Merge tag 'armsoc-dt64' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[sfrench/cifs-2.6.git] / fs / f2fs / data.c
1 /*
2  * fs/f2fs/data.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/cleancache.h>
23
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "trace.h"
28 #include <trace/events/f2fs.h>
29
30 static void f2fs_read_end_io(struct bio *bio)
31 {
32         struct bio_vec *bvec;
33         int i;
34
35         if (f2fs_bio_encrypted(bio)) {
36                 if (bio->bi_error) {
37                         fscrypt_release_ctx(bio->bi_private);
38                 } else {
39                         fscrypt_decrypt_bio_pages(bio->bi_private, bio);
40                         return;
41                 }
42         }
43
44         bio_for_each_segment_all(bvec, bio, i) {
45                 struct page *page = bvec->bv_page;
46
47                 if (!bio->bi_error) {
48                         SetPageUptodate(page);
49                 } else {
50                         ClearPageUptodate(page);
51                         SetPageError(page);
52                 }
53                 unlock_page(page);
54         }
55         bio_put(bio);
56 }
57
58 static void f2fs_write_end_io(struct bio *bio)
59 {
60         struct f2fs_sb_info *sbi = bio->bi_private;
61         struct bio_vec *bvec;
62         int i;
63
64         bio_for_each_segment_all(bvec, bio, i) {
65                 struct page *page = bvec->bv_page;
66
67                 fscrypt_pullback_bio_page(&page, true);
68
69                 if (unlikely(bio->bi_error)) {
70                         set_bit(AS_EIO, &page->mapping->flags);
71                         f2fs_stop_checkpoint(sbi);
72                 }
73                 end_page_writeback(page);
74                 dec_page_count(sbi, F2FS_WRITEBACK);
75         }
76
77         if (!get_pages(sbi, F2FS_WRITEBACK) && wq_has_sleeper(&sbi->cp_wait))
78                 wake_up(&sbi->cp_wait);
79
80         bio_put(bio);
81 }
82
83 /*
84  * Low-level block read/write IO operations.
85  */
86 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
87                                 int npages, bool is_read)
88 {
89         struct bio *bio;
90
91         bio = f2fs_bio_alloc(npages);
92
93         bio->bi_bdev = sbi->sb->s_bdev;
94         bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
95         bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
96         bio->bi_private = is_read ? NULL : sbi;
97
98         return bio;
99 }
100
101 static void __submit_merged_bio(struct f2fs_bio_info *io)
102 {
103         struct f2fs_io_info *fio = &io->fio;
104
105         if (!io->bio)
106                 return;
107
108         if (is_read_io(fio->rw))
109                 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
110         else
111                 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
112
113         submit_bio(fio->rw, io->bio);
114         io->bio = NULL;
115 }
116
117 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
118                                                 struct page *page, nid_t ino)
119 {
120         struct bio_vec *bvec;
121         struct page *target;
122         int i;
123
124         if (!io->bio)
125                 return false;
126
127         if (!inode && !page && !ino)
128                 return true;
129
130         bio_for_each_segment_all(bvec, io->bio, i) {
131
132                 if (bvec->bv_page->mapping)
133                         target = bvec->bv_page;
134                 else
135                         target = fscrypt_control_page(bvec->bv_page);
136
137                 if (inode && inode == target->mapping->host)
138                         return true;
139                 if (page && page == target)
140                         return true;
141                 if (ino && ino == ino_of_node(target))
142                         return true;
143         }
144
145         return false;
146 }
147
148 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
149                                                 struct page *page, nid_t ino,
150                                                 enum page_type type)
151 {
152         enum page_type btype = PAGE_TYPE_OF_BIO(type);
153         struct f2fs_bio_info *io = &sbi->write_io[btype];
154         bool ret;
155
156         down_read(&io->io_rwsem);
157         ret = __has_merged_page(io, inode, page, ino);
158         up_read(&io->io_rwsem);
159         return ret;
160 }
161
162 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
163                                 struct inode *inode, struct page *page,
164                                 nid_t ino, enum page_type type, int rw)
165 {
166         enum page_type btype = PAGE_TYPE_OF_BIO(type);
167         struct f2fs_bio_info *io;
168
169         io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
170
171         down_write(&io->io_rwsem);
172
173         if (!__has_merged_page(io, inode, page, ino))
174                 goto out;
175
176         /* change META to META_FLUSH in the checkpoint procedure */
177         if (type >= META_FLUSH) {
178                 io->fio.type = META_FLUSH;
179                 if (test_opt(sbi, NOBARRIER))
180                         io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
181                 else
182                         io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
183         }
184         __submit_merged_bio(io);
185 out:
186         up_write(&io->io_rwsem);
187 }
188
189 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
190                                                                         int rw)
191 {
192         __f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw);
193 }
194
195 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
196                                 struct inode *inode, struct page *page,
197                                 nid_t ino, enum page_type type, int rw)
198 {
199         if (has_merged_page(sbi, inode, page, ino, type))
200                 __f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw);
201 }
202
203 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi)
204 {
205         f2fs_submit_merged_bio(sbi, DATA, WRITE);
206         f2fs_submit_merged_bio(sbi, NODE, WRITE);
207         f2fs_submit_merged_bio(sbi, META, WRITE);
208 }
209
210 /*
211  * Fill the locked page with data located in the block address.
212  * Return unlocked page.
213  */
214 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
215 {
216         struct bio *bio;
217         struct page *page = fio->encrypted_page ?
218                         fio->encrypted_page : fio->page;
219
220         trace_f2fs_submit_page_bio(page, fio);
221         f2fs_trace_ios(fio, 0);
222
223         /* Allocate a new bio */
224         bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->rw));
225
226         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
227                 bio_put(bio);
228                 return -EFAULT;
229         }
230
231         submit_bio(fio->rw, bio);
232         return 0;
233 }
234
235 void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
236 {
237         struct f2fs_sb_info *sbi = fio->sbi;
238         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
239         struct f2fs_bio_info *io;
240         bool is_read = is_read_io(fio->rw);
241         struct page *bio_page;
242
243         io = is_read ? &sbi->read_io : &sbi->write_io[btype];
244
245         if (fio->old_blkaddr != NEW_ADDR)
246                 verify_block_addr(sbi, fio->old_blkaddr);
247         verify_block_addr(sbi, fio->new_blkaddr);
248
249         down_write(&io->io_rwsem);
250
251         if (!is_read)
252                 inc_page_count(sbi, F2FS_WRITEBACK);
253
254         if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
255                                                 io->fio.rw != fio->rw))
256                 __submit_merged_bio(io);
257 alloc_new:
258         if (io->bio == NULL) {
259                 int bio_blocks = MAX_BIO_BLOCKS(sbi);
260
261                 io->bio = __bio_alloc(sbi, fio->new_blkaddr,
262                                                 bio_blocks, is_read);
263                 io->fio = *fio;
264         }
265
266         bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
267
268         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) <
269                                                         PAGE_SIZE) {
270                 __submit_merged_bio(io);
271                 goto alloc_new;
272         }
273
274         io->last_block_in_bio = fio->new_blkaddr;
275         f2fs_trace_ios(fio, 0);
276
277         up_write(&io->io_rwsem);
278         trace_f2fs_submit_page_mbio(fio->page, fio);
279 }
280
281 /*
282  * Lock ordering for the change of data block address:
283  * ->data_page
284  *  ->node_page
285  *    update block addresses in the node page
286  */
287 void set_data_blkaddr(struct dnode_of_data *dn)
288 {
289         struct f2fs_node *rn;
290         __le32 *addr_array;
291         struct page *node_page = dn->node_page;
292         unsigned int ofs_in_node = dn->ofs_in_node;
293
294         f2fs_wait_on_page_writeback(node_page, NODE, true);
295
296         rn = F2FS_NODE(node_page);
297
298         /* Get physical address of data block */
299         addr_array = blkaddr_in_node(rn);
300         addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
301         if (set_page_dirty(node_page))
302                 dn->node_changed = true;
303 }
304
305 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
306 {
307         dn->data_blkaddr = blkaddr;
308         set_data_blkaddr(dn);
309         f2fs_update_extent_cache(dn);
310 }
311
312 int reserve_new_block(struct dnode_of_data *dn)
313 {
314         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
315
316         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
317                 return -EPERM;
318         if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
319                 return -ENOSPC;
320
321         trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
322
323         dn->data_blkaddr = NEW_ADDR;
324         set_data_blkaddr(dn);
325         mark_inode_dirty(dn->inode);
326         sync_inode_page(dn);
327         return 0;
328 }
329
330 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
331 {
332         bool need_put = dn->inode_page ? false : true;
333         int err;
334
335         err = get_dnode_of_data(dn, index, ALLOC_NODE);
336         if (err)
337                 return err;
338
339         if (dn->data_blkaddr == NULL_ADDR)
340                 err = reserve_new_block(dn);
341         if (err || need_put)
342                 f2fs_put_dnode(dn);
343         return err;
344 }
345
346 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
347 {
348         struct extent_info ei;
349         struct inode *inode = dn->inode;
350
351         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
352                 dn->data_blkaddr = ei.blk + index - ei.fofs;
353                 return 0;
354         }
355
356         return f2fs_reserve_block(dn, index);
357 }
358
359 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
360                                                 int rw, bool for_write)
361 {
362         struct address_space *mapping = inode->i_mapping;
363         struct dnode_of_data dn;
364         struct page *page;
365         struct extent_info ei;
366         int err;
367         struct f2fs_io_info fio = {
368                 .sbi = F2FS_I_SB(inode),
369                 .type = DATA,
370                 .rw = rw,
371                 .encrypted_page = NULL,
372         };
373
374         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
375                 return read_mapping_page(mapping, index, NULL);
376
377         page = f2fs_grab_cache_page(mapping, index, for_write);
378         if (!page)
379                 return ERR_PTR(-ENOMEM);
380
381         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
382                 dn.data_blkaddr = ei.blk + index - ei.fofs;
383                 goto got_it;
384         }
385
386         set_new_dnode(&dn, inode, NULL, NULL, 0);
387         err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
388         if (err)
389                 goto put_err;
390         f2fs_put_dnode(&dn);
391
392         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
393                 err = -ENOENT;
394                 goto put_err;
395         }
396 got_it:
397         if (PageUptodate(page)) {
398                 unlock_page(page);
399                 return page;
400         }
401
402         /*
403          * A new dentry page is allocated but not able to be written, since its
404          * new inode page couldn't be allocated due to -ENOSPC.
405          * In such the case, its blkaddr can be remained as NEW_ADDR.
406          * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
407          */
408         if (dn.data_blkaddr == NEW_ADDR) {
409                 zero_user_segment(page, 0, PAGE_SIZE);
410                 SetPageUptodate(page);
411                 unlock_page(page);
412                 return page;
413         }
414
415         fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
416         fio.page = page;
417         err = f2fs_submit_page_bio(&fio);
418         if (err)
419                 goto put_err;
420         return page;
421
422 put_err:
423         f2fs_put_page(page, 1);
424         return ERR_PTR(err);
425 }
426
427 struct page *find_data_page(struct inode *inode, pgoff_t index)
428 {
429         struct address_space *mapping = inode->i_mapping;
430         struct page *page;
431
432         page = find_get_page(mapping, index);
433         if (page && PageUptodate(page))
434                 return page;
435         f2fs_put_page(page, 0);
436
437         page = get_read_data_page(inode, index, READ_SYNC, false);
438         if (IS_ERR(page))
439                 return page;
440
441         if (PageUptodate(page))
442                 return page;
443
444         wait_on_page_locked(page);
445         if (unlikely(!PageUptodate(page))) {
446                 f2fs_put_page(page, 0);
447                 return ERR_PTR(-EIO);
448         }
449         return page;
450 }
451
452 /*
453  * If it tries to access a hole, return an error.
454  * Because, the callers, functions in dir.c and GC, should be able to know
455  * whether this page exists or not.
456  */
457 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
458                                                         bool for_write)
459 {
460         struct address_space *mapping = inode->i_mapping;
461         struct page *page;
462 repeat:
463         page = get_read_data_page(inode, index, READ_SYNC, for_write);
464         if (IS_ERR(page))
465                 return page;
466
467         /* wait for read completion */
468         lock_page(page);
469         if (unlikely(!PageUptodate(page))) {
470                 f2fs_put_page(page, 1);
471                 return ERR_PTR(-EIO);
472         }
473         if (unlikely(page->mapping != mapping)) {
474                 f2fs_put_page(page, 1);
475                 goto repeat;
476         }
477         return page;
478 }
479
480 /*
481  * Caller ensures that this data page is never allocated.
482  * A new zero-filled data page is allocated in the page cache.
483  *
484  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
485  * f2fs_unlock_op().
486  * Note that, ipage is set only by make_empty_dir, and if any error occur,
487  * ipage should be released by this function.
488  */
489 struct page *get_new_data_page(struct inode *inode,
490                 struct page *ipage, pgoff_t index, bool new_i_size)
491 {
492         struct address_space *mapping = inode->i_mapping;
493         struct page *page;
494         struct dnode_of_data dn;
495         int err;
496
497         page = f2fs_grab_cache_page(mapping, index, true);
498         if (!page) {
499                 /*
500                  * before exiting, we should make sure ipage will be released
501                  * if any error occur.
502                  */
503                 f2fs_put_page(ipage, 1);
504                 return ERR_PTR(-ENOMEM);
505         }
506
507         set_new_dnode(&dn, inode, ipage, NULL, 0);
508         err = f2fs_reserve_block(&dn, index);
509         if (err) {
510                 f2fs_put_page(page, 1);
511                 return ERR_PTR(err);
512         }
513         if (!ipage)
514                 f2fs_put_dnode(&dn);
515
516         if (PageUptodate(page))
517                 goto got_it;
518
519         if (dn.data_blkaddr == NEW_ADDR) {
520                 zero_user_segment(page, 0, PAGE_SIZE);
521                 SetPageUptodate(page);
522         } else {
523                 f2fs_put_page(page, 1);
524
525                 /* if ipage exists, blkaddr should be NEW_ADDR */
526                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
527                 page = get_lock_data_page(inode, index, true);
528                 if (IS_ERR(page))
529                         return page;
530         }
531 got_it:
532         if (new_i_size && i_size_read(inode) <
533                                 ((loff_t)(index + 1) << PAGE_SHIFT)) {
534                 i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
535                 /* Only the directory inode sets new_i_size */
536                 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
537         }
538         return page;
539 }
540
541 static int __allocate_data_block(struct dnode_of_data *dn)
542 {
543         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
544         struct f2fs_summary sum;
545         struct node_info ni;
546         int seg = CURSEG_WARM_DATA;
547         pgoff_t fofs;
548
549         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
550                 return -EPERM;
551
552         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
553         if (dn->data_blkaddr == NEW_ADDR)
554                 goto alloc;
555
556         if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
557                 return -ENOSPC;
558
559 alloc:
560         get_node_info(sbi, dn->nid, &ni);
561         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
562
563         if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
564                 seg = CURSEG_DIRECT_IO;
565
566         allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
567                                                                 &sum, seg);
568         set_data_blkaddr(dn);
569
570         /* update i_size */
571         fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
572                                                         dn->ofs_in_node;
573         if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
574                 i_size_write(dn->inode,
575                                 ((loff_t)(fofs + 1) << PAGE_SHIFT));
576         return 0;
577 }
578
579 ssize_t f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
580 {
581         struct inode *inode = file_inode(iocb->ki_filp);
582         struct f2fs_map_blocks map;
583         ssize_t ret = 0;
584
585         map.m_lblk = F2FS_BYTES_TO_BLK(iocb->ki_pos);
586         map.m_len = F2FS_BLK_ALIGN(iov_iter_count(from));
587         map.m_next_pgofs = NULL;
588
589         if (f2fs_encrypted_inode(inode))
590                 return 0;
591
592         if (iocb->ki_flags & IOCB_DIRECT) {
593                 ret = f2fs_convert_inline_inode(inode);
594                 if (ret)
595                         return ret;
596                 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
597         }
598         if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
599                 ret = f2fs_convert_inline_inode(inode);
600                 if (ret)
601                         return ret;
602         }
603         if (!f2fs_has_inline_data(inode))
604                 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
605         return ret;
606 }
607
608 /*
609  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
610  * f2fs_map_blocks structure.
611  * If original data blocks are allocated, then give them to blockdev.
612  * Otherwise,
613  *     a. preallocate requested block addresses
614  *     b. do not use extent cache for better performance
615  *     c. give the block addresses to blockdev
616  */
617 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
618                                                 int create, int flag)
619 {
620         unsigned int maxblocks = map->m_len;
621         struct dnode_of_data dn;
622         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
623         int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
624         pgoff_t pgofs, end_offset;
625         int err = 0, ofs = 1;
626         struct extent_info ei;
627         bool allocated = false;
628         block_t blkaddr;
629
630         map->m_len = 0;
631         map->m_flags = 0;
632
633         /* it only supports block size == page size */
634         pgofs = (pgoff_t)map->m_lblk;
635
636         if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
637                 map->m_pblk = ei.blk + pgofs - ei.fofs;
638                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
639                 map->m_flags = F2FS_MAP_MAPPED;
640                 goto out;
641         }
642
643 next_dnode:
644         if (create)
645                 f2fs_lock_op(sbi);
646
647         /* When reading holes, we need its node page */
648         set_new_dnode(&dn, inode, NULL, NULL, 0);
649         err = get_dnode_of_data(&dn, pgofs, mode);
650         if (err) {
651                 if (err == -ENOENT) {
652                         err = 0;
653                         if (map->m_next_pgofs)
654                                 *map->m_next_pgofs =
655                                         get_next_page_offset(&dn, pgofs);
656                 }
657                 goto unlock_out;
658         }
659
660         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
661
662 next_block:
663         blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
664
665         if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
666                 if (create) {
667                         if (unlikely(f2fs_cp_error(sbi))) {
668                                 err = -EIO;
669                                 goto sync_out;
670                         }
671                         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
672                                 if (blkaddr == NULL_ADDR)
673                                         err = reserve_new_block(&dn);
674                         } else {
675                                 err = __allocate_data_block(&dn);
676                         }
677                         if (err)
678                                 goto sync_out;
679                         allocated = true;
680                         map->m_flags = F2FS_MAP_NEW;
681                         blkaddr = dn.data_blkaddr;
682                 } else {
683                         if (flag == F2FS_GET_BLOCK_FIEMAP &&
684                                                 blkaddr == NULL_ADDR) {
685                                 if (map->m_next_pgofs)
686                                         *map->m_next_pgofs = pgofs + 1;
687                         }
688                         if (flag != F2FS_GET_BLOCK_FIEMAP ||
689                                                 blkaddr != NEW_ADDR) {
690                                 if (flag == F2FS_GET_BLOCK_BMAP)
691                                         err = -ENOENT;
692                                 goto sync_out;
693                         }
694                 }
695         }
696
697         if (map->m_len == 0) {
698                 /* preallocated unwritten block should be mapped for fiemap. */
699                 if (blkaddr == NEW_ADDR)
700                         map->m_flags |= F2FS_MAP_UNWRITTEN;
701                 map->m_flags |= F2FS_MAP_MAPPED;
702
703                 map->m_pblk = blkaddr;
704                 map->m_len = 1;
705         } else if ((map->m_pblk != NEW_ADDR &&
706                         blkaddr == (map->m_pblk + ofs)) ||
707                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
708                         flag == F2FS_GET_BLOCK_PRE_DIO ||
709                         flag == F2FS_GET_BLOCK_PRE_AIO) {
710                 ofs++;
711                 map->m_len++;
712         } else {
713                 goto sync_out;
714         }
715
716         dn.ofs_in_node++;
717         pgofs++;
718
719         if (map->m_len < maxblocks) {
720                 if (dn.ofs_in_node < end_offset)
721                         goto next_block;
722
723                 if (allocated)
724                         sync_inode_page(&dn);
725                 f2fs_put_dnode(&dn);
726
727                 if (create) {
728                         f2fs_unlock_op(sbi);
729                         f2fs_balance_fs(sbi, allocated);
730                 }
731                 allocated = false;
732                 goto next_dnode;
733         }
734
735 sync_out:
736         if (allocated)
737                 sync_inode_page(&dn);
738         f2fs_put_dnode(&dn);
739 unlock_out:
740         if (create) {
741                 f2fs_unlock_op(sbi);
742                 f2fs_balance_fs(sbi, allocated);
743         }
744 out:
745         trace_f2fs_map_blocks(inode, map, err);
746         return err;
747 }
748
749 static int __get_data_block(struct inode *inode, sector_t iblock,
750                         struct buffer_head *bh, int create, int flag,
751                         pgoff_t *next_pgofs)
752 {
753         struct f2fs_map_blocks map;
754         int ret;
755
756         map.m_lblk = iblock;
757         map.m_len = bh->b_size >> inode->i_blkbits;
758         map.m_next_pgofs = next_pgofs;
759
760         ret = f2fs_map_blocks(inode, &map, create, flag);
761         if (!ret) {
762                 map_bh(bh, inode->i_sb, map.m_pblk);
763                 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
764                 bh->b_size = map.m_len << inode->i_blkbits;
765         }
766         return ret;
767 }
768
769 static int get_data_block(struct inode *inode, sector_t iblock,
770                         struct buffer_head *bh_result, int create, int flag,
771                         pgoff_t *next_pgofs)
772 {
773         return __get_data_block(inode, iblock, bh_result, create,
774                                                         flag, next_pgofs);
775 }
776
777 static int get_data_block_dio(struct inode *inode, sector_t iblock,
778                         struct buffer_head *bh_result, int create)
779 {
780         return __get_data_block(inode, iblock, bh_result, create,
781                                                 F2FS_GET_BLOCK_DIO, NULL);
782 }
783
784 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
785                         struct buffer_head *bh_result, int create)
786 {
787         /* Block number less than F2FS MAX BLOCKS */
788         if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
789                 return -EFBIG;
790
791         return __get_data_block(inode, iblock, bh_result, create,
792                                                 F2FS_GET_BLOCK_BMAP, NULL);
793 }
794
795 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
796 {
797         return (offset >> inode->i_blkbits);
798 }
799
800 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
801 {
802         return (blk << inode->i_blkbits);
803 }
804
805 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
806                 u64 start, u64 len)
807 {
808         struct buffer_head map_bh;
809         sector_t start_blk, last_blk;
810         pgoff_t next_pgofs;
811         loff_t isize;
812         u64 logical = 0, phys = 0, size = 0;
813         u32 flags = 0;
814         int ret = 0;
815
816         ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
817         if (ret)
818                 return ret;
819
820         if (f2fs_has_inline_data(inode)) {
821                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
822                 if (ret != -EAGAIN)
823                         return ret;
824         }
825
826         inode_lock(inode);
827
828         isize = i_size_read(inode);
829         if (start >= isize)
830                 goto out;
831
832         if (start + len > isize)
833                 len = isize - start;
834
835         if (logical_to_blk(inode, len) == 0)
836                 len = blk_to_logical(inode, 1);
837
838         start_blk = logical_to_blk(inode, start);
839         last_blk = logical_to_blk(inode, start + len - 1);
840
841 next:
842         memset(&map_bh, 0, sizeof(struct buffer_head));
843         map_bh.b_size = len;
844
845         ret = get_data_block(inode, start_blk, &map_bh, 0,
846                                         F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
847         if (ret)
848                 goto out;
849
850         /* HOLE */
851         if (!buffer_mapped(&map_bh)) {
852                 start_blk = next_pgofs;
853                 /* Go through holes util pass the EOF */
854                 if (blk_to_logical(inode, start_blk) < isize)
855                         goto prep_next;
856                 /* Found a hole beyond isize means no more extents.
857                  * Note that the premise is that filesystems don't
858                  * punch holes beyond isize and keep size unchanged.
859                  */
860                 flags |= FIEMAP_EXTENT_LAST;
861         }
862
863         if (size) {
864                 if (f2fs_encrypted_inode(inode))
865                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
866
867                 ret = fiemap_fill_next_extent(fieinfo, logical,
868                                 phys, size, flags);
869         }
870
871         if (start_blk > last_blk || ret)
872                 goto out;
873
874         logical = blk_to_logical(inode, start_blk);
875         phys = blk_to_logical(inode, map_bh.b_blocknr);
876         size = map_bh.b_size;
877         flags = 0;
878         if (buffer_unwritten(&map_bh))
879                 flags = FIEMAP_EXTENT_UNWRITTEN;
880
881         start_blk += logical_to_blk(inode, size);
882
883 prep_next:
884         cond_resched();
885         if (fatal_signal_pending(current))
886                 ret = -EINTR;
887         else
888                 goto next;
889 out:
890         if (ret == 1)
891                 ret = 0;
892
893         inode_unlock(inode);
894         return ret;
895 }
896
897 /*
898  * This function was originally taken from fs/mpage.c, and customized for f2fs.
899  * Major change was from block_size == page_size in f2fs by default.
900  */
901 static int f2fs_mpage_readpages(struct address_space *mapping,
902                         struct list_head *pages, struct page *page,
903                         unsigned nr_pages)
904 {
905         struct bio *bio = NULL;
906         unsigned page_idx;
907         sector_t last_block_in_bio = 0;
908         struct inode *inode = mapping->host;
909         const unsigned blkbits = inode->i_blkbits;
910         const unsigned blocksize = 1 << blkbits;
911         sector_t block_in_file;
912         sector_t last_block;
913         sector_t last_block_in_file;
914         sector_t block_nr;
915         struct block_device *bdev = inode->i_sb->s_bdev;
916         struct f2fs_map_blocks map;
917
918         map.m_pblk = 0;
919         map.m_lblk = 0;
920         map.m_len = 0;
921         map.m_flags = 0;
922         map.m_next_pgofs = NULL;
923
924         for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
925
926                 prefetchw(&page->flags);
927                 if (pages) {
928                         page = list_entry(pages->prev, struct page, lru);
929                         list_del(&page->lru);
930                         if (add_to_page_cache_lru(page, mapping,
931                                                   page->index, GFP_KERNEL))
932                                 goto next_page;
933                 }
934
935                 block_in_file = (sector_t)page->index;
936                 last_block = block_in_file + nr_pages;
937                 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
938                                                                 blkbits;
939                 if (last_block > last_block_in_file)
940                         last_block = last_block_in_file;
941
942                 /*
943                  * Map blocks using the previous result first.
944                  */
945                 if ((map.m_flags & F2FS_MAP_MAPPED) &&
946                                 block_in_file > map.m_lblk &&
947                                 block_in_file < (map.m_lblk + map.m_len))
948                         goto got_it;
949
950                 /*
951                  * Then do more f2fs_map_blocks() calls until we are
952                  * done with this page.
953                  */
954                 map.m_flags = 0;
955
956                 if (block_in_file < last_block) {
957                         map.m_lblk = block_in_file;
958                         map.m_len = last_block - block_in_file;
959
960                         if (f2fs_map_blocks(inode, &map, 0,
961                                                 F2FS_GET_BLOCK_READ))
962                                 goto set_error_page;
963                 }
964 got_it:
965                 if ((map.m_flags & F2FS_MAP_MAPPED)) {
966                         block_nr = map.m_pblk + block_in_file - map.m_lblk;
967                         SetPageMappedToDisk(page);
968
969                         if (!PageUptodate(page) && !cleancache_get_page(page)) {
970                                 SetPageUptodate(page);
971                                 goto confused;
972                         }
973                 } else {
974                         zero_user_segment(page, 0, PAGE_SIZE);
975                         SetPageUptodate(page);
976                         unlock_page(page);
977                         goto next_page;
978                 }
979
980                 /*
981                  * This page will go to BIO.  Do we need to send this
982                  * BIO off first?
983                  */
984                 if (bio && (last_block_in_bio != block_nr - 1)) {
985 submit_and_realloc:
986                         submit_bio(READ, bio);
987                         bio = NULL;
988                 }
989                 if (bio == NULL) {
990                         struct fscrypt_ctx *ctx = NULL;
991
992                         if (f2fs_encrypted_inode(inode) &&
993                                         S_ISREG(inode->i_mode)) {
994
995                                 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
996                                 if (IS_ERR(ctx))
997                                         goto set_error_page;
998
999                                 /* wait the page to be moved by cleaning */
1000                                 f2fs_wait_on_encrypted_page_writeback(
1001                                                 F2FS_I_SB(inode), block_nr);
1002                         }
1003
1004                         bio = bio_alloc(GFP_KERNEL,
1005                                 min_t(int, nr_pages, BIO_MAX_PAGES));
1006                         if (!bio) {
1007                                 if (ctx)
1008                                         fscrypt_release_ctx(ctx);
1009                                 goto set_error_page;
1010                         }
1011                         bio->bi_bdev = bdev;
1012                         bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
1013                         bio->bi_end_io = f2fs_read_end_io;
1014                         bio->bi_private = ctx;
1015                 }
1016
1017                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1018                         goto submit_and_realloc;
1019
1020                 last_block_in_bio = block_nr;
1021                 goto next_page;
1022 set_error_page:
1023                 SetPageError(page);
1024                 zero_user_segment(page, 0, PAGE_SIZE);
1025                 unlock_page(page);
1026                 goto next_page;
1027 confused:
1028                 if (bio) {
1029                         submit_bio(READ, bio);
1030                         bio = NULL;
1031                 }
1032                 unlock_page(page);
1033 next_page:
1034                 if (pages)
1035                         put_page(page);
1036         }
1037         BUG_ON(pages && !list_empty(pages));
1038         if (bio)
1039                 submit_bio(READ, bio);
1040         return 0;
1041 }
1042
1043 static int f2fs_read_data_page(struct file *file, struct page *page)
1044 {
1045         struct inode *inode = page->mapping->host;
1046         int ret = -EAGAIN;
1047
1048         trace_f2fs_readpage(page, DATA);
1049
1050         /* If the file has inline data, try to read it directly */
1051         if (f2fs_has_inline_data(inode))
1052                 ret = f2fs_read_inline_data(inode, page);
1053         if (ret == -EAGAIN)
1054                 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1055         return ret;
1056 }
1057
1058 static int f2fs_read_data_pages(struct file *file,
1059                         struct address_space *mapping,
1060                         struct list_head *pages, unsigned nr_pages)
1061 {
1062         struct inode *inode = file->f_mapping->host;
1063         struct page *page = list_entry(pages->prev, struct page, lru);
1064
1065         trace_f2fs_readpages(inode, page, nr_pages);
1066
1067         /* If the file has inline data, skip readpages */
1068         if (f2fs_has_inline_data(inode))
1069                 return 0;
1070
1071         return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1072 }
1073
1074 int do_write_data_page(struct f2fs_io_info *fio)
1075 {
1076         struct page *page = fio->page;
1077         struct inode *inode = page->mapping->host;
1078         struct dnode_of_data dn;
1079         int err = 0;
1080
1081         set_new_dnode(&dn, inode, NULL, NULL, 0);
1082         err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1083         if (err)
1084                 return err;
1085
1086         fio->old_blkaddr = dn.data_blkaddr;
1087
1088         /* This page is already truncated */
1089         if (fio->old_blkaddr == NULL_ADDR) {
1090                 ClearPageUptodate(page);
1091                 goto out_writepage;
1092         }
1093
1094         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1095                 gfp_t gfp_flags = GFP_NOFS;
1096
1097                 /* wait for GCed encrypted page writeback */
1098                 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1099                                                         fio->old_blkaddr);
1100 retry_encrypt:
1101                 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1102                                                                 gfp_flags);
1103                 if (IS_ERR(fio->encrypted_page)) {
1104                         err = PTR_ERR(fio->encrypted_page);
1105                         if (err == -ENOMEM) {
1106                                 /* flush pending ios and wait for a while */
1107                                 f2fs_flush_merged_bios(F2FS_I_SB(inode));
1108                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1109                                 gfp_flags |= __GFP_NOFAIL;
1110                                 err = 0;
1111                                 goto retry_encrypt;
1112                         }
1113                         goto out_writepage;
1114                 }
1115         }
1116
1117         set_page_writeback(page);
1118
1119         /*
1120          * If current allocation needs SSR,
1121          * it had better in-place writes for updated data.
1122          */
1123         if (unlikely(fio->old_blkaddr != NEW_ADDR &&
1124                         !is_cold_data(page) &&
1125                         !IS_ATOMIC_WRITTEN_PAGE(page) &&
1126                         need_inplace_update(inode))) {
1127                 rewrite_data_page(fio);
1128                 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
1129                 trace_f2fs_do_write_data_page(page, IPU);
1130         } else {
1131                 write_data_page(&dn, fio);
1132                 trace_f2fs_do_write_data_page(page, OPU);
1133                 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
1134                 if (page->index == 0)
1135                         set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1136         }
1137 out_writepage:
1138         f2fs_put_dnode(&dn);
1139         return err;
1140 }
1141
1142 static int f2fs_write_data_page(struct page *page,
1143                                         struct writeback_control *wbc)
1144 {
1145         struct inode *inode = page->mapping->host;
1146         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1147         loff_t i_size = i_size_read(inode);
1148         const pgoff_t end_index = ((unsigned long long) i_size)
1149                                                         >> PAGE_SHIFT;
1150         unsigned offset = 0;
1151         bool need_balance_fs = false;
1152         int err = 0;
1153         struct f2fs_io_info fio = {
1154                 .sbi = sbi,
1155                 .type = DATA,
1156                 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1157                 .page = page,
1158                 .encrypted_page = NULL,
1159         };
1160
1161         trace_f2fs_writepage(page, DATA);
1162
1163         if (page->index < end_index)
1164                 goto write;
1165
1166         /*
1167          * If the offset is out-of-range of file size,
1168          * this page does not have to be written to disk.
1169          */
1170         offset = i_size & (PAGE_SIZE - 1);
1171         if ((page->index >= end_index + 1) || !offset)
1172                 goto out;
1173
1174         zero_user_segment(page, offset, PAGE_SIZE);
1175 write:
1176         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1177                 goto redirty_out;
1178         if (f2fs_is_drop_cache(inode))
1179                 goto out;
1180         if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
1181                         available_free_memory(sbi, BASE_CHECK))
1182                 goto redirty_out;
1183
1184         /* Dentry blocks are controlled by checkpoint */
1185         if (S_ISDIR(inode->i_mode)) {
1186                 if (unlikely(f2fs_cp_error(sbi)))
1187                         goto redirty_out;
1188                 err = do_write_data_page(&fio);
1189                 goto done;
1190         }
1191
1192         /* we should bypass data pages to proceed the kworkder jobs */
1193         if (unlikely(f2fs_cp_error(sbi))) {
1194                 SetPageError(page);
1195                 goto out;
1196         }
1197
1198         if (!wbc->for_reclaim)
1199                 need_balance_fs = true;
1200         else if (has_not_enough_free_secs(sbi, 0))
1201                 goto redirty_out;
1202
1203         err = -EAGAIN;
1204         f2fs_lock_op(sbi);
1205         if (f2fs_has_inline_data(inode))
1206                 err = f2fs_write_inline_data(inode, page);
1207         if (err == -EAGAIN)
1208                 err = do_write_data_page(&fio);
1209         f2fs_unlock_op(sbi);
1210 done:
1211         if (err && err != -ENOENT)
1212                 goto redirty_out;
1213
1214         clear_cold_data(page);
1215 out:
1216         inode_dec_dirty_pages(inode);
1217         if (err)
1218                 ClearPageUptodate(page);
1219
1220         if (wbc->for_reclaim) {
1221                 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE);
1222                 remove_dirty_inode(inode);
1223         }
1224
1225         unlock_page(page);
1226         f2fs_balance_fs(sbi, need_balance_fs);
1227
1228         if (unlikely(f2fs_cp_error(sbi)))
1229                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1230
1231         return 0;
1232
1233 redirty_out:
1234         redirty_page_for_writepage(wbc, page);
1235         return AOP_WRITEPAGE_ACTIVATE;
1236 }
1237
1238 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1239                         void *data)
1240 {
1241         struct address_space *mapping = data;
1242         int ret = mapping->a_ops->writepage(page, wbc);
1243         mapping_set_error(mapping, ret);
1244         return ret;
1245 }
1246
1247 /*
1248  * This function was copied from write_cche_pages from mm/page-writeback.c.
1249  * The major change is making write step of cold data page separately from
1250  * warm/hot data page.
1251  */
1252 static int f2fs_write_cache_pages(struct address_space *mapping,
1253                         struct writeback_control *wbc, writepage_t writepage,
1254                         void *data)
1255 {
1256         int ret = 0;
1257         int done = 0;
1258         struct pagevec pvec;
1259         int nr_pages;
1260         pgoff_t uninitialized_var(writeback_index);
1261         pgoff_t index;
1262         pgoff_t end;            /* Inclusive */
1263         pgoff_t done_index;
1264         int cycled;
1265         int range_whole = 0;
1266         int tag;
1267         int step = 0;
1268
1269         pagevec_init(&pvec, 0);
1270 next:
1271         if (wbc->range_cyclic) {
1272                 writeback_index = mapping->writeback_index; /* prev offset */
1273                 index = writeback_index;
1274                 if (index == 0)
1275                         cycled = 1;
1276                 else
1277                         cycled = 0;
1278                 end = -1;
1279         } else {
1280                 index = wbc->range_start >> PAGE_SHIFT;
1281                 end = wbc->range_end >> PAGE_SHIFT;
1282                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1283                         range_whole = 1;
1284                 cycled = 1; /* ignore range_cyclic tests */
1285         }
1286         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1287                 tag = PAGECACHE_TAG_TOWRITE;
1288         else
1289                 tag = PAGECACHE_TAG_DIRTY;
1290 retry:
1291         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1292                 tag_pages_for_writeback(mapping, index, end);
1293         done_index = index;
1294         while (!done && (index <= end)) {
1295                 int i;
1296
1297                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1298                               min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1299                 if (nr_pages == 0)
1300                         break;
1301
1302                 for (i = 0; i < nr_pages; i++) {
1303                         struct page *page = pvec.pages[i];
1304
1305                         if (page->index > end) {
1306                                 done = 1;
1307                                 break;
1308                         }
1309
1310                         done_index = page->index;
1311
1312                         lock_page(page);
1313
1314                         if (unlikely(page->mapping != mapping)) {
1315 continue_unlock:
1316                                 unlock_page(page);
1317                                 continue;
1318                         }
1319
1320                         if (!PageDirty(page)) {
1321                                 /* someone wrote it for us */
1322                                 goto continue_unlock;
1323                         }
1324
1325                         if (step == is_cold_data(page))
1326                                 goto continue_unlock;
1327
1328                         if (PageWriteback(page)) {
1329                                 if (wbc->sync_mode != WB_SYNC_NONE)
1330                                         f2fs_wait_on_page_writeback(page,
1331                                                                 DATA, true);
1332                                 else
1333                                         goto continue_unlock;
1334                         }
1335
1336                         BUG_ON(PageWriteback(page));
1337                         if (!clear_page_dirty_for_io(page))
1338                                 goto continue_unlock;
1339
1340                         ret = (*writepage)(page, wbc, data);
1341                         if (unlikely(ret)) {
1342                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1343                                         unlock_page(page);
1344                                         ret = 0;
1345                                 } else {
1346                                         done_index = page->index + 1;
1347                                         done = 1;
1348                                         break;
1349                                 }
1350                         }
1351
1352                         if (--wbc->nr_to_write <= 0 &&
1353                             wbc->sync_mode == WB_SYNC_NONE) {
1354                                 done = 1;
1355                                 break;
1356                         }
1357                 }
1358                 pagevec_release(&pvec);
1359                 cond_resched();
1360         }
1361
1362         if (step < 1) {
1363                 step++;
1364                 goto next;
1365         }
1366
1367         if (!cycled && !done) {
1368                 cycled = 1;
1369                 index = 0;
1370                 end = writeback_index - 1;
1371                 goto retry;
1372         }
1373         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1374                 mapping->writeback_index = done_index;
1375
1376         return ret;
1377 }
1378
1379 static int f2fs_write_data_pages(struct address_space *mapping,
1380                             struct writeback_control *wbc)
1381 {
1382         struct inode *inode = mapping->host;
1383         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1384         bool locked = false;
1385         int ret;
1386         long diff;
1387
1388         /* deal with chardevs and other special file */
1389         if (!mapping->a_ops->writepage)
1390                 return 0;
1391
1392         /* skip writing if there is no dirty page in this inode */
1393         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1394                 return 0;
1395
1396         if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1397                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1398                         available_free_memory(sbi, DIRTY_DENTS))
1399                 goto skip_write;
1400
1401         /* skip writing during file defragment */
1402         if (is_inode_flag_set(F2FS_I(inode), FI_DO_DEFRAG))
1403                 goto skip_write;
1404
1405         /* during POR, we don't need to trigger writepage at all. */
1406         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1407                 goto skip_write;
1408
1409         trace_f2fs_writepages(mapping->host, wbc, DATA);
1410
1411         diff = nr_pages_to_write(sbi, DATA, wbc);
1412
1413         if (!S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_ALL) {
1414                 mutex_lock(&sbi->writepages);
1415                 locked = true;
1416         }
1417         ret = f2fs_write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
1418         f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
1419         if (locked)
1420                 mutex_unlock(&sbi->writepages);
1421
1422         remove_dirty_inode(inode);
1423
1424         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1425         return ret;
1426
1427 skip_write:
1428         wbc->pages_skipped += get_dirty_pages(inode);
1429         trace_f2fs_writepages(mapping->host, wbc, DATA);
1430         return 0;
1431 }
1432
1433 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1434 {
1435         struct inode *inode = mapping->host;
1436         loff_t i_size = i_size_read(inode);
1437
1438         if (to > i_size) {
1439                 truncate_pagecache(inode, i_size);
1440                 truncate_blocks(inode, i_size, true);
1441         }
1442 }
1443
1444 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1445                         struct page *page, loff_t pos, unsigned len,
1446                         block_t *blk_addr, bool *node_changed)
1447 {
1448         struct inode *inode = page->mapping->host;
1449         pgoff_t index = page->index;
1450         struct dnode_of_data dn;
1451         struct page *ipage;
1452         bool locked = false;
1453         struct extent_info ei;
1454         int err = 0;
1455
1456         /*
1457          * we already allocated all the blocks, so we don't need to get
1458          * the block addresses when there is no need to fill the page.
1459          */
1460         if (!f2fs_has_inline_data(inode) && !f2fs_encrypted_inode(inode) &&
1461                                         len == PAGE_SIZE)
1462                 return 0;
1463
1464         if (f2fs_has_inline_data(inode) ||
1465                         (pos & PAGE_MASK) >= i_size_read(inode)) {
1466                 f2fs_lock_op(sbi);
1467                 locked = true;
1468         }
1469 restart:
1470         /* check inline_data */
1471         ipage = get_node_page(sbi, inode->i_ino);
1472         if (IS_ERR(ipage)) {
1473                 err = PTR_ERR(ipage);
1474                 goto unlock_out;
1475         }
1476
1477         set_new_dnode(&dn, inode, ipage, ipage, 0);
1478
1479         if (f2fs_has_inline_data(inode)) {
1480                 if (pos + len <= MAX_INLINE_DATA) {
1481                         read_inline_data(page, ipage);
1482                         set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1483                         set_inline_node(ipage);
1484                 } else {
1485                         err = f2fs_convert_inline_page(&dn, page);
1486                         if (err)
1487                                 goto out;
1488                         if (dn.data_blkaddr == NULL_ADDR)
1489                                 err = f2fs_get_block(&dn, index);
1490                 }
1491         } else if (locked) {
1492                 err = f2fs_get_block(&dn, index);
1493         } else {
1494                 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1495                         dn.data_blkaddr = ei.blk + index - ei.fofs;
1496                 } else {
1497                         /* hole case */
1498                         err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1499                         if (err || (!err && dn.data_blkaddr == NULL_ADDR)) {
1500                                 f2fs_put_dnode(&dn);
1501                                 f2fs_lock_op(sbi);
1502                                 locked = true;
1503                                 goto restart;
1504                         }
1505                 }
1506         }
1507
1508         /* convert_inline_page can make node_changed */
1509         *blk_addr = dn.data_blkaddr;
1510         *node_changed = dn.node_changed;
1511 out:
1512         f2fs_put_dnode(&dn);
1513 unlock_out:
1514         if (locked)
1515                 f2fs_unlock_op(sbi);
1516         return err;
1517 }
1518
1519 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1520                 loff_t pos, unsigned len, unsigned flags,
1521                 struct page **pagep, void **fsdata)
1522 {
1523         struct inode *inode = mapping->host;
1524         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1525         struct page *page = NULL;
1526         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1527         bool need_balance = false;
1528         block_t blkaddr = NULL_ADDR;
1529         int err = 0;
1530
1531         trace_f2fs_write_begin(inode, pos, len, flags);
1532
1533         /*
1534          * We should check this at this moment to avoid deadlock on inode page
1535          * and #0 page. The locking rule for inline_data conversion should be:
1536          * lock_page(page #0) -> lock_page(inode_page)
1537          */
1538         if (index != 0) {
1539                 err = f2fs_convert_inline_inode(inode);
1540                 if (err)
1541                         goto fail;
1542         }
1543 repeat:
1544         page = grab_cache_page_write_begin(mapping, index, flags);
1545         if (!page) {
1546                 err = -ENOMEM;
1547                 goto fail;
1548         }
1549
1550         *pagep = page;
1551
1552         err = prepare_write_begin(sbi, page, pos, len,
1553                                         &blkaddr, &need_balance);
1554         if (err)
1555                 goto fail;
1556
1557         if (need_balance && has_not_enough_free_secs(sbi, 0)) {
1558                 unlock_page(page);
1559                 f2fs_balance_fs(sbi, true);
1560                 lock_page(page);
1561                 if (page->mapping != mapping) {
1562                         /* The page got truncated from under us */
1563                         f2fs_put_page(page, 1);
1564                         goto repeat;
1565                 }
1566         }
1567
1568         f2fs_wait_on_page_writeback(page, DATA, false);
1569
1570         /* wait for GCed encrypted page writeback */
1571         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1572                 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1573
1574         if (len == PAGE_SIZE)
1575                 goto out_update;
1576         if (PageUptodate(page))
1577                 goto out_clear;
1578
1579         if ((pos & PAGE_MASK) >= i_size_read(inode)) {
1580                 unsigned start = pos & (PAGE_SIZE - 1);
1581                 unsigned end = start + len;
1582
1583                 /* Reading beyond i_size is simple: memset to zero */
1584                 zero_user_segments(page, 0, start, end, PAGE_SIZE);
1585                 goto out_update;
1586         }
1587
1588         if (blkaddr == NEW_ADDR) {
1589                 zero_user_segment(page, 0, PAGE_SIZE);
1590         } else {
1591                 struct f2fs_io_info fio = {
1592                         .sbi = sbi,
1593                         .type = DATA,
1594                         .rw = READ_SYNC,
1595                         .old_blkaddr = blkaddr,
1596                         .new_blkaddr = blkaddr,
1597                         .page = page,
1598                         .encrypted_page = NULL,
1599                 };
1600                 err = f2fs_submit_page_bio(&fio);
1601                 if (err)
1602                         goto fail;
1603
1604                 lock_page(page);
1605                 if (unlikely(!PageUptodate(page))) {
1606                         err = -EIO;
1607                         goto fail;
1608                 }
1609                 if (unlikely(page->mapping != mapping)) {
1610                         f2fs_put_page(page, 1);
1611                         goto repeat;
1612                 }
1613
1614                 /* avoid symlink page */
1615                 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1616                         err = fscrypt_decrypt_page(page);
1617                         if (err)
1618                                 goto fail;
1619                 }
1620         }
1621 out_update:
1622         SetPageUptodate(page);
1623 out_clear:
1624         clear_cold_data(page);
1625         return 0;
1626
1627 fail:
1628         f2fs_put_page(page, 1);
1629         f2fs_write_failed(mapping, pos + len);
1630         return err;
1631 }
1632
1633 static int f2fs_write_end(struct file *file,
1634                         struct address_space *mapping,
1635                         loff_t pos, unsigned len, unsigned copied,
1636                         struct page *page, void *fsdata)
1637 {
1638         struct inode *inode = page->mapping->host;
1639
1640         trace_f2fs_write_end(inode, pos, len, copied);
1641
1642         set_page_dirty(page);
1643
1644         if (pos + copied > i_size_read(inode)) {
1645                 i_size_write(inode, pos + copied);
1646                 mark_inode_dirty(inode);
1647         }
1648
1649         f2fs_put_page(page, 1);
1650         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1651         return copied;
1652 }
1653
1654 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1655                            loff_t offset)
1656 {
1657         unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1658
1659         if (offset & blocksize_mask)
1660                 return -EINVAL;
1661
1662         if (iov_iter_alignment(iter) & blocksize_mask)
1663                 return -EINVAL;
1664
1665         return 0;
1666 }
1667
1668 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1669 {
1670         struct address_space *mapping = iocb->ki_filp->f_mapping;
1671         struct inode *inode = mapping->host;
1672         size_t count = iov_iter_count(iter);
1673         loff_t offset = iocb->ki_pos;
1674         int err;
1675
1676         err = check_direct_IO(inode, iter, offset);
1677         if (err)
1678                 return err;
1679
1680         if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1681                 return 0;
1682
1683         trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
1684
1685         err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
1686         if (err < 0 && iov_iter_rw(iter) == WRITE)
1687                 f2fs_write_failed(mapping, offset + count);
1688
1689         trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
1690
1691         return err;
1692 }
1693
1694 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1695                                                         unsigned int length)
1696 {
1697         struct inode *inode = page->mapping->host;
1698         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1699
1700         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1701                 (offset % PAGE_SIZE || length != PAGE_SIZE))
1702                 return;
1703
1704         if (PageDirty(page)) {
1705                 if (inode->i_ino == F2FS_META_INO(sbi))
1706                         dec_page_count(sbi, F2FS_DIRTY_META);
1707                 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1708                         dec_page_count(sbi, F2FS_DIRTY_NODES);
1709                 else
1710                         inode_dec_dirty_pages(inode);
1711         }
1712
1713         /* This is atomic written page, keep Private */
1714         if (IS_ATOMIC_WRITTEN_PAGE(page))
1715                 return;
1716
1717         ClearPagePrivate(page);
1718 }
1719
1720 int f2fs_release_page(struct page *page, gfp_t wait)
1721 {
1722         /* If this is dirty page, keep PagePrivate */
1723         if (PageDirty(page))
1724                 return 0;
1725
1726         /* This is atomic written page, keep Private */
1727         if (IS_ATOMIC_WRITTEN_PAGE(page))
1728                 return 0;
1729
1730         ClearPagePrivate(page);
1731         return 1;
1732 }
1733
1734 static int f2fs_set_data_page_dirty(struct page *page)
1735 {
1736         struct address_space *mapping = page->mapping;
1737         struct inode *inode = mapping->host;
1738
1739         trace_f2fs_set_page_dirty(page, DATA);
1740
1741         SetPageUptodate(page);
1742
1743         if (f2fs_is_atomic_file(inode)) {
1744                 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
1745                         register_inmem_page(inode, page);
1746                         return 1;
1747                 }
1748                 /*
1749                  * Previously, this page has been registered, we just
1750                  * return here.
1751                  */
1752                 return 0;
1753         }
1754
1755         if (!PageDirty(page)) {
1756                 __set_page_dirty_nobuffers(page);
1757                 update_dirty_page(inode, page);
1758                 return 1;
1759         }
1760         return 0;
1761 }
1762
1763 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1764 {
1765         struct inode *inode = mapping->host;
1766
1767         if (f2fs_has_inline_data(inode))
1768                 return 0;
1769
1770         /* make sure allocating whole blocks */
1771         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1772                 filemap_write_and_wait(mapping);
1773
1774         return generic_block_bmap(mapping, block, get_data_block_bmap);
1775 }
1776
1777 const struct address_space_operations f2fs_dblock_aops = {
1778         .readpage       = f2fs_read_data_page,
1779         .readpages      = f2fs_read_data_pages,
1780         .writepage      = f2fs_write_data_page,
1781         .writepages     = f2fs_write_data_pages,
1782         .write_begin    = f2fs_write_begin,
1783         .write_end      = f2fs_write_end,
1784         .set_page_dirty = f2fs_set_data_page_dirty,
1785         .invalidatepage = f2fs_invalidate_page,
1786         .releasepage    = f2fs_release_page,
1787         .direct_IO      = f2fs_direct_IO,
1788         .bmap           = f2fs_bmap,
1789 };