Merge branch 'for-4.14/wacom' into for-linus
[sfrench/cifs-2.6.git] / fs / hugetlbfs / inode.c
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>         /* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39
40 #include <linux/uaccess.h>
41
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
47
48 struct hugetlbfs_config {
49         struct hstate           *hstate;
50         long                    max_hpages;
51         long                    nr_inodes;
52         long                    min_hpages;
53         kuid_t                  uid;
54         kgid_t                  gid;
55         umode_t                 mode;
56 };
57
58 struct hugetlbfs_inode_info {
59         struct shared_policy policy;
60         struct inode vfs_inode;
61 };
62
63 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
64 {
65         return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
66 }
67
68 int sysctl_hugetlb_shm_group;
69
70 enum {
71         Opt_size, Opt_nr_inodes,
72         Opt_mode, Opt_uid, Opt_gid,
73         Opt_pagesize, Opt_min_size,
74         Opt_err,
75 };
76
77 static const match_table_t tokens = {
78         {Opt_size,      "size=%s"},
79         {Opt_nr_inodes, "nr_inodes=%s"},
80         {Opt_mode,      "mode=%o"},
81         {Opt_uid,       "uid=%u"},
82         {Opt_gid,       "gid=%u"},
83         {Opt_pagesize,  "pagesize=%s"},
84         {Opt_min_size,  "min_size=%s"},
85         {Opt_err,       NULL},
86 };
87
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90                                         struct inode *inode, pgoff_t index)
91 {
92         vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93                                                         index);
94 }
95
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98         mpol_cond_put(vma->vm_policy);
99 }
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102                                         struct inode *inode, pgoff_t index)
103 {
104 }
105
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110
111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113         int i;
114
115         for (i = 0; i < pagevec_count(pvec); ++i)
116                 put_page(pvec->pages[i]);
117
118         pagevec_reinit(pvec);
119 }
120
121 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
122 {
123         struct inode *inode = file_inode(file);
124         loff_t len, vma_len;
125         int ret;
126         struct hstate *h = hstate_file(file);
127
128         /*
129          * vma address alignment (but not the pgoff alignment) has
130          * already been checked by prepare_hugepage_range.  If you add
131          * any error returns here, do so after setting VM_HUGETLB, so
132          * is_vm_hugetlb_page tests below unmap_region go the right
133          * way when do_mmap_pgoff unwinds (may be important on powerpc
134          * and ia64).
135          */
136         vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
137         vma->vm_ops = &hugetlb_vm_ops;
138
139         /*
140          * Offset passed to mmap (before page shift) could have been
141          * negative when represented as a (l)off_t.
142          */
143         if (((loff_t)vma->vm_pgoff << PAGE_SHIFT) < 0)
144                 return -EINVAL;
145
146         if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
147                 return -EINVAL;
148
149         vma_len = (loff_t)(vma->vm_end - vma->vm_start);
150         len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
151         /* check for overflow */
152         if (len < vma_len)
153                 return -EINVAL;
154
155         inode_lock(inode);
156         file_accessed(file);
157
158         ret = -ENOMEM;
159         if (hugetlb_reserve_pages(inode,
160                                 vma->vm_pgoff >> huge_page_order(h),
161                                 len >> huge_page_shift(h), vma,
162                                 vma->vm_flags))
163                 goto out;
164
165         ret = 0;
166         if (vma->vm_flags & VM_WRITE && inode->i_size < len)
167                 i_size_write(inode, len);
168 out:
169         inode_unlock(inode);
170
171         return ret;
172 }
173
174 /*
175  * Called under down_write(mmap_sem).
176  */
177
178 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
179 static unsigned long
180 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
181                 unsigned long len, unsigned long pgoff, unsigned long flags)
182 {
183         struct mm_struct *mm = current->mm;
184         struct vm_area_struct *vma;
185         struct hstate *h = hstate_file(file);
186         struct vm_unmapped_area_info info;
187
188         if (len & ~huge_page_mask(h))
189                 return -EINVAL;
190         if (len > TASK_SIZE)
191                 return -ENOMEM;
192
193         if (flags & MAP_FIXED) {
194                 if (prepare_hugepage_range(file, addr, len))
195                         return -EINVAL;
196                 return addr;
197         }
198
199         if (addr) {
200                 addr = ALIGN(addr, huge_page_size(h));
201                 vma = find_vma(mm, addr);
202                 if (TASK_SIZE - len >= addr &&
203                     (!vma || addr + len <= vm_start_gap(vma)))
204                         return addr;
205         }
206
207         info.flags = 0;
208         info.length = len;
209         info.low_limit = TASK_UNMAPPED_BASE;
210         info.high_limit = TASK_SIZE;
211         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
212         info.align_offset = 0;
213         return vm_unmapped_area(&info);
214 }
215 #endif
216
217 static size_t
218 hugetlbfs_read_actor(struct page *page, unsigned long offset,
219                         struct iov_iter *to, unsigned long size)
220 {
221         size_t copied = 0;
222         int i, chunksize;
223
224         /* Find which 4k chunk and offset with in that chunk */
225         i = offset >> PAGE_SHIFT;
226         offset = offset & ~PAGE_MASK;
227
228         while (size) {
229                 size_t n;
230                 chunksize = PAGE_SIZE;
231                 if (offset)
232                         chunksize -= offset;
233                 if (chunksize > size)
234                         chunksize = size;
235                 n = copy_page_to_iter(&page[i], offset, chunksize, to);
236                 copied += n;
237                 if (n != chunksize)
238                         return copied;
239                 offset = 0;
240                 size -= chunksize;
241                 i++;
242         }
243         return copied;
244 }
245
246 /*
247  * Support for read() - Find the page attached to f_mapping and copy out the
248  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
249  * since it has PAGE_SIZE assumptions.
250  */
251 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
252 {
253         struct file *file = iocb->ki_filp;
254         struct hstate *h = hstate_file(file);
255         struct address_space *mapping = file->f_mapping;
256         struct inode *inode = mapping->host;
257         unsigned long index = iocb->ki_pos >> huge_page_shift(h);
258         unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
259         unsigned long end_index;
260         loff_t isize;
261         ssize_t retval = 0;
262
263         while (iov_iter_count(to)) {
264                 struct page *page;
265                 size_t nr, copied;
266
267                 /* nr is the maximum number of bytes to copy from this page */
268                 nr = huge_page_size(h);
269                 isize = i_size_read(inode);
270                 if (!isize)
271                         break;
272                 end_index = (isize - 1) >> huge_page_shift(h);
273                 if (index > end_index)
274                         break;
275                 if (index == end_index) {
276                         nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
277                         if (nr <= offset)
278                                 break;
279                 }
280                 nr = nr - offset;
281
282                 /* Find the page */
283                 page = find_lock_page(mapping, index);
284                 if (unlikely(page == NULL)) {
285                         /*
286                          * We have a HOLE, zero out the user-buffer for the
287                          * length of the hole or request.
288                          */
289                         copied = iov_iter_zero(nr, to);
290                 } else {
291                         unlock_page(page);
292
293                         /*
294                          * We have the page, copy it to user space buffer.
295                          */
296                         copied = hugetlbfs_read_actor(page, offset, to, nr);
297                         put_page(page);
298                 }
299                 offset += copied;
300                 retval += copied;
301                 if (copied != nr && iov_iter_count(to)) {
302                         if (!retval)
303                                 retval = -EFAULT;
304                         break;
305                 }
306                 index += offset >> huge_page_shift(h);
307                 offset &= ~huge_page_mask(h);
308         }
309         iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
310         return retval;
311 }
312
313 static int hugetlbfs_write_begin(struct file *file,
314                         struct address_space *mapping,
315                         loff_t pos, unsigned len, unsigned flags,
316                         struct page **pagep, void **fsdata)
317 {
318         return -EINVAL;
319 }
320
321 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
322                         loff_t pos, unsigned len, unsigned copied,
323                         struct page *page, void *fsdata)
324 {
325         BUG();
326         return -EINVAL;
327 }
328
329 static void remove_huge_page(struct page *page)
330 {
331         ClearPageDirty(page);
332         ClearPageUptodate(page);
333         delete_from_page_cache(page);
334 }
335
336 static void
337 hugetlb_vmdelete_list(struct rb_root *root, pgoff_t start, pgoff_t end)
338 {
339         struct vm_area_struct *vma;
340
341         /*
342          * end == 0 indicates that the entire range after
343          * start should be unmapped.
344          */
345         vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
346                 unsigned long v_offset;
347                 unsigned long v_end;
348
349                 /*
350                  * Can the expression below overflow on 32-bit arches?
351                  * No, because the interval tree returns us only those vmas
352                  * which overlap the truncated area starting at pgoff,
353                  * and no vma on a 32-bit arch can span beyond the 4GB.
354                  */
355                 if (vma->vm_pgoff < start)
356                         v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
357                 else
358                         v_offset = 0;
359
360                 if (!end)
361                         v_end = vma->vm_end;
362                 else {
363                         v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
364                                                         + vma->vm_start;
365                         if (v_end > vma->vm_end)
366                                 v_end = vma->vm_end;
367                 }
368
369                 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
370                                                                         NULL);
371         }
372 }
373
374 /*
375  * remove_inode_hugepages handles two distinct cases: truncation and hole
376  * punch.  There are subtle differences in operation for each case.
377  *
378  * truncation is indicated by end of range being LLONG_MAX
379  *      In this case, we first scan the range and release found pages.
380  *      After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
381  *      maps and global counts.  Page faults can not race with truncation
382  *      in this routine.  hugetlb_no_page() prevents page faults in the
383  *      truncated range.  It checks i_size before allocation, and again after
384  *      with the page table lock for the page held.  The same lock must be
385  *      acquired to unmap a page.
386  * hole punch is indicated if end is not LLONG_MAX
387  *      In the hole punch case we scan the range and release found pages.
388  *      Only when releasing a page is the associated region/reserv map
389  *      deleted.  The region/reserv map for ranges without associated
390  *      pages are not modified.  Page faults can race with hole punch.
391  *      This is indicated if we find a mapped page.
392  * Note: If the passed end of range value is beyond the end of file, but
393  * not LLONG_MAX this routine still performs a hole punch operation.
394  */
395 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
396                                    loff_t lend)
397 {
398         struct hstate *h = hstate_inode(inode);
399         struct address_space *mapping = &inode->i_data;
400         const pgoff_t start = lstart >> huge_page_shift(h);
401         const pgoff_t end = lend >> huge_page_shift(h);
402         struct vm_area_struct pseudo_vma;
403         struct pagevec pvec;
404         pgoff_t next;
405         int i, freed = 0;
406         long lookup_nr = PAGEVEC_SIZE;
407         bool truncate_op = (lend == LLONG_MAX);
408
409         memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
410         pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
411         pagevec_init(&pvec, 0);
412         next = start;
413         while (next < end) {
414                 /*
415                  * Don't grab more pages than the number left in the range.
416                  */
417                 if (end - next < lookup_nr)
418                         lookup_nr = end - next;
419
420                 /*
421                  * When no more pages are found, we are done.
422                  */
423                 if (!pagevec_lookup(&pvec, mapping, next, lookup_nr))
424                         break;
425
426                 for (i = 0; i < pagevec_count(&pvec); ++i) {
427                         struct page *page = pvec.pages[i];
428                         u32 hash;
429
430                         /*
431                          * The page (index) could be beyond end.  This is
432                          * only possible in the punch hole case as end is
433                          * max page offset in the truncate case.
434                          */
435                         next = page->index;
436                         if (next >= end)
437                                 break;
438
439                         hash = hugetlb_fault_mutex_hash(h, current->mm,
440                                                         &pseudo_vma,
441                                                         mapping, next, 0);
442                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
443
444                         /*
445                          * If page is mapped, it was faulted in after being
446                          * unmapped in caller.  Unmap (again) now after taking
447                          * the fault mutex.  The mutex will prevent faults
448                          * until we finish removing the page.
449                          *
450                          * This race can only happen in the hole punch case.
451                          * Getting here in a truncate operation is a bug.
452                          */
453                         if (unlikely(page_mapped(page))) {
454                                 BUG_ON(truncate_op);
455
456                                 i_mmap_lock_write(mapping);
457                                 hugetlb_vmdelete_list(&mapping->i_mmap,
458                                         next * pages_per_huge_page(h),
459                                         (next + 1) * pages_per_huge_page(h));
460                                 i_mmap_unlock_write(mapping);
461                         }
462
463                         lock_page(page);
464                         /*
465                          * We must free the huge page and remove from page
466                          * cache (remove_huge_page) BEFORE removing the
467                          * region/reserve map (hugetlb_unreserve_pages).  In
468                          * rare out of memory conditions, removal of the
469                          * region/reserve map could fail. Correspondingly,
470                          * the subpool and global reserve usage count can need
471                          * to be adjusted.
472                          */
473                         VM_BUG_ON(PagePrivate(page));
474                         remove_huge_page(page);
475                         freed++;
476                         if (!truncate_op) {
477                                 if (unlikely(hugetlb_unreserve_pages(inode,
478                                                         next, next + 1, 1)))
479                                         hugetlb_fix_reserve_counts(inode);
480                         }
481
482                         unlock_page(page);
483                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
484                 }
485                 ++next;
486                 huge_pagevec_release(&pvec);
487                 cond_resched();
488         }
489
490         if (truncate_op)
491                 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
492 }
493
494 static void hugetlbfs_evict_inode(struct inode *inode)
495 {
496         struct resv_map *resv_map;
497
498         remove_inode_hugepages(inode, 0, LLONG_MAX);
499         resv_map = (struct resv_map *)inode->i_mapping->private_data;
500         /* root inode doesn't have the resv_map, so we should check it */
501         if (resv_map)
502                 resv_map_release(&resv_map->refs);
503         clear_inode(inode);
504 }
505
506 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
507 {
508         pgoff_t pgoff;
509         struct address_space *mapping = inode->i_mapping;
510         struct hstate *h = hstate_inode(inode);
511
512         BUG_ON(offset & ~huge_page_mask(h));
513         pgoff = offset >> PAGE_SHIFT;
514
515         i_size_write(inode, offset);
516         i_mmap_lock_write(mapping);
517         if (!RB_EMPTY_ROOT(&mapping->i_mmap))
518                 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
519         i_mmap_unlock_write(mapping);
520         remove_inode_hugepages(inode, offset, LLONG_MAX);
521         return 0;
522 }
523
524 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
525 {
526         struct hstate *h = hstate_inode(inode);
527         loff_t hpage_size = huge_page_size(h);
528         loff_t hole_start, hole_end;
529
530         /*
531          * For hole punch round up the beginning offset of the hole and
532          * round down the end.
533          */
534         hole_start = round_up(offset, hpage_size);
535         hole_end = round_down(offset + len, hpage_size);
536
537         if (hole_end > hole_start) {
538                 struct address_space *mapping = inode->i_mapping;
539
540                 inode_lock(inode);
541                 i_mmap_lock_write(mapping);
542                 if (!RB_EMPTY_ROOT(&mapping->i_mmap))
543                         hugetlb_vmdelete_list(&mapping->i_mmap,
544                                                 hole_start >> PAGE_SHIFT,
545                                                 hole_end  >> PAGE_SHIFT);
546                 i_mmap_unlock_write(mapping);
547                 remove_inode_hugepages(inode, hole_start, hole_end);
548                 inode_unlock(inode);
549         }
550
551         return 0;
552 }
553
554 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
555                                 loff_t len)
556 {
557         struct inode *inode = file_inode(file);
558         struct address_space *mapping = inode->i_mapping;
559         struct hstate *h = hstate_inode(inode);
560         struct vm_area_struct pseudo_vma;
561         struct mm_struct *mm = current->mm;
562         loff_t hpage_size = huge_page_size(h);
563         unsigned long hpage_shift = huge_page_shift(h);
564         pgoff_t start, index, end;
565         int error;
566         u32 hash;
567
568         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
569                 return -EOPNOTSUPP;
570
571         if (mode & FALLOC_FL_PUNCH_HOLE)
572                 return hugetlbfs_punch_hole(inode, offset, len);
573
574         /*
575          * Default preallocate case.
576          * For this range, start is rounded down and end is rounded up
577          * as well as being converted to page offsets.
578          */
579         start = offset >> hpage_shift;
580         end = (offset + len + hpage_size - 1) >> hpage_shift;
581
582         inode_lock(inode);
583
584         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
585         error = inode_newsize_ok(inode, offset + len);
586         if (error)
587                 goto out;
588
589         /*
590          * Initialize a pseudo vma as this is required by the huge page
591          * allocation routines.  If NUMA is configured, use page index
592          * as input to create an allocation policy.
593          */
594         memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
595         pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
596         pseudo_vma.vm_file = file;
597
598         for (index = start; index < end; index++) {
599                 /*
600                  * This is supposed to be the vaddr where the page is being
601                  * faulted in, but we have no vaddr here.
602                  */
603                 struct page *page;
604                 unsigned long addr;
605                 int avoid_reserve = 0;
606
607                 cond_resched();
608
609                 /*
610                  * fallocate(2) manpage permits EINTR; we may have been
611                  * interrupted because we are using up too much memory.
612                  */
613                 if (signal_pending(current)) {
614                         error = -EINTR;
615                         break;
616                 }
617
618                 /* Set numa allocation policy based on index */
619                 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
620
621                 /* addr is the offset within the file (zero based) */
622                 addr = index * hpage_size;
623
624                 /* mutex taken here, fault path and hole punch */
625                 hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping,
626                                                 index, addr);
627                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
628
629                 /* See if already present in mapping to avoid alloc/free */
630                 page = find_get_page(mapping, index);
631                 if (page) {
632                         put_page(page);
633                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
634                         hugetlb_drop_vma_policy(&pseudo_vma);
635                         continue;
636                 }
637
638                 /* Allocate page and add to page cache */
639                 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
640                 hugetlb_drop_vma_policy(&pseudo_vma);
641                 if (IS_ERR(page)) {
642                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
643                         error = PTR_ERR(page);
644                         goto out;
645                 }
646                 clear_huge_page(page, addr, pages_per_huge_page(h));
647                 __SetPageUptodate(page);
648                 error = huge_add_to_page_cache(page, mapping, index);
649                 if (unlikely(error)) {
650                         put_page(page);
651                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
652                         goto out;
653                 }
654
655                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
656
657                 /*
658                  * page_put due to reference from alloc_huge_page()
659                  * unlock_page because locked by add_to_page_cache()
660                  */
661                 put_page(page);
662                 unlock_page(page);
663         }
664
665         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
666                 i_size_write(inode, offset + len);
667         inode->i_ctime = current_time(inode);
668 out:
669         inode_unlock(inode);
670         return error;
671 }
672
673 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
674 {
675         struct inode *inode = d_inode(dentry);
676         struct hstate *h = hstate_inode(inode);
677         int error;
678         unsigned int ia_valid = attr->ia_valid;
679
680         BUG_ON(!inode);
681
682         error = setattr_prepare(dentry, attr);
683         if (error)
684                 return error;
685
686         if (ia_valid & ATTR_SIZE) {
687                 error = -EINVAL;
688                 if (attr->ia_size & ~huge_page_mask(h))
689                         return -EINVAL;
690                 error = hugetlb_vmtruncate(inode, attr->ia_size);
691                 if (error)
692                         return error;
693         }
694
695         setattr_copy(inode, attr);
696         mark_inode_dirty(inode);
697         return 0;
698 }
699
700 static struct inode *hugetlbfs_get_root(struct super_block *sb,
701                                         struct hugetlbfs_config *config)
702 {
703         struct inode *inode;
704
705         inode = new_inode(sb);
706         if (inode) {
707                 inode->i_ino = get_next_ino();
708                 inode->i_mode = S_IFDIR | config->mode;
709                 inode->i_uid = config->uid;
710                 inode->i_gid = config->gid;
711                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
712                 inode->i_op = &hugetlbfs_dir_inode_operations;
713                 inode->i_fop = &simple_dir_operations;
714                 /* directory inodes start off with i_nlink == 2 (for "." entry) */
715                 inc_nlink(inode);
716                 lockdep_annotate_inode_mutex_key(inode);
717         }
718         return inode;
719 }
720
721 /*
722  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
723  * be taken from reclaim -- unlike regular filesystems. This needs an
724  * annotation because huge_pmd_share() does an allocation under hugetlb's
725  * i_mmap_rwsem.
726  */
727 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
728
729 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
730                                         struct inode *dir,
731                                         umode_t mode, dev_t dev)
732 {
733         struct inode *inode;
734         struct resv_map *resv_map;
735
736         resv_map = resv_map_alloc();
737         if (!resv_map)
738                 return NULL;
739
740         inode = new_inode(sb);
741         if (inode) {
742                 inode->i_ino = get_next_ino();
743                 inode_init_owner(inode, dir, mode);
744                 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
745                                 &hugetlbfs_i_mmap_rwsem_key);
746                 inode->i_mapping->a_ops = &hugetlbfs_aops;
747                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
748                 inode->i_mapping->private_data = resv_map;
749                 switch (mode & S_IFMT) {
750                 default:
751                         init_special_inode(inode, mode, dev);
752                         break;
753                 case S_IFREG:
754                         inode->i_op = &hugetlbfs_inode_operations;
755                         inode->i_fop = &hugetlbfs_file_operations;
756                         break;
757                 case S_IFDIR:
758                         inode->i_op = &hugetlbfs_dir_inode_operations;
759                         inode->i_fop = &simple_dir_operations;
760
761                         /* directory inodes start off with i_nlink == 2 (for "." entry) */
762                         inc_nlink(inode);
763                         break;
764                 case S_IFLNK:
765                         inode->i_op = &page_symlink_inode_operations;
766                         inode_nohighmem(inode);
767                         break;
768                 }
769                 lockdep_annotate_inode_mutex_key(inode);
770         } else
771                 kref_put(&resv_map->refs, resv_map_release);
772
773         return inode;
774 }
775
776 /*
777  * File creation. Allocate an inode, and we're done..
778  */
779 static int hugetlbfs_mknod(struct inode *dir,
780                         struct dentry *dentry, umode_t mode, dev_t dev)
781 {
782         struct inode *inode;
783         int error = -ENOSPC;
784
785         inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
786         if (inode) {
787                 dir->i_ctime = dir->i_mtime = current_time(dir);
788                 d_instantiate(dentry, inode);
789                 dget(dentry);   /* Extra count - pin the dentry in core */
790                 error = 0;
791         }
792         return error;
793 }
794
795 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
796 {
797         int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
798         if (!retval)
799                 inc_nlink(dir);
800         return retval;
801 }
802
803 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
804 {
805         return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
806 }
807
808 static int hugetlbfs_symlink(struct inode *dir,
809                         struct dentry *dentry, const char *symname)
810 {
811         struct inode *inode;
812         int error = -ENOSPC;
813
814         inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
815         if (inode) {
816                 int l = strlen(symname)+1;
817                 error = page_symlink(inode, symname, l);
818                 if (!error) {
819                         d_instantiate(dentry, inode);
820                         dget(dentry);
821                 } else
822                         iput(inode);
823         }
824         dir->i_ctime = dir->i_mtime = current_time(dir);
825
826         return error;
827 }
828
829 /*
830  * mark the head page dirty
831  */
832 static int hugetlbfs_set_page_dirty(struct page *page)
833 {
834         struct page *head = compound_head(page);
835
836         SetPageDirty(head);
837         return 0;
838 }
839
840 static int hugetlbfs_migrate_page(struct address_space *mapping,
841                                 struct page *newpage, struct page *page,
842                                 enum migrate_mode mode)
843 {
844         int rc;
845
846         rc = migrate_huge_page_move_mapping(mapping, newpage, page);
847         if (rc != MIGRATEPAGE_SUCCESS)
848                 return rc;
849         migrate_page_copy(newpage, page);
850
851         return MIGRATEPAGE_SUCCESS;
852 }
853
854 static int hugetlbfs_error_remove_page(struct address_space *mapping,
855                                 struct page *page)
856 {
857         struct inode *inode = mapping->host;
858
859         remove_huge_page(page);
860         hugetlb_fix_reserve_counts(inode);
861         return 0;
862 }
863
864 /*
865  * Display the mount options in /proc/mounts.
866  */
867 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
868 {
869         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
870         struct hugepage_subpool *spool = sbinfo->spool;
871         unsigned long hpage_size = huge_page_size(sbinfo->hstate);
872         unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
873         char mod;
874
875         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
876                 seq_printf(m, ",uid=%u",
877                            from_kuid_munged(&init_user_ns, sbinfo->uid));
878         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
879                 seq_printf(m, ",gid=%u",
880                            from_kgid_munged(&init_user_ns, sbinfo->gid));
881         if (sbinfo->mode != 0755)
882                 seq_printf(m, ",mode=%o", sbinfo->mode);
883         if (sbinfo->max_inodes != -1)
884                 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
885
886         hpage_size /= 1024;
887         mod = 'K';
888         if (hpage_size >= 1024) {
889                 hpage_size /= 1024;
890                 mod = 'M';
891         }
892         seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
893         if (spool) {
894                 if (spool->max_hpages != -1)
895                         seq_printf(m, ",size=%llu",
896                                    (unsigned long long)spool->max_hpages << hpage_shift);
897                 if (spool->min_hpages != -1)
898                         seq_printf(m, ",min_size=%llu",
899                                    (unsigned long long)spool->min_hpages << hpage_shift);
900         }
901         return 0;
902 }
903
904 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
905 {
906         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
907         struct hstate *h = hstate_inode(d_inode(dentry));
908
909         buf->f_type = HUGETLBFS_MAGIC;
910         buf->f_bsize = huge_page_size(h);
911         if (sbinfo) {
912                 spin_lock(&sbinfo->stat_lock);
913                 /* If no limits set, just report 0 for max/free/used
914                  * blocks, like simple_statfs() */
915                 if (sbinfo->spool) {
916                         long free_pages;
917
918                         spin_lock(&sbinfo->spool->lock);
919                         buf->f_blocks = sbinfo->spool->max_hpages;
920                         free_pages = sbinfo->spool->max_hpages
921                                 - sbinfo->spool->used_hpages;
922                         buf->f_bavail = buf->f_bfree = free_pages;
923                         spin_unlock(&sbinfo->spool->lock);
924                         buf->f_files = sbinfo->max_inodes;
925                         buf->f_ffree = sbinfo->free_inodes;
926                 }
927                 spin_unlock(&sbinfo->stat_lock);
928         }
929         buf->f_namelen = NAME_MAX;
930         return 0;
931 }
932
933 static void hugetlbfs_put_super(struct super_block *sb)
934 {
935         struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
936
937         if (sbi) {
938                 sb->s_fs_info = NULL;
939
940                 if (sbi->spool)
941                         hugepage_put_subpool(sbi->spool);
942
943                 kfree(sbi);
944         }
945 }
946
947 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
948 {
949         if (sbinfo->free_inodes >= 0) {
950                 spin_lock(&sbinfo->stat_lock);
951                 if (unlikely(!sbinfo->free_inodes)) {
952                         spin_unlock(&sbinfo->stat_lock);
953                         return 0;
954                 }
955                 sbinfo->free_inodes--;
956                 spin_unlock(&sbinfo->stat_lock);
957         }
958
959         return 1;
960 }
961
962 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
963 {
964         if (sbinfo->free_inodes >= 0) {
965                 spin_lock(&sbinfo->stat_lock);
966                 sbinfo->free_inodes++;
967                 spin_unlock(&sbinfo->stat_lock);
968         }
969 }
970
971
972 static struct kmem_cache *hugetlbfs_inode_cachep;
973
974 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
975 {
976         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
977         struct hugetlbfs_inode_info *p;
978
979         if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
980                 return NULL;
981         p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
982         if (unlikely(!p)) {
983                 hugetlbfs_inc_free_inodes(sbinfo);
984                 return NULL;
985         }
986
987         /*
988          * Any time after allocation, hugetlbfs_destroy_inode can be called
989          * for the inode.  mpol_free_shared_policy is unconditionally called
990          * as part of hugetlbfs_destroy_inode.  So, initialize policy here
991          * in case of a quick call to destroy.
992          *
993          * Note that the policy is initialized even if we are creating a
994          * private inode.  This simplifies hugetlbfs_destroy_inode.
995          */
996         mpol_shared_policy_init(&p->policy, NULL);
997
998         return &p->vfs_inode;
999 }
1000
1001 static void hugetlbfs_i_callback(struct rcu_head *head)
1002 {
1003         struct inode *inode = container_of(head, struct inode, i_rcu);
1004         kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1005 }
1006
1007 static void hugetlbfs_destroy_inode(struct inode *inode)
1008 {
1009         hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1010         mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1011         call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
1012 }
1013
1014 static const struct address_space_operations hugetlbfs_aops = {
1015         .write_begin    = hugetlbfs_write_begin,
1016         .write_end      = hugetlbfs_write_end,
1017         .set_page_dirty = hugetlbfs_set_page_dirty,
1018         .migratepage    = hugetlbfs_migrate_page,
1019         .error_remove_page      = hugetlbfs_error_remove_page,
1020 };
1021
1022
1023 static void init_once(void *foo)
1024 {
1025         struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1026
1027         inode_init_once(&ei->vfs_inode);
1028 }
1029
1030 const struct file_operations hugetlbfs_file_operations = {
1031         .read_iter              = hugetlbfs_read_iter,
1032         .mmap                   = hugetlbfs_file_mmap,
1033         .fsync                  = noop_fsync,
1034         .get_unmapped_area      = hugetlb_get_unmapped_area,
1035         .llseek                 = default_llseek,
1036         .fallocate              = hugetlbfs_fallocate,
1037 };
1038
1039 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1040         .create         = hugetlbfs_create,
1041         .lookup         = simple_lookup,
1042         .link           = simple_link,
1043         .unlink         = simple_unlink,
1044         .symlink        = hugetlbfs_symlink,
1045         .mkdir          = hugetlbfs_mkdir,
1046         .rmdir          = simple_rmdir,
1047         .mknod          = hugetlbfs_mknod,
1048         .rename         = simple_rename,
1049         .setattr        = hugetlbfs_setattr,
1050 };
1051
1052 static const struct inode_operations hugetlbfs_inode_operations = {
1053         .setattr        = hugetlbfs_setattr,
1054 };
1055
1056 static const struct super_operations hugetlbfs_ops = {
1057         .alloc_inode    = hugetlbfs_alloc_inode,
1058         .destroy_inode  = hugetlbfs_destroy_inode,
1059         .evict_inode    = hugetlbfs_evict_inode,
1060         .statfs         = hugetlbfs_statfs,
1061         .put_super      = hugetlbfs_put_super,
1062         .show_options   = hugetlbfs_show_options,
1063 };
1064
1065 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
1066
1067 /*
1068  * Convert size option passed from command line to number of huge pages
1069  * in the pool specified by hstate.  Size option could be in bytes
1070  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1071  */
1072 static long
1073 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1074                          enum hugetlbfs_size_type val_type)
1075 {
1076         if (val_type == NO_SIZE)
1077                 return -1;
1078
1079         if (val_type == SIZE_PERCENT) {
1080                 size_opt <<= huge_page_shift(h);
1081                 size_opt *= h->max_huge_pages;
1082                 do_div(size_opt, 100);
1083         }
1084
1085         size_opt >>= huge_page_shift(h);
1086         return size_opt;
1087 }
1088
1089 static int
1090 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
1091 {
1092         char *p, *rest;
1093         substring_t args[MAX_OPT_ARGS];
1094         int option;
1095         unsigned long long max_size_opt = 0, min_size_opt = 0;
1096         enum hugetlbfs_size_type max_val_type = NO_SIZE, min_val_type = NO_SIZE;
1097
1098         if (!options)
1099                 return 0;
1100
1101         while ((p = strsep(&options, ",")) != NULL) {
1102                 int token;
1103                 if (!*p)
1104                         continue;
1105
1106                 token = match_token(p, tokens, args);
1107                 switch (token) {
1108                 case Opt_uid:
1109                         if (match_int(&args[0], &option))
1110                                 goto bad_val;
1111                         pconfig->uid = make_kuid(current_user_ns(), option);
1112                         if (!uid_valid(pconfig->uid))
1113                                 goto bad_val;
1114                         break;
1115
1116                 case Opt_gid:
1117                         if (match_int(&args[0], &option))
1118                                 goto bad_val;
1119                         pconfig->gid = make_kgid(current_user_ns(), option);
1120                         if (!gid_valid(pconfig->gid))
1121                                 goto bad_val;
1122                         break;
1123
1124                 case Opt_mode:
1125                         if (match_octal(&args[0], &option))
1126                                 goto bad_val;
1127                         pconfig->mode = option & 01777U;
1128                         break;
1129
1130                 case Opt_size: {
1131                         /* memparse() will accept a K/M/G without a digit */
1132                         if (!isdigit(*args[0].from))
1133                                 goto bad_val;
1134                         max_size_opt = memparse(args[0].from, &rest);
1135                         max_val_type = SIZE_STD;
1136                         if (*rest == '%')
1137                                 max_val_type = SIZE_PERCENT;
1138                         break;
1139                 }
1140
1141                 case Opt_nr_inodes:
1142                         /* memparse() will accept a K/M/G without a digit */
1143                         if (!isdigit(*args[0].from))
1144                                 goto bad_val;
1145                         pconfig->nr_inodes = memparse(args[0].from, &rest);
1146                         break;
1147
1148                 case Opt_pagesize: {
1149                         unsigned long ps;
1150                         ps = memparse(args[0].from, &rest);
1151                         pconfig->hstate = size_to_hstate(ps);
1152                         if (!pconfig->hstate) {
1153                                 pr_err("Unsupported page size %lu MB\n",
1154                                         ps >> 20);
1155                                 return -EINVAL;
1156                         }
1157                         break;
1158                 }
1159
1160                 case Opt_min_size: {
1161                         /* memparse() will accept a K/M/G without a digit */
1162                         if (!isdigit(*args[0].from))
1163                                 goto bad_val;
1164                         min_size_opt = memparse(args[0].from, &rest);
1165                         min_val_type = SIZE_STD;
1166                         if (*rest == '%')
1167                                 min_val_type = SIZE_PERCENT;
1168                         break;
1169                 }
1170
1171                 default:
1172                         pr_err("Bad mount option: \"%s\"\n", p);
1173                         return -EINVAL;
1174                         break;
1175                 }
1176         }
1177
1178         /*
1179          * Use huge page pool size (in hstate) to convert the size
1180          * options to number of huge pages.  If NO_SIZE, -1 is returned.
1181          */
1182         pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1183                                                 max_size_opt, max_val_type);
1184         pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1185                                                 min_size_opt, min_val_type);
1186
1187         /*
1188          * If max_size was specified, then min_size must be smaller
1189          */
1190         if (max_val_type > NO_SIZE &&
1191             pconfig->min_hpages > pconfig->max_hpages) {
1192                 pr_err("minimum size can not be greater than maximum size\n");
1193                 return -EINVAL;
1194         }
1195
1196         return 0;
1197
1198 bad_val:
1199         pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p);
1200         return -EINVAL;
1201 }
1202
1203 static int
1204 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
1205 {
1206         int ret;
1207         struct hugetlbfs_config config;
1208         struct hugetlbfs_sb_info *sbinfo;
1209
1210         config.max_hpages = -1; /* No limit on size by default */
1211         config.nr_inodes = -1; /* No limit on number of inodes by default */
1212         config.uid = current_fsuid();
1213         config.gid = current_fsgid();
1214         config.mode = 0755;
1215         config.hstate = &default_hstate;
1216         config.min_hpages = -1; /* No default minimum size */
1217         ret = hugetlbfs_parse_options(data, &config);
1218         if (ret)
1219                 return ret;
1220
1221         sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1222         if (!sbinfo)
1223                 return -ENOMEM;
1224         sb->s_fs_info = sbinfo;
1225         sbinfo->hstate = config.hstate;
1226         spin_lock_init(&sbinfo->stat_lock);
1227         sbinfo->max_inodes = config.nr_inodes;
1228         sbinfo->free_inodes = config.nr_inodes;
1229         sbinfo->spool = NULL;
1230         sbinfo->uid = config.uid;
1231         sbinfo->gid = config.gid;
1232         sbinfo->mode = config.mode;
1233
1234         /*
1235          * Allocate and initialize subpool if maximum or minimum size is
1236          * specified.  Any needed reservations (for minimim size) are taken
1237          * taken when the subpool is created.
1238          */
1239         if (config.max_hpages != -1 || config.min_hpages != -1) {
1240                 sbinfo->spool = hugepage_new_subpool(config.hstate,
1241                                                         config.max_hpages,
1242                                                         config.min_hpages);
1243                 if (!sbinfo->spool)
1244                         goto out_free;
1245         }
1246         sb->s_maxbytes = MAX_LFS_FILESIZE;
1247         sb->s_blocksize = huge_page_size(config.hstate);
1248         sb->s_blocksize_bits = huge_page_shift(config.hstate);
1249         sb->s_magic = HUGETLBFS_MAGIC;
1250         sb->s_op = &hugetlbfs_ops;
1251         sb->s_time_gran = 1;
1252         sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config));
1253         if (!sb->s_root)
1254                 goto out_free;
1255         return 0;
1256 out_free:
1257         kfree(sbinfo->spool);
1258         kfree(sbinfo);
1259         return -ENOMEM;
1260 }
1261
1262 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
1263         int flags, const char *dev_name, void *data)
1264 {
1265         return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
1266 }
1267
1268 static struct file_system_type hugetlbfs_fs_type = {
1269         .name           = "hugetlbfs",
1270         .mount          = hugetlbfs_mount,
1271         .kill_sb        = kill_litter_super,
1272 };
1273
1274 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1275
1276 static int can_do_hugetlb_shm(void)
1277 {
1278         kgid_t shm_group;
1279         shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1280         return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1281 }
1282
1283 static int get_hstate_idx(int page_size_log)
1284 {
1285         struct hstate *h = hstate_sizelog(page_size_log);
1286
1287         if (!h)
1288                 return -1;
1289         return h - hstates;
1290 }
1291
1292 static const struct dentry_operations anon_ops = {
1293         .d_dname = simple_dname
1294 };
1295
1296 /*
1297  * Note that size should be aligned to proper hugepage size in caller side,
1298  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1299  */
1300 struct file *hugetlb_file_setup(const char *name, size_t size,
1301                                 vm_flags_t acctflag, struct user_struct **user,
1302                                 int creat_flags, int page_size_log)
1303 {
1304         struct file *file = ERR_PTR(-ENOMEM);
1305         struct inode *inode;
1306         struct path path;
1307         struct super_block *sb;
1308         struct qstr quick_string;
1309         int hstate_idx;
1310
1311         hstate_idx = get_hstate_idx(page_size_log);
1312         if (hstate_idx < 0)
1313                 return ERR_PTR(-ENODEV);
1314
1315         *user = NULL;
1316         if (!hugetlbfs_vfsmount[hstate_idx])
1317                 return ERR_PTR(-ENOENT);
1318
1319         if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1320                 *user = current_user();
1321                 if (user_shm_lock(size, *user)) {
1322                         task_lock(current);
1323                         pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1324                                 current->comm, current->pid);
1325                         task_unlock(current);
1326                 } else {
1327                         *user = NULL;
1328                         return ERR_PTR(-EPERM);
1329                 }
1330         }
1331
1332         sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb;
1333         quick_string.name = name;
1334         quick_string.len = strlen(quick_string.name);
1335         quick_string.hash = 0;
1336         path.dentry = d_alloc_pseudo(sb, &quick_string);
1337         if (!path.dentry)
1338                 goto out_shm_unlock;
1339
1340         d_set_d_op(path.dentry, &anon_ops);
1341         path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]);
1342         file = ERR_PTR(-ENOSPC);
1343         inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0);
1344         if (!inode)
1345                 goto out_dentry;
1346         if (creat_flags == HUGETLB_SHMFS_INODE)
1347                 inode->i_flags |= S_PRIVATE;
1348
1349         file = ERR_PTR(-ENOMEM);
1350         if (hugetlb_reserve_pages(inode, 0,
1351                         size >> huge_page_shift(hstate_inode(inode)), NULL,
1352                         acctflag))
1353                 goto out_inode;
1354
1355         d_instantiate(path.dentry, inode);
1356         inode->i_size = size;
1357         clear_nlink(inode);
1358
1359         file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
1360                         &hugetlbfs_file_operations);
1361         if (IS_ERR(file))
1362                 goto out_dentry; /* inode is already attached */
1363
1364         return file;
1365
1366 out_inode:
1367         iput(inode);
1368 out_dentry:
1369         path_put(&path);
1370 out_shm_unlock:
1371         if (*user) {
1372                 user_shm_unlock(size, *user);
1373                 *user = NULL;
1374         }
1375         return file;
1376 }
1377
1378 static int __init init_hugetlbfs_fs(void)
1379 {
1380         struct hstate *h;
1381         int error;
1382         int i;
1383
1384         if (!hugepages_supported()) {
1385                 pr_info("disabling because there are no supported hugepage sizes\n");
1386                 return -ENOTSUPP;
1387         }
1388
1389         error = -ENOMEM;
1390         hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1391                                         sizeof(struct hugetlbfs_inode_info),
1392                                         0, SLAB_ACCOUNT, init_once);
1393         if (hugetlbfs_inode_cachep == NULL)
1394                 goto out2;
1395
1396         error = register_filesystem(&hugetlbfs_fs_type);
1397         if (error)
1398                 goto out;
1399
1400         i = 0;
1401         for_each_hstate(h) {
1402                 char buf[50];
1403                 unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10);
1404
1405                 snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb);
1406                 hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type,
1407                                                         buf);
1408
1409                 if (IS_ERR(hugetlbfs_vfsmount[i])) {
1410                         pr_err("Cannot mount internal hugetlbfs for "
1411                                 "page size %uK", ps_kb);
1412                         error = PTR_ERR(hugetlbfs_vfsmount[i]);
1413                         hugetlbfs_vfsmount[i] = NULL;
1414                 }
1415                 i++;
1416         }
1417         /* Non default hstates are optional */
1418         if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx]))
1419                 return 0;
1420
1421  out:
1422         kmem_cache_destroy(hugetlbfs_inode_cachep);
1423  out2:
1424         return error;
1425 }
1426 fs_initcall(init_hugetlbfs_fs)