Merge branch 'for-5.6' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu
[sfrench/cifs-2.6.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u32 csum;
56         __u16 dummy_csum = 0;
57         int offset = offsetof(struct ext4_inode, i_checksum_lo);
58         unsigned int csum_size = sizeof(dummy_csum);
59
60         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62         offset += csum_size;
63         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64                            EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67                 offset = offsetof(struct ext4_inode, i_checksum_hi);
68                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69                                    EXT4_GOOD_OLD_INODE_SIZE,
70                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
71                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73                                            csum_size);
74                         offset += csum_size;
75                 }
76                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
78         }
79
80         return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84                                   struct ext4_inode_info *ei)
85 {
86         __u32 provided, calculated;
87
88         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89             cpu_to_le32(EXT4_OS_LINUX) ||
90             !ext4_has_metadata_csum(inode->i_sb))
91                 return 1;
92
93         provided = le16_to_cpu(raw->i_checksum_lo);
94         calculated = ext4_inode_csum(inode, raw, ei);
95         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98         else
99                 calculated &= 0xFFFF;
100
101         return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105                                 struct ext4_inode_info *ei)
106 {
107         __u32 csum;
108
109         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110             cpu_to_le32(EXT4_OS_LINUX) ||
111             !ext4_has_metadata_csum(inode->i_sb))
112                 return;
113
114         csum = ext4_inode_csum(inode, raw, ei);
115         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122                                               loff_t new_size)
123 {
124         trace_ext4_begin_ordered_truncate(inode, new_size);
125         /*
126          * If jinode is zero, then we never opened the file for
127          * writing, so there's no need to call
128          * jbd2_journal_begin_ordered_truncate() since there's no
129          * outstanding writes we need to flush.
130          */
131         if (!EXT4_I(inode)->jinode)
132                 return 0;
133         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134                                                    EXT4_I(inode)->jinode,
135                                                    new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139                                 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143                                   int pextents);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
153                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154
155                 if (ext4_has_inline_data(inode))
156                         return 0;
157
158                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159         }
160         return S_ISLNK(inode->i_mode) && inode->i_size &&
161                (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163
164 /*
165  * Called at the last iput() if i_nlink is zero.
166  */
167 void ext4_evict_inode(struct inode *inode)
168 {
169         handle_t *handle;
170         int err;
171         /*
172          * Credits for final inode cleanup and freeing:
173          * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174          * (xattr block freeing), bitmap, group descriptor (inode freeing)
175          */
176         int extra_credits = 6;
177         struct ext4_xattr_inode_array *ea_inode_array = NULL;
178
179         trace_ext4_evict_inode(inode);
180
181         if (inode->i_nlink) {
182                 /*
183                  * When journalling data dirty buffers are tracked only in the
184                  * journal. So although mm thinks everything is clean and
185                  * ready for reaping the inode might still have some pages to
186                  * write in the running transaction or waiting to be
187                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
188                  * (via truncate_inode_pages()) to discard these buffers can
189                  * cause data loss. Also even if we did not discard these
190                  * buffers, we would have no way to find them after the inode
191                  * is reaped and thus user could see stale data if he tries to
192                  * read them before the transaction is checkpointed. So be
193                  * careful and force everything to disk here... We use
194                  * ei->i_datasync_tid to store the newest transaction
195                  * containing inode's data.
196                  *
197                  * Note that directories do not have this problem because they
198                  * don't use page cache.
199                  */
200                 if (inode->i_ino != EXT4_JOURNAL_INO &&
201                     ext4_should_journal_data(inode) &&
202                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
203                     inode->i_data.nrpages) {
204                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206
207                         jbd2_complete_transaction(journal, commit_tid);
208                         filemap_write_and_wait(&inode->i_data);
209                 }
210                 truncate_inode_pages_final(&inode->i_data);
211
212                 goto no_delete;
213         }
214
215         if (is_bad_inode(inode))
216                 goto no_delete;
217         dquot_initialize(inode);
218
219         if (ext4_should_order_data(inode))
220                 ext4_begin_ordered_truncate(inode, 0);
221         truncate_inode_pages_final(&inode->i_data);
222
223         /*
224          * Protect us against freezing - iput() caller didn't have to have any
225          * protection against it
226          */
227         sb_start_intwrite(inode->i_sb);
228
229         if (!IS_NOQUOTA(inode))
230                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
231
232         /*
233          * Block bitmap, group descriptor, and inode are accounted in both
234          * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
235          */
236         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
237                          ext4_blocks_for_truncate(inode) + extra_credits - 3);
238         if (IS_ERR(handle)) {
239                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
240                 /*
241                  * If we're going to skip the normal cleanup, we still need to
242                  * make sure that the in-core orphan linked list is properly
243                  * cleaned up.
244                  */
245                 ext4_orphan_del(NULL, inode);
246                 sb_end_intwrite(inode->i_sb);
247                 goto no_delete;
248         }
249
250         if (IS_SYNC(inode))
251                 ext4_handle_sync(handle);
252
253         /*
254          * Set inode->i_size to 0 before calling ext4_truncate(). We need
255          * special handling of symlinks here because i_size is used to
256          * determine whether ext4_inode_info->i_data contains symlink data or
257          * block mappings. Setting i_size to 0 will remove its fast symlink
258          * status. Erase i_data so that it becomes a valid empty block map.
259          */
260         if (ext4_inode_is_fast_symlink(inode))
261                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
262         inode->i_size = 0;
263         err = ext4_mark_inode_dirty(handle, inode);
264         if (err) {
265                 ext4_warning(inode->i_sb,
266                              "couldn't mark inode dirty (err %d)", err);
267                 goto stop_handle;
268         }
269         if (inode->i_blocks) {
270                 err = ext4_truncate(inode);
271                 if (err) {
272                         ext4_set_errno(inode->i_sb, -err);
273                         ext4_error(inode->i_sb,
274                                    "couldn't truncate inode %lu (err %d)",
275                                    inode->i_ino, err);
276                         goto stop_handle;
277                 }
278         }
279
280         /* Remove xattr references. */
281         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
282                                       extra_credits);
283         if (err) {
284                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
285 stop_handle:
286                 ext4_journal_stop(handle);
287                 ext4_orphan_del(NULL, inode);
288                 sb_end_intwrite(inode->i_sb);
289                 ext4_xattr_inode_array_free(ea_inode_array);
290                 goto no_delete;
291         }
292
293         /*
294          * Kill off the orphan record which ext4_truncate created.
295          * AKPM: I think this can be inside the above `if'.
296          * Note that ext4_orphan_del() has to be able to cope with the
297          * deletion of a non-existent orphan - this is because we don't
298          * know if ext4_truncate() actually created an orphan record.
299          * (Well, we could do this if we need to, but heck - it works)
300          */
301         ext4_orphan_del(handle, inode);
302         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
303
304         /*
305          * One subtle ordering requirement: if anything has gone wrong
306          * (transaction abort, IO errors, whatever), then we can still
307          * do these next steps (the fs will already have been marked as
308          * having errors), but we can't free the inode if the mark_dirty
309          * fails.
310          */
311         if (ext4_mark_inode_dirty(handle, inode))
312                 /* If that failed, just do the required in-core inode clear. */
313                 ext4_clear_inode(inode);
314         else
315                 ext4_free_inode(handle, inode);
316         ext4_journal_stop(handle);
317         sb_end_intwrite(inode->i_sb);
318         ext4_xattr_inode_array_free(ea_inode_array);
319         return;
320 no_delete:
321         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
322 }
323
324 #ifdef CONFIG_QUOTA
325 qsize_t *ext4_get_reserved_space(struct inode *inode)
326 {
327         return &EXT4_I(inode)->i_reserved_quota;
328 }
329 #endif
330
331 /*
332  * Called with i_data_sem down, which is important since we can call
333  * ext4_discard_preallocations() from here.
334  */
335 void ext4_da_update_reserve_space(struct inode *inode,
336                                         int used, int quota_claim)
337 {
338         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
339         struct ext4_inode_info *ei = EXT4_I(inode);
340
341         spin_lock(&ei->i_block_reservation_lock);
342         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
343         if (unlikely(used > ei->i_reserved_data_blocks)) {
344                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
345                          "with only %d reserved data blocks",
346                          __func__, inode->i_ino, used,
347                          ei->i_reserved_data_blocks);
348                 WARN_ON(1);
349                 used = ei->i_reserved_data_blocks;
350         }
351
352         /* Update per-inode reservations */
353         ei->i_reserved_data_blocks -= used;
354         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
355
356         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
357
358         /* Update quota subsystem for data blocks */
359         if (quota_claim)
360                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
361         else {
362                 /*
363                  * We did fallocate with an offset that is already delayed
364                  * allocated. So on delayed allocated writeback we should
365                  * not re-claim the quota for fallocated blocks.
366                  */
367                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
368         }
369
370         /*
371          * If we have done all the pending block allocations and if
372          * there aren't any writers on the inode, we can discard the
373          * inode's preallocations.
374          */
375         if ((ei->i_reserved_data_blocks == 0) &&
376             !inode_is_open_for_write(inode))
377                 ext4_discard_preallocations(inode);
378 }
379
380 static int __check_block_validity(struct inode *inode, const char *func,
381                                 unsigned int line,
382                                 struct ext4_map_blocks *map)
383 {
384         if (ext4_has_feature_journal(inode->i_sb) &&
385             (inode->i_ino ==
386              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
387                 return 0;
388         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
389                                    map->m_len)) {
390                 ext4_error_inode(inode, func, line, map->m_pblk,
391                                  "lblock %lu mapped to illegal pblock %llu "
392                                  "(length %d)", (unsigned long) map->m_lblk,
393                                  map->m_pblk, map->m_len);
394                 return -EFSCORRUPTED;
395         }
396         return 0;
397 }
398
399 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
400                        ext4_lblk_t len)
401 {
402         int ret;
403
404         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
405                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
406
407         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
408         if (ret > 0)
409                 ret = 0;
410
411         return ret;
412 }
413
414 #define check_block_validity(inode, map)        \
415         __check_block_validity((inode), __func__, __LINE__, (map))
416
417 #ifdef ES_AGGRESSIVE_TEST
418 static void ext4_map_blocks_es_recheck(handle_t *handle,
419                                        struct inode *inode,
420                                        struct ext4_map_blocks *es_map,
421                                        struct ext4_map_blocks *map,
422                                        int flags)
423 {
424         int retval;
425
426         map->m_flags = 0;
427         /*
428          * There is a race window that the result is not the same.
429          * e.g. xfstests #223 when dioread_nolock enables.  The reason
430          * is that we lookup a block mapping in extent status tree with
431          * out taking i_data_sem.  So at the time the unwritten extent
432          * could be converted.
433          */
434         down_read(&EXT4_I(inode)->i_data_sem);
435         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
436                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
437                                              EXT4_GET_BLOCKS_KEEP_SIZE);
438         } else {
439                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
440                                              EXT4_GET_BLOCKS_KEEP_SIZE);
441         }
442         up_read((&EXT4_I(inode)->i_data_sem));
443
444         /*
445          * We don't check m_len because extent will be collpased in status
446          * tree.  So the m_len might not equal.
447          */
448         if (es_map->m_lblk != map->m_lblk ||
449             es_map->m_flags != map->m_flags ||
450             es_map->m_pblk != map->m_pblk) {
451                 printk("ES cache assertion failed for inode: %lu "
452                        "es_cached ex [%d/%d/%llu/%x] != "
453                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
454                        inode->i_ino, es_map->m_lblk, es_map->m_len,
455                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
456                        map->m_len, map->m_pblk, map->m_flags,
457                        retval, flags);
458         }
459 }
460 #endif /* ES_AGGRESSIVE_TEST */
461
462 /*
463  * The ext4_map_blocks() function tries to look up the requested blocks,
464  * and returns if the blocks are already mapped.
465  *
466  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
467  * and store the allocated blocks in the result buffer head and mark it
468  * mapped.
469  *
470  * If file type is extents based, it will call ext4_ext_map_blocks(),
471  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
472  * based files
473  *
474  * On success, it returns the number of blocks being mapped or allocated.  if
475  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
476  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
477  *
478  * It returns 0 if plain look up failed (blocks have not been allocated), in
479  * that case, @map is returned as unmapped but we still do fill map->m_len to
480  * indicate the length of a hole starting at map->m_lblk.
481  *
482  * It returns the error in case of allocation failure.
483  */
484 int ext4_map_blocks(handle_t *handle, struct inode *inode,
485                     struct ext4_map_blocks *map, int flags)
486 {
487         struct extent_status es;
488         int retval;
489         int ret = 0;
490 #ifdef ES_AGGRESSIVE_TEST
491         struct ext4_map_blocks orig_map;
492
493         memcpy(&orig_map, map, sizeof(*map));
494 #endif
495
496         map->m_flags = 0;
497         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
498                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
499                   (unsigned long) map->m_lblk);
500
501         /*
502          * ext4_map_blocks returns an int, and m_len is an unsigned int
503          */
504         if (unlikely(map->m_len > INT_MAX))
505                 map->m_len = INT_MAX;
506
507         /* We can handle the block number less than EXT_MAX_BLOCKS */
508         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
509                 return -EFSCORRUPTED;
510
511         /* Lookup extent status tree firstly */
512         if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
513                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
514                         map->m_pblk = ext4_es_pblock(&es) +
515                                         map->m_lblk - es.es_lblk;
516                         map->m_flags |= ext4_es_is_written(&es) ?
517                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
518                         retval = es.es_len - (map->m_lblk - es.es_lblk);
519                         if (retval > map->m_len)
520                                 retval = map->m_len;
521                         map->m_len = retval;
522                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
523                         map->m_pblk = 0;
524                         retval = es.es_len - (map->m_lblk - es.es_lblk);
525                         if (retval > map->m_len)
526                                 retval = map->m_len;
527                         map->m_len = retval;
528                         retval = 0;
529                 } else {
530                         BUG();
531                 }
532 #ifdef ES_AGGRESSIVE_TEST
533                 ext4_map_blocks_es_recheck(handle, inode, map,
534                                            &orig_map, flags);
535 #endif
536                 goto found;
537         }
538
539         /*
540          * Try to see if we can get the block without requesting a new
541          * file system block.
542          */
543         down_read(&EXT4_I(inode)->i_data_sem);
544         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
545                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
546                                              EXT4_GET_BLOCKS_KEEP_SIZE);
547         } else {
548                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
549                                              EXT4_GET_BLOCKS_KEEP_SIZE);
550         }
551         if (retval > 0) {
552                 unsigned int status;
553
554                 if (unlikely(retval != map->m_len)) {
555                         ext4_warning(inode->i_sb,
556                                      "ES len assertion failed for inode "
557                                      "%lu: retval %d != map->m_len %d",
558                                      inode->i_ino, retval, map->m_len);
559                         WARN_ON(1);
560                 }
561
562                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
563                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
564                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
565                     !(status & EXTENT_STATUS_WRITTEN) &&
566                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
567                                        map->m_lblk + map->m_len - 1))
568                         status |= EXTENT_STATUS_DELAYED;
569                 ret = ext4_es_insert_extent(inode, map->m_lblk,
570                                             map->m_len, map->m_pblk, status);
571                 if (ret < 0)
572                         retval = ret;
573         }
574         up_read((&EXT4_I(inode)->i_data_sem));
575
576 found:
577         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
578                 ret = check_block_validity(inode, map);
579                 if (ret != 0)
580                         return ret;
581         }
582
583         /* If it is only a block(s) look up */
584         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
585                 return retval;
586
587         /*
588          * Returns if the blocks have already allocated
589          *
590          * Note that if blocks have been preallocated
591          * ext4_ext_get_block() returns the create = 0
592          * with buffer head unmapped.
593          */
594         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
595                 /*
596                  * If we need to convert extent to unwritten
597                  * we continue and do the actual work in
598                  * ext4_ext_map_blocks()
599                  */
600                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
601                         return retval;
602
603         /*
604          * Here we clear m_flags because after allocating an new extent,
605          * it will be set again.
606          */
607         map->m_flags &= ~EXT4_MAP_FLAGS;
608
609         /*
610          * New blocks allocate and/or writing to unwritten extent
611          * will possibly result in updating i_data, so we take
612          * the write lock of i_data_sem, and call get_block()
613          * with create == 1 flag.
614          */
615         down_write(&EXT4_I(inode)->i_data_sem);
616
617         /*
618          * We need to check for EXT4 here because migrate
619          * could have changed the inode type in between
620          */
621         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
622                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
623         } else {
624                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
625
626                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
627                         /*
628                          * We allocated new blocks which will result in
629                          * i_data's format changing.  Force the migrate
630                          * to fail by clearing migrate flags
631                          */
632                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
633                 }
634
635                 /*
636                  * Update reserved blocks/metadata blocks after successful
637                  * block allocation which had been deferred till now. We don't
638                  * support fallocate for non extent files. So we can update
639                  * reserve space here.
640                  */
641                 if ((retval > 0) &&
642                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
643                         ext4_da_update_reserve_space(inode, retval, 1);
644         }
645
646         if (retval > 0) {
647                 unsigned int status;
648
649                 if (unlikely(retval != map->m_len)) {
650                         ext4_warning(inode->i_sb,
651                                      "ES len assertion failed for inode "
652                                      "%lu: retval %d != map->m_len %d",
653                                      inode->i_ino, retval, map->m_len);
654                         WARN_ON(1);
655                 }
656
657                 /*
658                  * We have to zeroout blocks before inserting them into extent
659                  * status tree. Otherwise someone could look them up there and
660                  * use them before they are really zeroed. We also have to
661                  * unmap metadata before zeroing as otherwise writeback can
662                  * overwrite zeros with stale data from block device.
663                  */
664                 if (flags & EXT4_GET_BLOCKS_ZERO &&
665                     map->m_flags & EXT4_MAP_MAPPED &&
666                     map->m_flags & EXT4_MAP_NEW) {
667                         ret = ext4_issue_zeroout(inode, map->m_lblk,
668                                                  map->m_pblk, map->m_len);
669                         if (ret) {
670                                 retval = ret;
671                                 goto out_sem;
672                         }
673                 }
674
675                 /*
676                  * If the extent has been zeroed out, we don't need to update
677                  * extent status tree.
678                  */
679                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
680                     ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
681                         if (ext4_es_is_written(&es))
682                                 goto out_sem;
683                 }
684                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
685                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
686                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
687                     !(status & EXTENT_STATUS_WRITTEN) &&
688                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
689                                        map->m_lblk + map->m_len - 1))
690                         status |= EXTENT_STATUS_DELAYED;
691                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
692                                             map->m_pblk, status);
693                 if (ret < 0) {
694                         retval = ret;
695                         goto out_sem;
696                 }
697         }
698
699 out_sem:
700         up_write((&EXT4_I(inode)->i_data_sem));
701         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
702                 ret = check_block_validity(inode, map);
703                 if (ret != 0)
704                         return ret;
705
706                 /*
707                  * Inodes with freshly allocated blocks where contents will be
708                  * visible after transaction commit must be on transaction's
709                  * ordered data list.
710                  */
711                 if (map->m_flags & EXT4_MAP_NEW &&
712                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
713                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
714                     !ext4_is_quota_file(inode) &&
715                     ext4_should_order_data(inode)) {
716                         loff_t start_byte =
717                                 (loff_t)map->m_lblk << inode->i_blkbits;
718                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
719
720                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
721                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
722                                                 start_byte, length);
723                         else
724                                 ret = ext4_jbd2_inode_add_write(handle, inode,
725                                                 start_byte, length);
726                         if (ret)
727                                 return ret;
728                 }
729         }
730         return retval;
731 }
732
733 /*
734  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
735  * we have to be careful as someone else may be manipulating b_state as well.
736  */
737 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
738 {
739         unsigned long old_state;
740         unsigned long new_state;
741
742         flags &= EXT4_MAP_FLAGS;
743
744         /* Dummy buffer_head? Set non-atomically. */
745         if (!bh->b_page) {
746                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
747                 return;
748         }
749         /*
750          * Someone else may be modifying b_state. Be careful! This is ugly but
751          * once we get rid of using bh as a container for mapping information
752          * to pass to / from get_block functions, this can go away.
753          */
754         do {
755                 old_state = READ_ONCE(bh->b_state);
756                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
757         } while (unlikely(
758                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
759 }
760
761 static int _ext4_get_block(struct inode *inode, sector_t iblock,
762                            struct buffer_head *bh, int flags)
763 {
764         struct ext4_map_blocks map;
765         int ret = 0;
766
767         if (ext4_has_inline_data(inode))
768                 return -ERANGE;
769
770         map.m_lblk = iblock;
771         map.m_len = bh->b_size >> inode->i_blkbits;
772
773         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
774                               flags);
775         if (ret > 0) {
776                 map_bh(bh, inode->i_sb, map.m_pblk);
777                 ext4_update_bh_state(bh, map.m_flags);
778                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
779                 ret = 0;
780         } else if (ret == 0) {
781                 /* hole case, need to fill in bh->b_size */
782                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
783         }
784         return ret;
785 }
786
787 int ext4_get_block(struct inode *inode, sector_t iblock,
788                    struct buffer_head *bh, int create)
789 {
790         return _ext4_get_block(inode, iblock, bh,
791                                create ? EXT4_GET_BLOCKS_CREATE : 0);
792 }
793
794 /*
795  * Get block function used when preparing for buffered write if we require
796  * creating an unwritten extent if blocks haven't been allocated.  The extent
797  * will be converted to written after the IO is complete.
798  */
799 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
800                              struct buffer_head *bh_result, int create)
801 {
802         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
803                    inode->i_ino, create);
804         return _ext4_get_block(inode, iblock, bh_result,
805                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
806 }
807
808 /* Maximum number of blocks we map for direct IO at once. */
809 #define DIO_MAX_BLOCKS 4096
810
811 /*
812  * `handle' can be NULL if create is zero
813  */
814 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
815                                 ext4_lblk_t block, int map_flags)
816 {
817         struct ext4_map_blocks map;
818         struct buffer_head *bh;
819         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
820         int err;
821
822         J_ASSERT(handle != NULL || create == 0);
823
824         map.m_lblk = block;
825         map.m_len = 1;
826         err = ext4_map_blocks(handle, inode, &map, map_flags);
827
828         if (err == 0)
829                 return create ? ERR_PTR(-ENOSPC) : NULL;
830         if (err < 0)
831                 return ERR_PTR(err);
832
833         bh = sb_getblk(inode->i_sb, map.m_pblk);
834         if (unlikely(!bh))
835                 return ERR_PTR(-ENOMEM);
836         if (map.m_flags & EXT4_MAP_NEW) {
837                 J_ASSERT(create != 0);
838                 J_ASSERT(handle != NULL);
839
840                 /*
841                  * Now that we do not always journal data, we should
842                  * keep in mind whether this should always journal the
843                  * new buffer as metadata.  For now, regular file
844                  * writes use ext4_get_block instead, so it's not a
845                  * problem.
846                  */
847                 lock_buffer(bh);
848                 BUFFER_TRACE(bh, "call get_create_access");
849                 err = ext4_journal_get_create_access(handle, bh);
850                 if (unlikely(err)) {
851                         unlock_buffer(bh);
852                         goto errout;
853                 }
854                 if (!buffer_uptodate(bh)) {
855                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
856                         set_buffer_uptodate(bh);
857                 }
858                 unlock_buffer(bh);
859                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
860                 err = ext4_handle_dirty_metadata(handle, inode, bh);
861                 if (unlikely(err))
862                         goto errout;
863         } else
864                 BUFFER_TRACE(bh, "not a new buffer");
865         return bh;
866 errout:
867         brelse(bh);
868         return ERR_PTR(err);
869 }
870
871 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
872                                ext4_lblk_t block, int map_flags)
873 {
874         struct buffer_head *bh;
875
876         bh = ext4_getblk(handle, inode, block, map_flags);
877         if (IS_ERR(bh))
878                 return bh;
879         if (!bh || ext4_buffer_uptodate(bh))
880                 return bh;
881         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
882         wait_on_buffer(bh);
883         if (buffer_uptodate(bh))
884                 return bh;
885         put_bh(bh);
886         return ERR_PTR(-EIO);
887 }
888
889 /* Read a contiguous batch of blocks. */
890 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
891                      bool wait, struct buffer_head **bhs)
892 {
893         int i, err;
894
895         for (i = 0; i < bh_count; i++) {
896                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
897                 if (IS_ERR(bhs[i])) {
898                         err = PTR_ERR(bhs[i]);
899                         bh_count = i;
900                         goto out_brelse;
901                 }
902         }
903
904         for (i = 0; i < bh_count; i++)
905                 /* Note that NULL bhs[i] is valid because of holes. */
906                 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
907                         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
908                                     &bhs[i]);
909
910         if (!wait)
911                 return 0;
912
913         for (i = 0; i < bh_count; i++)
914                 if (bhs[i])
915                         wait_on_buffer(bhs[i]);
916
917         for (i = 0; i < bh_count; i++) {
918                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
919                         err = -EIO;
920                         goto out_brelse;
921                 }
922         }
923         return 0;
924
925 out_brelse:
926         for (i = 0; i < bh_count; i++) {
927                 brelse(bhs[i]);
928                 bhs[i] = NULL;
929         }
930         return err;
931 }
932
933 int ext4_walk_page_buffers(handle_t *handle,
934                            struct buffer_head *head,
935                            unsigned from,
936                            unsigned to,
937                            int *partial,
938                            int (*fn)(handle_t *handle,
939                                      struct buffer_head *bh))
940 {
941         struct buffer_head *bh;
942         unsigned block_start, block_end;
943         unsigned blocksize = head->b_size;
944         int err, ret = 0;
945         struct buffer_head *next;
946
947         for (bh = head, block_start = 0;
948              ret == 0 && (bh != head || !block_start);
949              block_start = block_end, bh = next) {
950                 next = bh->b_this_page;
951                 block_end = block_start + blocksize;
952                 if (block_end <= from || block_start >= to) {
953                         if (partial && !buffer_uptodate(bh))
954                                 *partial = 1;
955                         continue;
956                 }
957                 err = (*fn)(handle, bh);
958                 if (!ret)
959                         ret = err;
960         }
961         return ret;
962 }
963
964 /*
965  * To preserve ordering, it is essential that the hole instantiation and
966  * the data write be encapsulated in a single transaction.  We cannot
967  * close off a transaction and start a new one between the ext4_get_block()
968  * and the commit_write().  So doing the jbd2_journal_start at the start of
969  * prepare_write() is the right place.
970  *
971  * Also, this function can nest inside ext4_writepage().  In that case, we
972  * *know* that ext4_writepage() has generated enough buffer credits to do the
973  * whole page.  So we won't block on the journal in that case, which is good,
974  * because the caller may be PF_MEMALLOC.
975  *
976  * By accident, ext4 can be reentered when a transaction is open via
977  * quota file writes.  If we were to commit the transaction while thus
978  * reentered, there can be a deadlock - we would be holding a quota
979  * lock, and the commit would never complete if another thread had a
980  * transaction open and was blocking on the quota lock - a ranking
981  * violation.
982  *
983  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
984  * will _not_ run commit under these circumstances because handle->h_ref
985  * is elevated.  We'll still have enough credits for the tiny quotafile
986  * write.
987  */
988 int do_journal_get_write_access(handle_t *handle,
989                                 struct buffer_head *bh)
990 {
991         int dirty = buffer_dirty(bh);
992         int ret;
993
994         if (!buffer_mapped(bh) || buffer_freed(bh))
995                 return 0;
996         /*
997          * __block_write_begin() could have dirtied some buffers. Clean
998          * the dirty bit as jbd2_journal_get_write_access() could complain
999          * otherwise about fs integrity issues. Setting of the dirty bit
1000          * by __block_write_begin() isn't a real problem here as we clear
1001          * the bit before releasing a page lock and thus writeback cannot
1002          * ever write the buffer.
1003          */
1004         if (dirty)
1005                 clear_buffer_dirty(bh);
1006         BUFFER_TRACE(bh, "get write access");
1007         ret = ext4_journal_get_write_access(handle, bh);
1008         if (!ret && dirty)
1009                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1010         return ret;
1011 }
1012
1013 #ifdef CONFIG_FS_ENCRYPTION
1014 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1015                                   get_block_t *get_block)
1016 {
1017         unsigned from = pos & (PAGE_SIZE - 1);
1018         unsigned to = from + len;
1019         struct inode *inode = page->mapping->host;
1020         unsigned block_start, block_end;
1021         sector_t block;
1022         int err = 0;
1023         unsigned blocksize = inode->i_sb->s_blocksize;
1024         unsigned bbits;
1025         struct buffer_head *bh, *head, *wait[2];
1026         int nr_wait = 0;
1027         int i;
1028
1029         BUG_ON(!PageLocked(page));
1030         BUG_ON(from > PAGE_SIZE);
1031         BUG_ON(to > PAGE_SIZE);
1032         BUG_ON(from > to);
1033
1034         if (!page_has_buffers(page))
1035                 create_empty_buffers(page, blocksize, 0);
1036         head = page_buffers(page);
1037         bbits = ilog2(blocksize);
1038         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1039
1040         for (bh = head, block_start = 0; bh != head || !block_start;
1041             block++, block_start = block_end, bh = bh->b_this_page) {
1042                 block_end = block_start + blocksize;
1043                 if (block_end <= from || block_start >= to) {
1044                         if (PageUptodate(page)) {
1045                                 if (!buffer_uptodate(bh))
1046                                         set_buffer_uptodate(bh);
1047                         }
1048                         continue;
1049                 }
1050                 if (buffer_new(bh))
1051                         clear_buffer_new(bh);
1052                 if (!buffer_mapped(bh)) {
1053                         WARN_ON(bh->b_size != blocksize);
1054                         err = get_block(inode, block, bh, 1);
1055                         if (err)
1056                                 break;
1057                         if (buffer_new(bh)) {
1058                                 if (PageUptodate(page)) {
1059                                         clear_buffer_new(bh);
1060                                         set_buffer_uptodate(bh);
1061                                         mark_buffer_dirty(bh);
1062                                         continue;
1063                                 }
1064                                 if (block_end > to || block_start < from)
1065                                         zero_user_segments(page, to, block_end,
1066                                                            block_start, from);
1067                                 continue;
1068                         }
1069                 }
1070                 if (PageUptodate(page)) {
1071                         if (!buffer_uptodate(bh))
1072                                 set_buffer_uptodate(bh);
1073                         continue;
1074                 }
1075                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1076                     !buffer_unwritten(bh) &&
1077                     (block_start < from || block_end > to)) {
1078                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1079                         wait[nr_wait++] = bh;
1080                 }
1081         }
1082         /*
1083          * If we issued read requests, let them complete.
1084          */
1085         for (i = 0; i < nr_wait; i++) {
1086                 wait_on_buffer(wait[i]);
1087                 if (!buffer_uptodate(wait[i]))
1088                         err = -EIO;
1089         }
1090         if (unlikely(err)) {
1091                 page_zero_new_buffers(page, from, to);
1092         } else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1093                 for (i = 0; i < nr_wait; i++) {
1094                         int err2;
1095
1096                         err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1097                                                                 bh_offset(wait[i]));
1098                         if (err2) {
1099                                 clear_buffer_uptodate(wait[i]);
1100                                 err = err2;
1101                         }
1102                 }
1103         }
1104
1105         return err;
1106 }
1107 #endif
1108
1109 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1110                             loff_t pos, unsigned len, unsigned flags,
1111                             struct page **pagep, void **fsdata)
1112 {
1113         struct inode *inode = mapping->host;
1114         int ret, needed_blocks;
1115         handle_t *handle;
1116         int retries = 0;
1117         struct page *page;
1118         pgoff_t index;
1119         unsigned from, to;
1120
1121         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1122                 return -EIO;
1123
1124         trace_ext4_write_begin(inode, pos, len, flags);
1125         /*
1126          * Reserve one block more for addition to orphan list in case
1127          * we allocate blocks but write fails for some reason
1128          */
1129         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1130         index = pos >> PAGE_SHIFT;
1131         from = pos & (PAGE_SIZE - 1);
1132         to = from + len;
1133
1134         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1135                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1136                                                     flags, pagep);
1137                 if (ret < 0)
1138                         return ret;
1139                 if (ret == 1)
1140                         return 0;
1141         }
1142
1143         /*
1144          * grab_cache_page_write_begin() can take a long time if the
1145          * system is thrashing due to memory pressure, or if the page
1146          * is being written back.  So grab it first before we start
1147          * the transaction handle.  This also allows us to allocate
1148          * the page (if needed) without using GFP_NOFS.
1149          */
1150 retry_grab:
1151         page = grab_cache_page_write_begin(mapping, index, flags);
1152         if (!page)
1153                 return -ENOMEM;
1154         unlock_page(page);
1155
1156 retry_journal:
1157         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1158         if (IS_ERR(handle)) {
1159                 put_page(page);
1160                 return PTR_ERR(handle);
1161         }
1162
1163         lock_page(page);
1164         if (page->mapping != mapping) {
1165                 /* The page got truncated from under us */
1166                 unlock_page(page);
1167                 put_page(page);
1168                 ext4_journal_stop(handle);
1169                 goto retry_grab;
1170         }
1171         /* In case writeback began while the page was unlocked */
1172         wait_for_stable_page(page);
1173
1174 #ifdef CONFIG_FS_ENCRYPTION
1175         if (ext4_should_dioread_nolock(inode))
1176                 ret = ext4_block_write_begin(page, pos, len,
1177                                              ext4_get_block_unwritten);
1178         else
1179                 ret = ext4_block_write_begin(page, pos, len,
1180                                              ext4_get_block);
1181 #else
1182         if (ext4_should_dioread_nolock(inode))
1183                 ret = __block_write_begin(page, pos, len,
1184                                           ext4_get_block_unwritten);
1185         else
1186                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1187 #endif
1188         if (!ret && ext4_should_journal_data(inode)) {
1189                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1190                                              from, to, NULL,
1191                                              do_journal_get_write_access);
1192         }
1193
1194         if (ret) {
1195                 bool extended = (pos + len > inode->i_size) &&
1196                                 !ext4_verity_in_progress(inode);
1197
1198                 unlock_page(page);
1199                 /*
1200                  * __block_write_begin may have instantiated a few blocks
1201                  * outside i_size.  Trim these off again. Don't need
1202                  * i_size_read because we hold i_mutex.
1203                  *
1204                  * Add inode to orphan list in case we crash before
1205                  * truncate finishes
1206                  */
1207                 if (extended && ext4_can_truncate(inode))
1208                         ext4_orphan_add(handle, inode);
1209
1210                 ext4_journal_stop(handle);
1211                 if (extended) {
1212                         ext4_truncate_failed_write(inode);
1213                         /*
1214                          * If truncate failed early the inode might
1215                          * still be on the orphan list; we need to
1216                          * make sure the inode is removed from the
1217                          * orphan list in that case.
1218                          */
1219                         if (inode->i_nlink)
1220                                 ext4_orphan_del(NULL, inode);
1221                 }
1222
1223                 if (ret == -ENOSPC &&
1224                     ext4_should_retry_alloc(inode->i_sb, &retries))
1225                         goto retry_journal;
1226                 put_page(page);
1227                 return ret;
1228         }
1229         *pagep = page;
1230         return ret;
1231 }
1232
1233 /* For write_end() in data=journal mode */
1234 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1235 {
1236         int ret;
1237         if (!buffer_mapped(bh) || buffer_freed(bh))
1238                 return 0;
1239         set_buffer_uptodate(bh);
1240         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1241         clear_buffer_meta(bh);
1242         clear_buffer_prio(bh);
1243         return ret;
1244 }
1245
1246 /*
1247  * We need to pick up the new inode size which generic_commit_write gave us
1248  * `file' can be NULL - eg, when called from page_symlink().
1249  *
1250  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1251  * buffers are managed internally.
1252  */
1253 static int ext4_write_end(struct file *file,
1254                           struct address_space *mapping,
1255                           loff_t pos, unsigned len, unsigned copied,
1256                           struct page *page, void *fsdata)
1257 {
1258         handle_t *handle = ext4_journal_current_handle();
1259         struct inode *inode = mapping->host;
1260         loff_t old_size = inode->i_size;
1261         int ret = 0, ret2;
1262         int i_size_changed = 0;
1263         int inline_data = ext4_has_inline_data(inode);
1264         bool verity = ext4_verity_in_progress(inode);
1265
1266         trace_ext4_write_end(inode, pos, len, copied);
1267         if (inline_data) {
1268                 ret = ext4_write_inline_data_end(inode, pos, len,
1269                                                  copied, page);
1270                 if (ret < 0) {
1271                         unlock_page(page);
1272                         put_page(page);
1273                         goto errout;
1274                 }
1275                 copied = ret;
1276         } else
1277                 copied = block_write_end(file, mapping, pos,
1278                                          len, copied, page, fsdata);
1279         /*
1280          * it's important to update i_size while still holding page lock:
1281          * page writeout could otherwise come in and zero beyond i_size.
1282          *
1283          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1284          * blocks are being written past EOF, so skip the i_size update.
1285          */
1286         if (!verity)
1287                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1288         unlock_page(page);
1289         put_page(page);
1290
1291         if (old_size < pos && !verity)
1292                 pagecache_isize_extended(inode, old_size, pos);
1293         /*
1294          * Don't mark the inode dirty under page lock. First, it unnecessarily
1295          * makes the holding time of page lock longer. Second, it forces lock
1296          * ordering of page lock and transaction start for journaling
1297          * filesystems.
1298          */
1299         if (i_size_changed || inline_data)
1300                 ext4_mark_inode_dirty(handle, inode);
1301
1302         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1303                 /* if we have allocated more blocks and copied
1304                  * less. We will have blocks allocated outside
1305                  * inode->i_size. So truncate them
1306                  */
1307                 ext4_orphan_add(handle, inode);
1308 errout:
1309         ret2 = ext4_journal_stop(handle);
1310         if (!ret)
1311                 ret = ret2;
1312
1313         if (pos + len > inode->i_size && !verity) {
1314                 ext4_truncate_failed_write(inode);
1315                 /*
1316                  * If truncate failed early the inode might still be
1317                  * on the orphan list; we need to make sure the inode
1318                  * is removed from the orphan list in that case.
1319                  */
1320                 if (inode->i_nlink)
1321                         ext4_orphan_del(NULL, inode);
1322         }
1323
1324         return ret ? ret : copied;
1325 }
1326
1327 /*
1328  * This is a private version of page_zero_new_buffers() which doesn't
1329  * set the buffer to be dirty, since in data=journalled mode we need
1330  * to call ext4_handle_dirty_metadata() instead.
1331  */
1332 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1333                                             struct page *page,
1334                                             unsigned from, unsigned to)
1335 {
1336         unsigned int block_start = 0, block_end;
1337         struct buffer_head *head, *bh;
1338
1339         bh = head = page_buffers(page);
1340         do {
1341                 block_end = block_start + bh->b_size;
1342                 if (buffer_new(bh)) {
1343                         if (block_end > from && block_start < to) {
1344                                 if (!PageUptodate(page)) {
1345                                         unsigned start, size;
1346
1347                                         start = max(from, block_start);
1348                                         size = min(to, block_end) - start;
1349
1350                                         zero_user(page, start, size);
1351                                         write_end_fn(handle, bh);
1352                                 }
1353                                 clear_buffer_new(bh);
1354                         }
1355                 }
1356                 block_start = block_end;
1357                 bh = bh->b_this_page;
1358         } while (bh != head);
1359 }
1360
1361 static int ext4_journalled_write_end(struct file *file,
1362                                      struct address_space *mapping,
1363                                      loff_t pos, unsigned len, unsigned copied,
1364                                      struct page *page, void *fsdata)
1365 {
1366         handle_t *handle = ext4_journal_current_handle();
1367         struct inode *inode = mapping->host;
1368         loff_t old_size = inode->i_size;
1369         int ret = 0, ret2;
1370         int partial = 0;
1371         unsigned from, to;
1372         int size_changed = 0;
1373         int inline_data = ext4_has_inline_data(inode);
1374         bool verity = ext4_verity_in_progress(inode);
1375
1376         trace_ext4_journalled_write_end(inode, pos, len, copied);
1377         from = pos & (PAGE_SIZE - 1);
1378         to = from + len;
1379
1380         BUG_ON(!ext4_handle_valid(handle));
1381
1382         if (inline_data) {
1383                 ret = ext4_write_inline_data_end(inode, pos, len,
1384                                                  copied, page);
1385                 if (ret < 0) {
1386                         unlock_page(page);
1387                         put_page(page);
1388                         goto errout;
1389                 }
1390                 copied = ret;
1391         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1392                 copied = 0;
1393                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1394         } else {
1395                 if (unlikely(copied < len))
1396                         ext4_journalled_zero_new_buffers(handle, page,
1397                                                          from + copied, to);
1398                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1399                                              from + copied, &partial,
1400                                              write_end_fn);
1401                 if (!partial)
1402                         SetPageUptodate(page);
1403         }
1404         if (!verity)
1405                 size_changed = ext4_update_inode_size(inode, pos + copied);
1406         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1407         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1408         unlock_page(page);
1409         put_page(page);
1410
1411         if (old_size < pos && !verity)
1412                 pagecache_isize_extended(inode, old_size, pos);
1413
1414         if (size_changed || inline_data) {
1415                 ret2 = ext4_mark_inode_dirty(handle, inode);
1416                 if (!ret)
1417                         ret = ret2;
1418         }
1419
1420         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1421                 /* if we have allocated more blocks and copied
1422                  * less. We will have blocks allocated outside
1423                  * inode->i_size. So truncate them
1424                  */
1425                 ext4_orphan_add(handle, inode);
1426
1427 errout:
1428         ret2 = ext4_journal_stop(handle);
1429         if (!ret)
1430                 ret = ret2;
1431         if (pos + len > inode->i_size && !verity) {
1432                 ext4_truncate_failed_write(inode);
1433                 /*
1434                  * If truncate failed early the inode might still be
1435                  * on the orphan list; we need to make sure the inode
1436                  * is removed from the orphan list in that case.
1437                  */
1438                 if (inode->i_nlink)
1439                         ext4_orphan_del(NULL, inode);
1440         }
1441
1442         return ret ? ret : copied;
1443 }
1444
1445 /*
1446  * Reserve space for a single cluster
1447  */
1448 static int ext4_da_reserve_space(struct inode *inode)
1449 {
1450         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1451         struct ext4_inode_info *ei = EXT4_I(inode);
1452         int ret;
1453
1454         /*
1455          * We will charge metadata quota at writeout time; this saves
1456          * us from metadata over-estimation, though we may go over by
1457          * a small amount in the end.  Here we just reserve for data.
1458          */
1459         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1460         if (ret)
1461                 return ret;
1462
1463         spin_lock(&ei->i_block_reservation_lock);
1464         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1465                 spin_unlock(&ei->i_block_reservation_lock);
1466                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1467                 return -ENOSPC;
1468         }
1469         ei->i_reserved_data_blocks++;
1470         trace_ext4_da_reserve_space(inode);
1471         spin_unlock(&ei->i_block_reservation_lock);
1472
1473         return 0;       /* success */
1474 }
1475
1476 void ext4_da_release_space(struct inode *inode, int to_free)
1477 {
1478         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1479         struct ext4_inode_info *ei = EXT4_I(inode);
1480
1481         if (!to_free)
1482                 return;         /* Nothing to release, exit */
1483
1484         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1485
1486         trace_ext4_da_release_space(inode, to_free);
1487         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1488                 /*
1489                  * if there aren't enough reserved blocks, then the
1490                  * counter is messed up somewhere.  Since this
1491                  * function is called from invalidate page, it's
1492                  * harmless to return without any action.
1493                  */
1494                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1495                          "ino %lu, to_free %d with only %d reserved "
1496                          "data blocks", inode->i_ino, to_free,
1497                          ei->i_reserved_data_blocks);
1498                 WARN_ON(1);
1499                 to_free = ei->i_reserved_data_blocks;
1500         }
1501         ei->i_reserved_data_blocks -= to_free;
1502
1503         /* update fs dirty data blocks counter */
1504         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1505
1506         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1507
1508         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1509 }
1510
1511 /*
1512  * Delayed allocation stuff
1513  */
1514
1515 struct mpage_da_data {
1516         struct inode *inode;
1517         struct writeback_control *wbc;
1518
1519         pgoff_t first_page;     /* The first page to write */
1520         pgoff_t next_page;      /* Current page to examine */
1521         pgoff_t last_page;      /* Last page to examine */
1522         /*
1523          * Extent to map - this can be after first_page because that can be
1524          * fully mapped. We somewhat abuse m_flags to store whether the extent
1525          * is delalloc or unwritten.
1526          */
1527         struct ext4_map_blocks map;
1528         struct ext4_io_submit io_submit;        /* IO submission data */
1529         unsigned int do_map:1;
1530 };
1531
1532 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1533                                        bool invalidate)
1534 {
1535         int nr_pages, i;
1536         pgoff_t index, end;
1537         struct pagevec pvec;
1538         struct inode *inode = mpd->inode;
1539         struct address_space *mapping = inode->i_mapping;
1540
1541         /* This is necessary when next_page == 0. */
1542         if (mpd->first_page >= mpd->next_page)
1543                 return;
1544
1545         index = mpd->first_page;
1546         end   = mpd->next_page - 1;
1547         if (invalidate) {
1548                 ext4_lblk_t start, last;
1549                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1550                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1551                 ext4_es_remove_extent(inode, start, last - start + 1);
1552         }
1553
1554         pagevec_init(&pvec);
1555         while (index <= end) {
1556                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1557                 if (nr_pages == 0)
1558                         break;
1559                 for (i = 0; i < nr_pages; i++) {
1560                         struct page *page = pvec.pages[i];
1561
1562                         BUG_ON(!PageLocked(page));
1563                         BUG_ON(PageWriteback(page));
1564                         if (invalidate) {
1565                                 if (page_mapped(page))
1566                                         clear_page_dirty_for_io(page);
1567                                 block_invalidatepage(page, 0, PAGE_SIZE);
1568                                 ClearPageUptodate(page);
1569                         }
1570                         unlock_page(page);
1571                 }
1572                 pagevec_release(&pvec);
1573         }
1574 }
1575
1576 static void ext4_print_free_blocks(struct inode *inode)
1577 {
1578         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1579         struct super_block *sb = inode->i_sb;
1580         struct ext4_inode_info *ei = EXT4_I(inode);
1581
1582         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1583                EXT4_C2B(EXT4_SB(inode->i_sb),
1584                         ext4_count_free_clusters(sb)));
1585         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1586         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1587                (long long) EXT4_C2B(EXT4_SB(sb),
1588                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1589         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1590                (long long) EXT4_C2B(EXT4_SB(sb),
1591                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1592         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1593         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1594                  ei->i_reserved_data_blocks);
1595         return;
1596 }
1597
1598 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1599 {
1600         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1601 }
1602
1603 /*
1604  * ext4_insert_delayed_block - adds a delayed block to the extents status
1605  *                             tree, incrementing the reserved cluster/block
1606  *                             count or making a pending reservation
1607  *                             where needed
1608  *
1609  * @inode - file containing the newly added block
1610  * @lblk - logical block to be added
1611  *
1612  * Returns 0 on success, negative error code on failure.
1613  */
1614 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1615 {
1616         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1617         int ret;
1618         bool allocated = false;
1619
1620         /*
1621          * If the cluster containing lblk is shared with a delayed,
1622          * written, or unwritten extent in a bigalloc file system, it's
1623          * already been accounted for and does not need to be reserved.
1624          * A pending reservation must be made for the cluster if it's
1625          * shared with a written or unwritten extent and doesn't already
1626          * have one.  Written and unwritten extents can be purged from the
1627          * extents status tree if the system is under memory pressure, so
1628          * it's necessary to examine the extent tree if a search of the
1629          * extents status tree doesn't get a match.
1630          */
1631         if (sbi->s_cluster_ratio == 1) {
1632                 ret = ext4_da_reserve_space(inode);
1633                 if (ret != 0)   /* ENOSPC */
1634                         goto errout;
1635         } else {   /* bigalloc */
1636                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1637                         if (!ext4_es_scan_clu(inode,
1638                                               &ext4_es_is_mapped, lblk)) {
1639                                 ret = ext4_clu_mapped(inode,
1640                                                       EXT4_B2C(sbi, lblk));
1641                                 if (ret < 0)
1642                                         goto errout;
1643                                 if (ret == 0) {
1644                                         ret = ext4_da_reserve_space(inode);
1645                                         if (ret != 0)   /* ENOSPC */
1646                                                 goto errout;
1647                                 } else {
1648                                         allocated = true;
1649                                 }
1650                         } else {
1651                                 allocated = true;
1652                         }
1653                 }
1654         }
1655
1656         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1657
1658 errout:
1659         return ret;
1660 }
1661
1662 /*
1663  * This function is grabs code from the very beginning of
1664  * ext4_map_blocks, but assumes that the caller is from delayed write
1665  * time. This function looks up the requested blocks and sets the
1666  * buffer delay bit under the protection of i_data_sem.
1667  */
1668 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1669                               struct ext4_map_blocks *map,
1670                               struct buffer_head *bh)
1671 {
1672         struct extent_status es;
1673         int retval;
1674         sector_t invalid_block = ~((sector_t) 0xffff);
1675 #ifdef ES_AGGRESSIVE_TEST
1676         struct ext4_map_blocks orig_map;
1677
1678         memcpy(&orig_map, map, sizeof(*map));
1679 #endif
1680
1681         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1682                 invalid_block = ~0;
1683
1684         map->m_flags = 0;
1685         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1686                   "logical block %lu\n", inode->i_ino, map->m_len,
1687                   (unsigned long) map->m_lblk);
1688
1689         /* Lookup extent status tree firstly */
1690         if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1691                 if (ext4_es_is_hole(&es)) {
1692                         retval = 0;
1693                         down_read(&EXT4_I(inode)->i_data_sem);
1694                         goto add_delayed;
1695                 }
1696
1697                 /*
1698                  * Delayed extent could be allocated by fallocate.
1699                  * So we need to check it.
1700                  */
1701                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1702                         map_bh(bh, inode->i_sb, invalid_block);
1703                         set_buffer_new(bh);
1704                         set_buffer_delay(bh);
1705                         return 0;
1706                 }
1707
1708                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1709                 retval = es.es_len - (iblock - es.es_lblk);
1710                 if (retval > map->m_len)
1711                         retval = map->m_len;
1712                 map->m_len = retval;
1713                 if (ext4_es_is_written(&es))
1714                         map->m_flags |= EXT4_MAP_MAPPED;
1715                 else if (ext4_es_is_unwritten(&es))
1716                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1717                 else
1718                         BUG();
1719
1720 #ifdef ES_AGGRESSIVE_TEST
1721                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1722 #endif
1723                 return retval;
1724         }
1725
1726         /*
1727          * Try to see if we can get the block without requesting a new
1728          * file system block.
1729          */
1730         down_read(&EXT4_I(inode)->i_data_sem);
1731         if (ext4_has_inline_data(inode))
1732                 retval = 0;
1733         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1734                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1735         else
1736                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1737
1738 add_delayed:
1739         if (retval == 0) {
1740                 int ret;
1741
1742                 /*
1743                  * XXX: __block_prepare_write() unmaps passed block,
1744                  * is it OK?
1745                  */
1746
1747                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1748                 if (ret != 0) {
1749                         retval = ret;
1750                         goto out_unlock;
1751                 }
1752
1753                 map_bh(bh, inode->i_sb, invalid_block);
1754                 set_buffer_new(bh);
1755                 set_buffer_delay(bh);
1756         } else if (retval > 0) {
1757                 int ret;
1758                 unsigned int status;
1759
1760                 if (unlikely(retval != map->m_len)) {
1761                         ext4_warning(inode->i_sb,
1762                                      "ES len assertion failed for inode "
1763                                      "%lu: retval %d != map->m_len %d",
1764                                      inode->i_ino, retval, map->m_len);
1765                         WARN_ON(1);
1766                 }
1767
1768                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1769                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1770                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1771                                             map->m_pblk, status);
1772                 if (ret != 0)
1773                         retval = ret;
1774         }
1775
1776 out_unlock:
1777         up_read((&EXT4_I(inode)->i_data_sem));
1778
1779         return retval;
1780 }
1781
1782 /*
1783  * This is a special get_block_t callback which is used by
1784  * ext4_da_write_begin().  It will either return mapped block or
1785  * reserve space for a single block.
1786  *
1787  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1788  * We also have b_blocknr = -1 and b_bdev initialized properly
1789  *
1790  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1791  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1792  * initialized properly.
1793  */
1794 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1795                            struct buffer_head *bh, int create)
1796 {
1797         struct ext4_map_blocks map;
1798         int ret = 0;
1799
1800         BUG_ON(create == 0);
1801         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1802
1803         map.m_lblk = iblock;
1804         map.m_len = 1;
1805
1806         /*
1807          * first, we need to know whether the block is allocated already
1808          * preallocated blocks are unmapped but should treated
1809          * the same as allocated blocks.
1810          */
1811         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1812         if (ret <= 0)
1813                 return ret;
1814
1815         map_bh(bh, inode->i_sb, map.m_pblk);
1816         ext4_update_bh_state(bh, map.m_flags);
1817
1818         if (buffer_unwritten(bh)) {
1819                 /* A delayed write to unwritten bh should be marked
1820                  * new and mapped.  Mapped ensures that we don't do
1821                  * get_block multiple times when we write to the same
1822                  * offset and new ensures that we do proper zero out
1823                  * for partial write.
1824                  */
1825                 set_buffer_new(bh);
1826                 set_buffer_mapped(bh);
1827         }
1828         return 0;
1829 }
1830
1831 static int bget_one(handle_t *handle, struct buffer_head *bh)
1832 {
1833         get_bh(bh);
1834         return 0;
1835 }
1836
1837 static int bput_one(handle_t *handle, struct buffer_head *bh)
1838 {
1839         put_bh(bh);
1840         return 0;
1841 }
1842
1843 static int __ext4_journalled_writepage(struct page *page,
1844                                        unsigned int len)
1845 {
1846         struct address_space *mapping = page->mapping;
1847         struct inode *inode = mapping->host;
1848         struct buffer_head *page_bufs = NULL;
1849         handle_t *handle = NULL;
1850         int ret = 0, err = 0;
1851         int inline_data = ext4_has_inline_data(inode);
1852         struct buffer_head *inode_bh = NULL;
1853
1854         ClearPageChecked(page);
1855
1856         if (inline_data) {
1857                 BUG_ON(page->index != 0);
1858                 BUG_ON(len > ext4_get_max_inline_size(inode));
1859                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1860                 if (inode_bh == NULL)
1861                         goto out;
1862         } else {
1863                 page_bufs = page_buffers(page);
1864                 if (!page_bufs) {
1865                         BUG();
1866                         goto out;
1867                 }
1868                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1869                                        NULL, bget_one);
1870         }
1871         /*
1872          * We need to release the page lock before we start the
1873          * journal, so grab a reference so the page won't disappear
1874          * out from under us.
1875          */
1876         get_page(page);
1877         unlock_page(page);
1878
1879         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1880                                     ext4_writepage_trans_blocks(inode));
1881         if (IS_ERR(handle)) {
1882                 ret = PTR_ERR(handle);
1883                 put_page(page);
1884                 goto out_no_pagelock;
1885         }
1886         BUG_ON(!ext4_handle_valid(handle));
1887
1888         lock_page(page);
1889         put_page(page);
1890         if (page->mapping != mapping) {
1891                 /* The page got truncated from under us */
1892                 ext4_journal_stop(handle);
1893                 ret = 0;
1894                 goto out;
1895         }
1896
1897         if (inline_data) {
1898                 ret = ext4_mark_inode_dirty(handle, inode);
1899         } else {
1900                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1901                                              do_journal_get_write_access);
1902
1903                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1904                                              write_end_fn);
1905         }
1906         if (ret == 0)
1907                 ret = err;
1908         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1909         err = ext4_journal_stop(handle);
1910         if (!ret)
1911                 ret = err;
1912
1913         if (!ext4_has_inline_data(inode))
1914                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1915                                        NULL, bput_one);
1916         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1917 out:
1918         unlock_page(page);
1919 out_no_pagelock:
1920         brelse(inode_bh);
1921         return ret;
1922 }
1923
1924 /*
1925  * Note that we don't need to start a transaction unless we're journaling data
1926  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1927  * need to file the inode to the transaction's list in ordered mode because if
1928  * we are writing back data added by write(), the inode is already there and if
1929  * we are writing back data modified via mmap(), no one guarantees in which
1930  * transaction the data will hit the disk. In case we are journaling data, we
1931  * cannot start transaction directly because transaction start ranks above page
1932  * lock so we have to do some magic.
1933  *
1934  * This function can get called via...
1935  *   - ext4_writepages after taking page lock (have journal handle)
1936  *   - journal_submit_inode_data_buffers (no journal handle)
1937  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1938  *   - grab_page_cache when doing write_begin (have journal handle)
1939  *
1940  * We don't do any block allocation in this function. If we have page with
1941  * multiple blocks we need to write those buffer_heads that are mapped. This
1942  * is important for mmaped based write. So if we do with blocksize 1K
1943  * truncate(f, 1024);
1944  * a = mmap(f, 0, 4096);
1945  * a[0] = 'a';
1946  * truncate(f, 4096);
1947  * we have in the page first buffer_head mapped via page_mkwrite call back
1948  * but other buffer_heads would be unmapped but dirty (dirty done via the
1949  * do_wp_page). So writepage should write the first block. If we modify
1950  * the mmap area beyond 1024 we will again get a page_fault and the
1951  * page_mkwrite callback will do the block allocation and mark the
1952  * buffer_heads mapped.
1953  *
1954  * We redirty the page if we have any buffer_heads that is either delay or
1955  * unwritten in the page.
1956  *
1957  * We can get recursively called as show below.
1958  *
1959  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1960  *              ext4_writepage()
1961  *
1962  * But since we don't do any block allocation we should not deadlock.
1963  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1964  */
1965 static int ext4_writepage(struct page *page,
1966                           struct writeback_control *wbc)
1967 {
1968         int ret = 0;
1969         loff_t size;
1970         unsigned int len;
1971         struct buffer_head *page_bufs = NULL;
1972         struct inode *inode = page->mapping->host;
1973         struct ext4_io_submit io_submit;
1974         bool keep_towrite = false;
1975
1976         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1977                 ext4_invalidatepage(page, 0, PAGE_SIZE);
1978                 unlock_page(page);
1979                 return -EIO;
1980         }
1981
1982         trace_ext4_writepage(page);
1983         size = i_size_read(inode);
1984         if (page->index == size >> PAGE_SHIFT &&
1985             !ext4_verity_in_progress(inode))
1986                 len = size & ~PAGE_MASK;
1987         else
1988                 len = PAGE_SIZE;
1989
1990         page_bufs = page_buffers(page);
1991         /*
1992          * We cannot do block allocation or other extent handling in this
1993          * function. If there are buffers needing that, we have to redirty
1994          * the page. But we may reach here when we do a journal commit via
1995          * journal_submit_inode_data_buffers() and in that case we must write
1996          * allocated buffers to achieve data=ordered mode guarantees.
1997          *
1998          * Also, if there is only one buffer per page (the fs block
1999          * size == the page size), if one buffer needs block
2000          * allocation or needs to modify the extent tree to clear the
2001          * unwritten flag, we know that the page can't be written at
2002          * all, so we might as well refuse the write immediately.
2003          * Unfortunately if the block size != page size, we can't as
2004          * easily detect this case using ext4_walk_page_buffers(), but
2005          * for the extremely common case, this is an optimization that
2006          * skips a useless round trip through ext4_bio_write_page().
2007          */
2008         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2009                                    ext4_bh_delay_or_unwritten)) {
2010                 redirty_page_for_writepage(wbc, page);
2011                 if ((current->flags & PF_MEMALLOC) ||
2012                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2013                         /*
2014                          * For memory cleaning there's no point in writing only
2015                          * some buffers. So just bail out. Warn if we came here
2016                          * from direct reclaim.
2017                          */
2018                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2019                                                         == PF_MEMALLOC);
2020                         unlock_page(page);
2021                         return 0;
2022                 }
2023                 keep_towrite = true;
2024         }
2025
2026         if (PageChecked(page) && ext4_should_journal_data(inode))
2027                 /*
2028                  * It's mmapped pagecache.  Add buffers and journal it.  There
2029                  * doesn't seem much point in redirtying the page here.
2030                  */
2031                 return __ext4_journalled_writepage(page, len);
2032
2033         ext4_io_submit_init(&io_submit, wbc);
2034         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2035         if (!io_submit.io_end) {
2036                 redirty_page_for_writepage(wbc, page);
2037                 unlock_page(page);
2038                 return -ENOMEM;
2039         }
2040         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2041         ext4_io_submit(&io_submit);
2042         /* Drop io_end reference we got from init */
2043         ext4_put_io_end_defer(io_submit.io_end);
2044         return ret;
2045 }
2046
2047 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2048 {
2049         int len;
2050         loff_t size;
2051         int err;
2052
2053         BUG_ON(page->index != mpd->first_page);
2054         clear_page_dirty_for_io(page);
2055         /*
2056          * We have to be very careful here!  Nothing protects writeback path
2057          * against i_size changes and the page can be writeably mapped into
2058          * page tables. So an application can be growing i_size and writing
2059          * data through mmap while writeback runs. clear_page_dirty_for_io()
2060          * write-protects our page in page tables and the page cannot get
2061          * written to again until we release page lock. So only after
2062          * clear_page_dirty_for_io() we are safe to sample i_size for
2063          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2064          * on the barrier provided by TestClearPageDirty in
2065          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2066          * after page tables are updated.
2067          */
2068         size = i_size_read(mpd->inode);
2069         if (page->index == size >> PAGE_SHIFT &&
2070             !ext4_verity_in_progress(mpd->inode))
2071                 len = size & ~PAGE_MASK;
2072         else
2073                 len = PAGE_SIZE;
2074         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2075         if (!err)
2076                 mpd->wbc->nr_to_write--;
2077         mpd->first_page++;
2078
2079         return err;
2080 }
2081
2082 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2083
2084 /*
2085  * mballoc gives us at most this number of blocks...
2086  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2087  * The rest of mballoc seems to handle chunks up to full group size.
2088  */
2089 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2090
2091 /*
2092  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2093  *
2094  * @mpd - extent of blocks
2095  * @lblk - logical number of the block in the file
2096  * @bh - buffer head we want to add to the extent
2097  *
2098  * The function is used to collect contig. blocks in the same state. If the
2099  * buffer doesn't require mapping for writeback and we haven't started the
2100  * extent of buffers to map yet, the function returns 'true' immediately - the
2101  * caller can write the buffer right away. Otherwise the function returns true
2102  * if the block has been added to the extent, false if the block couldn't be
2103  * added.
2104  */
2105 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2106                                    struct buffer_head *bh)
2107 {
2108         struct ext4_map_blocks *map = &mpd->map;
2109
2110         /* Buffer that doesn't need mapping for writeback? */
2111         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2112             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2113                 /* So far no extent to map => we write the buffer right away */
2114                 if (map->m_len == 0)
2115                         return true;
2116                 return false;
2117         }
2118
2119         /* First block in the extent? */
2120         if (map->m_len == 0) {
2121                 /* We cannot map unless handle is started... */
2122                 if (!mpd->do_map)
2123                         return false;
2124                 map->m_lblk = lblk;
2125                 map->m_len = 1;
2126                 map->m_flags = bh->b_state & BH_FLAGS;
2127                 return true;
2128         }
2129
2130         /* Don't go larger than mballoc is willing to allocate */
2131         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2132                 return false;
2133
2134         /* Can we merge the block to our big extent? */
2135         if (lblk == map->m_lblk + map->m_len &&
2136             (bh->b_state & BH_FLAGS) == map->m_flags) {
2137                 map->m_len++;
2138                 return true;
2139         }
2140         return false;
2141 }
2142
2143 /*
2144  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2145  *
2146  * @mpd - extent of blocks for mapping
2147  * @head - the first buffer in the page
2148  * @bh - buffer we should start processing from
2149  * @lblk - logical number of the block in the file corresponding to @bh
2150  *
2151  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2152  * the page for IO if all buffers in this page were mapped and there's no
2153  * accumulated extent of buffers to map or add buffers in the page to the
2154  * extent of buffers to map. The function returns 1 if the caller can continue
2155  * by processing the next page, 0 if it should stop adding buffers to the
2156  * extent to map because we cannot extend it anymore. It can also return value
2157  * < 0 in case of error during IO submission.
2158  */
2159 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2160                                    struct buffer_head *head,
2161                                    struct buffer_head *bh,
2162                                    ext4_lblk_t lblk)
2163 {
2164         struct inode *inode = mpd->inode;
2165         int err;
2166         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2167                                                         >> inode->i_blkbits;
2168
2169         if (ext4_verity_in_progress(inode))
2170                 blocks = EXT_MAX_BLOCKS;
2171
2172         do {
2173                 BUG_ON(buffer_locked(bh));
2174
2175                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2176                         /* Found extent to map? */
2177                         if (mpd->map.m_len)
2178                                 return 0;
2179                         /* Buffer needs mapping and handle is not started? */
2180                         if (!mpd->do_map)
2181                                 return 0;
2182                         /* Everything mapped so far and we hit EOF */
2183                         break;
2184                 }
2185         } while (lblk++, (bh = bh->b_this_page) != head);
2186         /* So far everything mapped? Submit the page for IO. */
2187         if (mpd->map.m_len == 0) {
2188                 err = mpage_submit_page(mpd, head->b_page);
2189                 if (err < 0)
2190                         return err;
2191         }
2192         return lblk < blocks;
2193 }
2194
2195 /*
2196  * mpage_process_page - update page buffers corresponding to changed extent and
2197  *                     may submit fully mapped page for IO
2198  *
2199  * @mpd         - description of extent to map, on return next extent to map
2200  * @m_lblk      - logical block mapping.
2201  * @m_pblk      - corresponding physical mapping.
2202  * @map_bh      - determines on return whether this page requires any further
2203  *                mapping or not.
2204  * Scan given page buffers corresponding to changed extent and update buffer
2205  * state according to new extent state.
2206  * We map delalloc buffers to their physical location, clear unwritten bits.
2207  * If the given page is not fully mapped, we update @map to the next extent in
2208  * the given page that needs mapping & return @map_bh as true.
2209  */
2210 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2211                               ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2212                               bool *map_bh)
2213 {
2214         struct buffer_head *head, *bh;
2215         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2216         ext4_lblk_t lblk = *m_lblk;
2217         ext4_fsblk_t pblock = *m_pblk;
2218         int err = 0;
2219         int blkbits = mpd->inode->i_blkbits;
2220         ssize_t io_end_size = 0;
2221         struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2222
2223         bh = head = page_buffers(page);
2224         do {
2225                 if (lblk < mpd->map.m_lblk)
2226                         continue;
2227                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2228                         /*
2229                          * Buffer after end of mapped extent.
2230                          * Find next buffer in the page to map.
2231                          */
2232                         mpd->map.m_len = 0;
2233                         mpd->map.m_flags = 0;
2234                         io_end_vec->size += io_end_size;
2235                         io_end_size = 0;
2236
2237                         err = mpage_process_page_bufs(mpd, head, bh, lblk);
2238                         if (err > 0)
2239                                 err = 0;
2240                         if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2241                                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2242                                 if (IS_ERR(io_end_vec)) {
2243                                         err = PTR_ERR(io_end_vec);
2244                                         goto out;
2245                                 }
2246                                 io_end_vec->offset = mpd->map.m_lblk << blkbits;
2247                         }
2248                         *map_bh = true;
2249                         goto out;
2250                 }
2251                 if (buffer_delay(bh)) {
2252                         clear_buffer_delay(bh);
2253                         bh->b_blocknr = pblock++;
2254                 }
2255                 clear_buffer_unwritten(bh);
2256                 io_end_size += (1 << blkbits);
2257         } while (lblk++, (bh = bh->b_this_page) != head);
2258
2259         io_end_vec->size += io_end_size;
2260         io_end_size = 0;
2261         *map_bh = false;
2262 out:
2263         *m_lblk = lblk;
2264         *m_pblk = pblock;
2265         return err;
2266 }
2267
2268 /*
2269  * mpage_map_buffers - update buffers corresponding to changed extent and
2270  *                     submit fully mapped pages for IO
2271  *
2272  * @mpd - description of extent to map, on return next extent to map
2273  *
2274  * Scan buffers corresponding to changed extent (we expect corresponding pages
2275  * to be already locked) and update buffer state according to new extent state.
2276  * We map delalloc buffers to their physical location, clear unwritten bits,
2277  * and mark buffers as uninit when we perform writes to unwritten extents
2278  * and do extent conversion after IO is finished. If the last page is not fully
2279  * mapped, we update @map to the next extent in the last page that needs
2280  * mapping. Otherwise we submit the page for IO.
2281  */
2282 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2283 {
2284         struct pagevec pvec;
2285         int nr_pages, i;
2286         struct inode *inode = mpd->inode;
2287         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2288         pgoff_t start, end;
2289         ext4_lblk_t lblk;
2290         ext4_fsblk_t pblock;
2291         int err;
2292         bool map_bh = false;
2293
2294         start = mpd->map.m_lblk >> bpp_bits;
2295         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2296         lblk = start << bpp_bits;
2297         pblock = mpd->map.m_pblk;
2298
2299         pagevec_init(&pvec);
2300         while (start <= end) {
2301                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2302                                                 &start, end);
2303                 if (nr_pages == 0)
2304                         break;
2305                 for (i = 0; i < nr_pages; i++) {
2306                         struct page *page = pvec.pages[i];
2307
2308                         err = mpage_process_page(mpd, page, &lblk, &pblock,
2309                                                  &map_bh);
2310                         /*
2311                          * If map_bh is true, means page may require further bh
2312                          * mapping, or maybe the page was submitted for IO.
2313                          * So we return to call further extent mapping.
2314                          */
2315                         if (err < 0 || map_bh == true)
2316                                 goto out;
2317                         /* Page fully mapped - let IO run! */
2318                         err = mpage_submit_page(mpd, page);
2319                         if (err < 0)
2320                                 goto out;
2321                 }
2322                 pagevec_release(&pvec);
2323         }
2324         /* Extent fully mapped and matches with page boundary. We are done. */
2325         mpd->map.m_len = 0;
2326         mpd->map.m_flags = 0;
2327         return 0;
2328 out:
2329         pagevec_release(&pvec);
2330         return err;
2331 }
2332
2333 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2334 {
2335         struct inode *inode = mpd->inode;
2336         struct ext4_map_blocks *map = &mpd->map;
2337         int get_blocks_flags;
2338         int err, dioread_nolock;
2339
2340         trace_ext4_da_write_pages_extent(inode, map);
2341         /*
2342          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2343          * to convert an unwritten extent to be initialized (in the case
2344          * where we have written into one or more preallocated blocks).  It is
2345          * possible that we're going to need more metadata blocks than
2346          * previously reserved. However we must not fail because we're in
2347          * writeback and there is nothing we can do about it so it might result
2348          * in data loss.  So use reserved blocks to allocate metadata if
2349          * possible.
2350          *
2351          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2352          * the blocks in question are delalloc blocks.  This indicates
2353          * that the blocks and quotas has already been checked when
2354          * the data was copied into the page cache.
2355          */
2356         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2357                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2358                            EXT4_GET_BLOCKS_IO_SUBMIT;
2359         dioread_nolock = ext4_should_dioread_nolock(inode);
2360         if (dioread_nolock)
2361                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2362         if (map->m_flags & (1 << BH_Delay))
2363                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2364
2365         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2366         if (err < 0)
2367                 return err;
2368         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2369                 if (!mpd->io_submit.io_end->handle &&
2370                     ext4_handle_valid(handle)) {
2371                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2372                         handle->h_rsv_handle = NULL;
2373                 }
2374                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2375         }
2376
2377         BUG_ON(map->m_len == 0);
2378         return 0;
2379 }
2380
2381 /*
2382  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2383  *                               mpd->len and submit pages underlying it for IO
2384  *
2385  * @handle - handle for journal operations
2386  * @mpd - extent to map
2387  * @give_up_on_write - we set this to true iff there is a fatal error and there
2388  *                     is no hope of writing the data. The caller should discard
2389  *                     dirty pages to avoid infinite loops.
2390  *
2391  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2392  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2393  * them to initialized or split the described range from larger unwritten
2394  * extent. Note that we need not map all the described range since allocation
2395  * can return less blocks or the range is covered by more unwritten extents. We
2396  * cannot map more because we are limited by reserved transaction credits. On
2397  * the other hand we always make sure that the last touched page is fully
2398  * mapped so that it can be written out (and thus forward progress is
2399  * guaranteed). After mapping we submit all mapped pages for IO.
2400  */
2401 static int mpage_map_and_submit_extent(handle_t *handle,
2402                                        struct mpage_da_data *mpd,
2403                                        bool *give_up_on_write)
2404 {
2405         struct inode *inode = mpd->inode;
2406         struct ext4_map_blocks *map = &mpd->map;
2407         int err;
2408         loff_t disksize;
2409         int progress = 0;
2410         ext4_io_end_t *io_end = mpd->io_submit.io_end;
2411         struct ext4_io_end_vec *io_end_vec;
2412
2413         io_end_vec = ext4_alloc_io_end_vec(io_end);
2414         if (IS_ERR(io_end_vec))
2415                 return PTR_ERR(io_end_vec);
2416         io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2417         do {
2418                 err = mpage_map_one_extent(handle, mpd);
2419                 if (err < 0) {
2420                         struct super_block *sb = inode->i_sb;
2421
2422                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2423                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2424                                 goto invalidate_dirty_pages;
2425                         /*
2426                          * Let the uper layers retry transient errors.
2427                          * In the case of ENOSPC, if ext4_count_free_blocks()
2428                          * is non-zero, a commit should free up blocks.
2429                          */
2430                         if ((err == -ENOMEM) ||
2431                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2432                                 if (progress)
2433                                         goto update_disksize;
2434                                 return err;
2435                         }
2436                         ext4_msg(sb, KERN_CRIT,
2437                                  "Delayed block allocation failed for "
2438                                  "inode %lu at logical offset %llu with"
2439                                  " max blocks %u with error %d",
2440                                  inode->i_ino,
2441                                  (unsigned long long)map->m_lblk,
2442                                  (unsigned)map->m_len, -err);
2443                         ext4_msg(sb, KERN_CRIT,
2444                                  "This should not happen!! Data will "
2445                                  "be lost\n");
2446                         if (err == -ENOSPC)
2447                                 ext4_print_free_blocks(inode);
2448                 invalidate_dirty_pages:
2449                         *give_up_on_write = true;
2450                         return err;
2451                 }
2452                 progress = 1;
2453                 /*
2454                  * Update buffer state, submit mapped pages, and get us new
2455                  * extent to map
2456                  */
2457                 err = mpage_map_and_submit_buffers(mpd);
2458                 if (err < 0)
2459                         goto update_disksize;
2460         } while (map->m_len);
2461
2462 update_disksize:
2463         /*
2464          * Update on-disk size after IO is submitted.  Races with
2465          * truncate are avoided by checking i_size under i_data_sem.
2466          */
2467         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2468         if (disksize > EXT4_I(inode)->i_disksize) {
2469                 int err2;
2470                 loff_t i_size;
2471
2472                 down_write(&EXT4_I(inode)->i_data_sem);
2473                 i_size = i_size_read(inode);
2474                 if (disksize > i_size)
2475                         disksize = i_size;
2476                 if (disksize > EXT4_I(inode)->i_disksize)
2477                         EXT4_I(inode)->i_disksize = disksize;
2478                 up_write(&EXT4_I(inode)->i_data_sem);
2479                 err2 = ext4_mark_inode_dirty(handle, inode);
2480                 if (err2) {
2481                         ext4_set_errno(inode->i_sb, -err2);
2482                         ext4_error(inode->i_sb,
2483                                    "Failed to mark inode %lu dirty",
2484                                    inode->i_ino);
2485                 }
2486                 if (!err)
2487                         err = err2;
2488         }
2489         return err;
2490 }
2491
2492 /*
2493  * Calculate the total number of credits to reserve for one writepages
2494  * iteration. This is called from ext4_writepages(). We map an extent of
2495  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2496  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2497  * bpp - 1 blocks in bpp different extents.
2498  */
2499 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2500 {
2501         int bpp = ext4_journal_blocks_per_page(inode);
2502
2503         return ext4_meta_trans_blocks(inode,
2504                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2505 }
2506
2507 /*
2508  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2509  *                               and underlying extent to map
2510  *
2511  * @mpd - where to look for pages
2512  *
2513  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2514  * IO immediately. When we find a page which isn't mapped we start accumulating
2515  * extent of buffers underlying these pages that needs mapping (formed by
2516  * either delayed or unwritten buffers). We also lock the pages containing
2517  * these buffers. The extent found is returned in @mpd structure (starting at
2518  * mpd->lblk with length mpd->len blocks).
2519  *
2520  * Note that this function can attach bios to one io_end structure which are
2521  * neither logically nor physically contiguous. Although it may seem as an
2522  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2523  * case as we need to track IO to all buffers underlying a page in one io_end.
2524  */
2525 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2526 {
2527         struct address_space *mapping = mpd->inode->i_mapping;
2528         struct pagevec pvec;
2529         unsigned int nr_pages;
2530         long left = mpd->wbc->nr_to_write;
2531         pgoff_t index = mpd->first_page;
2532         pgoff_t end = mpd->last_page;
2533         xa_mark_t tag;
2534         int i, err = 0;
2535         int blkbits = mpd->inode->i_blkbits;
2536         ext4_lblk_t lblk;
2537         struct buffer_head *head;
2538
2539         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2540                 tag = PAGECACHE_TAG_TOWRITE;
2541         else
2542                 tag = PAGECACHE_TAG_DIRTY;
2543
2544         pagevec_init(&pvec);
2545         mpd->map.m_len = 0;
2546         mpd->next_page = index;
2547         while (index <= end) {
2548                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2549                                 tag);
2550                 if (nr_pages == 0)
2551                         goto out;
2552
2553                 for (i = 0; i < nr_pages; i++) {
2554                         struct page *page = pvec.pages[i];
2555
2556                         /*
2557                          * Accumulated enough dirty pages? This doesn't apply
2558                          * to WB_SYNC_ALL mode. For integrity sync we have to
2559                          * keep going because someone may be concurrently
2560                          * dirtying pages, and we might have synced a lot of
2561                          * newly appeared dirty pages, but have not synced all
2562                          * of the old dirty pages.
2563                          */
2564                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2565                                 goto out;
2566
2567                         /* If we can't merge this page, we are done. */
2568                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2569                                 goto out;
2570
2571                         lock_page(page);
2572                         /*
2573                          * If the page is no longer dirty, or its mapping no
2574                          * longer corresponds to inode we are writing (which
2575                          * means it has been truncated or invalidated), or the
2576                          * page is already under writeback and we are not doing
2577                          * a data integrity writeback, skip the page
2578                          */
2579                         if (!PageDirty(page) ||
2580                             (PageWriteback(page) &&
2581                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2582                             unlikely(page->mapping != mapping)) {
2583                                 unlock_page(page);
2584                                 continue;
2585                         }
2586
2587                         wait_on_page_writeback(page);
2588                         BUG_ON(PageWriteback(page));
2589
2590                         if (mpd->map.m_len == 0)
2591                                 mpd->first_page = page->index;
2592                         mpd->next_page = page->index + 1;
2593                         /* Add all dirty buffers to mpd */
2594                         lblk = ((ext4_lblk_t)page->index) <<
2595                                 (PAGE_SHIFT - blkbits);
2596                         head = page_buffers(page);
2597                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2598                         if (err <= 0)
2599                                 goto out;
2600                         err = 0;
2601                         left--;
2602                 }
2603                 pagevec_release(&pvec);
2604                 cond_resched();
2605         }
2606         return 0;
2607 out:
2608         pagevec_release(&pvec);
2609         return err;
2610 }
2611
2612 static int ext4_writepages(struct address_space *mapping,
2613                            struct writeback_control *wbc)
2614 {
2615         pgoff_t writeback_index = 0;
2616         long nr_to_write = wbc->nr_to_write;
2617         int range_whole = 0;
2618         int cycled = 1;
2619         handle_t *handle = NULL;
2620         struct mpage_da_data mpd;
2621         struct inode *inode = mapping->host;
2622         int needed_blocks, rsv_blocks = 0, ret = 0;
2623         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2624         bool done;
2625         struct blk_plug plug;
2626         bool give_up_on_write = false;
2627
2628         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2629                 return -EIO;
2630
2631         percpu_down_read(&sbi->s_journal_flag_rwsem);
2632         trace_ext4_writepages(inode, wbc);
2633
2634         /*
2635          * No pages to write? This is mainly a kludge to avoid starting
2636          * a transaction for special inodes like journal inode on last iput()
2637          * because that could violate lock ordering on umount
2638          */
2639         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2640                 goto out_writepages;
2641
2642         if (ext4_should_journal_data(inode)) {
2643                 ret = generic_writepages(mapping, wbc);
2644                 goto out_writepages;
2645         }
2646
2647         /*
2648          * If the filesystem has aborted, it is read-only, so return
2649          * right away instead of dumping stack traces later on that
2650          * will obscure the real source of the problem.  We test
2651          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2652          * the latter could be true if the filesystem is mounted
2653          * read-only, and in that case, ext4_writepages should
2654          * *never* be called, so if that ever happens, we would want
2655          * the stack trace.
2656          */
2657         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2658                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2659                 ret = -EROFS;
2660                 goto out_writepages;
2661         }
2662
2663         /*
2664          * If we have inline data and arrive here, it means that
2665          * we will soon create the block for the 1st page, so
2666          * we'd better clear the inline data here.
2667          */
2668         if (ext4_has_inline_data(inode)) {
2669                 /* Just inode will be modified... */
2670                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2671                 if (IS_ERR(handle)) {
2672                         ret = PTR_ERR(handle);
2673                         goto out_writepages;
2674                 }
2675                 BUG_ON(ext4_test_inode_state(inode,
2676                                 EXT4_STATE_MAY_INLINE_DATA));
2677                 ext4_destroy_inline_data(handle, inode);
2678                 ext4_journal_stop(handle);
2679         }
2680
2681         if (ext4_should_dioread_nolock(inode)) {
2682                 /*
2683                  * We may need to convert up to one extent per block in
2684                  * the page and we may dirty the inode.
2685                  */
2686                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2687                                                 PAGE_SIZE >> inode->i_blkbits);
2688         }
2689
2690         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2691                 range_whole = 1;
2692
2693         if (wbc->range_cyclic) {
2694                 writeback_index = mapping->writeback_index;
2695                 if (writeback_index)
2696                         cycled = 0;
2697                 mpd.first_page = writeback_index;
2698                 mpd.last_page = -1;
2699         } else {
2700                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2701                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2702         }
2703
2704         mpd.inode = inode;
2705         mpd.wbc = wbc;
2706         ext4_io_submit_init(&mpd.io_submit, wbc);
2707 retry:
2708         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2709                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2710         done = false;
2711         blk_start_plug(&plug);
2712
2713         /*
2714          * First writeback pages that don't need mapping - we can avoid
2715          * starting a transaction unnecessarily and also avoid being blocked
2716          * in the block layer on device congestion while having transaction
2717          * started.
2718          */
2719         mpd.do_map = 0;
2720         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2721         if (!mpd.io_submit.io_end) {
2722                 ret = -ENOMEM;
2723                 goto unplug;
2724         }
2725         ret = mpage_prepare_extent_to_map(&mpd);
2726         /* Unlock pages we didn't use */
2727         mpage_release_unused_pages(&mpd, false);
2728         /* Submit prepared bio */
2729         ext4_io_submit(&mpd.io_submit);
2730         ext4_put_io_end_defer(mpd.io_submit.io_end);
2731         mpd.io_submit.io_end = NULL;
2732         if (ret < 0)
2733                 goto unplug;
2734
2735         while (!done && mpd.first_page <= mpd.last_page) {
2736                 /* For each extent of pages we use new io_end */
2737                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2738                 if (!mpd.io_submit.io_end) {
2739                         ret = -ENOMEM;
2740                         break;
2741                 }
2742
2743                 /*
2744                  * We have two constraints: We find one extent to map and we
2745                  * must always write out whole page (makes a difference when
2746                  * blocksize < pagesize) so that we don't block on IO when we
2747                  * try to write out the rest of the page. Journalled mode is
2748                  * not supported by delalloc.
2749                  */
2750                 BUG_ON(ext4_should_journal_data(inode));
2751                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2752
2753                 /* start a new transaction */
2754                 handle = ext4_journal_start_with_reserve(inode,
2755                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2756                 if (IS_ERR(handle)) {
2757                         ret = PTR_ERR(handle);
2758                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2759                                "%ld pages, ino %lu; err %d", __func__,
2760                                 wbc->nr_to_write, inode->i_ino, ret);
2761                         /* Release allocated io_end */
2762                         ext4_put_io_end(mpd.io_submit.io_end);
2763                         mpd.io_submit.io_end = NULL;
2764                         break;
2765                 }
2766                 mpd.do_map = 1;
2767
2768                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2769                 ret = mpage_prepare_extent_to_map(&mpd);
2770                 if (!ret) {
2771                         if (mpd.map.m_len)
2772                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2773                                         &give_up_on_write);
2774                         else {
2775                                 /*
2776                                  * We scanned the whole range (or exhausted
2777                                  * nr_to_write), submitted what was mapped and
2778                                  * didn't find anything needing mapping. We are
2779                                  * done.
2780                                  */
2781                                 done = true;
2782                         }
2783                 }
2784                 /*
2785                  * Caution: If the handle is synchronous,
2786                  * ext4_journal_stop() can wait for transaction commit
2787                  * to finish which may depend on writeback of pages to
2788                  * complete or on page lock to be released.  In that
2789                  * case, we have to wait until after after we have
2790                  * submitted all the IO, released page locks we hold,
2791                  * and dropped io_end reference (for extent conversion
2792                  * to be able to complete) before stopping the handle.
2793                  */
2794                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2795                         ext4_journal_stop(handle);
2796                         handle = NULL;
2797                         mpd.do_map = 0;
2798                 }
2799                 /* Unlock pages we didn't use */
2800                 mpage_release_unused_pages(&mpd, give_up_on_write);
2801                 /* Submit prepared bio */
2802                 ext4_io_submit(&mpd.io_submit);
2803
2804                 /*
2805                  * Drop our io_end reference we got from init. We have
2806                  * to be careful and use deferred io_end finishing if
2807                  * we are still holding the transaction as we can
2808                  * release the last reference to io_end which may end
2809                  * up doing unwritten extent conversion.
2810                  */
2811                 if (handle) {
2812                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2813                         ext4_journal_stop(handle);
2814                 } else
2815                         ext4_put_io_end(mpd.io_submit.io_end);
2816                 mpd.io_submit.io_end = NULL;
2817
2818                 if (ret == -ENOSPC && sbi->s_journal) {
2819                         /*
2820                          * Commit the transaction which would
2821                          * free blocks released in the transaction
2822                          * and try again
2823                          */
2824                         jbd2_journal_force_commit_nested(sbi->s_journal);
2825                         ret = 0;
2826                         continue;
2827                 }
2828                 /* Fatal error - ENOMEM, EIO... */
2829                 if (ret)
2830                         break;
2831         }
2832 unplug:
2833         blk_finish_plug(&plug);
2834         if (!ret && !cycled && wbc->nr_to_write > 0) {
2835                 cycled = 1;
2836                 mpd.last_page = writeback_index - 1;
2837                 mpd.first_page = 0;
2838                 goto retry;
2839         }
2840
2841         /* Update index */
2842         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2843                 /*
2844                  * Set the writeback_index so that range_cyclic
2845                  * mode will write it back later
2846                  */
2847                 mapping->writeback_index = mpd.first_page;
2848
2849 out_writepages:
2850         trace_ext4_writepages_result(inode, wbc, ret,
2851                                      nr_to_write - wbc->nr_to_write);
2852         percpu_up_read(&sbi->s_journal_flag_rwsem);
2853         return ret;
2854 }
2855
2856 static int ext4_dax_writepages(struct address_space *mapping,
2857                                struct writeback_control *wbc)
2858 {
2859         int ret;
2860         long nr_to_write = wbc->nr_to_write;
2861         struct inode *inode = mapping->host;
2862         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2863
2864         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2865                 return -EIO;
2866
2867         percpu_down_read(&sbi->s_journal_flag_rwsem);
2868         trace_ext4_writepages(inode, wbc);
2869
2870         ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2871         trace_ext4_writepages_result(inode, wbc, ret,
2872                                      nr_to_write - wbc->nr_to_write);
2873         percpu_up_read(&sbi->s_journal_flag_rwsem);
2874         return ret;
2875 }
2876
2877 static int ext4_nonda_switch(struct super_block *sb)
2878 {
2879         s64 free_clusters, dirty_clusters;
2880         struct ext4_sb_info *sbi = EXT4_SB(sb);
2881
2882         /*
2883          * switch to non delalloc mode if we are running low
2884          * on free block. The free block accounting via percpu
2885          * counters can get slightly wrong with percpu_counter_batch getting
2886          * accumulated on each CPU without updating global counters
2887          * Delalloc need an accurate free block accounting. So switch
2888          * to non delalloc when we are near to error range.
2889          */
2890         free_clusters =
2891                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2892         dirty_clusters =
2893                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2894         /*
2895          * Start pushing delalloc when 1/2 of free blocks are dirty.
2896          */
2897         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2898                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2899
2900         if (2 * free_clusters < 3 * dirty_clusters ||
2901             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2902                 /*
2903                  * free block count is less than 150% of dirty blocks
2904                  * or free blocks is less than watermark
2905                  */
2906                 return 1;
2907         }
2908         return 0;
2909 }
2910
2911 /* We always reserve for an inode update; the superblock could be there too */
2912 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2913 {
2914         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2915                 return 1;
2916
2917         if (pos + len <= 0x7fffffffULL)
2918                 return 1;
2919
2920         /* We might need to update the superblock to set LARGE_FILE */
2921         return 2;
2922 }
2923
2924 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2925                                loff_t pos, unsigned len, unsigned flags,
2926                                struct page **pagep, void **fsdata)
2927 {
2928         int ret, retries = 0;
2929         struct page *page;
2930         pgoff_t index;
2931         struct inode *inode = mapping->host;
2932         handle_t *handle;
2933
2934         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2935                 return -EIO;
2936
2937         index = pos >> PAGE_SHIFT;
2938
2939         if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2940             ext4_verity_in_progress(inode)) {
2941                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2942                 return ext4_write_begin(file, mapping, pos,
2943                                         len, flags, pagep, fsdata);
2944         }
2945         *fsdata = (void *)0;
2946         trace_ext4_da_write_begin(inode, pos, len, flags);
2947
2948         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2949                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2950                                                       pos, len, flags,
2951                                                       pagep, fsdata);
2952                 if (ret < 0)
2953                         return ret;
2954                 if (ret == 1)
2955                         return 0;
2956         }
2957
2958         /*
2959          * grab_cache_page_write_begin() can take a long time if the
2960          * system is thrashing due to memory pressure, or if the page
2961          * is being written back.  So grab it first before we start
2962          * the transaction handle.  This also allows us to allocate
2963          * the page (if needed) without using GFP_NOFS.
2964          */
2965 retry_grab:
2966         page = grab_cache_page_write_begin(mapping, index, flags);
2967         if (!page)
2968                 return -ENOMEM;
2969         unlock_page(page);
2970
2971         /*
2972          * With delayed allocation, we don't log the i_disksize update
2973          * if there is delayed block allocation. But we still need
2974          * to journalling the i_disksize update if writes to the end
2975          * of file which has an already mapped buffer.
2976          */
2977 retry_journal:
2978         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2979                                 ext4_da_write_credits(inode, pos, len));
2980         if (IS_ERR(handle)) {
2981                 put_page(page);
2982                 return PTR_ERR(handle);
2983         }
2984
2985         lock_page(page);
2986         if (page->mapping != mapping) {
2987                 /* The page got truncated from under us */
2988                 unlock_page(page);
2989                 put_page(page);
2990                 ext4_journal_stop(handle);
2991                 goto retry_grab;
2992         }
2993         /* In case writeback began while the page was unlocked */
2994         wait_for_stable_page(page);
2995
2996 #ifdef CONFIG_FS_ENCRYPTION
2997         ret = ext4_block_write_begin(page, pos, len,
2998                                      ext4_da_get_block_prep);
2999 #else
3000         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3001 #endif
3002         if (ret < 0) {
3003                 unlock_page(page);
3004                 ext4_journal_stop(handle);
3005                 /*
3006                  * block_write_begin may have instantiated a few blocks
3007                  * outside i_size.  Trim these off again. Don't need
3008                  * i_size_read because we hold i_mutex.
3009                  */
3010                 if (pos + len > inode->i_size)
3011                         ext4_truncate_failed_write(inode);
3012
3013                 if (ret == -ENOSPC &&
3014                     ext4_should_retry_alloc(inode->i_sb, &retries))
3015                         goto retry_journal;
3016
3017                 put_page(page);
3018                 return ret;
3019         }
3020
3021         *pagep = page;
3022         return ret;
3023 }
3024
3025 /*
3026  * Check if we should update i_disksize
3027  * when write to the end of file but not require block allocation
3028  */
3029 static int ext4_da_should_update_i_disksize(struct page *page,
3030                                             unsigned long offset)
3031 {
3032         struct buffer_head *bh;
3033         struct inode *inode = page->mapping->host;
3034         unsigned int idx;
3035         int i;
3036
3037         bh = page_buffers(page);
3038         idx = offset >> inode->i_blkbits;
3039
3040         for (i = 0; i < idx; i++)
3041                 bh = bh->b_this_page;
3042
3043         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3044                 return 0;
3045         return 1;
3046 }
3047
3048 static int ext4_da_write_end(struct file *file,
3049                              struct address_space *mapping,
3050                              loff_t pos, unsigned len, unsigned copied,
3051                              struct page *page, void *fsdata)
3052 {
3053         struct inode *inode = mapping->host;
3054         int ret = 0, ret2;
3055         handle_t *handle = ext4_journal_current_handle();
3056         loff_t new_i_size;
3057         unsigned long start, end;
3058         int write_mode = (int)(unsigned long)fsdata;
3059
3060         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3061                 return ext4_write_end(file, mapping, pos,
3062                                       len, copied, page, fsdata);
3063
3064         trace_ext4_da_write_end(inode, pos, len, copied);
3065         start = pos & (PAGE_SIZE - 1);
3066         end = start + copied - 1;
3067
3068         /*
3069          * generic_write_end() will run mark_inode_dirty() if i_size
3070          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3071          * into that.
3072          */
3073         new_i_size = pos + copied;
3074         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3075                 if (ext4_has_inline_data(inode) ||
3076                     ext4_da_should_update_i_disksize(page, end)) {
3077                         ext4_update_i_disksize(inode, new_i_size);
3078                         /* We need to mark inode dirty even if
3079                          * new_i_size is less that inode->i_size
3080                          * bu greater than i_disksize.(hint delalloc)
3081                          */
3082                         ext4_mark_inode_dirty(handle, inode);
3083                 }
3084         }
3085
3086         if (write_mode != CONVERT_INLINE_DATA &&
3087             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3088             ext4_has_inline_data(inode))
3089                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3090                                                      page);
3091         else
3092                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3093                                                         page, fsdata);
3094
3095         copied = ret2;
3096         if (ret2 < 0)
3097                 ret = ret2;
3098         ret2 = ext4_journal_stop(handle);
3099         if (!ret)
3100                 ret = ret2;
3101
3102         return ret ? ret : copied;
3103 }
3104
3105 /*
3106  * Force all delayed allocation blocks to be allocated for a given inode.
3107  */
3108 int ext4_alloc_da_blocks(struct inode *inode)
3109 {
3110         trace_ext4_alloc_da_blocks(inode);
3111
3112         if (!EXT4_I(inode)->i_reserved_data_blocks)
3113                 return 0;
3114
3115         /*
3116          * We do something simple for now.  The filemap_flush() will
3117          * also start triggering a write of the data blocks, which is
3118          * not strictly speaking necessary (and for users of
3119          * laptop_mode, not even desirable).  However, to do otherwise
3120          * would require replicating code paths in:
3121          *
3122          * ext4_writepages() ->
3123          *    write_cache_pages() ---> (via passed in callback function)
3124          *        __mpage_da_writepage() -->
3125          *           mpage_add_bh_to_extent()
3126          *           mpage_da_map_blocks()
3127          *
3128          * The problem is that write_cache_pages(), located in
3129          * mm/page-writeback.c, marks pages clean in preparation for
3130          * doing I/O, which is not desirable if we're not planning on
3131          * doing I/O at all.
3132          *
3133          * We could call write_cache_pages(), and then redirty all of
3134          * the pages by calling redirty_page_for_writepage() but that
3135          * would be ugly in the extreme.  So instead we would need to
3136          * replicate parts of the code in the above functions,
3137          * simplifying them because we wouldn't actually intend to
3138          * write out the pages, but rather only collect contiguous
3139          * logical block extents, call the multi-block allocator, and
3140          * then update the buffer heads with the block allocations.
3141          *
3142          * For now, though, we'll cheat by calling filemap_flush(),
3143          * which will map the blocks, and start the I/O, but not
3144          * actually wait for the I/O to complete.
3145          */
3146         return filemap_flush(inode->i_mapping);
3147 }
3148
3149 /*
3150  * bmap() is special.  It gets used by applications such as lilo and by
3151  * the swapper to find the on-disk block of a specific piece of data.
3152  *
3153  * Naturally, this is dangerous if the block concerned is still in the
3154  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3155  * filesystem and enables swap, then they may get a nasty shock when the
3156  * data getting swapped to that swapfile suddenly gets overwritten by
3157  * the original zero's written out previously to the journal and
3158  * awaiting writeback in the kernel's buffer cache.
3159  *
3160  * So, if we see any bmap calls here on a modified, data-journaled file,
3161  * take extra steps to flush any blocks which might be in the cache.
3162  */
3163 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3164 {
3165         struct inode *inode = mapping->host;
3166         journal_t *journal;
3167         int err;
3168
3169         /*
3170          * We can get here for an inline file via the FIBMAP ioctl
3171          */
3172         if (ext4_has_inline_data(inode))
3173                 return 0;
3174
3175         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3176                         test_opt(inode->i_sb, DELALLOC)) {
3177                 /*
3178                  * With delalloc we want to sync the file
3179                  * so that we can make sure we allocate
3180                  * blocks for file
3181                  */
3182                 filemap_write_and_wait(mapping);
3183         }
3184
3185         if (EXT4_JOURNAL(inode) &&
3186             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3187                 /*
3188                  * This is a REALLY heavyweight approach, but the use of
3189                  * bmap on dirty files is expected to be extremely rare:
3190                  * only if we run lilo or swapon on a freshly made file
3191                  * do we expect this to happen.
3192                  *
3193                  * (bmap requires CAP_SYS_RAWIO so this does not
3194                  * represent an unprivileged user DOS attack --- we'd be
3195                  * in trouble if mortal users could trigger this path at
3196                  * will.)
3197                  *
3198                  * NB. EXT4_STATE_JDATA is not set on files other than
3199                  * regular files.  If somebody wants to bmap a directory
3200                  * or symlink and gets confused because the buffer
3201                  * hasn't yet been flushed to disk, they deserve
3202                  * everything they get.
3203                  */
3204
3205                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3206                 journal = EXT4_JOURNAL(inode);
3207                 jbd2_journal_lock_updates(journal);
3208                 err = jbd2_journal_flush(journal);
3209                 jbd2_journal_unlock_updates(journal);
3210
3211                 if (err)
3212                         return 0;
3213         }
3214
3215         return generic_block_bmap(mapping, block, ext4_get_block);
3216 }
3217
3218 static int ext4_readpage(struct file *file, struct page *page)
3219 {
3220         int ret = -EAGAIN;
3221         struct inode *inode = page->mapping->host;
3222
3223         trace_ext4_readpage(page);
3224
3225         if (ext4_has_inline_data(inode))
3226                 ret = ext4_readpage_inline(inode, page);
3227
3228         if (ret == -EAGAIN)
3229                 return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3230                                                 false);
3231
3232         return ret;
3233 }
3234
3235 static int
3236 ext4_readpages(struct file *file, struct address_space *mapping,
3237                 struct list_head *pages, unsigned nr_pages)
3238 {
3239         struct inode *inode = mapping->host;
3240
3241         /* If the file has inline data, no need to do readpages. */
3242         if (ext4_has_inline_data(inode))
3243                 return 0;
3244
3245         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3246 }
3247
3248 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3249                                 unsigned int length)
3250 {
3251         trace_ext4_invalidatepage(page, offset, length);
3252
3253         /* No journalling happens on data buffers when this function is used */
3254         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3255
3256         block_invalidatepage(page, offset, length);
3257 }
3258
3259 static int __ext4_journalled_invalidatepage(struct page *page,
3260                                             unsigned int offset,
3261                                             unsigned int length)
3262 {
3263         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3264
3265         trace_ext4_journalled_invalidatepage(page, offset, length);
3266
3267         /*
3268          * If it's a full truncate we just forget about the pending dirtying
3269          */
3270         if (offset == 0 && length == PAGE_SIZE)
3271                 ClearPageChecked(page);
3272
3273         return jbd2_journal_invalidatepage(journal, page, offset, length);
3274 }
3275
3276 /* Wrapper for aops... */
3277 static void ext4_journalled_invalidatepage(struct page *page,
3278                                            unsigned int offset,
3279                                            unsigned int length)
3280 {
3281         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3282 }
3283
3284 static int ext4_releasepage(struct page *page, gfp_t wait)
3285 {
3286         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3287
3288         trace_ext4_releasepage(page);
3289
3290         /* Page has dirty journalled data -> cannot release */
3291         if (PageChecked(page))
3292                 return 0;
3293         if (journal)
3294                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3295         else
3296                 return try_to_free_buffers(page);
3297 }
3298
3299 static bool ext4_inode_datasync_dirty(struct inode *inode)
3300 {
3301         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3302
3303         if (journal)
3304                 return !jbd2_transaction_committed(journal,
3305                                         EXT4_I(inode)->i_datasync_tid);
3306         /* Any metadata buffers to write? */
3307         if (!list_empty(&inode->i_mapping->private_list))
3308                 return true;
3309         return inode->i_state & I_DIRTY_DATASYNC;
3310 }
3311
3312 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3313                            struct ext4_map_blocks *map, loff_t offset,
3314                            loff_t length)
3315 {
3316         u8 blkbits = inode->i_blkbits;
3317
3318         /*
3319          * Writes that span EOF might trigger an I/O size update on completion,
3320          * so consider them to be dirty for the purpose of O_DSYNC, even if
3321          * there is no other metadata changes being made or are pending.
3322          */
3323         iomap->flags = 0;
3324         if (ext4_inode_datasync_dirty(inode) ||
3325             offset + length > i_size_read(inode))
3326                 iomap->flags |= IOMAP_F_DIRTY;
3327
3328         if (map->m_flags & EXT4_MAP_NEW)
3329                 iomap->flags |= IOMAP_F_NEW;
3330
3331         iomap->bdev = inode->i_sb->s_bdev;
3332         iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3333         iomap->offset = (u64) map->m_lblk << blkbits;
3334         iomap->length = (u64) map->m_len << blkbits;
3335
3336         /*
3337          * Flags passed to ext4_map_blocks() for direct I/O writes can result
3338          * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3339          * set. In order for any allocated unwritten extents to be converted
3340          * into written extents correctly within the ->end_io() handler, we
3341          * need to ensure that the iomap->type is set appropriately. Hence, the
3342          * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3343          * been set first.
3344          */
3345         if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3346                 iomap->type = IOMAP_UNWRITTEN;
3347                 iomap->addr = (u64) map->m_pblk << blkbits;
3348         } else if (map->m_flags & EXT4_MAP_MAPPED) {
3349                 iomap->type = IOMAP_MAPPED;
3350                 iomap->addr = (u64) map->m_pblk << blkbits;
3351         } else {
3352                 iomap->type = IOMAP_HOLE;
3353                 iomap->addr = IOMAP_NULL_ADDR;
3354         }
3355 }
3356
3357 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3358                             unsigned int flags)
3359 {
3360         handle_t *handle;
3361         u8 blkbits = inode->i_blkbits;
3362         int ret, dio_credits, m_flags = 0, retries = 0;
3363
3364         /*
3365          * Trim the mapping request to the maximum value that we can map at
3366          * once for direct I/O.
3367          */
3368         if (map->m_len > DIO_MAX_BLOCKS)
3369                 map->m_len = DIO_MAX_BLOCKS;
3370         dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3371
3372 retry:
3373         /*
3374          * Either we allocate blocks and then don't get an unwritten extent, so
3375          * in that case we have reserved enough credits. Or, the blocks are
3376          * already allocated and unwritten. In that case, the extent conversion
3377          * fits into the credits as well.
3378          */
3379         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3380         if (IS_ERR(handle))
3381                 return PTR_ERR(handle);
3382
3383         /*
3384          * DAX and direct I/O are the only two operations that are currently
3385          * supported with IOMAP_WRITE.
3386          */
3387         WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3388         if (IS_DAX(inode))
3389                 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3390         /*
3391          * We use i_size instead of i_disksize here because delalloc writeback
3392          * can complete at any point during the I/O and subsequently push the
3393          * i_disksize out to i_size. This could be beyond where direct I/O is
3394          * happening and thus expose allocated blocks to direct I/O reads.
3395          */
3396         else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3397                 m_flags = EXT4_GET_BLOCKS_CREATE;
3398         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3399                 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3400
3401         ret = ext4_map_blocks(handle, inode, map, m_flags);
3402
3403         /*
3404          * We cannot fill holes in indirect tree based inodes as that could
3405          * expose stale data in the case of a crash. Use the magic error code
3406          * to fallback to buffered I/O.
3407          */
3408         if (!m_flags && !ret)
3409                 ret = -ENOTBLK;
3410
3411         ext4_journal_stop(handle);
3412         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3413                 goto retry;
3414
3415         return ret;
3416 }
3417
3418
3419 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3420                 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3421 {
3422         int ret;
3423         struct ext4_map_blocks map;
3424         u8 blkbits = inode->i_blkbits;
3425
3426         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3427                 return -EINVAL;
3428
3429         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3430                 return -ERANGE;
3431
3432         /*
3433          * Calculate the first and last logical blocks respectively.
3434          */
3435         map.m_lblk = offset >> blkbits;
3436         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3437                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3438
3439         if (flags & IOMAP_WRITE)
3440                 ret = ext4_iomap_alloc(inode, &map, flags);
3441         else
3442                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3443
3444         if (ret < 0)
3445                 return ret;
3446
3447         ext4_set_iomap(inode, iomap, &map, offset, length);
3448
3449         return 0;
3450 }
3451
3452 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3453                 loff_t length, unsigned flags, struct iomap *iomap,
3454                 struct iomap *srcmap)
3455 {
3456         int ret;
3457
3458         /*
3459          * Even for writes we don't need to allocate blocks, so just pretend
3460          * we are reading to save overhead of starting a transaction.
3461          */
3462         flags &= ~IOMAP_WRITE;
3463         ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3464         WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3465         return ret;
3466 }
3467
3468 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3469                           ssize_t written, unsigned flags, struct iomap *iomap)
3470 {
3471         /*
3472          * Check to see whether an error occurred while writing out the data to
3473          * the allocated blocks. If so, return the magic error code so that we
3474          * fallback to buffered I/O and attempt to complete the remainder of
3475          * the I/O. Any blocks that may have been allocated in preparation for
3476          * the direct I/O will be reused during buffered I/O.
3477          */
3478         if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3479                 return -ENOTBLK;
3480
3481         return 0;
3482 }
3483
3484 const struct iomap_ops ext4_iomap_ops = {
3485         .iomap_begin            = ext4_iomap_begin,
3486         .iomap_end              = ext4_iomap_end,
3487 };
3488
3489 const struct iomap_ops ext4_iomap_overwrite_ops = {
3490         .iomap_begin            = ext4_iomap_overwrite_begin,
3491         .iomap_end              = ext4_iomap_end,
3492 };
3493
3494 static bool ext4_iomap_is_delalloc(struct inode *inode,
3495                                    struct ext4_map_blocks *map)
3496 {
3497         struct extent_status es;
3498         ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3499
3500         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3501                                   map->m_lblk, end, &es);
3502
3503         if (!es.es_len || es.es_lblk > end)
3504                 return false;
3505
3506         if (es.es_lblk > map->m_lblk) {
3507                 map->m_len = es.es_lblk - map->m_lblk;
3508                 return false;
3509         }
3510
3511         offset = map->m_lblk - es.es_lblk;
3512         map->m_len = es.es_len - offset;
3513
3514         return true;
3515 }
3516
3517 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3518                                    loff_t length, unsigned int flags,
3519                                    struct iomap *iomap, struct iomap *srcmap)
3520 {
3521         int ret;
3522         bool delalloc = false;
3523         struct ext4_map_blocks map;
3524         u8 blkbits = inode->i_blkbits;
3525
3526         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3527                 return -EINVAL;
3528
3529         if (ext4_has_inline_data(inode)) {
3530                 ret = ext4_inline_data_iomap(inode, iomap);
3531                 if (ret != -EAGAIN) {
3532                         if (ret == 0 && offset >= iomap->length)
3533                                 ret = -ENOENT;
3534                         return ret;
3535                 }
3536         }
3537
3538         /*
3539          * Calculate the first and last logical block respectively.
3540          */
3541         map.m_lblk = offset >> blkbits;
3542         map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3543                           EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3544
3545         ret = ext4_map_blocks(NULL, inode, &map, 0);
3546         if (ret < 0)
3547                 return ret;
3548         if (ret == 0)
3549                 delalloc = ext4_iomap_is_delalloc(inode, &map);
3550
3551         ext4_set_iomap(inode, iomap, &map, offset, length);
3552         if (delalloc && iomap->type == IOMAP_HOLE)
3553                 iomap->type = IOMAP_DELALLOC;
3554
3555         return 0;
3556 }
3557
3558 const struct iomap_ops ext4_iomap_report_ops = {
3559         .iomap_begin = ext4_iomap_begin_report,
3560 };
3561
3562 /*
3563  * Pages can be marked dirty completely asynchronously from ext4's journalling
3564  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3565  * much here because ->set_page_dirty is called under VFS locks.  The page is
3566  * not necessarily locked.
3567  *
3568  * We cannot just dirty the page and leave attached buffers clean, because the
3569  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3570  * or jbddirty because all the journalling code will explode.
3571  *
3572  * So what we do is to mark the page "pending dirty" and next time writepage
3573  * is called, propagate that into the buffers appropriately.
3574  */
3575 static int ext4_journalled_set_page_dirty(struct page *page)
3576 {
3577         SetPageChecked(page);
3578         return __set_page_dirty_nobuffers(page);
3579 }
3580
3581 static int ext4_set_page_dirty(struct page *page)
3582 {
3583         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3584         WARN_ON_ONCE(!page_has_buffers(page));
3585         return __set_page_dirty_buffers(page);
3586 }
3587
3588 static const struct address_space_operations ext4_aops = {
3589         .readpage               = ext4_readpage,
3590         .readpages              = ext4_readpages,
3591         .writepage              = ext4_writepage,
3592         .writepages             = ext4_writepages,
3593         .write_begin            = ext4_write_begin,
3594         .write_end              = ext4_write_end,
3595         .set_page_dirty         = ext4_set_page_dirty,
3596         .bmap                   = ext4_bmap,
3597         .invalidatepage         = ext4_invalidatepage,
3598         .releasepage            = ext4_releasepage,
3599         .direct_IO              = noop_direct_IO,
3600         .migratepage            = buffer_migrate_page,
3601         .is_partially_uptodate  = block_is_partially_uptodate,
3602         .error_remove_page      = generic_error_remove_page,
3603 };
3604
3605 static const struct address_space_operations ext4_journalled_aops = {
3606         .readpage               = ext4_readpage,
3607         .readpages              = ext4_readpages,
3608         .writepage              = ext4_writepage,
3609         .writepages             = ext4_writepages,
3610         .write_begin            = ext4_write_begin,
3611         .write_end              = ext4_journalled_write_end,
3612         .set_page_dirty         = ext4_journalled_set_page_dirty,
3613         .bmap                   = ext4_bmap,
3614         .invalidatepage         = ext4_journalled_invalidatepage,
3615         .releasepage            = ext4_releasepage,
3616         .direct_IO              = noop_direct_IO,
3617         .is_partially_uptodate  = block_is_partially_uptodate,
3618         .error_remove_page      = generic_error_remove_page,
3619 };
3620
3621 static const struct address_space_operations ext4_da_aops = {
3622         .readpage               = ext4_readpage,
3623         .readpages              = ext4_readpages,
3624         .writepage              = ext4_writepage,
3625         .writepages             = ext4_writepages,
3626         .write_begin            = ext4_da_write_begin,
3627         .write_end              = ext4_da_write_end,
3628         .set_page_dirty         = ext4_set_page_dirty,
3629         .bmap                   = ext4_bmap,
3630         .invalidatepage         = ext4_invalidatepage,
3631         .releasepage            = ext4_releasepage,
3632         .direct_IO              = noop_direct_IO,
3633         .migratepage            = buffer_migrate_page,
3634         .is_partially_uptodate  = block_is_partially_uptodate,
3635         .error_remove_page      = generic_error_remove_page,
3636 };
3637
3638 static const struct address_space_operations ext4_dax_aops = {
3639         .writepages             = ext4_dax_writepages,
3640         .direct_IO              = noop_direct_IO,
3641         .set_page_dirty         = noop_set_page_dirty,
3642         .bmap                   = ext4_bmap,
3643         .invalidatepage         = noop_invalidatepage,
3644 };
3645
3646 void ext4_set_aops(struct inode *inode)
3647 {
3648         switch (ext4_inode_journal_mode(inode)) {
3649         case EXT4_INODE_ORDERED_DATA_MODE:
3650         case EXT4_INODE_WRITEBACK_DATA_MODE:
3651                 break;
3652         case EXT4_INODE_JOURNAL_DATA_MODE:
3653                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3654                 return;
3655         default:
3656                 BUG();
3657         }
3658         if (IS_DAX(inode))
3659                 inode->i_mapping->a_ops = &ext4_dax_aops;
3660         else if (test_opt(inode->i_sb, DELALLOC))
3661                 inode->i_mapping->a_ops = &ext4_da_aops;
3662         else
3663                 inode->i_mapping->a_ops = &ext4_aops;
3664 }
3665
3666 static int __ext4_block_zero_page_range(handle_t *handle,
3667                 struct address_space *mapping, loff_t from, loff_t length)
3668 {
3669         ext4_fsblk_t index = from >> PAGE_SHIFT;
3670         unsigned offset = from & (PAGE_SIZE-1);
3671         unsigned blocksize, pos;
3672         ext4_lblk_t iblock;
3673         struct inode *inode = mapping->host;
3674         struct buffer_head *bh;
3675         struct page *page;
3676         int err = 0;
3677
3678         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3679                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3680         if (!page)
3681                 return -ENOMEM;
3682
3683         blocksize = inode->i_sb->s_blocksize;
3684
3685         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3686
3687         if (!page_has_buffers(page))
3688                 create_empty_buffers(page, blocksize, 0);
3689
3690         /* Find the buffer that contains "offset" */
3691         bh = page_buffers(page);
3692         pos = blocksize;
3693         while (offset >= pos) {
3694                 bh = bh->b_this_page;
3695                 iblock++;
3696                 pos += blocksize;
3697         }
3698         if (buffer_freed(bh)) {
3699                 BUFFER_TRACE(bh, "freed: skip");
3700                 goto unlock;
3701         }
3702         if (!buffer_mapped(bh)) {
3703                 BUFFER_TRACE(bh, "unmapped");
3704                 ext4_get_block(inode, iblock, bh, 0);
3705                 /* unmapped? It's a hole - nothing to do */
3706                 if (!buffer_mapped(bh)) {
3707                         BUFFER_TRACE(bh, "still unmapped");
3708                         goto unlock;
3709                 }
3710         }
3711
3712         /* Ok, it's mapped. Make sure it's up-to-date */
3713         if (PageUptodate(page))
3714                 set_buffer_uptodate(bh);
3715
3716         if (!buffer_uptodate(bh)) {
3717                 err = -EIO;
3718                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3719                 wait_on_buffer(bh);
3720                 /* Uhhuh. Read error. Complain and punt. */
3721                 if (!buffer_uptodate(bh))
3722                         goto unlock;
3723                 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
3724                         /* We expect the key to be set. */
3725                         BUG_ON(!fscrypt_has_encryption_key(inode));
3726                         err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3727                                                                bh_offset(bh));
3728                         if (err) {
3729                                 clear_buffer_uptodate(bh);
3730                                 goto unlock;
3731                         }
3732                 }
3733         }
3734         if (ext4_should_journal_data(inode)) {
3735                 BUFFER_TRACE(bh, "get write access");
3736                 err = ext4_journal_get_write_access(handle, bh);
3737                 if (err)
3738                         goto unlock;
3739         }
3740         zero_user(page, offset, length);
3741         BUFFER_TRACE(bh, "zeroed end of block");
3742
3743         if (ext4_should_journal_data(inode)) {
3744                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3745         } else {
3746                 err = 0;
3747                 mark_buffer_dirty(bh);
3748                 if (ext4_should_order_data(inode))
3749                         err = ext4_jbd2_inode_add_write(handle, inode, from,
3750                                         length);
3751         }
3752
3753 unlock:
3754         unlock_page(page);
3755         put_page(page);
3756         return err;
3757 }
3758
3759 /*
3760  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3761  * starting from file offset 'from'.  The range to be zero'd must
3762  * be contained with in one block.  If the specified range exceeds
3763  * the end of the block it will be shortened to end of the block
3764  * that cooresponds to 'from'
3765  */
3766 static int ext4_block_zero_page_range(handle_t *handle,
3767                 struct address_space *mapping, loff_t from, loff_t length)
3768 {
3769         struct inode *inode = mapping->host;
3770         unsigned offset = from & (PAGE_SIZE-1);
3771         unsigned blocksize = inode->i_sb->s_blocksize;
3772         unsigned max = blocksize - (offset & (blocksize - 1));
3773
3774         /*
3775          * correct length if it does not fall between
3776          * 'from' and the end of the block
3777          */
3778         if (length > max || length < 0)
3779                 length = max;
3780
3781         if (IS_DAX(inode)) {
3782                 return iomap_zero_range(inode, from, length, NULL,
3783                                         &ext4_iomap_ops);
3784         }
3785         return __ext4_block_zero_page_range(handle, mapping, from, length);
3786 }
3787
3788 /*
3789  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3790  * up to the end of the block which corresponds to `from'.
3791  * This required during truncate. We need to physically zero the tail end
3792  * of that block so it doesn't yield old data if the file is later grown.
3793  */
3794 static int ext4_block_truncate_page(handle_t *handle,
3795                 struct address_space *mapping, loff_t from)
3796 {
3797         unsigned offset = from & (PAGE_SIZE-1);
3798         unsigned length;
3799         unsigned blocksize;
3800         struct inode *inode = mapping->host;
3801
3802         /* If we are processing an encrypted inode during orphan list handling */
3803         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3804                 return 0;
3805
3806         blocksize = inode->i_sb->s_blocksize;
3807         length = blocksize - (offset & (blocksize - 1));
3808
3809         return ext4_block_zero_page_range(handle, mapping, from, length);
3810 }
3811
3812 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3813                              loff_t lstart, loff_t length)
3814 {
3815         struct super_block *sb = inode->i_sb;
3816         struct address_space *mapping = inode->i_mapping;
3817         unsigned partial_start, partial_end;
3818         ext4_fsblk_t start, end;
3819         loff_t byte_end = (lstart + length - 1);
3820         int err = 0;
3821
3822         partial_start = lstart & (sb->s_blocksize - 1);
3823         partial_end = byte_end & (sb->s_blocksize - 1);
3824
3825         start = lstart >> sb->s_blocksize_bits;
3826         end = byte_end >> sb->s_blocksize_bits;
3827
3828         /* Handle partial zero within the single block */
3829         if (start == end &&
3830             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3831                 err = ext4_block_zero_page_range(handle, mapping,
3832                                                  lstart, length);
3833                 return err;
3834         }
3835         /* Handle partial zero out on the start of the range */
3836         if (partial_start) {
3837                 err = ext4_block_zero_page_range(handle, mapping,
3838                                                  lstart, sb->s_blocksize);
3839                 if (err)
3840                         return err;
3841         }
3842         /* Handle partial zero out on the end of the range */
3843         if (partial_end != sb->s_blocksize - 1)
3844                 err = ext4_block_zero_page_range(handle, mapping,
3845                                                  byte_end - partial_end,
3846                                                  partial_end + 1);
3847         return err;
3848 }
3849
3850 int ext4_can_truncate(struct inode *inode)
3851 {
3852         if (S_ISREG(inode->i_mode))
3853                 return 1;
3854         if (S_ISDIR(inode->i_mode))
3855                 return 1;
3856         if (S_ISLNK(inode->i_mode))
3857                 return !ext4_inode_is_fast_symlink(inode);
3858         return 0;
3859 }
3860
3861 /*
3862  * We have to make sure i_disksize gets properly updated before we truncate
3863  * page cache due to hole punching or zero range. Otherwise i_disksize update
3864  * can get lost as it may have been postponed to submission of writeback but
3865  * that will never happen after we truncate page cache.
3866  */
3867 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3868                                       loff_t len)
3869 {
3870         handle_t *handle;
3871         loff_t size = i_size_read(inode);
3872
3873         WARN_ON(!inode_is_locked(inode));
3874         if (offset > size || offset + len < size)
3875                 return 0;
3876
3877         if (EXT4_I(inode)->i_disksize >= size)
3878                 return 0;
3879
3880         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3881         if (IS_ERR(handle))
3882                 return PTR_ERR(handle);
3883         ext4_update_i_disksize(inode, size);
3884         ext4_mark_inode_dirty(handle, inode);
3885         ext4_journal_stop(handle);
3886
3887         return 0;
3888 }
3889
3890 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3891 {
3892         up_write(&ei->i_mmap_sem);
3893         schedule();
3894         down_write(&ei->i_mmap_sem);
3895 }
3896
3897 int ext4_break_layouts(struct inode *inode)
3898 {
3899         struct ext4_inode_info *ei = EXT4_I(inode);
3900         struct page *page;
3901         int error;
3902
3903         if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3904                 return -EINVAL;
3905
3906         do {
3907                 page = dax_layout_busy_page(inode->i_mapping);
3908                 if (!page)
3909                         return 0;
3910
3911                 error = ___wait_var_event(&page->_refcount,
3912                                 atomic_read(&page->_refcount) == 1,
3913                                 TASK_INTERRUPTIBLE, 0, 0,
3914                                 ext4_wait_dax_page(ei));
3915         } while (error == 0);
3916
3917         return error;
3918 }
3919
3920 /*
3921  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3922  * associated with the given offset and length
3923  *
3924  * @inode:  File inode
3925  * @offset: The offset where the hole will begin
3926  * @len:    The length of the hole
3927  *
3928  * Returns: 0 on success or negative on failure
3929  */
3930
3931 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3932 {
3933         struct super_block *sb = inode->i_sb;
3934         ext4_lblk_t first_block, stop_block;
3935         struct address_space *mapping = inode->i_mapping;
3936         loff_t first_block_offset, last_block_offset;
3937         handle_t *handle;
3938         unsigned int credits;
3939         int ret = 0;
3940
3941         trace_ext4_punch_hole(inode, offset, length, 0);
3942
3943         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3944         if (ext4_has_inline_data(inode)) {
3945                 down_write(&EXT4_I(inode)->i_mmap_sem);
3946                 ret = ext4_convert_inline_data(inode);
3947                 up_write(&EXT4_I(inode)->i_mmap_sem);
3948                 if (ret)
3949                         return ret;
3950         }
3951
3952         /*
3953          * Write out all dirty pages to avoid race conditions
3954          * Then release them.
3955          */
3956         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3957                 ret = filemap_write_and_wait_range(mapping, offset,
3958                                                    offset + length - 1);
3959                 if (ret)
3960                         return ret;
3961         }
3962
3963         inode_lock(inode);
3964
3965         /* No need to punch hole beyond i_size */
3966         if (offset >= inode->i_size)
3967                 goto out_mutex;
3968
3969         /*
3970          * If the hole extends beyond i_size, set the hole
3971          * to end after the page that contains i_size
3972          */
3973         if (offset + length > inode->i_size) {
3974                 length = inode->i_size +
3975                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3976                    offset;
3977         }
3978
3979         if (offset & (sb->s_blocksize - 1) ||
3980             (offset + length) & (sb->s_blocksize - 1)) {
3981                 /*
3982                  * Attach jinode to inode for jbd2 if we do any zeroing of
3983                  * partial block
3984                  */
3985                 ret = ext4_inode_attach_jinode(inode);
3986                 if (ret < 0)
3987                         goto out_mutex;
3988
3989         }
3990
3991         /* Wait all existing dio workers, newcomers will block on i_mutex */
3992         inode_dio_wait(inode);
3993
3994         /*
3995          * Prevent page faults from reinstantiating pages we have released from
3996          * page cache.
3997          */
3998         down_write(&EXT4_I(inode)->i_mmap_sem);
3999
4000         ret = ext4_break_layouts(inode);
4001         if (ret)
4002                 goto out_dio;
4003
4004         first_block_offset = round_up(offset, sb->s_blocksize);
4005         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4006
4007         /* Now release the pages and zero block aligned part of pages*/
4008         if (last_block_offset > first_block_offset) {
4009                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4010                 if (ret)
4011                         goto out_dio;
4012                 truncate_pagecache_range(inode, first_block_offset,
4013                                          last_block_offset);
4014         }
4015
4016         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4017                 credits = ext4_writepage_trans_blocks(inode);
4018         else
4019                 credits = ext4_blocks_for_truncate(inode);
4020         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4021         if (IS_ERR(handle)) {
4022                 ret = PTR_ERR(handle);
4023                 ext4_std_error(sb, ret);
4024                 goto out_dio;
4025         }
4026
4027         ret = ext4_zero_partial_blocks(handle, inode, offset,
4028                                        length);
4029         if (ret)
4030                 goto out_stop;
4031
4032         first_block = (offset + sb->s_blocksize - 1) >>
4033                 EXT4_BLOCK_SIZE_BITS(sb);
4034         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4035
4036         /* If there are blocks to remove, do it */
4037         if (stop_block > first_block) {
4038
4039                 down_write(&EXT4_I(inode)->i_data_sem);
4040                 ext4_discard_preallocations(inode);
4041
4042                 ret = ext4_es_remove_extent(inode, first_block,
4043                                             stop_block - first_block);
4044                 if (ret) {
4045                         up_write(&EXT4_I(inode)->i_data_sem);
4046                         goto out_stop;
4047                 }
4048
4049                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4050                         ret = ext4_ext_remove_space(inode, first_block,
4051                                                     stop_block - 1);
4052                 else
4053                         ret = ext4_ind_remove_space(handle, inode, first_block,
4054                                                     stop_block);
4055
4056                 up_write(&EXT4_I(inode)->i_data_sem);
4057         }
4058         if (IS_SYNC(inode))
4059                 ext4_handle_sync(handle);
4060
4061         inode->i_mtime = inode->i_ctime = current_time(inode);
4062         ext4_mark_inode_dirty(handle, inode);
4063         if (ret >= 0)
4064                 ext4_update_inode_fsync_trans(handle, inode, 1);
4065 out_stop:
4066         ext4_journal_stop(handle);
4067 out_dio:
4068         up_write(&EXT4_I(inode)->i_mmap_sem);
4069 out_mutex:
4070         inode_unlock(inode);
4071         return ret;
4072 }
4073
4074 int ext4_inode_attach_jinode(struct inode *inode)
4075 {
4076         struct ext4_inode_info *ei = EXT4_I(inode);
4077         struct jbd2_inode *jinode;
4078
4079         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4080                 return 0;
4081
4082         jinode = jbd2_alloc_inode(GFP_KERNEL);
4083         spin_lock(&inode->i_lock);
4084         if (!ei->jinode) {
4085                 if (!jinode) {
4086                         spin_unlock(&inode->i_lock);
4087                         return -ENOMEM;
4088                 }
4089                 ei->jinode = jinode;
4090                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4091                 jinode = NULL;
4092         }
4093         spin_unlock(&inode->i_lock);
4094         if (unlikely(jinode != NULL))
4095                 jbd2_free_inode(jinode);
4096         return 0;
4097 }
4098
4099 /*
4100  * ext4_truncate()
4101  *
4102  * We block out ext4_get_block() block instantiations across the entire
4103  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4104  * simultaneously on behalf of the same inode.
4105  *
4106  * As we work through the truncate and commit bits of it to the journal there
4107  * is one core, guiding principle: the file's tree must always be consistent on
4108  * disk.  We must be able to restart the truncate after a crash.
4109  *
4110  * The file's tree may be transiently inconsistent in memory (although it
4111  * probably isn't), but whenever we close off and commit a journal transaction,
4112  * the contents of (the filesystem + the journal) must be consistent and
4113  * restartable.  It's pretty simple, really: bottom up, right to left (although
4114  * left-to-right works OK too).
4115  *
4116  * Note that at recovery time, journal replay occurs *before* the restart of
4117  * truncate against the orphan inode list.
4118  *
4119  * The committed inode has the new, desired i_size (which is the same as
4120  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4121  * that this inode's truncate did not complete and it will again call
4122  * ext4_truncate() to have another go.  So there will be instantiated blocks
4123  * to the right of the truncation point in a crashed ext4 filesystem.  But
4124  * that's fine - as long as they are linked from the inode, the post-crash
4125  * ext4_truncate() run will find them and release them.
4126  */
4127 int ext4_truncate(struct inode *inode)
4128 {
4129         struct ext4_inode_info *ei = EXT4_I(inode);
4130         unsigned int credits;
4131         int err = 0;
4132         handle_t *handle;
4133         struct address_space *mapping = inode->i_mapping;
4134
4135         /*
4136          * There is a possibility that we're either freeing the inode
4137          * or it's a completely new inode. In those cases we might not
4138          * have i_mutex locked because it's not necessary.
4139          */
4140         if (!(inode->i_state & (I_NEW|I_FREEING)))
4141                 WARN_ON(!inode_is_locked(inode));
4142         trace_ext4_truncate_enter(inode);
4143
4144         if (!ext4_can_truncate(inode))
4145                 return 0;
4146
4147         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4148
4149         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4150                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4151
4152         if (ext4_has_inline_data(inode)) {
4153                 int has_inline = 1;
4154
4155                 err = ext4_inline_data_truncate(inode, &has_inline);
4156                 if (err)
4157                         return err;
4158                 if (has_inline)
4159                         return 0;
4160         }
4161
4162         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4163         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4164                 if (ext4_inode_attach_jinode(inode) < 0)
4165                         return 0;
4166         }
4167
4168         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4169                 credits = ext4_writepage_trans_blocks(inode);
4170         else
4171                 credits = ext4_blocks_for_truncate(inode);
4172
4173         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4174         if (IS_ERR(handle))
4175                 return PTR_ERR(handle);
4176
4177         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4178                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4179
4180         /*
4181          * We add the inode to the orphan list, so that if this
4182          * truncate spans multiple transactions, and we crash, we will
4183          * resume the truncate when the filesystem recovers.  It also
4184          * marks the inode dirty, to catch the new size.
4185          *
4186          * Implication: the file must always be in a sane, consistent
4187          * truncatable state while each transaction commits.
4188          */
4189         err = ext4_orphan_add(handle, inode);
4190         if (err)
4191                 goto out_stop;
4192
4193         down_write(&EXT4_I(inode)->i_data_sem);
4194
4195         ext4_discard_preallocations(inode);
4196
4197         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4198                 err = ext4_ext_truncate(handle, inode);
4199         else
4200                 ext4_ind_truncate(handle, inode);
4201
4202         up_write(&ei->i_data_sem);
4203         if (err)
4204                 goto out_stop;
4205
4206         if (IS_SYNC(inode))
4207                 ext4_handle_sync(handle);
4208
4209 out_stop:
4210         /*
4211          * If this was a simple ftruncate() and the file will remain alive,
4212          * then we need to clear up the orphan record which we created above.
4213          * However, if this was a real unlink then we were called by
4214          * ext4_evict_inode(), and we allow that function to clean up the
4215          * orphan info for us.
4216          */
4217         if (inode->i_nlink)
4218                 ext4_orphan_del(handle, inode);
4219
4220         inode->i_mtime = inode->i_ctime = current_time(inode);
4221         ext4_mark_inode_dirty(handle, inode);
4222         ext4_journal_stop(handle);
4223
4224         trace_ext4_truncate_exit(inode);
4225         return err;
4226 }
4227
4228 /*
4229  * ext4_get_inode_loc returns with an extra refcount against the inode's
4230  * underlying buffer_head on success. If 'in_mem' is true, we have all
4231  * data in memory that is needed to recreate the on-disk version of this
4232  * inode.
4233  */
4234 static int __ext4_get_inode_loc(struct inode *inode,
4235                                 struct ext4_iloc *iloc, int in_mem)
4236 {
4237         struct ext4_group_desc  *gdp;
4238         struct buffer_head      *bh;
4239         struct super_block      *sb = inode->i_sb;
4240         ext4_fsblk_t            block;
4241         struct blk_plug         plug;
4242         int                     inodes_per_block, inode_offset;
4243
4244         iloc->bh = NULL;
4245         if (inode->i_ino < EXT4_ROOT_INO ||
4246             inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4247                 return -EFSCORRUPTED;
4248
4249         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4250         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4251         if (!gdp)
4252                 return -EIO;
4253
4254         /*
4255          * Figure out the offset within the block group inode table
4256          */
4257         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4258         inode_offset = ((inode->i_ino - 1) %
4259                         EXT4_INODES_PER_GROUP(sb));
4260         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4261         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4262
4263         bh = sb_getblk(sb, block);
4264         if (unlikely(!bh))
4265                 return -ENOMEM;
4266         if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4267                 goto simulate_eio;
4268         if (!buffer_uptodate(bh)) {
4269                 lock_buffer(bh);
4270
4271                 /*
4272                  * If the buffer has the write error flag, we have failed
4273                  * to write out another inode in the same block.  In this
4274                  * case, we don't have to read the block because we may
4275                  * read the old inode data successfully.
4276                  */
4277                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4278                         set_buffer_uptodate(bh);
4279
4280                 if (buffer_uptodate(bh)) {
4281                         /* someone brought it uptodate while we waited */
4282                         unlock_buffer(bh);
4283                         goto has_buffer;
4284                 }
4285
4286                 /*
4287                  * If we have all information of the inode in memory and this
4288                  * is the only valid inode in the block, we need not read the
4289                  * block.
4290                  */
4291                 if (in_mem) {
4292                         struct buffer_head *bitmap_bh;
4293                         int i, start;
4294
4295                         start = inode_offset & ~(inodes_per_block - 1);
4296
4297                         /* Is the inode bitmap in cache? */
4298                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4299                         if (unlikely(!bitmap_bh))
4300                                 goto make_io;
4301
4302                         /*
4303                          * If the inode bitmap isn't in cache then the
4304                          * optimisation may end up performing two reads instead
4305                          * of one, so skip it.
4306                          */
4307                         if (!buffer_uptodate(bitmap_bh)) {
4308                                 brelse(bitmap_bh);
4309                                 goto make_io;
4310                         }
4311                         for (i = start; i < start + inodes_per_block; i++) {
4312                                 if (i == inode_offset)
4313                                         continue;
4314                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4315                                         break;
4316                         }
4317                         brelse(bitmap_bh);
4318                         if (i == start + inodes_per_block) {
4319                                 /* all other inodes are free, so skip I/O */
4320                                 memset(bh->b_data, 0, bh->b_size);
4321                                 set_buffer_uptodate(bh);
4322                                 unlock_buffer(bh);
4323                                 goto has_buffer;
4324                         }
4325                 }
4326
4327 make_io:
4328                 /*
4329                  * If we need to do any I/O, try to pre-readahead extra
4330                  * blocks from the inode table.
4331                  */
4332                 blk_start_plug(&plug);
4333                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4334                         ext4_fsblk_t b, end, table;
4335                         unsigned num;
4336                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4337
4338                         table = ext4_inode_table(sb, gdp);
4339                         /* s_inode_readahead_blks is always a power of 2 */
4340                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4341                         if (table > b)
4342                                 b = table;
4343                         end = b + ra_blks;
4344                         num = EXT4_INODES_PER_GROUP(sb);
4345                         if (ext4_has_group_desc_csum(sb))
4346                                 num -= ext4_itable_unused_count(sb, gdp);
4347                         table += num / inodes_per_block;
4348                         if (end > table)
4349                                 end = table;
4350                         while (b <= end)
4351                                 sb_breadahead(sb, b++);
4352                 }
4353
4354                 /*
4355                  * There are other valid inodes in the buffer, this inode
4356                  * has in-inode xattrs, or we don't have this inode in memory.
4357                  * Read the block from disk.
4358                  */
4359                 trace_ext4_load_inode(inode);
4360                 get_bh(bh);
4361                 bh->b_end_io = end_buffer_read_sync;
4362                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4363                 blk_finish_plug(&plug);
4364                 wait_on_buffer(bh);
4365                 if (!buffer_uptodate(bh)) {
4366                 simulate_eio:
4367                         ext4_set_errno(inode->i_sb, EIO);
4368                         EXT4_ERROR_INODE_BLOCK(inode, block,
4369                                                "unable to read itable block");
4370                         brelse(bh);
4371                         return -EIO;
4372                 }
4373         }
4374 has_buffer:
4375         iloc->bh = bh;
4376         return 0;
4377 }
4378
4379 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4380 {
4381         /* We have all inode data except xattrs in memory here. */
4382         return __ext4_get_inode_loc(inode, iloc,
4383                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4384 }
4385
4386 static bool ext4_should_use_dax(struct inode *inode)
4387 {
4388         if (!test_opt(inode->i_sb, DAX))
4389                 return false;
4390         if (!S_ISREG(inode->i_mode))
4391                 return false;
4392         if (ext4_should_journal_data(inode))
4393                 return false;
4394         if (ext4_has_inline_data(inode))
4395                 return false;
4396         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4397                 return false;
4398         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4399                 return false;
4400         return true;
4401 }
4402
4403 void ext4_set_inode_flags(struct inode *inode)
4404 {
4405         unsigned int flags = EXT4_I(inode)->i_flags;
4406         unsigned int new_fl = 0;
4407
4408         if (flags & EXT4_SYNC_FL)
4409                 new_fl |= S_SYNC;
4410         if (flags & EXT4_APPEND_FL)
4411                 new_fl |= S_APPEND;
4412         if (flags & EXT4_IMMUTABLE_FL)
4413                 new_fl |= S_IMMUTABLE;
4414         if (flags & EXT4_NOATIME_FL)
4415                 new_fl |= S_NOATIME;
4416         if (flags & EXT4_DIRSYNC_FL)
4417                 new_fl |= S_DIRSYNC;
4418         if (ext4_should_use_dax(inode))
4419                 new_fl |= S_DAX;
4420         if (flags & EXT4_ENCRYPT_FL)
4421                 new_fl |= S_ENCRYPTED;
4422         if (flags & EXT4_CASEFOLD_FL)
4423                 new_fl |= S_CASEFOLD;
4424         if (flags & EXT4_VERITY_FL)
4425                 new_fl |= S_VERITY;
4426         inode_set_flags(inode, new_fl,
4427                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4428                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4429 }
4430
4431 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4432                                   struct ext4_inode_info *ei)
4433 {
4434         blkcnt_t i_blocks ;
4435         struct inode *inode = &(ei->vfs_inode);
4436         struct super_block *sb = inode->i_sb;
4437
4438         if (ext4_has_feature_huge_file(sb)) {
4439                 /* we are using combined 48 bit field */
4440                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4441                                         le32_to_cpu(raw_inode->i_blocks_lo);
4442                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4443                         /* i_blocks represent file system block size */
4444                         return i_blocks  << (inode->i_blkbits - 9);
4445                 } else {
4446                         return i_blocks;
4447                 }
4448         } else {
4449                 return le32_to_cpu(raw_inode->i_blocks_lo);
4450         }
4451 }
4452
4453 static inline int ext4_iget_extra_inode(struct inode *inode,
4454                                          struct ext4_inode *raw_inode,
4455                                          struct ext4_inode_info *ei)
4456 {
4457         __le32 *magic = (void *)raw_inode +
4458                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4459
4460         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4461             EXT4_INODE_SIZE(inode->i_sb) &&
4462             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4463                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4464                 return ext4_find_inline_data_nolock(inode);
4465         } else
4466                 EXT4_I(inode)->i_inline_off = 0;
4467         return 0;
4468 }
4469
4470 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4471 {
4472         if (!ext4_has_feature_project(inode->i_sb))
4473                 return -EOPNOTSUPP;
4474         *projid = EXT4_I(inode)->i_projid;
4475         return 0;
4476 }
4477
4478 /*
4479  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4480  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4481  * set.
4482  */
4483 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4484 {
4485         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4486                 inode_set_iversion_raw(inode, val);
4487         else
4488                 inode_set_iversion_queried(inode, val);
4489 }
4490 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4491 {
4492         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4493                 return inode_peek_iversion_raw(inode);
4494         else
4495                 return inode_peek_iversion(inode);
4496 }
4497
4498 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4499                           ext4_iget_flags flags, const char *function,
4500                           unsigned int line)
4501 {
4502         struct ext4_iloc iloc;
4503         struct ext4_inode *raw_inode;
4504         struct ext4_inode_info *ei;
4505         struct inode *inode;
4506         journal_t *journal = EXT4_SB(sb)->s_journal;
4507         long ret;
4508         loff_t size;
4509         int block;
4510         uid_t i_uid;
4511         gid_t i_gid;
4512         projid_t i_projid;
4513
4514         if ((!(flags & EXT4_IGET_SPECIAL) &&
4515              (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4516             (ino < EXT4_ROOT_INO) ||
4517             (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4518                 if (flags & EXT4_IGET_HANDLE)
4519                         return ERR_PTR(-ESTALE);
4520                 __ext4_error(sb, function, line,
4521                              "inode #%lu: comm %s: iget: illegal inode #",
4522                              ino, current->comm);
4523                 return ERR_PTR(-EFSCORRUPTED);
4524         }
4525
4526         inode = iget_locked(sb, ino);
4527         if (!inode)
4528                 return ERR_PTR(-ENOMEM);
4529         if (!(inode->i_state & I_NEW))
4530                 return inode;
4531
4532         ei = EXT4_I(inode);
4533         iloc.bh = NULL;
4534
4535         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4536         if (ret < 0)
4537                 goto bad_inode;
4538         raw_inode = ext4_raw_inode(&iloc);
4539
4540         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4541                 ext4_error_inode(inode, function, line, 0,
4542                                  "iget: root inode unallocated");
4543                 ret = -EFSCORRUPTED;
4544                 goto bad_inode;
4545         }
4546
4547         if ((flags & EXT4_IGET_HANDLE) &&
4548             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4549                 ret = -ESTALE;
4550                 goto bad_inode;
4551         }
4552
4553         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4554                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4555                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4556                         EXT4_INODE_SIZE(inode->i_sb) ||
4557                     (ei->i_extra_isize & 3)) {
4558                         ext4_error_inode(inode, function, line, 0,
4559                                          "iget: bad extra_isize %u "
4560                                          "(inode size %u)",
4561                                          ei->i_extra_isize,
4562                                          EXT4_INODE_SIZE(inode->i_sb));
4563                         ret = -EFSCORRUPTED;
4564                         goto bad_inode;
4565                 }
4566         } else
4567                 ei->i_extra_isize = 0;
4568
4569         /* Precompute checksum seed for inode metadata */
4570         if (ext4_has_metadata_csum(sb)) {
4571                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4572                 __u32 csum;
4573                 __le32 inum = cpu_to_le32(inode->i_ino);
4574                 __le32 gen = raw_inode->i_generation;
4575                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4576                                    sizeof(inum));
4577                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4578                                               sizeof(gen));
4579         }
4580
4581         if (!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4582             ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) {
4583                 ext4_set_errno(inode->i_sb, EFSBADCRC);
4584                 ext4_error_inode(inode, function, line, 0,
4585                                  "iget: checksum invalid");
4586                 ret = -EFSBADCRC;
4587                 goto bad_inode;
4588         }
4589
4590         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4591         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4592         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4593         if (ext4_has_feature_project(sb) &&
4594             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4595             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4596                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4597         else
4598                 i_projid = EXT4_DEF_PROJID;
4599
4600         if (!(test_opt(inode->i_sb, NO_UID32))) {
4601                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4602                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4603         }
4604         i_uid_write(inode, i_uid);
4605         i_gid_write(inode, i_gid);
4606         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4607         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4608
4609         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4610         ei->i_inline_off = 0;
4611         ei->i_dir_start_lookup = 0;
4612         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4613         /* We now have enough fields to check if the inode was active or not.
4614          * This is needed because nfsd might try to access dead inodes
4615          * the test is that same one that e2fsck uses
4616          * NeilBrown 1999oct15
4617          */
4618         if (inode->i_nlink == 0) {
4619                 if ((inode->i_mode == 0 ||
4620                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4621                     ino != EXT4_BOOT_LOADER_INO) {
4622                         /* this inode is deleted */
4623                         ret = -ESTALE;
4624                         goto bad_inode;
4625                 }
4626                 /* The only unlinked inodes we let through here have
4627                  * valid i_mode and are being read by the orphan
4628                  * recovery code: that's fine, we're about to complete
4629                  * the process of deleting those.
4630                  * OR it is the EXT4_BOOT_LOADER_INO which is
4631                  * not initialized on a new filesystem. */
4632         }
4633         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4634         ext4_set_inode_flags(inode);
4635         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4636         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4637         if (ext4_has_feature_64bit(sb))
4638                 ei->i_file_acl |=
4639                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4640         inode->i_size = ext4_isize(sb, raw_inode);
4641         if ((size = i_size_read(inode)) < 0) {
4642                 ext4_error_inode(inode, function, line, 0,
4643                                  "iget: bad i_size value: %lld", size);
4644                 ret = -EFSCORRUPTED;
4645                 goto bad_inode;
4646         }
4647         ei->i_disksize = inode->i_size;
4648 #ifdef CONFIG_QUOTA
4649         ei->i_reserved_quota = 0;
4650 #endif
4651         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4652         ei->i_block_group = iloc.block_group;
4653         ei->i_last_alloc_group = ~0;
4654         /*
4655          * NOTE! The in-memory inode i_data array is in little-endian order
4656          * even on big-endian machines: we do NOT byteswap the block numbers!
4657          */
4658         for (block = 0; block < EXT4_N_BLOCKS; block++)
4659                 ei->i_data[block] = raw_inode->i_block[block];
4660         INIT_LIST_HEAD(&ei->i_orphan);
4661
4662         /*
4663          * Set transaction id's of transactions that have to be committed
4664          * to finish f[data]sync. We set them to currently running transaction
4665          * as we cannot be sure that the inode or some of its metadata isn't
4666          * part of the transaction - the inode could have been reclaimed and
4667          * now it is reread from disk.
4668          */
4669         if (journal) {
4670                 transaction_t *transaction;
4671                 tid_t tid;
4672
4673                 read_lock(&journal->j_state_lock);
4674                 if (journal->j_running_transaction)
4675                         transaction = journal->j_running_transaction;
4676                 else
4677                         transaction = journal->j_committing_transaction;
4678                 if (transaction)
4679                         tid = transaction->t_tid;
4680                 else
4681                         tid = journal->j_commit_sequence;
4682                 read_unlock(&journal->j_state_lock);
4683                 ei->i_sync_tid = tid;
4684                 ei->i_datasync_tid = tid;
4685         }
4686
4687         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4688                 if (ei->i_extra_isize == 0) {
4689                         /* The extra space is currently unused. Use it. */
4690                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4691                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4692                                             EXT4_GOOD_OLD_INODE_SIZE;
4693                 } else {
4694                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4695                         if (ret)
4696                                 goto bad_inode;
4697                 }
4698         }
4699
4700         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4701         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4702         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4703         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4704
4705         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4706                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4707
4708                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4709                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4710                                 ivers |=
4711                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4712                 }
4713                 ext4_inode_set_iversion_queried(inode, ivers);
4714         }
4715
4716         ret = 0;
4717         if (ei->i_file_acl &&
4718             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4719                 ext4_error_inode(inode, function, line, 0,
4720                                  "iget: bad extended attribute block %llu",
4721                                  ei->i_file_acl);
4722                 ret = -EFSCORRUPTED;
4723                 goto bad_inode;
4724         } else if (!ext4_has_inline_data(inode)) {
4725                 /* validate the block references in the inode */
4726                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4727                    (S_ISLNK(inode->i_mode) &&
4728                     !ext4_inode_is_fast_symlink(inode))) {
4729                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4730                                 ret = ext4_ext_check_inode(inode);
4731                         else
4732                                 ret = ext4_ind_check_inode(inode);
4733                 }
4734         }
4735         if (ret)
4736                 goto bad_inode;
4737
4738         if (S_ISREG(inode->i_mode)) {
4739                 inode->i_op = &ext4_file_inode_operations;
4740                 inode->i_fop = &ext4_file_operations;
4741                 ext4_set_aops(inode);
4742         } else if (S_ISDIR(inode->i_mode)) {
4743                 inode->i_op = &ext4_dir_inode_operations;
4744                 inode->i_fop = &ext4_dir_operations;
4745         } else if (S_ISLNK(inode->i_mode)) {
4746                 /* VFS does not allow setting these so must be corruption */
4747                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4748                         ext4_error_inode(inode, function, line, 0,
4749                                          "iget: immutable or append flags "
4750                                          "not allowed on symlinks");
4751                         ret = -EFSCORRUPTED;
4752                         goto bad_inode;
4753                 }
4754                 if (IS_ENCRYPTED(inode)) {
4755                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4756                         ext4_set_aops(inode);
4757                 } else if (ext4_inode_is_fast_symlink(inode)) {
4758                         inode->i_link = (char *)ei->i_data;
4759                         inode->i_op = &ext4_fast_symlink_inode_operations;
4760                         nd_terminate_link(ei->i_data, inode->i_size,
4761                                 sizeof(ei->i_data) - 1);
4762                 } else {
4763                         inode->i_op = &ext4_symlink_inode_operations;
4764                         ext4_set_aops(inode);
4765                 }
4766                 inode_nohighmem(inode);
4767         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4768               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4769                 inode->i_op = &ext4_special_inode_operations;
4770                 if (raw_inode->i_block[0])
4771                         init_special_inode(inode, inode->i_mode,
4772                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4773                 else
4774                         init_special_inode(inode, inode->i_mode,
4775                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4776         } else if (ino == EXT4_BOOT_LOADER_INO) {
4777                 make_bad_inode(inode);
4778         } else {
4779                 ret = -EFSCORRUPTED;
4780                 ext4_error_inode(inode, function, line, 0,
4781                                  "iget: bogus i_mode (%o)", inode->i_mode);
4782                 goto bad_inode;
4783         }
4784         if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4785                 ext4_error_inode(inode, function, line, 0,
4786                                  "casefold flag without casefold feature");
4787         brelse(iloc.bh);
4788
4789         unlock_new_inode(inode);
4790         return inode;
4791
4792 bad_inode:
4793         brelse(iloc.bh);
4794         iget_failed(inode);
4795         return ERR_PTR(ret);
4796 }
4797
4798 static int ext4_inode_blocks_set(handle_t *handle,
4799                                 struct ext4_inode *raw_inode,
4800                                 struct ext4_inode_info *ei)
4801 {
4802         struct inode *inode = &(ei->vfs_inode);
4803         u64 i_blocks = inode->i_blocks;
4804         struct super_block *sb = inode->i_sb;
4805
4806         if (i_blocks <= ~0U) {
4807                 /*
4808                  * i_blocks can be represented in a 32 bit variable
4809                  * as multiple of 512 bytes
4810                  */
4811                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4812                 raw_inode->i_blocks_high = 0;
4813                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4814                 return 0;
4815         }
4816         if (!ext4_has_feature_huge_file(sb))
4817                 return -EFBIG;
4818
4819         if (i_blocks <= 0xffffffffffffULL) {
4820                 /*
4821                  * i_blocks can be represented in a 48 bit variable
4822                  * as multiple of 512 bytes
4823                  */
4824                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4825                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4826                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4827         } else {
4828                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4829                 /* i_block is stored in file system block size */
4830                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4831                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4832                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4833         }
4834         return 0;
4835 }
4836
4837 struct other_inode {
4838         unsigned long           orig_ino;
4839         struct ext4_inode       *raw_inode;
4840 };
4841
4842 static int other_inode_match(struct inode * inode, unsigned long ino,
4843                              void *data)
4844 {
4845         struct other_inode *oi = (struct other_inode *) data;
4846
4847         if ((inode->i_ino != ino) ||
4848             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4849                                I_DIRTY_INODE)) ||
4850             ((inode->i_state & I_DIRTY_TIME) == 0))
4851                 return 0;
4852         spin_lock(&inode->i_lock);
4853         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4854                                 I_DIRTY_INODE)) == 0) &&
4855             (inode->i_state & I_DIRTY_TIME)) {
4856                 struct ext4_inode_info  *ei = EXT4_I(inode);
4857
4858                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4859                 spin_unlock(&inode->i_lock);
4860
4861                 spin_lock(&ei->i_raw_lock);
4862                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4863                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4864                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4865                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4866                 spin_unlock(&ei->i_raw_lock);
4867                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4868                 return -1;
4869         }
4870         spin_unlock(&inode->i_lock);
4871         return -1;
4872 }
4873
4874 /*
4875  * Opportunistically update the other time fields for other inodes in
4876  * the same inode table block.
4877  */
4878 static void ext4_update_other_inodes_time(struct super_block *sb,
4879                                           unsigned long orig_ino, char *buf)
4880 {
4881         struct other_inode oi;
4882         unsigned long ino;
4883         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4884         int inode_size = EXT4_INODE_SIZE(sb);
4885
4886         oi.orig_ino = orig_ino;
4887         /*
4888          * Calculate the first inode in the inode table block.  Inode
4889          * numbers are one-based.  That is, the first inode in a block
4890          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4891          */
4892         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4893         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4894                 if (ino == orig_ino)
4895                         continue;
4896                 oi.raw_inode = (struct ext4_inode *) buf;
4897                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4898         }
4899 }
4900
4901 /*
4902  * Post the struct inode info into an on-disk inode location in the
4903  * buffer-cache.  This gobbles the caller's reference to the
4904  * buffer_head in the inode location struct.
4905  *
4906  * The caller must have write access to iloc->bh.
4907  */
4908 static int ext4_do_update_inode(handle_t *handle,
4909                                 struct inode *inode,
4910                                 struct ext4_iloc *iloc)
4911 {
4912         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4913         struct ext4_inode_info *ei = EXT4_I(inode);
4914         struct buffer_head *bh = iloc->bh;
4915         struct super_block *sb = inode->i_sb;
4916         int err = 0, rc, block;
4917         int need_datasync = 0, set_large_file = 0;
4918         uid_t i_uid;
4919         gid_t i_gid;
4920         projid_t i_projid;
4921
4922         spin_lock(&ei->i_raw_lock);
4923
4924         /* For fields not tracked in the in-memory inode,
4925          * initialise them to zero for new inodes. */
4926         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4927                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4928
4929         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4930         i_uid = i_uid_read(inode);
4931         i_gid = i_gid_read(inode);
4932         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4933         if (!(test_opt(inode->i_sb, NO_UID32))) {
4934                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4935                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4936 /*
4937  * Fix up interoperability with old kernels. Otherwise, old inodes get
4938  * re-used with the upper 16 bits of the uid/gid intact
4939  */
4940                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4941                         raw_inode->i_uid_high = 0;
4942                         raw_inode->i_gid_high = 0;
4943                 } else {
4944                         raw_inode->i_uid_high =
4945                                 cpu_to_le16(high_16_bits(i_uid));
4946                         raw_inode->i_gid_high =
4947                                 cpu_to_le16(high_16_bits(i_gid));
4948                 }
4949         } else {
4950                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4951                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4952                 raw_inode->i_uid_high = 0;
4953                 raw_inode->i_gid_high = 0;
4954         }
4955         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4956
4957         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4958         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4959         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4960         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4961
4962         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4963         if (err) {
4964                 spin_unlock(&ei->i_raw_lock);
4965                 goto out_brelse;
4966         }
4967         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4968         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4969         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4970                 raw_inode->i_file_acl_high =
4971                         cpu_to_le16(ei->i_file_acl >> 32);
4972         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4973         if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
4974                 ext4_isize_set(raw_inode, ei->i_disksize);
4975                 need_datasync = 1;
4976         }
4977         if (ei->i_disksize > 0x7fffffffULL) {
4978                 if (!ext4_has_feature_large_file(sb) ||
4979                                 EXT4_SB(sb)->s_es->s_rev_level ==
4980                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4981                         set_large_file = 1;
4982         }
4983         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4984         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4985                 if (old_valid_dev(inode->i_rdev)) {
4986                         raw_inode->i_block[0] =
4987                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4988                         raw_inode->i_block[1] = 0;
4989                 } else {
4990                         raw_inode->i_block[0] = 0;
4991                         raw_inode->i_block[1] =
4992                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4993                         raw_inode->i_block[2] = 0;
4994                 }
4995         } else if (!ext4_has_inline_data(inode)) {
4996                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4997                         raw_inode->i_block[block] = ei->i_data[block];
4998         }
4999
5000         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5001                 u64 ivers = ext4_inode_peek_iversion(inode);
5002
5003                 raw_inode->i_disk_version = cpu_to_le32(ivers);
5004                 if (ei->i_extra_isize) {
5005                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5006                                 raw_inode->i_version_hi =
5007                                         cpu_to_le32(ivers >> 32);
5008                         raw_inode->i_extra_isize =
5009                                 cpu_to_le16(ei->i_extra_isize);
5010                 }
5011         }
5012
5013         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5014                i_projid != EXT4_DEF_PROJID);
5015
5016         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5017             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5018                 raw_inode->i_projid = cpu_to_le32(i_projid);
5019
5020         ext4_inode_csum_set(inode, raw_inode, ei);
5021         spin_unlock(&ei->i_raw_lock);
5022         if (inode->i_sb->s_flags & SB_LAZYTIME)
5023                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5024                                               bh->b_data);
5025
5026         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5027         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5028         if (!err)
5029                 err = rc;
5030         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5031         if (set_large_file) {
5032                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5033                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5034                 if (err)
5035                         goto out_brelse;
5036                 ext4_set_feature_large_file(sb);
5037                 ext4_handle_sync(handle);
5038                 err = ext4_handle_dirty_super(handle, sb);
5039         }
5040         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5041 out_brelse:
5042         brelse(bh);
5043         ext4_std_error(inode->i_sb, err);
5044         return err;
5045 }
5046
5047 /*
5048  * ext4_write_inode()
5049  *
5050  * We are called from a few places:
5051  *
5052  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5053  *   Here, there will be no transaction running. We wait for any running
5054  *   transaction to commit.
5055  *
5056  * - Within flush work (sys_sync(), kupdate and such).
5057  *   We wait on commit, if told to.
5058  *
5059  * - Within iput_final() -> write_inode_now()
5060  *   We wait on commit, if told to.
5061  *
5062  * In all cases it is actually safe for us to return without doing anything,
5063  * because the inode has been copied into a raw inode buffer in
5064  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5065  * writeback.
5066  *
5067  * Note that we are absolutely dependent upon all inode dirtiers doing the
5068  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5069  * which we are interested.
5070  *
5071  * It would be a bug for them to not do this.  The code:
5072  *
5073  *      mark_inode_dirty(inode)
5074  *      stuff();
5075  *      inode->i_size = expr;
5076  *
5077  * is in error because write_inode() could occur while `stuff()' is running,
5078  * and the new i_size will be lost.  Plus the inode will no longer be on the
5079  * superblock's dirty inode list.
5080  */
5081 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5082 {
5083         int err;
5084
5085         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5086             sb_rdonly(inode->i_sb))
5087                 return 0;
5088
5089         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5090                 return -EIO;
5091
5092         if (EXT4_SB(inode->i_sb)->s_journal) {
5093                 if (ext4_journal_current_handle()) {
5094                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5095                         dump_stack();
5096                         return -EIO;
5097                 }
5098
5099                 /*
5100                  * No need to force transaction in WB_SYNC_NONE mode. Also
5101                  * ext4_sync_fs() will force the commit after everything is
5102                  * written.
5103                  */
5104                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5105                         return 0;
5106
5107                 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5108                                                 EXT4_I(inode)->i_sync_tid);
5109         } else {
5110                 struct ext4_iloc iloc;
5111
5112                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5113                 if (err)
5114                         return err;
5115                 /*
5116                  * sync(2) will flush the whole buffer cache. No need to do
5117                  * it here separately for each inode.
5118                  */
5119                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5120                         sync_dirty_buffer(iloc.bh);
5121                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5122                         ext4_set_errno(inode->i_sb, EIO);
5123                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5124                                          "IO error syncing inode");
5125                         err = -EIO;
5126                 }
5127                 brelse(iloc.bh);
5128         }
5129         return err;
5130 }
5131
5132 /*
5133  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5134  * buffers that are attached to a page stradding i_size and are undergoing
5135  * commit. In that case we have to wait for commit to finish and try again.
5136  */
5137 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5138 {
5139         struct page *page;
5140         unsigned offset;
5141         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5142         tid_t commit_tid = 0;
5143         int ret;
5144
5145         offset = inode->i_size & (PAGE_SIZE - 1);
5146         /*
5147          * If the page is fully truncated, we don't need to wait for any commit
5148          * (and we even should not as __ext4_journalled_invalidatepage() may
5149          * strip all buffers from the page but keep the page dirty which can then
5150          * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5151          * buffers). Also we don't need to wait for any commit if all buffers in
5152          * the page remain valid. This is most beneficial for the common case of
5153          * blocksize == PAGESIZE.
5154          */
5155         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5156                 return;
5157         while (1) {
5158                 page = find_lock_page(inode->i_mapping,
5159                                       inode->i_size >> PAGE_SHIFT);
5160                 if (!page)
5161                         return;
5162                 ret = __ext4_journalled_invalidatepage(page, offset,
5163                                                 PAGE_SIZE - offset);
5164                 unlock_page(page);
5165                 put_page(page);
5166                 if (ret != -EBUSY)
5167                         return;
5168                 commit_tid = 0;
5169                 read_lock(&journal->j_state_lock);
5170                 if (journal->j_committing_transaction)
5171                         commit_tid = journal->j_committing_transaction->t_tid;
5172                 read_unlock(&journal->j_state_lock);
5173                 if (commit_tid)
5174                         jbd2_log_wait_commit(journal, commit_tid);
5175         }
5176 }
5177
5178 /*
5179  * ext4_setattr()
5180  *
5181  * Called from notify_change.
5182  *
5183  * We want to trap VFS attempts to truncate the file as soon as
5184  * possible.  In particular, we want to make sure that when the VFS
5185  * shrinks i_size, we put the inode on the orphan list and modify
5186  * i_disksize immediately, so that during the subsequent flushing of
5187  * dirty pages and freeing of disk blocks, we can guarantee that any
5188  * commit will leave the blocks being flushed in an unused state on
5189  * disk.  (On recovery, the inode will get truncated and the blocks will
5190  * be freed, so we have a strong guarantee that no future commit will
5191  * leave these blocks visible to the user.)
5192  *
5193  * Another thing we have to assure is that if we are in ordered mode
5194  * and inode is still attached to the committing transaction, we must
5195  * we start writeout of all the dirty pages which are being truncated.
5196  * This way we are sure that all the data written in the previous
5197  * transaction are already on disk (truncate waits for pages under
5198  * writeback).
5199  *
5200  * Called with inode->i_mutex down.
5201  */
5202 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5203 {
5204         struct inode *inode = d_inode(dentry);
5205         int error, rc = 0;
5206         int orphan = 0;
5207         const unsigned int ia_valid = attr->ia_valid;
5208
5209         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5210                 return -EIO;
5211
5212         if (unlikely(IS_IMMUTABLE(inode)))
5213                 return -EPERM;
5214
5215         if (unlikely(IS_APPEND(inode) &&
5216                      (ia_valid & (ATTR_MODE | ATTR_UID |
5217                                   ATTR_GID | ATTR_TIMES_SET))))
5218                 return -EPERM;
5219
5220         error = setattr_prepare(dentry, attr);
5221         if (error)
5222                 return error;
5223
5224         error = fscrypt_prepare_setattr(dentry, attr);
5225         if (error)
5226                 return error;
5227
5228         error = fsverity_prepare_setattr(dentry, attr);
5229         if (error)
5230                 return error;
5231
5232         if (is_quota_modification(inode, attr)) {
5233                 error = dquot_initialize(inode);
5234                 if (error)
5235                         return error;
5236         }
5237         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5238             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5239                 handle_t *handle;
5240
5241                 /* (user+group)*(old+new) structure, inode write (sb,
5242                  * inode block, ? - but truncate inode update has it) */
5243                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5244                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5245                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5246                 if (IS_ERR(handle)) {
5247                         error = PTR_ERR(handle);
5248                         goto err_out;
5249                 }
5250
5251                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5252                  * counts xattr inode references.
5253                  */
5254                 down_read(&EXT4_I(inode)->xattr_sem);
5255                 error = dquot_transfer(inode, attr);
5256                 up_read(&EXT4_I(inode)->xattr_sem);
5257
5258                 if (error) {
5259                         ext4_journal_stop(handle);
5260                         return error;
5261                 }
5262                 /* Update corresponding info in inode so that everything is in
5263                  * one transaction */
5264                 if (attr->ia_valid & ATTR_UID)
5265                         inode->i_uid = attr->ia_uid;
5266                 if (attr->ia_valid & ATTR_GID)
5267                         inode->i_gid = attr->ia_gid;
5268                 error = ext4_mark_inode_dirty(handle, inode);
5269                 ext4_journal_stop(handle);
5270         }
5271
5272         if (attr->ia_valid & ATTR_SIZE) {
5273                 handle_t *handle;
5274                 loff_t oldsize = inode->i_size;
5275                 int shrink = (attr->ia_size < inode->i_size);
5276
5277                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5278                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5279
5280                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5281                                 return -EFBIG;
5282                 }
5283                 if (!S_ISREG(inode->i_mode))
5284                         return -EINVAL;
5285
5286                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5287                         inode_inc_iversion(inode);
5288
5289                 if (shrink) {
5290                         if (ext4_should_order_data(inode)) {
5291                                 error = ext4_begin_ordered_truncate(inode,
5292                                                             attr->ia_size);
5293                                 if (error)
5294                                         goto err_out;
5295                         }
5296                         /*
5297                          * Blocks are going to be removed from the inode. Wait
5298                          * for dio in flight.
5299                          */
5300                         inode_dio_wait(inode);
5301                 }
5302
5303                 down_write(&EXT4_I(inode)->i_mmap_sem);
5304
5305                 rc = ext4_break_layouts(inode);
5306                 if (rc) {
5307                         up_write(&EXT4_I(inode)->i_mmap_sem);
5308                         return rc;
5309                 }
5310
5311                 if (attr->ia_size != inode->i_size) {
5312                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5313                         if (IS_ERR(handle)) {
5314                                 error = PTR_ERR(handle);
5315                                 goto out_mmap_sem;
5316                         }
5317                         if (ext4_handle_valid(handle) && shrink) {
5318                                 error = ext4_orphan_add(handle, inode);
5319                                 orphan = 1;
5320                         }
5321                         /*
5322                          * Update c/mtime on truncate up, ext4_truncate() will
5323                          * update c/mtime in shrink case below
5324                          */
5325                         if (!shrink) {
5326                                 inode->i_mtime = current_time(inode);
5327                                 inode->i_ctime = inode->i_mtime;
5328                         }
5329                         down_write(&EXT4_I(inode)->i_data_sem);
5330                         EXT4_I(inode)->i_disksize = attr->ia_size;
5331                         rc = ext4_mark_inode_dirty(handle, inode);
5332                         if (!error)
5333                                 error = rc;
5334                         /*
5335                          * We have to update i_size under i_data_sem together
5336                          * with i_disksize to avoid races with writeback code
5337                          * running ext4_wb_update_i_disksize().
5338                          */
5339                         if (!error)
5340                                 i_size_write(inode, attr->ia_size);
5341                         up_write(&EXT4_I(inode)->i_data_sem);
5342                         ext4_journal_stop(handle);
5343                         if (error)
5344                                 goto out_mmap_sem;
5345                         if (!shrink) {
5346                                 pagecache_isize_extended(inode, oldsize,
5347                                                          inode->i_size);
5348                         } else if (ext4_should_journal_data(inode)) {
5349                                 ext4_wait_for_tail_page_commit(inode);
5350                         }
5351                 }
5352
5353                 /*
5354                  * Truncate pagecache after we've waited for commit
5355                  * in data=journal mode to make pages freeable.
5356                  */
5357                 truncate_pagecache(inode, inode->i_size);
5358                 /*
5359                  * Call ext4_truncate() even if i_size didn't change to
5360                  * truncate possible preallocated blocks.
5361                  */
5362                 if (attr->ia_size <= oldsize) {
5363                         rc = ext4_truncate(inode);
5364                         if (rc)
5365                                 error = rc;
5366                 }
5367 out_mmap_sem:
5368                 up_write(&EXT4_I(inode)->i_mmap_sem);
5369         }
5370
5371         if (!error) {
5372                 setattr_copy(inode, attr);
5373                 mark_inode_dirty(inode);
5374         }
5375
5376         /*
5377          * If the call to ext4_truncate failed to get a transaction handle at
5378          * all, we need to clean up the in-core orphan list manually.
5379          */
5380         if (orphan && inode->i_nlink)
5381                 ext4_orphan_del(NULL, inode);
5382
5383         if (!error && (ia_valid & ATTR_MODE))
5384                 rc = posix_acl_chmod(inode, inode->i_mode);
5385
5386 err_out:
5387         ext4_std_error(inode->i_sb, error);
5388         if (!error)
5389                 error = rc;
5390         return error;
5391 }
5392
5393 int ext4_getattr(const struct path *path, struct kstat *stat,
5394                  u32 request_mask, unsigned int query_flags)
5395 {
5396         struct inode *inode = d_inode(path->dentry);
5397         struct ext4_inode *raw_inode;
5398         struct ext4_inode_info *ei = EXT4_I(inode);
5399         unsigned int flags;
5400
5401         if ((request_mask & STATX_BTIME) &&
5402             EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5403                 stat->result_mask |= STATX_BTIME;
5404                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5405                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5406         }
5407
5408         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5409         if (flags & EXT4_APPEND_FL)
5410                 stat->attributes |= STATX_ATTR_APPEND;
5411         if (flags & EXT4_COMPR_FL)
5412                 stat->attributes |= STATX_ATTR_COMPRESSED;
5413         if (flags & EXT4_ENCRYPT_FL)
5414                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5415         if (flags & EXT4_IMMUTABLE_FL)
5416                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5417         if (flags & EXT4_NODUMP_FL)
5418                 stat->attributes |= STATX_ATTR_NODUMP;
5419         if (flags & EXT4_VERITY_FL)
5420                 stat->attributes |= STATX_ATTR_VERITY;
5421
5422         stat->attributes_mask |= (STATX_ATTR_APPEND |
5423                                   STATX_ATTR_COMPRESSED |
5424                                   STATX_ATTR_ENCRYPTED |
5425                                   STATX_ATTR_IMMUTABLE |
5426                                   STATX_ATTR_NODUMP |
5427                                   STATX_ATTR_VERITY);
5428
5429         generic_fillattr(inode, stat);
5430         return 0;
5431 }
5432
5433 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5434                       u32 request_mask, unsigned int query_flags)
5435 {
5436         struct inode *inode = d_inode(path->dentry);
5437         u64 delalloc_blocks;
5438
5439         ext4_getattr(path, stat, request_mask, query_flags);
5440
5441         /*
5442          * If there is inline data in the inode, the inode will normally not
5443          * have data blocks allocated (it may have an external xattr block).
5444          * Report at least one sector for such files, so tools like tar, rsync,
5445          * others don't incorrectly think the file is completely sparse.
5446          */
5447         if (unlikely(ext4_has_inline_data(inode)))
5448                 stat->blocks += (stat->size + 511) >> 9;
5449
5450         /*
5451          * We can't update i_blocks if the block allocation is delayed
5452          * otherwise in the case of system crash before the real block
5453          * allocation is done, we will have i_blocks inconsistent with
5454          * on-disk file blocks.
5455          * We always keep i_blocks updated together with real
5456          * allocation. But to not confuse with user, stat
5457          * will return the blocks that include the delayed allocation
5458          * blocks for this file.
5459          */
5460         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5461                                    EXT4_I(inode)->i_reserved_data_blocks);
5462         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5463         return 0;
5464 }
5465
5466 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5467                                    int pextents)
5468 {
5469         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5470                 return ext4_ind_trans_blocks(inode, lblocks);
5471         return ext4_ext_index_trans_blocks(inode, pextents);
5472 }
5473
5474 /*
5475  * Account for index blocks, block groups bitmaps and block group
5476  * descriptor blocks if modify datablocks and index blocks
5477  * worse case, the indexs blocks spread over different block groups
5478  *
5479  * If datablocks are discontiguous, they are possible to spread over
5480  * different block groups too. If they are contiguous, with flexbg,
5481  * they could still across block group boundary.
5482  *
5483  * Also account for superblock, inode, quota and xattr blocks
5484  */
5485 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5486                                   int pextents)
5487 {
5488         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5489         int gdpblocks;
5490         int idxblocks;
5491         int ret = 0;
5492
5493         /*
5494          * How many index blocks need to touch to map @lblocks logical blocks
5495          * to @pextents physical extents?
5496          */
5497         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5498
5499         ret = idxblocks;
5500
5501         /*
5502          * Now let's see how many group bitmaps and group descriptors need
5503          * to account
5504          */
5505         groups = idxblocks + pextents;
5506         gdpblocks = groups;
5507         if (groups > ngroups)
5508                 groups = ngroups;
5509         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5510                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5511
5512         /* bitmaps and block group descriptor blocks */
5513         ret += groups + gdpblocks;
5514
5515         /* Blocks for super block, inode, quota and xattr blocks */
5516         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5517
5518         return ret;
5519 }
5520
5521 /*
5522  * Calculate the total number of credits to reserve to fit
5523  * the modification of a single pages into a single transaction,
5524  * which may include multiple chunks of block allocations.
5525  *
5526  * This could be called via ext4_write_begin()
5527  *
5528  * We need to consider the worse case, when
5529  * one new block per extent.
5530  */
5531 int ext4_writepage_trans_blocks(struct inode *inode)
5532 {
5533         int bpp = ext4_journal_blocks_per_page(inode);
5534         int ret;
5535
5536         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5537
5538         /* Account for data blocks for journalled mode */
5539         if (ext4_should_journal_data(inode))
5540                 ret += bpp;
5541         return ret;
5542 }
5543
5544 /*
5545  * Calculate the journal credits for a chunk of data modification.
5546  *
5547  * This is called from DIO, fallocate or whoever calling
5548  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5549  *
5550  * journal buffers for data blocks are not included here, as DIO
5551  * and fallocate do no need to journal data buffers.
5552  */
5553 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5554 {
5555         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5556 }
5557
5558 /*
5559  * The caller must have previously called ext4_reserve_inode_write().
5560  * Give this, we know that the caller already has write access to iloc->bh.
5561  */
5562 int ext4_mark_iloc_dirty(handle_t *handle,
5563                          struct inode *inode, struct ext4_iloc *iloc)
5564 {
5565         int err = 0;
5566
5567         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5568                 put_bh(iloc->bh);
5569                 return -EIO;
5570         }
5571         if (IS_I_VERSION(inode))
5572                 inode_inc_iversion(inode);
5573
5574         /* the do_update_inode consumes one bh->b_count */
5575         get_bh(iloc->bh);
5576
5577         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5578         err = ext4_do_update_inode(handle, inode, iloc);
5579         put_bh(iloc->bh);
5580         return err;
5581 }
5582
5583 /*
5584  * On success, We end up with an outstanding reference count against
5585  * iloc->bh.  This _must_ be cleaned up later.
5586  */
5587
5588 int
5589 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5590                          struct ext4_iloc *iloc)
5591 {
5592         int err;
5593
5594         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5595                 return -EIO;
5596
5597         err = ext4_get_inode_loc(inode, iloc);
5598         if (!err) {
5599                 BUFFER_TRACE(iloc->bh, "get_write_access");
5600                 err = ext4_journal_get_write_access(handle, iloc->bh);
5601                 if (err) {
5602                         brelse(iloc->bh);
5603                         iloc->bh = NULL;
5604                 }
5605         }
5606         ext4_std_error(inode->i_sb, err);
5607         return err;
5608 }
5609
5610 static int __ext4_expand_extra_isize(struct inode *inode,
5611                                      unsigned int new_extra_isize,
5612                                      struct ext4_iloc *iloc,
5613                                      handle_t *handle, int *no_expand)
5614 {
5615         struct ext4_inode *raw_inode;
5616         struct ext4_xattr_ibody_header *header;
5617         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5618         struct ext4_inode_info *ei = EXT4_I(inode);
5619         int error;
5620
5621         /* this was checked at iget time, but double check for good measure */
5622         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5623             (ei->i_extra_isize & 3)) {
5624                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5625                                  ei->i_extra_isize,
5626                                  EXT4_INODE_SIZE(inode->i_sb));
5627                 return -EFSCORRUPTED;
5628         }
5629         if ((new_extra_isize < ei->i_extra_isize) ||
5630             (new_extra_isize < 4) ||
5631             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5632                 return -EINVAL; /* Should never happen */
5633
5634         raw_inode = ext4_raw_inode(iloc);
5635
5636         header = IHDR(inode, raw_inode);
5637
5638         /* No extended attributes present */
5639         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5640             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5641                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5642                        EXT4_I(inode)->i_extra_isize, 0,
5643                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5644                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5645                 return 0;
5646         }
5647
5648         /* try to expand with EAs present */
5649         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5650                                            raw_inode, handle);
5651         if (error) {
5652                 /*
5653                  * Inode size expansion failed; don't try again
5654                  */
5655                 *no_expand = 1;
5656         }
5657
5658         return error;
5659 }
5660
5661 /*
5662  * Expand an inode by new_extra_isize bytes.
5663  * Returns 0 on success or negative error number on failure.
5664  */
5665 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5666                                           unsigned int new_extra_isize,
5667                                           struct ext4_iloc iloc,
5668                                           handle_t *handle)
5669 {
5670         int no_expand;
5671         int error;
5672
5673         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5674                 return -EOVERFLOW;
5675
5676         /*
5677          * In nojournal mode, we can immediately attempt to expand
5678          * the inode.  When journaled, we first need to obtain extra
5679          * buffer credits since we may write into the EA block
5680          * with this same handle. If journal_extend fails, then it will
5681          * only result in a minor loss of functionality for that inode.
5682          * If this is felt to be critical, then e2fsck should be run to
5683          * force a large enough s_min_extra_isize.
5684          */
5685         if (ext4_journal_extend(handle,
5686                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5687                 return -ENOSPC;
5688
5689         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5690                 return -EBUSY;
5691
5692         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5693                                           handle, &no_expand);
5694         ext4_write_unlock_xattr(inode, &no_expand);
5695
5696         return error;
5697 }
5698
5699 int ext4_expand_extra_isize(struct inode *inode,
5700                             unsigned int new_extra_isize,
5701                             struct ext4_iloc *iloc)
5702 {
5703         handle_t *handle;
5704         int no_expand;
5705         int error, rc;
5706
5707         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5708                 brelse(iloc->bh);
5709                 return -EOVERFLOW;
5710         }
5711
5712         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5713                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5714         if (IS_ERR(handle)) {
5715                 error = PTR_ERR(handle);
5716                 brelse(iloc->bh);
5717                 return error;
5718         }
5719
5720         ext4_write_lock_xattr(inode, &no_expand);
5721
5722         BUFFER_TRACE(iloc->bh, "get_write_access");
5723         error = ext4_journal_get_write_access(handle, iloc->bh);
5724         if (error) {
5725                 brelse(iloc->bh);
5726                 goto out_unlock;
5727         }
5728
5729         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5730                                           handle, &no_expand);
5731
5732         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5733         if (!error)
5734                 error = rc;
5735
5736 out_unlock:
5737         ext4_write_unlock_xattr(inode, &no_expand);
5738         ext4_journal_stop(handle);
5739         return error;
5740 }
5741
5742 /*
5743  * What we do here is to mark the in-core inode as clean with respect to inode
5744  * dirtiness (it may still be data-dirty).
5745  * This means that the in-core inode may be reaped by prune_icache
5746  * without having to perform any I/O.  This is a very good thing,
5747  * because *any* task may call prune_icache - even ones which
5748  * have a transaction open against a different journal.
5749  *
5750  * Is this cheating?  Not really.  Sure, we haven't written the
5751  * inode out, but prune_icache isn't a user-visible syncing function.
5752  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5753  * we start and wait on commits.
5754  */
5755 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5756 {
5757         struct ext4_iloc iloc;
5758         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5759         int err;
5760
5761         might_sleep();
5762         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5763         err = ext4_reserve_inode_write(handle, inode, &iloc);
5764         if (err)
5765                 return err;
5766
5767         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5768                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5769                                                iloc, handle);
5770
5771         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5772 }
5773
5774 /*
5775  * ext4_dirty_inode() is called from __mark_inode_dirty()
5776  *
5777  * We're really interested in the case where a file is being extended.
5778  * i_size has been changed by generic_commit_write() and we thus need
5779  * to include the updated inode in the current transaction.
5780  *
5781  * Also, dquot_alloc_block() will always dirty the inode when blocks
5782  * are allocated to the file.
5783  *
5784  * If the inode is marked synchronous, we don't honour that here - doing
5785  * so would cause a commit on atime updates, which we don't bother doing.
5786  * We handle synchronous inodes at the highest possible level.
5787  *
5788  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5789  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5790  * to copy into the on-disk inode structure are the timestamp files.
5791  */
5792 void ext4_dirty_inode(struct inode *inode, int flags)
5793 {
5794         handle_t *handle;
5795
5796         if (flags == I_DIRTY_TIME)
5797                 return;
5798         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5799         if (IS_ERR(handle))
5800                 goto out;
5801
5802         ext4_mark_inode_dirty(handle, inode);
5803
5804         ext4_journal_stop(handle);
5805 out:
5806         return;
5807 }
5808
5809 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5810 {
5811         journal_t *journal;
5812         handle_t *handle;
5813         int err;
5814         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5815
5816         /*
5817          * We have to be very careful here: changing a data block's
5818          * journaling status dynamically is dangerous.  If we write a
5819          * data block to the journal, change the status and then delete
5820          * that block, we risk forgetting to revoke the old log record
5821          * from the journal and so a subsequent replay can corrupt data.
5822          * So, first we make sure that the journal is empty and that
5823          * nobody is changing anything.
5824          */
5825
5826         journal = EXT4_JOURNAL(inode);
5827         if (!journal)
5828                 return 0;
5829         if (is_journal_aborted(journal))
5830                 return -EROFS;
5831
5832         /* Wait for all existing dio workers */
5833         inode_dio_wait(inode);
5834
5835         /*
5836          * Before flushing the journal and switching inode's aops, we have
5837          * to flush all dirty data the inode has. There can be outstanding
5838          * delayed allocations, there can be unwritten extents created by
5839          * fallocate or buffered writes in dioread_nolock mode covered by
5840          * dirty data which can be converted only after flushing the dirty
5841          * data (and journalled aops don't know how to handle these cases).
5842          */
5843         if (val) {
5844                 down_write(&EXT4_I(inode)->i_mmap_sem);
5845                 err = filemap_write_and_wait(inode->i_mapping);
5846                 if (err < 0) {
5847                         up_write(&EXT4_I(inode)->i_mmap_sem);
5848                         return err;
5849                 }
5850         }
5851
5852         percpu_down_write(&sbi->s_journal_flag_rwsem);
5853         jbd2_journal_lock_updates(journal);
5854
5855         /*
5856          * OK, there are no updates running now, and all cached data is
5857          * synced to disk.  We are now in a completely consistent state
5858          * which doesn't have anything in the journal, and we know that
5859          * no filesystem updates are running, so it is safe to modify
5860          * the inode's in-core data-journaling state flag now.
5861          */
5862
5863         if (val)
5864                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5865         else {
5866                 err = jbd2_journal_flush(journal);
5867                 if (err < 0) {
5868                         jbd2_journal_unlock_updates(journal);
5869                         percpu_up_write(&sbi->s_journal_flag_rwsem);
5870                         return err;
5871                 }
5872                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5873         }
5874         ext4_set_aops(inode);
5875
5876         jbd2_journal_unlock_updates(journal);
5877         percpu_up_write(&sbi->s_journal_flag_rwsem);
5878
5879         if (val)
5880                 up_write(&EXT4_I(inode)->i_mmap_sem);
5881
5882         /* Finally we can mark the inode as dirty. */
5883
5884         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5885         if (IS_ERR(handle))
5886                 return PTR_ERR(handle);
5887
5888         err = ext4_mark_inode_dirty(handle, inode);
5889         ext4_handle_sync(handle);
5890         ext4_journal_stop(handle);
5891         ext4_std_error(inode->i_sb, err);
5892
5893         return err;
5894 }
5895
5896 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5897 {
5898         return !buffer_mapped(bh);
5899 }
5900
5901 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
5902 {
5903         struct vm_area_struct *vma = vmf->vma;
5904         struct page *page = vmf->page;
5905         loff_t size;
5906         unsigned long len;
5907         int err;
5908         vm_fault_t ret;
5909         struct file *file = vma->vm_file;
5910         struct inode *inode = file_inode(file);
5911         struct address_space *mapping = inode->i_mapping;
5912         handle_t *handle;
5913         get_block_t *get_block;
5914         int retries = 0;
5915
5916         if (unlikely(IS_IMMUTABLE(inode)))
5917                 return VM_FAULT_SIGBUS;
5918
5919         sb_start_pagefault(inode->i_sb);
5920         file_update_time(vma->vm_file);
5921
5922         down_read(&EXT4_I(inode)->i_mmap_sem);
5923
5924         err = ext4_convert_inline_data(inode);
5925         if (err)
5926                 goto out_ret;
5927
5928         /* Delalloc case is easy... */
5929         if (test_opt(inode->i_sb, DELALLOC) &&
5930             !ext4_should_journal_data(inode) &&
5931             !ext4_nonda_switch(inode->i_sb)) {
5932                 do {
5933                         err = block_page_mkwrite(vma, vmf,
5934                                                    ext4_da_get_block_prep);
5935                 } while (err == -ENOSPC &&
5936                        ext4_should_retry_alloc(inode->i_sb, &retries));
5937                 goto out_ret;
5938         }
5939
5940         lock_page(page);
5941         size = i_size_read(inode);
5942         /* Page got truncated from under us? */
5943         if (page->mapping != mapping || page_offset(page) > size) {
5944                 unlock_page(page);
5945                 ret = VM_FAULT_NOPAGE;
5946                 goto out;
5947         }
5948
5949         if (page->index == size >> PAGE_SHIFT)
5950                 len = size & ~PAGE_MASK;
5951         else
5952                 len = PAGE_SIZE;
5953         /*
5954          * Return if we have all the buffers mapped. This avoids the need to do
5955          * journal_start/journal_stop which can block and take a long time
5956          */
5957         if (page_has_buffers(page)) {
5958                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5959                                             0, len, NULL,
5960                                             ext4_bh_unmapped)) {
5961                         /* Wait so that we don't change page under IO */
5962                         wait_for_stable_page(page);
5963                         ret = VM_FAULT_LOCKED;
5964                         goto out;
5965                 }
5966         }
5967         unlock_page(page);
5968         /* OK, we need to fill the hole... */
5969         if (ext4_should_dioread_nolock(inode))
5970                 get_block = ext4_get_block_unwritten;
5971         else
5972                 get_block = ext4_get_block;
5973 retry_alloc:
5974         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5975                                     ext4_writepage_trans_blocks(inode));
5976         if (IS_ERR(handle)) {
5977                 ret = VM_FAULT_SIGBUS;
5978                 goto out;
5979         }
5980         err = block_page_mkwrite(vma, vmf, get_block);
5981         if (!err && ext4_should_journal_data(inode)) {
5982                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5983                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
5984                         unlock_page(page);
5985                         ret = VM_FAULT_SIGBUS;
5986                         ext4_journal_stop(handle);
5987                         goto out;
5988                 }
5989                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5990         }
5991         ext4_journal_stop(handle);
5992         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5993                 goto retry_alloc;
5994 out_ret:
5995         ret = block_page_mkwrite_return(err);
5996 out:
5997         up_read(&EXT4_I(inode)->i_mmap_sem);
5998         sb_end_pagefault(inode->i_sb);
5999         return ret;
6000 }
6001
6002 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6003 {
6004         struct inode *inode = file_inode(vmf->vma->vm_file);
6005         vm_fault_t ret;
6006
6007         down_read(&EXT4_I(inode)->i_mmap_sem);
6008         ret = filemap_fault(vmf);
6009         up_read(&EXT4_I(inode)->i_mmap_sem);
6010
6011         return ret;
6012 }