657a98fa80b672664954ab243de231dc71264bbb
[sfrench/cifs-2.6.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u32 csum;
56         __u16 dummy_csum = 0;
57         int offset = offsetof(struct ext4_inode, i_checksum_lo);
58         unsigned int csum_size = sizeof(dummy_csum);
59
60         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62         offset += csum_size;
63         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64                            EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67                 offset = offsetof(struct ext4_inode, i_checksum_hi);
68                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69                                    EXT4_GOOD_OLD_INODE_SIZE,
70                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
71                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73                                            csum_size);
74                         offset += csum_size;
75                 }
76                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
78         }
79
80         return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84                                   struct ext4_inode_info *ei)
85 {
86         __u32 provided, calculated;
87
88         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89             cpu_to_le32(EXT4_OS_LINUX) ||
90             !ext4_has_metadata_csum(inode->i_sb))
91                 return 1;
92
93         provided = le16_to_cpu(raw->i_checksum_lo);
94         calculated = ext4_inode_csum(inode, raw, ei);
95         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98         else
99                 calculated &= 0xFFFF;
100
101         return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105                                 struct ext4_inode_info *ei)
106 {
107         __u32 csum;
108
109         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110             cpu_to_le32(EXT4_OS_LINUX) ||
111             !ext4_has_metadata_csum(inode->i_sb))
112                 return;
113
114         csum = ext4_inode_csum(inode, raw, ei);
115         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122                                               loff_t new_size)
123 {
124         trace_ext4_begin_ordered_truncate(inode, new_size);
125         /*
126          * If jinode is zero, then we never opened the file for
127          * writing, so there's no need to call
128          * jbd2_journal_begin_ordered_truncate() since there's no
129          * outstanding writes we need to flush.
130          */
131         if (!EXT4_I(inode)->jinode)
132                 return 0;
133         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134                                                    EXT4_I(inode)->jinode,
135                                                    new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139                                 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143                                   int pextents);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         int ea_blocks = EXT4_I(inode)->i_file_acl ?
151                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153         if (ext4_has_inline_data(inode))
154                 return 0;
155
156         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158
159 /*
160  * Restart the transaction associated with *handle.  This does a commit,
161  * so before we call here everything must be consistently dirtied against
162  * this transaction.
163  */
164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165                                  int nblocks)
166 {
167         int ret;
168
169         /*
170          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
171          * moment, get_block can be called only for blocks inside i_size since
172          * page cache has been already dropped and writes are blocked by
173          * i_mutex. So we can safely drop the i_data_sem here.
174          */
175         BUG_ON(EXT4_JOURNAL(inode) == NULL);
176         jbd_debug(2, "restarting handle %p\n", handle);
177         up_write(&EXT4_I(inode)->i_data_sem);
178         ret = ext4_journal_restart(handle, nblocks);
179         down_write(&EXT4_I(inode)->i_data_sem);
180         ext4_discard_preallocations(inode);
181
182         return ret;
183 }
184
185 /*
186  * Called at the last iput() if i_nlink is zero.
187  */
188 void ext4_evict_inode(struct inode *inode)
189 {
190         handle_t *handle;
191         int err;
192
193         trace_ext4_evict_inode(inode);
194
195         if (inode->i_nlink) {
196                 /*
197                  * When journalling data dirty buffers are tracked only in the
198                  * journal. So although mm thinks everything is clean and
199                  * ready for reaping the inode might still have some pages to
200                  * write in the running transaction or waiting to be
201                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
202                  * (via truncate_inode_pages()) to discard these buffers can
203                  * cause data loss. Also even if we did not discard these
204                  * buffers, we would have no way to find them after the inode
205                  * is reaped and thus user could see stale data if he tries to
206                  * read them before the transaction is checkpointed. So be
207                  * careful and force everything to disk here... We use
208                  * ei->i_datasync_tid to store the newest transaction
209                  * containing inode's data.
210                  *
211                  * Note that directories do not have this problem because they
212                  * don't use page cache.
213                  */
214                 if (inode->i_ino != EXT4_JOURNAL_INO &&
215                     ext4_should_journal_data(inode) &&
216                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
217                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
220                         jbd2_complete_transaction(journal, commit_tid);
221                         filemap_write_and_wait(&inode->i_data);
222                 }
223                 truncate_inode_pages_final(&inode->i_data);
224
225                 goto no_delete;
226         }
227
228         if (is_bad_inode(inode))
229                 goto no_delete;
230         dquot_initialize(inode);
231
232         if (ext4_should_order_data(inode))
233                 ext4_begin_ordered_truncate(inode, 0);
234         truncate_inode_pages_final(&inode->i_data);
235
236         /*
237          * Protect us against freezing - iput() caller didn't have to have any
238          * protection against it
239          */
240         sb_start_intwrite(inode->i_sb);
241         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242                                     ext4_blocks_for_truncate(inode)+3);
243         if (IS_ERR(handle)) {
244                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
245                 /*
246                  * If we're going to skip the normal cleanup, we still need to
247                  * make sure that the in-core orphan linked list is properly
248                  * cleaned up.
249                  */
250                 ext4_orphan_del(NULL, inode);
251                 sb_end_intwrite(inode->i_sb);
252                 goto no_delete;
253         }
254
255         if (IS_SYNC(inode))
256                 ext4_handle_sync(handle);
257         inode->i_size = 0;
258         err = ext4_mark_inode_dirty(handle, inode);
259         if (err) {
260                 ext4_warning(inode->i_sb,
261                              "couldn't mark inode dirty (err %d)", err);
262                 goto stop_handle;
263         }
264         if (inode->i_blocks) {
265                 err = ext4_truncate(inode);
266                 if (err) {
267                         ext4_error(inode->i_sb,
268                                    "couldn't truncate inode %lu (err %d)",
269                                    inode->i_ino, err);
270                         goto stop_handle;
271                 }
272         }
273
274         /*
275          * ext4_ext_truncate() doesn't reserve any slop when it
276          * restarts journal transactions; therefore there may not be
277          * enough credits left in the handle to remove the inode from
278          * the orphan list and set the dtime field.
279          */
280         if (!ext4_handle_has_enough_credits(handle, 3)) {
281                 err = ext4_journal_extend(handle, 3);
282                 if (err > 0)
283                         err = ext4_journal_restart(handle, 3);
284                 if (err != 0) {
285                         ext4_warning(inode->i_sb,
286                                      "couldn't extend journal (err %d)", err);
287                 stop_handle:
288                         ext4_journal_stop(handle);
289                         ext4_orphan_del(NULL, inode);
290                         sb_end_intwrite(inode->i_sb);
291                         goto no_delete;
292                 }
293         }
294
295         /*
296          * Kill off the orphan record which ext4_truncate created.
297          * AKPM: I think this can be inside the above `if'.
298          * Note that ext4_orphan_del() has to be able to cope with the
299          * deletion of a non-existent orphan - this is because we don't
300          * know if ext4_truncate() actually created an orphan record.
301          * (Well, we could do this if we need to, but heck - it works)
302          */
303         ext4_orphan_del(handle, inode);
304         EXT4_I(inode)->i_dtime  = get_seconds();
305
306         /*
307          * One subtle ordering requirement: if anything has gone wrong
308          * (transaction abort, IO errors, whatever), then we can still
309          * do these next steps (the fs will already have been marked as
310          * having errors), but we can't free the inode if the mark_dirty
311          * fails.
312          */
313         if (ext4_mark_inode_dirty(handle, inode))
314                 /* If that failed, just do the required in-core inode clear. */
315                 ext4_clear_inode(inode);
316         else
317                 ext4_free_inode(handle, inode);
318         ext4_journal_stop(handle);
319         sb_end_intwrite(inode->i_sb);
320         return;
321 no_delete:
322         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
323 }
324
325 #ifdef CONFIG_QUOTA
326 qsize_t *ext4_get_reserved_space(struct inode *inode)
327 {
328         return &EXT4_I(inode)->i_reserved_quota;
329 }
330 #endif
331
332 /*
333  * Called with i_data_sem down, which is important since we can call
334  * ext4_discard_preallocations() from here.
335  */
336 void ext4_da_update_reserve_space(struct inode *inode,
337                                         int used, int quota_claim)
338 {
339         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
340         struct ext4_inode_info *ei = EXT4_I(inode);
341
342         spin_lock(&ei->i_block_reservation_lock);
343         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
344         if (unlikely(used > ei->i_reserved_data_blocks)) {
345                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
346                          "with only %d reserved data blocks",
347                          __func__, inode->i_ino, used,
348                          ei->i_reserved_data_blocks);
349                 WARN_ON(1);
350                 used = ei->i_reserved_data_blocks;
351         }
352
353         /* Update per-inode reservations */
354         ei->i_reserved_data_blocks -= used;
355         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
356
357         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
358
359         /* Update quota subsystem for data blocks */
360         if (quota_claim)
361                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
362         else {
363                 /*
364                  * We did fallocate with an offset that is already delayed
365                  * allocated. So on delayed allocated writeback we should
366                  * not re-claim the quota for fallocated blocks.
367                  */
368                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
369         }
370
371         /*
372          * If we have done all the pending block allocations and if
373          * there aren't any writers on the inode, we can discard the
374          * inode's preallocations.
375          */
376         if ((ei->i_reserved_data_blocks == 0) &&
377             (atomic_read(&inode->i_writecount) == 0))
378                 ext4_discard_preallocations(inode);
379 }
380
381 static int __check_block_validity(struct inode *inode, const char *func,
382                                 unsigned int line,
383                                 struct ext4_map_blocks *map)
384 {
385         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
386                                    map->m_len)) {
387                 ext4_error_inode(inode, func, line, map->m_pblk,
388                                  "lblock %lu mapped to illegal pblock "
389                                  "(length %d)", (unsigned long) map->m_lblk,
390                                  map->m_len);
391                 return -EFSCORRUPTED;
392         }
393         return 0;
394 }
395
396 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
397                        ext4_lblk_t len)
398 {
399         int ret;
400
401         if (ext4_encrypted_inode(inode))
402                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
403
404         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
405         if (ret > 0)
406                 ret = 0;
407
408         return ret;
409 }
410
411 #define check_block_validity(inode, map)        \
412         __check_block_validity((inode), __func__, __LINE__, (map))
413
414 #ifdef ES_AGGRESSIVE_TEST
415 static void ext4_map_blocks_es_recheck(handle_t *handle,
416                                        struct inode *inode,
417                                        struct ext4_map_blocks *es_map,
418                                        struct ext4_map_blocks *map,
419                                        int flags)
420 {
421         int retval;
422
423         map->m_flags = 0;
424         /*
425          * There is a race window that the result is not the same.
426          * e.g. xfstests #223 when dioread_nolock enables.  The reason
427          * is that we lookup a block mapping in extent status tree with
428          * out taking i_data_sem.  So at the time the unwritten extent
429          * could be converted.
430          */
431         down_read(&EXT4_I(inode)->i_data_sem);
432         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
433                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
434                                              EXT4_GET_BLOCKS_KEEP_SIZE);
435         } else {
436                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
437                                              EXT4_GET_BLOCKS_KEEP_SIZE);
438         }
439         up_read((&EXT4_I(inode)->i_data_sem));
440
441         /*
442          * We don't check m_len because extent will be collpased in status
443          * tree.  So the m_len might not equal.
444          */
445         if (es_map->m_lblk != map->m_lblk ||
446             es_map->m_flags != map->m_flags ||
447             es_map->m_pblk != map->m_pblk) {
448                 printk("ES cache assertion failed for inode: %lu "
449                        "es_cached ex [%d/%d/%llu/%x] != "
450                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
451                        inode->i_ino, es_map->m_lblk, es_map->m_len,
452                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
453                        map->m_len, map->m_pblk, map->m_flags,
454                        retval, flags);
455         }
456 }
457 #endif /* ES_AGGRESSIVE_TEST */
458
459 /*
460  * The ext4_map_blocks() function tries to look up the requested blocks,
461  * and returns if the blocks are already mapped.
462  *
463  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
464  * and store the allocated blocks in the result buffer head and mark it
465  * mapped.
466  *
467  * If file type is extents based, it will call ext4_ext_map_blocks(),
468  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
469  * based files
470  *
471  * On success, it returns the number of blocks being mapped or allocated.  if
472  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
473  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
474  *
475  * It returns 0 if plain look up failed (blocks have not been allocated), in
476  * that case, @map is returned as unmapped but we still do fill map->m_len to
477  * indicate the length of a hole starting at map->m_lblk.
478  *
479  * It returns the error in case of allocation failure.
480  */
481 int ext4_map_blocks(handle_t *handle, struct inode *inode,
482                     struct ext4_map_blocks *map, int flags)
483 {
484         struct extent_status es;
485         int retval;
486         int ret = 0;
487 #ifdef ES_AGGRESSIVE_TEST
488         struct ext4_map_blocks orig_map;
489
490         memcpy(&orig_map, map, sizeof(*map));
491 #endif
492
493         map->m_flags = 0;
494         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
495                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
496                   (unsigned long) map->m_lblk);
497
498         /*
499          * ext4_map_blocks returns an int, and m_len is an unsigned int
500          */
501         if (unlikely(map->m_len > INT_MAX))
502                 map->m_len = INT_MAX;
503
504         /* We can handle the block number less than EXT_MAX_BLOCKS */
505         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
506                 return -EFSCORRUPTED;
507
508         /* Lookup extent status tree firstly */
509         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
510                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
511                         map->m_pblk = ext4_es_pblock(&es) +
512                                         map->m_lblk - es.es_lblk;
513                         map->m_flags |= ext4_es_is_written(&es) ?
514                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
515                         retval = es.es_len - (map->m_lblk - es.es_lblk);
516                         if (retval > map->m_len)
517                                 retval = map->m_len;
518                         map->m_len = retval;
519                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
520                         map->m_pblk = 0;
521                         retval = es.es_len - (map->m_lblk - es.es_lblk);
522                         if (retval > map->m_len)
523                                 retval = map->m_len;
524                         map->m_len = retval;
525                         retval = 0;
526                 } else {
527                         BUG_ON(1);
528                 }
529 #ifdef ES_AGGRESSIVE_TEST
530                 ext4_map_blocks_es_recheck(handle, inode, map,
531                                            &orig_map, flags);
532 #endif
533                 goto found;
534         }
535
536         /*
537          * Try to see if we can get the block without requesting a new
538          * file system block.
539          */
540         down_read(&EXT4_I(inode)->i_data_sem);
541         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
542                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
543                                              EXT4_GET_BLOCKS_KEEP_SIZE);
544         } else {
545                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
546                                              EXT4_GET_BLOCKS_KEEP_SIZE);
547         }
548         if (retval > 0) {
549                 unsigned int status;
550
551                 if (unlikely(retval != map->m_len)) {
552                         ext4_warning(inode->i_sb,
553                                      "ES len assertion failed for inode "
554                                      "%lu: retval %d != map->m_len %d",
555                                      inode->i_ino, retval, map->m_len);
556                         WARN_ON(1);
557                 }
558
559                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
560                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
561                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
562                     !(status & EXTENT_STATUS_WRITTEN) &&
563                     ext4_find_delalloc_range(inode, map->m_lblk,
564                                              map->m_lblk + map->m_len - 1))
565                         status |= EXTENT_STATUS_DELAYED;
566                 ret = ext4_es_insert_extent(inode, map->m_lblk,
567                                             map->m_len, map->m_pblk, status);
568                 if (ret < 0)
569                         retval = ret;
570         }
571         up_read((&EXT4_I(inode)->i_data_sem));
572
573 found:
574         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
575                 ret = check_block_validity(inode, map);
576                 if (ret != 0)
577                         return ret;
578         }
579
580         /* If it is only a block(s) look up */
581         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
582                 return retval;
583
584         /*
585          * Returns if the blocks have already allocated
586          *
587          * Note that if blocks have been preallocated
588          * ext4_ext_get_block() returns the create = 0
589          * with buffer head unmapped.
590          */
591         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
592                 /*
593                  * If we need to convert extent to unwritten
594                  * we continue and do the actual work in
595                  * ext4_ext_map_blocks()
596                  */
597                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
598                         return retval;
599
600         /*
601          * Here we clear m_flags because after allocating an new extent,
602          * it will be set again.
603          */
604         map->m_flags &= ~EXT4_MAP_FLAGS;
605
606         /*
607          * New blocks allocate and/or writing to unwritten extent
608          * will possibly result in updating i_data, so we take
609          * the write lock of i_data_sem, and call get_block()
610          * with create == 1 flag.
611          */
612         down_write(&EXT4_I(inode)->i_data_sem);
613
614         /*
615          * We need to check for EXT4 here because migrate
616          * could have changed the inode type in between
617          */
618         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
619                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
620         } else {
621                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
622
623                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
624                         /*
625                          * We allocated new blocks which will result in
626                          * i_data's format changing.  Force the migrate
627                          * to fail by clearing migrate flags
628                          */
629                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
630                 }
631
632                 /*
633                  * Update reserved blocks/metadata blocks after successful
634                  * block allocation which had been deferred till now. We don't
635                  * support fallocate for non extent files. So we can update
636                  * reserve space here.
637                  */
638                 if ((retval > 0) &&
639                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
640                         ext4_da_update_reserve_space(inode, retval, 1);
641         }
642
643         if (retval > 0) {
644                 unsigned int status;
645
646                 if (unlikely(retval != map->m_len)) {
647                         ext4_warning(inode->i_sb,
648                                      "ES len assertion failed for inode "
649                                      "%lu: retval %d != map->m_len %d",
650                                      inode->i_ino, retval, map->m_len);
651                         WARN_ON(1);
652                 }
653
654                 /*
655                  * We have to zeroout blocks before inserting them into extent
656                  * status tree. Otherwise someone could look them up there and
657                  * use them before they are really zeroed. We also have to
658                  * unmap metadata before zeroing as otherwise writeback can
659                  * overwrite zeros with stale data from block device.
660                  */
661                 if (flags & EXT4_GET_BLOCKS_ZERO &&
662                     map->m_flags & EXT4_MAP_MAPPED &&
663                     map->m_flags & EXT4_MAP_NEW) {
664                         clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
665                                            map->m_len);
666                         ret = ext4_issue_zeroout(inode, map->m_lblk,
667                                                  map->m_pblk, map->m_len);
668                         if (ret) {
669                                 retval = ret;
670                                 goto out_sem;
671                         }
672                 }
673
674                 /*
675                  * If the extent has been zeroed out, we don't need to update
676                  * extent status tree.
677                  */
678                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
679                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
680                         if (ext4_es_is_written(&es))
681                                 goto out_sem;
682                 }
683                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
684                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
685                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
686                     !(status & EXTENT_STATUS_WRITTEN) &&
687                     ext4_find_delalloc_range(inode, map->m_lblk,
688                                              map->m_lblk + map->m_len - 1))
689                         status |= EXTENT_STATUS_DELAYED;
690                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
691                                             map->m_pblk, status);
692                 if (ret < 0) {
693                         retval = ret;
694                         goto out_sem;
695                 }
696         }
697
698 out_sem:
699         up_write((&EXT4_I(inode)->i_data_sem));
700         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
701                 ret = check_block_validity(inode, map);
702                 if (ret != 0)
703                         return ret;
704
705                 /*
706                  * Inodes with freshly allocated blocks where contents will be
707                  * visible after transaction commit must be on transaction's
708                  * ordered data list.
709                  */
710                 if (map->m_flags & EXT4_MAP_NEW &&
711                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
712                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
713                     !IS_NOQUOTA(inode) &&
714                     ext4_should_order_data(inode)) {
715                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
716                                 ret = ext4_jbd2_inode_add_wait(handle, inode);
717                         else
718                                 ret = ext4_jbd2_inode_add_write(handle, inode);
719                         if (ret)
720                                 return ret;
721                 }
722         }
723         return retval;
724 }
725
726 /*
727  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
728  * we have to be careful as someone else may be manipulating b_state as well.
729  */
730 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
731 {
732         unsigned long old_state;
733         unsigned long new_state;
734
735         flags &= EXT4_MAP_FLAGS;
736
737         /* Dummy buffer_head? Set non-atomically. */
738         if (!bh->b_page) {
739                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
740                 return;
741         }
742         /*
743          * Someone else may be modifying b_state. Be careful! This is ugly but
744          * once we get rid of using bh as a container for mapping information
745          * to pass to / from get_block functions, this can go away.
746          */
747         do {
748                 old_state = READ_ONCE(bh->b_state);
749                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
750         } while (unlikely(
751                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
752 }
753
754 static int _ext4_get_block(struct inode *inode, sector_t iblock,
755                            struct buffer_head *bh, int flags)
756 {
757         struct ext4_map_blocks map;
758         int ret = 0;
759
760         if (ext4_has_inline_data(inode))
761                 return -ERANGE;
762
763         map.m_lblk = iblock;
764         map.m_len = bh->b_size >> inode->i_blkbits;
765
766         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
767                               flags);
768         if (ret > 0) {
769                 map_bh(bh, inode->i_sb, map.m_pblk);
770                 ext4_update_bh_state(bh, map.m_flags);
771                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
772                 ret = 0;
773         } else if (ret == 0) {
774                 /* hole case, need to fill in bh->b_size */
775                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
776         }
777         return ret;
778 }
779
780 int ext4_get_block(struct inode *inode, sector_t iblock,
781                    struct buffer_head *bh, int create)
782 {
783         return _ext4_get_block(inode, iblock, bh,
784                                create ? EXT4_GET_BLOCKS_CREATE : 0);
785 }
786
787 /*
788  * Get block function used when preparing for buffered write if we require
789  * creating an unwritten extent if blocks haven't been allocated.  The extent
790  * will be converted to written after the IO is complete.
791  */
792 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
793                              struct buffer_head *bh_result, int create)
794 {
795         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
796                    inode->i_ino, create);
797         return _ext4_get_block(inode, iblock, bh_result,
798                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
799 }
800
801 /* Maximum number of blocks we map for direct IO at once. */
802 #define DIO_MAX_BLOCKS 4096
803
804 /*
805  * Get blocks function for the cases that need to start a transaction -
806  * generally difference cases of direct IO and DAX IO. It also handles retries
807  * in case of ENOSPC.
808  */
809 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
810                                 struct buffer_head *bh_result, int flags)
811 {
812         int dio_credits;
813         handle_t *handle;
814         int retries = 0;
815         int ret;
816
817         /* Trim mapping request to maximum we can map at once for DIO */
818         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
819                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
820         dio_credits = ext4_chunk_trans_blocks(inode,
821                                       bh_result->b_size >> inode->i_blkbits);
822 retry:
823         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
824         if (IS_ERR(handle))
825                 return PTR_ERR(handle);
826
827         ret = _ext4_get_block(inode, iblock, bh_result, flags);
828         ext4_journal_stop(handle);
829
830         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
831                 goto retry;
832         return ret;
833 }
834
835 /* Get block function for DIO reads and writes to inodes without extents */
836 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
837                        struct buffer_head *bh, int create)
838 {
839         /* We don't expect handle for direct IO */
840         WARN_ON_ONCE(ext4_journal_current_handle());
841
842         if (!create)
843                 return _ext4_get_block(inode, iblock, bh, 0);
844         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
845 }
846
847 /*
848  * Get block function for AIO DIO writes when we create unwritten extent if
849  * blocks are not allocated yet. The extent will be converted to written
850  * after IO is complete.
851  */
852 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
853                 sector_t iblock, struct buffer_head *bh_result, int create)
854 {
855         int ret;
856
857         /* We don't expect handle for direct IO */
858         WARN_ON_ONCE(ext4_journal_current_handle());
859
860         ret = ext4_get_block_trans(inode, iblock, bh_result,
861                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
862
863         /*
864          * When doing DIO using unwritten extents, we need io_end to convert
865          * unwritten extents to written on IO completion. We allocate io_end
866          * once we spot unwritten extent and store it in b_private. Generic
867          * DIO code keeps b_private set and furthermore passes the value to
868          * our completion callback in 'private' argument.
869          */
870         if (!ret && buffer_unwritten(bh_result)) {
871                 if (!bh_result->b_private) {
872                         ext4_io_end_t *io_end;
873
874                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
875                         if (!io_end)
876                                 return -ENOMEM;
877                         bh_result->b_private = io_end;
878                         ext4_set_io_unwritten_flag(inode, io_end);
879                 }
880                 set_buffer_defer_completion(bh_result);
881         }
882
883         return ret;
884 }
885
886 /*
887  * Get block function for non-AIO DIO writes when we create unwritten extent if
888  * blocks are not allocated yet. The extent will be converted to written
889  * after IO is complete from ext4_ext_direct_IO() function.
890  */
891 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
892                 sector_t iblock, struct buffer_head *bh_result, int create)
893 {
894         int ret;
895
896         /* We don't expect handle for direct IO */
897         WARN_ON_ONCE(ext4_journal_current_handle());
898
899         ret = ext4_get_block_trans(inode, iblock, bh_result,
900                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
901
902         /*
903          * Mark inode as having pending DIO writes to unwritten extents.
904          * ext4_ext_direct_IO() checks this flag and converts extents to
905          * written.
906          */
907         if (!ret && buffer_unwritten(bh_result))
908                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
909
910         return ret;
911 }
912
913 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
914                    struct buffer_head *bh_result, int create)
915 {
916         int ret;
917
918         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
919                    inode->i_ino, create);
920         /* We don't expect handle for direct IO */
921         WARN_ON_ONCE(ext4_journal_current_handle());
922
923         ret = _ext4_get_block(inode, iblock, bh_result, 0);
924         /*
925          * Blocks should have been preallocated! ext4_file_write_iter() checks
926          * that.
927          */
928         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
929
930         return ret;
931 }
932
933
934 /*
935  * `handle' can be NULL if create is zero
936  */
937 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
938                                 ext4_lblk_t block, int map_flags)
939 {
940         struct ext4_map_blocks map;
941         struct buffer_head *bh;
942         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
943         int err;
944
945         J_ASSERT(handle != NULL || create == 0);
946
947         map.m_lblk = block;
948         map.m_len = 1;
949         err = ext4_map_blocks(handle, inode, &map, map_flags);
950
951         if (err == 0)
952                 return create ? ERR_PTR(-ENOSPC) : NULL;
953         if (err < 0)
954                 return ERR_PTR(err);
955
956         bh = sb_getblk(inode->i_sb, map.m_pblk);
957         if (unlikely(!bh))
958                 return ERR_PTR(-ENOMEM);
959         if (map.m_flags & EXT4_MAP_NEW) {
960                 J_ASSERT(create != 0);
961                 J_ASSERT(handle != NULL);
962
963                 /*
964                  * Now that we do not always journal data, we should
965                  * keep in mind whether this should always journal the
966                  * new buffer as metadata.  For now, regular file
967                  * writes use ext4_get_block instead, so it's not a
968                  * problem.
969                  */
970                 lock_buffer(bh);
971                 BUFFER_TRACE(bh, "call get_create_access");
972                 err = ext4_journal_get_create_access(handle, bh);
973                 if (unlikely(err)) {
974                         unlock_buffer(bh);
975                         goto errout;
976                 }
977                 if (!buffer_uptodate(bh)) {
978                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
979                         set_buffer_uptodate(bh);
980                 }
981                 unlock_buffer(bh);
982                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
983                 err = ext4_handle_dirty_metadata(handle, inode, bh);
984                 if (unlikely(err))
985                         goto errout;
986         } else
987                 BUFFER_TRACE(bh, "not a new buffer");
988         return bh;
989 errout:
990         brelse(bh);
991         return ERR_PTR(err);
992 }
993
994 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
995                                ext4_lblk_t block, int map_flags)
996 {
997         struct buffer_head *bh;
998
999         bh = ext4_getblk(handle, inode, block, map_flags);
1000         if (IS_ERR(bh))
1001                 return bh;
1002         if (!bh || buffer_uptodate(bh))
1003                 return bh;
1004         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1005         wait_on_buffer(bh);
1006         if (buffer_uptodate(bh))
1007                 return bh;
1008         put_bh(bh);
1009         return ERR_PTR(-EIO);
1010 }
1011
1012 int ext4_walk_page_buffers(handle_t *handle,
1013                            struct buffer_head *head,
1014                            unsigned from,
1015                            unsigned to,
1016                            int *partial,
1017                            int (*fn)(handle_t *handle,
1018                                      struct buffer_head *bh))
1019 {
1020         struct buffer_head *bh;
1021         unsigned block_start, block_end;
1022         unsigned blocksize = head->b_size;
1023         int err, ret = 0;
1024         struct buffer_head *next;
1025
1026         for (bh = head, block_start = 0;
1027              ret == 0 && (bh != head || !block_start);
1028              block_start = block_end, bh = next) {
1029                 next = bh->b_this_page;
1030                 block_end = block_start + blocksize;
1031                 if (block_end <= from || block_start >= to) {
1032                         if (partial && !buffer_uptodate(bh))
1033                                 *partial = 1;
1034                         continue;
1035                 }
1036                 err = (*fn)(handle, bh);
1037                 if (!ret)
1038                         ret = err;
1039         }
1040         return ret;
1041 }
1042
1043 /*
1044  * To preserve ordering, it is essential that the hole instantiation and
1045  * the data write be encapsulated in a single transaction.  We cannot
1046  * close off a transaction and start a new one between the ext4_get_block()
1047  * and the commit_write().  So doing the jbd2_journal_start at the start of
1048  * prepare_write() is the right place.
1049  *
1050  * Also, this function can nest inside ext4_writepage().  In that case, we
1051  * *know* that ext4_writepage() has generated enough buffer credits to do the
1052  * whole page.  So we won't block on the journal in that case, which is good,
1053  * because the caller may be PF_MEMALLOC.
1054  *
1055  * By accident, ext4 can be reentered when a transaction is open via
1056  * quota file writes.  If we were to commit the transaction while thus
1057  * reentered, there can be a deadlock - we would be holding a quota
1058  * lock, and the commit would never complete if another thread had a
1059  * transaction open and was blocking on the quota lock - a ranking
1060  * violation.
1061  *
1062  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1063  * will _not_ run commit under these circumstances because handle->h_ref
1064  * is elevated.  We'll still have enough credits for the tiny quotafile
1065  * write.
1066  */
1067 int do_journal_get_write_access(handle_t *handle,
1068                                 struct buffer_head *bh)
1069 {
1070         int dirty = buffer_dirty(bh);
1071         int ret;
1072
1073         if (!buffer_mapped(bh) || buffer_freed(bh))
1074                 return 0;
1075         /*
1076          * __block_write_begin() could have dirtied some buffers. Clean
1077          * the dirty bit as jbd2_journal_get_write_access() could complain
1078          * otherwise about fs integrity issues. Setting of the dirty bit
1079          * by __block_write_begin() isn't a real problem here as we clear
1080          * the bit before releasing a page lock and thus writeback cannot
1081          * ever write the buffer.
1082          */
1083         if (dirty)
1084                 clear_buffer_dirty(bh);
1085         BUFFER_TRACE(bh, "get write access");
1086         ret = ext4_journal_get_write_access(handle, bh);
1087         if (!ret && dirty)
1088                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089         return ret;
1090 }
1091
1092 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1093 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1094                                   get_block_t *get_block)
1095 {
1096         unsigned from = pos & (PAGE_SIZE - 1);
1097         unsigned to = from + len;
1098         struct inode *inode = page->mapping->host;
1099         unsigned block_start, block_end;
1100         sector_t block;
1101         int err = 0;
1102         unsigned blocksize = inode->i_sb->s_blocksize;
1103         unsigned bbits;
1104         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1105         bool decrypt = false;
1106
1107         BUG_ON(!PageLocked(page));
1108         BUG_ON(from > PAGE_SIZE);
1109         BUG_ON(to > PAGE_SIZE);
1110         BUG_ON(from > to);
1111
1112         if (!page_has_buffers(page))
1113                 create_empty_buffers(page, blocksize, 0);
1114         head = page_buffers(page);
1115         bbits = ilog2(blocksize);
1116         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1117
1118         for (bh = head, block_start = 0; bh != head || !block_start;
1119             block++, block_start = block_end, bh = bh->b_this_page) {
1120                 block_end = block_start + blocksize;
1121                 if (block_end <= from || block_start >= to) {
1122                         if (PageUptodate(page)) {
1123                                 if (!buffer_uptodate(bh))
1124                                         set_buffer_uptodate(bh);
1125                         }
1126                         continue;
1127                 }
1128                 if (buffer_new(bh))
1129                         clear_buffer_new(bh);
1130                 if (!buffer_mapped(bh)) {
1131                         WARN_ON(bh->b_size != blocksize);
1132                         err = get_block(inode, block, bh, 1);
1133                         if (err)
1134                                 break;
1135                         if (buffer_new(bh)) {
1136                                 clean_bdev_bh_alias(bh);
1137                                 if (PageUptodate(page)) {
1138                                         clear_buffer_new(bh);
1139                                         set_buffer_uptodate(bh);
1140                                         mark_buffer_dirty(bh);
1141                                         continue;
1142                                 }
1143                                 if (block_end > to || block_start < from)
1144                                         zero_user_segments(page, to, block_end,
1145                                                            block_start, from);
1146                                 continue;
1147                         }
1148                 }
1149                 if (PageUptodate(page)) {
1150                         if (!buffer_uptodate(bh))
1151                                 set_buffer_uptodate(bh);
1152                         continue;
1153                 }
1154                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1155                     !buffer_unwritten(bh) &&
1156                     (block_start < from || block_end > to)) {
1157                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1158                         *wait_bh++ = bh;
1159                         decrypt = ext4_encrypted_inode(inode) &&
1160                                 S_ISREG(inode->i_mode);
1161                 }
1162         }
1163         /*
1164          * If we issued read requests, let them complete.
1165          */
1166         while (wait_bh > wait) {
1167                 wait_on_buffer(*--wait_bh);
1168                 if (!buffer_uptodate(*wait_bh))
1169                         err = -EIO;
1170         }
1171         if (unlikely(err))
1172                 page_zero_new_buffers(page, from, to);
1173         else if (decrypt)
1174                 err = fscrypt_decrypt_page(page->mapping->host, page,
1175                                 PAGE_SIZE, 0, page->index);
1176         return err;
1177 }
1178 #endif
1179
1180 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1181                             loff_t pos, unsigned len, unsigned flags,
1182                             struct page **pagep, void **fsdata)
1183 {
1184         struct inode *inode = mapping->host;
1185         int ret, needed_blocks;
1186         handle_t *handle;
1187         int retries = 0;
1188         struct page *page;
1189         pgoff_t index;
1190         unsigned from, to;
1191
1192         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1193                 return -EIO;
1194
1195         trace_ext4_write_begin(inode, pos, len, flags);
1196         /*
1197          * Reserve one block more for addition to orphan list in case
1198          * we allocate blocks but write fails for some reason
1199          */
1200         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1201         index = pos >> PAGE_SHIFT;
1202         from = pos & (PAGE_SIZE - 1);
1203         to = from + len;
1204
1205         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1206                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1207                                                     flags, pagep);
1208                 if (ret < 0)
1209                         return ret;
1210                 if (ret == 1)
1211                         return 0;
1212         }
1213
1214         /*
1215          * grab_cache_page_write_begin() can take a long time if the
1216          * system is thrashing due to memory pressure, or if the page
1217          * is being written back.  So grab it first before we start
1218          * the transaction handle.  This also allows us to allocate
1219          * the page (if needed) without using GFP_NOFS.
1220          */
1221 retry_grab:
1222         page = grab_cache_page_write_begin(mapping, index, flags);
1223         if (!page)
1224                 return -ENOMEM;
1225         unlock_page(page);
1226
1227 retry_journal:
1228         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1229         if (IS_ERR(handle)) {
1230                 put_page(page);
1231                 return PTR_ERR(handle);
1232         }
1233
1234         lock_page(page);
1235         if (page->mapping != mapping) {
1236                 /* The page got truncated from under us */
1237                 unlock_page(page);
1238                 put_page(page);
1239                 ext4_journal_stop(handle);
1240                 goto retry_grab;
1241         }
1242         /* In case writeback began while the page was unlocked */
1243         wait_for_stable_page(page);
1244
1245 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1246         if (ext4_should_dioread_nolock(inode))
1247                 ret = ext4_block_write_begin(page, pos, len,
1248                                              ext4_get_block_unwritten);
1249         else
1250                 ret = ext4_block_write_begin(page, pos, len,
1251                                              ext4_get_block);
1252 #else
1253         if (ext4_should_dioread_nolock(inode))
1254                 ret = __block_write_begin(page, pos, len,
1255                                           ext4_get_block_unwritten);
1256         else
1257                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1258 #endif
1259         if (!ret && ext4_should_journal_data(inode)) {
1260                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1261                                              from, to, NULL,
1262                                              do_journal_get_write_access);
1263         }
1264
1265         if (ret) {
1266                 unlock_page(page);
1267                 /*
1268                  * __block_write_begin may have instantiated a few blocks
1269                  * outside i_size.  Trim these off again. Don't need
1270                  * i_size_read because we hold i_mutex.
1271                  *
1272                  * Add inode to orphan list in case we crash before
1273                  * truncate finishes
1274                  */
1275                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1276                         ext4_orphan_add(handle, inode);
1277
1278                 ext4_journal_stop(handle);
1279                 if (pos + len > inode->i_size) {
1280                         ext4_truncate_failed_write(inode);
1281                         /*
1282                          * If truncate failed early the inode might
1283                          * still be on the orphan list; we need to
1284                          * make sure the inode is removed from the
1285                          * orphan list in that case.
1286                          */
1287                         if (inode->i_nlink)
1288                                 ext4_orphan_del(NULL, inode);
1289                 }
1290
1291                 if (ret == -ENOSPC &&
1292                     ext4_should_retry_alloc(inode->i_sb, &retries))
1293                         goto retry_journal;
1294                 put_page(page);
1295                 return ret;
1296         }
1297         *pagep = page;
1298         return ret;
1299 }
1300
1301 /* For write_end() in data=journal mode */
1302 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1303 {
1304         int ret;
1305         if (!buffer_mapped(bh) || buffer_freed(bh))
1306                 return 0;
1307         set_buffer_uptodate(bh);
1308         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1309         clear_buffer_meta(bh);
1310         clear_buffer_prio(bh);
1311         return ret;
1312 }
1313
1314 /*
1315  * We need to pick up the new inode size which generic_commit_write gave us
1316  * `file' can be NULL - eg, when called from page_symlink().
1317  *
1318  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1319  * buffers are managed internally.
1320  */
1321 static int ext4_write_end(struct file *file,
1322                           struct address_space *mapping,
1323                           loff_t pos, unsigned len, unsigned copied,
1324                           struct page *page, void *fsdata)
1325 {
1326         handle_t *handle = ext4_journal_current_handle();
1327         struct inode *inode = mapping->host;
1328         loff_t old_size = inode->i_size;
1329         int ret = 0, ret2;
1330         int i_size_changed = 0;
1331
1332         trace_ext4_write_end(inode, pos, len, copied);
1333         if (ext4_has_inline_data(inode)) {
1334                 ret = ext4_write_inline_data_end(inode, pos, len,
1335                                                  copied, page);
1336                 if (ret < 0) {
1337                         unlock_page(page);
1338                         put_page(page);
1339                         goto errout;
1340                 }
1341                 copied = ret;
1342         } else
1343                 copied = block_write_end(file, mapping, pos,
1344                                          len, copied, page, fsdata);
1345         /*
1346          * it's important to update i_size while still holding page lock:
1347          * page writeout could otherwise come in and zero beyond i_size.
1348          */
1349         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1350         unlock_page(page);
1351         put_page(page);
1352
1353         if (old_size < pos)
1354                 pagecache_isize_extended(inode, old_size, pos);
1355         /*
1356          * Don't mark the inode dirty under page lock. First, it unnecessarily
1357          * makes the holding time of page lock longer. Second, it forces lock
1358          * ordering of page lock and transaction start for journaling
1359          * filesystems.
1360          */
1361         if (i_size_changed)
1362                 ext4_mark_inode_dirty(handle, inode);
1363
1364         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1365                 /* if we have allocated more blocks and copied
1366                  * less. We will have blocks allocated outside
1367                  * inode->i_size. So truncate them
1368                  */
1369                 ext4_orphan_add(handle, inode);
1370 errout:
1371         ret2 = ext4_journal_stop(handle);
1372         if (!ret)
1373                 ret = ret2;
1374
1375         if (pos + len > inode->i_size) {
1376                 ext4_truncate_failed_write(inode);
1377                 /*
1378                  * If truncate failed early the inode might still be
1379                  * on the orphan list; we need to make sure the inode
1380                  * is removed from the orphan list in that case.
1381                  */
1382                 if (inode->i_nlink)
1383                         ext4_orphan_del(NULL, inode);
1384         }
1385
1386         return ret ? ret : copied;
1387 }
1388
1389 /*
1390  * This is a private version of page_zero_new_buffers() which doesn't
1391  * set the buffer to be dirty, since in data=journalled mode we need
1392  * to call ext4_handle_dirty_metadata() instead.
1393  */
1394 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1395                                             struct page *page,
1396                                             unsigned from, unsigned to)
1397 {
1398         unsigned int block_start = 0, block_end;
1399         struct buffer_head *head, *bh;
1400
1401         bh = head = page_buffers(page);
1402         do {
1403                 block_end = block_start + bh->b_size;
1404                 if (buffer_new(bh)) {
1405                         if (block_end > from && block_start < to) {
1406                                 if (!PageUptodate(page)) {
1407                                         unsigned start, size;
1408
1409                                         start = max(from, block_start);
1410                                         size = min(to, block_end) - start;
1411
1412                                         zero_user(page, start, size);
1413                                         write_end_fn(handle, bh);
1414                                 }
1415                                 clear_buffer_new(bh);
1416                         }
1417                 }
1418                 block_start = block_end;
1419                 bh = bh->b_this_page;
1420         } while (bh != head);
1421 }
1422
1423 static int ext4_journalled_write_end(struct file *file,
1424                                      struct address_space *mapping,
1425                                      loff_t pos, unsigned len, unsigned copied,
1426                                      struct page *page, void *fsdata)
1427 {
1428         handle_t *handle = ext4_journal_current_handle();
1429         struct inode *inode = mapping->host;
1430         loff_t old_size = inode->i_size;
1431         int ret = 0, ret2;
1432         int partial = 0;
1433         unsigned from, to;
1434         int size_changed = 0;
1435
1436         trace_ext4_journalled_write_end(inode, pos, len, copied);
1437         from = pos & (PAGE_SIZE - 1);
1438         to = from + len;
1439
1440         BUG_ON(!ext4_handle_valid(handle));
1441
1442         if (ext4_has_inline_data(inode)) {
1443                 ret = ext4_write_inline_data_end(inode, pos, len,
1444                                                  copied, page);
1445                 if (ret < 0) {
1446                         unlock_page(page);
1447                         put_page(page);
1448                         goto errout;
1449                 }
1450                 copied = ret;
1451         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1452                 copied = 0;
1453                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1454         } else {
1455                 if (unlikely(copied < len))
1456                         ext4_journalled_zero_new_buffers(handle, page,
1457                                                          from + copied, to);
1458                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1459                                              from + copied, &partial,
1460                                              write_end_fn);
1461                 if (!partial)
1462                         SetPageUptodate(page);
1463         }
1464         size_changed = ext4_update_inode_size(inode, pos + copied);
1465         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1466         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1467         unlock_page(page);
1468         put_page(page);
1469
1470         if (old_size < pos)
1471                 pagecache_isize_extended(inode, old_size, pos);
1472
1473         if (size_changed) {
1474                 ret2 = ext4_mark_inode_dirty(handle, inode);
1475                 if (!ret)
1476                         ret = ret2;
1477         }
1478
1479         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1480                 /* if we have allocated more blocks and copied
1481                  * less. We will have blocks allocated outside
1482                  * inode->i_size. So truncate them
1483                  */
1484                 ext4_orphan_add(handle, inode);
1485
1486 errout:
1487         ret2 = ext4_journal_stop(handle);
1488         if (!ret)
1489                 ret = ret2;
1490         if (pos + len > inode->i_size) {
1491                 ext4_truncate_failed_write(inode);
1492                 /*
1493                  * If truncate failed early the inode might still be
1494                  * on the orphan list; we need to make sure the inode
1495                  * is removed from the orphan list in that case.
1496                  */
1497                 if (inode->i_nlink)
1498                         ext4_orphan_del(NULL, inode);
1499         }
1500
1501         return ret ? ret : copied;
1502 }
1503
1504 /*
1505  * Reserve space for a single cluster
1506  */
1507 static int ext4_da_reserve_space(struct inode *inode)
1508 {
1509         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1510         struct ext4_inode_info *ei = EXT4_I(inode);
1511         int ret;
1512
1513         /*
1514          * We will charge metadata quota at writeout time; this saves
1515          * us from metadata over-estimation, though we may go over by
1516          * a small amount in the end.  Here we just reserve for data.
1517          */
1518         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1519         if (ret)
1520                 return ret;
1521
1522         spin_lock(&ei->i_block_reservation_lock);
1523         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1524                 spin_unlock(&ei->i_block_reservation_lock);
1525                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1526                 return -ENOSPC;
1527         }
1528         ei->i_reserved_data_blocks++;
1529         trace_ext4_da_reserve_space(inode);
1530         spin_unlock(&ei->i_block_reservation_lock);
1531
1532         return 0;       /* success */
1533 }
1534
1535 static void ext4_da_release_space(struct inode *inode, int to_free)
1536 {
1537         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1538         struct ext4_inode_info *ei = EXT4_I(inode);
1539
1540         if (!to_free)
1541                 return;         /* Nothing to release, exit */
1542
1543         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1544
1545         trace_ext4_da_release_space(inode, to_free);
1546         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1547                 /*
1548                  * if there aren't enough reserved blocks, then the
1549                  * counter is messed up somewhere.  Since this
1550                  * function is called from invalidate page, it's
1551                  * harmless to return without any action.
1552                  */
1553                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1554                          "ino %lu, to_free %d with only %d reserved "
1555                          "data blocks", inode->i_ino, to_free,
1556                          ei->i_reserved_data_blocks);
1557                 WARN_ON(1);
1558                 to_free = ei->i_reserved_data_blocks;
1559         }
1560         ei->i_reserved_data_blocks -= to_free;
1561
1562         /* update fs dirty data blocks counter */
1563         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1564
1565         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1566
1567         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1568 }
1569
1570 static void ext4_da_page_release_reservation(struct page *page,
1571                                              unsigned int offset,
1572                                              unsigned int length)
1573 {
1574         int to_release = 0, contiguous_blks = 0;
1575         struct buffer_head *head, *bh;
1576         unsigned int curr_off = 0;
1577         struct inode *inode = page->mapping->host;
1578         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1579         unsigned int stop = offset + length;
1580         int num_clusters;
1581         ext4_fsblk_t lblk;
1582
1583         BUG_ON(stop > PAGE_SIZE || stop < length);
1584
1585         head = page_buffers(page);
1586         bh = head;
1587         do {
1588                 unsigned int next_off = curr_off + bh->b_size;
1589
1590                 if (next_off > stop)
1591                         break;
1592
1593                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1594                         to_release++;
1595                         contiguous_blks++;
1596                         clear_buffer_delay(bh);
1597                 } else if (contiguous_blks) {
1598                         lblk = page->index <<
1599                                (PAGE_SHIFT - inode->i_blkbits);
1600                         lblk += (curr_off >> inode->i_blkbits) -
1601                                 contiguous_blks;
1602                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1603                         contiguous_blks = 0;
1604                 }
1605                 curr_off = next_off;
1606         } while ((bh = bh->b_this_page) != head);
1607
1608         if (contiguous_blks) {
1609                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1610                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1611                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1612         }
1613
1614         /* If we have released all the blocks belonging to a cluster, then we
1615          * need to release the reserved space for that cluster. */
1616         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1617         while (num_clusters > 0) {
1618                 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1619                         ((num_clusters - 1) << sbi->s_cluster_bits);
1620                 if (sbi->s_cluster_ratio == 1 ||
1621                     !ext4_find_delalloc_cluster(inode, lblk))
1622                         ext4_da_release_space(inode, 1);
1623
1624                 num_clusters--;
1625         }
1626 }
1627
1628 /*
1629  * Delayed allocation stuff
1630  */
1631
1632 struct mpage_da_data {
1633         struct inode *inode;
1634         struct writeback_control *wbc;
1635
1636         pgoff_t first_page;     /* The first page to write */
1637         pgoff_t next_page;      /* Current page to examine */
1638         pgoff_t last_page;      /* Last page to examine */
1639         /*
1640          * Extent to map - this can be after first_page because that can be
1641          * fully mapped. We somewhat abuse m_flags to store whether the extent
1642          * is delalloc or unwritten.
1643          */
1644         struct ext4_map_blocks map;
1645         struct ext4_io_submit io_submit;        /* IO submission data */
1646         unsigned int do_map:1;
1647 };
1648
1649 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1650                                        bool invalidate)
1651 {
1652         int nr_pages, i;
1653         pgoff_t index, end;
1654         struct pagevec pvec;
1655         struct inode *inode = mpd->inode;
1656         struct address_space *mapping = inode->i_mapping;
1657
1658         /* This is necessary when next_page == 0. */
1659         if (mpd->first_page >= mpd->next_page)
1660                 return;
1661
1662         index = mpd->first_page;
1663         end   = mpd->next_page - 1;
1664         if (invalidate) {
1665                 ext4_lblk_t start, last;
1666                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1667                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1668                 ext4_es_remove_extent(inode, start, last - start + 1);
1669         }
1670
1671         pagevec_init(&pvec, 0);
1672         while (index <= end) {
1673                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1674                 if (nr_pages == 0)
1675                         break;
1676                 for (i = 0; i < nr_pages; i++) {
1677                         struct page *page = pvec.pages[i];
1678                         if (page->index > end)
1679                                 break;
1680                         BUG_ON(!PageLocked(page));
1681                         BUG_ON(PageWriteback(page));
1682                         if (invalidate) {
1683                                 if (page_mapped(page))
1684                                         clear_page_dirty_for_io(page);
1685                                 block_invalidatepage(page, 0, PAGE_SIZE);
1686                                 ClearPageUptodate(page);
1687                         }
1688                         unlock_page(page);
1689                 }
1690                 index = pvec.pages[nr_pages - 1]->index + 1;
1691                 pagevec_release(&pvec);
1692         }
1693 }
1694
1695 static void ext4_print_free_blocks(struct inode *inode)
1696 {
1697         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1698         struct super_block *sb = inode->i_sb;
1699         struct ext4_inode_info *ei = EXT4_I(inode);
1700
1701         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1702                EXT4_C2B(EXT4_SB(inode->i_sb),
1703                         ext4_count_free_clusters(sb)));
1704         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1705         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1706                (long long) EXT4_C2B(EXT4_SB(sb),
1707                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1708         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1709                (long long) EXT4_C2B(EXT4_SB(sb),
1710                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1711         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1712         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1713                  ei->i_reserved_data_blocks);
1714         return;
1715 }
1716
1717 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1718 {
1719         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1720 }
1721
1722 /*
1723  * This function is grabs code from the very beginning of
1724  * ext4_map_blocks, but assumes that the caller is from delayed write
1725  * time. This function looks up the requested blocks and sets the
1726  * buffer delay bit under the protection of i_data_sem.
1727  */
1728 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1729                               struct ext4_map_blocks *map,
1730                               struct buffer_head *bh)
1731 {
1732         struct extent_status es;
1733         int retval;
1734         sector_t invalid_block = ~((sector_t) 0xffff);
1735 #ifdef ES_AGGRESSIVE_TEST
1736         struct ext4_map_blocks orig_map;
1737
1738         memcpy(&orig_map, map, sizeof(*map));
1739 #endif
1740
1741         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1742                 invalid_block = ~0;
1743
1744         map->m_flags = 0;
1745         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1746                   "logical block %lu\n", inode->i_ino, map->m_len,
1747                   (unsigned long) map->m_lblk);
1748
1749         /* Lookup extent status tree firstly */
1750         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1751                 if (ext4_es_is_hole(&es)) {
1752                         retval = 0;
1753                         down_read(&EXT4_I(inode)->i_data_sem);
1754                         goto add_delayed;
1755                 }
1756
1757                 /*
1758                  * Delayed extent could be allocated by fallocate.
1759                  * So we need to check it.
1760                  */
1761                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1762                         map_bh(bh, inode->i_sb, invalid_block);
1763                         set_buffer_new(bh);
1764                         set_buffer_delay(bh);
1765                         return 0;
1766                 }
1767
1768                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1769                 retval = es.es_len - (iblock - es.es_lblk);
1770                 if (retval > map->m_len)
1771                         retval = map->m_len;
1772                 map->m_len = retval;
1773                 if (ext4_es_is_written(&es))
1774                         map->m_flags |= EXT4_MAP_MAPPED;
1775                 else if (ext4_es_is_unwritten(&es))
1776                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1777                 else
1778                         BUG_ON(1);
1779
1780 #ifdef ES_AGGRESSIVE_TEST
1781                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1782 #endif
1783                 return retval;
1784         }
1785
1786         /*
1787          * Try to see if we can get the block without requesting a new
1788          * file system block.
1789          */
1790         down_read(&EXT4_I(inode)->i_data_sem);
1791         if (ext4_has_inline_data(inode))
1792                 retval = 0;
1793         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1794                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1795         else
1796                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1797
1798 add_delayed:
1799         if (retval == 0) {
1800                 int ret;
1801                 /*
1802                  * XXX: __block_prepare_write() unmaps passed block,
1803                  * is it OK?
1804                  */
1805                 /*
1806                  * If the block was allocated from previously allocated cluster,
1807                  * then we don't need to reserve it again. However we still need
1808                  * to reserve metadata for every block we're going to write.
1809                  */
1810                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1811                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1812                         ret = ext4_da_reserve_space(inode);
1813                         if (ret) {
1814                                 /* not enough space to reserve */
1815                                 retval = ret;
1816                                 goto out_unlock;
1817                         }
1818                 }
1819
1820                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1821                                             ~0, EXTENT_STATUS_DELAYED);
1822                 if (ret) {
1823                         retval = ret;
1824                         goto out_unlock;
1825                 }
1826
1827                 map_bh(bh, inode->i_sb, invalid_block);
1828                 set_buffer_new(bh);
1829                 set_buffer_delay(bh);
1830         } else if (retval > 0) {
1831                 int ret;
1832                 unsigned int status;
1833
1834                 if (unlikely(retval != map->m_len)) {
1835                         ext4_warning(inode->i_sb,
1836                                      "ES len assertion failed for inode "
1837                                      "%lu: retval %d != map->m_len %d",
1838                                      inode->i_ino, retval, map->m_len);
1839                         WARN_ON(1);
1840                 }
1841
1842                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1843                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1844                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1845                                             map->m_pblk, status);
1846                 if (ret != 0)
1847                         retval = ret;
1848         }
1849
1850 out_unlock:
1851         up_read((&EXT4_I(inode)->i_data_sem));
1852
1853         return retval;
1854 }
1855
1856 /*
1857  * This is a special get_block_t callback which is used by
1858  * ext4_da_write_begin().  It will either return mapped block or
1859  * reserve space for a single block.
1860  *
1861  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1862  * We also have b_blocknr = -1 and b_bdev initialized properly
1863  *
1864  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1865  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1866  * initialized properly.
1867  */
1868 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1869                            struct buffer_head *bh, int create)
1870 {
1871         struct ext4_map_blocks map;
1872         int ret = 0;
1873
1874         BUG_ON(create == 0);
1875         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1876
1877         map.m_lblk = iblock;
1878         map.m_len = 1;
1879
1880         /*
1881          * first, we need to know whether the block is allocated already
1882          * preallocated blocks are unmapped but should treated
1883          * the same as allocated blocks.
1884          */
1885         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1886         if (ret <= 0)
1887                 return ret;
1888
1889         map_bh(bh, inode->i_sb, map.m_pblk);
1890         ext4_update_bh_state(bh, map.m_flags);
1891
1892         if (buffer_unwritten(bh)) {
1893                 /* A delayed write to unwritten bh should be marked
1894                  * new and mapped.  Mapped ensures that we don't do
1895                  * get_block multiple times when we write to the same
1896                  * offset and new ensures that we do proper zero out
1897                  * for partial write.
1898                  */
1899                 set_buffer_new(bh);
1900                 set_buffer_mapped(bh);
1901         }
1902         return 0;
1903 }
1904
1905 static int bget_one(handle_t *handle, struct buffer_head *bh)
1906 {
1907         get_bh(bh);
1908         return 0;
1909 }
1910
1911 static int bput_one(handle_t *handle, struct buffer_head *bh)
1912 {
1913         put_bh(bh);
1914         return 0;
1915 }
1916
1917 static int __ext4_journalled_writepage(struct page *page,
1918                                        unsigned int len)
1919 {
1920         struct address_space *mapping = page->mapping;
1921         struct inode *inode = mapping->host;
1922         struct buffer_head *page_bufs = NULL;
1923         handle_t *handle = NULL;
1924         int ret = 0, err = 0;
1925         int inline_data = ext4_has_inline_data(inode);
1926         struct buffer_head *inode_bh = NULL;
1927
1928         ClearPageChecked(page);
1929
1930         if (inline_data) {
1931                 BUG_ON(page->index != 0);
1932                 BUG_ON(len > ext4_get_max_inline_size(inode));
1933                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1934                 if (inode_bh == NULL)
1935                         goto out;
1936         } else {
1937                 page_bufs = page_buffers(page);
1938                 if (!page_bufs) {
1939                         BUG();
1940                         goto out;
1941                 }
1942                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1943                                        NULL, bget_one);
1944         }
1945         /*
1946          * We need to release the page lock before we start the
1947          * journal, so grab a reference so the page won't disappear
1948          * out from under us.
1949          */
1950         get_page(page);
1951         unlock_page(page);
1952
1953         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1954                                     ext4_writepage_trans_blocks(inode));
1955         if (IS_ERR(handle)) {
1956                 ret = PTR_ERR(handle);
1957                 put_page(page);
1958                 goto out_no_pagelock;
1959         }
1960         BUG_ON(!ext4_handle_valid(handle));
1961
1962         lock_page(page);
1963         put_page(page);
1964         if (page->mapping != mapping) {
1965                 /* The page got truncated from under us */
1966                 ext4_journal_stop(handle);
1967                 ret = 0;
1968                 goto out;
1969         }
1970
1971         if (inline_data) {
1972                 BUFFER_TRACE(inode_bh, "get write access");
1973                 ret = ext4_journal_get_write_access(handle, inode_bh);
1974
1975                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1976
1977         } else {
1978                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1979                                              do_journal_get_write_access);
1980
1981                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1982                                              write_end_fn);
1983         }
1984         if (ret == 0)
1985                 ret = err;
1986         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1987         err = ext4_journal_stop(handle);
1988         if (!ret)
1989                 ret = err;
1990
1991         if (!ext4_has_inline_data(inode))
1992                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1993                                        NULL, bput_one);
1994         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1995 out:
1996         unlock_page(page);
1997 out_no_pagelock:
1998         brelse(inode_bh);
1999         return ret;
2000 }
2001
2002 /*
2003  * Note that we don't need to start a transaction unless we're journaling data
2004  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2005  * need to file the inode to the transaction's list in ordered mode because if
2006  * we are writing back data added by write(), the inode is already there and if
2007  * we are writing back data modified via mmap(), no one guarantees in which
2008  * transaction the data will hit the disk. In case we are journaling data, we
2009  * cannot start transaction directly because transaction start ranks above page
2010  * lock so we have to do some magic.
2011  *
2012  * This function can get called via...
2013  *   - ext4_writepages after taking page lock (have journal handle)
2014  *   - journal_submit_inode_data_buffers (no journal handle)
2015  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2016  *   - grab_page_cache when doing write_begin (have journal handle)
2017  *
2018  * We don't do any block allocation in this function. If we have page with
2019  * multiple blocks we need to write those buffer_heads that are mapped. This
2020  * is important for mmaped based write. So if we do with blocksize 1K
2021  * truncate(f, 1024);
2022  * a = mmap(f, 0, 4096);
2023  * a[0] = 'a';
2024  * truncate(f, 4096);
2025  * we have in the page first buffer_head mapped via page_mkwrite call back
2026  * but other buffer_heads would be unmapped but dirty (dirty done via the
2027  * do_wp_page). So writepage should write the first block. If we modify
2028  * the mmap area beyond 1024 we will again get a page_fault and the
2029  * page_mkwrite callback will do the block allocation and mark the
2030  * buffer_heads mapped.
2031  *
2032  * We redirty the page if we have any buffer_heads that is either delay or
2033  * unwritten in the page.
2034  *
2035  * We can get recursively called as show below.
2036  *
2037  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2038  *              ext4_writepage()
2039  *
2040  * But since we don't do any block allocation we should not deadlock.
2041  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2042  */
2043 static int ext4_writepage(struct page *page,
2044                           struct writeback_control *wbc)
2045 {
2046         int ret = 0;
2047         loff_t size;
2048         unsigned int len;
2049         struct buffer_head *page_bufs = NULL;
2050         struct inode *inode = page->mapping->host;
2051         struct ext4_io_submit io_submit;
2052         bool keep_towrite = false;
2053
2054         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2055                 ext4_invalidatepage(page, 0, PAGE_SIZE);
2056                 unlock_page(page);
2057                 return -EIO;
2058         }
2059
2060         trace_ext4_writepage(page);
2061         size = i_size_read(inode);
2062         if (page->index == size >> PAGE_SHIFT)
2063                 len = size & ~PAGE_MASK;
2064         else
2065                 len = PAGE_SIZE;
2066
2067         page_bufs = page_buffers(page);
2068         /*
2069          * We cannot do block allocation or other extent handling in this
2070          * function. If there are buffers needing that, we have to redirty
2071          * the page. But we may reach here when we do a journal commit via
2072          * journal_submit_inode_data_buffers() and in that case we must write
2073          * allocated buffers to achieve data=ordered mode guarantees.
2074          *
2075          * Also, if there is only one buffer per page (the fs block
2076          * size == the page size), if one buffer needs block
2077          * allocation or needs to modify the extent tree to clear the
2078          * unwritten flag, we know that the page can't be written at
2079          * all, so we might as well refuse the write immediately.
2080          * Unfortunately if the block size != page size, we can't as
2081          * easily detect this case using ext4_walk_page_buffers(), but
2082          * for the extremely common case, this is an optimization that
2083          * skips a useless round trip through ext4_bio_write_page().
2084          */
2085         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2086                                    ext4_bh_delay_or_unwritten)) {
2087                 redirty_page_for_writepage(wbc, page);
2088                 if ((current->flags & PF_MEMALLOC) ||
2089                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2090                         /*
2091                          * For memory cleaning there's no point in writing only
2092                          * some buffers. So just bail out. Warn if we came here
2093                          * from direct reclaim.
2094                          */
2095                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2096                                                         == PF_MEMALLOC);
2097                         unlock_page(page);
2098                         return 0;
2099                 }
2100                 keep_towrite = true;
2101         }
2102
2103         if (PageChecked(page) && ext4_should_journal_data(inode))
2104                 /*
2105                  * It's mmapped pagecache.  Add buffers and journal it.  There
2106                  * doesn't seem much point in redirtying the page here.
2107                  */
2108                 return __ext4_journalled_writepage(page, len);
2109
2110         ext4_io_submit_init(&io_submit, wbc);
2111         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2112         if (!io_submit.io_end) {
2113                 redirty_page_for_writepage(wbc, page);
2114                 unlock_page(page);
2115                 return -ENOMEM;
2116         }
2117         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2118         ext4_io_submit(&io_submit);
2119         /* Drop io_end reference we got from init */
2120         ext4_put_io_end_defer(io_submit.io_end);
2121         return ret;
2122 }
2123
2124 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2125 {
2126         int len;
2127         loff_t size;
2128         int err;
2129
2130         BUG_ON(page->index != mpd->first_page);
2131         clear_page_dirty_for_io(page);
2132         /*
2133          * We have to be very careful here!  Nothing protects writeback path
2134          * against i_size changes and the page can be writeably mapped into
2135          * page tables. So an application can be growing i_size and writing
2136          * data through mmap while writeback runs. clear_page_dirty_for_io()
2137          * write-protects our page in page tables and the page cannot get
2138          * written to again until we release page lock. So only after
2139          * clear_page_dirty_for_io() we are safe to sample i_size for
2140          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2141          * on the barrier provided by TestClearPageDirty in
2142          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2143          * after page tables are updated.
2144          */
2145         size = i_size_read(mpd->inode);
2146         if (page->index == size >> PAGE_SHIFT)
2147                 len = size & ~PAGE_MASK;
2148         else
2149                 len = PAGE_SIZE;
2150         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2151         if (!err)
2152                 mpd->wbc->nr_to_write--;
2153         mpd->first_page++;
2154
2155         return err;
2156 }
2157
2158 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2159
2160 /*
2161  * mballoc gives us at most this number of blocks...
2162  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2163  * The rest of mballoc seems to handle chunks up to full group size.
2164  */
2165 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2166
2167 /*
2168  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2169  *
2170  * @mpd - extent of blocks
2171  * @lblk - logical number of the block in the file
2172  * @bh - buffer head we want to add to the extent
2173  *
2174  * The function is used to collect contig. blocks in the same state. If the
2175  * buffer doesn't require mapping for writeback and we haven't started the
2176  * extent of buffers to map yet, the function returns 'true' immediately - the
2177  * caller can write the buffer right away. Otherwise the function returns true
2178  * if the block has been added to the extent, false if the block couldn't be
2179  * added.
2180  */
2181 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2182                                    struct buffer_head *bh)
2183 {
2184         struct ext4_map_blocks *map = &mpd->map;
2185
2186         /* Buffer that doesn't need mapping for writeback? */
2187         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2188             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2189                 /* So far no extent to map => we write the buffer right away */
2190                 if (map->m_len == 0)
2191                         return true;
2192                 return false;
2193         }
2194
2195         /* First block in the extent? */
2196         if (map->m_len == 0) {
2197                 /* We cannot map unless handle is started... */
2198                 if (!mpd->do_map)
2199                         return false;
2200                 map->m_lblk = lblk;
2201                 map->m_len = 1;
2202                 map->m_flags = bh->b_state & BH_FLAGS;
2203                 return true;
2204         }
2205
2206         /* Don't go larger than mballoc is willing to allocate */
2207         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2208                 return false;
2209
2210         /* Can we merge the block to our big extent? */
2211         if (lblk == map->m_lblk + map->m_len &&
2212             (bh->b_state & BH_FLAGS) == map->m_flags) {
2213                 map->m_len++;
2214                 return true;
2215         }
2216         return false;
2217 }
2218
2219 /*
2220  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2221  *
2222  * @mpd - extent of blocks for mapping
2223  * @head - the first buffer in the page
2224  * @bh - buffer we should start processing from
2225  * @lblk - logical number of the block in the file corresponding to @bh
2226  *
2227  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2228  * the page for IO if all buffers in this page were mapped and there's no
2229  * accumulated extent of buffers to map or add buffers in the page to the
2230  * extent of buffers to map. The function returns 1 if the caller can continue
2231  * by processing the next page, 0 if it should stop adding buffers to the
2232  * extent to map because we cannot extend it anymore. It can also return value
2233  * < 0 in case of error during IO submission.
2234  */
2235 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2236                                    struct buffer_head *head,
2237                                    struct buffer_head *bh,
2238                                    ext4_lblk_t lblk)
2239 {
2240         struct inode *inode = mpd->inode;
2241         int err;
2242         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2243                                                         >> inode->i_blkbits;
2244
2245         do {
2246                 BUG_ON(buffer_locked(bh));
2247
2248                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2249                         /* Found extent to map? */
2250                         if (mpd->map.m_len)
2251                                 return 0;
2252                         /* Buffer needs mapping and handle is not started? */
2253                         if (!mpd->do_map)
2254                                 return 0;
2255                         /* Everything mapped so far and we hit EOF */
2256                         break;
2257                 }
2258         } while (lblk++, (bh = bh->b_this_page) != head);
2259         /* So far everything mapped? Submit the page for IO. */
2260         if (mpd->map.m_len == 0) {
2261                 err = mpage_submit_page(mpd, head->b_page);
2262                 if (err < 0)
2263                         return err;
2264         }
2265         return lblk < blocks;
2266 }
2267
2268 /*
2269  * mpage_map_buffers - update buffers corresponding to changed extent and
2270  *                     submit fully mapped pages for IO
2271  *
2272  * @mpd - description of extent to map, on return next extent to map
2273  *
2274  * Scan buffers corresponding to changed extent (we expect corresponding pages
2275  * to be already locked) and update buffer state according to new extent state.
2276  * We map delalloc buffers to their physical location, clear unwritten bits,
2277  * and mark buffers as uninit when we perform writes to unwritten extents
2278  * and do extent conversion after IO is finished. If the last page is not fully
2279  * mapped, we update @map to the next extent in the last page that needs
2280  * mapping. Otherwise we submit the page for IO.
2281  */
2282 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2283 {
2284         struct pagevec pvec;
2285         int nr_pages, i;
2286         struct inode *inode = mpd->inode;
2287         struct buffer_head *head, *bh;
2288         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2289         pgoff_t start, end;
2290         ext4_lblk_t lblk;
2291         sector_t pblock;
2292         int err;
2293
2294         start = mpd->map.m_lblk >> bpp_bits;
2295         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2296         lblk = start << bpp_bits;
2297         pblock = mpd->map.m_pblk;
2298
2299         pagevec_init(&pvec, 0);
2300         while (start <= end) {
2301                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2302                                           PAGEVEC_SIZE);
2303                 if (nr_pages == 0)
2304                         break;
2305                 for (i = 0; i < nr_pages; i++) {
2306                         struct page *page = pvec.pages[i];
2307
2308                         if (page->index > end)
2309                                 break;
2310                         /* Up to 'end' pages must be contiguous */
2311                         BUG_ON(page->index != start);
2312                         bh = head = page_buffers(page);
2313                         do {
2314                                 if (lblk < mpd->map.m_lblk)
2315                                         continue;
2316                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2317                                         /*
2318                                          * Buffer after end of mapped extent.
2319                                          * Find next buffer in the page to map.
2320                                          */
2321                                         mpd->map.m_len = 0;
2322                                         mpd->map.m_flags = 0;
2323                                         /*
2324                                          * FIXME: If dioread_nolock supports
2325                                          * blocksize < pagesize, we need to make
2326                                          * sure we add size mapped so far to
2327                                          * io_end->size as the following call
2328                                          * can submit the page for IO.
2329                                          */
2330                                         err = mpage_process_page_bufs(mpd, head,
2331                                                                       bh, lblk);
2332                                         pagevec_release(&pvec);
2333                                         if (err > 0)
2334                                                 err = 0;
2335                                         return err;
2336                                 }
2337                                 if (buffer_delay(bh)) {
2338                                         clear_buffer_delay(bh);
2339                                         bh->b_blocknr = pblock++;
2340                                 }
2341                                 clear_buffer_unwritten(bh);
2342                         } while (lblk++, (bh = bh->b_this_page) != head);
2343
2344                         /*
2345                          * FIXME: This is going to break if dioread_nolock
2346                          * supports blocksize < pagesize as we will try to
2347                          * convert potentially unmapped parts of inode.
2348                          */
2349                         mpd->io_submit.io_end->size += PAGE_SIZE;
2350                         /* Page fully mapped - let IO run! */
2351                         err = mpage_submit_page(mpd, page);
2352                         if (err < 0) {
2353                                 pagevec_release(&pvec);
2354                                 return err;
2355                         }
2356                         start++;
2357                 }
2358                 pagevec_release(&pvec);
2359         }
2360         /* Extent fully mapped and matches with page boundary. We are done. */
2361         mpd->map.m_len = 0;
2362         mpd->map.m_flags = 0;
2363         return 0;
2364 }
2365
2366 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2367 {
2368         struct inode *inode = mpd->inode;
2369         struct ext4_map_blocks *map = &mpd->map;
2370         int get_blocks_flags;
2371         int err, dioread_nolock;
2372
2373         trace_ext4_da_write_pages_extent(inode, map);
2374         /*
2375          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2376          * to convert an unwritten extent to be initialized (in the case
2377          * where we have written into one or more preallocated blocks).  It is
2378          * possible that we're going to need more metadata blocks than
2379          * previously reserved. However we must not fail because we're in
2380          * writeback and there is nothing we can do about it so it might result
2381          * in data loss.  So use reserved blocks to allocate metadata if
2382          * possible.
2383          *
2384          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2385          * the blocks in question are delalloc blocks.  This indicates
2386          * that the blocks and quotas has already been checked when
2387          * the data was copied into the page cache.
2388          */
2389         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2390                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2391                            EXT4_GET_BLOCKS_IO_SUBMIT;
2392         dioread_nolock = ext4_should_dioread_nolock(inode);
2393         if (dioread_nolock)
2394                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2395         if (map->m_flags & (1 << BH_Delay))
2396                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2397
2398         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2399         if (err < 0)
2400                 return err;
2401         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2402                 if (!mpd->io_submit.io_end->handle &&
2403                     ext4_handle_valid(handle)) {
2404                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2405                         handle->h_rsv_handle = NULL;
2406                 }
2407                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2408         }
2409
2410         BUG_ON(map->m_len == 0);
2411         if (map->m_flags & EXT4_MAP_NEW) {
2412                 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2413                                    map->m_len);
2414         }
2415         return 0;
2416 }
2417
2418 /*
2419  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2420  *                               mpd->len and submit pages underlying it for IO
2421  *
2422  * @handle - handle for journal operations
2423  * @mpd - extent to map
2424  * @give_up_on_write - we set this to true iff there is a fatal error and there
2425  *                     is no hope of writing the data. The caller should discard
2426  *                     dirty pages to avoid infinite loops.
2427  *
2428  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2429  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2430  * them to initialized or split the described range from larger unwritten
2431  * extent. Note that we need not map all the described range since allocation
2432  * can return less blocks or the range is covered by more unwritten extents. We
2433  * cannot map more because we are limited by reserved transaction credits. On
2434  * the other hand we always make sure that the last touched page is fully
2435  * mapped so that it can be written out (and thus forward progress is
2436  * guaranteed). After mapping we submit all mapped pages for IO.
2437  */
2438 static int mpage_map_and_submit_extent(handle_t *handle,
2439                                        struct mpage_da_data *mpd,
2440                                        bool *give_up_on_write)
2441 {
2442         struct inode *inode = mpd->inode;
2443         struct ext4_map_blocks *map = &mpd->map;
2444         int err;
2445         loff_t disksize;
2446         int progress = 0;
2447
2448         mpd->io_submit.io_end->offset =
2449                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2450         do {
2451                 err = mpage_map_one_extent(handle, mpd);
2452                 if (err < 0) {
2453                         struct super_block *sb = inode->i_sb;
2454
2455                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2456                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2457                                 goto invalidate_dirty_pages;
2458                         /*
2459                          * Let the uper layers retry transient errors.
2460                          * In the case of ENOSPC, if ext4_count_free_blocks()
2461                          * is non-zero, a commit should free up blocks.
2462                          */
2463                         if ((err == -ENOMEM) ||
2464                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2465                                 if (progress)
2466                                         goto update_disksize;
2467                                 return err;
2468                         }
2469                         ext4_msg(sb, KERN_CRIT,
2470                                  "Delayed block allocation failed for "
2471                                  "inode %lu at logical offset %llu with"
2472                                  " max blocks %u with error %d",
2473                                  inode->i_ino,
2474                                  (unsigned long long)map->m_lblk,
2475                                  (unsigned)map->m_len, -err);
2476                         ext4_msg(sb, KERN_CRIT,
2477                                  "This should not happen!! Data will "
2478                                  "be lost\n");
2479                         if (err == -ENOSPC)
2480                                 ext4_print_free_blocks(inode);
2481                 invalidate_dirty_pages:
2482                         *give_up_on_write = true;
2483                         return err;
2484                 }
2485                 progress = 1;
2486                 /*
2487                  * Update buffer state, submit mapped pages, and get us new
2488                  * extent to map
2489                  */
2490                 err = mpage_map_and_submit_buffers(mpd);
2491                 if (err < 0)
2492                         goto update_disksize;
2493         } while (map->m_len);
2494
2495 update_disksize:
2496         /*
2497          * Update on-disk size after IO is submitted.  Races with
2498          * truncate are avoided by checking i_size under i_data_sem.
2499          */
2500         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2501         if (disksize > EXT4_I(inode)->i_disksize) {
2502                 int err2;
2503                 loff_t i_size;
2504
2505                 down_write(&EXT4_I(inode)->i_data_sem);
2506                 i_size = i_size_read(inode);
2507                 if (disksize > i_size)
2508                         disksize = i_size;
2509                 if (disksize > EXT4_I(inode)->i_disksize)
2510                         EXT4_I(inode)->i_disksize = disksize;
2511                 up_write(&EXT4_I(inode)->i_data_sem);
2512                 err2 = ext4_mark_inode_dirty(handle, inode);
2513                 if (err2)
2514                         ext4_error(inode->i_sb,
2515                                    "Failed to mark inode %lu dirty",
2516                                    inode->i_ino);
2517                 if (!err)
2518                         err = err2;
2519         }
2520         return err;
2521 }
2522
2523 /*
2524  * Calculate the total number of credits to reserve for one writepages
2525  * iteration. This is called from ext4_writepages(). We map an extent of
2526  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2527  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2528  * bpp - 1 blocks in bpp different extents.
2529  */
2530 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2531 {
2532         int bpp = ext4_journal_blocks_per_page(inode);
2533
2534         return ext4_meta_trans_blocks(inode,
2535                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2536 }
2537
2538 /*
2539  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2540  *                               and underlying extent to map
2541  *
2542  * @mpd - where to look for pages
2543  *
2544  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2545  * IO immediately. When we find a page which isn't mapped we start accumulating
2546  * extent of buffers underlying these pages that needs mapping (formed by
2547  * either delayed or unwritten buffers). We also lock the pages containing
2548  * these buffers. The extent found is returned in @mpd structure (starting at
2549  * mpd->lblk with length mpd->len blocks).
2550  *
2551  * Note that this function can attach bios to one io_end structure which are
2552  * neither logically nor physically contiguous. Although it may seem as an
2553  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2554  * case as we need to track IO to all buffers underlying a page in one io_end.
2555  */
2556 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2557 {
2558         struct address_space *mapping = mpd->inode->i_mapping;
2559         struct pagevec pvec;
2560         unsigned int nr_pages;
2561         long left = mpd->wbc->nr_to_write;
2562         pgoff_t index = mpd->first_page;
2563         pgoff_t end = mpd->last_page;
2564         int tag;
2565         int i, err = 0;
2566         int blkbits = mpd->inode->i_blkbits;
2567         ext4_lblk_t lblk;
2568         struct buffer_head *head;
2569
2570         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2571                 tag = PAGECACHE_TAG_TOWRITE;
2572         else
2573                 tag = PAGECACHE_TAG_DIRTY;
2574
2575         pagevec_init(&pvec, 0);
2576         mpd->map.m_len = 0;
2577         mpd->next_page = index;
2578         while (index <= end) {
2579                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2580                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2581                 if (nr_pages == 0)
2582                         goto out;
2583
2584                 for (i = 0; i < nr_pages; i++) {
2585                         struct page *page = pvec.pages[i];
2586
2587                         /*
2588                          * At this point, the page may be truncated or
2589                          * invalidated (changing page->mapping to NULL), or
2590                          * even swizzled back from swapper_space to tmpfs file
2591                          * mapping. However, page->index will not change
2592                          * because we have a reference on the page.
2593                          */
2594                         if (page->index > end)
2595                                 goto out;
2596
2597                         /*
2598                          * Accumulated enough dirty pages? This doesn't apply
2599                          * to WB_SYNC_ALL mode. For integrity sync we have to
2600                          * keep going because someone may be concurrently
2601                          * dirtying pages, and we might have synced a lot of
2602                          * newly appeared dirty pages, but have not synced all
2603                          * of the old dirty pages.
2604                          */
2605                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2606                                 goto out;
2607
2608                         /* If we can't merge this page, we are done. */
2609                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2610                                 goto out;
2611
2612                         lock_page(page);
2613                         /*
2614                          * If the page is no longer dirty, or its mapping no
2615                          * longer corresponds to inode we are writing (which
2616                          * means it has been truncated or invalidated), or the
2617                          * page is already under writeback and we are not doing
2618                          * a data integrity writeback, skip the page
2619                          */
2620                         if (!PageDirty(page) ||
2621                             (PageWriteback(page) &&
2622                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2623                             unlikely(page->mapping != mapping)) {
2624                                 unlock_page(page);
2625                                 continue;
2626                         }
2627
2628                         wait_on_page_writeback(page);
2629                         BUG_ON(PageWriteback(page));
2630
2631                         if (mpd->map.m_len == 0)
2632                                 mpd->first_page = page->index;
2633                         mpd->next_page = page->index + 1;
2634                         /* Add all dirty buffers to mpd */
2635                         lblk = ((ext4_lblk_t)page->index) <<
2636                                 (PAGE_SHIFT - blkbits);
2637                         head = page_buffers(page);
2638                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2639                         if (err <= 0)
2640                                 goto out;
2641                         err = 0;
2642                         left--;
2643                 }
2644                 pagevec_release(&pvec);
2645                 cond_resched();
2646         }
2647         return 0;
2648 out:
2649         pagevec_release(&pvec);
2650         return err;
2651 }
2652
2653 static int __writepage(struct page *page, struct writeback_control *wbc,
2654                        void *data)
2655 {
2656         struct address_space *mapping = data;
2657         int ret = ext4_writepage(page, wbc);
2658         mapping_set_error(mapping, ret);
2659         return ret;
2660 }
2661
2662 static int ext4_writepages(struct address_space *mapping,
2663                            struct writeback_control *wbc)
2664 {
2665         pgoff_t writeback_index = 0;
2666         long nr_to_write = wbc->nr_to_write;
2667         int range_whole = 0;
2668         int cycled = 1;
2669         handle_t *handle = NULL;
2670         struct mpage_da_data mpd;
2671         struct inode *inode = mapping->host;
2672         int needed_blocks, rsv_blocks = 0, ret = 0;
2673         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2674         bool done;
2675         struct blk_plug plug;
2676         bool give_up_on_write = false;
2677
2678         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2679                 return -EIO;
2680
2681         percpu_down_read(&sbi->s_journal_flag_rwsem);
2682         trace_ext4_writepages(inode, wbc);
2683
2684         if (dax_mapping(mapping)) {
2685                 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2686                                                   wbc);
2687                 goto out_writepages;
2688         }
2689
2690         /*
2691          * No pages to write? This is mainly a kludge to avoid starting
2692          * a transaction for special inodes like journal inode on last iput()
2693          * because that could violate lock ordering on umount
2694          */
2695         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2696                 goto out_writepages;
2697
2698         if (ext4_should_journal_data(inode)) {
2699                 struct blk_plug plug;
2700
2701                 blk_start_plug(&plug);
2702                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2703                 blk_finish_plug(&plug);
2704                 goto out_writepages;
2705         }
2706
2707         /*
2708          * If the filesystem has aborted, it is read-only, so return
2709          * right away instead of dumping stack traces later on that
2710          * will obscure the real source of the problem.  We test
2711          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2712          * the latter could be true if the filesystem is mounted
2713          * read-only, and in that case, ext4_writepages should
2714          * *never* be called, so if that ever happens, we would want
2715          * the stack trace.
2716          */
2717         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2718                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2719                 ret = -EROFS;
2720                 goto out_writepages;
2721         }
2722
2723         if (ext4_should_dioread_nolock(inode)) {
2724                 /*
2725                  * We may need to convert up to one extent per block in
2726                  * the page and we may dirty the inode.
2727                  */
2728                 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2729         }
2730
2731         /*
2732          * If we have inline data and arrive here, it means that
2733          * we will soon create the block for the 1st page, so
2734          * we'd better clear the inline data here.
2735          */
2736         if (ext4_has_inline_data(inode)) {
2737                 /* Just inode will be modified... */
2738                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2739                 if (IS_ERR(handle)) {
2740                         ret = PTR_ERR(handle);
2741                         goto out_writepages;
2742                 }
2743                 BUG_ON(ext4_test_inode_state(inode,
2744                                 EXT4_STATE_MAY_INLINE_DATA));
2745                 ext4_destroy_inline_data(handle, inode);
2746                 ext4_journal_stop(handle);
2747         }
2748
2749         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2750                 range_whole = 1;
2751
2752         if (wbc->range_cyclic) {
2753                 writeback_index = mapping->writeback_index;
2754                 if (writeback_index)
2755                         cycled = 0;
2756                 mpd.first_page = writeback_index;
2757                 mpd.last_page = -1;
2758         } else {
2759                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2760                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2761         }
2762
2763         mpd.inode = inode;
2764         mpd.wbc = wbc;
2765         ext4_io_submit_init(&mpd.io_submit, wbc);
2766 retry:
2767         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2768                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2769         done = false;
2770         blk_start_plug(&plug);
2771
2772         /*
2773          * First writeback pages that don't need mapping - we can avoid
2774          * starting a transaction unnecessarily and also avoid being blocked
2775          * in the block layer on device congestion while having transaction
2776          * started.
2777          */
2778         mpd.do_map = 0;
2779         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2780         if (!mpd.io_submit.io_end) {
2781                 ret = -ENOMEM;
2782                 goto unplug;
2783         }
2784         ret = mpage_prepare_extent_to_map(&mpd);
2785         /* Submit prepared bio */
2786         ext4_io_submit(&mpd.io_submit);
2787         ext4_put_io_end_defer(mpd.io_submit.io_end);
2788         mpd.io_submit.io_end = NULL;
2789         /* Unlock pages we didn't use */
2790         mpage_release_unused_pages(&mpd, false);
2791         if (ret < 0)
2792                 goto unplug;
2793
2794         while (!done && mpd.first_page <= mpd.last_page) {
2795                 /* For each extent of pages we use new io_end */
2796                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2797                 if (!mpd.io_submit.io_end) {
2798                         ret = -ENOMEM;
2799                         break;
2800                 }
2801
2802                 /*
2803                  * We have two constraints: We find one extent to map and we
2804                  * must always write out whole page (makes a difference when
2805                  * blocksize < pagesize) so that we don't block on IO when we
2806                  * try to write out the rest of the page. Journalled mode is
2807                  * not supported by delalloc.
2808                  */
2809                 BUG_ON(ext4_should_journal_data(inode));
2810                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2811
2812                 /* start a new transaction */
2813                 handle = ext4_journal_start_with_reserve(inode,
2814                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2815                 if (IS_ERR(handle)) {
2816                         ret = PTR_ERR(handle);
2817                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2818                                "%ld pages, ino %lu; err %d", __func__,
2819                                 wbc->nr_to_write, inode->i_ino, ret);
2820                         /* Release allocated io_end */
2821                         ext4_put_io_end(mpd.io_submit.io_end);
2822                         mpd.io_submit.io_end = NULL;
2823                         break;
2824                 }
2825                 mpd.do_map = 1;
2826
2827                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2828                 ret = mpage_prepare_extent_to_map(&mpd);
2829                 if (!ret) {
2830                         if (mpd.map.m_len)
2831                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2832                                         &give_up_on_write);
2833                         else {
2834                                 /*
2835                                  * We scanned the whole range (or exhausted
2836                                  * nr_to_write), submitted what was mapped and
2837                                  * didn't find anything needing mapping. We are
2838                                  * done.
2839                                  */
2840                                 done = true;
2841                         }
2842                 }
2843                 /*
2844                  * Caution: If the handle is synchronous,
2845                  * ext4_journal_stop() can wait for transaction commit
2846                  * to finish which may depend on writeback of pages to
2847                  * complete or on page lock to be released.  In that
2848                  * case, we have to wait until after after we have
2849                  * submitted all the IO, released page locks we hold,
2850                  * and dropped io_end reference (for extent conversion
2851                  * to be able to complete) before stopping the handle.
2852                  */
2853                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2854                         ext4_journal_stop(handle);
2855                         handle = NULL;
2856                         mpd.do_map = 0;
2857                 }
2858                 /* Submit prepared bio */
2859                 ext4_io_submit(&mpd.io_submit);
2860                 /* Unlock pages we didn't use */
2861                 mpage_release_unused_pages(&mpd, give_up_on_write);
2862                 /*
2863                  * Drop our io_end reference we got from init. We have
2864                  * to be careful and use deferred io_end finishing if
2865                  * we are still holding the transaction as we can
2866                  * release the last reference to io_end which may end
2867                  * up doing unwritten extent conversion.
2868                  */
2869                 if (handle) {
2870                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2871                         ext4_journal_stop(handle);
2872                 } else
2873                         ext4_put_io_end(mpd.io_submit.io_end);
2874                 mpd.io_submit.io_end = NULL;
2875
2876                 if (ret == -ENOSPC && sbi->s_journal) {
2877                         /*
2878                          * Commit the transaction which would
2879                          * free blocks released in the transaction
2880                          * and try again
2881                          */
2882                         jbd2_journal_force_commit_nested(sbi->s_journal);
2883                         ret = 0;
2884                         continue;
2885                 }
2886                 /* Fatal error - ENOMEM, EIO... */
2887                 if (ret)
2888                         break;
2889         }
2890 unplug:
2891         blk_finish_plug(&plug);
2892         if (!ret && !cycled && wbc->nr_to_write > 0) {
2893                 cycled = 1;
2894                 mpd.last_page = writeback_index - 1;
2895                 mpd.first_page = 0;
2896                 goto retry;
2897         }
2898
2899         /* Update index */
2900         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2901                 /*
2902                  * Set the writeback_index so that range_cyclic
2903                  * mode will write it back later
2904                  */
2905                 mapping->writeback_index = mpd.first_page;
2906
2907 out_writepages:
2908         trace_ext4_writepages_result(inode, wbc, ret,
2909                                      nr_to_write - wbc->nr_to_write);
2910         percpu_up_read(&sbi->s_journal_flag_rwsem);
2911         return ret;
2912 }
2913
2914 static int ext4_nonda_switch(struct super_block *sb)
2915 {
2916         s64 free_clusters, dirty_clusters;
2917         struct ext4_sb_info *sbi = EXT4_SB(sb);
2918
2919         /*
2920          * switch to non delalloc mode if we are running low
2921          * on free block. The free block accounting via percpu
2922          * counters can get slightly wrong with percpu_counter_batch getting
2923          * accumulated on each CPU without updating global counters
2924          * Delalloc need an accurate free block accounting. So switch
2925          * to non delalloc when we are near to error range.
2926          */
2927         free_clusters =
2928                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2929         dirty_clusters =
2930                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2931         /*
2932          * Start pushing delalloc when 1/2 of free blocks are dirty.
2933          */
2934         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2935                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2936
2937         if (2 * free_clusters < 3 * dirty_clusters ||
2938             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2939                 /*
2940                  * free block count is less than 150% of dirty blocks
2941                  * or free blocks is less than watermark
2942                  */
2943                 return 1;
2944         }
2945         return 0;
2946 }
2947
2948 /* We always reserve for an inode update; the superblock could be there too */
2949 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2950 {
2951         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2952                 return 1;
2953
2954         if (pos + len <= 0x7fffffffULL)
2955                 return 1;
2956
2957         /* We might need to update the superblock to set LARGE_FILE */
2958         return 2;
2959 }
2960
2961 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2962                                loff_t pos, unsigned len, unsigned flags,
2963                                struct page **pagep, void **fsdata)
2964 {
2965         int ret, retries = 0;
2966         struct page *page;
2967         pgoff_t index;
2968         struct inode *inode = mapping->host;
2969         handle_t *handle;
2970
2971         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2972                 return -EIO;
2973
2974         index = pos >> PAGE_SHIFT;
2975
2976         if (ext4_nonda_switch(inode->i_sb) ||
2977             S_ISLNK(inode->i_mode)) {
2978                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2979                 return ext4_write_begin(file, mapping, pos,
2980                                         len, flags, pagep, fsdata);
2981         }
2982         *fsdata = (void *)0;
2983         trace_ext4_da_write_begin(inode, pos, len, flags);
2984
2985         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2986                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2987                                                       pos, len, flags,
2988                                                       pagep, fsdata);
2989                 if (ret < 0)
2990                         return ret;
2991                 if (ret == 1)
2992                         return 0;
2993         }
2994
2995         /*
2996          * grab_cache_page_write_begin() can take a long time if the
2997          * system is thrashing due to memory pressure, or if the page
2998          * is being written back.  So grab it first before we start
2999          * the transaction handle.  This also allows us to allocate
3000          * the page (if needed) without using GFP_NOFS.
3001          */
3002 retry_grab:
3003         page = grab_cache_page_write_begin(mapping, index, flags);
3004         if (!page)
3005                 return -ENOMEM;
3006         unlock_page(page);
3007
3008         /*
3009          * With delayed allocation, we don't log the i_disksize update
3010          * if there is delayed block allocation. But we still need
3011          * to journalling the i_disksize update if writes to the end
3012          * of file which has an already mapped buffer.
3013          */
3014 retry_journal:
3015         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3016                                 ext4_da_write_credits(inode, pos, len));
3017         if (IS_ERR(handle)) {
3018                 put_page(page);
3019                 return PTR_ERR(handle);
3020         }
3021
3022         lock_page(page);
3023         if (page->mapping != mapping) {
3024                 /* The page got truncated from under us */
3025                 unlock_page(page);
3026                 put_page(page);
3027                 ext4_journal_stop(handle);
3028                 goto retry_grab;
3029         }
3030         /* In case writeback began while the page was unlocked */
3031         wait_for_stable_page(page);
3032
3033 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3034         ret = ext4_block_write_begin(page, pos, len,
3035                                      ext4_da_get_block_prep);
3036 #else
3037         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3038 #endif
3039         if (ret < 0) {
3040                 unlock_page(page);
3041                 ext4_journal_stop(handle);
3042                 /*
3043                  * block_write_begin may have instantiated a few blocks
3044                  * outside i_size.  Trim these off again. Don't need
3045                  * i_size_read because we hold i_mutex.
3046                  */
3047                 if (pos + len > inode->i_size)
3048                         ext4_truncate_failed_write(inode);
3049
3050                 if (ret == -ENOSPC &&
3051                     ext4_should_retry_alloc(inode->i_sb, &retries))
3052                         goto retry_journal;
3053
3054                 put_page(page);
3055                 return ret;
3056         }
3057
3058         *pagep = page;
3059         return ret;
3060 }
3061
3062 /*
3063  * Check if we should update i_disksize
3064  * when write to the end of file but not require block allocation
3065  */
3066 static int ext4_da_should_update_i_disksize(struct page *page,
3067                                             unsigned long offset)
3068 {
3069         struct buffer_head *bh;
3070         struct inode *inode = page->mapping->host;
3071         unsigned int idx;
3072         int i;
3073
3074         bh = page_buffers(page);
3075         idx = offset >> inode->i_blkbits;
3076
3077         for (i = 0; i < idx; i++)
3078                 bh = bh->b_this_page;
3079
3080         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3081                 return 0;
3082         return 1;
3083 }
3084
3085 static int ext4_da_write_end(struct file *file,
3086                              struct address_space *mapping,
3087                              loff_t pos, unsigned len, unsigned copied,
3088                              struct page *page, void *fsdata)
3089 {
3090         struct inode *inode = mapping->host;
3091         int ret = 0, ret2;
3092         handle_t *handle = ext4_journal_current_handle();
3093         loff_t new_i_size;
3094         unsigned long start, end;
3095         int write_mode = (int)(unsigned long)fsdata;
3096
3097         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3098                 return ext4_write_end(file, mapping, pos,
3099                                       len, copied, page, fsdata);
3100
3101         trace_ext4_da_write_end(inode, pos, len, copied);
3102         start = pos & (PAGE_SIZE - 1);
3103         end = start + copied - 1;
3104
3105         /*
3106          * generic_write_end() will run mark_inode_dirty() if i_size
3107          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3108          * into that.
3109          */
3110         new_i_size = pos + copied;
3111         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3112                 if (ext4_has_inline_data(inode) ||
3113                     ext4_da_should_update_i_disksize(page, end)) {
3114                         ext4_update_i_disksize(inode, new_i_size);
3115                         /* We need to mark inode dirty even if
3116                          * new_i_size is less that inode->i_size
3117                          * bu greater than i_disksize.(hint delalloc)
3118                          */
3119                         ext4_mark_inode_dirty(handle, inode);
3120                 }
3121         }
3122
3123         if (write_mode != CONVERT_INLINE_DATA &&
3124             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3125             ext4_has_inline_data(inode))
3126                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3127                                                      page);
3128         else
3129                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3130                                                         page, fsdata);
3131
3132         copied = ret2;
3133         if (ret2 < 0)
3134                 ret = ret2;
3135         ret2 = ext4_journal_stop(handle);
3136         if (!ret)
3137                 ret = ret2;
3138
3139         return ret ? ret : copied;
3140 }
3141
3142 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3143                                    unsigned int length)
3144 {
3145         /*
3146          * Drop reserved blocks
3147          */
3148         BUG_ON(!PageLocked(page));
3149         if (!page_has_buffers(page))
3150                 goto out;
3151
3152         ext4_da_page_release_reservation(page, offset, length);
3153
3154 out:
3155         ext4_invalidatepage(page, offset, length);
3156
3157         return;
3158 }
3159
3160 /*
3161  * Force all delayed allocation blocks to be allocated for a given inode.
3162  */
3163 int ext4_alloc_da_blocks(struct inode *inode)
3164 {
3165         trace_ext4_alloc_da_blocks(inode);
3166
3167         if (!EXT4_I(inode)->i_reserved_data_blocks)
3168                 return 0;
3169
3170         /*
3171          * We do something simple for now.  The filemap_flush() will
3172          * also start triggering a write of the data blocks, which is
3173          * not strictly speaking necessary (and for users of
3174          * laptop_mode, not even desirable).  However, to do otherwise
3175          * would require replicating code paths in:
3176          *
3177          * ext4_writepages() ->
3178          *    write_cache_pages() ---> (via passed in callback function)
3179          *        __mpage_da_writepage() -->
3180          *           mpage_add_bh_to_extent()
3181          *           mpage_da_map_blocks()
3182          *
3183          * The problem is that write_cache_pages(), located in
3184          * mm/page-writeback.c, marks pages clean in preparation for
3185          * doing I/O, which is not desirable if we're not planning on
3186          * doing I/O at all.
3187          *
3188          * We could call write_cache_pages(), and then redirty all of
3189          * the pages by calling redirty_page_for_writepage() but that
3190          * would be ugly in the extreme.  So instead we would need to
3191          * replicate parts of the code in the above functions,
3192          * simplifying them because we wouldn't actually intend to
3193          * write out the pages, but rather only collect contiguous
3194          * logical block extents, call the multi-block allocator, and
3195          * then update the buffer heads with the block allocations.
3196          *
3197          * For now, though, we'll cheat by calling filemap_flush(),
3198          * which will map the blocks, and start the I/O, but not
3199          * actually wait for the I/O to complete.
3200          */
3201         return filemap_flush(inode->i_mapping);
3202 }
3203
3204 /*
3205  * bmap() is special.  It gets used by applications such as lilo and by
3206  * the swapper to find the on-disk block of a specific piece of data.
3207  *
3208  * Naturally, this is dangerous if the block concerned is still in the
3209  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3210  * filesystem and enables swap, then they may get a nasty shock when the
3211  * data getting swapped to that swapfile suddenly gets overwritten by
3212  * the original zero's written out previously to the journal and
3213  * awaiting writeback in the kernel's buffer cache.
3214  *
3215  * So, if we see any bmap calls here on a modified, data-journaled file,
3216  * take extra steps to flush any blocks which might be in the cache.
3217  */
3218 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3219 {
3220         struct inode *inode = mapping->host;
3221         journal_t *journal;
3222         int err;
3223
3224         /*
3225          * We can get here for an inline file via the FIBMAP ioctl
3226          */
3227         if (ext4_has_inline_data(inode))
3228                 return 0;
3229
3230         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3231                         test_opt(inode->i_sb, DELALLOC)) {
3232                 /*
3233                  * With delalloc we want to sync the file
3234                  * so that we can make sure we allocate
3235                  * blocks for file
3236                  */
3237                 filemap_write_and_wait(mapping);
3238         }
3239
3240         if (EXT4_JOURNAL(inode) &&
3241             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3242                 /*
3243                  * This is a REALLY heavyweight approach, but the use of
3244                  * bmap on dirty files is expected to be extremely rare:
3245                  * only if we run lilo or swapon on a freshly made file
3246                  * do we expect this to happen.
3247                  *
3248                  * (bmap requires CAP_SYS_RAWIO so this does not
3249                  * represent an unprivileged user DOS attack --- we'd be
3250                  * in trouble if mortal users could trigger this path at
3251                  * will.)
3252                  *
3253                  * NB. EXT4_STATE_JDATA is not set on files other than
3254                  * regular files.  If somebody wants to bmap a directory
3255                  * or symlink and gets confused because the buffer
3256                  * hasn't yet been flushed to disk, they deserve
3257                  * everything they get.
3258                  */
3259
3260                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3261                 journal = EXT4_JOURNAL(inode);
3262                 jbd2_journal_lock_updates(journal);
3263                 err = jbd2_journal_flush(journal);
3264                 jbd2_journal_unlock_updates(journal);
3265
3266                 if (err)
3267                         return 0;
3268         }
3269
3270         return generic_block_bmap(mapping, block, ext4_get_block);
3271 }
3272
3273 static int ext4_readpage(struct file *file, struct page *page)
3274 {
3275         int ret = -EAGAIN;
3276         struct inode *inode = page->mapping->host;
3277
3278         trace_ext4_readpage(page);
3279
3280         if (ext4_has_inline_data(inode))
3281                 ret = ext4_readpage_inline(inode, page);
3282
3283         if (ret == -EAGAIN)
3284                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3285
3286         return ret;
3287 }
3288
3289 static int
3290 ext4_readpages(struct file *file, struct address_space *mapping,
3291                 struct list_head *pages, unsigned nr_pages)
3292 {
3293         struct inode *inode = mapping->host;
3294
3295         /* If the file has inline data, no need to do readpages. */
3296         if (ext4_has_inline_data(inode))
3297                 return 0;
3298
3299         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3300 }
3301
3302 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3303                                 unsigned int length)
3304 {
3305         trace_ext4_invalidatepage(page, offset, length);
3306
3307         /* No journalling happens on data buffers when this function is used */
3308         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3309
3310         block_invalidatepage(page, offset, length);
3311 }
3312
3313 static int __ext4_journalled_invalidatepage(struct page *page,
3314                                             unsigned int offset,
3315                                             unsigned int length)
3316 {
3317         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3318
3319         trace_ext4_journalled_invalidatepage(page, offset, length);
3320
3321         /*
3322          * If it's a full truncate we just forget about the pending dirtying
3323          */
3324         if (offset == 0 && length == PAGE_SIZE)
3325                 ClearPageChecked(page);
3326
3327         return jbd2_journal_invalidatepage(journal, page, offset, length);
3328 }
3329
3330 /* Wrapper for aops... */
3331 static void ext4_journalled_invalidatepage(struct page *page,
3332                                            unsigned int offset,
3333                                            unsigned int length)
3334 {
3335         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3336 }
3337
3338 static int ext4_releasepage(struct page *page, gfp_t wait)
3339 {
3340         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3341
3342         trace_ext4_releasepage(page);
3343
3344         /* Page has dirty journalled data -> cannot release */
3345         if (PageChecked(page))
3346                 return 0;
3347         if (journal)
3348                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3349         else
3350                 return try_to_free_buffers(page);
3351 }
3352
3353 #ifdef CONFIG_FS_DAX
3354 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3355                             unsigned flags, struct iomap *iomap)
3356 {
3357         struct block_device *bdev;
3358         unsigned int blkbits = inode->i_blkbits;
3359         unsigned long first_block = offset >> blkbits;
3360         unsigned long last_block = (offset + length - 1) >> blkbits;
3361         struct ext4_map_blocks map;
3362         int ret;
3363
3364         if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3365                 return -ERANGE;
3366
3367         map.m_lblk = first_block;
3368         map.m_len = last_block - first_block + 1;
3369
3370         if (!(flags & IOMAP_WRITE)) {
3371                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3372         } else {
3373                 int dio_credits;
3374                 handle_t *handle;
3375                 int retries = 0;
3376
3377                 /* Trim mapping request to maximum we can map at once for DIO */
3378                 if (map.m_len > DIO_MAX_BLOCKS)
3379                         map.m_len = DIO_MAX_BLOCKS;
3380                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3381 retry:
3382                 /*
3383                  * Either we allocate blocks and then we don't get unwritten
3384                  * extent so we have reserved enough credits, or the blocks
3385                  * are already allocated and unwritten and in that case
3386                  * extent conversion fits in the credits as well.
3387                  */
3388                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3389                                             dio_credits);
3390                 if (IS_ERR(handle))
3391                         return PTR_ERR(handle);
3392
3393                 ret = ext4_map_blocks(handle, inode, &map,
3394                                       EXT4_GET_BLOCKS_CREATE_ZERO);
3395                 if (ret < 0) {
3396                         ext4_journal_stop(handle);
3397                         if (ret == -ENOSPC &&
3398                             ext4_should_retry_alloc(inode->i_sb, &retries))
3399                                 goto retry;
3400                         return ret;
3401                 }
3402
3403                 /*
3404                  * If we added blocks beyond i_size, we need to make sure they
3405                  * will get truncated if we crash before updating i_size in
3406                  * ext4_iomap_end(). For faults we don't need to do that (and
3407                  * even cannot because for orphan list operations inode_lock is
3408                  * required) - if we happen to instantiate block beyond i_size,
3409                  * it is because we race with truncate which has already added
3410                  * the inode to the orphan list.
3411                  */
3412                 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3413                     (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3414                         int err;
3415
3416                         err = ext4_orphan_add(handle, inode);
3417                         if (err < 0) {
3418                                 ext4_journal_stop(handle);
3419                                 return err;
3420                         }
3421                 }
3422                 ext4_journal_stop(handle);
3423         }
3424
3425         iomap->flags = 0;
3426         bdev = inode->i_sb->s_bdev;
3427         iomap->bdev = bdev;
3428         if (blk_queue_dax(bdev->bd_queue))
3429                 iomap->dax_dev = fs_dax_get_by_host(bdev->bd_disk->disk_name);
3430         else
3431                 iomap->dax_dev = NULL;
3432         iomap->offset = first_block << blkbits;
3433
3434         if (ret == 0) {
3435                 iomap->type = IOMAP_HOLE;
3436                 iomap->blkno = IOMAP_NULL_BLOCK;
3437                 iomap->length = (u64)map.m_len << blkbits;
3438         } else {
3439                 if (map.m_flags & EXT4_MAP_MAPPED) {
3440                         iomap->type = IOMAP_MAPPED;
3441                 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3442                         iomap->type = IOMAP_UNWRITTEN;
3443                 } else {
3444                         WARN_ON_ONCE(1);
3445                         return -EIO;
3446                 }
3447                 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3448                 iomap->length = (u64)map.m_len << blkbits;
3449         }
3450
3451         if (map.m_flags & EXT4_MAP_NEW)
3452                 iomap->flags |= IOMAP_F_NEW;
3453         return 0;
3454 }
3455
3456 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3457                           ssize_t written, unsigned flags, struct iomap *iomap)
3458 {
3459         int ret = 0;
3460         handle_t *handle;
3461         int blkbits = inode->i_blkbits;
3462         bool truncate = false;
3463
3464         fs_put_dax(iomap->dax_dev);
3465         if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3466                 return 0;
3467
3468         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3469         if (IS_ERR(handle)) {
3470                 ret = PTR_ERR(handle);
3471                 goto orphan_del;
3472         }
3473         if (ext4_update_inode_size(inode, offset + written))
3474                 ext4_mark_inode_dirty(handle, inode);
3475         /*
3476          * We may need to truncate allocated but not written blocks beyond EOF.
3477          */
3478         if (iomap->offset + iomap->length > 
3479             ALIGN(inode->i_size, 1 << blkbits)) {
3480                 ext4_lblk_t written_blk, end_blk;
3481
3482                 written_blk = (offset + written) >> blkbits;
3483                 end_blk = (offset + length) >> blkbits;
3484                 if (written_blk < end_blk && ext4_can_truncate(inode))
3485                         truncate = true;
3486         }
3487         /*
3488          * Remove inode from orphan list if we were extending a inode and
3489          * everything went fine.
3490          */
3491         if (!truncate && inode->i_nlink &&
3492             !list_empty(&EXT4_I(inode)->i_orphan))
3493                 ext4_orphan_del(handle, inode);
3494         ext4_journal_stop(handle);
3495         if (truncate) {
3496                 ext4_truncate_failed_write(inode);
3497 orphan_del:
3498                 /*
3499                  * If truncate failed early the inode might still be on the
3500                  * orphan list; we need to make sure the inode is removed from
3501                  * the orphan list in that case.
3502                  */
3503                 if (inode->i_nlink)
3504                         ext4_orphan_del(NULL, inode);
3505         }
3506         return ret;
3507 }
3508
3509 const struct iomap_ops ext4_iomap_ops = {
3510         .iomap_begin            = ext4_iomap_begin,
3511         .iomap_end              = ext4_iomap_end,
3512 };
3513
3514 #endif
3515
3516 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3517                             ssize_t size, void *private)
3518 {
3519         ext4_io_end_t *io_end = private;
3520
3521         /* if not async direct IO just return */
3522         if (!io_end)
3523                 return 0;
3524
3525         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3526                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3527                   io_end, io_end->inode->i_ino, iocb, offset, size);
3528
3529         /*
3530          * Error during AIO DIO. We cannot convert unwritten extents as the
3531          * data was not written. Just clear the unwritten flag and drop io_end.
3532          */
3533         if (size <= 0) {
3534                 ext4_clear_io_unwritten_flag(io_end);
3535                 size = 0;
3536         }
3537         io_end->offset = offset;
3538         io_end->size = size;
3539         ext4_put_io_end(io_end);
3540
3541         return 0;
3542 }
3543
3544 /*
3545  * Handling of direct IO writes.
3546  *
3547  * For ext4 extent files, ext4 will do direct-io write even to holes,
3548  * preallocated extents, and those write extend the file, no need to
3549  * fall back to buffered IO.
3550  *
3551  * For holes, we fallocate those blocks, mark them as unwritten
3552  * If those blocks were preallocated, we mark sure they are split, but
3553  * still keep the range to write as unwritten.
3554  *
3555  * The unwritten extents will be converted to written when DIO is completed.
3556  * For async direct IO, since the IO may still pending when return, we
3557  * set up an end_io call back function, which will do the conversion
3558  * when async direct IO completed.
3559  *
3560  * If the O_DIRECT write will extend the file then add this inode to the
3561  * orphan list.  So recovery will truncate it back to the original size
3562  * if the machine crashes during the write.
3563  *
3564  */
3565 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3566 {
3567         struct file *file = iocb->ki_filp;
3568         struct inode *inode = file->f_mapping->host;
3569         struct ext4_inode_info *ei = EXT4_I(inode);
3570         ssize_t ret;
3571         loff_t offset = iocb->ki_pos;
3572         size_t count = iov_iter_count(iter);
3573         int overwrite = 0;
3574         get_block_t *get_block_func = NULL;
3575         int dio_flags = 0;
3576         loff_t final_size = offset + count;
3577         int orphan = 0;
3578         handle_t *handle;
3579
3580         if (final_size > inode->i_size) {
3581                 /* Credits for sb + inode write */
3582                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3583                 if (IS_ERR(handle)) {
3584                         ret = PTR_ERR(handle);
3585                         goto out;
3586                 }
3587                 ret = ext4_orphan_add(handle, inode);
3588                 if (ret) {
3589                         ext4_journal_stop(handle);
3590                         goto out;
3591                 }
3592                 orphan = 1;
3593                 ei->i_disksize = inode->i_size;
3594                 ext4_journal_stop(handle);
3595         }
3596
3597         BUG_ON(iocb->private == NULL);
3598
3599         /*
3600          * Make all waiters for direct IO properly wait also for extent
3601          * conversion. This also disallows race between truncate() and
3602          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3603          */
3604         inode_dio_begin(inode);
3605
3606         /* If we do a overwrite dio, i_mutex locking can be released */
3607         overwrite = *((int *)iocb->private);
3608
3609         if (overwrite)
3610                 inode_unlock(inode);
3611
3612         /*
3613          * For extent mapped files we could direct write to holes and fallocate.
3614          *
3615          * Allocated blocks to fill the hole are marked as unwritten to prevent
3616          * parallel buffered read to expose the stale data before DIO complete
3617          * the data IO.
3618          *
3619          * As to previously fallocated extents, ext4 get_block will just simply
3620          * mark the buffer mapped but still keep the extents unwritten.
3621          *
3622          * For non AIO case, we will convert those unwritten extents to written
3623          * after return back from blockdev_direct_IO. That way we save us from
3624          * allocating io_end structure and also the overhead of offloading
3625          * the extent convertion to a workqueue.
3626          *
3627          * For async DIO, the conversion needs to be deferred when the
3628          * IO is completed. The ext4 end_io callback function will be
3629          * called to take care of the conversion work.  Here for async
3630          * case, we allocate an io_end structure to hook to the iocb.
3631          */
3632         iocb->private = NULL;
3633         if (overwrite)
3634                 get_block_func = ext4_dio_get_block_overwrite;
3635         else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3636                    round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3637                 get_block_func = ext4_dio_get_block;
3638                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3639         } else if (is_sync_kiocb(iocb)) {
3640                 get_block_func = ext4_dio_get_block_unwritten_sync;
3641                 dio_flags = DIO_LOCKING;
3642         } else {
3643                 get_block_func = ext4_dio_get_block_unwritten_async;
3644                 dio_flags = DIO_LOCKING;
3645         }
3646         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3647                                    get_block_func, ext4_end_io_dio, NULL,
3648                                    dio_flags);
3649
3650         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3651                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3652                 int err;
3653                 /*
3654                  * for non AIO case, since the IO is already
3655                  * completed, we could do the conversion right here
3656                  */
3657                 err = ext4_convert_unwritten_extents(NULL, inode,
3658                                                      offset, ret);
3659                 if (err < 0)
3660                         ret = err;
3661                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3662         }
3663
3664         inode_dio_end(inode);
3665         /* take i_mutex locking again if we do a ovewrite dio */
3666         if (overwrite)
3667                 inode_lock(inode);
3668
3669         if (ret < 0 && final_size > inode->i_size)
3670                 ext4_truncate_failed_write(inode);
3671
3672         /* Handle extending of i_size after direct IO write */
3673         if (orphan) {
3674                 int err;
3675
3676                 /* Credits for sb + inode write */
3677                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3678                 if (IS_ERR(handle)) {
3679                         /* This is really bad luck. We've written the data
3680                          * but cannot extend i_size. Bail out and pretend
3681                          * the write failed... */
3682                         ret = PTR_ERR(handle);
3683                         if (inode->i_nlink)
3684                                 ext4_orphan_del(NULL, inode);
3685
3686                         goto out;
3687                 }
3688                 if (inode->i_nlink)
3689                         ext4_orphan_del(handle, inode);
3690                 if (ret > 0) {
3691                         loff_t end = offset + ret;
3692                         if (end > inode->i_size) {
3693                                 ei->i_disksize = end;
3694                                 i_size_write(inode, end);
3695                                 /*
3696                                  * We're going to return a positive `ret'
3697                                  * here due to non-zero-length I/O, so there's
3698                                  * no way of reporting error returns from
3699                                  * ext4_mark_inode_dirty() to userspace.  So
3700                                  * ignore it.
3701                                  */
3702                                 ext4_mark_inode_dirty(handle, inode);
3703                         }
3704                 }
3705                 err = ext4_journal_stop(handle);
3706                 if (ret == 0)
3707                         ret = err;
3708         }
3709 out:
3710         return ret;
3711 }
3712
3713 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3714 {
3715         struct address_space *mapping = iocb->ki_filp->f_mapping;
3716         struct inode *inode = mapping->host;
3717         size_t count = iov_iter_count(iter);
3718         ssize_t ret;
3719
3720         /*
3721          * Shared inode_lock is enough for us - it protects against concurrent
3722          * writes & truncates and since we take care of writing back page cache,
3723          * we are protected against page writeback as well.
3724          */
3725         inode_lock_shared(inode);
3726         ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3727                                            iocb->ki_pos + count - 1);
3728         if (ret)
3729                 goto out_unlock;
3730         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3731                                    iter, ext4_dio_get_block, NULL, NULL, 0);
3732 out_unlock:
3733         inode_unlock_shared(inode);
3734         return ret;
3735 }
3736
3737 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3738 {
3739         struct file *file = iocb->ki_filp;
3740         struct inode *inode = file->f_mapping->host;
3741         size_t count = iov_iter_count(iter);
3742         loff_t offset = iocb->ki_pos;
3743         ssize_t ret;
3744
3745 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3746         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3747                 return 0;
3748 #endif
3749
3750         /*
3751          * If we are doing data journalling we don't support O_DIRECT
3752          */
3753         if (ext4_should_journal_data(inode))
3754                 return 0;
3755
3756         /* Let buffer I/O handle the inline data case. */
3757         if (ext4_has_inline_data(inode))
3758                 return 0;
3759
3760         /* DAX uses iomap path now */
3761         if (WARN_ON_ONCE(IS_DAX(inode)))
3762                 return 0;
3763
3764         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3765         if (iov_iter_rw(iter) == READ)
3766                 ret = ext4_direct_IO_read(iocb, iter);
3767         else
3768                 ret = ext4_direct_IO_write(iocb, iter);
3769         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3770         return ret;
3771 }
3772
3773 /*
3774  * Pages can be marked dirty completely asynchronously from ext4's journalling
3775  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3776  * much here because ->set_page_dirty is called under VFS locks.  The page is
3777  * not necessarily locked.
3778  *
3779  * We cannot just dirty the page and leave attached buffers clean, because the
3780  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3781  * or jbddirty because all the journalling code will explode.
3782  *
3783  * So what we do is to mark the page "pending dirty" and next time writepage
3784  * is called, propagate that into the buffers appropriately.
3785  */
3786 static int ext4_journalled_set_page_dirty(struct page *page)
3787 {
3788         SetPageChecked(page);
3789         return __set_page_dirty_nobuffers(page);
3790 }
3791
3792 static int ext4_set_page_dirty(struct page *page)
3793 {
3794         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3795         WARN_ON_ONCE(!page_has_buffers(page));
3796         return __set_page_dirty_buffers(page);
3797 }
3798
3799 static const struct address_space_operations ext4_aops = {
3800         .readpage               = ext4_readpage,
3801         .readpages              = ext4_readpages,
3802         .writepage              = ext4_writepage,
3803         .writepages             = ext4_writepages,
3804         .write_begin            = ext4_write_begin,
3805         .write_end              = ext4_write_end,
3806         .set_page_dirty         = ext4_set_page_dirty,
3807         .bmap                   = ext4_bmap,
3808         .invalidatepage         = ext4_invalidatepage,
3809         .releasepage            = ext4_releasepage,
3810         .direct_IO              = ext4_direct_IO,
3811         .migratepage            = buffer_migrate_page,
3812         .is_partially_uptodate  = block_is_partially_uptodate,
3813         .error_remove_page      = generic_error_remove_page,
3814 };
3815
3816 static const struct address_space_operations ext4_journalled_aops = {
3817         .readpage               = ext4_readpage,
3818         .readpages              = ext4_readpages,
3819         .writepage              = ext4_writepage,
3820         .writepages             = ext4_writepages,
3821         .write_begin            = ext4_write_begin,
3822         .write_end              = ext4_journalled_write_end,
3823         .set_page_dirty         = ext4_journalled_set_page_dirty,
3824         .bmap                   = ext4_bmap,
3825         .invalidatepage         = ext4_journalled_invalidatepage,
3826         .releasepage            = ext4_releasepage,
3827         .direct_IO              = ext4_direct_IO,
3828         .is_partially_uptodate  = block_is_partially_uptodate,
3829         .error_remove_page      = generic_error_remove_page,
3830 };
3831
3832 static const struct address_space_operations ext4_da_aops = {
3833         .readpage               = ext4_readpage,
3834         .readpages              = ext4_readpages,
3835         .writepage              = ext4_writepage,
3836         .writepages             = ext4_writepages,
3837         .write_begin            = ext4_da_write_begin,
3838         .write_end              = ext4_da_write_end,
3839         .set_page_dirty         = ext4_set_page_dirty,
3840         .bmap                   = ext4_bmap,
3841         .invalidatepage         = ext4_da_invalidatepage,
3842         .releasepage            = ext4_releasepage,
3843         .direct_IO              = ext4_direct_IO,
3844         .migratepage            = buffer_migrate_page,
3845         .is_partially_uptodate  = block_is_partially_uptodate,
3846         .error_remove_page      = generic_error_remove_page,
3847 };
3848
3849 void ext4_set_aops(struct inode *inode)
3850 {
3851         switch (ext4_inode_journal_mode(inode)) {
3852         case EXT4_INODE_ORDERED_DATA_MODE:
3853         case EXT4_INODE_WRITEBACK_DATA_MODE:
3854                 break;
3855         case EXT4_INODE_JOURNAL_DATA_MODE:
3856                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3857                 return;
3858         default:
3859                 BUG();
3860         }
3861         if (test_opt(inode->i_sb, DELALLOC))
3862                 inode->i_mapping->a_ops = &ext4_da_aops;
3863         else
3864                 inode->i_mapping->a_ops = &ext4_aops;
3865 }
3866
3867 static int __ext4_block_zero_page_range(handle_t *handle,
3868                 struct address_space *mapping, loff_t from, loff_t length)
3869 {
3870         ext4_fsblk_t index = from >> PAGE_SHIFT;
3871         unsigned offset = from & (PAGE_SIZE-1);
3872         unsigned blocksize, pos;
3873         ext4_lblk_t iblock;
3874         struct inode *inode = mapping->host;
3875         struct buffer_head *bh;
3876         struct page *page;
3877         int err = 0;
3878
3879         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3880                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3881         if (!page)
3882                 return -ENOMEM;
3883
3884         blocksize = inode->i_sb->s_blocksize;
3885
3886         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3887
3888         if (!page_has_buffers(page))
3889                 create_empty_buffers(page, blocksize, 0);
3890
3891         /* Find the buffer that contains "offset" */
3892         bh = page_buffers(page);
3893         pos = blocksize;
3894         while (offset >= pos) {
3895                 bh = bh->b_this_page;
3896                 iblock++;
3897                 pos += blocksize;
3898         }
3899         if (buffer_freed(bh)) {
3900                 BUFFER_TRACE(bh, "freed: skip");
3901                 goto unlock;
3902         }
3903         if (!buffer_mapped(bh)) {
3904                 BUFFER_TRACE(bh, "unmapped");
3905                 ext4_get_block(inode, iblock, bh, 0);
3906                 /* unmapped? It's a hole - nothing to do */
3907                 if (!buffer_mapped(bh)) {
3908                         BUFFER_TRACE(bh, "still unmapped");
3909                         goto unlock;
3910                 }
3911         }
3912
3913         /* Ok, it's mapped. Make sure it's up-to-date */
3914         if (PageUptodate(page))
3915                 set_buffer_uptodate(bh);
3916
3917         if (!buffer_uptodate(bh)) {
3918                 err = -EIO;
3919                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3920                 wait_on_buffer(bh);
3921                 /* Uhhuh. Read error. Complain and punt. */
3922                 if (!buffer_uptodate(bh))
3923                         goto unlock;
3924                 if (S_ISREG(inode->i_mode) &&
3925                     ext4_encrypted_inode(inode)) {
3926                         /* We expect the key to be set. */
3927                         BUG_ON(!fscrypt_has_encryption_key(inode));
3928                         BUG_ON(blocksize != PAGE_SIZE);
3929                         WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3930                                                 page, PAGE_SIZE, 0, page->index));
3931                 }
3932         }
3933         if (ext4_should_journal_data(inode)) {
3934                 BUFFER_TRACE(bh, "get write access");
3935                 err = ext4_journal_get_write_access(handle, bh);
3936                 if (err)
3937                         goto unlock;
3938         }
3939         zero_user(page, offset, length);
3940         BUFFER_TRACE(bh, "zeroed end of block");
3941
3942         if (ext4_should_journal_data(inode)) {
3943                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3944         } else {
3945                 err = 0;
3946                 mark_buffer_dirty(bh);
3947                 if (ext4_should_order_data(inode))
3948                         err = ext4_jbd2_inode_add_write(handle, inode);
3949         }
3950
3951 unlock:
3952         unlock_page(page);
3953         put_page(page);
3954         return err;
3955 }
3956
3957 /*
3958  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3959  * starting from file offset 'from'.  The range to be zero'd must
3960  * be contained with in one block.  If the specified range exceeds
3961  * the end of the block it will be shortened to end of the block
3962  * that cooresponds to 'from'
3963  */
3964 static int ext4_block_zero_page_range(handle_t *handle,
3965                 struct address_space *mapping, loff_t from, loff_t length)
3966 {
3967         struct inode *inode = mapping->host;
3968         unsigned offset = from & (PAGE_SIZE-1);
3969         unsigned blocksize = inode->i_sb->s_blocksize;
3970         unsigned max = blocksize - (offset & (blocksize - 1));
3971
3972         /*
3973          * correct length if it does not fall between
3974          * 'from' and the end of the block
3975          */
3976         if (length > max || length < 0)
3977                 length = max;
3978
3979         if (IS_DAX(inode)) {
3980                 return iomap_zero_range(inode, from, length, NULL,
3981                                         &ext4_iomap_ops);
3982         }
3983         return __ext4_block_zero_page_range(handle, mapping, from, length);
3984 }
3985
3986 /*
3987  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3988  * up to the end of the block which corresponds to `from'.
3989  * This required during truncate. We need to physically zero the tail end
3990  * of that block so it doesn't yield old data if the file is later grown.
3991  */
3992 static int ext4_block_truncate_page(handle_t *handle,
3993                 struct address_space *mapping, loff_t from)
3994 {
3995         unsigned offset = from & (PAGE_SIZE-1);
3996         unsigned length;
3997         unsigned blocksize;
3998         struct inode *inode = mapping->host;
3999
4000         /* If we are processing an encrypted inode during orphan list handling */
4001         if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4002                 return 0;
4003
4004         blocksize = inode->i_sb->s_blocksize;
4005         length = blocksize - (offset & (blocksize - 1));
4006
4007         return ext4_block_zero_page_range(handle, mapping, from, length);
4008 }
4009
4010 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4011                              loff_t lstart, loff_t length)
4012 {
4013         struct super_block *sb = inode->i_sb;
4014         struct address_space *mapping = inode->i_mapping;
4015         unsigned partial_start, partial_end;
4016         ext4_fsblk_t start, end;
4017         loff_t byte_end = (lstart + length - 1);
4018         int err = 0;
4019
4020         partial_start = lstart & (sb->s_blocksize - 1);
4021         partial_end = byte_end & (sb->s_blocksize - 1);
4022
4023         start = lstart >> sb->s_blocksize_bits;
4024         end = byte_end >> sb->s_blocksize_bits;
4025
4026         /* Handle partial zero within the single block */
4027         if (start == end &&
4028             (partial_start || (partial_end != sb->s_blocksize - 1))) {
4029                 err = ext4_block_zero_page_range(handle, mapping,
4030                                                  lstart, length);
4031                 return err;
4032         }
4033         /* Handle partial zero out on the start of the range */
4034         if (partial_start) {
4035                 err = ext4_block_zero_page_range(handle, mapping,
4036                                                  lstart, sb->s_blocksize);
4037                 if (err)
4038                         return err;
4039         }
4040         /* Handle partial zero out on the end of the range */
4041         if (partial_end != sb->s_blocksize - 1)
4042                 err = ext4_block_zero_page_range(handle, mapping,
4043                                                  byte_end - partial_end,
4044                                                  partial_end + 1);
4045         return err;
4046 }
4047
4048 int ext4_can_truncate(struct inode *inode)
4049 {
4050         if (S_ISREG(inode->i_mode))
4051                 return 1;
4052         if (S_ISDIR(inode->i_mode))
4053                 return 1;
4054         if (S_ISLNK(inode->i_mode))
4055                 return !ext4_inode_is_fast_symlink(inode);
4056         return 0;
4057 }
4058
4059 /*
4060  * We have to make sure i_disksize gets properly updated before we truncate
4061  * page cache due to hole punching or zero range. Otherwise i_disksize update
4062  * can get lost as it may have been postponed to submission of writeback but
4063  * that will never happen after we truncate page cache.
4064  */
4065 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4066                                       loff_t len)
4067 {
4068         handle_t *handle;
4069         loff_t size = i_size_read(inode);
4070
4071         WARN_ON(!inode_is_locked(inode));
4072         if (offset > size || offset + len < size)
4073                 return 0;
4074
4075         if (EXT4_I(inode)->i_disksize >= size)
4076                 return 0;
4077
4078         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4079         if (IS_ERR(handle))
4080                 return PTR_ERR(handle);
4081         ext4_update_i_disksize(inode, size);
4082         ext4_mark_inode_dirty(handle, inode);
4083         ext4_journal_stop(handle);
4084
4085         return 0;
4086 }
4087
4088 /*
4089  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4090  * associated with the given offset and length
4091  *
4092  * @inode:  File inode
4093  * @offset: The offset where the hole will begin
4094  * @len:    The length of the hole
4095  *
4096  * Returns: 0 on success or negative on failure
4097  */
4098
4099 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4100 {
4101         struct super_block *sb = inode->i_sb;
4102         ext4_lblk_t first_block, stop_block;
4103         struct address_space *mapping = inode->i_mapping;
4104         loff_t first_block_offset, last_block_offset;
4105         handle_t *handle;
4106         unsigned int credits;
4107         int ret = 0;
4108
4109         if (!S_ISREG(inode->i_mode))
4110                 return -EOPNOTSUPP;
4111
4112         trace_ext4_punch_hole(inode, offset, length, 0);
4113
4114         /*
4115          * Write out all dirty pages to avoid race conditions
4116          * Then release them.
4117          */
4118         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4119                 ret = filemap_write_and_wait_range(mapping, offset,
4120                                                    offset + length - 1);
4121                 if (ret)
4122                         return ret;
4123         }
4124
4125         inode_lock(inode);
4126
4127         /* No need to punch hole beyond i_size */
4128         if (offset >= inode->i_size)
4129                 goto out_mutex;
4130
4131         /*
4132          * If the hole extends beyond i_size, set the hole
4133          * to end after the page that contains i_size
4134          */
4135         if (offset + length > inode->i_size) {
4136                 length = inode->i_size +
4137                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4138                    offset;
4139         }
4140
4141         if (offset & (sb->s_blocksize - 1) ||
4142             (offset + length) & (sb->s_blocksize - 1)) {
4143                 /*
4144                  * Attach jinode to inode for jbd2 if we do any zeroing of
4145                  * partial block
4146                  */
4147                 ret = ext4_inode_attach_jinode(inode);
4148                 if (ret < 0)
4149                         goto out_mutex;
4150
4151         }
4152
4153         /* Wait all existing dio workers, newcomers will block on i_mutex */
4154         ext4_inode_block_unlocked_dio(inode);
4155         inode_dio_wait(inode);
4156
4157         /*
4158          * Prevent page faults from reinstantiating pages we have released from
4159          * page cache.
4160          */
4161         down_write(&EXT4_I(inode)->i_mmap_sem);
4162         first_block_offset = round_up(offset, sb->s_blocksize);
4163         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4164
4165         /* Now release the pages and zero block aligned part of pages*/
4166         if (last_block_offset > first_block_offset) {
4167                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4168                 if (ret)
4169                         goto out_dio;
4170                 truncate_pagecache_range(inode, first_block_offset,
4171                                          last_block_offset);
4172         }
4173
4174         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4175                 credits = ext4_writepage_trans_blocks(inode);
4176         else
4177                 credits = ext4_blocks_for_truncate(inode);
4178         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4179         if (IS_ERR(handle)) {
4180                 ret = PTR_ERR(handle);
4181                 ext4_std_error(sb, ret);
4182                 goto out_dio;
4183         }
4184
4185         ret = ext4_zero_partial_blocks(handle, inode, offset,
4186                                        length);
4187         if (ret)
4188                 goto out_stop;
4189
4190         first_block = (offset + sb->s_blocksize - 1) >>
4191                 EXT4_BLOCK_SIZE_BITS(sb);
4192         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4193
4194         /* If there are no blocks to remove, return now */
4195         if (first_block >= stop_block)
4196                 goto out_stop;
4197
4198         down_write(&EXT4_I(inode)->i_data_sem);
4199         ext4_discard_preallocations(inode);
4200
4201         ret = ext4_es_remove_extent(inode, first_block,
4202                                     stop_block - first_block);
4203         if (ret) {
4204                 up_write(&EXT4_I(inode)->i_data_sem);
4205                 goto out_stop;
4206         }
4207
4208         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4209                 ret = ext4_ext_remove_space(inode, first_block,
4210                                             stop_block - 1);
4211         else
4212                 ret = ext4_ind_remove_space(handle, inode, first_block,
4213                                             stop_block);
4214
4215         up_write(&EXT4_I(inode)->i_data_sem);
4216         if (IS_SYNC(inode))
4217                 ext4_handle_sync(handle);
4218
4219         inode->i_mtime = inode->i_ctime = current_time(inode);
4220         ext4_mark_inode_dirty(handle, inode);
4221 out_stop:
4222         ext4_journal_stop(handle);
4223 out_dio:
4224         up_write(&EXT4_I(inode)->i_mmap_sem);
4225         ext4_inode_resume_unlocked_dio(inode);
4226 out_mutex:
4227         inode_unlock(inode);
4228         return ret;
4229 }
4230
4231 int ext4_inode_attach_jinode(struct inode *inode)
4232 {
4233         struct ext4_inode_info *ei = EXT4_I(inode);
4234         struct jbd2_inode *jinode;
4235
4236         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4237                 return 0;
4238
4239         jinode = jbd2_alloc_inode(GFP_KERNEL);
4240         spin_lock(&inode->i_lock);
4241         if (!ei->jinode) {
4242                 if (!jinode) {
4243                         spin_unlock(&inode->i_lock);
4244                         return -ENOMEM;
4245                 }
4246                 ei->jinode = jinode;
4247                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4248                 jinode = NULL;
4249         }
4250         spin_unlock(&inode->i_lock);
4251         if (unlikely(jinode != NULL))
4252                 jbd2_free_inode(jinode);
4253         return 0;
4254 }
4255
4256 /*
4257  * ext4_truncate()
4258  *
4259  * We block out ext4_get_block() block instantiations across the entire
4260  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4261  * simultaneously on behalf of the same inode.
4262  *
4263  * As we work through the truncate and commit bits of it to the journal there
4264  * is one core, guiding principle: the file's tree must always be consistent on
4265  * disk.  We must be able to restart the truncate after a crash.
4266  *
4267  * The file's tree may be transiently inconsistent in memory (although it
4268  * probably isn't), but whenever we close off and commit a journal transaction,
4269  * the contents of (the filesystem + the journal) must be consistent and
4270  * restartable.  It's pretty simple, really: bottom up, right to left (although
4271  * left-to-right works OK too).
4272  *
4273  * Note that at recovery time, journal replay occurs *before* the restart of
4274  * truncate against the orphan inode list.
4275  *
4276  * The committed inode has the new, desired i_size (which is the same as
4277  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4278  * that this inode's truncate did not complete and it will again call
4279  * ext4_truncate() to have another go.  So there will be instantiated blocks
4280  * to the right of the truncation point in a crashed ext4 filesystem.  But
4281  * that's fine - as long as they are linked from the inode, the post-crash
4282  * ext4_truncate() run will find them and release them.
4283  */
4284 int ext4_truncate(struct inode *inode)
4285 {
4286         struct ext4_inode_info *ei = EXT4_I(inode);
4287         unsigned int credits;
4288         int err = 0;
4289         handle_t *handle;
4290         struct address_space *mapping = inode->i_mapping;
4291
4292         /*
4293          * There is a possibility that we're either freeing the inode
4294          * or it's a completely new inode. In those cases we might not
4295          * have i_mutex locked because it's not necessary.
4296          */
4297         if (!(inode->i_state & (I_NEW|I_FREEING)))
4298                 WARN_ON(!inode_is_locked(inode));
4299         trace_ext4_truncate_enter(inode);
4300
4301         if (!ext4_can_truncate(inode))
4302                 return 0;
4303
4304         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4305
4306         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4307                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4308
4309         if (ext4_has_inline_data(inode)) {
4310                 int has_inline = 1;
4311
4312                 err = ext4_inline_data_truncate(inode, &has_inline);
4313                 if (err)
4314                         return err;
4315                 if (has_inline)
4316                         return 0;
4317         }
4318
4319         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4320         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4321                 if (ext4_inode_attach_jinode(inode) < 0)
4322                         return 0;
4323         }
4324
4325         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4326                 credits = ext4_writepage_trans_blocks(inode);
4327         else
4328                 credits = ext4_blocks_for_truncate(inode);
4329
4330         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4331         if (IS_ERR(handle))
4332                 return PTR_ERR(handle);
4333
4334         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4335                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4336
4337         /*
4338          * We add the inode to the orphan list, so that if this
4339          * truncate spans multiple transactions, and we crash, we will
4340          * resume the truncate when the filesystem recovers.  It also
4341          * marks the inode dirty, to catch the new size.
4342          *
4343          * Implication: the file must always be in a sane, consistent
4344          * truncatable state while each transaction commits.
4345          */
4346         err = ext4_orphan_add(handle, inode);
4347         if (err)
4348                 goto out_stop;
4349
4350         down_write(&EXT4_I(inode)->i_data_sem);
4351
4352         ext4_discard_preallocations(inode);
4353
4354         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4355                 err = ext4_ext_truncate(handle, inode);
4356         else
4357                 ext4_ind_truncate(handle, inode);
4358
4359         up_write(&ei->i_data_sem);
4360         if (err)
4361                 goto out_stop;
4362
4363         if (IS_SYNC(inode))
4364                 ext4_handle_sync(handle);
4365
4366 out_stop:
4367         /*
4368          * If this was a simple ftruncate() and the file will remain alive,
4369          * then we need to clear up the orphan record which we created above.
4370          * However, if this was a real unlink then we were called by
4371          * ext4_evict_inode(), and we allow that function to clean up the
4372          * orphan info for us.
4373          */
4374         if (inode->i_nlink)
4375                 ext4_orphan_del(handle, inode);
4376
4377         inode->i_mtime = inode->i_ctime = current_time(inode);
4378         ext4_mark_inode_dirty(handle, inode);
4379         ext4_journal_stop(handle);
4380
4381         trace_ext4_truncate_exit(inode);
4382         return err;
4383 }
4384
4385 /*
4386  * ext4_get_inode_loc returns with an extra refcount against the inode's
4387  * underlying buffer_head on success. If 'in_mem' is true, we have all
4388  * data in memory that is needed to recreate the on-disk version of this
4389  * inode.
4390  */
4391 static int __ext4_get_inode_loc(struct inode *inode,
4392                                 struct ext4_iloc *iloc, int in_mem)
4393 {
4394         struct ext4_group_desc  *gdp;
4395         struct buffer_head      *bh;
4396         struct super_block      *sb = inode->i_sb;
4397         ext4_fsblk_t            block;
4398         int                     inodes_per_block, inode_offset;
4399
4400         iloc->bh = NULL;
4401         if (!ext4_valid_inum(sb, inode->i_ino))
4402                 return -EFSCORRUPTED;
4403
4404         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4405         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4406         if (!gdp)
4407                 return -EIO;
4408
4409         /*
4410          * Figure out the offset within the block group inode table
4411          */
4412         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4413         inode_offset = ((inode->i_ino - 1) %
4414                         EXT4_INODES_PER_GROUP(sb));
4415         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4416         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4417
4418         bh = sb_getblk(sb, block);
4419         if (unlikely(!bh))
4420                 return -ENOMEM;
4421         if (!buffer_uptodate(bh)) {
4422                 lock_buffer(bh);
4423
4424                 /*
4425                  * If the buffer has the write error flag, we have failed
4426                  * to write out another inode in the same block.  In this
4427                  * case, we don't have to read the block because we may
4428                  * read the old inode data successfully.
4429                  */
4430                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4431                         set_buffer_uptodate(bh);
4432
4433                 if (buffer_uptodate(bh)) {
4434                         /* someone brought it uptodate while we waited */
4435                         unlock_buffer(bh);
4436                         goto has_buffer;
4437                 }
4438
4439                 /*
4440                  * If we have all information of the inode in memory and this
4441                  * is the only valid inode in the block, we need not read the
4442                  * block.
4443                  */
4444                 if (in_mem) {
4445                         struct buffer_head *bitmap_bh;
4446                         int i, start;
4447
4448                         start = inode_offset & ~(inodes_per_block - 1);
4449
4450                         /* Is the inode bitmap in cache? */
4451                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4452                         if (unlikely(!bitmap_bh))
4453                                 goto make_io;
4454
4455                         /*
4456                          * If the inode bitmap isn't in cache then the
4457                          * optimisation may end up performing two reads instead
4458                          * of one, so skip it.
4459                          */
4460                         if (!buffer_uptodate(bitmap_bh)) {
4461                                 brelse(bitmap_bh);
4462                                 goto make_io;
4463                         }
4464                         for (i = start; i < start + inodes_per_block; i++) {
4465                                 if (i == inode_offset)
4466                                         continue;
4467                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4468                                         break;
4469                         }
4470                         brelse(bitmap_bh);
4471                         if (i == start + inodes_per_block) {
4472                                 /* all other inodes are free, so skip I/O */
4473                                 memset(bh->b_data, 0, bh->b_size);
4474                                 set_buffer_uptodate(bh);
4475                                 unlock_buffer(bh);
4476                                 goto has_buffer;
4477                         }
4478                 }
4479
4480 make_io:
4481                 /*
4482                  * If we need to do any I/O, try to pre-readahead extra
4483                  * blocks from the inode table.
4484                  */
4485                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4486                         ext4_fsblk_t b, end, table;
4487                         unsigned num;
4488                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4489
4490                         table = ext4_inode_table(sb, gdp);
4491                         /* s_inode_readahead_blks is always a power of 2 */
4492                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4493                         if (table > b)
4494                                 b = table;
4495                         end = b + ra_blks;
4496                         num = EXT4_INODES_PER_GROUP(sb);
4497                         if (ext4_has_group_desc_csum(sb))
4498                                 num -= ext4_itable_unused_count(sb, gdp);
4499                         table += num / inodes_per_block;
4500                         if (end > table)
4501                                 end = table;
4502                         while (b <= end)
4503                                 sb_breadahead(sb, b++);
4504                 }
4505
4506                 /*
4507                  * There are other valid inodes in the buffer, this inode
4508                  * has in-inode xattrs, or we don't have this inode in memory.
4509                  * Read the block from disk.
4510                  */
4511                 trace_ext4_load_inode(inode);
4512                 get_bh(bh);
4513                 bh->b_end_io = end_buffer_read_sync;
4514                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4515                 wait_on_buffer(bh);
4516                 if (!buffer_uptodate(bh)) {
4517                         EXT4_ERROR_INODE_BLOCK(inode, block,
4518                                                "unable to read itable block");
4519                         brelse(bh);
4520                         return -EIO;
4521                 }
4522         }
4523 has_buffer:
4524         iloc->bh = bh;
4525         return 0;
4526 }
4527
4528 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4529 {
4530         /* We have all inode data except xattrs in memory here. */
4531         return __ext4_get_inode_loc(inode, iloc,
4532                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4533 }
4534
4535 void ext4_set_inode_flags(struct inode *inode)
4536 {
4537         unsigned int flags = EXT4_I(inode)->i_flags;
4538         unsigned int new_fl = 0;
4539
4540         if (flags & EXT4_SYNC_FL)
4541                 new_fl |= S_SYNC;
4542         if (flags & EXT4_APPEND_FL)
4543                 new_fl |= S_APPEND;
4544         if (flags & EXT4_IMMUTABLE_FL)
4545                 new_fl |= S_IMMUTABLE;
4546         if (flags & EXT4_NOATIME_FL)
4547                 new_fl |= S_NOATIME;
4548         if (flags & EXT4_DIRSYNC_FL)
4549                 new_fl |= S_DIRSYNC;
4550         if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4551             !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4552             !ext4_encrypted_inode(inode))
4553                 new_fl |= S_DAX;
4554         inode_set_flags(inode, new_fl,
4555                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4556 }
4557
4558 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4559                                   struct ext4_inode_info *ei)
4560 {
4561         blkcnt_t i_blocks ;
4562         struct inode *inode = &(ei->vfs_inode);
4563         struct super_block *sb = inode->i_sb;
4564
4565         if (ext4_has_feature_huge_file(sb)) {
4566                 /* we are using combined 48 bit field */
4567                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4568                                         le32_to_cpu(raw_inode->i_blocks_lo);
4569                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4570                         /* i_blocks represent file system block size */
4571                         return i_blocks  << (inode->i_blkbits - 9);
4572                 } else {
4573                         return i_blocks;
4574                 }
4575         } else {
4576                 return le32_to_cpu(raw_inode->i_blocks_lo);
4577         }
4578 }
4579
4580 static inline void ext4_iget_extra_inode(struct inode *inode,
4581                                          struct ext4_inode *raw_inode,
4582                                          struct ext4_inode_info *ei)
4583 {
4584         __le32 *magic = (void *)raw_inode +
4585                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4586         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4587             EXT4_INODE_SIZE(inode->i_sb) &&
4588             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4589                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4590                 ext4_find_inline_data_nolock(inode);
4591         } else
4592                 EXT4_I(inode)->i_inline_off = 0;
4593 }
4594
4595 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4596 {
4597         if (!ext4_has_feature_project(inode->i_sb))
4598                 return -EOPNOTSUPP;
4599         *projid = EXT4_I(inode)->i_projid;
4600         return 0;
4601 }
4602
4603 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4604 {
4605         struct ext4_iloc iloc;
4606         struct ext4_inode *raw_inode;
4607         struct ext4_inode_info *ei;
4608         struct inode *inode;
4609         journal_t *journal = EXT4_SB(sb)->s_journal;
4610         long ret;
4611         loff_t size;
4612         int block;
4613         uid_t i_uid;
4614         gid_t i_gid;
4615         projid_t i_projid;
4616
4617         inode = iget_locked(sb, ino);
4618         if (!inode)
4619                 return ERR_PTR(-ENOMEM);
4620         if (!(inode->i_state & I_NEW))
4621                 return inode;
4622
4623         ei = EXT4_I(inode);
4624         iloc.bh = NULL;
4625
4626         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4627         if (ret < 0)
4628                 goto bad_inode;
4629         raw_inode = ext4_raw_inode(&iloc);
4630
4631         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4632                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4633                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4634                         EXT4_INODE_SIZE(inode->i_sb) ||
4635                     (ei->i_extra_isize & 3)) {
4636                         EXT4_ERROR_INODE(inode,
4637                                          "bad extra_isize %u (inode size %u)",
4638                                          ei->i_extra_isize,
4639                                          EXT4_INODE_SIZE(inode->i_sb));
4640                         ret = -EFSCORRUPTED;
4641                         goto bad_inode;
4642                 }
4643         } else
4644                 ei->i_extra_isize = 0;
4645
4646         /* Precompute checksum seed for inode metadata */
4647         if (ext4_has_metadata_csum(sb)) {
4648                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4649                 __u32 csum;
4650                 __le32 inum = cpu_to_le32(inode->i_ino);
4651                 __le32 gen = raw_inode->i_generation;
4652                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4653                                    sizeof(inum));
4654                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4655                                               sizeof(gen));
4656         }
4657
4658         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4659                 EXT4_ERROR_INODE(inode, "checksum invalid");
4660                 ret = -EFSBADCRC;
4661                 goto bad_inode;
4662         }
4663
4664         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4665         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4666         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4667         if (ext4_has_feature_project(sb) &&
4668             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4669             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4670                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4671         else
4672                 i_projid = EXT4_DEF_PROJID;
4673
4674         if (!(test_opt(inode->i_sb, NO_UID32))) {
4675                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4676                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4677         }
4678         i_uid_write(inode, i_uid);
4679         i_gid_write(inode, i_gid);
4680         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4681         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4682
4683         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4684         ei->i_inline_off = 0;
4685         ei->i_dir_start_lookup = 0;
4686         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4687         /* We now have enough fields to check if the inode was active or not.
4688          * This is needed because nfsd might try to access dead inodes
4689          * the test is that same one that e2fsck uses
4690          * NeilBrown 1999oct15
4691          */
4692         if (inode->i_nlink == 0) {
4693                 if ((inode->i_mode == 0 ||
4694                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4695                     ino != EXT4_BOOT_LOADER_INO) {
4696                         /* this inode is deleted */
4697                         ret = -ESTALE;
4698                         goto bad_inode;
4699                 }
4700                 /* The only unlinked inodes we let through here have
4701                  * valid i_mode and are being read by the orphan
4702                  * recovery code: that's fine, we're about to complete
4703                  * the process of deleting those.
4704                  * OR it is the EXT4_BOOT_LOADER_INO which is
4705                  * not initialized on a new filesystem. */
4706         }
4707         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4708         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4709         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4710         if (ext4_has_feature_64bit(sb))
4711                 ei->i_file_acl |=
4712                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4713         inode->i_size = ext4_isize(raw_inode);
4714         if ((size = i_size_read(inode)) < 0) {
4715                 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4716                 ret = -EFSCORRUPTED;
4717                 goto bad_inode;
4718         }
4719         ei->i_disksize = inode->i_size;
4720 #ifdef CONFIG_QUOTA
4721         ei->i_reserved_quota = 0;
4722 #endif
4723         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4724         ei->i_block_group = iloc.block_group;
4725         ei->i_last_alloc_group = ~0;
4726         /*
4727          * NOTE! The in-memory inode i_data array is in little-endian order
4728          * even on big-endian machines: we do NOT byteswap the block numbers!
4729          */
4730         for (block = 0; block < EXT4_N_BLOCKS; block++)
4731                 ei->i_data[block] = raw_inode->i_block[block];
4732         INIT_LIST_HEAD(&ei->i_orphan);
4733
4734         /*
4735          * Set transaction id's of transactions that have to be committed
4736          * to finish f[data]sync. We set them to currently running transaction
4737          * as we cannot be sure that the inode or some of its metadata isn't
4738          * part of the transaction - the inode could have been reclaimed and
4739          * now it is reread from disk.
4740          */
4741         if (journal) {
4742                 transaction_t *transaction;
4743                 tid_t tid;
4744
4745                 read_lock(&journal->j_state_lock);
4746                 if (journal->j_running_transaction)
4747                         transaction = journal->j_running_transaction;
4748                 else
4749                         transaction = journal->j_committing_transaction;
4750                 if (transaction)
4751                         tid = transaction->t_tid;
4752                 else
4753                         tid = journal->j_commit_sequence;
4754                 read_unlock(&journal->j_state_lock);
4755                 ei->i_sync_tid = tid;
4756                 ei->i_datasync_tid = tid;
4757         }
4758
4759         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4760                 if (ei->i_extra_isize == 0) {
4761                         /* The extra space is currently unused. Use it. */
4762                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4763                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4764                                             EXT4_GOOD_OLD_INODE_SIZE;
4765                 } else {
4766                         ext4_iget_extra_inode(inode, raw_inode, ei);
4767                 }
4768         }
4769
4770         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4771         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4772         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4773         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4774
4775         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4776                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4777                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4778                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4779                                 inode->i_version |=
4780                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4781                 }
4782         }
4783
4784         ret = 0;
4785         if (ei->i_file_acl &&
4786             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4787                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4788                                  ei->i_file_acl);
4789                 ret = -EFSCORRUPTED;
4790                 goto bad_inode;
4791         } else if (!ext4_has_inline_data(inode)) {
4792                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4793                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4794                             (S_ISLNK(inode->i_mode) &&
4795                              !ext4_inode_is_fast_symlink(inode))))
4796                                 /* Validate extent which is part of inode */
4797                                 ret = ext4_ext_check_inode(inode);
4798                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4799                            (S_ISLNK(inode->i_mode) &&
4800                             !ext4_inode_is_fast_symlink(inode))) {
4801                         /* Validate block references which are part of inode */
4802                         ret = ext4_ind_check_inode(inode);
4803                 }
4804         }
4805         if (ret)
4806                 goto bad_inode;
4807
4808         if (S_ISREG(inode->i_mode)) {
4809                 inode->i_op = &ext4_file_inode_operations;
4810                 inode->i_fop = &ext4_file_operations;
4811                 ext4_set_aops(inode);
4812         } else if (S_ISDIR(inode->i_mode)) {
4813                 inode->i_op = &ext4_dir_inode_operations;
4814                 inode->i_fop = &ext4_dir_operations;
4815         } else if (S_ISLNK(inode->i_mode)) {
4816                 if (ext4_encrypted_inode(inode)) {
4817                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4818                         ext4_set_aops(inode);
4819                 } else if (ext4_inode_is_fast_symlink(inode)) {
4820                         inode->i_link = (char *)ei->i_data;
4821                         inode->i_op = &ext4_fast_symlink_inode_operations;
4822                         nd_terminate_link(ei->i_data, inode->i_size,
4823                                 sizeof(ei->i_data) - 1);
4824                 } else {
4825                         inode->i_op = &ext4_symlink_inode_operations;
4826                         ext4_set_aops(inode);
4827                 }
4828                 inode_nohighmem(inode);
4829         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4830               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4831                 inode->i_op = &ext4_special_inode_operations;
4832                 if (raw_inode->i_block[0])
4833                         init_special_inode(inode, inode->i_mode,
4834                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4835                 else
4836                         init_special_inode(inode, inode->i_mode,
4837                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4838         } else if (ino == EXT4_BOOT_LOADER_INO) {
4839                 make_bad_inode(inode);
4840         } else {
4841                 ret = -EFSCORRUPTED;
4842                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4843                 goto bad_inode;
4844         }
4845         brelse(iloc.bh);
4846         ext4_set_inode_flags(inode);
4847         unlock_new_inode(inode);
4848         return inode;
4849
4850 bad_inode:
4851         brelse(iloc.bh);
4852         iget_failed(inode);
4853         return ERR_PTR(ret);
4854 }
4855
4856 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4857 {
4858         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4859                 return ERR_PTR(-EFSCORRUPTED);
4860         return ext4_iget(sb, ino);
4861 }
4862
4863 static int ext4_inode_blocks_set(handle_t *handle,
4864                                 struct ext4_inode *raw_inode,
4865                                 struct ext4_inode_info *ei)
4866 {
4867         struct inode *inode = &(ei->vfs_inode);
4868         u64 i_blocks = inode->i_blocks;
4869         struct super_block *sb = inode->i_sb;
4870
4871         if (i_blocks <= ~0U) {
4872                 /*
4873                  * i_blocks can be represented in a 32 bit variable
4874                  * as multiple of 512 bytes
4875                  */
4876                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4877                 raw_inode->i_blocks_high = 0;
4878                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4879                 return 0;
4880         }
4881         if (!ext4_has_feature_huge_file(sb))
4882                 return -EFBIG;
4883
4884         if (i_blocks <= 0xffffffffffffULL) {
4885                 /*
4886                  * i_blocks can be represented in a 48 bit variable
4887                  * as multiple of 512 bytes
4888                  */
4889                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4890                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4891                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4892         } else {
4893                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4894                 /* i_block is stored in file system block size */
4895                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4896                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4897                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4898         }
4899         return 0;
4900 }
4901
4902 struct other_inode {
4903         unsigned long           orig_ino;
4904         struct ext4_inode       *raw_inode;
4905 };
4906
4907 static int other_inode_match(struct inode * inode, unsigned long ino,
4908                              void *data)
4909 {
4910         struct other_inode *oi = (struct other_inode *) data;
4911
4912         if ((inode->i_ino != ino) ||
4913             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4914                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4915             ((inode->i_state & I_DIRTY_TIME) == 0))
4916                 return 0;
4917         spin_lock(&inode->i_lock);
4918         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4919                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4920             (inode->i_state & I_DIRTY_TIME)) {
4921                 struct ext4_inode_info  *ei = EXT4_I(inode);
4922
4923                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4924                 spin_unlock(&inode->i_lock);
4925
4926                 spin_lock(&ei->i_raw_lock);
4927                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4928                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4929                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4930                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4931                 spin_unlock(&ei->i_raw_lock);
4932                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4933                 return -1;
4934         }
4935         spin_unlock(&inode->i_lock);
4936         return -1;
4937 }
4938
4939 /*
4940  * Opportunistically update the other time fields for other inodes in
4941  * the same inode table block.
4942  */
4943 static void ext4_update_other_inodes_time(struct super_block *sb,
4944                                           unsigned long orig_ino, char *buf)
4945 {
4946         struct other_inode oi;
4947         unsigned long ino;
4948         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4949         int inode_size = EXT4_INODE_SIZE(sb);
4950
4951         oi.orig_ino = orig_ino;
4952         /*
4953          * Calculate the first inode in the inode table block.  Inode
4954          * numbers are one-based.  That is, the first inode in a block
4955          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4956          */
4957         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4958         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4959                 if (ino == orig_ino)
4960                         continue;
4961                 oi.raw_inode = (struct ext4_inode *) buf;
4962                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4963         }
4964 }
4965
4966 /*
4967  * Post the struct inode info into an on-disk inode location in the
4968  * buffer-cache.  This gobbles the caller's reference to the
4969  * buffer_head in the inode location struct.
4970  *
4971  * The caller must have write access to iloc->bh.
4972  */
4973 static int ext4_do_update_inode(handle_t *handle,
4974                                 struct inode *inode,
4975                                 struct ext4_iloc *iloc)
4976 {
4977         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4978         struct ext4_inode_info *ei = EXT4_I(inode);
4979         struct buffer_head *bh = iloc->bh;
4980         struct super_block *sb = inode->i_sb;
4981         int err = 0, rc, block;
4982         int need_datasync = 0, set_large_file = 0;
4983         uid_t i_uid;
4984         gid_t i_gid;
4985         projid_t i_projid;
4986
4987         spin_lock(&ei->i_raw_lock);
4988
4989         /* For fields not tracked in the in-memory inode,
4990          * initialise them to zero for new inodes. */
4991         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4992                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4993
4994         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4995         i_uid = i_uid_read(inode);
4996         i_gid = i_gid_read(inode);
4997         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4998         if (!(test_opt(inode->i_sb, NO_UID32))) {
4999                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5000                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5001 /*
5002  * Fix up interoperability with old kernels. Otherwise, old inodes get
5003  * re-used with the upper 16 bits of the uid/gid intact
5004  */
5005                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5006                         raw_inode->i_uid_high = 0;
5007                         raw_inode->i_gid_high = 0;
5008                 } else {
5009                         raw_inode->i_uid_high =
5010                                 cpu_to_le16(high_16_bits(i_uid));
5011                         raw_inode->i_gid_high =
5012                                 cpu_to_le16(high_16_bits(i_gid));
5013                 }
5014         } else {
5015                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5016                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5017                 raw_inode->i_uid_high = 0;
5018                 raw_inode->i_gid_high = 0;
5019         }
5020         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5021
5022         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5023         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5024         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5025         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5026
5027         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5028         if (err) {
5029                 spin_unlock(&ei->i_raw_lock);
5030                 goto out_brelse;
5031         }
5032         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5033         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5034         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5035                 raw_inode->i_file_acl_high =
5036                         cpu_to_le16(ei->i_file_acl >> 32);
5037         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5038         if (ei->i_disksize != ext4_isize(raw_inode)) {
5039                 ext4_isize_set(raw_inode, ei->i_disksize);
5040                 need_datasync = 1;
5041         }
5042         if (ei->i_disksize > 0x7fffffffULL) {
5043                 if (!ext4_has_feature_large_file(sb) ||
5044                                 EXT4_SB(sb)->s_es->s_rev_level ==
5045                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5046                         set_large_file = 1;
5047         }
5048         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5049         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5050                 if (old_valid_dev(inode->i_rdev)) {
5051                         raw_inode->i_block[0] =
5052                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5053                         raw_inode->i_block[1] = 0;
5054                 } else {
5055                         raw_inode->i_block[0] = 0;
5056                         raw_inode->i_block[1] =
5057                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5058                         raw_inode->i_block[2] = 0;
5059                 }
5060         } else if (!ext4_has_inline_data(inode)) {
5061                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5062                         raw_inode->i_block[block] = ei->i_data[block];
5063         }
5064
5065         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5066                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5067                 if (ei->i_extra_isize) {
5068                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5069                                 raw_inode->i_version_hi =
5070                                         cpu_to_le32(inode->i_version >> 32);
5071                         raw_inode->i_extra_isize =
5072                                 cpu_to_le16(ei->i_extra_isize);
5073                 }
5074         }
5075
5076         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5077                i_projid != EXT4_DEF_PROJID);
5078
5079         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5080             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5081                 raw_inode->i_projid = cpu_to_le32(i_projid);
5082
5083         ext4_inode_csum_set(inode, raw_inode, ei);
5084         spin_unlock(&ei->i_raw_lock);
5085         if (inode->i_sb->s_flags & MS_LAZYTIME)
5086                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5087                                               bh->b_data);
5088
5089         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5090         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5091         if (!err)
5092                 err = rc;
5093         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5094         if (set_large_file) {
5095                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5096                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5097                 if (err)
5098                         goto out_brelse;
5099                 ext4_update_dynamic_rev(sb);
5100                 ext4_set_feature_large_file(sb);
5101                 ext4_handle_sync(handle);
5102                 err = ext4_handle_dirty_super(handle, sb);
5103         }
5104         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5105 out_brelse:
5106         brelse(bh);
5107         ext4_std_error(inode->i_sb, err);
5108         return err;
5109 }
5110
5111 /*
5112  * ext4_write_inode()
5113  *
5114  * We are called from a few places:
5115  *
5116  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5117  *   Here, there will be no transaction running. We wait for any running
5118  *   transaction to commit.
5119  *
5120  * - Within flush work (sys_sync(), kupdate and such).
5121  *   We wait on commit, if told to.
5122  *
5123  * - Within iput_final() -> write_inode_now()
5124  *   We wait on commit, if told to.
5125  *
5126  * In all cases it is actually safe for us to return without doing anything,
5127  * because the inode has been copied into a raw inode buffer in
5128  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5129  * writeback.
5130  *
5131  * Note that we are absolutely dependent upon all inode dirtiers doing the
5132  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5133  * which we are interested.
5134  *
5135  * It would be a bug for them to not do this.  The code:
5136  *
5137  *      mark_inode_dirty(inode)
5138  *      stuff();
5139  *      inode->i_size = expr;
5140  *
5141  * is in error because write_inode() could occur while `stuff()' is running,
5142  * and the new i_size will be lost.  Plus the inode will no longer be on the
5143  * superblock's dirty inode list.
5144  */
5145 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5146 {
5147         int err;
5148
5149         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5150                 return 0;
5151
5152         if (EXT4_SB(inode->i_sb)->s_journal) {
5153                 if (ext4_journal_current_handle()) {
5154                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5155                         dump_stack();
5156                         return -EIO;
5157                 }
5158
5159                 /*
5160                  * No need to force transaction in WB_SYNC_NONE mode. Also
5161                  * ext4_sync_fs() will force the commit after everything is
5162                  * written.
5163                  */
5164                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5165                         return 0;
5166
5167                 err = ext4_force_commit(inode->i_sb);
5168         } else {
5169                 struct ext4_iloc iloc;
5170
5171                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5172                 if (err)
5173                         return err;
5174                 /*
5175                  * sync(2) will flush the whole buffer cache. No need to do
5176                  * it here separately for each inode.
5177                  */
5178                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5179                         sync_dirty_buffer(iloc.bh);
5180                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5181                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5182                                          "IO error syncing inode");
5183                         err = -EIO;
5184                 }
5185                 brelse(iloc.bh);
5186         }
5187         return err;
5188 }
5189
5190 /*
5191  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5192  * buffers that are attached to a page stradding i_size and are undergoing
5193  * commit. In that case we have to wait for commit to finish and try again.
5194  */
5195 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5196 {
5197         struct page *page;
5198         unsigned offset;
5199         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5200         tid_t commit_tid = 0;
5201         int ret;
5202
5203         offset = inode->i_size & (PAGE_SIZE - 1);
5204         /*
5205          * All buffers in the last page remain valid? Then there's nothing to
5206          * do. We do the check mainly to optimize the common PAGE_SIZE ==
5207          * blocksize case
5208          */
5209         if (offset > PAGE_SIZE - i_blocksize(inode))
5210                 return;
5211         while (1) {
5212                 page = find_lock_page(inode->i_mapping,
5213                                       inode->i_size >> PAGE_SHIFT);
5214                 if (!page)
5215                         return;
5216                 ret = __ext4_journalled_invalidatepage(page, offset,
5217                                                 PAGE_SIZE - offset);
5218                 unlock_page(page);
5219                 put_page(page);
5220                 if (ret != -EBUSY)
5221                         return;
5222                 commit_tid = 0;
5223                 read_lock(&journal->j_state_lock);
5224                 if (journal->j_committing_transaction)
5225                         commit_tid = journal->j_committing_transaction->t_tid;
5226                 read_unlock(&journal->j_state_lock);
5227                 if (commit_tid)
5228                         jbd2_log_wait_commit(journal, commit_tid);
5229         }
5230 }
5231
5232 /*
5233  * ext4_setattr()
5234  *
5235  * Called from notify_change.
5236  *
5237  * We want to trap VFS attempts to truncate the file as soon as
5238  * possible.  In particular, we want to make sure that when the VFS
5239  * shrinks i_size, we put the inode on the orphan list and modify
5240  * i_disksize immediately, so that during the subsequent flushing of
5241  * dirty pages and freeing of disk blocks, we can guarantee that any
5242  * commit will leave the blocks being flushed in an unused state on
5243  * disk.  (On recovery, the inode will get truncated and the blocks will
5244  * be freed, so we have a strong guarantee that no future commit will
5245  * leave these blocks visible to the user.)
5246  *
5247  * Another thing we have to assure is that if we are in ordered mode
5248  * and inode is still attached to the committing transaction, we must
5249  * we start writeout of all the dirty pages which are being truncated.
5250  * This way we are sure that all the data written in the previous
5251  * transaction are already on disk (truncate waits for pages under
5252  * writeback).
5253  *
5254  * Called with inode->i_mutex down.
5255  */
5256 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5257 {
5258         struct inode *inode = d_inode(dentry);
5259         int error, rc = 0;
5260         int orphan = 0;
5261         const unsigned int ia_valid = attr->ia_valid;
5262
5263         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5264                 return -EIO;
5265
5266         error = setattr_prepare(dentry, attr);
5267         if (error)
5268                 return error;
5269
5270         if (is_quota_modification(inode, attr)) {
5271                 error = dquot_initialize(inode);
5272                 if (error)
5273                         return error;
5274         }
5275         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5276             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5277                 handle_t *handle;
5278
5279                 /* (user+group)*(old+new) structure, inode write (sb,
5280                  * inode block, ? - but truncate inode update has it) */
5281                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5282                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5283                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5284                 if (IS_ERR(handle)) {
5285                         error = PTR_ERR(handle);
5286                         goto err_out;
5287                 }
5288                 error = dquot_transfer(inode, attr);
5289                 if (error) {
5290                         ext4_journal_stop(handle);
5291                         return error;
5292                 }
5293                 /* Update corresponding info in inode so that everything is in
5294                  * one transaction */
5295                 if (attr->ia_valid & ATTR_UID)
5296                         inode->i_uid = attr->ia_uid;
5297                 if (attr->ia_valid & ATTR_GID)
5298                         inode->i_gid = attr->ia_gid;
5299                 error = ext4_mark_inode_dirty(handle, inode);
5300                 ext4_journal_stop(handle);
5301         }
5302
5303         if (attr->ia_valid & ATTR_SIZE) {
5304                 handle_t *handle;
5305                 loff_t oldsize = inode->i_size;
5306                 int shrink = (attr->ia_size <= inode->i_size);
5307
5308                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5309                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5310
5311                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5312                                 return -EFBIG;
5313                 }
5314                 if (!S_ISREG(inode->i_mode))
5315                         return -EINVAL;
5316
5317                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5318                         inode_inc_iversion(inode);
5319
5320                 if (ext4_should_order_data(inode) &&
5321                     (attr->ia_size < inode->i_size)) {
5322                         error = ext4_begin_ordered_truncate(inode,
5323                                                             attr->ia_size);
5324                         if (error)
5325                                 goto err_out;
5326                 }
5327                 if (attr->ia_size != inode->i_size) {
5328                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5329                         if (IS_ERR(handle)) {
5330                                 error = PTR_ERR(handle);
5331                                 goto err_out;
5332                         }
5333                         if (ext4_handle_valid(handle) && shrink) {
5334                                 error = ext4_orphan_add(handle, inode);
5335                                 orphan = 1;
5336                         }
5337                         /*
5338                          * Update c/mtime on truncate up, ext4_truncate() will
5339                          * update c/mtime in shrink case below
5340                          */
5341                         if (!shrink) {
5342                                 inode->i_mtime = current_time(inode);
5343                                 inode->i_ctime = inode->i_mtime;
5344                         }
5345                         down_write(&EXT4_I(inode)->i_data_sem);
5346                         EXT4_I(inode)->i_disksize = attr->ia_size;
5347                         rc = ext4_mark_inode_dirty(handle, inode);
5348                         if (!error)
5349                                 error = rc;
5350                         /*
5351                          * We have to update i_size under i_data_sem together
5352                          * with i_disksize to avoid races with writeback code
5353                          * running ext4_wb_update_i_disksize().
5354                          */
5355                         if (!error)
5356                                 i_size_write(inode, attr->ia_size);
5357                         up_write(&EXT4_I(inode)->i_data_sem);
5358                         ext4_journal_stop(handle);
5359                         if (error) {
5360                                 if (orphan)
5361                                         ext4_orphan_del(NULL, inode);
5362                                 goto err_out;
5363                         }
5364                 }
5365                 if (!shrink)
5366                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5367
5368                 /*
5369                  * Blocks are going to be removed from the inode. Wait
5370                  * for dio in flight.  Temporarily disable
5371                  * dioread_nolock to prevent livelock.
5372                  */
5373                 if (orphan) {
5374                         if (!ext4_should_journal_data(inode)) {
5375                                 ext4_inode_block_unlocked_dio(inode);
5376                                 inode_dio_wait(inode);
5377                                 ext4_inode_resume_unlocked_dio(inode);
5378                         } else
5379                                 ext4_wait_for_tail_page_commit(inode);
5380                 }
5381                 down_write(&EXT4_I(inode)->i_mmap_sem);
5382                 /*
5383                  * Truncate pagecache after we've waited for commit
5384                  * in data=journal mode to make pages freeable.
5385                  */
5386                 truncate_pagecache(inode, inode->i_size);
5387                 if (shrink) {
5388                         rc = ext4_truncate(inode);
5389                         if (rc)
5390                                 error = rc;
5391                 }
5392                 up_write(&EXT4_I(inode)->i_mmap_sem);
5393         }
5394
5395         if (!error) {
5396                 setattr_copy(inode, attr);
5397                 mark_inode_dirty(inode);
5398         }
5399
5400         /*
5401          * If the call to ext4_truncate failed to get a transaction handle at
5402          * all, we need to clean up the in-core orphan list manually.
5403          */
5404         if (orphan && inode->i_nlink)
5405                 ext4_orphan_del(NULL, inode);
5406
5407         if (!error && (ia_valid & ATTR_MODE))
5408                 rc = posix_acl_chmod(inode, inode->i_mode);
5409
5410 err_out:
5411         ext4_std_error(inode->i_sb, error);
5412         if (!error)
5413                 error = rc;
5414         return error;
5415 }
5416
5417 int ext4_getattr(const struct path *path, struct kstat *stat,
5418                  u32 request_mask, unsigned int query_flags)
5419 {
5420         struct inode *inode = d_inode(path->dentry);
5421         struct ext4_inode *raw_inode;
5422         struct ext4_inode_info *ei = EXT4_I(inode);
5423         unsigned int flags;
5424
5425         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5426                 stat->result_mask |= STATX_BTIME;
5427                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5428                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5429         }
5430
5431         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5432         if (flags & EXT4_APPEND_FL)
5433                 stat->attributes |= STATX_ATTR_APPEND;
5434         if (flags & EXT4_COMPR_FL)
5435                 stat->attributes |= STATX_ATTR_COMPRESSED;
5436         if (flags & EXT4_ENCRYPT_FL)
5437                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5438         if (flags & EXT4_IMMUTABLE_FL)
5439                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5440         if (flags & EXT4_NODUMP_FL)
5441                 stat->attributes |= STATX_ATTR_NODUMP;
5442
5443         stat->attributes_mask |= (STATX_ATTR_APPEND |
5444                                   STATX_ATTR_COMPRESSED |
5445                                   STATX_ATTR_ENCRYPTED |
5446                                   STATX_ATTR_IMMUTABLE |
5447                                   STATX_ATTR_NODUMP);
5448
5449         generic_fillattr(inode, stat);
5450         return 0;
5451 }
5452
5453 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5454                       u32 request_mask, unsigned int query_flags)
5455 {
5456         struct inode *inode = d_inode(path->dentry);
5457         u64 delalloc_blocks;
5458
5459         ext4_getattr(path, stat, request_mask, query_flags);
5460
5461         /*
5462          * If there is inline data in the inode, the inode will normally not
5463          * have data blocks allocated (it may have an external xattr block).
5464          * Report at least one sector for such files, so tools like tar, rsync,
5465          * others don't incorrectly think the file is completely sparse.
5466          */
5467         if (unlikely(ext4_has_inline_data(inode)))
5468                 stat->blocks += (stat->size + 511) >> 9;
5469
5470         /*
5471          * We can't update i_blocks if the block allocation is delayed
5472          * otherwise in the case of system crash before the real block
5473          * allocation is done, we will have i_blocks inconsistent with
5474          * on-disk file blocks.
5475          * We always keep i_blocks updated together with real
5476          * allocation. But to not confuse with user, stat
5477          * will return the blocks that include the delayed allocation
5478          * blocks for this file.
5479          */
5480         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5481                                    EXT4_I(inode)->i_reserved_data_blocks);
5482         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5483         return 0;
5484 }
5485
5486 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5487                                    int pextents)
5488 {
5489         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5490                 return ext4_ind_trans_blocks(inode, lblocks);
5491         return ext4_ext_index_trans_blocks(inode, pextents);
5492 }
5493
5494 /*
5495  * Account for index blocks, block groups bitmaps and block group
5496  * descriptor blocks if modify datablocks and index blocks
5497  * worse case, the indexs blocks spread over different block groups
5498  *
5499  * If datablocks are discontiguous, they are possible to spread over
5500  * different block groups too. If they are contiguous, with flexbg,
5501  * they could still across block group boundary.
5502  *
5503  * Also account for superblock, inode, quota and xattr blocks
5504  */
5505 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5506                                   int pextents)
5507 {
5508         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5509         int gdpblocks;
5510         int idxblocks;
5511         int ret = 0;
5512
5513         /*
5514          * How many index blocks need to touch to map @lblocks logical blocks
5515          * to @pextents physical extents?
5516          */
5517         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5518
5519         ret = idxblocks;
5520
5521         /*
5522          * Now let's see how many group bitmaps and group descriptors need
5523          * to account
5524          */
5525         groups = idxblocks + pextents;
5526         gdpblocks = groups;
5527         if (groups > ngroups)
5528                 groups = ngroups;
5529         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5530                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5531
5532         /* bitmaps and block group descriptor blocks */
5533         ret += groups + gdpblocks;
5534
5535         /* Blocks for super block, inode, quota and xattr blocks */
5536         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5537
5538         return ret;
5539 }
5540
5541 /*
5542  * Calculate the total number of credits to reserve to fit
5543  * the modification of a single pages into a single transaction,
5544  * which may include multiple chunks of block allocations.
5545  *
5546  * This could be called via ext4_write_begin()
5547  *
5548  * We need to consider the worse case, when
5549  * one new block per extent.
5550  */
5551 int ext4_writepage_trans_blocks(struct inode *inode)
5552 {
5553         int bpp = ext4_journal_blocks_per_page(inode);
5554         int ret;
5555
5556         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5557
5558         /* Account for data blocks for journalled mode */
5559         if (ext4_should_journal_data(inode))
5560                 ret += bpp;
5561         return ret;
5562 }
5563
5564 /*
5565  * Calculate the journal credits for a chunk of data modification.
5566  *
5567  * This is called from DIO, fallocate or whoever calling
5568  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5569  *
5570  * journal buffers for data blocks are not included here, as DIO
5571  * and fallocate do no need to journal data buffers.
5572  */
5573 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5574 {
5575         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5576 }
5577
5578 /*
5579  * The caller must have previously called ext4_reserve_inode_write().
5580  * Give this, we know that the caller already has write access to iloc->bh.
5581  */
5582 int ext4_mark_iloc_dirty(handle_t *handle,
5583                          struct inode *inode, struct ext4_iloc *iloc)
5584 {
5585         int err = 0;
5586
5587         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5588                 return -EIO;
5589
5590         if (IS_I_VERSION(inode))
5591                 inode_inc_iversion(inode);
5592
5593         /* the do_update_inode consumes one bh->b_count */
5594         get_bh(iloc->bh);
5595
5596         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5597         err = ext4_do_update_inode(handle, inode, iloc);
5598         put_bh(iloc->bh);
5599         return err;
5600 }
5601
5602 /*
5603  * On success, We end up with an outstanding reference count against
5604  * iloc->bh.  This _must_ be cleaned up later.
5605  */
5606
5607 int
5608 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5609                          struct ext4_iloc *iloc)
5610 {
5611         int err;
5612
5613         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5614                 return -EIO;
5615
5616         err = ext4_get_inode_loc(inode, iloc);
5617         if (!err) {
5618                 BUFFER_TRACE(iloc->bh, "get_write_access");
5619                 err = ext4_journal_get_write_access(handle, iloc->bh);
5620                 if (err) {
5621                         brelse(iloc->bh);
5622                         iloc->bh = NULL;
5623                 }
5624         }
5625         ext4_std_error(inode->i_sb, err);
5626         return err;
5627 }
5628
5629 /*
5630  * Expand an inode by new_extra_isize bytes.
5631  * Returns 0 on success or negative error number on failure.
5632  */
5633 static int ext4_expand_extra_isize(struct inode *inode,
5634                                    unsigned int new_extra_isize,
5635                                    struct ext4_iloc iloc,
5636                                    handle_t *handle)
5637 {
5638         struct ext4_inode *raw_inode;
5639         struct ext4_xattr_ibody_header *header;
5640
5641         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5642                 return 0;
5643
5644         raw_inode = ext4_raw_inode(&iloc);
5645
5646         header = IHDR(inode, raw_inode);
5647
5648         /* No extended attributes present */
5649         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5650             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5651                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5652                        EXT4_I(inode)->i_extra_isize, 0,
5653                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5654                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5655                 return 0;
5656         }
5657
5658         /* try to expand with EAs present */
5659         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5660                                           raw_inode, handle);
5661 }
5662
5663 /*
5664  * What we do here is to mark the in-core inode as clean with respect to inode
5665  * dirtiness (it may still be data-dirty).
5666  * This means that the in-core inode may be reaped by prune_icache
5667  * without having to perform any I/O.  This is a very good thing,
5668  * because *any* task may call prune_icache - even ones which
5669  * have a transaction open against a different journal.
5670  *
5671  * Is this cheating?  Not really.  Sure, we haven't written the
5672  * inode out, but prune_icache isn't a user-visible syncing function.
5673  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5674  * we start and wait on commits.
5675  */
5676 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5677 {
5678         struct ext4_iloc iloc;
5679         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5680         static unsigned int mnt_count;
5681         int err, ret;
5682
5683         might_sleep();
5684         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5685         err = ext4_reserve_inode_write(handle, inode, &iloc);
5686         if (err)
5687                 return err;
5688         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5689             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5690                 /*
5691                  * In nojournal mode, we can immediately attempt to expand
5692                  * the inode.  When journaled, we first need to obtain extra
5693                  * buffer credits since we may write into the EA block
5694                  * with this same handle. If journal_extend fails, then it will
5695                  * only result in a minor loss of functionality for that inode.
5696                  * If this is felt to be critical, then e2fsck should be run to
5697                  * force a large enough s_min_extra_isize.
5698                  */
5699                 if (!ext4_handle_valid(handle) ||
5700                     jbd2_journal_extend(handle,
5701                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
5702                         ret = ext4_expand_extra_isize(inode,
5703                                                       sbi->s_want_extra_isize,
5704                                                       iloc, handle);
5705                         if (ret) {
5706                                 if (mnt_count !=
5707                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5708                                         ext4_warning(inode->i_sb,
5709                                         "Unable to expand inode %lu. Delete"
5710                                         " some EAs or run e2fsck.",
5711                                         inode->i_ino);
5712                                         mnt_count =
5713                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5714                                 }
5715                         }
5716                 }
5717         }
5718         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5719 }
5720
5721 /*
5722  * ext4_dirty_inode() is called from __mark_inode_dirty()
5723  *
5724  * We're really interested in the case where a file is being extended.
5725  * i_size has been changed by generic_commit_write() and we thus need
5726  * to include the updated inode in the current transaction.
5727  *
5728  * Also, dquot_alloc_block() will always dirty the inode when blocks
5729  * are allocated to the file.
5730  *
5731  * If the inode is marked synchronous, we don't honour that here - doing
5732  * so would cause a commit on atime updates, which we don't bother doing.
5733  * We handle synchronous inodes at the highest possible level.
5734  *
5735  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5736  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5737  * to copy into the on-disk inode structure are the timestamp files.
5738  */
5739 void ext4_dirty_inode(struct inode *inode, int flags)
5740 {
5741         handle_t *handle;
5742
5743         if (flags == I_DIRTY_TIME)
5744                 return;
5745         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5746         if (IS_ERR(handle))
5747                 goto out;
5748
5749         ext4_mark_inode_dirty(handle, inode);
5750
5751         ext4_journal_stop(handle);
5752 out:
5753         return;
5754 }
5755
5756 #if 0
5757 /*
5758  * Bind an inode's backing buffer_head into this transaction, to prevent
5759  * it from being flushed to disk early.  Unlike
5760  * ext4_reserve_inode_write, this leaves behind no bh reference and
5761  * returns no iloc structure, so the caller needs to repeat the iloc
5762  * lookup to mark the inode dirty later.
5763  */
5764 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5765 {
5766         struct ext4_iloc iloc;
5767
5768         int err = 0;
5769         if (handle) {
5770                 err = ext4_get_inode_loc(inode, &iloc);
5771                 if (!err) {
5772                         BUFFER_TRACE(iloc.bh, "get_write_access");
5773                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5774                         if (!err)
5775                                 err = ext4_handle_dirty_metadata(handle,
5776                                                                  NULL,
5777                                                                  iloc.bh);
5778                         brelse(iloc.bh);
5779                 }
5780         }
5781         ext4_std_error(inode->i_sb, err);
5782         return err;
5783 }
5784 #endif
5785
5786 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5787 {
5788         journal_t *journal;
5789         handle_t *handle;
5790         int err;
5791         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5792
5793         /*
5794          * We have to be very careful here: changing a data block's
5795          * journaling status dynamically is dangerous.  If we write a
5796          * data block to the journal, change the status and then delete
5797          * that block, we risk forgetting to revoke the old log record
5798          * from the journal and so a subsequent replay can corrupt data.
5799          * So, first we make sure that the journal is empty and that
5800          * nobody is changing anything.
5801          */
5802
5803         journal = EXT4_JOURNAL(inode);
5804         if (!journal)
5805                 return 0;
5806         if (is_journal_aborted(journal))
5807                 return -EROFS;
5808
5809         /* Wait for all existing dio workers */
5810         ext4_inode_block_unlocked_dio(inode);
5811         inode_dio_wait(inode);
5812
5813         /*
5814          * Before flushing the journal and switching inode's aops, we have
5815          * to flush all dirty data the inode has. There can be outstanding
5816          * delayed allocations, there can be unwritten extents created by
5817          * fallocate or buffered writes in dioread_nolock mode covered by
5818          * dirty data which can be converted only after flushing the dirty
5819          * data (and journalled aops don't know how to handle these cases).
5820          */
5821         if (val) {
5822                 down_write(&EXT4_I(inode)->i_mmap_sem);
5823                 err = filemap_write_and_wait(inode->i_mapping);
5824                 if (err < 0) {
5825                         up_write(&EXT4_I(inode)->i_mmap_sem);
5826                         ext4_inode_resume_unlocked_dio(inode);
5827                         return err;
5828                 }
5829         }
5830
5831         percpu_down_write(&sbi->s_journal_flag_rwsem);
5832         jbd2_journal_lock_updates(journal);
5833
5834         /*
5835          * OK, there are no updates running now, and all cached data is
5836          * synced to disk.  We are now in a completely consistent state
5837          * which doesn't have anything in the journal, and we know that
5838          * no filesystem updates are running, so it is safe to modify
5839          * the inode's in-core data-journaling state flag now.
5840          */
5841
5842         if (val)
5843                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5844         else {
5845                 err = jbd2_journal_flush(journal);
5846                 if (err < 0) {
5847                         jbd2_journal_unlock_updates(journal);
5848                         percpu_up_write(&sbi->s_journal_flag_rwsem);
5849                         ext4_inode_resume_unlocked_dio(inode);
5850                         return err;
5851                 }
5852                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5853         }
5854         ext4_set_aops(inode);
5855         /*
5856          * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5857          * E.g. S_DAX may get cleared / set.
5858          */
5859         ext4_set_inode_flags(inode);
5860
5861         jbd2_journal_unlock_updates(journal);
5862         percpu_up_write(&sbi->s_journal_flag_rwsem);
5863
5864         if (val)
5865                 up_write(&EXT4_I(inode)->i_mmap_sem);
5866         ext4_inode_resume_unlocked_dio(inode);
5867
5868         /* Finally we can mark the inode as dirty. */
5869
5870         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5871         if (IS_ERR(handle))
5872                 return PTR_ERR(handle);
5873
5874         err = ext4_mark_inode_dirty(handle, inode);
5875         ext4_handle_sync(handle);
5876         ext4_journal_stop(handle);
5877         ext4_std_error(inode->i_sb, err);
5878
5879         return err;
5880 }
5881
5882 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5883 {
5884         return !buffer_mapped(bh);
5885 }
5886
5887 int ext4_page_mkwrite(struct vm_fault *vmf)
5888 {
5889         struct vm_area_struct *vma = vmf->vma;
5890         struct page *page = vmf->page;
5891         loff_t size;
5892         unsigned long len;
5893         int ret;
5894         struct file *file = vma->vm_file;
5895         struct inode *inode = file_inode(file);
5896         struct address_space *mapping = inode->i_mapping;
5897         handle_t *handle;
5898         get_block_t *get_block;
5899         int retries = 0;
5900
5901         sb_start_pagefault(inode->i_sb);
5902         file_update_time(vma->vm_file);
5903
5904         down_read(&EXT4_I(inode)->i_mmap_sem);
5905
5906         ret = ext4_convert_inline_data(inode);
5907         if (ret)
5908                 goto out_ret;
5909
5910         /* Delalloc case is easy... */
5911         if (test_opt(inode->i_sb, DELALLOC) &&
5912             !ext4_should_journal_data(inode) &&
5913             !ext4_nonda_switch(inode->i_sb)) {
5914                 do {
5915                         ret = block_page_mkwrite(vma, vmf,
5916                                                    ext4_da_get_block_prep);
5917                 } while (ret == -ENOSPC &&
5918                        ext4_should_retry_alloc(inode->i_sb, &retries));
5919                 goto out_ret;
5920         }
5921
5922         lock_page(page);
5923         size = i_size_read(inode);
5924         /* Page got truncated from under us? */
5925         if (page->mapping != mapping || page_offset(page) > size) {
5926                 unlock_page(page);
5927                 ret = VM_FAULT_NOPAGE;
5928                 goto out;
5929         }
5930
5931         if (page->index == size >> PAGE_SHIFT)
5932                 len = size & ~PAGE_MASK;
5933         else
5934                 len = PAGE_SIZE;
5935         /*
5936          * Return if we have all the buffers mapped. This avoids the need to do
5937          * journal_start/journal_stop which can block and take a long time
5938          */
5939         if (page_has_buffers(page)) {
5940                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5941                                             0, len, NULL,
5942                                             ext4_bh_unmapped)) {
5943                         /* Wait so that we don't change page under IO */
5944                         wait_for_stable_page(page);
5945                         ret = VM_FAULT_LOCKED;
5946                         goto out;
5947                 }
5948         }
5949         unlock_page(page);
5950         /* OK, we need to fill the hole... */
5951         if (ext4_should_dioread_nolock(inode))
5952                 get_block = ext4_get_block_unwritten;
5953         else
5954                 get_block = ext4_get_block;
5955 retry_alloc:
5956         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5957                                     ext4_writepage_trans_blocks(inode));
5958         if (IS_ERR(handle)) {
5959                 ret = VM_FAULT_SIGBUS;
5960                 goto out;
5961         }
5962         ret = block_page_mkwrite(vma, vmf, get_block);
5963         if (!ret && ext4_should_journal_data(inode)) {
5964                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5965                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
5966                         unlock_page(page);
5967                         ret = VM_FAULT_SIGBUS;
5968                         ext4_journal_stop(handle);
5969                         goto out;
5970                 }
5971                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5972         }
5973         ext4_journal_stop(handle);
5974         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5975                 goto retry_alloc;
5976 out_ret:
5977         ret = block_page_mkwrite_return(ret);
5978 out:
5979         up_read(&EXT4_I(inode)->i_mmap_sem);
5980         sb_end_pagefault(inode->i_sb);
5981         return ret;
5982 }
5983
5984 int ext4_filemap_fault(struct vm_fault *vmf)
5985 {
5986         struct inode *inode = file_inode(vmf->vma->vm_file);
5987         int err;
5988
5989         down_read(&EXT4_I(inode)->i_mmap_sem);
5990         err = filemap_fault(vmf);
5991         up_read(&EXT4_I(inode)->i_mmap_sem);
5992
5993         return err;
5994 }
5995
5996 /*
5997  * Find the first extent at or after @lblk in an inode that is not a hole.
5998  * Search for @map_len blocks at most. The extent is returned in @result.
5999  *
6000  * The function returns 1 if we found an extent. The function returns 0 in
6001  * case there is no extent at or after @lblk and in that case also sets
6002  * @result->es_len to 0. In case of error, the error code is returned.
6003  */
6004 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
6005                          unsigned int map_len, struct extent_status *result)
6006 {
6007         struct ext4_map_blocks map;
6008         struct extent_status es = {};
6009         int ret;
6010
6011         map.m_lblk = lblk;
6012         map.m_len = map_len;
6013
6014         /*
6015          * For non-extent based files this loop may iterate several times since
6016          * we do not determine full hole size.
6017          */
6018         while (map.m_len > 0) {
6019                 ret = ext4_map_blocks(NULL, inode, &map, 0);
6020                 if (ret < 0)
6021                         return ret;
6022                 /* There's extent covering m_lblk? Just return it. */
6023                 if (ret > 0) {
6024                         int status;
6025
6026                         ext4_es_store_pblock(result, map.m_pblk);
6027                         result->es_lblk = map.m_lblk;
6028                         result->es_len = map.m_len;
6029                         if (map.m_flags & EXT4_MAP_UNWRITTEN)
6030                                 status = EXTENT_STATUS_UNWRITTEN;
6031                         else
6032                                 status = EXTENT_STATUS_WRITTEN;
6033                         ext4_es_store_status(result, status);
6034                         return 1;
6035                 }
6036                 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
6037                                                   map.m_lblk + map.m_len - 1,
6038                                                   &es);
6039                 /* Is delalloc data before next block in extent tree? */
6040                 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
6041                         ext4_lblk_t offset = 0;
6042
6043                         if (es.es_lblk < lblk)
6044                                 offset = lblk - es.es_lblk;
6045                         result->es_lblk = es.es_lblk + offset;
6046                         ext4_es_store_pblock(result,
6047                                              ext4_es_pblock(&es) + offset);
6048                         result->es_len = es.es_len - offset;
6049                         ext4_es_store_status(result, ext4_es_status(&es));
6050
6051                         return 1;
6052                 }
6053                 /* There's a hole at m_lblk, advance us after it */
6054                 map.m_lblk += map.m_len;
6055                 map_len -= map.m_len;
6056                 map.m_len = map_len;
6057                 cond_resched();
6058         }
6059         result->es_len = 0;
6060         return 0;
6061 }