpoint on the buffer, we should
1296                  * now refile the buffer on our BJ_Forget list so that
1297                  * we know to remove the checkpoint after we commit.
1298                  */
1299
1300                 if (jh->b_cp_transaction) {
1301                         __journal_temp_unlink_buffer(jh);
1302                         __journal_file_buffer(jh, transaction, BJ_Forget);
1303                 } else {
1304                         __journal_unfile_buffer(jh);
1305                         if (!buffer_jbd(bh)) {
1306                                 spin_unlock(&journal->j_list_lock);
1307                                 jbd_unlock_bh_state(bh);
1308                                 __bforget(bh);
1309                                 goto drop;
1310                         }
1311                 }
1312         } else if (jh->b_transaction) {
1313                 J_ASSERT_JH(jh, (jh->b_transaction ==
1314                                  journal->j_committing_transaction));
1315                 /* However, if the buffer is still owned by a prior
1316                  * (committing) transaction, we can't drop it yet... */
1317                 JBUFFER_TRACE(jh, "belongs to older transaction");
1318                 /* ... but we CAN drop it from the new transaction if we
1319                  * have also modified it since the original commit. */
1320
1321                 if (jh->b_next_transaction) {
1322                         J_ASSERT(jh->b_next_transaction == transaction);
1323                         jh->b_next_transaction = NULL;
1324
1325                         /*
1326                          * only drop a reference if this transaction modified
1327                          * the buffer
1328                          */
1329                         if (was_modified)
1330                                 drop_reserve = 1;
1331                 }
1332         }
1333
1334 not_jbd:
1335         spin_unlock(&journal->j_list_lock);
1336         jbd_unlock_bh_state(bh);
1337         __brelse(bh);
1338 drop:
1339         if (drop_reserve) {
1340                 /* no need to reserve log space for this block -bzzz */
1341                 handle->h_buffer_credits++;
1342         }
1343         return err;
1344 }
1345
1346 /**
1347  * int journal_stop() - complete a transaction
1348  * @handle: tranaction to complete.
1349  *
1350  * All done for a particular handle.
1351  *
1352  * There is not much action needed here.  We just return any remaining
1353  * buffer credits to the transaction and remove the handle.  The only
1354  * complication is that we need to start a commit operation if the
1355  * filesystem is marked for synchronous update.
1356  *
1357  * journal_stop itself will not usually return an error, but it may
1358  * do so in unusual circumstances.  In particular, expect it to
1359  * return -EIO if a journal_abort has been executed since the
1360  * transaction began.
1361  */
1362 int journal_stop(handle_t *handle)
1363 {
1364         transaction_t *transaction = handle->h_transaction;
1365         journal_t *journal = transaction->t_journal;
1366         int err;
1367         pid_t pid;
1368
1369         J_ASSERT(journal_current_handle() == handle);
1370
1371         if (is_handle_aborted(handle))
1372                 err = -EIO;
1373         else {
1374                 J_ASSERT(transaction->t_updates > 0);
1375                 err = 0;
1376         }
1377
1378         if (--handle->h_ref > 0) {
1379                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1380                           handle->h_ref);
1381                 return err;
1382         }
1383
1384         jbd_debug(4, "Handle %p going down\n", handle);
1385
1386         /*
1387          * Implement synchronous transaction batching.  If the handle
1388          * was synchronous, don't force a commit immediately.  Let's
1389          * yield and let another thread piggyback onto this transaction.
1390          * Keep doing that while new threads continue to arrive.
1391          * It doesn't cost much - we're about to run a commit and sleep
1392          * on IO anyway.  Speeds up many-threaded, many-dir operations
1393          * by 30x or more...
1394          *
1395          * We try and optimize the sleep time against what the underlying disk
1396          * can do, instead of having a static sleep time.  This is useful for
1397          * the case where our storage is so fast that it is more optimal to go
1398          * ahead and force a flush and wait for the transaction to be committed
1399          * than it is to wait for an arbitrary amount of time for new writers to
1400          * join the transaction.  We achieve this by measuring how long it takes
1401          * to commit a transaction, and compare it with how long this
1402          * transaction has been running, and if run time < commit time then we
1403          * sleep for the delta and commit.  This greatly helps super fast disks
1404          * that would see slowdowns as more threads started doing fsyncs.
1405          *
1406          * But don't do this if this process was the most recent one to
1407          * perform a synchronous write.  We do this to detect the case where a
1408          * single process is doing a stream of sync writes.  No point in waiting
1409          * for joiners in that case.
1410          */
1411         pid = current->pid;
1412         if (handle->h_sync && journal->j_last_sync_writer != pid) {
1413                 u64 commit_time, trans_time;
1414
1415                 journal->j_last_sync_writer = pid;
1416
1417                 spin_lock(&journal->j_state_lock);
1418                 commit_time = journal->j_average_commit_time;
1419                 spin_unlock(&journal->j_state_lock);
1420
1421                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1422                                                    transaction->t_start_time));
1423
1424                 commit_time = min_t(u64, commit_time,
1425                                     1000*jiffies_to_usecs(1));
1426
1427                 if (trans_time < commit_time) {
1428                         ktime_t expires = ktime_add_ns(ktime_get(),
1429                                                        commit_time);
1430                         set_current_state(TASK_UNINTERRUPTIBLE);
1431                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1432                 }
1433         }
1434
1435         current->journal_info = NULL;
1436         spin_lock(&journal->j_state_lock);
1437         spin_lock(&transaction->t_handle_lock);
1438         transaction->t_outstanding_credits -= handle->h_buffer_credits;
1439         transaction->t_updates--;
1440         if (!transaction->t_updates) {
1441                 wake_up(&journal->j_wait_updates);
1442                 if (journal->j_barrier_count)
1443                         wake_up(&journal->j_wait_transaction_locked);
1444         }
1445
1446         /*
1447          * If the handle is marked SYNC, we need to set another commit
1448          * going!  We also want to force a commit if the current
1449          * transaction is occupying too much of the log, or if the
1450          * transaction is too old now.
1451          */
1452         if (handle->h_sync ||
1453                         transaction->t_outstanding_credits >
1454                                 journal->j_max_transaction_buffers ||
1455                         time_after_eq(jiffies, transaction->t_expires)) {
1456                 /* Do this even for aborted journals: an abort still
1457                  * completes the commit thread, it just doesn't write
1458                  * anything to disk. */
1459                 tid_t tid = transaction->t_tid;
1460
1461                 spin_unlock(&transaction->t_handle_lock);
1462                 jbd_debug(2, "transaction too old, requesting commit for "
1463                                         "handle %p\n", handle);
1464                 /* This is non-blocking */
1465                 __log_start_commit(journal, transaction->t_tid);
1466                 spin_unlock(&journal->j_state_lock);
1467
1468                 /*
1469                  * Special case: JFS_SYNC synchronous updates require us
1470                  * to wait for the commit to complete.
1471                  */
1472                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1473                         err = log_wait_commit(journal, tid);
1474         } else {
1475                 spin_unlock(&transaction->t_handle_lock);
1476                 spin_unlock(&journal->j_state_lock);
1477         }
1478
1479         lock_map_release(&handle->h_lockdep_map);
1480
1481         jbd_free_handle(handle);
1482         return err;
1483 }
1484
1485 /**
1486  * int journal_force_commit() - force any uncommitted transactions
1487  * @journal: journal to force
1488  *
1489  * For synchronous operations: force any uncommitted transactions
1490  * to disk.  May seem kludgy, but it reuses all the handle batching
1491  * code in a very simple manner.
1492  */
1493 int journal_force_commit(journal_t *journal)
1494 {
1495         handle_t *handle;
1496         int ret;
1497
1498         handle = journal_start(journal, 1);
1499         if (IS_ERR(handle)) {
1500                 ret = PTR_ERR(handle);
1501         } else {
1502                 handle->h_sync = 1;
1503                 ret = journal_stop(handle);
1504         }
1505         return ret;
1506 }
1507
1508 /*
1509  *
1510  * List management code snippets: various functions for manipulating the
1511  * transaction buffer lists.
1512  *
1513  */
1514
1515 /*
1516  * Append a buffer to a transaction list, given the transaction's list head
1517  * pointer.
1518  *
1519  * j_list_lock is held.
1520  *
1521  * jbd_lock_bh_state(jh2bh(jh)) is held.
1522  */
1523
1524 static inline void
1525 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1526 {
1527         if (!*list) {
1528                 jh->b_tnext = jh->b_tprev = jh;
1529                 *list = jh;
1530         } else {
1531                 /* Insert at the tail of the list to preserve order */
1532                 struct journal_head *first = *list, *last = first->b_tprev;
1533                 jh->b_tprev = last;
1534                 jh->b_tnext = first;
1535                 last->b_tnext = first->b_tprev = jh;
1536         }
1537 }
1538
1539 /*
1540  * Remove a buffer from a transaction list, given the transaction's list
1541  * head pointer.
1542  *
1543  * Called with j_list_lock held, and the journal may not be locked.
1544  *
1545  * jbd_lock_bh_state(jh2bh(jh)) is held.
1546  */
1547
1548 static inline void
1549 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1550 {
1551         if (*list == jh) {
1552                 *list = jh->b_tnext;
1553                 if (*list == jh)
1554                         *list = NULL;
1555         }
1556         jh->b_tprev->b_tnext = jh->b_tnext;
1557         jh->b_tnext->b_tprev = jh->b_tprev;
1558 }
1559
1560 /*
1561  * Remove a buffer from the appropriate transaction list.
1562  *
1563  * Note that this function can *change* the value of
1564  * bh->b_transaction->t_sync_datalist, t_buffers, t_forget,
1565  * t_iobuf_list, t_shadow_list, t_log_list or t_reserved_list.  If the caller
1566  * is holding onto a copy of one of thee pointers, it could go bad.
1567  * Generally the caller needs to re-read the pointer from the transaction_t.
1568  *
1569  * Called under j_list_lock.  The journal may not be locked.
1570  */
1571 static void __journal_temp_unlink_buffer(struct journal_head *jh)
1572 {
1573         struct journal_head **list = NULL;
1574         transaction_t *transaction;
1575         struct buffer_head *bh = jh2bh(jh);
1576
1577         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1578         transaction = jh->b_transaction;
1579         if (transaction)
1580                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1581
1582         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1583         if (jh->b_jlist != BJ_None)
1584                 J_ASSERT_JH(jh, transaction != NULL);
1585
1586         switch (jh->b_jlist) {
1587         case BJ_None:
1588                 return;
1589         case BJ_SyncData:
1590                 list = &transaction->t_sync_datalist;
1591                 break;
1592         case BJ_Metadata:
1593                 transaction->t_nr_buffers--;
1594                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1595                 list = &transaction->t_buffers;
1596                 break;
1597         case BJ_Forget:
1598                 list = &transaction->t_forget;
1599                 break;
1600         case BJ_IO:
1601                 list = &transaction->t_iobuf_list;
1602                 break;
1603         case BJ_Shadow:
1604                 list = &transaction->t_shadow_list;
1605                 break;
1606         case BJ_LogCtl:
1607                 list = &transaction->t_log_list;
1608                 break;
1609         case BJ_Reserved:
1610                 list = &transaction->t_reserved_list;
1611                 break;
1612         case BJ_Locked:
1613                 list = &transaction->t_locked_list;
1614                 break;
1615         }
1616
1617         __blist_del_buffer(list, jh);
1618         jh->b_jlist = BJ_None;
1619         if (test_clear_buffer_jbddirty(bh))
1620                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1621 }
1622
1623 /*
1624  * Remove buffer from all transactions.
1625  *
1626  * Called with bh_state lock and j_list_lock
1627  *
1628  * jh and bh may be already freed when this function returns.
1629  */
1630 void __journal_unfile_buffer(struct journal_head *jh)
1631 {
1632         __journal_temp_unlink_buffer(jh);
1633         jh->b_transaction = NULL;
1634         journal_put_journal_head(jh);
1635 }
1636
1637 void journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1638 {
1639         struct buffer_head *bh = jh2bh(jh);
1640
1641         /* Get reference so that buffer cannot be freed before we unlock it */
1642         get_bh(bh);
1643         jbd_lock_bh_state(bh);
1644         spin_lock(&journal->j_list_lock);
1645         __journal_unfile_buffer(jh);
1646         spin_unlock(&journal->j_list_lock);
1647         jbd_unlock_bh_state(bh);
1648         __brelse(bh);
1649 }
1650
1651 /*
1652  * Called from journal_try_to_free_buffers().
1653  *
1654  * Called under jbd_lock_bh_state(bh)
1655  */
1656 static void
1657 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1658 {
1659         struct journal_head *jh;
1660
1661         jh = bh2jh(bh);
1662
1663         if (buffer_locked(bh) || buffer_dirty(bh))
1664                 goto out;
1665
1666         if (jh->b_next_transaction != NULL)
1667                 goto out;
1668
1669         spin_lock(&journal->j_list_lock);
1670         if (jh->b_transaction != NULL && jh->b_cp_transaction == NULL) {
1671                 if (jh->b_jlist == BJ_SyncData || jh->b_jlist == BJ_Locked) {
1672                         /* A written-back ordered data buffer */
1673                         JBUFFER_TRACE(jh, "release data");
1674                         __journal_unfile_buffer(jh);
1675                 }
1676         } else if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1677                 /* written-back checkpointed metadata buffer */
1678                 if (jh->b_jlist == BJ_None) {
1679                         JBUFFER_TRACE(jh, "remove from checkpoint list");
1680                         __journal_remove_checkpoint(jh);
1681                 }
1682         }
1683         spin_unlock(&journal->j_list_lock);
1684 out:
1685         return;
1686 }
1687
1688 /**
1689  * int journal_try_to_free_buffers() - try to free page buffers.
1690  * @journal: journal for operation
1691  * @page: to try and free
1692  * @gfp_mask: we use the mask to detect how hard should we try to release
1693  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1694  * release the buffers.
1695  *
1696  *
1697  * For all the buffers on this page,
1698  * if they are fully written out ordered data, move them onto BUF_CLEAN
1699  * so try_to_free_buffers() can reap them.
1700  *
1701  * This function returns non-zero if we wish try_to_free_buffers()
1702  * to be called. We do this if the page is releasable by try_to_free_buffers().
1703  * We also do it if the page has locked or dirty buffers and the caller wants
1704  * us to perform sync or async writeout.
1705  *
1706  * This complicates JBD locking somewhat.  We aren't protected by the
1707  * BKL here.  We wish to remove the buffer from its committing or
1708  * running transaction's ->t_datalist via __journal_unfile_buffer.
1709  *
1710  * This may *change* the value of transaction_t->t_datalist, so anyone
1711  * who looks at t_datalist needs to lock against this function.
1712  *
1713  * Even worse, someone may be doing a journal_dirty_data on this
1714  * buffer.  So we need to lock against that.  journal_dirty_data()
1715  * will come out of the lock with the buffer dirty, which makes it
1716  * ineligible for release here.
1717  *
1718  * Who else is affected by this?  hmm...  Really the only contender
1719  * is do_get_write_access() - it could be looking at the buffer while
1720  * journal_try_to_free_buffer() is changing its state.  But that
1721  * cannot happen because we never reallocate freed data as metadata
1722  * while the data is part of a transaction.  Yes?
1723  *
1724  * Return 0 on failure, 1 on success
1725  */
1726 int journal_try_to_free_buffers(journal_t *journal,
1727                                 struct page *page, gfp_t gfp_mask)
1728 {
1729         struct buffer_head *head;
1730         struct buffer_head *bh;
1731         int ret = 0;
1732
1733         J_ASSERT(PageLocked(page));
1734
1735         head = page_buffers(page);
1736         bh = head;
1737         do {
1738                 struct journal_head *jh;
1739
1740                 /*
1741                  * We take our own ref against the journal_head here to avoid
1742                  * having to add tons of locking around each instance of
1743                  * journal_put_journal_head().
1744                  */
1745                 jh = journal_grab_journal_head(bh);
1746                 if (!jh)
1747                         continue;
1748
1749                 jbd_lock_bh_state(bh);
1750                 __journal_try_to_free_buffer(journal, bh);
1751                 journal_put_journal_head(jh);
1752                 jbd_unlock_bh_state(bh);
1753                 if (buffer_jbd(bh))
1754                         goto busy;
1755         } while ((bh = bh->b_this_page) != head);
1756
1757         ret = try_to_free_buffers(page);
1758
1759 busy:
1760         return ret;
1761 }
1762
1763 /*
1764  * This buffer is no longer needed.  If it is on an older transaction's
1765  * checkpoint list we need to record it on this transaction's forget list
1766  * to pin this buffer (and hence its checkpointing transaction) down until
1767  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1768  * release it.
1769  * Returns non-zero if JBD no longer has an interest in the buffer.
1770  *
1771  * Called under j_list_lock.
1772  *
1773  * Called under jbd_lock_bh_state(bh).
1774  */
1775 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1776 {
1777         int may_free = 1;
1778         struct buffer_head *bh = jh2bh(jh);
1779
1780         if (jh->b_cp_transaction) {
1781                 JBUFFER_TRACE(jh, "on running+cp transaction");
1782                 __journal_temp_unlink_buffer(jh);
1783                 /*
1784                  * We don't want to write the buffer anymore, clear the
1785                  * bit so that we don't confuse checks in
1786                  * __journal_file_buffer
1787                  */
1788                 clear_buffer_dirty(bh);
1789                 __journal_file_buffer(jh, transaction, BJ_Forget);
1790                 may_free = 0;
1791         } else {
1792                 JBUFFER_TRACE(jh, "on running transaction");
1793                 __journal_unfile_buffer(jh);
1794         }
1795         return may_free;
1796 }
1797
1798 /*
1799  * journal_invalidatepage
1800  *
1801  * This code is tricky.  It has a number of cases to deal with.
1802  *
1803  * There are two invariants which this code relies on:
1804  *
1805  * i_size must be updated on disk before we start calling invalidatepage on the
1806  * data.
1807  *
1808  *  This is done in ext3 by defining an ext3_setattr method which
1809  *  updates i_size before truncate gets going.  By maintaining this
1810  *  invariant, we can be sure that it is safe to throw away any buffers
1811  *  attached to the current transaction: once the transaction commits,
1812  *  we know that the data will not be needed.
1813  *
1814  *  Note however that we can *not* throw away data belonging to the
1815  *  previous, committing transaction!
1816  *
1817  * Any disk blocks which *are* part of the previous, committing
1818  * transaction (and which therefore cannot be discarded immediately) are
1819  * not going to be reused in the new running transaction
1820  *
1821  *  The bitmap committed_data images guarantee this: any block which is
1822  *  allocated in one transaction and removed in the next will be marked
1823  *  as in-use in the committed_data bitmap, so cannot be reused until
1824  *  the next transaction to delete the block commits.  This means that
1825  *  leaving committing buffers dirty is quite safe: the disk blocks
1826  *  cannot be reallocated to a different file and so buffer aliasing is
1827  *  not possible.
1828  *
1829  *
1830  * The above applies mainly to ordered data mode.  In writeback mode we
1831  * don't make guarantees about the order in which data hits disk --- in
1832  * particular we don't guarantee that new dirty data is flushed before
1833  * transaction commit --- so it is always safe just to discard data
1834  * immediately in that mode.  --sct
1835  */
1836
1837 /*
1838  * The journal_unmap_buffer helper function returns zero if the buffer
1839  * concerned remains pinned as an anonymous buffer belonging to an older
1840  * transaction.
1841  *
1842  * We're outside-transaction here.  Either or both of j_running_transaction
1843  * and j_committing_transaction may be NULL.
1844  */
1845 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
1846                                 int partial_page)
1847 {
1848         transaction_t *transaction;
1849         struct journal_head *jh;
1850         int may_free = 1;
1851
1852         BUFFER_TRACE(bh, "entry");
1853
1854 retry:
1855         /*
1856          * It is safe to proceed here without the j_list_lock because the
1857          * buffers cannot be stolen by try_to_free_buffers as long as we are
1858          * holding the page lock. --sct
1859          */
1860
1861         if (!buffer_jbd(bh))
1862                 goto zap_buffer_unlocked;
1863
1864         spin_lock(&journal->j_state_lock);
1865         jbd_lock_bh_state(bh);
1866         spin_lock(&journal->j_list_lock);
1867
1868         jh = journal_grab_journal_head(bh);
1869         if (!jh)
1870                 goto zap_buffer_no_jh;
1871
1872         /*
1873          * We cannot remove the buffer from checkpoint lists until the
1874          * transaction adding inode to orphan list (let's call it T)
1875          * is committed.  Otherwise if the transaction changing the
1876          * buffer would be cleaned from the journal before T is
1877          * committed, a crash will cause that the correct contents of
1878          * the buffer will be lost.  On the other hand we have to
1879          * clear the buffer dirty bit at latest at the moment when the
1880          * transaction marking the buffer as freed in the filesystem
1881          * structures is committed because from that moment on the
1882          * block can be reallocated and used by a different page.
1883          * Since the block hasn't been freed yet but the inode has
1884          * already been added to orphan list, it is safe for us to add
1885          * the buffer to BJ_Forget list of the newest transaction.
1886          *
1887          * Also we have to clear buffer_mapped flag of a truncated buffer
1888          * because the buffer_head may be attached to the page straddling
1889          * i_size (can happen only when blocksize < pagesize) and thus the
1890          * buffer_head can be reused when the file is extended again. So we end
1891          * up keeping around invalidated buffers attached to transactions'
1892          * BJ_Forget list just to stop checkpointing code from cleaning up
1893          * the transaction this buffer was modified in.
1894          */
1895         transaction = jh->b_transaction;
1896         if (transaction == NULL) {
1897                 /* First case: not on any transaction.  If it
1898                  * has no checkpoint link, then we can zap it:
1899                  * it's a writeback-mode buffer so we don't care
1900                  * if it hits disk safely. */
1901                 if (!jh->b_cp_transaction) {
1902                         JBUFFER_TRACE(jh, "not on any transaction: zap");
1903                         goto zap_buffer;
1904                 }
1905
1906                 if (!buffer_dirty(bh)) {
1907                         /* bdflush has written it.  We can drop it now */
1908                         goto zap_buffer;
1909                 }
1910
1911                 /* OK, it must be in the journal but still not
1912                  * written fully to disk: it's metadata or
1913                  * journaled data... */
1914
1915                 if (journal->j_running_transaction) {
1916                         /* ... and once the current transaction has
1917                          * committed, the buffer won't be needed any
1918                          * longer. */
1919                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1920                         may_free = __dispose_buffer(jh,
1921                                         journal->j_running_transaction);
1922                         goto zap_buffer;
1923                 } else {
1924                         /* There is no currently-running transaction. So the
1925                          * orphan record which we wrote for this file must have
1926                          * passed into commit.  We must attach this buffer to
1927                          * the committing transaction, if it exists. */
1928                         if (journal->j_committing_transaction) {
1929                                 JBUFFER_TRACE(jh, "give to committing trans");
1930                                 may_free = __dispose_buffer(jh,
1931                                         journal->j_committing_transaction);
1932                                 goto zap_buffer;
1933                         } else {
1934                                 /* The orphan record's transaction has
1935                                  * committed.  We can cleanse this buffer */
1936                                 clear_buffer_jbddirty(bh);
1937                                 goto zap_buffer;
1938                         }
1939                 }
1940         } else if (transaction == journal->j_committing_transaction) {
1941                 JBUFFER_TRACE(jh, "on committing transaction");
1942                 if (jh->b_jlist == BJ_Locked) {
1943                         /*
1944                          * The buffer is on the committing transaction's locked
1945                          * list.  We have the buffer locked, so I/O has
1946                          * completed.  So we can nail the buffer now.
1947                          */
1948                         may_free = __dispose_buffer(jh, transaction);
1949                         goto zap_buffer;
1950                 }
1951                 /*
1952                  * The buffer is committing, we simply cannot touch
1953                  * it. If the page is straddling i_size we have to wait
1954                  * for commit and try again.
1955                  */
1956                 if (partial_page) {
1957                         tid_t tid = journal->j_committing_transaction->t_tid;
1958
1959                         journal_put_journal_head(jh);
1960                         spin_unlock(&journal->j_list_lock);
1961                         jbd_unlock_bh_state(bh);
1962                         spin_unlock(&journal->j_state_lock);
1963                         unlock_buffer(bh);
1964                         log_wait_commit(journal, tid);
1965                         lock_buffer(bh);
1966                         goto retry;
1967                 }
1968                 /*
1969                  * OK, buffer won't be reachable after truncate. We just set
1970                  * j_next_transaction to the running transaction (if there is
1971                  * one) and mark buffer as freed so that commit code knows it
1972                  * should clear dirty bits when it is done with the buffer.
1973                  */
1974                 set_buffer_freed(bh);
1975                 if (journal->j_running_transaction && buffer_jbddirty(bh))
1976                         jh->b_next_transaction = journal->j_running_transaction;
1977                 journal_put_journal_head(jh);
1978                 spin_unlock(&journal->j_list_lock);
1979                 jbd_unlock_bh_state(bh);
1980                 spin_unlock(&journal->j_state_lock);
1981                 return 0;
1982         } else {
1983                 /* Good, the buffer belongs to the running transaction.
1984                  * We are writing our own transaction's data, not any
1985                  * previous one's, so it is safe to throw it away
1986                  * (remember that we expect the filesystem to have set
1987                  * i_size already for this truncate so recovery will not
1988                  * expose the disk blocks we are discarding here.) */
1989                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1990                 JBUFFER_TRACE(jh, "on running transaction");
1991                 may_free = __dispose_buffer(jh, transaction);
1992         }
1993
1994 zap_buffer:
1995         /*
1996          * This is tricky. Although the buffer is truncated, it may be reused
1997          * if blocksize < pagesize and it is attached to the page straddling
1998          * EOF. Since the buffer might have been added to BJ_Forget list of the
1999          * running transaction, journal_get_write_access() won't clear
2000          * b_modified and credit accounting gets confused. So clear b_modified
2001          * here. */
2002         jh->b_modified = 0;
2003         journal_put_journal_head(jh);
2004 zap_buffer_no_jh:
2005         spin_unlock(&journal->j_list_lock);
2006         jbd_unlock_bh_state(bh);
2007         spin_unlock(&journal->j_state_lock);
2008 zap_buffer_unlocked:
2009         clear_buffer_dirty(bh);
2010         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2011         clear_buffer_mapped(bh);
2012         clear_buffer_req(bh);
2013         clear_buffer_new(bh);
2014         bh->b_bdev = NULL;
2015         return may_free;
2016 }
2017
2018 /**
2019  * void journal_invalidatepage() - invalidate a journal page
2020  * @journal: journal to use for flush
2021  * @page:    page to flush
2022  * @offset:  offset of the range to invalidate
2023  * @length:  length of the range to invalidate
2024  *
2025  * Reap page buffers containing data in specified range in page.
2026  */
2027 void journal_invalidatepage(journal_t *journal,
2028                       struct page *page,
2029                       unsigned int offset,
2030                       unsigned int length)
2031 {
2032         struct buffer_head *head, *bh, *next;
2033         unsigned int stop = offset + length;
2034         unsigned int curr_off = 0;
2035         int partial_page = (offset || length < PAGE_CACHE_SIZE);
2036         int may_free = 1;
2037
2038         if (!PageLocked(page))
2039                 BUG();
2040         if (!page_has_buffers(page))
2041                 return;
2042
2043         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
2044
2045         /* We will potentially be playing with lists other than just the
2046          * data lists (especially for journaled data mode), so be
2047          * cautious in our locking. */
2048
2049         head = bh = page_buffers(page);
2050         do {
2051                 unsigned int next_off = curr_off + bh->b_size;
2052                 next = bh->b_this_page;
2053
2054                 if (next_off > stop)
2055                         return;
2056
2057                 if (offset <= curr_off) {
2058                         /* This block is wholly outside the truncation point */
2059                         lock_buffer(bh);
2060                         may_free &= journal_unmap_buffer(journal, bh,
2061                                                          partial_page);
2062                         unlock_buffer(bh);
2063                 }
2064                 curr_off = next_off;
2065                 bh = next;
2066
2067         } while (bh != head);
2068
2069         if (!partial_page) {
2070                 if (may_free && try_to_free_buffers(page))
2071                         J_ASSERT(!page_has_buffers(page));
2072         }
2073 }
2074
2075 /*
2076  * File a buffer on the given transaction list.
2077  */
2078 void __journal_file_buffer(struct journal_head *jh,
2079                         transaction_t *transaction, int jlist)
2080 {
2081         struct journal_head **list = NULL;
2082         int was_dirty = 0;
2083         struct buffer_head *bh = jh2bh(jh);
2084
2085         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2086         assert_spin_locked(&transaction->t_journal->j_list_lock);
2087
2088         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2089         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2090                                 jh->b_transaction == NULL);
2091
2092         if (jh->b_transaction && jh->b_jlist == jlist)
2093                 return;
2094
2095         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2096             jlist == BJ_Shadow || jlist == BJ_Forget) {
2097                 /*
2098                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2099                  * instead of buffer_dirty. We should not see a dirty bit set
2100                  * here because we clear it in do_get_write_access but e.g.
2101                  * tune2fs can modify the sb and set the dirty bit at any time
2102                  * so we try to gracefully handle that.
2103                  */
2104                 if (buffer_dirty(bh))
2105                         warn_dirty_buffer(bh);
2106                 if (test_clear_buffer_dirty(bh) ||
2107                     test_clear_buffer_jbddirty(bh))
2108                         was_dirty = 1;
2109         }
2110
2111         if (jh->b_transaction)
2112                 __journal_temp_unlink_buffer(jh);
2113         else
2114                 journal_grab_journal_head(bh);
2115         jh->b_transaction = transaction;
2116
2117         switch (jlist) {
2118         case BJ_None:
2119                 J_ASSERT_JH(jh, !jh->b_committed_data);
2120                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2121                 return;
2122         case BJ_SyncData:
2123                 list = &transaction->t_sync_datalist;
2124                 break;
2125         case BJ_Metadata:
2126                 transaction->t_nr_buffers++;
2127                 list = &transaction->t_buffers;
2128                 break;
2129         case BJ_Forget:
2130                 list = &transaction->t_forget;
2131                 break;
2132         case BJ_IO:
2133                 list = &transaction->t_iobuf_list;
2134                 break;
2135         case BJ_Shadow:
2136                 list = &transaction->t_shadow_list;
2137                 break;
2138         case BJ_LogCtl:
2139                 list = &transaction->t_log_list;
2140                 break;
2141         case BJ_Reserved:
2142                 list = &transaction->t_reserved_list;
2143                 break;
2144         case BJ_Locked:
2145                 list =  &transaction->t_locked_list;
2146                 break;
2147         }
2148
2149         __blist_add_buffer(list, jh);
2150         jh->b_jlist = jlist;
2151
2152         if (was_dirty)
2153                 set_buffer_jbddirty(bh);
2154 }
2155
2156 void journal_file_buffer(struct journal_head *jh,
2157                                 transaction_t *transaction, int jlist)
2158 {
2159         jbd_lock_bh_state(jh2bh(jh));
2160         spin_lock(&transaction->t_journal->j_list_lock);
2161         __journal_file_buffer(jh, transaction, jlist);
2162         spin_unlock(&transaction->t_journal->j_list_lock);
2163         jbd_unlock_bh_state(jh2bh(jh));
2164 }
2165
2166 /*
2167  * Remove a buffer from its current buffer list in preparation for
2168  * dropping it from its current transaction entirely.  If the buffer has
2169  * already started to be used by a subsequent transaction, refile the
2170  * buffer on that transaction's metadata list.
2171  *
2172  * Called under j_list_lock
2173  * Called under jbd_lock_bh_state(jh2bh(jh))
2174  *
2175  * jh and bh may be already free when this function returns
2176  */
2177 void __journal_refile_buffer(struct journal_head *jh)
2178 {
2179         int was_dirty, jlist;
2180         struct buffer_head *bh = jh2bh(jh);
2181
2182         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2183         if (jh->b_transaction)
2184                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2185
2186         /* If the buffer is now unused, just drop it. */
2187         if (jh->b_next_transaction == NULL) {
2188                 __journal_unfile_buffer(jh);
2189                 return;
2190         }
2191
2192         /*
2193          * It has been modified by a later transaction: add it to the new
2194          * transaction's metadata list.
2195          */
2196
2197         was_dirty = test_clear_buffer_jbddirty(bh);
2198         __journal_temp_unlink_buffer(jh);
2199         /*
2200          * We set b_transaction here because b_next_transaction will inherit
2201          * our jh reference and thus __journal_file_buffer() must not take a
2202          * new one.
2203          */
2204         jh->b_transaction = jh->b_next_transaction;
2205         jh->b_next_transaction = NULL;
2206         if (buffer_freed(bh))
2207                 jlist = BJ_Forget;
2208         else if (jh->b_modified)
2209                 jlist = BJ_Metadata;
2210         else
2211                 jlist = BJ_Reserved;
2212         __journal_file_buffer(jh, jh->b_transaction, jlist);
2213         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2214
2215         if (was_dirty)
2216                 set_buffer_jbddirty(bh);
2217 }
2218
2219 /*
2220  * __journal_refile_buffer() with necessary locking added. We take our bh
2221  * reference so that we can safely unlock bh.
2222  *
2223  * The jh and bh may be freed by this call.
2224  */
2225 void journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2226 {
2227         struct buffer_head *bh = jh2bh(jh);
2228
2229         /* Get reference so that buffer cannot be freed before we unlock it */
2230         get_bh(bh);
2231         jbd_lock_bh_state(bh);
2232         spin_lock(&journal->j_list_lock);
2233         __journal_refile_buffer(jh);
2234         jbd_unlock_bh_state(bh);
2235         spin_unlock(&journal->j_list_lock);
2236         __brelse(bh);
2237 }