xfrm: Reinject transport-mode packets through tasklet
[sfrench/cifs-2.6.git] / fs / f2fs / super.c
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/f2fs_fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/quota.h>
29
30 #include "f2fs.h"
31 #include "node.h"
32 #include "segment.h"
33 #include "xattr.h"
34 #include "gc.h"
35 #include "trace.h"
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/f2fs.h>
39
40 static struct kmem_cache *f2fs_inode_cachep;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43
44 char *fault_name[FAULT_MAX] = {
45         [FAULT_KMALLOC]         = "kmalloc",
46         [FAULT_PAGE_ALLOC]      = "page alloc",
47         [FAULT_PAGE_GET]        = "page get",
48         [FAULT_ALLOC_BIO]       = "alloc bio",
49         [FAULT_ALLOC_NID]       = "alloc nid",
50         [FAULT_ORPHAN]          = "orphan",
51         [FAULT_BLOCK]           = "no more block",
52         [FAULT_DIR_DEPTH]       = "too big dir depth",
53         [FAULT_EVICT_INODE]     = "evict_inode fail",
54         [FAULT_TRUNCATE]        = "truncate fail",
55         [FAULT_IO]              = "IO error",
56         [FAULT_CHECKPOINT]      = "checkpoint error",
57 };
58
59 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
60                                                 unsigned int rate)
61 {
62         struct f2fs_fault_info *ffi = &sbi->fault_info;
63
64         if (rate) {
65                 atomic_set(&ffi->inject_ops, 0);
66                 ffi->inject_rate = rate;
67                 ffi->inject_type = (1 << FAULT_MAX) - 1;
68         } else {
69                 memset(ffi, 0, sizeof(struct f2fs_fault_info));
70         }
71 }
72 #endif
73
74 /* f2fs-wide shrinker description */
75 static struct shrinker f2fs_shrinker_info = {
76         .scan_objects = f2fs_shrink_scan,
77         .count_objects = f2fs_shrink_count,
78         .seeks = DEFAULT_SEEKS,
79 };
80
81 enum {
82         Opt_gc_background,
83         Opt_disable_roll_forward,
84         Opt_norecovery,
85         Opt_discard,
86         Opt_nodiscard,
87         Opt_noheap,
88         Opt_heap,
89         Opt_user_xattr,
90         Opt_nouser_xattr,
91         Opt_acl,
92         Opt_noacl,
93         Opt_active_logs,
94         Opt_disable_ext_identify,
95         Opt_inline_xattr,
96         Opt_noinline_xattr,
97         Opt_inline_xattr_size,
98         Opt_inline_data,
99         Opt_inline_dentry,
100         Opt_noinline_dentry,
101         Opt_flush_merge,
102         Opt_noflush_merge,
103         Opt_nobarrier,
104         Opt_fastboot,
105         Opt_extent_cache,
106         Opt_noextent_cache,
107         Opt_noinline_data,
108         Opt_data_flush,
109         Opt_mode,
110         Opt_io_size_bits,
111         Opt_fault_injection,
112         Opt_lazytime,
113         Opt_nolazytime,
114         Opt_quota,
115         Opt_noquota,
116         Opt_usrquota,
117         Opt_grpquota,
118         Opt_prjquota,
119         Opt_usrjquota,
120         Opt_grpjquota,
121         Opt_prjjquota,
122         Opt_offusrjquota,
123         Opt_offgrpjquota,
124         Opt_offprjjquota,
125         Opt_jqfmt_vfsold,
126         Opt_jqfmt_vfsv0,
127         Opt_jqfmt_vfsv1,
128         Opt_err,
129 };
130
131 static match_table_t f2fs_tokens = {
132         {Opt_gc_background, "background_gc=%s"},
133         {Opt_disable_roll_forward, "disable_roll_forward"},
134         {Opt_norecovery, "norecovery"},
135         {Opt_discard, "discard"},
136         {Opt_nodiscard, "nodiscard"},
137         {Opt_noheap, "no_heap"},
138         {Opt_heap, "heap"},
139         {Opt_user_xattr, "user_xattr"},
140         {Opt_nouser_xattr, "nouser_xattr"},
141         {Opt_acl, "acl"},
142         {Opt_noacl, "noacl"},
143         {Opt_active_logs, "active_logs=%u"},
144         {Opt_disable_ext_identify, "disable_ext_identify"},
145         {Opt_inline_xattr, "inline_xattr"},
146         {Opt_noinline_xattr, "noinline_xattr"},
147         {Opt_inline_xattr_size, "inline_xattr_size=%u"},
148         {Opt_inline_data, "inline_data"},
149         {Opt_inline_dentry, "inline_dentry"},
150         {Opt_noinline_dentry, "noinline_dentry"},
151         {Opt_flush_merge, "flush_merge"},
152         {Opt_noflush_merge, "noflush_merge"},
153         {Opt_nobarrier, "nobarrier"},
154         {Opt_fastboot, "fastboot"},
155         {Opt_extent_cache, "extent_cache"},
156         {Opt_noextent_cache, "noextent_cache"},
157         {Opt_noinline_data, "noinline_data"},
158         {Opt_data_flush, "data_flush"},
159         {Opt_mode, "mode=%s"},
160         {Opt_io_size_bits, "io_bits=%u"},
161         {Opt_fault_injection, "fault_injection=%u"},
162         {Opt_lazytime, "lazytime"},
163         {Opt_nolazytime, "nolazytime"},
164         {Opt_quota, "quota"},
165         {Opt_noquota, "noquota"},
166         {Opt_usrquota, "usrquota"},
167         {Opt_grpquota, "grpquota"},
168         {Opt_prjquota, "prjquota"},
169         {Opt_usrjquota, "usrjquota=%s"},
170         {Opt_grpjquota, "grpjquota=%s"},
171         {Opt_prjjquota, "prjjquota=%s"},
172         {Opt_offusrjquota, "usrjquota="},
173         {Opt_offgrpjquota, "grpjquota="},
174         {Opt_offprjjquota, "prjjquota="},
175         {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
176         {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
177         {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
178         {Opt_err, NULL},
179 };
180
181 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
182 {
183         struct va_format vaf;
184         va_list args;
185
186         va_start(args, fmt);
187         vaf.fmt = fmt;
188         vaf.va = &args;
189         printk_ratelimited("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
190         va_end(args);
191 }
192
193 static void init_once(void *foo)
194 {
195         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
196
197         inode_init_once(&fi->vfs_inode);
198 }
199
200 #ifdef CONFIG_QUOTA
201 static const char * const quotatypes[] = INITQFNAMES;
202 #define QTYPE2NAME(t) (quotatypes[t])
203 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
204                                                         substring_t *args)
205 {
206         struct f2fs_sb_info *sbi = F2FS_SB(sb);
207         char *qname;
208         int ret = -EINVAL;
209
210         if (sb_any_quota_loaded(sb) && !sbi->s_qf_names[qtype]) {
211                 f2fs_msg(sb, KERN_ERR,
212                         "Cannot change journaled "
213                         "quota options when quota turned on");
214                 return -EINVAL;
215         }
216         if (f2fs_sb_has_quota_ino(sb)) {
217                 f2fs_msg(sb, KERN_INFO,
218                         "QUOTA feature is enabled, so ignore qf_name");
219                 return 0;
220         }
221
222         qname = match_strdup(args);
223         if (!qname) {
224                 f2fs_msg(sb, KERN_ERR,
225                         "Not enough memory for storing quotafile name");
226                 return -EINVAL;
227         }
228         if (sbi->s_qf_names[qtype]) {
229                 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
230                         ret = 0;
231                 else
232                         f2fs_msg(sb, KERN_ERR,
233                                  "%s quota file already specified",
234                                  QTYPE2NAME(qtype));
235                 goto errout;
236         }
237         if (strchr(qname, '/')) {
238                 f2fs_msg(sb, KERN_ERR,
239                         "quotafile must be on filesystem root");
240                 goto errout;
241         }
242         sbi->s_qf_names[qtype] = qname;
243         set_opt(sbi, QUOTA);
244         return 0;
245 errout:
246         kfree(qname);
247         return ret;
248 }
249
250 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
251 {
252         struct f2fs_sb_info *sbi = F2FS_SB(sb);
253
254         if (sb_any_quota_loaded(sb) && sbi->s_qf_names[qtype]) {
255                 f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options"
256                         " when quota turned on");
257                 return -EINVAL;
258         }
259         kfree(sbi->s_qf_names[qtype]);
260         sbi->s_qf_names[qtype] = NULL;
261         return 0;
262 }
263
264 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
265 {
266         /*
267          * We do the test below only for project quotas. 'usrquota' and
268          * 'grpquota' mount options are allowed even without quota feature
269          * to support legacy quotas in quota files.
270          */
271         if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi->sb)) {
272                 f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. "
273                          "Cannot enable project quota enforcement.");
274                 return -1;
275         }
276         if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA] ||
277                         sbi->s_qf_names[PRJQUOTA]) {
278                 if (test_opt(sbi, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
279                         clear_opt(sbi, USRQUOTA);
280
281                 if (test_opt(sbi, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
282                         clear_opt(sbi, GRPQUOTA);
283
284                 if (test_opt(sbi, PRJQUOTA) && sbi->s_qf_names[PRJQUOTA])
285                         clear_opt(sbi, PRJQUOTA);
286
287                 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
288                                 test_opt(sbi, PRJQUOTA)) {
289                         f2fs_msg(sbi->sb, KERN_ERR, "old and new quota "
290                                         "format mixing");
291                         return -1;
292                 }
293
294                 if (!sbi->s_jquota_fmt) {
295                         f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format "
296                                         "not specified");
297                         return -1;
298                 }
299         }
300
301         if (f2fs_sb_has_quota_ino(sbi->sb) && sbi->s_jquota_fmt) {
302                 f2fs_msg(sbi->sb, KERN_INFO,
303                         "QUOTA feature is enabled, so ignore jquota_fmt");
304                 sbi->s_jquota_fmt = 0;
305         }
306         if (f2fs_sb_has_quota_ino(sbi->sb) && sb_rdonly(sbi->sb)) {
307                 f2fs_msg(sbi->sb, KERN_INFO,
308                          "Filesystem with quota feature cannot be mounted RDWR "
309                          "without CONFIG_QUOTA");
310                 return -1;
311         }
312         return 0;
313 }
314 #endif
315
316 static int parse_options(struct super_block *sb, char *options)
317 {
318         struct f2fs_sb_info *sbi = F2FS_SB(sb);
319         struct request_queue *q;
320         substring_t args[MAX_OPT_ARGS];
321         char *p, *name;
322         int arg = 0;
323 #ifdef CONFIG_QUOTA
324         int ret;
325 #endif
326
327         if (!options)
328                 return 0;
329
330         while ((p = strsep(&options, ",")) != NULL) {
331                 int token;
332                 if (!*p)
333                         continue;
334                 /*
335                  * Initialize args struct so we know whether arg was
336                  * found; some options take optional arguments.
337                  */
338                 args[0].to = args[0].from = NULL;
339                 token = match_token(p, f2fs_tokens, args);
340
341                 switch (token) {
342                 case Opt_gc_background:
343                         name = match_strdup(&args[0]);
344
345                         if (!name)
346                                 return -ENOMEM;
347                         if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
348                                 set_opt(sbi, BG_GC);
349                                 clear_opt(sbi, FORCE_FG_GC);
350                         } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
351                                 clear_opt(sbi, BG_GC);
352                                 clear_opt(sbi, FORCE_FG_GC);
353                         } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
354                                 set_opt(sbi, BG_GC);
355                                 set_opt(sbi, FORCE_FG_GC);
356                         } else {
357                                 kfree(name);
358                                 return -EINVAL;
359                         }
360                         kfree(name);
361                         break;
362                 case Opt_disable_roll_forward:
363                         set_opt(sbi, DISABLE_ROLL_FORWARD);
364                         break;
365                 case Opt_norecovery:
366                         /* this option mounts f2fs with ro */
367                         set_opt(sbi, DISABLE_ROLL_FORWARD);
368                         if (!f2fs_readonly(sb))
369                                 return -EINVAL;
370                         break;
371                 case Opt_discard:
372                         q = bdev_get_queue(sb->s_bdev);
373                         if (blk_queue_discard(q)) {
374                                 set_opt(sbi, DISCARD);
375                         } else if (!f2fs_sb_mounted_blkzoned(sb)) {
376                                 f2fs_msg(sb, KERN_WARNING,
377                                         "mounting with \"discard\" option, but "
378                                         "the device does not support discard");
379                         }
380                         break;
381                 case Opt_nodiscard:
382                         if (f2fs_sb_mounted_blkzoned(sb)) {
383                                 f2fs_msg(sb, KERN_WARNING,
384                                         "discard is required for zoned block devices");
385                                 return -EINVAL;
386                         }
387                         clear_opt(sbi, DISCARD);
388                         break;
389                 case Opt_noheap:
390                         set_opt(sbi, NOHEAP);
391                         break;
392                 case Opt_heap:
393                         clear_opt(sbi, NOHEAP);
394                         break;
395 #ifdef CONFIG_F2FS_FS_XATTR
396                 case Opt_user_xattr:
397                         set_opt(sbi, XATTR_USER);
398                         break;
399                 case Opt_nouser_xattr:
400                         clear_opt(sbi, XATTR_USER);
401                         break;
402                 case Opt_inline_xattr:
403                         set_opt(sbi, INLINE_XATTR);
404                         break;
405                 case Opt_noinline_xattr:
406                         clear_opt(sbi, INLINE_XATTR);
407                         break;
408                 case Opt_inline_xattr_size:
409                         if (args->from && match_int(args, &arg))
410                                 return -EINVAL;
411                         set_opt(sbi, INLINE_XATTR_SIZE);
412                         sbi->inline_xattr_size = arg;
413                         break;
414 #else
415                 case Opt_user_xattr:
416                         f2fs_msg(sb, KERN_INFO,
417                                 "user_xattr options not supported");
418                         break;
419                 case Opt_nouser_xattr:
420                         f2fs_msg(sb, KERN_INFO,
421                                 "nouser_xattr options not supported");
422                         break;
423                 case Opt_inline_xattr:
424                         f2fs_msg(sb, KERN_INFO,
425                                 "inline_xattr options not supported");
426                         break;
427                 case Opt_noinline_xattr:
428                         f2fs_msg(sb, KERN_INFO,
429                                 "noinline_xattr options not supported");
430                         break;
431 #endif
432 #ifdef CONFIG_F2FS_FS_POSIX_ACL
433                 case Opt_acl:
434                         set_opt(sbi, POSIX_ACL);
435                         break;
436                 case Opt_noacl:
437                         clear_opt(sbi, POSIX_ACL);
438                         break;
439 #else
440                 case Opt_acl:
441                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
442                         break;
443                 case Opt_noacl:
444                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
445                         break;
446 #endif
447                 case Opt_active_logs:
448                         if (args->from && match_int(args, &arg))
449                                 return -EINVAL;
450                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
451                                 return -EINVAL;
452                         sbi->active_logs = arg;
453                         break;
454                 case Opt_disable_ext_identify:
455                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
456                         break;
457                 case Opt_inline_data:
458                         set_opt(sbi, INLINE_DATA);
459                         break;
460                 case Opt_inline_dentry:
461                         set_opt(sbi, INLINE_DENTRY);
462                         break;
463                 case Opt_noinline_dentry:
464                         clear_opt(sbi, INLINE_DENTRY);
465                         break;
466                 case Opt_flush_merge:
467                         set_opt(sbi, FLUSH_MERGE);
468                         break;
469                 case Opt_noflush_merge:
470                         clear_opt(sbi, FLUSH_MERGE);
471                         break;
472                 case Opt_nobarrier:
473                         set_opt(sbi, NOBARRIER);
474                         break;
475                 case Opt_fastboot:
476                         set_opt(sbi, FASTBOOT);
477                         break;
478                 case Opt_extent_cache:
479                         set_opt(sbi, EXTENT_CACHE);
480                         break;
481                 case Opt_noextent_cache:
482                         clear_opt(sbi, EXTENT_CACHE);
483                         break;
484                 case Opt_noinline_data:
485                         clear_opt(sbi, INLINE_DATA);
486                         break;
487                 case Opt_data_flush:
488                         set_opt(sbi, DATA_FLUSH);
489                         break;
490                 case Opt_mode:
491                         name = match_strdup(&args[0]);
492
493                         if (!name)
494                                 return -ENOMEM;
495                         if (strlen(name) == 8 &&
496                                         !strncmp(name, "adaptive", 8)) {
497                                 if (f2fs_sb_mounted_blkzoned(sb)) {
498                                         f2fs_msg(sb, KERN_WARNING,
499                                                  "adaptive mode is not allowed with "
500                                                  "zoned block device feature");
501                                         kfree(name);
502                                         return -EINVAL;
503                                 }
504                                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
505                         } else if (strlen(name) == 3 &&
506                                         !strncmp(name, "lfs", 3)) {
507                                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
508                         } else {
509                                 kfree(name);
510                                 return -EINVAL;
511                         }
512                         kfree(name);
513                         break;
514                 case Opt_io_size_bits:
515                         if (args->from && match_int(args, &arg))
516                                 return -EINVAL;
517                         if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
518                                 f2fs_msg(sb, KERN_WARNING,
519                                         "Not support %d, larger than %d",
520                                         1 << arg, BIO_MAX_PAGES);
521                                 return -EINVAL;
522                         }
523                         sbi->write_io_size_bits = arg;
524                         break;
525                 case Opt_fault_injection:
526                         if (args->from && match_int(args, &arg))
527                                 return -EINVAL;
528 #ifdef CONFIG_F2FS_FAULT_INJECTION
529                         f2fs_build_fault_attr(sbi, arg);
530                         set_opt(sbi, FAULT_INJECTION);
531 #else
532                         f2fs_msg(sb, KERN_INFO,
533                                 "FAULT_INJECTION was not selected");
534 #endif
535                         break;
536                 case Opt_lazytime:
537                         sb->s_flags |= MS_LAZYTIME;
538                         break;
539                 case Opt_nolazytime:
540                         sb->s_flags &= ~MS_LAZYTIME;
541                         break;
542 #ifdef CONFIG_QUOTA
543                 case Opt_quota:
544                 case Opt_usrquota:
545                         set_opt(sbi, USRQUOTA);
546                         break;
547                 case Opt_grpquota:
548                         set_opt(sbi, GRPQUOTA);
549                         break;
550                 case Opt_prjquota:
551                         set_opt(sbi, PRJQUOTA);
552                         break;
553                 case Opt_usrjquota:
554                         ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
555                         if (ret)
556                                 return ret;
557                         break;
558                 case Opt_grpjquota:
559                         ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
560                         if (ret)
561                                 return ret;
562                         break;
563                 case Opt_prjjquota:
564                         ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
565                         if (ret)
566                                 return ret;
567                         break;
568                 case Opt_offusrjquota:
569                         ret = f2fs_clear_qf_name(sb, USRQUOTA);
570                         if (ret)
571                                 return ret;
572                         break;
573                 case Opt_offgrpjquota:
574                         ret = f2fs_clear_qf_name(sb, GRPQUOTA);
575                         if (ret)
576                                 return ret;
577                         break;
578                 case Opt_offprjjquota:
579                         ret = f2fs_clear_qf_name(sb, PRJQUOTA);
580                         if (ret)
581                                 return ret;
582                         break;
583                 case Opt_jqfmt_vfsold:
584                         sbi->s_jquota_fmt = QFMT_VFS_OLD;
585                         break;
586                 case Opt_jqfmt_vfsv0:
587                         sbi->s_jquota_fmt = QFMT_VFS_V0;
588                         break;
589                 case Opt_jqfmt_vfsv1:
590                         sbi->s_jquota_fmt = QFMT_VFS_V1;
591                         break;
592                 case Opt_noquota:
593                         clear_opt(sbi, QUOTA);
594                         clear_opt(sbi, USRQUOTA);
595                         clear_opt(sbi, GRPQUOTA);
596                         clear_opt(sbi, PRJQUOTA);
597                         break;
598 #else
599                 case Opt_quota:
600                 case Opt_usrquota:
601                 case Opt_grpquota:
602                 case Opt_prjquota:
603                 case Opt_usrjquota:
604                 case Opt_grpjquota:
605                 case Opt_prjjquota:
606                 case Opt_offusrjquota:
607                 case Opt_offgrpjquota:
608                 case Opt_offprjjquota:
609                 case Opt_jqfmt_vfsold:
610                 case Opt_jqfmt_vfsv0:
611                 case Opt_jqfmt_vfsv1:
612                 case Opt_noquota:
613                         f2fs_msg(sb, KERN_INFO,
614                                         "quota operations not supported");
615                         break;
616 #endif
617                 default:
618                         f2fs_msg(sb, KERN_ERR,
619                                 "Unrecognized mount option \"%s\" or missing value",
620                                 p);
621                         return -EINVAL;
622                 }
623         }
624 #ifdef CONFIG_QUOTA
625         if (f2fs_check_quota_options(sbi))
626                 return -EINVAL;
627 #endif
628
629         if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
630                 f2fs_msg(sb, KERN_ERR,
631                                 "Should set mode=lfs with %uKB-sized IO",
632                                 F2FS_IO_SIZE_KB(sbi));
633                 return -EINVAL;
634         }
635
636         if (test_opt(sbi, INLINE_XATTR_SIZE)) {
637                 if (!test_opt(sbi, INLINE_XATTR)) {
638                         f2fs_msg(sb, KERN_ERR,
639                                         "inline_xattr_size option should be "
640                                         "set with inline_xattr option");
641                         return -EINVAL;
642                 }
643                 if (!sbi->inline_xattr_size ||
644                         sbi->inline_xattr_size >= DEF_ADDRS_PER_INODE -
645                                         F2FS_TOTAL_EXTRA_ATTR_SIZE -
646                                         DEF_INLINE_RESERVED_SIZE -
647                                         DEF_MIN_INLINE_SIZE) {
648                         f2fs_msg(sb, KERN_ERR,
649                                         "inline xattr size is out of range");
650                         return -EINVAL;
651                 }
652         }
653         return 0;
654 }
655
656 static struct inode *f2fs_alloc_inode(struct super_block *sb)
657 {
658         struct f2fs_inode_info *fi;
659
660         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
661         if (!fi)
662                 return NULL;
663
664         init_once((void *) fi);
665
666         /* Initialize f2fs-specific inode info */
667         atomic_set(&fi->dirty_pages, 0);
668         fi->i_current_depth = 1;
669         fi->i_advise = 0;
670         init_rwsem(&fi->i_sem);
671         INIT_LIST_HEAD(&fi->dirty_list);
672         INIT_LIST_HEAD(&fi->gdirty_list);
673         INIT_LIST_HEAD(&fi->inmem_ilist);
674         INIT_LIST_HEAD(&fi->inmem_pages);
675         mutex_init(&fi->inmem_lock);
676         init_rwsem(&fi->dio_rwsem[READ]);
677         init_rwsem(&fi->dio_rwsem[WRITE]);
678         init_rwsem(&fi->i_mmap_sem);
679         init_rwsem(&fi->i_xattr_sem);
680
681 #ifdef CONFIG_QUOTA
682         memset(&fi->i_dquot, 0, sizeof(fi->i_dquot));
683         fi->i_reserved_quota = 0;
684 #endif
685         /* Will be used by directory only */
686         fi->i_dir_level = F2FS_SB(sb)->dir_level;
687
688         return &fi->vfs_inode;
689 }
690
691 static int f2fs_drop_inode(struct inode *inode)
692 {
693         int ret;
694         /*
695          * This is to avoid a deadlock condition like below.
696          * writeback_single_inode(inode)
697          *  - f2fs_write_data_page
698          *    - f2fs_gc -> iput -> evict
699          *       - inode_wait_for_writeback(inode)
700          */
701         if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
702                 if (!inode->i_nlink && !is_bad_inode(inode)) {
703                         /* to avoid evict_inode call simultaneously */
704                         atomic_inc(&inode->i_count);
705                         spin_unlock(&inode->i_lock);
706
707                         /* some remained atomic pages should discarded */
708                         if (f2fs_is_atomic_file(inode))
709                                 drop_inmem_pages(inode);
710
711                         /* should remain fi->extent_tree for writepage */
712                         f2fs_destroy_extent_node(inode);
713
714                         sb_start_intwrite(inode->i_sb);
715                         f2fs_i_size_write(inode, 0);
716
717                         if (F2FS_HAS_BLOCKS(inode))
718                                 f2fs_truncate(inode);
719
720                         sb_end_intwrite(inode->i_sb);
721
722                         spin_lock(&inode->i_lock);
723                         atomic_dec(&inode->i_count);
724                 }
725                 trace_f2fs_drop_inode(inode, 0);
726                 return 0;
727         }
728         ret = generic_drop_inode(inode);
729         trace_f2fs_drop_inode(inode, ret);
730         return ret;
731 }
732
733 int f2fs_inode_dirtied(struct inode *inode, bool sync)
734 {
735         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
736         int ret = 0;
737
738         spin_lock(&sbi->inode_lock[DIRTY_META]);
739         if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
740                 ret = 1;
741         } else {
742                 set_inode_flag(inode, FI_DIRTY_INODE);
743                 stat_inc_dirty_inode(sbi, DIRTY_META);
744         }
745         if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
746                 list_add_tail(&F2FS_I(inode)->gdirty_list,
747                                 &sbi->inode_list[DIRTY_META]);
748                 inc_page_count(sbi, F2FS_DIRTY_IMETA);
749         }
750         spin_unlock(&sbi->inode_lock[DIRTY_META]);
751         return ret;
752 }
753
754 void f2fs_inode_synced(struct inode *inode)
755 {
756         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
757
758         spin_lock(&sbi->inode_lock[DIRTY_META]);
759         if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
760                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
761                 return;
762         }
763         if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
764                 list_del_init(&F2FS_I(inode)->gdirty_list);
765                 dec_page_count(sbi, F2FS_DIRTY_IMETA);
766         }
767         clear_inode_flag(inode, FI_DIRTY_INODE);
768         clear_inode_flag(inode, FI_AUTO_RECOVER);
769         stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
770         spin_unlock(&sbi->inode_lock[DIRTY_META]);
771 }
772
773 /*
774  * f2fs_dirty_inode() is called from __mark_inode_dirty()
775  *
776  * We should call set_dirty_inode to write the dirty inode through write_inode.
777  */
778 static void f2fs_dirty_inode(struct inode *inode, int flags)
779 {
780         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
781
782         if (inode->i_ino == F2FS_NODE_INO(sbi) ||
783                         inode->i_ino == F2FS_META_INO(sbi))
784                 return;
785
786         if (flags == I_DIRTY_TIME)
787                 return;
788
789         if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
790                 clear_inode_flag(inode, FI_AUTO_RECOVER);
791
792         f2fs_inode_dirtied(inode, false);
793 }
794
795 static void f2fs_i_callback(struct rcu_head *head)
796 {
797         struct inode *inode = container_of(head, struct inode, i_rcu);
798         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
799 }
800
801 static void f2fs_destroy_inode(struct inode *inode)
802 {
803         call_rcu(&inode->i_rcu, f2fs_i_callback);
804 }
805
806 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
807 {
808         percpu_counter_destroy(&sbi->alloc_valid_block_count);
809         percpu_counter_destroy(&sbi->total_valid_inode_count);
810 }
811
812 static void destroy_device_list(struct f2fs_sb_info *sbi)
813 {
814         int i;
815
816         for (i = 0; i < sbi->s_ndevs; i++) {
817                 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
818 #ifdef CONFIG_BLK_DEV_ZONED
819                 kfree(FDEV(i).blkz_type);
820 #endif
821         }
822         kfree(sbi->devs);
823 }
824
825 static void f2fs_put_super(struct super_block *sb)
826 {
827         struct f2fs_sb_info *sbi = F2FS_SB(sb);
828         int i;
829         bool dropped;
830
831         f2fs_quota_off_umount(sb);
832
833         /* prevent remaining shrinker jobs */
834         mutex_lock(&sbi->umount_mutex);
835
836         /*
837          * We don't need to do checkpoint when superblock is clean.
838          * But, the previous checkpoint was not done by umount, it needs to do
839          * clean checkpoint again.
840          */
841         if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
842                         !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
843                 struct cp_control cpc = {
844                         .reason = CP_UMOUNT,
845                 };
846                 write_checkpoint(sbi, &cpc);
847         }
848
849         /* be sure to wait for any on-going discard commands */
850         dropped = f2fs_wait_discard_bios(sbi);
851
852         if (f2fs_discard_en(sbi) && !sbi->discard_blks && !dropped) {
853                 struct cp_control cpc = {
854                         .reason = CP_UMOUNT | CP_TRIMMED,
855                 };
856                 write_checkpoint(sbi, &cpc);
857         }
858
859         /* write_checkpoint can update stat informaion */
860         f2fs_destroy_stats(sbi);
861
862         /*
863          * normally superblock is clean, so we need to release this.
864          * In addition, EIO will skip do checkpoint, we need this as well.
865          */
866         release_ino_entry(sbi, true);
867
868         f2fs_leave_shrinker(sbi);
869         mutex_unlock(&sbi->umount_mutex);
870
871         /* our cp_error case, we can wait for any writeback page */
872         f2fs_flush_merged_writes(sbi);
873
874         iput(sbi->node_inode);
875         iput(sbi->meta_inode);
876
877         /* destroy f2fs internal modules */
878         destroy_node_manager(sbi);
879         destroy_segment_manager(sbi);
880
881         kfree(sbi->ckpt);
882
883         f2fs_unregister_sysfs(sbi);
884
885         sb->s_fs_info = NULL;
886         if (sbi->s_chksum_driver)
887                 crypto_free_shash(sbi->s_chksum_driver);
888         kfree(sbi->raw_super);
889
890         destroy_device_list(sbi);
891         mempool_destroy(sbi->write_io_dummy);
892 #ifdef CONFIG_QUOTA
893         for (i = 0; i < MAXQUOTAS; i++)
894                 kfree(sbi->s_qf_names[i]);
895 #endif
896         destroy_percpu_info(sbi);
897         for (i = 0; i < NR_PAGE_TYPE; i++)
898                 kfree(sbi->write_io[i]);
899         kfree(sbi);
900 }
901
902 int f2fs_sync_fs(struct super_block *sb, int sync)
903 {
904         struct f2fs_sb_info *sbi = F2FS_SB(sb);
905         int err = 0;
906
907         if (unlikely(f2fs_cp_error(sbi)))
908                 return 0;
909
910         trace_f2fs_sync_fs(sb, sync);
911
912         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
913                 return -EAGAIN;
914
915         if (sync) {
916                 struct cp_control cpc;
917
918                 cpc.reason = __get_cp_reason(sbi);
919
920                 mutex_lock(&sbi->gc_mutex);
921                 err = write_checkpoint(sbi, &cpc);
922                 mutex_unlock(&sbi->gc_mutex);
923         }
924         f2fs_trace_ios(NULL, 1);
925
926         return err;
927 }
928
929 static int f2fs_freeze(struct super_block *sb)
930 {
931         if (f2fs_readonly(sb))
932                 return 0;
933
934         /* IO error happened before */
935         if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
936                 return -EIO;
937
938         /* must be clean, since sync_filesystem() was already called */
939         if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
940                 return -EINVAL;
941         return 0;
942 }
943
944 static int f2fs_unfreeze(struct super_block *sb)
945 {
946         return 0;
947 }
948
949 #ifdef CONFIG_QUOTA
950 static int f2fs_statfs_project(struct super_block *sb,
951                                 kprojid_t projid, struct kstatfs *buf)
952 {
953         struct kqid qid;
954         struct dquot *dquot;
955         u64 limit;
956         u64 curblock;
957
958         qid = make_kqid_projid(projid);
959         dquot = dqget(sb, qid);
960         if (IS_ERR(dquot))
961                 return PTR_ERR(dquot);
962         spin_lock(&dq_data_lock);
963
964         limit = (dquot->dq_dqb.dqb_bsoftlimit ?
965                  dquot->dq_dqb.dqb_bsoftlimit :
966                  dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
967         if (limit && buf->f_blocks > limit) {
968                 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
969                 buf->f_blocks = limit;
970                 buf->f_bfree = buf->f_bavail =
971                         (buf->f_blocks > curblock) ?
972                          (buf->f_blocks - curblock) : 0;
973         }
974
975         limit = dquot->dq_dqb.dqb_isoftlimit ?
976                 dquot->dq_dqb.dqb_isoftlimit :
977                 dquot->dq_dqb.dqb_ihardlimit;
978         if (limit && buf->f_files > limit) {
979                 buf->f_files = limit;
980                 buf->f_ffree =
981                         (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
982                          (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
983         }
984
985         spin_unlock(&dq_data_lock);
986         dqput(dquot);
987         return 0;
988 }
989 #endif
990
991 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
992 {
993         struct super_block *sb = dentry->d_sb;
994         struct f2fs_sb_info *sbi = F2FS_SB(sb);
995         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
996         block_t total_count, user_block_count, start_count, ovp_count;
997         u64 avail_node_count;
998
999         total_count = le64_to_cpu(sbi->raw_super->block_count);
1000         user_block_count = sbi->user_block_count;
1001         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1002         ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
1003         buf->f_type = F2FS_SUPER_MAGIC;
1004         buf->f_bsize = sbi->blocksize;
1005
1006         buf->f_blocks = total_count - start_count;
1007         buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count;
1008         buf->f_bavail = user_block_count - valid_user_blocks(sbi) -
1009                                                 sbi->current_reserved_blocks;
1010
1011         avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1012
1013         if (avail_node_count > user_block_count) {
1014                 buf->f_files = user_block_count;
1015                 buf->f_ffree = buf->f_bavail;
1016         } else {
1017                 buf->f_files = avail_node_count;
1018                 buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1019                                         buf->f_bavail);
1020         }
1021
1022         buf->f_namelen = F2FS_NAME_LEN;
1023         buf->f_fsid.val[0] = (u32)id;
1024         buf->f_fsid.val[1] = (u32)(id >> 32);
1025
1026 #ifdef CONFIG_QUOTA
1027         if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1028                         sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1029                 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1030         }
1031 #endif
1032         return 0;
1033 }
1034
1035 static inline void f2fs_show_quota_options(struct seq_file *seq,
1036                                            struct super_block *sb)
1037 {
1038 #ifdef CONFIG_QUOTA
1039         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1040
1041         if (sbi->s_jquota_fmt) {
1042                 char *fmtname = "";
1043
1044                 switch (sbi->s_jquota_fmt) {
1045                 case QFMT_VFS_OLD:
1046                         fmtname = "vfsold";
1047                         break;
1048                 case QFMT_VFS_V0:
1049                         fmtname = "vfsv0";
1050                         break;
1051                 case QFMT_VFS_V1:
1052                         fmtname = "vfsv1";
1053                         break;
1054                 }
1055                 seq_printf(seq, ",jqfmt=%s", fmtname);
1056         }
1057
1058         if (sbi->s_qf_names[USRQUOTA])
1059                 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1060
1061         if (sbi->s_qf_names[GRPQUOTA])
1062                 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1063
1064         if (sbi->s_qf_names[PRJQUOTA])
1065                 seq_show_option(seq, "prjjquota", sbi->s_qf_names[PRJQUOTA]);
1066 #endif
1067 }
1068
1069 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1070 {
1071         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1072
1073         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1074                 if (test_opt(sbi, FORCE_FG_GC))
1075                         seq_printf(seq, ",background_gc=%s", "sync");
1076                 else
1077                         seq_printf(seq, ",background_gc=%s", "on");
1078         } else {
1079                 seq_printf(seq, ",background_gc=%s", "off");
1080         }
1081         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1082                 seq_puts(seq, ",disable_roll_forward");
1083         if (test_opt(sbi, DISCARD))
1084                 seq_puts(seq, ",discard");
1085         if (test_opt(sbi, NOHEAP))
1086                 seq_puts(seq, ",no_heap");
1087         else
1088                 seq_puts(seq, ",heap");
1089 #ifdef CONFIG_F2FS_FS_XATTR
1090         if (test_opt(sbi, XATTR_USER))
1091                 seq_puts(seq, ",user_xattr");
1092         else
1093                 seq_puts(seq, ",nouser_xattr");
1094         if (test_opt(sbi, INLINE_XATTR))
1095                 seq_puts(seq, ",inline_xattr");
1096         else
1097                 seq_puts(seq, ",noinline_xattr");
1098         if (test_opt(sbi, INLINE_XATTR_SIZE))
1099                 seq_printf(seq, ",inline_xattr_size=%u",
1100                                         sbi->inline_xattr_size);
1101 #endif
1102 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1103         if (test_opt(sbi, POSIX_ACL))
1104                 seq_puts(seq, ",acl");
1105         else
1106                 seq_puts(seq, ",noacl");
1107 #endif
1108         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1109                 seq_puts(seq, ",disable_ext_identify");
1110         if (test_opt(sbi, INLINE_DATA))
1111                 seq_puts(seq, ",inline_data");
1112         else
1113                 seq_puts(seq, ",noinline_data");
1114         if (test_opt(sbi, INLINE_DENTRY))
1115                 seq_puts(seq, ",inline_dentry");
1116         else
1117                 seq_puts(seq, ",noinline_dentry");
1118         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1119                 seq_puts(seq, ",flush_merge");
1120         if (test_opt(sbi, NOBARRIER))
1121                 seq_puts(seq, ",nobarrier");
1122         if (test_opt(sbi, FASTBOOT))
1123                 seq_puts(seq, ",fastboot");
1124         if (test_opt(sbi, EXTENT_CACHE))
1125                 seq_puts(seq, ",extent_cache");
1126         else
1127                 seq_puts(seq, ",noextent_cache");
1128         if (test_opt(sbi, DATA_FLUSH))
1129                 seq_puts(seq, ",data_flush");
1130
1131         seq_puts(seq, ",mode=");
1132         if (test_opt(sbi, ADAPTIVE))
1133                 seq_puts(seq, "adaptive");
1134         else if (test_opt(sbi, LFS))
1135                 seq_puts(seq, "lfs");
1136         seq_printf(seq, ",active_logs=%u", sbi->active_logs);
1137         if (F2FS_IO_SIZE_BITS(sbi))
1138                 seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi));
1139 #ifdef CONFIG_F2FS_FAULT_INJECTION
1140         if (test_opt(sbi, FAULT_INJECTION))
1141                 seq_printf(seq, ",fault_injection=%u",
1142                                 sbi->fault_info.inject_rate);
1143 #endif
1144 #ifdef CONFIG_QUOTA
1145         if (test_opt(sbi, QUOTA))
1146                 seq_puts(seq, ",quota");
1147         if (test_opt(sbi, USRQUOTA))
1148                 seq_puts(seq, ",usrquota");
1149         if (test_opt(sbi, GRPQUOTA))
1150                 seq_puts(seq, ",grpquota");
1151         if (test_opt(sbi, PRJQUOTA))
1152                 seq_puts(seq, ",prjquota");
1153 #endif
1154         f2fs_show_quota_options(seq, sbi->sb);
1155
1156         return 0;
1157 }
1158
1159 static void default_options(struct f2fs_sb_info *sbi)
1160 {
1161         /* init some FS parameters */
1162         sbi->active_logs = NR_CURSEG_TYPE;
1163         sbi->inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1164
1165         set_opt(sbi, BG_GC);
1166         set_opt(sbi, INLINE_XATTR);
1167         set_opt(sbi, INLINE_DATA);
1168         set_opt(sbi, INLINE_DENTRY);
1169         set_opt(sbi, EXTENT_CACHE);
1170         set_opt(sbi, NOHEAP);
1171         sbi->sb->s_flags |= MS_LAZYTIME;
1172         set_opt(sbi, FLUSH_MERGE);
1173         if (f2fs_sb_mounted_blkzoned(sbi->sb)) {
1174                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
1175                 set_opt(sbi, DISCARD);
1176         } else {
1177                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1178         }
1179
1180 #ifdef CONFIG_F2FS_FS_XATTR
1181         set_opt(sbi, XATTR_USER);
1182 #endif
1183 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1184         set_opt(sbi, POSIX_ACL);
1185 #endif
1186
1187 #ifdef CONFIG_F2FS_FAULT_INJECTION
1188         f2fs_build_fault_attr(sbi, 0);
1189 #endif
1190 }
1191
1192 #ifdef CONFIG_QUOTA
1193 static int f2fs_enable_quotas(struct super_block *sb);
1194 #endif
1195 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1196 {
1197         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1198         struct f2fs_mount_info org_mount_opt;
1199         unsigned long old_sb_flags;
1200         int err, active_logs;
1201         bool need_restart_gc = false;
1202         bool need_stop_gc = false;
1203         bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1204 #ifdef CONFIG_F2FS_FAULT_INJECTION
1205         struct f2fs_fault_info ffi = sbi->fault_info;
1206 #endif
1207 #ifdef CONFIG_QUOTA
1208         int s_jquota_fmt;
1209         char *s_qf_names[MAXQUOTAS];
1210         int i, j;
1211 #endif
1212
1213         /*
1214          * Save the old mount options in case we
1215          * need to restore them.
1216          */
1217         org_mount_opt = sbi->mount_opt;
1218         old_sb_flags = sb->s_flags;
1219         active_logs = sbi->active_logs;
1220
1221 #ifdef CONFIG_QUOTA
1222         s_jquota_fmt = sbi->s_jquota_fmt;
1223         for (i = 0; i < MAXQUOTAS; i++) {
1224                 if (sbi->s_qf_names[i]) {
1225                         s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
1226                                                          GFP_KERNEL);
1227                         if (!s_qf_names[i]) {
1228                                 for (j = 0; j < i; j++)
1229                                         kfree(s_qf_names[j]);
1230                                 return -ENOMEM;
1231                         }
1232                 } else {
1233                         s_qf_names[i] = NULL;
1234                 }
1235         }
1236 #endif
1237
1238         /* recover superblocks we couldn't write due to previous RO mount */
1239         if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1240                 err = f2fs_commit_super(sbi, false);
1241                 f2fs_msg(sb, KERN_INFO,
1242                         "Try to recover all the superblocks, ret: %d", err);
1243                 if (!err)
1244                         clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1245         }
1246
1247         default_options(sbi);
1248
1249         /* parse mount options */
1250         err = parse_options(sb, data);
1251         if (err)
1252                 goto restore_opts;
1253
1254         /*
1255          * Previous and new state of filesystem is RO,
1256          * so skip checking GC and FLUSH_MERGE conditions.
1257          */
1258         if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1259                 goto skip;
1260
1261 #ifdef CONFIG_QUOTA
1262         if (!f2fs_readonly(sb) && (*flags & MS_RDONLY)) {
1263                 err = dquot_suspend(sb, -1);
1264                 if (err < 0)
1265                         goto restore_opts;
1266         } else {
1267                 /* dquot_resume needs RW */
1268                 sb->s_flags &= ~MS_RDONLY;
1269                 if (sb_any_quota_suspended(sb)) {
1270                         dquot_resume(sb, -1);
1271                 } else if (f2fs_sb_has_quota_ino(sb)) {
1272                         err = f2fs_enable_quotas(sb);
1273                         if (err)
1274                                 goto restore_opts;
1275                 }
1276         }
1277 #endif
1278         /* disallow enable/disable extent_cache dynamically */
1279         if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1280                 err = -EINVAL;
1281                 f2fs_msg(sbi->sb, KERN_WARNING,
1282                                 "switch extent_cache option is not allowed");
1283                 goto restore_opts;
1284         }
1285
1286         /*
1287          * We stop the GC thread if FS is mounted as RO
1288          * or if background_gc = off is passed in mount
1289          * option. Also sync the filesystem.
1290          */
1291         if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1292                 if (sbi->gc_thread) {
1293                         stop_gc_thread(sbi);
1294                         need_restart_gc = true;
1295                 }
1296         } else if (!sbi->gc_thread) {
1297                 err = start_gc_thread(sbi);
1298                 if (err)
1299                         goto restore_opts;
1300                 need_stop_gc = true;
1301         }
1302
1303         if (*flags & MS_RDONLY) {
1304                 writeback_inodes_sb(sb, WB_REASON_SYNC);
1305                 sync_inodes_sb(sb);
1306
1307                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1308                 set_sbi_flag(sbi, SBI_IS_CLOSE);
1309                 f2fs_sync_fs(sb, 1);
1310                 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1311         }
1312
1313         /*
1314          * We stop issue flush thread if FS is mounted as RO
1315          * or if flush_merge is not passed in mount option.
1316          */
1317         if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1318                 clear_opt(sbi, FLUSH_MERGE);
1319                 destroy_flush_cmd_control(sbi, false);
1320         } else {
1321                 err = create_flush_cmd_control(sbi);
1322                 if (err)
1323                         goto restore_gc;
1324         }
1325 skip:
1326 #ifdef CONFIG_QUOTA
1327         /* Release old quota file names */
1328         for (i = 0; i < MAXQUOTAS; i++)
1329                 kfree(s_qf_names[i]);
1330 #endif
1331         /* Update the POSIXACL Flag */
1332         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1333                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1334
1335         return 0;
1336 restore_gc:
1337         if (need_restart_gc) {
1338                 if (start_gc_thread(sbi))
1339                         f2fs_msg(sbi->sb, KERN_WARNING,
1340                                 "background gc thread has stopped");
1341         } else if (need_stop_gc) {
1342                 stop_gc_thread(sbi);
1343         }
1344 restore_opts:
1345 #ifdef CONFIG_QUOTA
1346         sbi->s_jquota_fmt = s_jquota_fmt;
1347         for (i = 0; i < MAXQUOTAS; i++) {
1348                 kfree(sbi->s_qf_names[i]);
1349                 sbi->s_qf_names[i] = s_qf_names[i];
1350         }
1351 #endif
1352         sbi->mount_opt = org_mount_opt;
1353         sbi->active_logs = active_logs;
1354         sb->s_flags = old_sb_flags;
1355 #ifdef CONFIG_F2FS_FAULT_INJECTION
1356         sbi->fault_info = ffi;
1357 #endif
1358         return err;
1359 }
1360
1361 #ifdef CONFIG_QUOTA
1362 /* Read data from quotafile */
1363 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1364                                size_t len, loff_t off)
1365 {
1366         struct inode *inode = sb_dqopt(sb)->files[type];
1367         struct address_space *mapping = inode->i_mapping;
1368         block_t blkidx = F2FS_BYTES_TO_BLK(off);
1369         int offset = off & (sb->s_blocksize - 1);
1370         int tocopy;
1371         size_t toread;
1372         loff_t i_size = i_size_read(inode);
1373         struct page *page;
1374         char *kaddr;
1375
1376         if (off > i_size)
1377                 return 0;
1378
1379         if (off + len > i_size)
1380                 len = i_size - off;
1381         toread = len;
1382         while (toread > 0) {
1383                 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1384 repeat:
1385                 page = read_mapping_page(mapping, blkidx, NULL);
1386                 if (IS_ERR(page)) {
1387                         if (PTR_ERR(page) == -ENOMEM) {
1388                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1389                                 goto repeat;
1390                         }
1391                         return PTR_ERR(page);
1392                 }
1393
1394                 lock_page(page);
1395
1396                 if (unlikely(page->mapping != mapping)) {
1397                         f2fs_put_page(page, 1);
1398                         goto repeat;
1399                 }
1400                 if (unlikely(!PageUptodate(page))) {
1401                         f2fs_put_page(page, 1);
1402                         return -EIO;
1403                 }
1404
1405                 kaddr = kmap_atomic(page);
1406                 memcpy(data, kaddr + offset, tocopy);
1407                 kunmap_atomic(kaddr);
1408                 f2fs_put_page(page, 1);
1409
1410                 offset = 0;
1411                 toread -= tocopy;
1412                 data += tocopy;
1413                 blkidx++;
1414         }
1415         return len;
1416 }
1417
1418 /* Write to quotafile */
1419 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1420                                 const char *data, size_t len, loff_t off)
1421 {
1422         struct inode *inode = sb_dqopt(sb)->files[type];
1423         struct address_space *mapping = inode->i_mapping;
1424         const struct address_space_operations *a_ops = mapping->a_ops;
1425         int offset = off & (sb->s_blocksize - 1);
1426         size_t towrite = len;
1427         struct page *page;
1428         char *kaddr;
1429         int err = 0;
1430         int tocopy;
1431
1432         while (towrite > 0) {
1433                 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1434                                                                 towrite);
1435 retry:
1436                 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1437                                                         &page, NULL);
1438                 if (unlikely(err)) {
1439                         if (err == -ENOMEM) {
1440                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1441                                 goto retry;
1442                         }
1443                         break;
1444                 }
1445
1446                 kaddr = kmap_atomic(page);
1447                 memcpy(kaddr + offset, data, tocopy);
1448                 kunmap_atomic(kaddr);
1449                 flush_dcache_page(page);
1450
1451                 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1452                                                 page, NULL);
1453                 offset = 0;
1454                 towrite -= tocopy;
1455                 off += tocopy;
1456                 data += tocopy;
1457                 cond_resched();
1458         }
1459
1460         if (len == towrite)
1461                 return err;
1462         inode->i_mtime = inode->i_ctime = current_time(inode);
1463         f2fs_mark_inode_dirty_sync(inode, false);
1464         return len - towrite;
1465 }
1466
1467 static struct dquot **f2fs_get_dquots(struct inode *inode)
1468 {
1469         return F2FS_I(inode)->i_dquot;
1470 }
1471
1472 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1473 {
1474         return &F2FS_I(inode)->i_reserved_quota;
1475 }
1476
1477 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1478 {
1479         return dquot_quota_on_mount(sbi->sb, sbi->s_qf_names[type],
1480                                                 sbi->s_jquota_fmt, type);
1481 }
1482
1483 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1484 {
1485         int enabled = 0;
1486         int i, err;
1487
1488         if (f2fs_sb_has_quota_ino(sbi->sb) && rdonly) {
1489                 err = f2fs_enable_quotas(sbi->sb);
1490                 if (err) {
1491                         f2fs_msg(sbi->sb, KERN_ERR,
1492                                         "Cannot turn on quota_ino: %d", err);
1493                         return 0;
1494                 }
1495                 return 1;
1496         }
1497
1498         for (i = 0; i < MAXQUOTAS; i++) {
1499                 if (sbi->s_qf_names[i]) {
1500                         err = f2fs_quota_on_mount(sbi, i);
1501                         if (!err) {
1502                                 enabled = 1;
1503                                 continue;
1504                         }
1505                         f2fs_msg(sbi->sb, KERN_ERR,
1506                                 "Cannot turn on quotas: %d on %d", err, i);
1507                 }
1508         }
1509         return enabled;
1510 }
1511
1512 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
1513                              unsigned int flags)
1514 {
1515         struct inode *qf_inode;
1516         unsigned long qf_inum;
1517         int err;
1518
1519         BUG_ON(!f2fs_sb_has_quota_ino(sb));
1520
1521         qf_inum = f2fs_qf_ino(sb, type);
1522         if (!qf_inum)
1523                 return -EPERM;
1524
1525         qf_inode = f2fs_iget(sb, qf_inum);
1526         if (IS_ERR(qf_inode)) {
1527                 f2fs_msg(sb, KERN_ERR,
1528                         "Bad quota inode %u:%lu", type, qf_inum);
1529                 return PTR_ERR(qf_inode);
1530         }
1531
1532         /* Don't account quota for quota files to avoid recursion */
1533         qf_inode->i_flags |= S_NOQUOTA;
1534         err = dquot_enable(qf_inode, type, format_id, flags);
1535         iput(qf_inode);
1536         return err;
1537 }
1538
1539 static int f2fs_enable_quotas(struct super_block *sb)
1540 {
1541         int type, err = 0;
1542         unsigned long qf_inum;
1543         bool quota_mopt[MAXQUOTAS] = {
1544                 test_opt(F2FS_SB(sb), USRQUOTA),
1545                 test_opt(F2FS_SB(sb), GRPQUOTA),
1546                 test_opt(F2FS_SB(sb), PRJQUOTA),
1547         };
1548
1549         sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
1550         for (type = 0; type < MAXQUOTAS; type++) {
1551                 qf_inum = f2fs_qf_ino(sb, type);
1552                 if (qf_inum) {
1553                         err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
1554                                 DQUOT_USAGE_ENABLED |
1555                                 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
1556                         if (err) {
1557                                 f2fs_msg(sb, KERN_ERR,
1558                                         "Failed to enable quota tracking "
1559                                         "(type=%d, err=%d). Please run "
1560                                         "fsck to fix.", type, err);
1561                                 for (type--; type >= 0; type--)
1562                                         dquot_quota_off(sb, type);
1563                                 return err;
1564                         }
1565                 }
1566         }
1567         return 0;
1568 }
1569
1570 static int f2fs_quota_sync(struct super_block *sb, int type)
1571 {
1572         struct quota_info *dqopt = sb_dqopt(sb);
1573         int cnt;
1574         int ret;
1575
1576         ret = dquot_writeback_dquots(sb, type);
1577         if (ret)
1578                 return ret;
1579
1580         /*
1581          * Now when everything is written we can discard the pagecache so
1582          * that userspace sees the changes.
1583          */
1584         for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1585                 if (type != -1 && cnt != type)
1586                         continue;
1587                 if (!sb_has_quota_active(sb, cnt))
1588                         continue;
1589
1590                 ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping);
1591                 if (ret)
1592                         return ret;
1593
1594                 inode_lock(dqopt->files[cnt]);
1595                 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1596                 inode_unlock(dqopt->files[cnt]);
1597         }
1598         return 0;
1599 }
1600
1601 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1602                                                         const struct path *path)
1603 {
1604         struct inode *inode;
1605         int err;
1606
1607         err = f2fs_quota_sync(sb, type);
1608         if (err)
1609                 return err;
1610
1611         err = dquot_quota_on(sb, type, format_id, path);
1612         if (err)
1613                 return err;
1614
1615         inode = d_inode(path->dentry);
1616
1617         inode_lock(inode);
1618         F2FS_I(inode)->i_flags |= FS_NOATIME_FL | FS_IMMUTABLE_FL;
1619         inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
1620                                         S_NOATIME | S_IMMUTABLE);
1621         inode_unlock(inode);
1622         f2fs_mark_inode_dirty_sync(inode, false);
1623
1624         return 0;
1625 }
1626
1627 static int f2fs_quota_off(struct super_block *sb, int type)
1628 {
1629         struct inode *inode = sb_dqopt(sb)->files[type];
1630         int err;
1631
1632         if (!inode || !igrab(inode))
1633                 return dquot_quota_off(sb, type);
1634
1635         f2fs_quota_sync(sb, type);
1636
1637         err = dquot_quota_off(sb, type);
1638         if (err || f2fs_sb_has_quota_ino(sb))
1639                 goto out_put;
1640
1641         inode_lock(inode);
1642         F2FS_I(inode)->i_flags &= ~(FS_NOATIME_FL | FS_IMMUTABLE_FL);
1643         inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
1644         inode_unlock(inode);
1645         f2fs_mark_inode_dirty_sync(inode, false);
1646 out_put:
1647         iput(inode);
1648         return err;
1649 }
1650
1651 void f2fs_quota_off_umount(struct super_block *sb)
1652 {
1653         int type;
1654
1655         for (type = 0; type < MAXQUOTAS; type++)
1656                 f2fs_quota_off(sb, type);
1657 }
1658
1659 int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
1660 {
1661         *projid = F2FS_I(inode)->i_projid;
1662         return 0;
1663 }
1664
1665 static const struct dquot_operations f2fs_quota_operations = {
1666         .get_reserved_space = f2fs_get_reserved_space,
1667         .write_dquot    = dquot_commit,
1668         .acquire_dquot  = dquot_acquire,
1669         .release_dquot  = dquot_release,
1670         .mark_dirty     = dquot_mark_dquot_dirty,
1671         .write_info     = dquot_commit_info,
1672         .alloc_dquot    = dquot_alloc,
1673         .destroy_dquot  = dquot_destroy,
1674         .get_projid     = f2fs_get_projid,
1675         .get_next_id    = dquot_get_next_id,
1676 };
1677
1678 static const struct quotactl_ops f2fs_quotactl_ops = {
1679         .quota_on       = f2fs_quota_on,
1680         .quota_off      = f2fs_quota_off,
1681         .quota_sync     = f2fs_quota_sync,
1682         .get_state      = dquot_get_state,
1683         .set_info       = dquot_set_dqinfo,
1684         .get_dqblk      = dquot_get_dqblk,
1685         .set_dqblk      = dquot_set_dqblk,
1686         .get_nextdqblk  = dquot_get_next_dqblk,
1687 };
1688 #else
1689 void f2fs_quota_off_umount(struct super_block *sb)
1690 {
1691 }
1692 #endif
1693
1694 static const struct super_operations f2fs_sops = {
1695         .alloc_inode    = f2fs_alloc_inode,
1696         .drop_inode     = f2fs_drop_inode,
1697         .destroy_inode  = f2fs_destroy_inode,
1698         .write_inode    = f2fs_write_inode,
1699         .dirty_inode    = f2fs_dirty_inode,
1700         .show_options   = f2fs_show_options,
1701 #ifdef CONFIG_QUOTA
1702         .quota_read     = f2fs_quota_read,
1703         .quota_write    = f2fs_quota_write,
1704         .get_dquots     = f2fs_get_dquots,
1705 #endif
1706         .evict_inode    = f2fs_evict_inode,
1707         .put_super      = f2fs_put_super,
1708         .sync_fs        = f2fs_sync_fs,
1709         .freeze_fs      = f2fs_freeze,
1710         .unfreeze_fs    = f2fs_unfreeze,
1711         .statfs         = f2fs_statfs,
1712         .remount_fs     = f2fs_remount,
1713 };
1714
1715 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1716 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1717 {
1718         return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1719                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1720                                 ctx, len, NULL);
1721 }
1722
1723 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1724                                                         void *fs_data)
1725 {
1726         return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1727                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1728                                 ctx, len, fs_data, XATTR_CREATE);
1729 }
1730
1731 static unsigned f2fs_max_namelen(struct inode *inode)
1732 {
1733         return S_ISLNK(inode->i_mode) ?
1734                         inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1735 }
1736
1737 static const struct fscrypt_operations f2fs_cryptops = {
1738         .key_prefix     = "f2fs:",
1739         .get_context    = f2fs_get_context,
1740         .set_context    = f2fs_set_context,
1741         .empty_dir      = f2fs_empty_dir,
1742         .max_namelen    = f2fs_max_namelen,
1743 };
1744 #endif
1745
1746 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1747                 u64 ino, u32 generation)
1748 {
1749         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1750         struct inode *inode;
1751
1752         if (check_nid_range(sbi, ino))
1753                 return ERR_PTR(-ESTALE);
1754
1755         /*
1756          * f2fs_iget isn't quite right if the inode is currently unallocated!
1757          * However f2fs_iget currently does appropriate checks to handle stale
1758          * inodes so everything is OK.
1759          */
1760         inode = f2fs_iget(sb, ino);
1761         if (IS_ERR(inode))
1762                 return ERR_CAST(inode);
1763         if (unlikely(generation && inode->i_generation != generation)) {
1764                 /* we didn't find the right inode.. */
1765                 iput(inode);
1766                 return ERR_PTR(-ESTALE);
1767         }
1768         return inode;
1769 }
1770
1771 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1772                 int fh_len, int fh_type)
1773 {
1774         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1775                                     f2fs_nfs_get_inode);
1776 }
1777
1778 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1779                 int fh_len, int fh_type)
1780 {
1781         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1782                                     f2fs_nfs_get_inode);
1783 }
1784
1785 static const struct export_operations f2fs_export_ops = {
1786         .fh_to_dentry = f2fs_fh_to_dentry,
1787         .fh_to_parent = f2fs_fh_to_parent,
1788         .get_parent = f2fs_get_parent,
1789 };
1790
1791 static loff_t max_file_blocks(void)
1792 {
1793         loff_t result = 0;
1794         loff_t leaf_count = ADDRS_PER_BLOCK;
1795
1796         /*
1797          * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
1798          * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
1799          * space in inode.i_addr, it will be more safe to reassign
1800          * result as zero.
1801          */
1802
1803         /* two direct node blocks */
1804         result += (leaf_count * 2);
1805
1806         /* two indirect node blocks */
1807         leaf_count *= NIDS_PER_BLOCK;
1808         result += (leaf_count * 2);
1809
1810         /* one double indirect node block */
1811         leaf_count *= NIDS_PER_BLOCK;
1812         result += leaf_count;
1813
1814         return result;
1815 }
1816
1817 static int __f2fs_commit_super(struct buffer_head *bh,
1818                         struct f2fs_super_block *super)
1819 {
1820         lock_buffer(bh);
1821         if (super)
1822                 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1823         set_buffer_uptodate(bh);
1824         set_buffer_dirty(bh);
1825         unlock_buffer(bh);
1826
1827         /* it's rare case, we can do fua all the time */
1828         return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1829 }
1830
1831 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1832                                         struct buffer_head *bh)
1833 {
1834         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1835                                         (bh->b_data + F2FS_SUPER_OFFSET);
1836         struct super_block *sb = sbi->sb;
1837         u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1838         u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1839         u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1840         u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1841         u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1842         u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1843         u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1844         u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1845         u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1846         u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1847         u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1848         u32 segment_count = le32_to_cpu(raw_super->segment_count);
1849         u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1850         u64 main_end_blkaddr = main_blkaddr +
1851                                 (segment_count_main << log_blocks_per_seg);
1852         u64 seg_end_blkaddr = segment0_blkaddr +
1853                                 (segment_count << log_blocks_per_seg);
1854
1855         if (segment0_blkaddr != cp_blkaddr) {
1856                 f2fs_msg(sb, KERN_INFO,
1857                         "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1858                         segment0_blkaddr, cp_blkaddr);
1859                 return true;
1860         }
1861
1862         if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1863                                                         sit_blkaddr) {
1864                 f2fs_msg(sb, KERN_INFO,
1865                         "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1866                         cp_blkaddr, sit_blkaddr,
1867                         segment_count_ckpt << log_blocks_per_seg);
1868                 return true;
1869         }
1870
1871         if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1872                                                         nat_blkaddr) {
1873                 f2fs_msg(sb, KERN_INFO,
1874                         "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1875                         sit_blkaddr, nat_blkaddr,
1876                         segment_count_sit << log_blocks_per_seg);
1877                 return true;
1878         }
1879
1880         if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1881                                                         ssa_blkaddr) {
1882                 f2fs_msg(sb, KERN_INFO,
1883                         "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1884                         nat_blkaddr, ssa_blkaddr,
1885                         segment_count_nat << log_blocks_per_seg);
1886                 return true;
1887         }
1888
1889         if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1890                                                         main_blkaddr) {
1891                 f2fs_msg(sb, KERN_INFO,
1892                         "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1893                         ssa_blkaddr, main_blkaddr,
1894                         segment_count_ssa << log_blocks_per_seg);
1895                 return true;
1896         }
1897
1898         if (main_end_blkaddr > seg_end_blkaddr) {
1899                 f2fs_msg(sb, KERN_INFO,
1900                         "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1901                         main_blkaddr,
1902                         segment0_blkaddr +
1903                                 (segment_count << log_blocks_per_seg),
1904                         segment_count_main << log_blocks_per_seg);
1905                 return true;
1906         } else if (main_end_blkaddr < seg_end_blkaddr) {
1907                 int err = 0;
1908                 char *res;
1909
1910                 /* fix in-memory information all the time */
1911                 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1912                                 segment0_blkaddr) >> log_blocks_per_seg);
1913
1914                 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1915                         set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1916                         res = "internally";
1917                 } else {
1918                         err = __f2fs_commit_super(bh, NULL);
1919                         res = err ? "failed" : "done";
1920                 }
1921                 f2fs_msg(sb, KERN_INFO,
1922                         "Fix alignment : %s, start(%u) end(%u) block(%u)",
1923                         res, main_blkaddr,
1924                         segment0_blkaddr +
1925                                 (segment_count << log_blocks_per_seg),
1926                         segment_count_main << log_blocks_per_seg);
1927                 if (err)
1928                         return true;
1929         }
1930         return false;
1931 }
1932
1933 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1934                                 struct buffer_head *bh)
1935 {
1936         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1937                                         (bh->b_data + F2FS_SUPER_OFFSET);
1938         struct super_block *sb = sbi->sb;
1939         unsigned int blocksize;
1940
1941         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1942                 f2fs_msg(sb, KERN_INFO,
1943                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
1944                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1945                 return 1;
1946         }
1947
1948         /* Currently, support only 4KB page cache size */
1949         if (F2FS_BLKSIZE != PAGE_SIZE) {
1950                 f2fs_msg(sb, KERN_INFO,
1951                         "Invalid page_cache_size (%lu), supports only 4KB\n",
1952                         PAGE_SIZE);
1953                 return 1;
1954         }
1955
1956         /* Currently, support only 4KB block size */
1957         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1958         if (blocksize != F2FS_BLKSIZE) {
1959                 f2fs_msg(sb, KERN_INFO,
1960                         "Invalid blocksize (%u), supports only 4KB\n",
1961                         blocksize);
1962                 return 1;
1963         }
1964
1965         /* check log blocks per segment */
1966         if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1967                 f2fs_msg(sb, KERN_INFO,
1968                         "Invalid log blocks per segment (%u)\n",
1969                         le32_to_cpu(raw_super->log_blocks_per_seg));
1970                 return 1;
1971         }
1972
1973         /* Currently, support 512/1024/2048/4096 bytes sector size */
1974         if (le32_to_cpu(raw_super->log_sectorsize) >
1975                                 F2FS_MAX_LOG_SECTOR_SIZE ||
1976                 le32_to_cpu(raw_super->log_sectorsize) <
1977                                 F2FS_MIN_LOG_SECTOR_SIZE) {
1978                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1979                         le32_to_cpu(raw_super->log_sectorsize));
1980                 return 1;
1981         }
1982         if (le32_to_cpu(raw_super->log_sectors_per_block) +
1983                 le32_to_cpu(raw_super->log_sectorsize) !=
1984                         F2FS_MAX_LOG_SECTOR_SIZE) {
1985                 f2fs_msg(sb, KERN_INFO,
1986                         "Invalid log sectors per block(%u) log sectorsize(%u)",
1987                         le32_to_cpu(raw_super->log_sectors_per_block),
1988                         le32_to_cpu(raw_super->log_sectorsize));
1989                 return 1;
1990         }
1991
1992         /* check reserved ino info */
1993         if (le32_to_cpu(raw_super->node_ino) != 1 ||
1994                 le32_to_cpu(raw_super->meta_ino) != 2 ||
1995                 le32_to_cpu(raw_super->root_ino) != 3) {
1996                 f2fs_msg(sb, KERN_INFO,
1997                         "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1998                         le32_to_cpu(raw_super->node_ino),
1999                         le32_to_cpu(raw_super->meta_ino),
2000                         le32_to_cpu(raw_super->root_ino));
2001                 return 1;
2002         }
2003
2004         if (le32_to_cpu(raw_super->segment_count) > F2FS_MAX_SEGMENT) {
2005                 f2fs_msg(sb, KERN_INFO,
2006                         "Invalid segment count (%u)",
2007                         le32_to_cpu(raw_super->segment_count));
2008                 return 1;
2009         }
2010
2011         /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2012         if (sanity_check_area_boundary(sbi, bh))
2013                 return 1;
2014
2015         return 0;
2016 }
2017
2018 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
2019 {
2020         unsigned int total, fsmeta;
2021         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2022         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2023         unsigned int ovp_segments, reserved_segments;
2024         unsigned int main_segs, blocks_per_seg;
2025         int i;
2026
2027         total = le32_to_cpu(raw_super->segment_count);
2028         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2029         fsmeta += le32_to_cpu(raw_super->segment_count_sit);
2030         fsmeta += le32_to_cpu(raw_super->segment_count_nat);
2031         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2032         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2033
2034         if (unlikely(fsmeta >= total))
2035                 return 1;
2036
2037         ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2038         reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2039
2040         if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2041                         ovp_segments == 0 || reserved_segments == 0)) {
2042                 f2fs_msg(sbi->sb, KERN_ERR,
2043                         "Wrong layout: check mkfs.f2fs version");
2044                 return 1;
2045         }
2046
2047         main_segs = le32_to_cpu(raw_super->segment_count_main);
2048         blocks_per_seg = sbi->blocks_per_seg;
2049
2050         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2051                 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2052                         le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2053                         return 1;
2054         }
2055         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2056                 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2057                         le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2058                         return 1;
2059         }
2060
2061         if (unlikely(f2fs_cp_error(sbi))) {
2062                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
2063                 return 1;
2064         }
2065         return 0;
2066 }
2067
2068 static void init_sb_info(struct f2fs_sb_info *sbi)
2069 {
2070         struct f2fs_super_block *raw_super = sbi->raw_super;
2071         int i, j;
2072
2073         sbi->log_sectors_per_block =
2074                 le32_to_cpu(raw_super->log_sectors_per_block);
2075         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2076         sbi->blocksize = 1 << sbi->log_blocksize;
2077         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2078         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2079         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2080         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2081         sbi->total_sections = le32_to_cpu(raw_super->section_count);
2082         sbi->total_node_count =
2083                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
2084                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2085         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2086         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2087         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2088         sbi->cur_victim_sec = NULL_SECNO;
2089         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2090
2091         sbi->dir_level = DEF_DIR_LEVEL;
2092         sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2093         sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2094         clear_sbi_flag(sbi, SBI_NEED_FSCK);
2095
2096         for (i = 0; i < NR_COUNT_TYPE; i++)
2097                 atomic_set(&sbi->nr_pages[i], 0);
2098
2099         atomic_set(&sbi->wb_sync_req, 0);
2100
2101         INIT_LIST_HEAD(&sbi->s_list);
2102         mutex_init(&sbi->umount_mutex);
2103         for (i = 0; i < NR_PAGE_TYPE - 1; i++)
2104                 for (j = HOT; j < NR_TEMP_TYPE; j++)
2105                         mutex_init(&sbi->wio_mutex[i][j]);
2106         spin_lock_init(&sbi->cp_lock);
2107
2108         sbi->dirty_device = 0;
2109         spin_lock_init(&sbi->dev_lock);
2110 }
2111
2112 static int init_percpu_info(struct f2fs_sb_info *sbi)
2113 {
2114         int err;
2115
2116         err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2117         if (err)
2118                 return err;
2119
2120         return percpu_counter_init(&sbi->total_valid_inode_count, 0,
2121                                                                 GFP_KERNEL);
2122 }
2123
2124 #ifdef CONFIG_BLK_DEV_ZONED
2125 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2126 {
2127         struct block_device *bdev = FDEV(devi).bdev;
2128         sector_t nr_sectors = bdev->bd_part->nr_sects;
2129         sector_t sector = 0;
2130         struct blk_zone *zones;
2131         unsigned int i, nr_zones;
2132         unsigned int n = 0;
2133         int err = -EIO;
2134
2135         if (!f2fs_sb_mounted_blkzoned(sbi->sb))
2136                 return 0;
2137
2138         if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
2139                                 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
2140                 return -EINVAL;
2141         sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2142         if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2143                                 __ilog2_u32(sbi->blocks_per_blkz))
2144                 return -EINVAL;
2145         sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2146         FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2147                                         sbi->log_blocks_per_blkz;
2148         if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2149                 FDEV(devi).nr_blkz++;
2150
2151         FDEV(devi).blkz_type = kmalloc(FDEV(devi).nr_blkz, GFP_KERNEL);
2152         if (!FDEV(devi).blkz_type)
2153                 return -ENOMEM;
2154
2155 #define F2FS_REPORT_NR_ZONES   4096
2156
2157         zones = kcalloc(F2FS_REPORT_NR_ZONES, sizeof(struct blk_zone),
2158                         GFP_KERNEL);
2159         if (!zones)
2160                 return -ENOMEM;
2161
2162         /* Get block zones type */
2163         while (zones && sector < nr_sectors) {
2164
2165                 nr_zones = F2FS_REPORT_NR_ZONES;
2166                 err = blkdev_report_zones(bdev, sector,
2167                                           zones, &nr_zones,
2168                                           GFP_KERNEL);
2169                 if (err)
2170                         break;
2171                 if (!nr_zones) {
2172                         err = -EIO;
2173                         break;
2174                 }
2175
2176                 for (i = 0; i < nr_zones; i++) {
2177                         FDEV(devi).blkz_type[n] = zones[i].type;
2178                         sector += zones[i].len;
2179                         n++;
2180                 }
2181         }
2182
2183         kfree(zones);
2184
2185         return err;
2186 }
2187 #endif
2188
2189 /*
2190  * Read f2fs raw super block.
2191  * Because we have two copies of super block, so read both of them
2192  * to get the first valid one. If any one of them is broken, we pass
2193  * them recovery flag back to the caller.
2194  */
2195 static int read_raw_super_block(struct f2fs_sb_info *sbi,
2196                         struct f2fs_super_block **raw_super,
2197                         int *valid_super_block, int *recovery)
2198 {
2199         struct super_block *sb = sbi->sb;
2200         int block;
2201         struct buffer_head *bh;
2202         struct f2fs_super_block *super;
2203         int err = 0;
2204
2205         super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2206         if (!super)
2207                 return -ENOMEM;
2208
2209         for (block = 0; block < 2; block++) {
2210                 bh = sb_bread(sb, block);
2211                 if (!bh) {
2212                         f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
2213                                 block + 1);
2214                         err = -EIO;
2215                         continue;
2216                 }
2217
2218                 /* sanity checking of raw super */
2219                 if (sanity_check_raw_super(sbi, bh)) {
2220                         f2fs_msg(sb, KERN_ERR,
2221                                 "Can't find valid F2FS filesystem in %dth superblock",
2222                                 block + 1);
2223                         err = -EINVAL;
2224                         brelse(bh);
2225                         continue;
2226                 }
2227
2228                 if (!*raw_super) {
2229                         memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2230                                                         sizeof(*super));
2231                         *valid_super_block = block;
2232                         *raw_super = super;
2233                 }
2234                 brelse(bh);
2235         }
2236
2237         /* Fail to read any one of the superblocks*/
2238         if (err < 0)
2239                 *recovery = 1;
2240
2241         /* No valid superblock */
2242         if (!*raw_super)
2243                 kfree(super);
2244         else
2245                 err = 0;
2246
2247         return err;
2248 }
2249
2250 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2251 {
2252         struct buffer_head *bh;
2253         int err;
2254
2255         if ((recover && f2fs_readonly(sbi->sb)) ||
2256                                 bdev_read_only(sbi->sb->s_bdev)) {
2257                 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2258                 return -EROFS;
2259         }
2260
2261         /* write back-up superblock first */
2262         bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
2263         if (!bh)
2264                 return -EIO;
2265         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2266         brelse(bh);
2267
2268         /* if we are in recovery path, skip writing valid superblock */
2269         if (recover || err)
2270                 return err;
2271
2272         /* write current valid superblock */
2273         bh = sb_getblk(sbi->sb, sbi->valid_super_block);
2274         if (!bh)
2275                 return -EIO;
2276         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2277         brelse(bh);
2278         return err;
2279 }
2280
2281 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
2282 {
2283         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2284         unsigned int max_devices = MAX_DEVICES;
2285         int i;
2286
2287         /* Initialize single device information */
2288         if (!RDEV(0).path[0]) {
2289                 if (!bdev_is_zoned(sbi->sb->s_bdev))
2290                         return 0;
2291                 max_devices = 1;
2292         }
2293
2294         /*
2295          * Initialize multiple devices information, or single
2296          * zoned block device information.
2297          */
2298         sbi->devs = kcalloc(max_devices, sizeof(struct f2fs_dev_info),
2299                                 GFP_KERNEL);
2300         if (!sbi->devs)
2301                 return -ENOMEM;
2302
2303         for (i = 0; i < max_devices; i++) {
2304
2305                 if (i > 0 && !RDEV(i).path[0])
2306                         break;
2307
2308                 if (max_devices == 1) {
2309                         /* Single zoned block device mount */
2310                         FDEV(0).bdev =
2311                                 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
2312                                         sbi->sb->s_mode, sbi->sb->s_type);
2313                 } else {
2314                         /* Multi-device mount */
2315                         memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
2316                         FDEV(i).total_segments =
2317                                 le32_to_cpu(RDEV(i).total_segments);
2318                         if (i == 0) {
2319                                 FDEV(i).start_blk = 0;
2320                                 FDEV(i).end_blk = FDEV(i).start_blk +
2321                                     (FDEV(i).total_segments <<
2322                                     sbi->log_blocks_per_seg) - 1 +
2323                                     le32_to_cpu(raw_super->segment0_blkaddr);
2324                         } else {
2325                                 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
2326                                 FDEV(i).end_blk = FDEV(i).start_blk +
2327                                         (FDEV(i).total_segments <<
2328                                         sbi->log_blocks_per_seg) - 1;
2329                         }
2330                         FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
2331                                         sbi->sb->s_mode, sbi->sb->s_type);
2332                 }
2333                 if (IS_ERR(FDEV(i).bdev))
2334                         return PTR_ERR(FDEV(i).bdev);
2335
2336                 /* to release errored devices */
2337                 sbi->s_ndevs = i + 1;
2338
2339 #ifdef CONFIG_BLK_DEV_ZONED
2340                 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
2341                                 !f2fs_sb_mounted_blkzoned(sbi->sb)) {
2342                         f2fs_msg(sbi->sb, KERN_ERR,
2343                                 "Zoned block device feature not enabled\n");
2344                         return -EINVAL;
2345                 }
2346                 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
2347                         if (init_blkz_info(sbi, i)) {
2348                                 f2fs_msg(sbi->sb, KERN_ERR,
2349                                         "Failed to initialize F2FS blkzone information");
2350                                 return -EINVAL;
2351                         }
2352                         if (max_devices == 1)
2353                                 break;
2354                         f2fs_msg(sbi->sb, KERN_INFO,
2355                                 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
2356                                 i, FDEV(i).path,
2357                                 FDEV(i).total_segments,
2358                                 FDEV(i).start_blk, FDEV(i).end_blk,
2359                                 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
2360                                 "Host-aware" : "Host-managed");
2361                         continue;
2362                 }
2363 #endif
2364                 f2fs_msg(sbi->sb, KERN_INFO,
2365                         "Mount Device [%2d]: %20s, %8u, %8x - %8x",
2366                                 i, FDEV(i).path,
2367                                 FDEV(i).total_segments,
2368                                 FDEV(i).start_blk, FDEV(i).end_blk);
2369         }
2370         f2fs_msg(sbi->sb, KERN_INFO,
2371                         "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
2372         return 0;
2373 }
2374
2375 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
2376 {
2377         struct f2fs_sb_info *sbi;
2378         struct f2fs_super_block *raw_super;
2379         struct inode *root;
2380         int err;
2381         bool retry = true, need_fsck = false;
2382         char *options = NULL;
2383         int recovery, i, valid_super_block;
2384         struct curseg_info *seg_i;
2385
2386 try_onemore:
2387         err = -EINVAL;
2388         raw_super = NULL;
2389         valid_super_block = -1;
2390         recovery = 0;
2391
2392         /* allocate memory for f2fs-specific super block info */
2393         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
2394         if (!sbi)
2395                 return -ENOMEM;
2396
2397         sbi->sb = sb;
2398
2399         /* Load the checksum driver */
2400         sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
2401         if (IS_ERR(sbi->s_chksum_driver)) {
2402                 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
2403                 err = PTR_ERR(sbi->s_chksum_driver);
2404                 sbi->s_chksum_driver = NULL;
2405                 goto free_sbi;
2406         }
2407
2408         /* set a block size */
2409         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
2410                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
2411                 goto free_sbi;
2412         }
2413
2414         err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
2415                                                                 &recovery);
2416         if (err)
2417                 goto free_sbi;
2418
2419         sb->s_fs_info = sbi;
2420         sbi->raw_super = raw_super;
2421
2422         /* precompute checksum seed for metadata */
2423         if (f2fs_sb_has_inode_chksum(sb))
2424                 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
2425                                                 sizeof(raw_super->uuid));
2426
2427         /*
2428          * The BLKZONED feature indicates that the drive was formatted with
2429          * zone alignment optimization. This is optional for host-aware
2430          * devices, but mandatory for host-managed zoned block devices.
2431          */
2432 #ifndef CONFIG_BLK_DEV_ZONED
2433         if (f2fs_sb_mounted_blkzoned(sb)) {
2434                 f2fs_msg(sb, KERN_ERR,
2435                          "Zoned block device support is not enabled\n");
2436                 err = -EOPNOTSUPP;
2437                 goto free_sb_buf;
2438         }
2439 #endif
2440         default_options(sbi);
2441         /* parse mount options */
2442         options = kstrdup((const char *)data, GFP_KERNEL);
2443         if (data && !options) {
2444                 err = -ENOMEM;
2445                 goto free_sb_buf;
2446         }
2447
2448         err = parse_options(sb, options);
2449         if (err)
2450                 goto free_options;
2451
2452         sbi->max_file_blocks = max_file_blocks();
2453         sb->s_maxbytes = sbi->max_file_blocks <<
2454                                 le32_to_cpu(raw_super->log_blocksize);
2455         sb->s_max_links = F2FS_LINK_MAX;
2456         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2457
2458 #ifdef CONFIG_QUOTA
2459         sb->dq_op = &f2fs_quota_operations;
2460         if (f2fs_sb_has_quota_ino(sb))
2461                 sb->s_qcop = &dquot_quotactl_sysfile_ops;
2462         else
2463                 sb->s_qcop = &f2fs_quotactl_ops;
2464         sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
2465 #endif
2466
2467         sb->s_op = &f2fs_sops;
2468 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2469         sb->s_cop = &f2fs_cryptops;
2470 #endif
2471         sb->s_xattr = f2fs_xattr_handlers;
2472         sb->s_export_op = &f2fs_export_ops;
2473         sb->s_magic = F2FS_SUPER_MAGIC;
2474         sb->s_time_gran = 1;
2475         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
2476                 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
2477         memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
2478
2479         /* init f2fs-specific super block info */
2480         sbi->valid_super_block = valid_super_block;
2481         mutex_init(&sbi->gc_mutex);
2482         mutex_init(&sbi->cp_mutex);
2483         init_rwsem(&sbi->node_write);
2484         init_rwsem(&sbi->node_change);
2485
2486         /* disallow all the data/node/meta page writes */
2487         set_sbi_flag(sbi, SBI_POR_DOING);
2488         spin_lock_init(&sbi->stat_lock);
2489
2490         /* init iostat info */
2491         spin_lock_init(&sbi->iostat_lock);
2492         sbi->iostat_enable = false;
2493
2494         for (i = 0; i < NR_PAGE_TYPE; i++) {
2495                 int n = (i == META) ? 1: NR_TEMP_TYPE;
2496                 int j;
2497
2498                 sbi->write_io[i] = kmalloc(n * sizeof(struct f2fs_bio_info),
2499                                                                 GFP_KERNEL);
2500                 if (!sbi->write_io[i]) {
2501                         err = -ENOMEM;
2502                         goto free_options;
2503                 }
2504
2505                 for (j = HOT; j < n; j++) {
2506                         init_rwsem(&sbi->write_io[i][j].io_rwsem);
2507                         sbi->write_io[i][j].sbi = sbi;
2508                         sbi->write_io[i][j].bio = NULL;
2509                         spin_lock_init(&sbi->write_io[i][j].io_lock);
2510                         INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
2511                 }
2512         }
2513
2514         init_rwsem(&sbi->cp_rwsem);
2515         init_waitqueue_head(&sbi->cp_wait);
2516         init_sb_info(sbi);
2517
2518         err = init_percpu_info(sbi);
2519         if (err)
2520                 goto free_options;
2521
2522         if (F2FS_IO_SIZE(sbi) > 1) {
2523                 sbi->write_io_dummy =
2524                         mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
2525                 if (!sbi->write_io_dummy) {
2526                         err = -ENOMEM;
2527                         goto free_options;
2528                 }
2529         }
2530
2531         /* get an inode for meta space */
2532         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
2533         if (IS_ERR(sbi->meta_inode)) {
2534                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
2535                 err = PTR_ERR(sbi->meta_inode);
2536                 goto free_io_dummy;
2537         }
2538
2539         err = get_valid_checkpoint(sbi);
2540         if (err) {
2541                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
2542                 goto free_meta_inode;
2543         }
2544
2545         /* Initialize device list */
2546         err = f2fs_scan_devices(sbi);
2547         if (err) {
2548                 f2fs_msg(sb, KERN_ERR, "Failed to find devices");
2549                 goto free_devices;
2550         }
2551
2552         sbi->total_valid_node_count =
2553                                 le32_to_cpu(sbi->ckpt->valid_node_count);
2554         percpu_counter_set(&sbi->total_valid_inode_count,
2555                                 le32_to_cpu(sbi->ckpt->valid_inode_count));
2556         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
2557         sbi->total_valid_block_count =
2558                                 le64_to_cpu(sbi->ckpt->valid_block_count);
2559         sbi->last_valid_block_count = sbi->total_valid_block_count;
2560         sbi->reserved_blocks = 0;
2561         sbi->current_reserved_blocks = 0;
2562
2563         for (i = 0; i < NR_INODE_TYPE; i++) {
2564                 INIT_LIST_HEAD(&sbi->inode_list[i]);
2565                 spin_lock_init(&sbi->inode_lock[i]);
2566         }
2567
2568         init_extent_cache_info(sbi);
2569
2570         init_ino_entry_info(sbi);
2571
2572         /* setup f2fs internal modules */
2573         err = build_segment_manager(sbi);
2574         if (err) {
2575                 f2fs_msg(sb, KERN_ERR,
2576                         "Failed to initialize F2FS segment manager");
2577                 goto free_sm;
2578         }
2579         err = build_node_manager(sbi);
2580         if (err) {
2581                 f2fs_msg(sb, KERN_ERR,
2582                         "Failed to initialize F2FS node manager");
2583                 goto free_nm;
2584         }
2585
2586         /* For write statistics */
2587         if (sb->s_bdev->bd_part)
2588                 sbi->sectors_written_start =
2589                         (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
2590
2591         /* Read accumulated write IO statistics if exists */
2592         seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
2593         if (__exist_node_summaries(sbi))
2594                 sbi->kbytes_written =
2595                         le64_to_cpu(seg_i->journal->info.kbytes_written);
2596
2597         build_gc_manager(sbi);
2598
2599         /* get an inode for node space */
2600         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
2601         if (IS_ERR(sbi->node_inode)) {
2602                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
2603                 err = PTR_ERR(sbi->node_inode);
2604                 goto free_nm;
2605         }
2606
2607         f2fs_join_shrinker(sbi);
2608
2609         err = f2fs_build_stats(sbi);
2610         if (err)
2611                 goto free_nm;
2612
2613         /* read root inode and dentry */
2614         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
2615         if (IS_ERR(root)) {
2616                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
2617                 err = PTR_ERR(root);
2618                 goto free_node_inode;
2619         }
2620         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2621                 iput(root);
2622                 err = -EINVAL;
2623                 goto free_node_inode;
2624         }
2625
2626         sb->s_root = d_make_root(root); /* allocate root dentry */
2627         if (!sb->s_root) {
2628                 err = -ENOMEM;
2629                 goto free_root_inode;
2630         }
2631
2632         err = f2fs_register_sysfs(sbi);
2633         if (err)
2634                 goto free_root_inode;
2635
2636 #ifdef CONFIG_QUOTA
2637         /*
2638          * Turn on quotas which were not enabled for read-only mounts if
2639          * filesystem has quota feature, so that they are updated correctly.
2640          */
2641         if (f2fs_sb_has_quota_ino(sb) && !sb_rdonly(sb)) {
2642                 err = f2fs_enable_quotas(sb);
2643                 if (err) {
2644                         f2fs_msg(sb, KERN_ERR,
2645                                 "Cannot turn on quotas: error %d", err);
2646                         goto free_sysfs;
2647                 }
2648         }
2649 #endif
2650         /* if there are nt orphan nodes free them */
2651         err = recover_orphan_inodes(sbi);
2652         if (err)
2653                 goto free_meta;
2654
2655         /* recover fsynced data */
2656         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
2657                 /*
2658                  * mount should be failed, when device has readonly mode, and
2659                  * previous checkpoint was not done by clean system shutdown.
2660                  */
2661                 if (bdev_read_only(sb->s_bdev) &&
2662                                 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
2663                         err = -EROFS;
2664                         goto free_meta;
2665                 }
2666
2667                 if (need_fsck)
2668                         set_sbi_flag(sbi, SBI_NEED_FSCK);
2669
2670                 if (!retry)
2671                         goto skip_recovery;
2672
2673                 err = recover_fsync_data(sbi, false);
2674                 if (err < 0) {
2675                         need_fsck = true;
2676                         f2fs_msg(sb, KERN_ERR,
2677                                 "Cannot recover all fsync data errno=%d", err);
2678                         goto free_meta;
2679                 }
2680         } else {
2681                 err = recover_fsync_data(sbi, true);
2682
2683                 if (!f2fs_readonly(sb) && err > 0) {
2684                         err = -EINVAL;
2685                         f2fs_msg(sb, KERN_ERR,
2686                                 "Need to recover fsync data");
2687                         goto free_meta;
2688                 }
2689         }
2690 skip_recovery:
2691         /* recover_fsync_data() cleared this already */
2692         clear_sbi_flag(sbi, SBI_POR_DOING);
2693
2694         /*
2695          * If filesystem is not mounted as read-only then
2696          * do start the gc_thread.
2697          */
2698         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
2699                 /* After POR, we can run background GC thread.*/
2700                 err = start_gc_thread(sbi);
2701                 if (err)
2702                         goto free_meta;
2703         }
2704         kfree(options);
2705
2706         /* recover broken superblock */
2707         if (recovery) {
2708                 err = f2fs_commit_super(sbi, true);
2709                 f2fs_msg(sb, KERN_INFO,
2710                         "Try to recover %dth superblock, ret: %d",
2711                         sbi->valid_super_block ? 1 : 2, err);
2712         }
2713
2714         f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
2715                                 cur_cp_version(F2FS_CKPT(sbi)));
2716         f2fs_update_time(sbi, CP_TIME);
2717         f2fs_update_time(sbi, REQ_TIME);
2718         return 0;
2719
2720 free_meta:
2721 #ifdef CONFIG_QUOTA
2722         if (f2fs_sb_has_quota_ino(sb) && !sb_rdonly(sb))
2723                 f2fs_quota_off_umount(sbi->sb);
2724 #endif
2725         f2fs_sync_inode_meta(sbi);
2726         /*
2727          * Some dirty meta pages can be produced by recover_orphan_inodes()
2728          * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
2729          * followed by write_checkpoint() through f2fs_write_node_pages(), which
2730          * falls into an infinite loop in sync_meta_pages().
2731          */
2732         truncate_inode_pages_final(META_MAPPING(sbi));
2733 #ifdef CONFIG_QUOTA
2734 free_sysfs:
2735 #endif
2736         f2fs_unregister_sysfs(sbi);
2737 free_root_inode:
2738         dput(sb->s_root);
2739         sb->s_root = NULL;
2740 free_node_inode:
2741         truncate_inode_pages_final(NODE_MAPPING(sbi));
2742         mutex_lock(&sbi->umount_mutex);
2743         release_ino_entry(sbi, true);
2744         f2fs_leave_shrinker(sbi);
2745         iput(sbi->node_inode);
2746         mutex_unlock(&sbi->umount_mutex);
2747         f2fs_destroy_stats(sbi);
2748 free_nm:
2749         destroy_node_manager(sbi);
2750 free_sm:
2751         destroy_segment_manager(sbi);
2752 free_devices:
2753         destroy_device_list(sbi);
2754         kfree(sbi->ckpt);
2755 free_meta_inode:
2756         make_bad_inode(sbi->meta_inode);
2757         iput(sbi->meta_inode);
2758 free_io_dummy:
2759         mempool_destroy(sbi->write_io_dummy);
2760 free_options:
2761         for (i = 0; i < NR_PAGE_TYPE; i++)
2762                 kfree(sbi->write_io[i]);
2763         destroy_percpu_info(sbi);
2764 #ifdef CONFIG_QUOTA
2765         for (i = 0; i < MAXQUOTAS; i++)
2766                 kfree(sbi->s_qf_names[i]);
2767 #endif
2768         kfree(options);
2769 free_sb_buf:
2770         kfree(raw_super);
2771 free_sbi:
2772         if (sbi->s_chksum_driver)
2773                 crypto_free_shash(sbi->s_chksum_driver);
2774         kfree(sbi);
2775
2776         /* give only one another chance */
2777         if (retry) {
2778                 retry = false;
2779                 shrink_dcache_sb(sb);
2780                 goto try_onemore;
2781         }
2782         return err;
2783 }
2784
2785 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
2786                         const char *dev_name, void *data)
2787 {
2788         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
2789 }
2790
2791 static void kill_f2fs_super(struct super_block *sb)
2792 {
2793         if (sb->s_root) {
2794                 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
2795                 stop_gc_thread(F2FS_SB(sb));
2796                 stop_discard_thread(F2FS_SB(sb));
2797         }
2798         kill_block_super(sb);
2799 }
2800
2801 static struct file_system_type f2fs_fs_type = {
2802         .owner          = THIS_MODULE,
2803         .name           = "f2fs",
2804         .mount          = f2fs_mount,
2805         .kill_sb        = kill_f2fs_super,
2806         .fs_flags       = FS_REQUIRES_DEV,
2807 };
2808 MODULE_ALIAS_FS("f2fs");
2809
2810 static int __init init_inodecache(void)
2811 {
2812         f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
2813                         sizeof(struct f2fs_inode_info), 0,
2814                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
2815         if (!f2fs_inode_cachep)
2816                 return -ENOMEM;
2817         return 0;
2818 }
2819
2820 static void destroy_inodecache(void)
2821 {
2822         /*
2823          * Make sure all delayed rcu free inodes are flushed before we
2824          * destroy cache.
2825          */
2826         rcu_barrier();
2827         kmem_cache_destroy(f2fs_inode_cachep);
2828 }
2829
2830 static int __init init_f2fs_fs(void)
2831 {
2832         int err;
2833
2834         f2fs_build_trace_ios();
2835
2836         err = init_inodecache();
2837         if (err)
2838                 goto fail;
2839         err = create_node_manager_caches();
2840         if (err)
2841                 goto free_inodecache;
2842         err = create_segment_manager_caches();
2843         if (err)
2844                 goto free_node_manager_caches;
2845         err = create_checkpoint_caches();
2846         if (err)
2847                 goto free_segment_manager_caches;
2848         err = create_extent_cache();
2849         if (err)
2850                 goto free_checkpoint_caches;
2851         err = f2fs_init_sysfs();
2852         if (err)
2853                 goto free_extent_cache;
2854         err = register_shrinker(&f2fs_shrinker_info);
2855         if (err)
2856                 goto free_sysfs;
2857         err = register_filesystem(&f2fs_fs_type);
2858         if (err)
2859                 goto free_shrinker;
2860         err = f2fs_create_root_stats();
2861         if (err)
2862                 goto free_filesystem;
2863         return 0;
2864
2865 free_filesystem:
2866         unregister_filesystem(&f2fs_fs_type);
2867 free_shrinker:
2868         unregister_shrinker(&f2fs_shrinker_info);
2869 free_sysfs:
2870         f2fs_exit_sysfs();
2871 free_extent_cache:
2872         destroy_extent_cache();
2873 free_checkpoint_caches:
2874         destroy_checkpoint_caches();
2875 free_segment_manager_caches:
2876         destroy_segment_manager_caches();
2877 free_node_manager_caches:
2878         destroy_node_manager_caches();
2879 free_inodecache:
2880         destroy_inodecache();
2881 fail:
2882         return err;
2883 }
2884
2885 static void __exit exit_f2fs_fs(void)
2886 {
2887         f2fs_destroy_root_stats();
2888         unregister_filesystem(&f2fs_fs_type);
2889         unregister_shrinker(&f2fs_shrinker_info);
2890         f2fs_exit_sysfs();
2891         destroy_extent_cache();
2892         destroy_checkpoint_caches();
2893         destroy_segment_manager_caches();
2894         destroy_node_manager_caches();
2895         destroy_inodecache();
2896         f2fs_destroy_trace_ios();
2897 }
2898
2899 module_init(init_f2fs_fs)
2900 module_exit(exit_f2fs_fs)
2901
2902 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2903 MODULE_DESCRIPTION("Flash Friendly File System");
2904 MODULE_LICENSE("GPL");
2905