Merge tag 'drm-misc-next-fixes-2018-01-31' of git://anongit.freedesktop.org/drm/drm...
[sfrench/cifs-2.6.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u32 csum;
57         __u16 dummy_csum = 0;
58         int offset = offsetof(struct ext4_inode, i_checksum_lo);
59         unsigned int csum_size = sizeof(dummy_csum);
60
61         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63         offset += csum_size;
64         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65                            EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68                 offset = offsetof(struct ext4_inode, i_checksum_hi);
69                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70                                    EXT4_GOOD_OLD_INODE_SIZE,
71                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
72                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74                                            csum_size);
75                         offset += csum_size;
76                 }
77                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
79         }
80
81         return csum;
82 }
83
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85                                   struct ext4_inode_info *ei)
86 {
87         __u32 provided, calculated;
88
89         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90             cpu_to_le32(EXT4_OS_LINUX) ||
91             !ext4_has_metadata_csum(inode->i_sb))
92                 return 1;
93
94         provided = le16_to_cpu(raw->i_checksum_lo);
95         calculated = ext4_inode_csum(inode, raw, ei);
96         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99         else
100                 calculated &= 0xFFFF;
101
102         return provided == calculated;
103 }
104
105 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106                                 struct ext4_inode_info *ei)
107 {
108         __u32 csum;
109
110         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111             cpu_to_le32(EXT4_OS_LINUX) ||
112             !ext4_has_metadata_csum(inode->i_sb))
113                 return;
114
115         csum = ext4_inode_csum(inode, raw, ei);
116         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123                                               loff_t new_size)
124 {
125         trace_ext4_begin_ordered_truncate(inode, new_size);
126         /*
127          * If jinode is zero, then we never opened the file for
128          * writing, so there's no need to call
129          * jbd2_journal_begin_ordered_truncate() since there's no
130          * outstanding writes we need to flush.
131          */
132         if (!EXT4_I(inode)->jinode)
133                 return 0;
134         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135                                                    EXT4_I(inode)->jinode,
136                                                    new_size);
137 }
138
139 static void ext4_invalidatepage(struct page *page, unsigned int offset,
140                                 unsigned int length);
141 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
143 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144                                   int pextents);
145
146 /*
147  * Test whether an inode is a fast symlink.
148  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
149  */
150 int ext4_inode_is_fast_symlink(struct inode *inode)
151 {
152         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
153                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
154                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
155
156                 if (ext4_has_inline_data(inode))
157                         return 0;
158
159                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
160         }
161         return S_ISLNK(inode->i_mode) && inode->i_size &&
162                (inode->i_size < EXT4_N_BLOCKS * 4);
163 }
164
165 /*
166  * Restart the transaction associated with *handle.  This does a commit,
167  * so before we call here everything must be consistently dirtied against
168  * this transaction.
169  */
170 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
171                                  int nblocks)
172 {
173         int ret;
174
175         /*
176          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
177          * moment, get_block can be called only for blocks inside i_size since
178          * page cache has been already dropped and writes are blocked by
179          * i_mutex. So we can safely drop the i_data_sem here.
180          */
181         BUG_ON(EXT4_JOURNAL(inode) == NULL);
182         jbd_debug(2, "restarting handle %p\n", handle);
183         up_write(&EXT4_I(inode)->i_data_sem);
184         ret = ext4_journal_restart(handle, nblocks);
185         down_write(&EXT4_I(inode)->i_data_sem);
186         ext4_discard_preallocations(inode);
187
188         return ret;
189 }
190
191 /*
192  * Called at the last iput() if i_nlink is zero.
193  */
194 void ext4_evict_inode(struct inode *inode)
195 {
196         handle_t *handle;
197         int err;
198         int extra_credits = 3;
199         struct ext4_xattr_inode_array *ea_inode_array = NULL;
200
201         trace_ext4_evict_inode(inode);
202
203         if (inode->i_nlink) {
204                 /*
205                  * When journalling data dirty buffers are tracked only in the
206                  * journal. So although mm thinks everything is clean and
207                  * ready for reaping the inode might still have some pages to
208                  * write in the running transaction or waiting to be
209                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
210                  * (via truncate_inode_pages()) to discard these buffers can
211                  * cause data loss. Also even if we did not discard these
212                  * buffers, we would have no way to find them after the inode
213                  * is reaped and thus user could see stale data if he tries to
214                  * read them before the transaction is checkpointed. So be
215                  * careful and force everything to disk here... We use
216                  * ei->i_datasync_tid to store the newest transaction
217                  * containing inode's data.
218                  *
219                  * Note that directories do not have this problem because they
220                  * don't use page cache.
221                  */
222                 if (inode->i_ino != EXT4_JOURNAL_INO &&
223                     ext4_should_journal_data(inode) &&
224                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
225                     inode->i_data.nrpages) {
226                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
227                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
228
229                         jbd2_complete_transaction(journal, commit_tid);
230                         filemap_write_and_wait(&inode->i_data);
231                 }
232                 truncate_inode_pages_final(&inode->i_data);
233
234                 goto no_delete;
235         }
236
237         if (is_bad_inode(inode))
238                 goto no_delete;
239         dquot_initialize(inode);
240
241         if (ext4_should_order_data(inode))
242                 ext4_begin_ordered_truncate(inode, 0);
243         truncate_inode_pages_final(&inode->i_data);
244
245         /*
246          * Protect us against freezing - iput() caller didn't have to have any
247          * protection against it
248          */
249         sb_start_intwrite(inode->i_sb);
250
251         if (!IS_NOQUOTA(inode))
252                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
253
254         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
255                                  ext4_blocks_for_truncate(inode)+extra_credits);
256         if (IS_ERR(handle)) {
257                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
258                 /*
259                  * If we're going to skip the normal cleanup, we still need to
260                  * make sure that the in-core orphan linked list is properly
261                  * cleaned up.
262                  */
263                 ext4_orphan_del(NULL, inode);
264                 sb_end_intwrite(inode->i_sb);
265                 goto no_delete;
266         }
267
268         if (IS_SYNC(inode))
269                 ext4_handle_sync(handle);
270
271         /*
272          * Set inode->i_size to 0 before calling ext4_truncate(). We need
273          * special handling of symlinks here because i_size is used to
274          * determine whether ext4_inode_info->i_data contains symlink data or
275          * block mappings. Setting i_size to 0 will remove its fast symlink
276          * status. Erase i_data so that it becomes a valid empty block map.
277          */
278         if (ext4_inode_is_fast_symlink(inode))
279                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
280         inode->i_size = 0;
281         err = ext4_mark_inode_dirty(handle, inode);
282         if (err) {
283                 ext4_warning(inode->i_sb,
284                              "couldn't mark inode dirty (err %d)", err);
285                 goto stop_handle;
286         }
287         if (inode->i_blocks) {
288                 err = ext4_truncate(inode);
289                 if (err) {
290                         ext4_error(inode->i_sb,
291                                    "couldn't truncate inode %lu (err %d)",
292                                    inode->i_ino, err);
293                         goto stop_handle;
294                 }
295         }
296
297         /* Remove xattr references. */
298         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
299                                       extra_credits);
300         if (err) {
301                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
302 stop_handle:
303                 ext4_journal_stop(handle);
304                 ext4_orphan_del(NULL, inode);
305                 sb_end_intwrite(inode->i_sb);
306                 ext4_xattr_inode_array_free(ea_inode_array);
307                 goto no_delete;
308         }
309
310         /*
311          * Kill off the orphan record which ext4_truncate created.
312          * AKPM: I think this can be inside the above `if'.
313          * Note that ext4_orphan_del() has to be able to cope with the
314          * deletion of a non-existent orphan - this is because we don't
315          * know if ext4_truncate() actually created an orphan record.
316          * (Well, we could do this if we need to, but heck - it works)
317          */
318         ext4_orphan_del(handle, inode);
319         EXT4_I(inode)->i_dtime  = get_seconds();
320
321         /*
322          * One subtle ordering requirement: if anything has gone wrong
323          * (transaction abort, IO errors, whatever), then we can still
324          * do these next steps (the fs will already have been marked as
325          * having errors), but we can't free the inode if the mark_dirty
326          * fails.
327          */
328         if (ext4_mark_inode_dirty(handle, inode))
329                 /* If that failed, just do the required in-core inode clear. */
330                 ext4_clear_inode(inode);
331         else
332                 ext4_free_inode(handle, inode);
333         ext4_journal_stop(handle);
334         sb_end_intwrite(inode->i_sb);
335         ext4_xattr_inode_array_free(ea_inode_array);
336         return;
337 no_delete:
338         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
339 }
340
341 #ifdef CONFIG_QUOTA
342 qsize_t *ext4_get_reserved_space(struct inode *inode)
343 {
344         return &EXT4_I(inode)->i_reserved_quota;
345 }
346 #endif
347
348 /*
349  * Called with i_data_sem down, which is important since we can call
350  * ext4_discard_preallocations() from here.
351  */
352 void ext4_da_update_reserve_space(struct inode *inode,
353                                         int used, int quota_claim)
354 {
355         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
356         struct ext4_inode_info *ei = EXT4_I(inode);
357
358         spin_lock(&ei->i_block_reservation_lock);
359         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
360         if (unlikely(used > ei->i_reserved_data_blocks)) {
361                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
362                          "with only %d reserved data blocks",
363                          __func__, inode->i_ino, used,
364                          ei->i_reserved_data_blocks);
365                 WARN_ON(1);
366                 used = ei->i_reserved_data_blocks;
367         }
368
369         /* Update per-inode reservations */
370         ei->i_reserved_data_blocks -= used;
371         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
372
373         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
374
375         /* Update quota subsystem for data blocks */
376         if (quota_claim)
377                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
378         else {
379                 /*
380                  * We did fallocate with an offset that is already delayed
381                  * allocated. So on delayed allocated writeback we should
382                  * not re-claim the quota for fallocated blocks.
383                  */
384                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
385         }
386
387         /*
388          * If we have done all the pending block allocations and if
389          * there aren't any writers on the inode, we can discard the
390          * inode's preallocations.
391          */
392         if ((ei->i_reserved_data_blocks == 0) &&
393             (atomic_read(&inode->i_writecount) == 0))
394                 ext4_discard_preallocations(inode);
395 }
396
397 static int __check_block_validity(struct inode *inode, const char *func,
398                                 unsigned int line,
399                                 struct ext4_map_blocks *map)
400 {
401         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
402                                    map->m_len)) {
403                 ext4_error_inode(inode, func, line, map->m_pblk,
404                                  "lblock %lu mapped to illegal pblock "
405                                  "(length %d)", (unsigned long) map->m_lblk,
406                                  map->m_len);
407                 return -EFSCORRUPTED;
408         }
409         return 0;
410 }
411
412 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
413                        ext4_lblk_t len)
414 {
415         int ret;
416
417         if (ext4_encrypted_inode(inode))
418                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
419
420         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
421         if (ret > 0)
422                 ret = 0;
423
424         return ret;
425 }
426
427 #define check_block_validity(inode, map)        \
428         __check_block_validity((inode), __func__, __LINE__, (map))
429
430 #ifdef ES_AGGRESSIVE_TEST
431 static void ext4_map_blocks_es_recheck(handle_t *handle,
432                                        struct inode *inode,
433                                        struct ext4_map_blocks *es_map,
434                                        struct ext4_map_blocks *map,
435                                        int flags)
436 {
437         int retval;
438
439         map->m_flags = 0;
440         /*
441          * There is a race window that the result is not the same.
442          * e.g. xfstests #223 when dioread_nolock enables.  The reason
443          * is that we lookup a block mapping in extent status tree with
444          * out taking i_data_sem.  So at the time the unwritten extent
445          * could be converted.
446          */
447         down_read(&EXT4_I(inode)->i_data_sem);
448         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
449                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
450                                              EXT4_GET_BLOCKS_KEEP_SIZE);
451         } else {
452                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
453                                              EXT4_GET_BLOCKS_KEEP_SIZE);
454         }
455         up_read((&EXT4_I(inode)->i_data_sem));
456
457         /*
458          * We don't check m_len because extent will be collpased in status
459          * tree.  So the m_len might not equal.
460          */
461         if (es_map->m_lblk != map->m_lblk ||
462             es_map->m_flags != map->m_flags ||
463             es_map->m_pblk != map->m_pblk) {
464                 printk("ES cache assertion failed for inode: %lu "
465                        "es_cached ex [%d/%d/%llu/%x] != "
466                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
467                        inode->i_ino, es_map->m_lblk, es_map->m_len,
468                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
469                        map->m_len, map->m_pblk, map->m_flags,
470                        retval, flags);
471         }
472 }
473 #endif /* ES_AGGRESSIVE_TEST */
474
475 /*
476  * The ext4_map_blocks() function tries to look up the requested blocks,
477  * and returns if the blocks are already mapped.
478  *
479  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
480  * and store the allocated blocks in the result buffer head and mark it
481  * mapped.
482  *
483  * If file type is extents based, it will call ext4_ext_map_blocks(),
484  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
485  * based files
486  *
487  * On success, it returns the number of blocks being mapped or allocated.  if
488  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
489  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
490  *
491  * It returns 0 if plain look up failed (blocks have not been allocated), in
492  * that case, @map is returned as unmapped but we still do fill map->m_len to
493  * indicate the length of a hole starting at map->m_lblk.
494  *
495  * It returns the error in case of allocation failure.
496  */
497 int ext4_map_blocks(handle_t *handle, struct inode *inode,
498                     struct ext4_map_blocks *map, int flags)
499 {
500         struct extent_status es;
501         int retval;
502         int ret = 0;
503 #ifdef ES_AGGRESSIVE_TEST
504         struct ext4_map_blocks orig_map;
505
506         memcpy(&orig_map, map, sizeof(*map));
507 #endif
508
509         map->m_flags = 0;
510         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
511                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
512                   (unsigned long) map->m_lblk);
513
514         /*
515          * ext4_map_blocks returns an int, and m_len is an unsigned int
516          */
517         if (unlikely(map->m_len > INT_MAX))
518                 map->m_len = INT_MAX;
519
520         /* We can handle the block number less than EXT_MAX_BLOCKS */
521         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
522                 return -EFSCORRUPTED;
523
524         /* Lookup extent status tree firstly */
525         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
526                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
527                         map->m_pblk = ext4_es_pblock(&es) +
528                                         map->m_lblk - es.es_lblk;
529                         map->m_flags |= ext4_es_is_written(&es) ?
530                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
531                         retval = es.es_len - (map->m_lblk - es.es_lblk);
532                         if (retval > map->m_len)
533                                 retval = map->m_len;
534                         map->m_len = retval;
535                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
536                         map->m_pblk = 0;
537                         retval = es.es_len - (map->m_lblk - es.es_lblk);
538                         if (retval > map->m_len)
539                                 retval = map->m_len;
540                         map->m_len = retval;
541                         retval = 0;
542                 } else {
543                         BUG_ON(1);
544                 }
545 #ifdef ES_AGGRESSIVE_TEST
546                 ext4_map_blocks_es_recheck(handle, inode, map,
547                                            &orig_map, flags);
548 #endif
549                 goto found;
550         }
551
552         /*
553          * Try to see if we can get the block without requesting a new
554          * file system block.
555          */
556         down_read(&EXT4_I(inode)->i_data_sem);
557         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
558                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
559                                              EXT4_GET_BLOCKS_KEEP_SIZE);
560         } else {
561                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
562                                              EXT4_GET_BLOCKS_KEEP_SIZE);
563         }
564         if (retval > 0) {
565                 unsigned int status;
566
567                 if (unlikely(retval != map->m_len)) {
568                         ext4_warning(inode->i_sb,
569                                      "ES len assertion failed for inode "
570                                      "%lu: retval %d != map->m_len %d",
571                                      inode->i_ino, retval, map->m_len);
572                         WARN_ON(1);
573                 }
574
575                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
576                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
577                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
578                     !(status & EXTENT_STATUS_WRITTEN) &&
579                     ext4_find_delalloc_range(inode, map->m_lblk,
580                                              map->m_lblk + map->m_len - 1))
581                         status |= EXTENT_STATUS_DELAYED;
582                 ret = ext4_es_insert_extent(inode, map->m_lblk,
583                                             map->m_len, map->m_pblk, status);
584                 if (ret < 0)
585                         retval = ret;
586         }
587         up_read((&EXT4_I(inode)->i_data_sem));
588
589 found:
590         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
591                 ret = check_block_validity(inode, map);
592                 if (ret != 0)
593                         return ret;
594         }
595
596         /* If it is only a block(s) look up */
597         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
598                 return retval;
599
600         /*
601          * Returns if the blocks have already allocated
602          *
603          * Note that if blocks have been preallocated
604          * ext4_ext_get_block() returns the create = 0
605          * with buffer head unmapped.
606          */
607         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
608                 /*
609                  * If we need to convert extent to unwritten
610                  * we continue and do the actual work in
611                  * ext4_ext_map_blocks()
612                  */
613                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
614                         return retval;
615
616         /*
617          * Here we clear m_flags because after allocating an new extent,
618          * it will be set again.
619          */
620         map->m_flags &= ~EXT4_MAP_FLAGS;
621
622         /*
623          * New blocks allocate and/or writing to unwritten extent
624          * will possibly result in updating i_data, so we take
625          * the write lock of i_data_sem, and call get_block()
626          * with create == 1 flag.
627          */
628         down_write(&EXT4_I(inode)->i_data_sem);
629
630         /*
631          * We need to check for EXT4 here because migrate
632          * could have changed the inode type in between
633          */
634         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
635                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
636         } else {
637                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
638
639                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
640                         /*
641                          * We allocated new blocks which will result in
642                          * i_data's format changing.  Force the migrate
643                          * to fail by clearing migrate flags
644                          */
645                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
646                 }
647
648                 /*
649                  * Update reserved blocks/metadata blocks after successful
650                  * block allocation which had been deferred till now. We don't
651                  * support fallocate for non extent files. So we can update
652                  * reserve space here.
653                  */
654                 if ((retval > 0) &&
655                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
656                         ext4_da_update_reserve_space(inode, retval, 1);
657         }
658
659         if (retval > 0) {
660                 unsigned int status;
661
662                 if (unlikely(retval != map->m_len)) {
663                         ext4_warning(inode->i_sb,
664                                      "ES len assertion failed for inode "
665                                      "%lu: retval %d != map->m_len %d",
666                                      inode->i_ino, retval, map->m_len);
667                         WARN_ON(1);
668                 }
669
670                 /*
671                  * We have to zeroout blocks before inserting them into extent
672                  * status tree. Otherwise someone could look them up there and
673                  * use them before they are really zeroed. We also have to
674                  * unmap metadata before zeroing as otherwise writeback can
675                  * overwrite zeros with stale data from block device.
676                  */
677                 if (flags & EXT4_GET_BLOCKS_ZERO &&
678                     map->m_flags & EXT4_MAP_MAPPED &&
679                     map->m_flags & EXT4_MAP_NEW) {
680                         clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
681                                            map->m_len);
682                         ret = ext4_issue_zeroout(inode, map->m_lblk,
683                                                  map->m_pblk, map->m_len);
684                         if (ret) {
685                                 retval = ret;
686                                 goto out_sem;
687                         }
688                 }
689
690                 /*
691                  * If the extent has been zeroed out, we don't need to update
692                  * extent status tree.
693                  */
694                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
695                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
696                         if (ext4_es_is_written(&es))
697                                 goto out_sem;
698                 }
699                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
700                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
701                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
702                     !(status & EXTENT_STATUS_WRITTEN) &&
703                     ext4_find_delalloc_range(inode, map->m_lblk,
704                                              map->m_lblk + map->m_len - 1))
705                         status |= EXTENT_STATUS_DELAYED;
706                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
707                                             map->m_pblk, status);
708                 if (ret < 0) {
709                         retval = ret;
710                         goto out_sem;
711                 }
712         }
713
714 out_sem:
715         up_write((&EXT4_I(inode)->i_data_sem));
716         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
717                 ret = check_block_validity(inode, map);
718                 if (ret != 0)
719                         return ret;
720
721                 /*
722                  * Inodes with freshly allocated blocks where contents will be
723                  * visible after transaction commit must be on transaction's
724                  * ordered data list.
725                  */
726                 if (map->m_flags & EXT4_MAP_NEW &&
727                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
728                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
729                     !ext4_is_quota_file(inode) &&
730                     ext4_should_order_data(inode)) {
731                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
732                                 ret = ext4_jbd2_inode_add_wait(handle, inode);
733                         else
734                                 ret = ext4_jbd2_inode_add_write(handle, inode);
735                         if (ret)
736                                 return ret;
737                 }
738         }
739         return retval;
740 }
741
742 /*
743  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
744  * we have to be careful as someone else may be manipulating b_state as well.
745  */
746 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
747 {
748         unsigned long old_state;
749         unsigned long new_state;
750
751         flags &= EXT4_MAP_FLAGS;
752
753         /* Dummy buffer_head? Set non-atomically. */
754         if (!bh->b_page) {
755                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
756                 return;
757         }
758         /*
759          * Someone else may be modifying b_state. Be careful! This is ugly but
760          * once we get rid of using bh as a container for mapping information
761          * to pass to / from get_block functions, this can go away.
762          */
763         do {
764                 old_state = READ_ONCE(bh->b_state);
765                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
766         } while (unlikely(
767                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
768 }
769
770 static int _ext4_get_block(struct inode *inode, sector_t iblock,
771                            struct buffer_head *bh, int flags)
772 {
773         struct ext4_map_blocks map;
774         int ret = 0;
775
776         if (ext4_has_inline_data(inode))
777                 return -ERANGE;
778
779         map.m_lblk = iblock;
780         map.m_len = bh->b_size >> inode->i_blkbits;
781
782         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
783                               flags);
784         if (ret > 0) {
785                 map_bh(bh, inode->i_sb, map.m_pblk);
786                 ext4_update_bh_state(bh, map.m_flags);
787                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
788                 ret = 0;
789         } else if (ret == 0) {
790                 /* hole case, need to fill in bh->b_size */
791                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
792         }
793         return ret;
794 }
795
796 int ext4_get_block(struct inode *inode, sector_t iblock,
797                    struct buffer_head *bh, int create)
798 {
799         return _ext4_get_block(inode, iblock, bh,
800                                create ? EXT4_GET_BLOCKS_CREATE : 0);
801 }
802
803 /*
804  * Get block function used when preparing for buffered write if we require
805  * creating an unwritten extent if blocks haven't been allocated.  The extent
806  * will be converted to written after the IO is complete.
807  */
808 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
809                              struct buffer_head *bh_result, int create)
810 {
811         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
812                    inode->i_ino, create);
813         return _ext4_get_block(inode, iblock, bh_result,
814                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
815 }
816
817 /* Maximum number of blocks we map for direct IO at once. */
818 #define DIO_MAX_BLOCKS 4096
819
820 /*
821  * Get blocks function for the cases that need to start a transaction -
822  * generally difference cases of direct IO and DAX IO. It also handles retries
823  * in case of ENOSPC.
824  */
825 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
826                                 struct buffer_head *bh_result, int flags)
827 {
828         int dio_credits;
829         handle_t *handle;
830         int retries = 0;
831         int ret;
832
833         /* Trim mapping request to maximum we can map at once for DIO */
834         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
835                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
836         dio_credits = ext4_chunk_trans_blocks(inode,
837                                       bh_result->b_size >> inode->i_blkbits);
838 retry:
839         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
840         if (IS_ERR(handle))
841                 return PTR_ERR(handle);
842
843         ret = _ext4_get_block(inode, iblock, bh_result, flags);
844         ext4_journal_stop(handle);
845
846         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
847                 goto retry;
848         return ret;
849 }
850
851 /* Get block function for DIO reads and writes to inodes without extents */
852 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
853                        struct buffer_head *bh, int create)
854 {
855         /* We don't expect handle for direct IO */
856         WARN_ON_ONCE(ext4_journal_current_handle());
857
858         if (!create)
859                 return _ext4_get_block(inode, iblock, bh, 0);
860         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
861 }
862
863 /*
864  * Get block function for AIO DIO writes when we create unwritten extent if
865  * blocks are not allocated yet. The extent will be converted to written
866  * after IO is complete.
867  */
868 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
869                 sector_t iblock, struct buffer_head *bh_result, int create)
870 {
871         int ret;
872
873         /* We don't expect handle for direct IO */
874         WARN_ON_ONCE(ext4_journal_current_handle());
875
876         ret = ext4_get_block_trans(inode, iblock, bh_result,
877                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
878
879         /*
880          * When doing DIO using unwritten extents, we need io_end to convert
881          * unwritten extents to written on IO completion. We allocate io_end
882          * once we spot unwritten extent and store it in b_private. Generic
883          * DIO code keeps b_private set and furthermore passes the value to
884          * our completion callback in 'private' argument.
885          */
886         if (!ret && buffer_unwritten(bh_result)) {
887                 if (!bh_result->b_private) {
888                         ext4_io_end_t *io_end;
889
890                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
891                         if (!io_end)
892                                 return -ENOMEM;
893                         bh_result->b_private = io_end;
894                         ext4_set_io_unwritten_flag(inode, io_end);
895                 }
896                 set_buffer_defer_completion(bh_result);
897         }
898
899         return ret;
900 }
901
902 /*
903  * Get block function for non-AIO DIO writes when we create unwritten extent if
904  * blocks are not allocated yet. The extent will be converted to written
905  * after IO is complete by ext4_direct_IO_write().
906  */
907 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
908                 sector_t iblock, struct buffer_head *bh_result, int create)
909 {
910         int ret;
911
912         /* We don't expect handle for direct IO */
913         WARN_ON_ONCE(ext4_journal_current_handle());
914
915         ret = ext4_get_block_trans(inode, iblock, bh_result,
916                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
917
918         /*
919          * Mark inode as having pending DIO writes to unwritten extents.
920          * ext4_direct_IO_write() checks this flag and converts extents to
921          * written.
922          */
923         if (!ret && buffer_unwritten(bh_result))
924                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
925
926         return ret;
927 }
928
929 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
930                    struct buffer_head *bh_result, int create)
931 {
932         int ret;
933
934         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
935                    inode->i_ino, create);
936         /* We don't expect handle for direct IO */
937         WARN_ON_ONCE(ext4_journal_current_handle());
938
939         ret = _ext4_get_block(inode, iblock, bh_result, 0);
940         /*
941          * Blocks should have been preallocated! ext4_file_write_iter() checks
942          * that.
943          */
944         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
945
946         return ret;
947 }
948
949
950 /*
951  * `handle' can be NULL if create is zero
952  */
953 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
954                                 ext4_lblk_t block, int map_flags)
955 {
956         struct ext4_map_blocks map;
957         struct buffer_head *bh;
958         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
959         int err;
960
961         J_ASSERT(handle != NULL || create == 0);
962
963         map.m_lblk = block;
964         map.m_len = 1;
965         err = ext4_map_blocks(handle, inode, &map, map_flags);
966
967         if (err == 0)
968                 return create ? ERR_PTR(-ENOSPC) : NULL;
969         if (err < 0)
970                 return ERR_PTR(err);
971
972         bh = sb_getblk(inode->i_sb, map.m_pblk);
973         if (unlikely(!bh))
974                 return ERR_PTR(-ENOMEM);
975         if (map.m_flags & EXT4_MAP_NEW) {
976                 J_ASSERT(create != 0);
977                 J_ASSERT(handle != NULL);
978
979                 /*
980                  * Now that we do not always journal data, we should
981                  * keep in mind whether this should always journal the
982                  * new buffer as metadata.  For now, regular file
983                  * writes use ext4_get_block instead, so it's not a
984                  * problem.
985                  */
986                 lock_buffer(bh);
987                 BUFFER_TRACE(bh, "call get_create_access");
988                 err = ext4_journal_get_create_access(handle, bh);
989                 if (unlikely(err)) {
990                         unlock_buffer(bh);
991                         goto errout;
992                 }
993                 if (!buffer_uptodate(bh)) {
994                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
995                         set_buffer_uptodate(bh);
996                 }
997                 unlock_buffer(bh);
998                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
999                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1000                 if (unlikely(err))
1001                         goto errout;
1002         } else
1003                 BUFFER_TRACE(bh, "not a new buffer");
1004         return bh;
1005 errout:
1006         brelse(bh);
1007         return ERR_PTR(err);
1008 }
1009
1010 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1011                                ext4_lblk_t block, int map_flags)
1012 {
1013         struct buffer_head *bh;
1014
1015         bh = ext4_getblk(handle, inode, block, map_flags);
1016         if (IS_ERR(bh))
1017                 return bh;
1018         if (!bh || buffer_uptodate(bh))
1019                 return bh;
1020         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1021         wait_on_buffer(bh);
1022         if (buffer_uptodate(bh))
1023                 return bh;
1024         put_bh(bh);
1025         return ERR_PTR(-EIO);
1026 }
1027
1028 /* Read a contiguous batch of blocks. */
1029 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1030                      bool wait, struct buffer_head **bhs)
1031 {
1032         int i, err;
1033
1034         for (i = 0; i < bh_count; i++) {
1035                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1036                 if (IS_ERR(bhs[i])) {
1037                         err = PTR_ERR(bhs[i]);
1038                         bh_count = i;
1039                         goto out_brelse;
1040                 }
1041         }
1042
1043         for (i = 0; i < bh_count; i++)
1044                 /* Note that NULL bhs[i] is valid because of holes. */
1045                 if (bhs[i] && !buffer_uptodate(bhs[i]))
1046                         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1047                                     &bhs[i]);
1048
1049         if (!wait)
1050                 return 0;
1051
1052         for (i = 0; i < bh_count; i++)
1053                 if (bhs[i])
1054                         wait_on_buffer(bhs[i]);
1055
1056         for (i = 0; i < bh_count; i++) {
1057                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1058                         err = -EIO;
1059                         goto out_brelse;
1060                 }
1061         }
1062         return 0;
1063
1064 out_brelse:
1065         for (i = 0; i < bh_count; i++) {
1066                 brelse(bhs[i]);
1067                 bhs[i] = NULL;
1068         }
1069         return err;
1070 }
1071
1072 int ext4_walk_page_buffers(handle_t *handle,
1073                            struct buffer_head *head,
1074                            unsigned from,
1075                            unsigned to,
1076                            int *partial,
1077                            int (*fn)(handle_t *handle,
1078                                      struct buffer_head *bh))
1079 {
1080         struct buffer_head *bh;
1081         unsigned block_start, block_end;
1082         unsigned blocksize = head->b_size;
1083         int err, ret = 0;
1084         struct buffer_head *next;
1085
1086         for (bh = head, block_start = 0;
1087              ret == 0 && (bh != head || !block_start);
1088              block_start = block_end, bh = next) {
1089                 next = bh->b_this_page;
1090                 block_end = block_start + blocksize;
1091                 if (block_end <= from || block_start >= to) {
1092                         if (partial && !buffer_uptodate(bh))
1093                                 *partial = 1;
1094                         continue;
1095                 }
1096                 err = (*fn)(handle, bh);
1097                 if (!ret)
1098                         ret = err;
1099         }
1100         return ret;
1101 }
1102
1103 /*
1104  * To preserve ordering, it is essential that the hole instantiation and
1105  * the data write be encapsulated in a single transaction.  We cannot
1106  * close off a transaction and start a new one between the ext4_get_block()
1107  * and the commit_write().  So doing the jbd2_journal_start at the start of
1108  * prepare_write() is the right place.
1109  *
1110  * Also, this function can nest inside ext4_writepage().  In that case, we
1111  * *know* that ext4_writepage() has generated enough buffer credits to do the
1112  * whole page.  So we won't block on the journal in that case, which is good,
1113  * because the caller may be PF_MEMALLOC.
1114  *
1115  * By accident, ext4 can be reentered when a transaction is open via
1116  * quota file writes.  If we were to commit the transaction while thus
1117  * reentered, there can be a deadlock - we would be holding a quota
1118  * lock, and the commit would never complete if another thread had a
1119  * transaction open and was blocking on the quota lock - a ranking
1120  * violation.
1121  *
1122  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1123  * will _not_ run commit under these circumstances because handle->h_ref
1124  * is elevated.  We'll still have enough credits for the tiny quotafile
1125  * write.
1126  */
1127 int do_journal_get_write_access(handle_t *handle,
1128                                 struct buffer_head *bh)
1129 {
1130         int dirty = buffer_dirty(bh);
1131         int ret;
1132
1133         if (!buffer_mapped(bh) || buffer_freed(bh))
1134                 return 0;
1135         /*
1136          * __block_write_begin() could have dirtied some buffers. Clean
1137          * the dirty bit as jbd2_journal_get_write_access() could complain
1138          * otherwise about fs integrity issues. Setting of the dirty bit
1139          * by __block_write_begin() isn't a real problem here as we clear
1140          * the bit before releasing a page lock and thus writeback cannot
1141          * ever write the buffer.
1142          */
1143         if (dirty)
1144                 clear_buffer_dirty(bh);
1145         BUFFER_TRACE(bh, "get write access");
1146         ret = ext4_journal_get_write_access(handle, bh);
1147         if (!ret && dirty)
1148                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1149         return ret;
1150 }
1151
1152 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1153 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1154                                   get_block_t *get_block)
1155 {
1156         unsigned from = pos & (PAGE_SIZE - 1);
1157         unsigned to = from + len;
1158         struct inode *inode = page->mapping->host;
1159         unsigned block_start, block_end;
1160         sector_t block;
1161         int err = 0;
1162         unsigned blocksize = inode->i_sb->s_blocksize;
1163         unsigned bbits;
1164         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1165         bool decrypt = false;
1166
1167         BUG_ON(!PageLocked(page));
1168         BUG_ON(from > PAGE_SIZE);
1169         BUG_ON(to > PAGE_SIZE);
1170         BUG_ON(from > to);
1171
1172         if (!page_has_buffers(page))
1173                 create_empty_buffers(page, blocksize, 0);
1174         head = page_buffers(page);
1175         bbits = ilog2(blocksize);
1176         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1177
1178         for (bh = head, block_start = 0; bh != head || !block_start;
1179             block++, block_start = block_end, bh = bh->b_this_page) {
1180                 block_end = block_start + blocksize;
1181                 if (block_end <= from || block_start >= to) {
1182                         if (PageUptodate(page)) {
1183                                 if (!buffer_uptodate(bh))
1184                                         set_buffer_uptodate(bh);
1185                         }
1186                         continue;
1187                 }
1188                 if (buffer_new(bh))
1189                         clear_buffer_new(bh);
1190                 if (!buffer_mapped(bh)) {
1191                         WARN_ON(bh->b_size != blocksize);
1192                         err = get_block(inode, block, bh, 1);
1193                         if (err)
1194                                 break;
1195                         if (buffer_new(bh)) {
1196                                 clean_bdev_bh_alias(bh);
1197                                 if (PageUptodate(page)) {
1198                                         clear_buffer_new(bh);
1199                                         set_buffer_uptodate(bh);
1200                                         mark_buffer_dirty(bh);
1201                                         continue;
1202                                 }
1203                                 if (block_end > to || block_start < from)
1204                                         zero_user_segments(page, to, block_end,
1205                                                            block_start, from);
1206                                 continue;
1207                         }
1208                 }
1209                 if (PageUptodate(page)) {
1210                         if (!buffer_uptodate(bh))
1211                                 set_buffer_uptodate(bh);
1212                         continue;
1213                 }
1214                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1215                     !buffer_unwritten(bh) &&
1216                     (block_start < from || block_end > to)) {
1217                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1218                         *wait_bh++ = bh;
1219                         decrypt = ext4_encrypted_inode(inode) &&
1220                                 S_ISREG(inode->i_mode);
1221                 }
1222         }
1223         /*
1224          * If we issued read requests, let them complete.
1225          */
1226         while (wait_bh > wait) {
1227                 wait_on_buffer(*--wait_bh);
1228                 if (!buffer_uptodate(*wait_bh))
1229                         err = -EIO;
1230         }
1231         if (unlikely(err))
1232                 page_zero_new_buffers(page, from, to);
1233         else if (decrypt)
1234                 err = fscrypt_decrypt_page(page->mapping->host, page,
1235                                 PAGE_SIZE, 0, page->index);
1236         return err;
1237 }
1238 #endif
1239
1240 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1241                             loff_t pos, unsigned len, unsigned flags,
1242                             struct page **pagep, void **fsdata)
1243 {
1244         struct inode *inode = mapping->host;
1245         int ret, needed_blocks;
1246         handle_t *handle;
1247         int retries = 0;
1248         struct page *page;
1249         pgoff_t index;
1250         unsigned from, to;
1251
1252         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1253                 return -EIO;
1254
1255         trace_ext4_write_begin(inode, pos, len, flags);
1256         /*
1257          * Reserve one block more for addition to orphan list in case
1258          * we allocate blocks but write fails for some reason
1259          */
1260         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1261         index = pos >> PAGE_SHIFT;
1262         from = pos & (PAGE_SIZE - 1);
1263         to = from + len;
1264
1265         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1266                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1267                                                     flags, pagep);
1268                 if (ret < 0)
1269                         return ret;
1270                 if (ret == 1)
1271                         return 0;
1272         }
1273
1274         /*
1275          * grab_cache_page_write_begin() can take a long time if the
1276          * system is thrashing due to memory pressure, or if the page
1277          * is being written back.  So grab it first before we start
1278          * the transaction handle.  This also allows us to allocate
1279          * the page (if needed) without using GFP_NOFS.
1280          */
1281 retry_grab:
1282         page = grab_cache_page_write_begin(mapping, index, flags);
1283         if (!page)
1284                 return -ENOMEM;
1285         unlock_page(page);
1286
1287 retry_journal:
1288         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1289         if (IS_ERR(handle)) {
1290                 put_page(page);
1291                 return PTR_ERR(handle);
1292         }
1293
1294         lock_page(page);
1295         if (page->mapping != mapping) {
1296                 /* The page got truncated from under us */
1297                 unlock_page(page);
1298                 put_page(page);
1299                 ext4_journal_stop(handle);
1300                 goto retry_grab;
1301         }
1302         /* In case writeback began while the page was unlocked */
1303         wait_for_stable_page(page);
1304
1305 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1306         if (ext4_should_dioread_nolock(inode))
1307                 ret = ext4_block_write_begin(page, pos, len,
1308                                              ext4_get_block_unwritten);
1309         else
1310                 ret = ext4_block_write_begin(page, pos, len,
1311                                              ext4_get_block);
1312 #else
1313         if (ext4_should_dioread_nolock(inode))
1314                 ret = __block_write_begin(page, pos, len,
1315                                           ext4_get_block_unwritten);
1316         else
1317                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1318 #endif
1319         if (!ret && ext4_should_journal_data(inode)) {
1320                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1321                                              from, to, NULL,
1322                                              do_journal_get_write_access);
1323         }
1324
1325         if (ret) {
1326                 unlock_page(page);
1327                 /*
1328                  * __block_write_begin may have instantiated a few blocks
1329                  * outside i_size.  Trim these off again. Don't need
1330                  * i_size_read because we hold i_mutex.
1331                  *
1332                  * Add inode to orphan list in case we crash before
1333                  * truncate finishes
1334                  */
1335                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1336                         ext4_orphan_add(handle, inode);
1337
1338                 ext4_journal_stop(handle);
1339                 if (pos + len > inode->i_size) {
1340                         ext4_truncate_failed_write(inode);
1341                         /*
1342                          * If truncate failed early the inode might
1343                          * still be on the orphan list; we need to
1344                          * make sure the inode is removed from the
1345                          * orphan list in that case.
1346                          */
1347                         if (inode->i_nlink)
1348                                 ext4_orphan_del(NULL, inode);
1349                 }
1350
1351                 if (ret == -ENOSPC &&
1352                     ext4_should_retry_alloc(inode->i_sb, &retries))
1353                         goto retry_journal;
1354                 put_page(page);
1355                 return ret;
1356         }
1357         *pagep = page;
1358         return ret;
1359 }
1360
1361 /* For write_end() in data=journal mode */
1362 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1363 {
1364         int ret;
1365         if (!buffer_mapped(bh) || buffer_freed(bh))
1366                 return 0;
1367         set_buffer_uptodate(bh);
1368         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1369         clear_buffer_meta(bh);
1370         clear_buffer_prio(bh);
1371         return ret;
1372 }
1373
1374 /*
1375  * We need to pick up the new inode size which generic_commit_write gave us
1376  * `file' can be NULL - eg, when called from page_symlink().
1377  *
1378  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1379  * buffers are managed internally.
1380  */
1381 static int ext4_write_end(struct file *file,
1382                           struct address_space *mapping,
1383                           loff_t pos, unsigned len, unsigned copied,
1384                           struct page *page, void *fsdata)
1385 {
1386         handle_t *handle = ext4_journal_current_handle();
1387         struct inode *inode = mapping->host;
1388         loff_t old_size = inode->i_size;
1389         int ret = 0, ret2;
1390         int i_size_changed = 0;
1391
1392         trace_ext4_write_end(inode, pos, len, copied);
1393         if (ext4_has_inline_data(inode)) {
1394                 ret = ext4_write_inline_data_end(inode, pos, len,
1395                                                  copied, page);
1396                 if (ret < 0) {
1397                         unlock_page(page);
1398                         put_page(page);
1399                         goto errout;
1400                 }
1401                 copied = ret;
1402         } else
1403                 copied = block_write_end(file, mapping, pos,
1404                                          len, copied, page, fsdata);
1405         /*
1406          * it's important to update i_size while still holding page lock:
1407          * page writeout could otherwise come in and zero beyond i_size.
1408          */
1409         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1410         unlock_page(page);
1411         put_page(page);
1412
1413         if (old_size < pos)
1414                 pagecache_isize_extended(inode, old_size, pos);
1415         /*
1416          * Don't mark the inode dirty under page lock. First, it unnecessarily
1417          * makes the holding time of page lock longer. Second, it forces lock
1418          * ordering of page lock and transaction start for journaling
1419          * filesystems.
1420          */
1421         if (i_size_changed)
1422                 ext4_mark_inode_dirty(handle, inode);
1423
1424         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1425                 /* if we have allocated more blocks and copied
1426                  * less. We will have blocks allocated outside
1427                  * inode->i_size. So truncate them
1428                  */
1429                 ext4_orphan_add(handle, inode);
1430 errout:
1431         ret2 = ext4_journal_stop(handle);
1432         if (!ret)
1433                 ret = ret2;
1434
1435         if (pos + len > inode->i_size) {
1436                 ext4_truncate_failed_write(inode);
1437                 /*
1438                  * If truncate failed early the inode might still be
1439                  * on the orphan list; we need to make sure the inode
1440                  * is removed from the orphan list in that case.
1441                  */
1442                 if (inode->i_nlink)
1443                         ext4_orphan_del(NULL, inode);
1444         }
1445
1446         return ret ? ret : copied;
1447 }
1448
1449 /*
1450  * This is a private version of page_zero_new_buffers() which doesn't
1451  * set the buffer to be dirty, since in data=journalled mode we need
1452  * to call ext4_handle_dirty_metadata() instead.
1453  */
1454 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1455                                             struct page *page,
1456                                             unsigned from, unsigned to)
1457 {
1458         unsigned int block_start = 0, block_end;
1459         struct buffer_head *head, *bh;
1460
1461         bh = head = page_buffers(page);
1462         do {
1463                 block_end = block_start + bh->b_size;
1464                 if (buffer_new(bh)) {
1465                         if (block_end > from && block_start < to) {
1466                                 if (!PageUptodate(page)) {
1467                                         unsigned start, size;
1468
1469                                         start = max(from, block_start);
1470                                         size = min(to, block_end) - start;
1471
1472                                         zero_user(page, start, size);
1473                                         write_end_fn(handle, bh);
1474                                 }
1475                                 clear_buffer_new(bh);
1476                         }
1477                 }
1478                 block_start = block_end;
1479                 bh = bh->b_this_page;
1480         } while (bh != head);
1481 }
1482
1483 static int ext4_journalled_write_end(struct file *file,
1484                                      struct address_space *mapping,
1485                                      loff_t pos, unsigned len, unsigned copied,
1486                                      struct page *page, void *fsdata)
1487 {
1488         handle_t *handle = ext4_journal_current_handle();
1489         struct inode *inode = mapping->host;
1490         loff_t old_size = inode->i_size;
1491         int ret = 0, ret2;
1492         int partial = 0;
1493         unsigned from, to;
1494         int size_changed = 0;
1495
1496         trace_ext4_journalled_write_end(inode, pos, len, copied);
1497         from = pos & (PAGE_SIZE - 1);
1498         to = from + len;
1499
1500         BUG_ON(!ext4_handle_valid(handle));
1501
1502         if (ext4_has_inline_data(inode)) {
1503                 ret = ext4_write_inline_data_end(inode, pos, len,
1504                                                  copied, page);
1505                 if (ret < 0) {
1506                         unlock_page(page);
1507                         put_page(page);
1508                         goto errout;
1509                 }
1510                 copied = ret;
1511         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1512                 copied = 0;
1513                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1514         } else {
1515                 if (unlikely(copied < len))
1516                         ext4_journalled_zero_new_buffers(handle, page,
1517                                                          from + copied, to);
1518                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1519                                              from + copied, &partial,
1520                                              write_end_fn);
1521                 if (!partial)
1522                         SetPageUptodate(page);
1523         }
1524         size_changed = ext4_update_inode_size(inode, pos + copied);
1525         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1526         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1527         unlock_page(page);
1528         put_page(page);
1529
1530         if (old_size < pos)
1531                 pagecache_isize_extended(inode, old_size, pos);
1532
1533         if (size_changed) {
1534                 ret2 = ext4_mark_inode_dirty(handle, inode);
1535                 if (!ret)
1536                         ret = ret2;
1537         }
1538
1539         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1540                 /* if we have allocated more blocks and copied
1541                  * less. We will have blocks allocated outside
1542                  * inode->i_size. So truncate them
1543                  */
1544                 ext4_orphan_add(handle, inode);
1545
1546 errout:
1547         ret2 = ext4_journal_stop(handle);
1548         if (!ret)
1549                 ret = ret2;
1550         if (pos + len > inode->i_size) {
1551                 ext4_truncate_failed_write(inode);
1552                 /*
1553                  * If truncate failed early the inode might still be
1554                  * on the orphan list; we need to make sure the inode
1555                  * is removed from the orphan list in that case.
1556                  */
1557                 if (inode->i_nlink)
1558                         ext4_orphan_del(NULL, inode);
1559         }
1560
1561         return ret ? ret : copied;
1562 }
1563
1564 /*
1565  * Reserve space for a single cluster
1566  */
1567 static int ext4_da_reserve_space(struct inode *inode)
1568 {
1569         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1570         struct ext4_inode_info *ei = EXT4_I(inode);
1571         int ret;
1572
1573         /*
1574          * We will charge metadata quota at writeout time; this saves
1575          * us from metadata over-estimation, though we may go over by
1576          * a small amount in the end.  Here we just reserve for data.
1577          */
1578         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1579         if (ret)
1580                 return ret;
1581
1582         spin_lock(&ei->i_block_reservation_lock);
1583         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1584                 spin_unlock(&ei->i_block_reservation_lock);
1585                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1586                 return -ENOSPC;
1587         }
1588         ei->i_reserved_data_blocks++;
1589         trace_ext4_da_reserve_space(inode);
1590         spin_unlock(&ei->i_block_reservation_lock);
1591
1592         return 0;       /* success */
1593 }
1594
1595 static void ext4_da_release_space(struct inode *inode, int to_free)
1596 {
1597         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1598         struct ext4_inode_info *ei = EXT4_I(inode);
1599
1600         if (!to_free)
1601                 return;         /* Nothing to release, exit */
1602
1603         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1604
1605         trace_ext4_da_release_space(inode, to_free);
1606         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1607                 /*
1608                  * if there aren't enough reserved blocks, then the
1609                  * counter is messed up somewhere.  Since this
1610                  * function is called from invalidate page, it's
1611                  * harmless to return without any action.
1612                  */
1613                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1614                          "ino %lu, to_free %d with only %d reserved "
1615                          "data blocks", inode->i_ino, to_free,
1616                          ei->i_reserved_data_blocks);
1617                 WARN_ON(1);
1618                 to_free = ei->i_reserved_data_blocks;
1619         }
1620         ei->i_reserved_data_blocks -= to_free;
1621
1622         /* update fs dirty data blocks counter */
1623         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1624
1625         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1626
1627         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1628 }
1629
1630 static void ext4_da_page_release_reservation(struct page *page,
1631                                              unsigned int offset,
1632                                              unsigned int length)
1633 {
1634         int to_release = 0, contiguous_blks = 0;
1635         struct buffer_head *head, *bh;
1636         unsigned int curr_off = 0;
1637         struct inode *inode = page->mapping->host;
1638         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1639         unsigned int stop = offset + length;
1640         int num_clusters;
1641         ext4_fsblk_t lblk;
1642
1643         BUG_ON(stop > PAGE_SIZE || stop < length);
1644
1645         head = page_buffers(page);
1646         bh = head;
1647         do {
1648                 unsigned int next_off = curr_off + bh->b_size;
1649
1650                 if (next_off > stop)
1651                         break;
1652
1653                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1654                         to_release++;
1655                         contiguous_blks++;
1656                         clear_buffer_delay(bh);
1657                 } else if (contiguous_blks) {
1658                         lblk = page->index <<
1659                                (PAGE_SHIFT - inode->i_blkbits);
1660                         lblk += (curr_off >> inode->i_blkbits) -
1661                                 contiguous_blks;
1662                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1663                         contiguous_blks = 0;
1664                 }
1665                 curr_off = next_off;
1666         } while ((bh = bh->b_this_page) != head);
1667
1668         if (contiguous_blks) {
1669                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1670                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1671                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1672         }
1673
1674         /* If we have released all the blocks belonging to a cluster, then we
1675          * need to release the reserved space for that cluster. */
1676         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1677         while (num_clusters > 0) {
1678                 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1679                         ((num_clusters - 1) << sbi->s_cluster_bits);
1680                 if (sbi->s_cluster_ratio == 1 ||
1681                     !ext4_find_delalloc_cluster(inode, lblk))
1682                         ext4_da_release_space(inode, 1);
1683
1684                 num_clusters--;
1685         }
1686 }
1687
1688 /*
1689  * Delayed allocation stuff
1690  */
1691
1692 struct mpage_da_data {
1693         struct inode *inode;
1694         struct writeback_control *wbc;
1695
1696         pgoff_t first_page;     /* The first page to write */
1697         pgoff_t next_page;      /* Current page to examine */
1698         pgoff_t last_page;      /* Last page to examine */
1699         /*
1700          * Extent to map - this can be after first_page because that can be
1701          * fully mapped. We somewhat abuse m_flags to store whether the extent
1702          * is delalloc or unwritten.
1703          */
1704         struct ext4_map_blocks map;
1705         struct ext4_io_submit io_submit;        /* IO submission data */
1706         unsigned int do_map:1;
1707 };
1708
1709 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1710                                        bool invalidate)
1711 {
1712         int nr_pages, i;
1713         pgoff_t index, end;
1714         struct pagevec pvec;
1715         struct inode *inode = mpd->inode;
1716         struct address_space *mapping = inode->i_mapping;
1717
1718         /* This is necessary when next_page == 0. */
1719         if (mpd->first_page >= mpd->next_page)
1720                 return;
1721
1722         index = mpd->first_page;
1723         end   = mpd->next_page - 1;
1724         if (invalidate) {
1725                 ext4_lblk_t start, last;
1726                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1727                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1728                 ext4_es_remove_extent(inode, start, last - start + 1);
1729         }
1730
1731         pagevec_init(&pvec);
1732         while (index <= end) {
1733                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1734                 if (nr_pages == 0)
1735                         break;
1736                 for (i = 0; i < nr_pages; i++) {
1737                         struct page *page = pvec.pages[i];
1738
1739                         BUG_ON(!PageLocked(page));
1740                         BUG_ON(PageWriteback(page));
1741                         if (invalidate) {
1742                                 if (page_mapped(page))
1743                                         clear_page_dirty_for_io(page);
1744                                 block_invalidatepage(page, 0, PAGE_SIZE);
1745                                 ClearPageUptodate(page);
1746                         }
1747                         unlock_page(page);
1748                 }
1749                 pagevec_release(&pvec);
1750         }
1751 }
1752
1753 static void ext4_print_free_blocks(struct inode *inode)
1754 {
1755         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1756         struct super_block *sb = inode->i_sb;
1757         struct ext4_inode_info *ei = EXT4_I(inode);
1758
1759         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1760                EXT4_C2B(EXT4_SB(inode->i_sb),
1761                         ext4_count_free_clusters(sb)));
1762         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1763         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1764                (long long) EXT4_C2B(EXT4_SB(sb),
1765                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1766         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1767                (long long) EXT4_C2B(EXT4_SB(sb),
1768                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1769         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1770         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1771                  ei->i_reserved_data_blocks);
1772         return;
1773 }
1774
1775 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1776 {
1777         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1778 }
1779
1780 /*
1781  * This function is grabs code from the very beginning of
1782  * ext4_map_blocks, but assumes that the caller is from delayed write
1783  * time. This function looks up the requested blocks and sets the
1784  * buffer delay bit under the protection of i_data_sem.
1785  */
1786 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1787                               struct ext4_map_blocks *map,
1788                               struct buffer_head *bh)
1789 {
1790         struct extent_status es;
1791         int retval;
1792         sector_t invalid_block = ~((sector_t) 0xffff);
1793 #ifdef ES_AGGRESSIVE_TEST
1794         struct ext4_map_blocks orig_map;
1795
1796         memcpy(&orig_map, map, sizeof(*map));
1797 #endif
1798
1799         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1800                 invalid_block = ~0;
1801
1802         map->m_flags = 0;
1803         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1804                   "logical block %lu\n", inode->i_ino, map->m_len,
1805                   (unsigned long) map->m_lblk);
1806
1807         /* Lookup extent status tree firstly */
1808         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1809                 if (ext4_es_is_hole(&es)) {
1810                         retval = 0;
1811                         down_read(&EXT4_I(inode)->i_data_sem);
1812                         goto add_delayed;
1813                 }
1814
1815                 /*
1816                  * Delayed extent could be allocated by fallocate.
1817                  * So we need to check it.
1818                  */
1819                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1820                         map_bh(bh, inode->i_sb, invalid_block);
1821                         set_buffer_new(bh);
1822                         set_buffer_delay(bh);
1823                         return 0;
1824                 }
1825
1826                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1827                 retval = es.es_len - (iblock - es.es_lblk);
1828                 if (retval > map->m_len)
1829                         retval = map->m_len;
1830                 map->m_len = retval;
1831                 if (ext4_es_is_written(&es))
1832                         map->m_flags |= EXT4_MAP_MAPPED;
1833                 else if (ext4_es_is_unwritten(&es))
1834                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1835                 else
1836                         BUG_ON(1);
1837
1838 #ifdef ES_AGGRESSIVE_TEST
1839                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1840 #endif
1841                 return retval;
1842         }
1843
1844         /*
1845          * Try to see if we can get the block without requesting a new
1846          * file system block.
1847          */
1848         down_read(&EXT4_I(inode)->i_data_sem);
1849         if (ext4_has_inline_data(inode))
1850                 retval = 0;
1851         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1852                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1853         else
1854                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1855
1856 add_delayed:
1857         if (retval == 0) {
1858                 int ret;
1859                 /*
1860                  * XXX: __block_prepare_write() unmaps passed block,
1861                  * is it OK?
1862                  */
1863                 /*
1864                  * If the block was allocated from previously allocated cluster,
1865                  * then we don't need to reserve it again. However we still need
1866                  * to reserve metadata for every block we're going to write.
1867                  */
1868                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1869                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1870                         ret = ext4_da_reserve_space(inode);
1871                         if (ret) {
1872                                 /* not enough space to reserve */
1873                                 retval = ret;
1874                                 goto out_unlock;
1875                         }
1876                 }
1877
1878                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1879                                             ~0, EXTENT_STATUS_DELAYED);
1880                 if (ret) {
1881                         retval = ret;
1882                         goto out_unlock;
1883                 }
1884
1885                 map_bh(bh, inode->i_sb, invalid_block);
1886                 set_buffer_new(bh);
1887                 set_buffer_delay(bh);
1888         } else if (retval > 0) {
1889                 int ret;
1890                 unsigned int status;
1891
1892                 if (unlikely(retval != map->m_len)) {
1893                         ext4_warning(inode->i_sb,
1894                                      "ES len assertion failed for inode "
1895                                      "%lu: retval %d != map->m_len %d",
1896                                      inode->i_ino, retval, map->m_len);
1897                         WARN_ON(1);
1898                 }
1899
1900                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1901                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1902                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1903                                             map->m_pblk, status);
1904                 if (ret != 0)
1905                         retval = ret;
1906         }
1907
1908 out_unlock:
1909         up_read((&EXT4_I(inode)->i_data_sem));
1910
1911         return retval;
1912 }
1913
1914 /*
1915  * This is a special get_block_t callback which is used by
1916  * ext4_da_write_begin().  It will either return mapped block or
1917  * reserve space for a single block.
1918  *
1919  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1920  * We also have b_blocknr = -1 and b_bdev initialized properly
1921  *
1922  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1923  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1924  * initialized properly.
1925  */
1926 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1927                            struct buffer_head *bh, int create)
1928 {
1929         struct ext4_map_blocks map;
1930         int ret = 0;
1931
1932         BUG_ON(create == 0);
1933         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1934
1935         map.m_lblk = iblock;
1936         map.m_len = 1;
1937
1938         /*
1939          * first, we need to know whether the block is allocated already
1940          * preallocated blocks are unmapped but should treated
1941          * the same as allocated blocks.
1942          */
1943         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1944         if (ret <= 0)
1945                 return ret;
1946
1947         map_bh(bh, inode->i_sb, map.m_pblk);
1948         ext4_update_bh_state(bh, map.m_flags);
1949
1950         if (buffer_unwritten(bh)) {
1951                 /* A delayed write to unwritten bh should be marked
1952                  * new and mapped.  Mapped ensures that we don't do
1953                  * get_block multiple times when we write to the same
1954                  * offset and new ensures that we do proper zero out
1955                  * for partial write.
1956                  */
1957                 set_buffer_new(bh);
1958                 set_buffer_mapped(bh);
1959         }
1960         return 0;
1961 }
1962
1963 static int bget_one(handle_t *handle, struct buffer_head *bh)
1964 {
1965         get_bh(bh);
1966         return 0;
1967 }
1968
1969 static int bput_one(handle_t *handle, struct buffer_head *bh)
1970 {
1971         put_bh(bh);
1972         return 0;
1973 }
1974
1975 static int __ext4_journalled_writepage(struct page *page,
1976                                        unsigned int len)
1977 {
1978         struct address_space *mapping = page->mapping;
1979         struct inode *inode = mapping->host;
1980         struct buffer_head *page_bufs = NULL;
1981         handle_t *handle = NULL;
1982         int ret = 0, err = 0;
1983         int inline_data = ext4_has_inline_data(inode);
1984         struct buffer_head *inode_bh = NULL;
1985
1986         ClearPageChecked(page);
1987
1988         if (inline_data) {
1989                 BUG_ON(page->index != 0);
1990                 BUG_ON(len > ext4_get_max_inline_size(inode));
1991                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1992                 if (inode_bh == NULL)
1993                         goto out;
1994         } else {
1995                 page_bufs = page_buffers(page);
1996                 if (!page_bufs) {
1997                         BUG();
1998                         goto out;
1999                 }
2000                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2001                                        NULL, bget_one);
2002         }
2003         /*
2004          * We need to release the page lock before we start the
2005          * journal, so grab a reference so the page won't disappear
2006          * out from under us.
2007          */
2008         get_page(page);
2009         unlock_page(page);
2010
2011         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2012                                     ext4_writepage_trans_blocks(inode));
2013         if (IS_ERR(handle)) {
2014                 ret = PTR_ERR(handle);
2015                 put_page(page);
2016                 goto out_no_pagelock;
2017         }
2018         BUG_ON(!ext4_handle_valid(handle));
2019
2020         lock_page(page);
2021         put_page(page);
2022         if (page->mapping != mapping) {
2023                 /* The page got truncated from under us */
2024                 ext4_journal_stop(handle);
2025                 ret = 0;
2026                 goto out;
2027         }
2028
2029         if (inline_data) {
2030                 BUFFER_TRACE(inode_bh, "get write access");
2031                 ret = ext4_journal_get_write_access(handle, inode_bh);
2032
2033                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2034
2035         } else {
2036                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2037                                              do_journal_get_write_access);
2038
2039                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2040                                              write_end_fn);
2041         }
2042         if (ret == 0)
2043                 ret = err;
2044         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2045         err = ext4_journal_stop(handle);
2046         if (!ret)
2047                 ret = err;
2048
2049         if (!ext4_has_inline_data(inode))
2050                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2051                                        NULL, bput_one);
2052         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2053 out:
2054         unlock_page(page);
2055 out_no_pagelock:
2056         brelse(inode_bh);
2057         return ret;
2058 }
2059
2060 /*
2061  * Note that we don't need to start a transaction unless we're journaling data
2062  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2063  * need to file the inode to the transaction's list in ordered mode because if
2064  * we are writing back data added by write(), the inode is already there and if
2065  * we are writing back data modified via mmap(), no one guarantees in which
2066  * transaction the data will hit the disk. In case we are journaling data, we
2067  * cannot start transaction directly because transaction start ranks above page
2068  * lock so we have to do some magic.
2069  *
2070  * This function can get called via...
2071  *   - ext4_writepages after taking page lock (have journal handle)
2072  *   - journal_submit_inode_data_buffers (no journal handle)
2073  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2074  *   - grab_page_cache when doing write_begin (have journal handle)
2075  *
2076  * We don't do any block allocation in this function. If we have page with
2077  * multiple blocks we need to write those buffer_heads that are mapped. This
2078  * is important for mmaped based write. So if we do with blocksize 1K
2079  * truncate(f, 1024);
2080  * a = mmap(f, 0, 4096);
2081  * a[0] = 'a';
2082  * truncate(f, 4096);
2083  * we have in the page first buffer_head mapped via page_mkwrite call back
2084  * but other buffer_heads would be unmapped but dirty (dirty done via the
2085  * do_wp_page). So writepage should write the first block. If we modify
2086  * the mmap area beyond 1024 we will again get a page_fault and the
2087  * page_mkwrite callback will do the block allocation and mark the
2088  * buffer_heads mapped.
2089  *
2090  * We redirty the page if we have any buffer_heads that is either delay or
2091  * unwritten in the page.
2092  *
2093  * We can get recursively called as show below.
2094  *
2095  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2096  *              ext4_writepage()
2097  *
2098  * But since we don't do any block allocation we should not deadlock.
2099  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2100  */
2101 static int ext4_writepage(struct page *page,
2102                           struct writeback_control *wbc)
2103 {
2104         int ret = 0;
2105         loff_t size;
2106         unsigned int len;
2107         struct buffer_head *page_bufs = NULL;
2108         struct inode *inode = page->mapping->host;
2109         struct ext4_io_submit io_submit;
2110         bool keep_towrite = false;
2111
2112         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2113                 ext4_invalidatepage(page, 0, PAGE_SIZE);
2114                 unlock_page(page);
2115                 return -EIO;
2116         }
2117
2118         trace_ext4_writepage(page);
2119         size = i_size_read(inode);
2120         if (page->index == size >> PAGE_SHIFT)
2121                 len = size & ~PAGE_MASK;
2122         else
2123                 len = PAGE_SIZE;
2124
2125         page_bufs = page_buffers(page);
2126         /*
2127          * We cannot do block allocation or other extent handling in this
2128          * function. If there are buffers needing that, we have to redirty
2129          * the page. But we may reach here when we do a journal commit via
2130          * journal_submit_inode_data_buffers() and in that case we must write
2131          * allocated buffers to achieve data=ordered mode guarantees.
2132          *
2133          * Also, if there is only one buffer per page (the fs block
2134          * size == the page size), if one buffer needs block
2135          * allocation or needs to modify the extent tree to clear the
2136          * unwritten flag, we know that the page can't be written at
2137          * all, so we might as well refuse the write immediately.
2138          * Unfortunately if the block size != page size, we can't as
2139          * easily detect this case using ext4_walk_page_buffers(), but
2140          * for the extremely common case, this is an optimization that
2141          * skips a useless round trip through ext4_bio_write_page().
2142          */
2143         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2144                                    ext4_bh_delay_or_unwritten)) {
2145                 redirty_page_for_writepage(wbc, page);
2146                 if ((current->flags & PF_MEMALLOC) ||
2147                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2148                         /*
2149                          * For memory cleaning there's no point in writing only
2150                          * some buffers. So just bail out. Warn if we came here
2151                          * from direct reclaim.
2152                          */
2153                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2154                                                         == PF_MEMALLOC);
2155                         unlock_page(page);
2156                         return 0;
2157                 }
2158                 keep_towrite = true;
2159         }
2160
2161         if (PageChecked(page) && ext4_should_journal_data(inode))
2162                 /*
2163                  * It's mmapped pagecache.  Add buffers and journal it.  There
2164                  * doesn't seem much point in redirtying the page here.
2165                  */
2166                 return __ext4_journalled_writepage(page, len);
2167
2168         ext4_io_submit_init(&io_submit, wbc);
2169         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2170         if (!io_submit.io_end) {
2171                 redirty_page_for_writepage(wbc, page);
2172                 unlock_page(page);
2173                 return -ENOMEM;
2174         }
2175         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2176         ext4_io_submit(&io_submit);
2177         /* Drop io_end reference we got from init */
2178         ext4_put_io_end_defer(io_submit.io_end);
2179         return ret;
2180 }
2181
2182 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2183 {
2184         int len;
2185         loff_t size;
2186         int err;
2187
2188         BUG_ON(page->index != mpd->first_page);
2189         clear_page_dirty_for_io(page);
2190         /*
2191          * We have to be very careful here!  Nothing protects writeback path
2192          * against i_size changes and the page can be writeably mapped into
2193          * page tables. So an application can be growing i_size and writing
2194          * data through mmap while writeback runs. clear_page_dirty_for_io()
2195          * write-protects our page in page tables and the page cannot get
2196          * written to again until we release page lock. So only after
2197          * clear_page_dirty_for_io() we are safe to sample i_size for
2198          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2199          * on the barrier provided by TestClearPageDirty in
2200          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2201          * after page tables are updated.
2202          */
2203         size = i_size_read(mpd->inode);
2204         if (page->index == size >> PAGE_SHIFT)
2205                 len = size & ~PAGE_MASK;
2206         else
2207                 len = PAGE_SIZE;
2208         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2209         if (!err)
2210                 mpd->wbc->nr_to_write--;
2211         mpd->first_page++;
2212
2213         return err;
2214 }
2215
2216 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2217
2218 /*
2219  * mballoc gives us at most this number of blocks...
2220  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2221  * The rest of mballoc seems to handle chunks up to full group size.
2222  */
2223 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2224
2225 /*
2226  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2227  *
2228  * @mpd - extent of blocks
2229  * @lblk - logical number of the block in the file
2230  * @bh - buffer head we want to add to the extent
2231  *
2232  * The function is used to collect contig. blocks in the same state. If the
2233  * buffer doesn't require mapping for writeback and we haven't started the
2234  * extent of buffers to map yet, the function returns 'true' immediately - the
2235  * caller can write the buffer right away. Otherwise the function returns true
2236  * if the block has been added to the extent, false if the block couldn't be
2237  * added.
2238  */
2239 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2240                                    struct buffer_head *bh)
2241 {
2242         struct ext4_map_blocks *map = &mpd->map;
2243
2244         /* Buffer that doesn't need mapping for writeback? */
2245         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2246             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2247                 /* So far no extent to map => we write the buffer right away */
2248                 if (map->m_len == 0)
2249                         return true;
2250                 return false;
2251         }
2252
2253         /* First block in the extent? */
2254         if (map->m_len == 0) {
2255                 /* We cannot map unless handle is started... */
2256                 if (!mpd->do_map)
2257                         return false;
2258                 map->m_lblk = lblk;
2259                 map->m_len = 1;
2260                 map->m_flags = bh->b_state & BH_FLAGS;
2261                 return true;
2262         }
2263
2264         /* Don't go larger than mballoc is willing to allocate */
2265         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2266                 return false;
2267
2268         /* Can we merge the block to our big extent? */
2269         if (lblk == map->m_lblk + map->m_len &&
2270             (bh->b_state & BH_FLAGS) == map->m_flags) {
2271                 map->m_len++;
2272                 return true;
2273         }
2274         return false;
2275 }
2276
2277 /*
2278  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2279  *
2280  * @mpd - extent of blocks for mapping
2281  * @head - the first buffer in the page
2282  * @bh - buffer we should start processing from
2283  * @lblk - logical number of the block in the file corresponding to @bh
2284  *
2285  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2286  * the page for IO if all buffers in this page were mapped and there's no
2287  * accumulated extent of buffers to map or add buffers in the page to the
2288  * extent of buffers to map. The function returns 1 if the caller can continue
2289  * by processing the next page, 0 if it should stop adding buffers to the
2290  * extent to map because we cannot extend it anymore. It can also return value
2291  * < 0 in case of error during IO submission.
2292  */
2293 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2294                                    struct buffer_head *head,
2295                                    struct buffer_head *bh,
2296                                    ext4_lblk_t lblk)
2297 {
2298         struct inode *inode = mpd->inode;
2299         int err;
2300         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2301                                                         >> inode->i_blkbits;
2302
2303         do {
2304                 BUG_ON(buffer_locked(bh));
2305
2306                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2307                         /* Found extent to map? */
2308                         if (mpd->map.m_len)
2309                                 return 0;
2310                         /* Buffer needs mapping and handle is not started? */
2311                         if (!mpd->do_map)
2312                                 return 0;
2313                         /* Everything mapped so far and we hit EOF */
2314                         break;
2315                 }
2316         } while (lblk++, (bh = bh->b_this_page) != head);
2317         /* So far everything mapped? Submit the page for IO. */
2318         if (mpd->map.m_len == 0) {
2319                 err = mpage_submit_page(mpd, head->b_page);
2320                 if (err < 0)
2321                         return err;
2322         }
2323         return lblk < blocks;
2324 }
2325
2326 /*
2327  * mpage_map_buffers - update buffers corresponding to changed extent and
2328  *                     submit fully mapped pages for IO
2329  *
2330  * @mpd - description of extent to map, on return next extent to map
2331  *
2332  * Scan buffers corresponding to changed extent (we expect corresponding pages
2333  * to be already locked) and update buffer state according to new extent state.
2334  * We map delalloc buffers to their physical location, clear unwritten bits,
2335  * and mark buffers as uninit when we perform writes to unwritten extents
2336  * and do extent conversion after IO is finished. If the last page is not fully
2337  * mapped, we update @map to the next extent in the last page that needs
2338  * mapping. Otherwise we submit the page for IO.
2339  */
2340 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2341 {
2342         struct pagevec pvec;
2343         int nr_pages, i;
2344         struct inode *inode = mpd->inode;
2345         struct buffer_head *head, *bh;
2346         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2347         pgoff_t start, end;
2348         ext4_lblk_t lblk;
2349         sector_t pblock;
2350         int err;
2351
2352         start = mpd->map.m_lblk >> bpp_bits;
2353         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2354         lblk = start << bpp_bits;
2355         pblock = mpd->map.m_pblk;
2356
2357         pagevec_init(&pvec);
2358         while (start <= end) {
2359                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2360                                                 &start, end);
2361                 if (nr_pages == 0)
2362                         break;
2363                 for (i = 0; i < nr_pages; i++) {
2364                         struct page *page = pvec.pages[i];
2365
2366                         bh = head = page_buffers(page);
2367                         do {
2368                                 if (lblk < mpd->map.m_lblk)
2369                                         continue;
2370                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2371                                         /*
2372                                          * Buffer after end of mapped extent.
2373                                          * Find next buffer in the page to map.
2374                                          */
2375                                         mpd->map.m_len = 0;
2376                                         mpd->map.m_flags = 0;
2377                                         /*
2378                                          * FIXME: If dioread_nolock supports
2379                                          * blocksize < pagesize, we need to make
2380                                          * sure we add size mapped so far to
2381                                          * io_end->size as the following call
2382                                          * can submit the page for IO.
2383                                          */
2384                                         err = mpage_process_page_bufs(mpd, head,
2385                                                                       bh, lblk);
2386                                         pagevec_release(&pvec);
2387                                         if (err > 0)
2388                                                 err = 0;
2389                                         return err;
2390                                 }
2391                                 if (buffer_delay(bh)) {
2392                                         clear_buffer_delay(bh);
2393                                         bh->b_blocknr = pblock++;
2394                                 }
2395                                 clear_buffer_unwritten(bh);
2396                         } while (lblk++, (bh = bh->b_this_page) != head);
2397
2398                         /*
2399                          * FIXME: This is going to break if dioread_nolock
2400                          * supports blocksize < pagesize as we will try to
2401                          * convert potentially unmapped parts of inode.
2402                          */
2403                         mpd->io_submit.io_end->size += PAGE_SIZE;
2404                         /* Page fully mapped - let IO run! */
2405                         err = mpage_submit_page(mpd, page);
2406                         if (err < 0) {
2407                                 pagevec_release(&pvec);
2408                                 return err;
2409                         }
2410                 }
2411                 pagevec_release(&pvec);
2412         }
2413         /* Extent fully mapped and matches with page boundary. We are done. */
2414         mpd->map.m_len = 0;
2415         mpd->map.m_flags = 0;
2416         return 0;
2417 }
2418
2419 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2420 {
2421         struct inode *inode = mpd->inode;
2422         struct ext4_map_blocks *map = &mpd->map;
2423         int get_blocks_flags;
2424         int err, dioread_nolock;
2425
2426         trace_ext4_da_write_pages_extent(inode, map);
2427         /*
2428          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2429          * to convert an unwritten extent to be initialized (in the case
2430          * where we have written into one or more preallocated blocks).  It is
2431          * possible that we're going to need more metadata blocks than
2432          * previously reserved. However we must not fail because we're in
2433          * writeback and there is nothing we can do about it so it might result
2434          * in data loss.  So use reserved blocks to allocate metadata if
2435          * possible.
2436          *
2437          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2438          * the blocks in question are delalloc blocks.  This indicates
2439          * that the blocks and quotas has already been checked when
2440          * the data was copied into the page cache.
2441          */
2442         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2443                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2444                            EXT4_GET_BLOCKS_IO_SUBMIT;
2445         dioread_nolock = ext4_should_dioread_nolock(inode);
2446         if (dioread_nolock)
2447                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2448         if (map->m_flags & (1 << BH_Delay))
2449                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2450
2451         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2452         if (err < 0)
2453                 return err;
2454         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2455                 if (!mpd->io_submit.io_end->handle &&
2456                     ext4_handle_valid(handle)) {
2457                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2458                         handle->h_rsv_handle = NULL;
2459                 }
2460                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2461         }
2462
2463         BUG_ON(map->m_len == 0);
2464         if (map->m_flags & EXT4_MAP_NEW) {
2465                 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2466                                    map->m_len);
2467         }
2468         return 0;
2469 }
2470
2471 /*
2472  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2473  *                               mpd->len and submit pages underlying it for IO
2474  *
2475  * @handle - handle for journal operations
2476  * @mpd - extent to map
2477  * @give_up_on_write - we set this to true iff there is a fatal error and there
2478  *                     is no hope of writing the data. The caller should discard
2479  *                     dirty pages to avoid infinite loops.
2480  *
2481  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2482  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2483  * them to initialized or split the described range from larger unwritten
2484  * extent. Note that we need not map all the described range since allocation
2485  * can return less blocks or the range is covered by more unwritten extents. We
2486  * cannot map more because we are limited by reserved transaction credits. On
2487  * the other hand we always make sure that the last touched page is fully
2488  * mapped so that it can be written out (and thus forward progress is
2489  * guaranteed). After mapping we submit all mapped pages for IO.
2490  */
2491 static int mpage_map_and_submit_extent(handle_t *handle,
2492                                        struct mpage_da_data *mpd,
2493                                        bool *give_up_on_write)
2494 {
2495         struct inode *inode = mpd->inode;
2496         struct ext4_map_blocks *map = &mpd->map;
2497         int err;
2498         loff_t disksize;
2499         int progress = 0;
2500
2501         mpd->io_submit.io_end->offset =
2502                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2503         do {
2504                 err = mpage_map_one_extent(handle, mpd);
2505                 if (err < 0) {
2506                         struct super_block *sb = inode->i_sb;
2507
2508                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2509                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2510                                 goto invalidate_dirty_pages;
2511                         /*
2512                          * Let the uper layers retry transient errors.
2513                          * In the case of ENOSPC, if ext4_count_free_blocks()
2514                          * is non-zero, a commit should free up blocks.
2515                          */
2516                         if ((err == -ENOMEM) ||
2517                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2518                                 if (progress)
2519                                         goto update_disksize;
2520                                 return err;
2521                         }
2522                         ext4_msg(sb, KERN_CRIT,
2523                                  "Delayed block allocation failed for "
2524                                  "inode %lu at logical offset %llu with"
2525                                  " max blocks %u with error %d",
2526                                  inode->i_ino,
2527                                  (unsigned long long)map->m_lblk,
2528                                  (unsigned)map->m_len, -err);
2529                         ext4_msg(sb, KERN_CRIT,
2530                                  "This should not happen!! Data will "
2531                                  "be lost\n");
2532                         if (err == -ENOSPC)
2533                                 ext4_print_free_blocks(inode);
2534                 invalidate_dirty_pages:
2535                         *give_up_on_write = true;
2536                         return err;
2537                 }
2538                 progress = 1;
2539                 /*
2540                  * Update buffer state, submit mapped pages, and get us new
2541                  * extent to map
2542                  */
2543                 err = mpage_map_and_submit_buffers(mpd);
2544                 if (err < 0)
2545                         goto update_disksize;
2546         } while (map->m_len);
2547
2548 update_disksize:
2549         /*
2550          * Update on-disk size after IO is submitted.  Races with
2551          * truncate are avoided by checking i_size under i_data_sem.
2552          */
2553         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2554         if (disksize > EXT4_I(inode)->i_disksize) {
2555                 int err2;
2556                 loff_t i_size;
2557
2558                 down_write(&EXT4_I(inode)->i_data_sem);
2559                 i_size = i_size_read(inode);
2560                 if (disksize > i_size)
2561                         disksize = i_size;
2562                 if (disksize > EXT4_I(inode)->i_disksize)
2563                         EXT4_I(inode)->i_disksize = disksize;
2564                 up_write(&EXT4_I(inode)->i_data_sem);
2565                 err2 = ext4_mark_inode_dirty(handle, inode);
2566                 if (err2)
2567                         ext4_error(inode->i_sb,
2568                                    "Failed to mark inode %lu dirty",
2569                                    inode->i_ino);
2570                 if (!err)
2571                         err = err2;
2572         }
2573         return err;
2574 }
2575
2576 /*
2577  * Calculate the total number of credits to reserve for one writepages
2578  * iteration. This is called from ext4_writepages(). We map an extent of
2579  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2580  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2581  * bpp - 1 blocks in bpp different extents.
2582  */
2583 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2584 {
2585         int bpp = ext4_journal_blocks_per_page(inode);
2586
2587         return ext4_meta_trans_blocks(inode,
2588                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2589 }
2590
2591 /*
2592  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2593  *                               and underlying extent to map
2594  *
2595  * @mpd - where to look for pages
2596  *
2597  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2598  * IO immediately. When we find a page which isn't mapped we start accumulating
2599  * extent of buffers underlying these pages that needs mapping (formed by
2600  * either delayed or unwritten buffers). We also lock the pages containing
2601  * these buffers. The extent found is returned in @mpd structure (starting at
2602  * mpd->lblk with length mpd->len blocks).
2603  *
2604  * Note that this function can attach bios to one io_end structure which are
2605  * neither logically nor physically contiguous. Although it may seem as an
2606  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2607  * case as we need to track IO to all buffers underlying a page in one io_end.
2608  */
2609 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2610 {
2611         struct address_space *mapping = mpd->inode->i_mapping;
2612         struct pagevec pvec;
2613         unsigned int nr_pages;
2614         long left = mpd->wbc->nr_to_write;
2615         pgoff_t index = mpd->first_page;
2616         pgoff_t end = mpd->last_page;
2617         int tag;
2618         int i, err = 0;
2619         int blkbits = mpd->inode->i_blkbits;
2620         ext4_lblk_t lblk;
2621         struct buffer_head *head;
2622
2623         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2624                 tag = PAGECACHE_TAG_TOWRITE;
2625         else
2626                 tag = PAGECACHE_TAG_DIRTY;
2627
2628         pagevec_init(&pvec);
2629         mpd->map.m_len = 0;
2630         mpd->next_page = index;
2631         while (index <= end) {
2632                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2633                                 tag);
2634                 if (nr_pages == 0)
2635                         goto out;
2636
2637                 for (i = 0; i < nr_pages; i++) {
2638                         struct page *page = pvec.pages[i];
2639
2640                         /*
2641                          * Accumulated enough dirty pages? This doesn't apply
2642                          * to WB_SYNC_ALL mode. For integrity sync we have to
2643                          * keep going because someone may be concurrently
2644                          * dirtying pages, and we might have synced a lot of
2645                          * newly appeared dirty pages, but have not synced all
2646                          * of the old dirty pages.
2647                          */
2648                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2649                                 goto out;
2650
2651                         /* If we can't merge this page, we are done. */
2652                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2653                                 goto out;
2654
2655                         lock_page(page);
2656                         /*
2657                          * If the page is no longer dirty, or its mapping no
2658                          * longer corresponds to inode we are writing (which
2659                          * means it has been truncated or invalidated), or the
2660                          * page is already under writeback and we are not doing
2661                          * a data integrity writeback, skip the page
2662                          */
2663                         if (!PageDirty(page) ||
2664                             (PageWriteback(page) &&
2665                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2666                             unlikely(page->mapping != mapping)) {
2667                                 unlock_page(page);
2668                                 continue;
2669                         }
2670
2671                         wait_on_page_writeback(page);
2672                         BUG_ON(PageWriteback(page));
2673
2674                         if (mpd->map.m_len == 0)
2675                                 mpd->first_page = page->index;
2676                         mpd->next_page = page->index + 1;
2677                         /* Add all dirty buffers to mpd */
2678                         lblk = ((ext4_lblk_t)page->index) <<
2679                                 (PAGE_SHIFT - blkbits);
2680                         head = page_buffers(page);
2681                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2682                         if (err <= 0)
2683                                 goto out;
2684                         err = 0;
2685                         left--;
2686                 }
2687                 pagevec_release(&pvec);
2688                 cond_resched();
2689         }
2690         return 0;
2691 out:
2692         pagevec_release(&pvec);
2693         return err;
2694 }
2695
2696 static int __writepage(struct page *page, struct writeback_control *wbc,
2697                        void *data)
2698 {
2699         struct address_space *mapping = data;
2700         int ret = ext4_writepage(page, wbc);
2701         mapping_set_error(mapping, ret);
2702         return ret;
2703 }
2704
2705 static int ext4_writepages(struct address_space *mapping,
2706                            struct writeback_control *wbc)
2707 {
2708         pgoff_t writeback_index = 0;
2709         long nr_to_write = wbc->nr_to_write;
2710         int range_whole = 0;
2711         int cycled = 1;
2712         handle_t *handle = NULL;
2713         struct mpage_da_data mpd;
2714         struct inode *inode = mapping->host;
2715         int needed_blocks, rsv_blocks = 0, ret = 0;
2716         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2717         bool done;
2718         struct blk_plug plug;
2719         bool give_up_on_write = false;
2720
2721         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2722                 return -EIO;
2723
2724         percpu_down_read(&sbi->s_journal_flag_rwsem);
2725         trace_ext4_writepages(inode, wbc);
2726
2727         if (dax_mapping(mapping)) {
2728                 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2729                                                   wbc);
2730                 goto out_writepages;
2731         }
2732
2733         /*
2734          * No pages to write? This is mainly a kludge to avoid starting
2735          * a transaction for special inodes like journal inode on last iput()
2736          * because that could violate lock ordering on umount
2737          */
2738         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2739                 goto out_writepages;
2740
2741         if (ext4_should_journal_data(inode)) {
2742                 struct blk_plug plug;
2743
2744                 blk_start_plug(&plug);
2745                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2746                 blk_finish_plug(&plug);
2747                 goto out_writepages;
2748         }
2749
2750         /*
2751          * If the filesystem has aborted, it is read-only, so return
2752          * right away instead of dumping stack traces later on that
2753          * will obscure the real source of the problem.  We test
2754          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2755          * the latter could be true if the filesystem is mounted
2756          * read-only, and in that case, ext4_writepages should
2757          * *never* be called, so if that ever happens, we would want
2758          * the stack trace.
2759          */
2760         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2761                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2762                 ret = -EROFS;
2763                 goto out_writepages;
2764         }
2765
2766         if (ext4_should_dioread_nolock(inode)) {
2767                 /*
2768                  * We may need to convert up to one extent per block in
2769                  * the page and we may dirty the inode.
2770                  */
2771                 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2772         }
2773
2774         /*
2775          * If we have inline data and arrive here, it means that
2776          * we will soon create the block for the 1st page, so
2777          * we'd better clear the inline data here.
2778          */
2779         if (ext4_has_inline_data(inode)) {
2780                 /* Just inode will be modified... */
2781                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2782                 if (IS_ERR(handle)) {
2783                         ret = PTR_ERR(handle);
2784                         goto out_writepages;
2785                 }
2786                 BUG_ON(ext4_test_inode_state(inode,
2787                                 EXT4_STATE_MAY_INLINE_DATA));
2788                 ext4_destroy_inline_data(handle, inode);
2789                 ext4_journal_stop(handle);
2790         }
2791
2792         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2793                 range_whole = 1;
2794
2795         if (wbc->range_cyclic) {
2796                 writeback_index = mapping->writeback_index;
2797                 if (writeback_index)
2798                         cycled = 0;
2799                 mpd.first_page = writeback_index;
2800                 mpd.last_page = -1;
2801         } else {
2802                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2803                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2804         }
2805
2806         mpd.inode = inode;
2807         mpd.wbc = wbc;
2808         ext4_io_submit_init(&mpd.io_submit, wbc);
2809 retry:
2810         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2811                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2812         done = false;
2813         blk_start_plug(&plug);
2814
2815         /*
2816          * First writeback pages that don't need mapping - we can avoid
2817          * starting a transaction unnecessarily and also avoid being blocked
2818          * in the block layer on device congestion while having transaction
2819          * started.
2820          */
2821         mpd.do_map = 0;
2822         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2823         if (!mpd.io_submit.io_end) {
2824                 ret = -ENOMEM;
2825                 goto unplug;
2826         }
2827         ret = mpage_prepare_extent_to_map(&mpd);
2828         /* Submit prepared bio */
2829         ext4_io_submit(&mpd.io_submit);
2830         ext4_put_io_end_defer(mpd.io_submit.io_end);
2831         mpd.io_submit.io_end = NULL;
2832         /* Unlock pages we didn't use */
2833         mpage_release_unused_pages(&mpd, false);
2834         if (ret < 0)
2835                 goto unplug;
2836
2837         while (!done && mpd.first_page <= mpd.last_page) {
2838                 /* For each extent of pages we use new io_end */
2839                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2840                 if (!mpd.io_submit.io_end) {
2841                         ret = -ENOMEM;
2842                         break;
2843                 }
2844
2845                 /*
2846                  * We have two constraints: We find one extent to map and we
2847                  * must always write out whole page (makes a difference when
2848                  * blocksize < pagesize) so that we don't block on IO when we
2849                  * try to write out the rest of the page. Journalled mode is
2850                  * not supported by delalloc.
2851                  */
2852                 BUG_ON(ext4_should_journal_data(inode));
2853                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2854
2855                 /* start a new transaction */
2856                 handle = ext4_journal_start_with_reserve(inode,
2857                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2858                 if (IS_ERR(handle)) {
2859                         ret = PTR_ERR(handle);
2860                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2861                                "%ld pages, ino %lu; err %d", __func__,
2862                                 wbc->nr_to_write, inode->i_ino, ret);
2863                         /* Release allocated io_end */
2864                         ext4_put_io_end(mpd.io_submit.io_end);
2865                         mpd.io_submit.io_end = NULL;
2866                         break;
2867                 }
2868                 mpd.do_map = 1;
2869
2870                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2871                 ret = mpage_prepare_extent_to_map(&mpd);
2872                 if (!ret) {
2873                         if (mpd.map.m_len)
2874                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2875                                         &give_up_on_write);
2876                         else {
2877                                 /*
2878                                  * We scanned the whole range (or exhausted
2879                                  * nr_to_write), submitted what was mapped and
2880                                  * didn't find anything needing mapping. We are
2881                                  * done.
2882                                  */
2883                                 done = true;
2884                         }
2885                 }
2886                 /*
2887                  * Caution: If the handle is synchronous,
2888                  * ext4_journal_stop() can wait for transaction commit
2889                  * to finish which may depend on writeback of pages to
2890                  * complete or on page lock to be released.  In that
2891                  * case, we have to wait until after after we have
2892                  * submitted all the IO, released page locks we hold,
2893                  * and dropped io_end reference (for extent conversion
2894                  * to be able to complete) before stopping the handle.
2895                  */
2896                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2897                         ext4_journal_stop(handle);
2898                         handle = NULL;
2899                         mpd.do_map = 0;
2900                 }
2901                 /* Submit prepared bio */
2902                 ext4_io_submit(&mpd.io_submit);
2903                 /* Unlock pages we didn't use */
2904                 mpage_release_unused_pages(&mpd, give_up_on_write);
2905                 /*
2906                  * Drop our io_end reference we got from init. We have
2907                  * to be careful and use deferred io_end finishing if
2908                  * we are still holding the transaction as we can
2909                  * release the last reference to io_end which may end
2910                  * up doing unwritten extent conversion.
2911                  */
2912                 if (handle) {
2913                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2914                         ext4_journal_stop(handle);
2915                 } else
2916                         ext4_put_io_end(mpd.io_submit.io_end);
2917                 mpd.io_submit.io_end = NULL;
2918
2919                 if (ret == -ENOSPC && sbi->s_journal) {
2920                         /*
2921                          * Commit the transaction which would
2922                          * free blocks released in the transaction
2923                          * and try again
2924                          */
2925                         jbd2_journal_force_commit_nested(sbi->s_journal);
2926                         ret = 0;
2927                         continue;
2928                 }
2929                 /* Fatal error - ENOMEM, EIO... */
2930                 if (ret)
2931                         break;
2932         }
2933 unplug:
2934         blk_finish_plug(&plug);
2935         if (!ret && !cycled && wbc->nr_to_write > 0) {
2936                 cycled = 1;
2937                 mpd.last_page = writeback_index - 1;
2938                 mpd.first_page = 0;
2939                 goto retry;
2940         }
2941
2942         /* Update index */
2943         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2944                 /*
2945                  * Set the writeback_index so that range_cyclic
2946                  * mode will write it back later
2947                  */
2948                 mapping->writeback_index = mpd.first_page;
2949
2950 out_writepages:
2951         trace_ext4_writepages_result(inode, wbc, ret,
2952                                      nr_to_write - wbc->nr_to_write);
2953         percpu_up_read(&sbi->s_journal_flag_rwsem);
2954         return ret;
2955 }
2956
2957 static int ext4_nonda_switch(struct super_block *sb)
2958 {
2959         s64 free_clusters, dirty_clusters;
2960         struct ext4_sb_info *sbi = EXT4_SB(sb);
2961
2962         /*
2963          * switch to non delalloc mode if we are running low
2964          * on free block. The free block accounting via percpu
2965          * counters can get slightly wrong with percpu_counter_batch getting
2966          * accumulated on each CPU without updating global counters
2967          * Delalloc need an accurate free block accounting. So switch
2968          * to non delalloc when we are near to error range.
2969          */
2970         free_clusters =
2971                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2972         dirty_clusters =
2973                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2974         /*
2975          * Start pushing delalloc when 1/2 of free blocks are dirty.
2976          */
2977         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2978                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2979
2980         if (2 * free_clusters < 3 * dirty_clusters ||
2981             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2982                 /*
2983                  * free block count is less than 150% of dirty blocks
2984                  * or free blocks is less than watermark
2985                  */
2986                 return 1;
2987         }
2988         return 0;
2989 }
2990
2991 /* We always reserve for an inode update; the superblock could be there too */
2992 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2993 {
2994         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2995                 return 1;
2996
2997         if (pos + len <= 0x7fffffffULL)
2998                 return 1;
2999
3000         /* We might need to update the superblock to set LARGE_FILE */
3001         return 2;
3002 }
3003
3004 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3005                                loff_t pos, unsigned len, unsigned flags,
3006                                struct page **pagep, void **fsdata)
3007 {
3008         int ret, retries = 0;
3009         struct page *page;
3010         pgoff_t index;
3011         struct inode *inode = mapping->host;
3012         handle_t *handle;
3013
3014         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3015                 return -EIO;
3016
3017         index = pos >> PAGE_SHIFT;
3018
3019         if (ext4_nonda_switch(inode->i_sb) ||
3020             S_ISLNK(inode->i_mode)) {
3021                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3022                 return ext4_write_begin(file, mapping, pos,
3023                                         len, flags, pagep, fsdata);
3024         }
3025         *fsdata = (void *)0;
3026         trace_ext4_da_write_begin(inode, pos, len, flags);
3027
3028         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3029                 ret = ext4_da_write_inline_data_begin(mapping, inode,
3030                                                       pos, len, flags,
3031                                                       pagep, fsdata);
3032                 if (ret < 0)
3033                         return ret;
3034                 if (ret == 1)
3035                         return 0;
3036         }
3037
3038         /*
3039          * grab_cache_page_write_begin() can take a long time if the
3040          * system is thrashing due to memory pressure, or if the page
3041          * is being written back.  So grab it first before we start
3042          * the transaction handle.  This also allows us to allocate
3043          * the page (if needed) without using GFP_NOFS.
3044          */
3045 retry_grab:
3046         page = grab_cache_page_write_begin(mapping, index, flags);
3047         if (!page)
3048                 return -ENOMEM;
3049         unlock_page(page);
3050
3051         /*
3052          * With delayed allocation, we don't log the i_disksize update
3053          * if there is delayed block allocation. But we still need
3054          * to journalling the i_disksize update if writes to the end
3055          * of file which has an already mapped buffer.
3056          */
3057 retry_journal:
3058         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3059                                 ext4_da_write_credits(inode, pos, len));
3060         if (IS_ERR(handle)) {
3061                 put_page(page);
3062                 return PTR_ERR(handle);
3063         }
3064
3065         lock_page(page);
3066         if (page->mapping != mapping) {
3067                 /* The page got truncated from under us */
3068                 unlock_page(page);
3069                 put_page(page);
3070                 ext4_journal_stop(handle);
3071                 goto retry_grab;
3072         }
3073         /* In case writeback began while the page was unlocked */
3074         wait_for_stable_page(page);
3075
3076 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3077         ret = ext4_block_write_begin(page, pos, len,
3078                                      ext4_da_get_block_prep);
3079 #else
3080         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3081 #endif
3082         if (ret < 0) {
3083                 unlock_page(page);
3084                 ext4_journal_stop(handle);
3085                 /*
3086                  * block_write_begin may have instantiated a few blocks
3087                  * outside i_size.  Trim these off again. Don't need
3088                  * i_size_read because we hold i_mutex.
3089                  */
3090                 if (pos + len > inode->i_size)
3091                         ext4_truncate_failed_write(inode);
3092
3093                 if (ret == -ENOSPC &&
3094                     ext4_should_retry_alloc(inode->i_sb, &retries))
3095                         goto retry_journal;
3096
3097                 put_page(page);
3098                 return ret;
3099         }
3100
3101         *pagep = page;
3102         return ret;
3103 }
3104
3105 /*
3106  * Check if we should update i_disksize
3107  * when write to the end of file but not require block allocation
3108  */
3109 static int ext4_da_should_update_i_disksize(struct page *page,
3110                                             unsigned long offset)
3111 {
3112         struct buffer_head *bh;
3113         struct inode *inode = page->mapping->host;
3114         unsigned int idx;
3115         int i;
3116
3117         bh = page_buffers(page);
3118         idx = offset >> inode->i_blkbits;
3119
3120         for (i = 0; i < idx; i++)
3121                 bh = bh->b_this_page;
3122
3123         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3124                 return 0;
3125         return 1;
3126 }
3127
3128 static int ext4_da_write_end(struct file *file,
3129                              struct address_space *mapping,
3130                              loff_t pos, unsigned len, unsigned copied,
3131                              struct page *page, void *fsdata)
3132 {
3133         struct inode *inode = mapping->host;
3134         int ret = 0, ret2;
3135         handle_t *handle = ext4_journal_current_handle();
3136         loff_t new_i_size;
3137         unsigned long start, end;
3138         int write_mode = (int)(unsigned long)fsdata;
3139
3140         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3141                 return ext4_write_end(file, mapping, pos,
3142                                       len, copied, page, fsdata);
3143
3144         trace_ext4_da_write_end(inode, pos, len, copied);
3145         start = pos & (PAGE_SIZE - 1);
3146         end = start + copied - 1;
3147
3148         /*
3149          * generic_write_end() will run mark_inode_dirty() if i_size
3150          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3151          * into that.
3152          */
3153         new_i_size = pos + copied;
3154         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3155                 if (ext4_has_inline_data(inode) ||
3156                     ext4_da_should_update_i_disksize(page, end)) {
3157                         ext4_update_i_disksize(inode, new_i_size);
3158                         /* We need to mark inode dirty even if
3159                          * new_i_size is less that inode->i_size
3160                          * bu greater than i_disksize.(hint delalloc)
3161                          */
3162                         ext4_mark_inode_dirty(handle, inode);
3163                 }
3164         }
3165
3166         if (write_mode != CONVERT_INLINE_DATA &&
3167             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3168             ext4_has_inline_data(inode))
3169                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3170                                                      page);
3171         else
3172                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3173                                                         page, fsdata);
3174
3175         copied = ret2;
3176         if (ret2 < 0)
3177                 ret = ret2;
3178         ret2 = ext4_journal_stop(handle);
3179         if (!ret)
3180                 ret = ret2;
3181
3182         return ret ? ret : copied;
3183 }
3184
3185 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3186                                    unsigned int length)
3187 {
3188         /*
3189          * Drop reserved blocks
3190          */
3191         BUG_ON(!PageLocked(page));
3192         if (!page_has_buffers(page))
3193                 goto out;
3194
3195         ext4_da_page_release_reservation(page, offset, length);
3196
3197 out:
3198         ext4_invalidatepage(page, offset, length);
3199
3200         return;
3201 }
3202
3203 /*
3204  * Force all delayed allocation blocks to be allocated for a given inode.
3205  */
3206 int ext4_alloc_da_blocks(struct inode *inode)
3207 {
3208         trace_ext4_alloc_da_blocks(inode);
3209
3210         if (!EXT4_I(inode)->i_reserved_data_blocks)
3211                 return 0;
3212
3213         /*
3214          * We do something simple for now.  The filemap_flush() will
3215          * also start triggering a write of the data blocks, which is
3216          * not strictly speaking necessary (and for users of
3217          * laptop_mode, not even desirable).  However, to do otherwise
3218          * would require replicating code paths in:
3219          *
3220          * ext4_writepages() ->
3221          *    write_cache_pages() ---> (via passed in callback function)
3222          *        __mpage_da_writepage() -->
3223          *           mpage_add_bh_to_extent()
3224          *           mpage_da_map_blocks()
3225          *
3226          * The problem is that write_cache_pages(), located in
3227          * mm/page-writeback.c, marks pages clean in preparation for
3228          * doing I/O, which is not desirable if we're not planning on
3229          * doing I/O at all.
3230          *
3231          * We could call write_cache_pages(), and then redirty all of
3232          * the pages by calling redirty_page_for_writepage() but that
3233          * would be ugly in the extreme.  So instead we would need to
3234          * replicate parts of the code in the above functions,
3235          * simplifying them because we wouldn't actually intend to
3236          * write out the pages, but rather only collect contiguous
3237          * logical block extents, call the multi-block allocator, and
3238          * then update the buffer heads with the block allocations.
3239          *
3240          * For now, though, we'll cheat by calling filemap_flush(),
3241          * which will map the blocks, and start the I/O, but not
3242          * actually wait for the I/O to complete.
3243          */
3244         return filemap_flush(inode->i_mapping);
3245 }
3246
3247 /*
3248  * bmap() is special.  It gets used by applications such as lilo and by
3249  * the swapper to find the on-disk block of a specific piece of data.
3250  *
3251  * Naturally, this is dangerous if the block concerned is still in the
3252  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3253  * filesystem and enables swap, then they may get a nasty shock when the
3254  * data getting swapped to that swapfile suddenly gets overwritten by
3255  * the original zero's written out previously to the journal and
3256  * awaiting writeback in the kernel's buffer cache.
3257  *
3258  * So, if we see any bmap calls here on a modified, data-journaled file,
3259  * take extra steps to flush any blocks which might be in the cache.
3260  */
3261 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3262 {
3263         struct inode *inode = mapping->host;
3264         journal_t *journal;
3265         int err;
3266
3267         /*
3268          * We can get here for an inline file via the FIBMAP ioctl
3269          */
3270         if (ext4_has_inline_data(inode))
3271                 return 0;
3272
3273         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3274                         test_opt(inode->i_sb, DELALLOC)) {
3275                 /*
3276                  * With delalloc we want to sync the file
3277                  * so that we can make sure we allocate
3278                  * blocks for file
3279                  */
3280                 filemap_write_and_wait(mapping);
3281         }
3282
3283         if (EXT4_JOURNAL(inode) &&
3284             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3285                 /*
3286                  * This is a REALLY heavyweight approach, but the use of
3287                  * bmap on dirty files is expected to be extremely rare:
3288                  * only if we run lilo or swapon on a freshly made file
3289                  * do we expect this to happen.
3290                  *
3291                  * (bmap requires CAP_SYS_RAWIO so this does not
3292                  * represent an unprivileged user DOS attack --- we'd be
3293                  * in trouble if mortal users could trigger this path at
3294                  * will.)
3295                  *
3296                  * NB. EXT4_STATE_JDATA is not set on files other than
3297                  * regular files.  If somebody wants to bmap a directory
3298                  * or symlink and gets confused because the buffer
3299                  * hasn't yet been flushed to disk, they deserve
3300                  * everything they get.
3301                  */
3302
3303                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3304                 journal = EXT4_JOURNAL(inode);
3305                 jbd2_journal_lock_updates(journal);
3306                 err = jbd2_journal_flush(journal);
3307                 jbd2_journal_unlock_updates(journal);
3308
3309                 if (err)
3310                         return 0;
3311         }
3312
3313         return generic_block_bmap(mapping, block, ext4_get_block);
3314 }
3315
3316 static int ext4_readpage(struct file *file, struct page *page)
3317 {
3318         int ret = -EAGAIN;
3319         struct inode *inode = page->mapping->host;
3320
3321         trace_ext4_readpage(page);
3322
3323         if (ext4_has_inline_data(inode))
3324                 ret = ext4_readpage_inline(inode, page);
3325
3326         if (ret == -EAGAIN)
3327                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3328
3329         return ret;
3330 }
3331
3332 static int
3333 ext4_readpages(struct file *file, struct address_space *mapping,
3334                 struct list_head *pages, unsigned nr_pages)
3335 {
3336         struct inode *inode = mapping->host;
3337
3338         /* If the file has inline data, no need to do readpages. */
3339         if (ext4_has_inline_data(inode))
3340                 return 0;
3341
3342         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3343 }
3344
3345 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3346                                 unsigned int length)
3347 {
3348         trace_ext4_invalidatepage(page, offset, length);
3349
3350         /* No journalling happens on data buffers when this function is used */
3351         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3352
3353         block_invalidatepage(page, offset, length);
3354 }
3355
3356 static int __ext4_journalled_invalidatepage(struct page *page,
3357                                             unsigned int offset,
3358                                             unsigned int length)
3359 {
3360         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3361
3362         trace_ext4_journalled_invalidatepage(page, offset, length);
3363
3364         /*
3365          * If it's a full truncate we just forget about the pending dirtying
3366          */
3367         if (offset == 0 && length == PAGE_SIZE)
3368                 ClearPageChecked(page);
3369
3370         return jbd2_journal_invalidatepage(journal, page, offset, length);
3371 }
3372
3373 /* Wrapper for aops... */
3374 static void ext4_journalled_invalidatepage(struct page *page,
3375                                            unsigned int offset,
3376                                            unsigned int length)
3377 {
3378         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3379 }
3380
3381 static int ext4_releasepage(struct page *page, gfp_t wait)
3382 {
3383         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3384
3385         trace_ext4_releasepage(page);
3386
3387         /* Page has dirty journalled data -> cannot release */
3388         if (PageChecked(page))
3389                 return 0;
3390         if (journal)
3391                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3392         else
3393                 return try_to_free_buffers(page);
3394 }
3395
3396 static bool ext4_inode_datasync_dirty(struct inode *inode)
3397 {
3398         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3399
3400         if (journal)
3401                 return !jbd2_transaction_committed(journal,
3402                                         EXT4_I(inode)->i_datasync_tid);
3403         /* Any metadata buffers to write? */
3404         if (!list_empty(&inode->i_mapping->private_list))
3405                 return true;
3406         return inode->i_state & I_DIRTY_DATASYNC;
3407 }
3408
3409 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3410                             unsigned flags, struct iomap *iomap)
3411 {
3412         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3413         unsigned int blkbits = inode->i_blkbits;
3414         unsigned long first_block = offset >> blkbits;
3415         unsigned long last_block = (offset + length - 1) >> blkbits;
3416         struct ext4_map_blocks map;
3417         bool delalloc = false;
3418         int ret;
3419
3420
3421         if (flags & IOMAP_REPORT) {
3422                 if (ext4_has_inline_data(inode)) {
3423                         ret = ext4_inline_data_iomap(inode, iomap);
3424                         if (ret != -EAGAIN) {
3425                                 if (ret == 0 && offset >= iomap->length)
3426                                         ret = -ENOENT;
3427                                 return ret;
3428                         }
3429                 }
3430         } else {
3431                 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3432                         return -ERANGE;
3433         }
3434
3435         map.m_lblk = first_block;
3436         map.m_len = last_block - first_block + 1;
3437
3438         if (flags & IOMAP_REPORT) {
3439                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3440                 if (ret < 0)
3441                         return ret;
3442
3443                 if (ret == 0) {
3444                         ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3445                         struct extent_status es;
3446
3447                         ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es);
3448
3449                         if (!es.es_len || es.es_lblk > end) {
3450                                 /* entire range is a hole */
3451                         } else if (es.es_lblk > map.m_lblk) {
3452                                 /* range starts with a hole */
3453                                 map.m_len = es.es_lblk - map.m_lblk;
3454                         } else {
3455                                 ext4_lblk_t offs = 0;
3456
3457                                 if (es.es_lblk < map.m_lblk)
3458                                         offs = map.m_lblk - es.es_lblk;
3459                                 map.m_lblk = es.es_lblk + offs;
3460                                 map.m_len = es.es_len - offs;
3461                                 delalloc = true;
3462                         }
3463                 }
3464         } else if (flags & IOMAP_WRITE) {
3465                 int dio_credits;
3466                 handle_t *handle;
3467                 int retries = 0;
3468
3469                 /* Trim mapping request to maximum we can map at once for DIO */
3470                 if (map.m_len > DIO_MAX_BLOCKS)
3471                         map.m_len = DIO_MAX_BLOCKS;
3472                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3473 retry:
3474                 /*
3475                  * Either we allocate blocks and then we don't get unwritten
3476                  * extent so we have reserved enough credits, or the blocks
3477                  * are already allocated and unwritten and in that case
3478                  * extent conversion fits in the credits as well.
3479                  */
3480                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3481                                             dio_credits);
3482                 if (IS_ERR(handle))
3483                         return PTR_ERR(handle);
3484
3485                 ret = ext4_map_blocks(handle, inode, &map,
3486                                       EXT4_GET_BLOCKS_CREATE_ZERO);
3487                 if (ret < 0) {
3488                         ext4_journal_stop(handle);
3489                         if (ret == -ENOSPC &&
3490                             ext4_should_retry_alloc(inode->i_sb, &retries))
3491                                 goto retry;
3492                         return ret;
3493                 }
3494
3495                 /*
3496                  * If we added blocks beyond i_size, we need to make sure they
3497                  * will get truncated if we crash before updating i_size in
3498                  * ext4_iomap_end(). For faults we don't need to do that (and
3499                  * even cannot because for orphan list operations inode_lock is
3500                  * required) - if we happen to instantiate block beyond i_size,
3501                  * it is because we race with truncate which has already added
3502                  * the inode to the orphan list.
3503                  */
3504                 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3505                     (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3506                         int err;
3507
3508                         err = ext4_orphan_add(handle, inode);
3509                         if (err < 0) {
3510                                 ext4_journal_stop(handle);
3511                                 return err;
3512                         }
3513                 }
3514                 ext4_journal_stop(handle);
3515         } else {
3516                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3517                 if (ret < 0)
3518                         return ret;
3519         }
3520
3521         iomap->flags = 0;
3522         if (ext4_inode_datasync_dirty(inode))
3523                 iomap->flags |= IOMAP_F_DIRTY;
3524         iomap->bdev = inode->i_sb->s_bdev;
3525         iomap->dax_dev = sbi->s_daxdev;
3526         iomap->offset = first_block << blkbits;
3527         iomap->length = (u64)map.m_len << blkbits;
3528
3529         if (ret == 0) {
3530                 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3531                 iomap->addr = IOMAP_NULL_ADDR;
3532         } else {
3533                 if (map.m_flags & EXT4_MAP_MAPPED) {
3534                         iomap->type = IOMAP_MAPPED;
3535                 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3536                         iomap->type = IOMAP_UNWRITTEN;
3537                 } else {
3538                         WARN_ON_ONCE(1);
3539                         return -EIO;
3540                 }
3541                 iomap->addr = (u64)map.m_pblk << blkbits;
3542         }
3543
3544         if (map.m_flags & EXT4_MAP_NEW)
3545                 iomap->flags |= IOMAP_F_NEW;
3546
3547         return 0;
3548 }
3549
3550 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3551                           ssize_t written, unsigned flags, struct iomap *iomap)
3552 {
3553         int ret = 0;
3554         handle_t *handle;
3555         int blkbits = inode->i_blkbits;
3556         bool truncate = false;
3557
3558         if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3559                 return 0;
3560
3561         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3562         if (IS_ERR(handle)) {
3563                 ret = PTR_ERR(handle);
3564                 goto orphan_del;
3565         }
3566         if (ext4_update_inode_size(inode, offset + written))
3567                 ext4_mark_inode_dirty(handle, inode);
3568         /*
3569          * We may need to truncate allocated but not written blocks beyond EOF.
3570          */
3571         if (iomap->offset + iomap->length > 
3572             ALIGN(inode->i_size, 1 << blkbits)) {
3573                 ext4_lblk_t written_blk, end_blk;
3574
3575                 written_blk = (offset + written) >> blkbits;
3576                 end_blk = (offset + length) >> blkbits;
3577                 if (written_blk < end_blk && ext4_can_truncate(inode))
3578                         truncate = true;
3579         }
3580         /*
3581          * Remove inode from orphan list if we were extending a inode and
3582          * everything went fine.
3583          */
3584         if (!truncate && inode->i_nlink &&
3585             !list_empty(&EXT4_I(inode)->i_orphan))
3586                 ext4_orphan_del(handle, inode);
3587         ext4_journal_stop(handle);
3588         if (truncate) {
3589                 ext4_truncate_failed_write(inode);
3590 orphan_del:
3591                 /*
3592                  * If truncate failed early the inode might still be on the
3593                  * orphan list; we need to make sure the inode is removed from
3594                  * the orphan list in that case.
3595                  */
3596                 if (inode->i_nlink)
3597                         ext4_orphan_del(NULL, inode);
3598         }
3599         return ret;
3600 }
3601
3602 const struct iomap_ops ext4_iomap_ops = {
3603         .iomap_begin            = ext4_iomap_begin,
3604         .iomap_end              = ext4_iomap_end,
3605 };
3606
3607 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3608                             ssize_t size, void *private)
3609 {
3610         ext4_io_end_t *io_end = private;
3611
3612         /* if not async direct IO just return */
3613         if (!io_end)
3614                 return 0;
3615
3616         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3617                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3618                   io_end, io_end->inode->i_ino, iocb, offset, size);
3619
3620         /*
3621          * Error during AIO DIO. We cannot convert unwritten extents as the
3622          * data was not written. Just clear the unwritten flag and drop io_end.
3623          */
3624         if (size <= 0) {
3625                 ext4_clear_io_unwritten_flag(io_end);
3626                 size = 0;
3627         }
3628         io_end->offset = offset;
3629         io_end->size = size;
3630         ext4_put_io_end(io_end);
3631
3632         return 0;
3633 }
3634
3635 /*
3636  * Handling of direct IO writes.
3637  *
3638  * For ext4 extent files, ext4 will do direct-io write even to holes,
3639  * preallocated extents, and those write extend the file, no need to
3640  * fall back to buffered IO.
3641  *
3642  * For holes, we fallocate those blocks, mark them as unwritten
3643  * If those blocks were preallocated, we mark sure they are split, but
3644  * still keep the range to write as unwritten.
3645  *
3646  * The unwritten extents will be converted to written when DIO is completed.
3647  * For async direct IO, since the IO may still pending when return, we
3648  * set up an end_io call back function, which will do the conversion
3649  * when async direct IO completed.
3650  *
3651  * If the O_DIRECT write will extend the file then add this inode to the
3652  * orphan list.  So recovery will truncate it back to the original size
3653  * if the machine crashes during the write.
3654  *
3655  */
3656 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3657 {
3658         struct file *file = iocb->ki_filp;
3659         struct inode *inode = file->f_mapping->host;
3660         struct ext4_inode_info *ei = EXT4_I(inode);
3661         ssize_t ret;
3662         loff_t offset = iocb->ki_pos;
3663         size_t count = iov_iter_count(iter);
3664         int overwrite = 0;
3665         get_block_t *get_block_func = NULL;
3666         int dio_flags = 0;
3667         loff_t final_size = offset + count;
3668         int orphan = 0;
3669         handle_t *handle;
3670
3671         if (final_size > inode->i_size) {
3672                 /* Credits for sb + inode write */
3673                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3674                 if (IS_ERR(handle)) {
3675                         ret = PTR_ERR(handle);
3676                         goto out;
3677                 }
3678                 ret = ext4_orphan_add(handle, inode);
3679                 if (ret) {
3680                         ext4_journal_stop(handle);
3681                         goto out;
3682                 }
3683                 orphan = 1;
3684                 ei->i_disksize = inode->i_size;
3685                 ext4_journal_stop(handle);
3686         }
3687
3688         BUG_ON(iocb->private == NULL);
3689
3690         /*
3691          * Make all waiters for direct IO properly wait also for extent
3692          * conversion. This also disallows race between truncate() and
3693          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3694          */
3695         inode_dio_begin(inode);
3696
3697         /* If we do a overwrite dio, i_mutex locking can be released */
3698         overwrite = *((int *)iocb->private);
3699
3700         if (overwrite)
3701                 inode_unlock(inode);
3702
3703         /*
3704          * For extent mapped files we could direct write to holes and fallocate.
3705          *
3706          * Allocated blocks to fill the hole are marked as unwritten to prevent
3707          * parallel buffered read to expose the stale data before DIO complete
3708          * the data IO.
3709          *
3710          * As to previously fallocated extents, ext4 get_block will just simply
3711          * mark the buffer mapped but still keep the extents unwritten.
3712          *
3713          * For non AIO case, we will convert those unwritten extents to written
3714          * after return back from blockdev_direct_IO. That way we save us from
3715          * allocating io_end structure and also the overhead of offloading
3716          * the extent convertion to a workqueue.
3717          *
3718          * For async DIO, the conversion needs to be deferred when the
3719          * IO is completed. The ext4 end_io callback function will be
3720          * called to take care of the conversion work.  Here for async
3721          * case, we allocate an io_end structure to hook to the iocb.
3722          */
3723         iocb->private = NULL;
3724         if (overwrite)
3725                 get_block_func = ext4_dio_get_block_overwrite;
3726         else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3727                    round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3728                 get_block_func = ext4_dio_get_block;
3729                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3730         } else if (is_sync_kiocb(iocb)) {
3731                 get_block_func = ext4_dio_get_block_unwritten_sync;
3732                 dio_flags = DIO_LOCKING;
3733         } else {
3734                 get_block_func = ext4_dio_get_block_unwritten_async;
3735                 dio_flags = DIO_LOCKING;
3736         }
3737         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3738                                    get_block_func, ext4_end_io_dio, NULL,
3739                                    dio_flags);
3740
3741         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3742                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3743                 int err;
3744                 /*
3745                  * for non AIO case, since the IO is already
3746                  * completed, we could do the conversion right here
3747                  */
3748                 err = ext4_convert_unwritten_extents(NULL, inode,
3749                                                      offset, ret);
3750                 if (err < 0)
3751                         ret = err;
3752                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3753         }
3754
3755         inode_dio_end(inode);
3756         /* take i_mutex locking again if we do a ovewrite dio */
3757         if (overwrite)
3758                 inode_lock(inode);
3759
3760         if (ret < 0 && final_size > inode->i_size)
3761                 ext4_truncate_failed_write(inode);
3762
3763         /* Handle extending of i_size after direct IO write */
3764         if (orphan) {
3765                 int err;
3766
3767                 /* Credits for sb + inode write */
3768                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3769                 if (IS_ERR(handle)) {
3770                         /* This is really bad luck. We've written the data
3771                          * but cannot extend i_size. Bail out and pretend
3772                          * the write failed... */
3773                         ret = PTR_ERR(handle);
3774                         if (inode->i_nlink)
3775                                 ext4_orphan_del(NULL, inode);
3776
3777                         goto out;
3778                 }
3779                 if (inode->i_nlink)
3780                         ext4_orphan_del(handle, inode);
3781                 if (ret > 0) {
3782                         loff_t end = offset + ret;
3783                         if (end > inode->i_size) {
3784                                 ei->i_disksize = end;
3785                                 i_size_write(inode, end);
3786                                 /*
3787                                  * We're going to return a positive `ret'
3788                                  * here due to non-zero-length I/O, so there's
3789                                  * no way of reporting error returns from
3790                                  * ext4_mark_inode_dirty() to userspace.  So
3791                                  * ignore it.
3792                                  */
3793                                 ext4_mark_inode_dirty(handle, inode);
3794                         }
3795                 }
3796                 err = ext4_journal_stop(handle);
3797                 if (ret == 0)
3798                         ret = err;
3799         }
3800 out:
3801         return ret;
3802 }
3803
3804 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3805 {
3806         struct address_space *mapping = iocb->ki_filp->f_mapping;
3807         struct inode *inode = mapping->host;
3808         size_t count = iov_iter_count(iter);
3809         ssize_t ret;
3810
3811         /*
3812          * Shared inode_lock is enough for us - it protects against concurrent
3813          * writes & truncates and since we take care of writing back page cache,
3814          * we are protected against page writeback as well.
3815          */
3816         inode_lock_shared(inode);
3817         ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3818                                            iocb->ki_pos + count - 1);
3819         if (ret)
3820                 goto out_unlock;
3821         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3822                                    iter, ext4_dio_get_block, NULL, NULL, 0);
3823 out_unlock:
3824         inode_unlock_shared(inode);
3825         return ret;
3826 }
3827
3828 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3829 {
3830         struct file *file = iocb->ki_filp;
3831         struct inode *inode = file->f_mapping->host;
3832         size_t count = iov_iter_count(iter);
3833         loff_t offset = iocb->ki_pos;
3834         ssize_t ret;
3835
3836 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3837         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3838                 return 0;
3839 #endif
3840
3841         /*
3842          * If we are doing data journalling we don't support O_DIRECT
3843          */
3844         if (ext4_should_journal_data(inode))
3845                 return 0;
3846
3847         /* Let buffer I/O handle the inline data case. */
3848         if (ext4_has_inline_data(inode))
3849                 return 0;
3850
3851         /* DAX uses iomap path now */
3852         if (WARN_ON_ONCE(IS_DAX(inode)))
3853                 return 0;
3854
3855         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3856         if (iov_iter_rw(iter) == READ)
3857                 ret = ext4_direct_IO_read(iocb, iter);
3858         else
3859                 ret = ext4_direct_IO_write(iocb, iter);
3860         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3861         return ret;
3862 }
3863
3864 /*
3865  * Pages can be marked dirty completely asynchronously from ext4's journalling
3866  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3867  * much here because ->set_page_dirty is called under VFS locks.  The page is
3868  * not necessarily locked.
3869  *
3870  * We cannot just dirty the page and leave attached buffers clean, because the
3871  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3872  * or jbddirty because all the journalling code will explode.
3873  *
3874  * So what we do is to mark the page "pending dirty" and next time writepage
3875  * is called, propagate that into the buffers appropriately.
3876  */
3877 static int ext4_journalled_set_page_dirty(struct page *page)
3878 {
3879         SetPageChecked(page);
3880         return __set_page_dirty_nobuffers(page);
3881 }
3882
3883 static int ext4_set_page_dirty(struct page *page)
3884 {
3885         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3886         WARN_ON_ONCE(!page_has_buffers(page));
3887         return __set_page_dirty_buffers(page);
3888 }
3889
3890 static const struct address_space_operations ext4_aops = {
3891         .readpage               = ext4_readpage,
3892         .readpages              = ext4_readpages,
3893         .writepage              = ext4_writepage,
3894         .writepages             = ext4_writepages,
3895         .write_begin            = ext4_write_begin,
3896         .write_end              = ext4_write_end,
3897         .set_page_dirty         = ext4_set_page_dirty,
3898         .bmap                   = ext4_bmap,
3899         .invalidatepage         = ext4_invalidatepage,
3900         .releasepage            = ext4_releasepage,
3901         .direct_IO              = ext4_direct_IO,
3902         .migratepage            = buffer_migrate_page,
3903         .is_partially_uptodate  = block_is_partially_uptodate,
3904         .error_remove_page      = generic_error_remove_page,
3905 };
3906
3907 static const struct address_space_operations ext4_journalled_aops = {
3908         .readpage               = ext4_readpage,
3909         .readpages              = ext4_readpages,
3910         .writepage              = ext4_writepage,
3911         .writepages             = ext4_writepages,
3912         .write_begin            = ext4_write_begin,
3913         .write_end              = ext4_journalled_write_end,
3914         .set_page_dirty         = ext4_journalled_set_page_dirty,
3915         .bmap                   = ext4_bmap,
3916         .invalidatepage         = ext4_journalled_invalidatepage,
3917         .releasepage            = ext4_releasepage,
3918         .direct_IO              = ext4_direct_IO,
3919         .is_partially_uptodate  = block_is_partially_uptodate,
3920         .error_remove_page      = generic_error_remove_page,
3921 };
3922
3923 static const struct address_space_operations ext4_da_aops = {
3924         .readpage               = ext4_readpage,
3925         .readpages              = ext4_readpages,
3926         .writepage              = ext4_writepage,
3927         .writepages             = ext4_writepages,
3928         .write_begin            = ext4_da_write_begin,
3929         .write_end              = ext4_da_write_end,
3930         .set_page_dirty         = ext4_set_page_dirty,
3931         .bmap                   = ext4_bmap,
3932         .invalidatepage         = ext4_da_invalidatepage,
3933         .releasepage            = ext4_releasepage,
3934         .direct_IO              = ext4_direct_IO,
3935         .migratepage            = buffer_migrate_page,
3936         .is_partially_uptodate  = block_is_partially_uptodate,
3937         .error_remove_page      = generic_error_remove_page,
3938 };
3939
3940 void ext4_set_aops(struct inode *inode)
3941 {
3942         switch (ext4_inode_journal_mode(inode)) {
3943         case EXT4_INODE_ORDERED_DATA_MODE:
3944         case EXT4_INODE_WRITEBACK_DATA_MODE:
3945                 break;
3946         case EXT4_INODE_JOURNAL_DATA_MODE:
3947                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3948                 return;
3949         default:
3950                 BUG();
3951         }
3952         if (test_opt(inode->i_sb, DELALLOC))
3953                 inode->i_mapping->a_ops = &ext4_da_aops;
3954         else
3955                 inode->i_mapping->a_ops = &ext4_aops;
3956 }
3957
3958 static int __ext4_block_zero_page_range(handle_t *handle,
3959                 struct address_space *mapping, loff_t from, loff_t length)
3960 {
3961         ext4_fsblk_t index = from >> PAGE_SHIFT;
3962         unsigned offset = from & (PAGE_SIZE-1);
3963         unsigned blocksize, pos;
3964         ext4_lblk_t iblock;
3965         struct inode *inode = mapping->host;
3966         struct buffer_head *bh;
3967         struct page *page;
3968         int err = 0;
3969
3970         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3971                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3972         if (!page)
3973                 return -ENOMEM;
3974
3975         blocksize = inode->i_sb->s_blocksize;
3976
3977         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3978
3979         if (!page_has_buffers(page))
3980                 create_empty_buffers(page, blocksize, 0);
3981
3982         /* Find the buffer that contains "offset" */
3983         bh = page_buffers(page);
3984         pos = blocksize;
3985         while (offset >= pos) {
3986                 bh = bh->b_this_page;
3987                 iblock++;
3988                 pos += blocksize;
3989         }
3990         if (buffer_freed(bh)) {
3991                 BUFFER_TRACE(bh, "freed: skip");
3992                 goto unlock;
3993         }
3994         if (!buffer_mapped(bh)) {
3995                 BUFFER_TRACE(bh, "unmapped");
3996                 ext4_get_block(inode, iblock, bh, 0);
3997                 /* unmapped? It's a hole - nothing to do */
3998                 if (!buffer_mapped(bh)) {
3999                         BUFFER_TRACE(bh, "still unmapped");
4000                         goto unlock;
4001                 }
4002         }
4003
4004         /* Ok, it's mapped. Make sure it's up-to-date */
4005         if (PageUptodate(page))
4006                 set_buffer_uptodate(bh);
4007
4008         if (!buffer_uptodate(bh)) {
4009                 err = -EIO;
4010                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4011                 wait_on_buffer(bh);
4012                 /* Uhhuh. Read error. Complain and punt. */
4013                 if (!buffer_uptodate(bh))
4014                         goto unlock;
4015                 if (S_ISREG(inode->i_mode) &&
4016                     ext4_encrypted_inode(inode)) {
4017                         /* We expect the key to be set. */
4018                         BUG_ON(!fscrypt_has_encryption_key(inode));
4019                         BUG_ON(blocksize != PAGE_SIZE);
4020                         WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4021                                                 page, PAGE_SIZE, 0, page->index));
4022                 }
4023         }
4024         if (ext4_should_journal_data(inode)) {
4025                 BUFFER_TRACE(bh, "get write access");
4026                 err = ext4_journal_get_write_access(handle, bh);
4027                 if (err)
4028                         goto unlock;
4029         }
4030         zero_user(page, offset, length);
4031         BUFFER_TRACE(bh, "zeroed end of block");
4032
4033         if (ext4_should_journal_data(inode)) {
4034                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4035         } else {
4036                 err = 0;
4037                 mark_buffer_dirty(bh);
4038                 if (ext4_should_order_data(inode))
4039                         err = ext4_jbd2_inode_add_write(handle, inode);
4040         }
4041
4042 unlock:
4043         unlock_page(page);
4044         put_page(page);
4045         return err;
4046 }
4047
4048 /*
4049  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4050  * starting from file offset 'from'.  The range to be zero'd must
4051  * be contained with in one block.  If the specified range exceeds
4052  * the end of the block it will be shortened to end of the block
4053  * that cooresponds to 'from'
4054  */
4055 static int ext4_block_zero_page_range(handle_t *handle,
4056                 struct address_space *mapping, loff_t from, loff_t length)
4057 {
4058         struct inode *inode = mapping->host;
4059         unsigned offset = from & (PAGE_SIZE-1);
4060         unsigned blocksize = inode->i_sb->s_blocksize;
4061         unsigned max = blocksize - (offset & (blocksize - 1));
4062
4063         /*
4064          * correct length if it does not fall between
4065          * 'from' and the end of the block
4066          */
4067         if (length > max || length < 0)
4068                 length = max;
4069
4070         if (IS_DAX(inode)) {
4071                 return iomap_zero_range(inode, from, length, NULL,
4072                                         &ext4_iomap_ops);
4073         }
4074         return __ext4_block_zero_page_range(handle, mapping, from, length);
4075 }
4076
4077 /*
4078  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4079  * up to the end of the block which corresponds to `from'.
4080  * This required during truncate. We need to physically zero the tail end
4081  * of that block so it doesn't yield old data if the file is later grown.
4082  */
4083 static int ext4_block_truncate_page(handle_t *handle,
4084                 struct address_space *mapping, loff_t from)
4085 {
4086         unsigned offset = from & (PAGE_SIZE-1);
4087         unsigned length;
4088         unsigned blocksize;
4089         struct inode *inode = mapping->host;
4090
4091         /* If we are processing an encrypted inode during orphan list handling */
4092         if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4093                 return 0;
4094
4095         blocksize = inode->i_sb->s_blocksize;
4096         length = blocksize - (offset & (blocksize - 1));
4097
4098         return ext4_block_zero_page_range(handle, mapping, from, length);
4099 }
4100
4101 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4102                              loff_t lstart, loff_t length)
4103 {
4104         struct super_block *sb = inode->i_sb;
4105         struct address_space *mapping = inode->i_mapping;
4106         unsigned partial_start, partial_end;
4107         ext4_fsblk_t start, end;
4108         loff_t byte_end = (lstart + length - 1);
4109         int err = 0;
4110
4111         partial_start = lstart & (sb->s_blocksize - 1);
4112         partial_end = byte_end & (sb->s_blocksize - 1);
4113
4114         start = lstart >> sb->s_blocksize_bits;
4115         end = byte_end >> sb->s_blocksize_bits;
4116
4117         /* Handle partial zero within the single block */
4118         if (start == end &&
4119             (partial_start || (partial_end != sb->s_blocksize - 1))) {
4120                 err = ext4_block_zero_page_range(handle, mapping,
4121                                                  lstart, length);
4122                 return err;
4123         }
4124         /* Handle partial zero out on the start of the range */
4125         if (partial_start) {
4126                 err = ext4_block_zero_page_range(handle, mapping,
4127                                                  lstart, sb->s_blocksize);
4128                 if (err)
4129                         return err;
4130         }
4131         /* Handle partial zero out on the end of the range */
4132         if (partial_end != sb->s_blocksize - 1)
4133                 err = ext4_block_zero_page_range(handle, mapping,
4134                                                  byte_end - partial_end,
4135                                                  partial_end + 1);
4136         return err;
4137 }
4138
4139 int ext4_can_truncate(struct inode *inode)
4140 {
4141         if (S_ISREG(inode->i_mode))
4142                 return 1;
4143         if (S_ISDIR(inode->i_mode))
4144                 return 1;
4145         if (S_ISLNK(inode->i_mode))
4146                 return !ext4_inode_is_fast_symlink(inode);
4147         return 0;
4148 }
4149
4150 /*
4151  * We have to make sure i_disksize gets properly updated before we truncate
4152  * page cache due to hole punching or zero range. Otherwise i_disksize update
4153  * can get lost as it may have been postponed to submission of writeback but
4154  * that will never happen after we truncate page cache.
4155  */
4156 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4157                                       loff_t len)
4158 {
4159         handle_t *handle;
4160         loff_t size = i_size_read(inode);
4161
4162         WARN_ON(!inode_is_locked(inode));
4163         if (offset > size || offset + len < size)
4164                 return 0;
4165
4166         if (EXT4_I(inode)->i_disksize >= size)
4167                 return 0;
4168
4169         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4170         if (IS_ERR(handle))
4171                 return PTR_ERR(handle);
4172         ext4_update_i_disksize(inode, size);
4173         ext4_mark_inode_dirty(handle, inode);
4174         ext4_journal_stop(handle);
4175
4176         return 0;
4177 }
4178
4179 /*
4180  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4181  * associated with the given offset and length
4182  *
4183  * @inode:  File inode
4184  * @offset: The offset where the hole will begin
4185  * @len:    The length of the hole
4186  *
4187  * Returns: 0 on success or negative on failure
4188  */
4189
4190 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4191 {
4192         struct super_block *sb = inode->i_sb;
4193         ext4_lblk_t first_block, stop_block;
4194         struct address_space *mapping = inode->i_mapping;
4195         loff_t first_block_offset, last_block_offset;
4196         handle_t *handle;
4197         unsigned int credits;
4198         int ret = 0;
4199
4200         if (!S_ISREG(inode->i_mode))
4201                 return -EOPNOTSUPP;
4202
4203         trace_ext4_punch_hole(inode, offset, length, 0);
4204
4205         /*
4206          * Write out all dirty pages to avoid race conditions
4207          * Then release them.
4208          */
4209         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4210                 ret = filemap_write_and_wait_range(mapping, offset,
4211                                                    offset + length - 1);
4212                 if (ret)
4213                         return ret;
4214         }
4215
4216         inode_lock(inode);
4217
4218         /* No need to punch hole beyond i_size */
4219         if (offset >= inode->i_size)
4220                 goto out_mutex;
4221
4222         /*
4223          * If the hole extends beyond i_size, set the hole
4224          * to end after the page that contains i_size
4225          */
4226         if (offset + length > inode->i_size) {
4227                 length = inode->i_size +
4228                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4229                    offset;
4230         }
4231
4232         if (offset & (sb->s_blocksize - 1) ||
4233             (offset + length) & (sb->s_blocksize - 1)) {
4234                 /*
4235                  * Attach jinode to inode for jbd2 if we do any zeroing of
4236                  * partial block
4237                  */
4238                 ret = ext4_inode_attach_jinode(inode);
4239                 if (ret < 0)
4240                         goto out_mutex;
4241
4242         }
4243
4244         /* Wait all existing dio workers, newcomers will block on i_mutex */
4245         ext4_inode_block_unlocked_dio(inode);
4246         inode_dio_wait(inode);
4247
4248         /*
4249          * Prevent page faults from reinstantiating pages we have released from
4250          * page cache.
4251          */
4252         down_write(&EXT4_I(inode)->i_mmap_sem);
4253         first_block_offset = round_up(offset, sb->s_blocksize);
4254         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4255
4256         /* Now release the pages and zero block aligned part of pages*/
4257         if (last_block_offset > first_block_offset) {
4258                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4259                 if (ret)
4260                         goto out_dio;
4261                 truncate_pagecache_range(inode, first_block_offset,
4262                                          last_block_offset);
4263         }
4264
4265         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4266                 credits = ext4_writepage_trans_blocks(inode);
4267         else
4268                 credits = ext4_blocks_for_truncate(inode);
4269         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4270         if (IS_ERR(handle)) {
4271                 ret = PTR_ERR(handle);
4272                 ext4_std_error(sb, ret);
4273                 goto out_dio;
4274         }
4275
4276         ret = ext4_zero_partial_blocks(handle, inode, offset,
4277                                        length);
4278         if (ret)
4279                 goto out_stop;
4280
4281         first_block = (offset + sb->s_blocksize - 1) >>
4282                 EXT4_BLOCK_SIZE_BITS(sb);
4283         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4284
4285         /* If there are no blocks to remove, return now */
4286         if (first_block >= stop_block)
4287                 goto out_stop;
4288
4289         down_write(&EXT4_I(inode)->i_data_sem);
4290         ext4_discard_preallocations(inode);
4291
4292         ret = ext4_es_remove_extent(inode, first_block,
4293                                     stop_block - first_block);
4294         if (ret) {
4295                 up_write(&EXT4_I(inode)->i_data_sem);
4296                 goto out_stop;
4297         }
4298
4299         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4300                 ret = ext4_ext_remove_space(inode, first_block,
4301                                             stop_block - 1);
4302         else
4303                 ret = ext4_ind_remove_space(handle, inode, first_block,
4304                                             stop_block);
4305
4306         up_write(&EXT4_I(inode)->i_data_sem);
4307         if (IS_SYNC(inode))
4308                 ext4_handle_sync(handle);
4309
4310         inode->i_mtime = inode->i_ctime = current_time(inode);
4311         ext4_mark_inode_dirty(handle, inode);
4312         if (ret >= 0)
4313                 ext4_update_inode_fsync_trans(handle, inode, 1);
4314 out_stop:
4315         ext4_journal_stop(handle);
4316 out_dio:
4317         up_write(&EXT4_I(inode)->i_mmap_sem);
4318         ext4_inode_resume_unlocked_dio(inode);
4319 out_mutex:
4320         inode_unlock(inode);
4321         return ret;
4322 }
4323
4324 int ext4_inode_attach_jinode(struct inode *inode)
4325 {
4326         struct ext4_inode_info *ei = EXT4_I(inode);
4327         struct jbd2_inode *jinode;
4328
4329         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4330                 return 0;
4331
4332         jinode = jbd2_alloc_inode(GFP_KERNEL);
4333         spin_lock(&inode->i_lock);
4334         if (!ei->jinode) {
4335                 if (!jinode) {
4336                         spin_unlock(&inode->i_lock);
4337                         return -ENOMEM;
4338                 }
4339                 ei->jinode = jinode;
4340                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4341                 jinode = NULL;
4342         }
4343         spin_unlock(&inode->i_lock);
4344         if (unlikely(jinode != NULL))
4345                 jbd2_free_inode(jinode);
4346         return 0;
4347 }
4348
4349 /*
4350  * ext4_truncate()
4351  *
4352  * We block out ext4_get_block() block instantiations across the entire
4353  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4354  * simultaneously on behalf of the same inode.
4355  *
4356  * As we work through the truncate and commit bits of it to the journal there
4357  * is one core, guiding principle: the file's tree must always be consistent on
4358  * disk.  We must be able to restart the truncate after a crash.
4359  *
4360  * The file's tree may be transiently inconsistent in memory (although it
4361  * probably isn't), but whenever we close off and commit a journal transaction,
4362  * the contents of (the filesystem + the journal) must be consistent and
4363  * restartable.  It's pretty simple, really: bottom up, right to left (although
4364  * left-to-right works OK too).
4365  *
4366  * Note that at recovery time, journal replay occurs *before* the restart of
4367  * truncate against the orphan inode list.
4368  *
4369  * The committed inode has the new, desired i_size (which is the same as
4370  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4371  * that this inode's truncate did not complete and it will again call
4372  * ext4_truncate() to have another go.  So there will be instantiated blocks
4373  * to the right of the truncation point in a crashed ext4 filesystem.  But
4374  * that's fine - as long as they are linked from the inode, the post-crash
4375  * ext4_truncate() run will find them and release them.
4376  */
4377 int ext4_truncate(struct inode *inode)
4378 {
4379         struct ext4_inode_info *ei = EXT4_I(inode);
4380         unsigned int credits;
4381         int err = 0;
4382         handle_t *handle;
4383         struct address_space *mapping = inode->i_mapping;
4384
4385         /*
4386          * There is a possibility that we're either freeing the inode
4387          * or it's a completely new inode. In those cases we might not
4388          * have i_mutex locked because it's not necessary.
4389          */
4390         if (!(inode->i_state & (I_NEW|I_FREEING)))
4391                 WARN_ON(!inode_is_locked(inode));
4392         trace_ext4_truncate_enter(inode);
4393
4394         if (!ext4_can_truncate(inode))
4395                 return 0;
4396
4397         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4398
4399         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4400                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4401
4402         if (ext4_has_inline_data(inode)) {
4403                 int has_inline = 1;
4404
4405                 err = ext4_inline_data_truncate(inode, &has_inline);
4406                 if (err)
4407                         return err;
4408                 if (has_inline)
4409                         return 0;
4410         }
4411
4412         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4413         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4414                 if (ext4_inode_attach_jinode(inode) < 0)
4415                         return 0;
4416         }
4417
4418         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4419                 credits = ext4_writepage_trans_blocks(inode);
4420         else
4421                 credits = ext4_blocks_for_truncate(inode);
4422
4423         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4424         if (IS_ERR(handle))
4425                 return PTR_ERR(handle);
4426
4427         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4428                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4429
4430         /*
4431          * We add the inode to the orphan list, so that if this
4432          * truncate spans multiple transactions, and we crash, we will
4433          * resume the truncate when the filesystem recovers.  It also
4434          * marks the inode dirty, to catch the new size.
4435          *
4436          * Implication: the file must always be in a sane, consistent
4437          * truncatable state while each transaction commits.
4438          */
4439         err = ext4_orphan_add(handle, inode);
4440         if (err)
4441                 goto out_stop;
4442
4443         down_write(&EXT4_I(inode)->i_data_sem);
4444
4445         ext4_discard_preallocations(inode);
4446
4447         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4448                 err = ext4_ext_truncate(handle, inode);
4449         else
4450                 ext4_ind_truncate(handle, inode);
4451
4452         up_write(&ei->i_data_sem);
4453         if (err)
4454                 goto out_stop;
4455
4456         if (IS_SYNC(inode))
4457                 ext4_handle_sync(handle);
4458
4459 out_stop:
4460         /*
4461          * If this was a simple ftruncate() and the file will remain alive,
4462          * then we need to clear up the orphan record which we created above.
4463          * However, if this was a real unlink then we were called by
4464          * ext4_evict_inode(), and we allow that function to clean up the
4465          * orphan info for us.
4466          */
4467         if (inode->i_nlink)
4468                 ext4_orphan_del(handle, inode);
4469
4470         inode->i_mtime = inode->i_ctime = current_time(inode);
4471         ext4_mark_inode_dirty(handle, inode);
4472         ext4_journal_stop(handle);
4473
4474         trace_ext4_truncate_exit(inode);
4475         return err;
4476 }
4477
4478 /*
4479  * ext4_get_inode_loc returns with an extra refcount against the inode's
4480  * underlying buffer_head on success. If 'in_mem' is true, we have all
4481  * data in memory that is needed to recreate the on-disk version of this
4482  * inode.
4483  */
4484 static int __ext4_get_inode_loc(struct inode *inode,
4485                                 struct ext4_iloc *iloc, int in_mem)
4486 {
4487         struct ext4_group_desc  *gdp;
4488         struct buffer_head      *bh;
4489         struct super_block      *sb = inode->i_sb;
4490         ext4_fsblk_t            block;
4491         int                     inodes_per_block, inode_offset;
4492
4493         iloc->bh = NULL;
4494         if (!ext4_valid_inum(sb, inode->i_ino))
4495                 return -EFSCORRUPTED;
4496
4497         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4498         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4499         if (!gdp)
4500                 return -EIO;
4501
4502         /*
4503          * Figure out the offset within the block group inode table
4504          */
4505         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4506         inode_offset = ((inode->i_ino - 1) %
4507                         EXT4_INODES_PER_GROUP(sb));
4508         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4509         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4510
4511         bh = sb_getblk(sb, block);
4512         if (unlikely(!bh))
4513                 return -ENOMEM;
4514         if (!buffer_uptodate(bh)) {
4515                 lock_buffer(bh);
4516
4517                 /*
4518                  * If the buffer has the write error flag, we have failed
4519                  * to write out another inode in the same block.  In this
4520                  * case, we don't have to read the block because we may
4521                  * read the old inode data successfully.
4522                  */
4523                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4524                         set_buffer_uptodate(bh);
4525
4526                 if (buffer_uptodate(bh)) {
4527                         /* someone brought it uptodate while we waited */
4528                         unlock_buffer(bh);
4529                         goto has_buffer;
4530                 }
4531
4532                 /*
4533                  * If we have all information of the inode in memory and this
4534                  * is the only valid inode in the block, we need not read the
4535                  * block.
4536                  */
4537                 if (in_mem) {
4538                         struct buffer_head *bitmap_bh;
4539                         int i, start;
4540
4541                         start = inode_offset & ~(inodes_per_block - 1);
4542
4543                         /* Is the inode bitmap in cache? */
4544                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4545                         if (unlikely(!bitmap_bh))
4546                                 goto make_io;
4547
4548                         /*
4549                          * If the inode bitmap isn't in cache then the
4550                          * optimisation may end up performing two reads instead
4551                          * of one, so skip it.
4552                          */
4553                         if (!buffer_uptodate(bitmap_bh)) {
4554                                 brelse(bitmap_bh);
4555                                 goto make_io;
4556                         }
4557                         for (i = start; i < start + inodes_per_block; i++) {
4558                                 if (i == inode_offset)
4559                                         continue;
4560                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4561                                         break;
4562                         }
4563                         brelse(bitmap_bh);
4564                         if (i == start + inodes_per_block) {
4565                                 /* all other inodes are free, so skip I/O */
4566                                 memset(bh->b_data, 0, bh->b_size);
4567                                 set_buffer_uptodate(bh);
4568                                 unlock_buffer(bh);
4569                                 goto has_buffer;
4570                         }
4571                 }
4572
4573 make_io:
4574                 /*
4575                  * If we need to do any I/O, try to pre-readahead extra
4576                  * blocks from the inode table.
4577                  */
4578                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4579                         ext4_fsblk_t b, end, table;
4580                         unsigned num;
4581                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4582
4583                         table = ext4_inode_table(sb, gdp);
4584                         /* s_inode_readahead_blks is always a power of 2 */
4585                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4586                         if (table > b)
4587                                 b = table;
4588                         end = b + ra_blks;
4589                         num = EXT4_INODES_PER_GROUP(sb);
4590                         if (ext4_has_group_desc_csum(sb))
4591                                 num -= ext4_itable_unused_count(sb, gdp);
4592                         table += num / inodes_per_block;
4593                         if (end > table)
4594                                 end = table;
4595                         while (b <= end)
4596                                 sb_breadahead(sb, b++);
4597                 }
4598
4599                 /*
4600                  * There are other valid inodes in the buffer, this inode
4601                  * has in-inode xattrs, or we don't have this inode in memory.
4602                  * Read the block from disk.
4603                  */
4604                 trace_ext4_load_inode(inode);
4605                 get_bh(bh);
4606                 bh->b_end_io = end_buffer_read_sync;
4607                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4608                 wait_on_buffer(bh);
4609                 if (!buffer_uptodate(bh)) {
4610                         EXT4_ERROR_INODE_BLOCK(inode, block,
4611                                                "unable to read itable block");
4612                         brelse(bh);
4613                         return -EIO;
4614                 }
4615         }
4616 has_buffer:
4617         iloc->bh = bh;
4618         return 0;
4619 }
4620
4621 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4622 {
4623         /* We have all inode data except xattrs in memory here. */
4624         return __ext4_get_inode_loc(inode, iloc,
4625                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4626 }
4627
4628 static bool ext4_should_use_dax(struct inode *inode)
4629 {
4630         if (!test_opt(inode->i_sb, DAX))
4631                 return false;
4632         if (!S_ISREG(inode->i_mode))
4633                 return false;
4634         if (ext4_should_journal_data(inode))
4635                 return false;
4636         if (ext4_has_inline_data(inode))
4637                 return false;
4638         if (ext4_encrypted_inode(inode))
4639                 return false;
4640         return true;
4641 }
4642
4643 void ext4_set_inode_flags(struct inode *inode)
4644 {
4645         unsigned int flags = EXT4_I(inode)->i_flags;
4646         unsigned int new_fl = 0;
4647
4648         if (flags & EXT4_SYNC_FL)
4649                 new_fl |= S_SYNC;
4650         if (flags & EXT4_APPEND_FL)
4651                 new_fl |= S_APPEND;
4652         if (flags & EXT4_IMMUTABLE_FL)
4653                 new_fl |= S_IMMUTABLE;
4654         if (flags & EXT4_NOATIME_FL)
4655                 new_fl |= S_NOATIME;
4656         if (flags & EXT4_DIRSYNC_FL)
4657                 new_fl |= S_DIRSYNC;
4658         if (ext4_should_use_dax(inode))
4659                 new_fl |= S_DAX;
4660         if (flags & EXT4_ENCRYPT_FL)
4661                 new_fl |= S_ENCRYPTED;
4662         inode_set_flags(inode, new_fl,
4663                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4664                         S_ENCRYPTED);
4665 }
4666
4667 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4668                                   struct ext4_inode_info *ei)
4669 {
4670         blkcnt_t i_blocks ;
4671         struct inode *inode = &(ei->vfs_inode);
4672         struct super_block *sb = inode->i_sb;
4673
4674         if (ext4_has_feature_huge_file(sb)) {
4675                 /* we are using combined 48 bit field */
4676                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4677                                         le32_to_cpu(raw_inode->i_blocks_lo);
4678                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4679                         /* i_blocks represent file system block size */
4680                         return i_blocks  << (inode->i_blkbits - 9);
4681                 } else {
4682                         return i_blocks;
4683                 }
4684         } else {
4685                 return le32_to_cpu(raw_inode->i_blocks_lo);
4686         }
4687 }
4688
4689 static inline void ext4_iget_extra_inode(struct inode *inode,
4690                                          struct ext4_inode *raw_inode,
4691                                          struct ext4_inode_info *ei)
4692 {
4693         __le32 *magic = (void *)raw_inode +
4694                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4695         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4696             EXT4_INODE_SIZE(inode->i_sb) &&
4697             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4698                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4699                 ext4_find_inline_data_nolock(inode);
4700         } else
4701                 EXT4_I(inode)->i_inline_off = 0;
4702 }
4703
4704 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4705 {
4706         if (!ext4_has_feature_project(inode->i_sb))
4707                 return -EOPNOTSUPP;
4708         *projid = EXT4_I(inode)->i_projid;
4709         return 0;
4710 }
4711
4712 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4713 {
4714         struct ext4_iloc iloc;
4715         struct ext4_inode *raw_inode;
4716         struct ext4_inode_info *ei;
4717         struct inode *inode;
4718         journal_t *journal = EXT4_SB(sb)->s_journal;
4719         long ret;
4720         loff_t size;
4721         int block;
4722         uid_t i_uid;
4723         gid_t i_gid;
4724         projid_t i_projid;
4725
4726         inode = iget_locked(sb, ino);
4727         if (!inode)
4728                 return ERR_PTR(-ENOMEM);
4729         if (!(inode->i_state & I_NEW))
4730                 return inode;
4731
4732         ei = EXT4_I(inode);
4733         iloc.bh = NULL;
4734
4735         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4736         if (ret < 0)
4737                 goto bad_inode;
4738         raw_inode = ext4_raw_inode(&iloc);
4739
4740         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4741                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4742                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4743                         EXT4_INODE_SIZE(inode->i_sb) ||
4744                     (ei->i_extra_isize & 3)) {
4745                         EXT4_ERROR_INODE(inode,
4746                                          "bad extra_isize %u (inode size %u)",
4747                                          ei->i_extra_isize,
4748                                          EXT4_INODE_SIZE(inode->i_sb));
4749                         ret = -EFSCORRUPTED;
4750                         goto bad_inode;
4751                 }
4752         } else
4753                 ei->i_extra_isize = 0;
4754
4755         /* Precompute checksum seed for inode metadata */
4756         if (ext4_has_metadata_csum(sb)) {
4757                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4758                 __u32 csum;
4759                 __le32 inum = cpu_to_le32(inode->i_ino);
4760                 __le32 gen = raw_inode->i_generation;
4761                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4762                                    sizeof(inum));
4763                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4764                                               sizeof(gen));
4765         }
4766
4767         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4768                 EXT4_ERROR_INODE(inode, "checksum invalid");
4769                 ret = -EFSBADCRC;
4770                 goto bad_inode;
4771         }
4772
4773         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4774         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4775         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4776         if (ext4_has_feature_project(sb) &&
4777             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4778             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4779                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4780         else
4781                 i_projid = EXT4_DEF_PROJID;
4782
4783         if (!(test_opt(inode->i_sb, NO_UID32))) {
4784                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4785                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4786         }
4787         i_uid_write(inode, i_uid);
4788         i_gid_write(inode, i_gid);
4789         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4790         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4791
4792         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4793         ei->i_inline_off = 0;
4794         ei->i_dir_start_lookup = 0;
4795         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4796         /* We now have enough fields to check if the inode was active or not.
4797          * This is needed because nfsd might try to access dead inodes
4798          * the test is that same one that e2fsck uses
4799          * NeilBrown 1999oct15
4800          */
4801         if (inode->i_nlink == 0) {
4802                 if ((inode->i_mode == 0 ||
4803                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4804                     ino != EXT4_BOOT_LOADER_INO) {
4805                         /* this inode is deleted */
4806                         ret = -ESTALE;
4807                         goto bad_inode;
4808                 }
4809                 /* The only unlinked inodes we let through here have
4810                  * valid i_mode and are being read by the orphan
4811                  * recovery code: that's fine, we're about to complete
4812                  * the process of deleting those.
4813                  * OR it is the EXT4_BOOT_LOADER_INO which is
4814                  * not initialized on a new filesystem. */
4815         }
4816         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4817         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4818         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4819         if (ext4_has_feature_64bit(sb))
4820                 ei->i_file_acl |=
4821                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4822         inode->i_size = ext4_isize(sb, raw_inode);
4823         if ((size = i_size_read(inode)) < 0) {
4824                 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4825                 ret = -EFSCORRUPTED;
4826                 goto bad_inode;
4827         }
4828         ei->i_disksize = inode->i_size;
4829 #ifdef CONFIG_QUOTA
4830         ei->i_reserved_quota = 0;
4831 #endif
4832         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4833         ei->i_block_group = iloc.block_group;
4834         ei->i_last_alloc_group = ~0;
4835         /*
4836          * NOTE! The in-memory inode i_data array is in little-endian order
4837          * even on big-endian machines: we do NOT byteswap the block numbers!
4838          */
4839         for (block = 0; block < EXT4_N_BLOCKS; block++)
4840                 ei->i_data[block] = raw_inode->i_block[block];
4841         INIT_LIST_HEAD(&ei->i_orphan);
4842
4843         /*
4844          * Set transaction id's of transactions that have to be committed
4845          * to finish f[data]sync. We set them to currently running transaction
4846          * as we cannot be sure that the inode or some of its metadata isn't
4847          * part of the transaction - the inode could have been reclaimed and
4848          * now it is reread from disk.
4849          */
4850         if (journal) {
4851                 transaction_t *transaction;
4852                 tid_t tid;
4853
4854                 read_lock(&journal->j_state_lock);
4855                 if (journal->j_running_transaction)
4856                         transaction = journal->j_running_transaction;
4857                 else
4858                         transaction = journal->j_committing_transaction;
4859                 if (transaction)
4860                         tid = transaction->t_tid;
4861                 else
4862                         tid = journal->j_commit_sequence;
4863                 read_unlock(&journal->j_state_lock);
4864                 ei->i_sync_tid = tid;
4865                 ei->i_datasync_tid = tid;
4866         }
4867
4868         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4869                 if (ei->i_extra_isize == 0) {
4870                         /* The extra space is currently unused. Use it. */
4871                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4872                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4873                                             EXT4_GOOD_OLD_INODE_SIZE;
4874                 } else {
4875                         ext4_iget_extra_inode(inode, raw_inode, ei);
4876                 }
4877         }
4878
4879         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4880         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4881         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4882         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4883
4884         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4885                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4886                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4887                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4888                                 inode->i_version |=
4889                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4890                 }
4891         }
4892
4893         ret = 0;
4894         if (ei->i_file_acl &&
4895             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4896                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4897                                  ei->i_file_acl);
4898                 ret = -EFSCORRUPTED;
4899                 goto bad_inode;
4900         } else if (!ext4_has_inline_data(inode)) {
4901                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4902                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4903                             (S_ISLNK(inode->i_mode) &&
4904                              !ext4_inode_is_fast_symlink(inode))))
4905                                 /* Validate extent which is part of inode */
4906                                 ret = ext4_ext_check_inode(inode);
4907                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4908                            (S_ISLNK(inode->i_mode) &&
4909                             !ext4_inode_is_fast_symlink(inode))) {
4910                         /* Validate block references which are part of inode */
4911                         ret = ext4_ind_check_inode(inode);
4912                 }
4913         }
4914         if (ret)
4915                 goto bad_inode;
4916
4917         if (S_ISREG(inode->i_mode)) {
4918                 inode->i_op = &ext4_file_inode_operations;
4919                 inode->i_fop = &ext4_file_operations;
4920                 ext4_set_aops(inode);
4921         } else if (S_ISDIR(inode->i_mode)) {
4922                 inode->i_op = &ext4_dir_inode_operations;
4923                 inode->i_fop = &ext4_dir_operations;
4924         } else if (S_ISLNK(inode->i_mode)) {
4925                 if (ext4_encrypted_inode(inode)) {
4926                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4927                         ext4_set_aops(inode);
4928                 } else if (ext4_inode_is_fast_symlink(inode)) {
4929                         inode->i_link = (char *)ei->i_data;
4930                         inode->i_op = &ext4_fast_symlink_inode_operations;
4931                         nd_terminate_link(ei->i_data, inode->i_size,
4932                                 sizeof(ei->i_data) - 1);
4933                 } else {
4934                         inode->i_op = &ext4_symlink_inode_operations;
4935                         ext4_set_aops(inode);
4936                 }
4937                 inode_nohighmem(inode);
4938         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4939               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4940                 inode->i_op = &ext4_special_inode_operations;
4941                 if (raw_inode->i_block[0])
4942                         init_special_inode(inode, inode->i_mode,
4943                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4944                 else
4945                         init_special_inode(inode, inode->i_mode,
4946                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4947         } else if (ino == EXT4_BOOT_LOADER_INO) {
4948                 make_bad_inode(inode);
4949         } else {
4950                 ret = -EFSCORRUPTED;
4951                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4952                 goto bad_inode;
4953         }
4954         brelse(iloc.bh);
4955         ext4_set_inode_flags(inode);
4956
4957         unlock_new_inode(inode);
4958         return inode;
4959
4960 bad_inode:
4961         brelse(iloc.bh);
4962         iget_failed(inode);
4963         return ERR_PTR(ret);
4964 }
4965
4966 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4967 {
4968         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4969                 return ERR_PTR(-EFSCORRUPTED);
4970         return ext4_iget(sb, ino);
4971 }
4972
4973 static int ext4_inode_blocks_set(handle_t *handle,
4974                                 struct ext4_inode *raw_inode,
4975                                 struct ext4_inode_info *ei)
4976 {
4977         struct inode *inode = &(ei->vfs_inode);
4978         u64 i_blocks = inode->i_blocks;
4979         struct super_block *sb = inode->i_sb;
4980
4981         if (i_blocks <= ~0U) {
4982                 /*
4983                  * i_blocks can be represented in a 32 bit variable
4984                  * as multiple of 512 bytes
4985                  */
4986                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4987                 raw_inode->i_blocks_high = 0;
4988                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4989                 return 0;
4990         }
4991         if (!ext4_has_feature_huge_file(sb))
4992                 return -EFBIG;
4993
4994         if (i_blocks <= 0xffffffffffffULL) {
4995                 /*
4996                  * i_blocks can be represented in a 48 bit variable
4997                  * as multiple of 512 bytes
4998                  */
4999                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5000                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5001                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5002         } else {
5003                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5004                 /* i_block is stored in file system block size */
5005                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5006                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5007                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5008         }
5009         return 0;
5010 }
5011
5012 struct other_inode {
5013         unsigned long           orig_ino;
5014         struct ext4_inode       *raw_inode;
5015 };
5016
5017 static int other_inode_match(struct inode * inode, unsigned long ino,
5018                              void *data)
5019 {
5020         struct other_inode *oi = (struct other_inode *) data;
5021
5022         if ((inode->i_ino != ino) ||
5023             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5024                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
5025             ((inode->i_state & I_DIRTY_TIME) == 0))
5026                 return 0;
5027         spin_lock(&inode->i_lock);
5028         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5029                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
5030             (inode->i_state & I_DIRTY_TIME)) {
5031                 struct ext4_inode_info  *ei = EXT4_I(inode);
5032
5033                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5034                 spin_unlock(&inode->i_lock);
5035
5036                 spin_lock(&ei->i_raw_lock);
5037                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5038                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5039                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5040                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5041                 spin_unlock(&ei->i_raw_lock);
5042                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5043                 return -1;
5044         }
5045         spin_unlock(&inode->i_lock);
5046         return -1;
5047 }
5048
5049 /*
5050  * Opportunistically update the other time fields for other inodes in
5051  * the same inode table block.
5052  */
5053 static void ext4_update_other_inodes_time(struct super_block *sb,
5054                                           unsigned long orig_ino, char *buf)
5055 {
5056         struct other_inode oi;
5057         unsigned long ino;
5058         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5059         int inode_size = EXT4_INODE_SIZE(sb);
5060
5061         oi.orig_ino = orig_ino;
5062         /*
5063          * Calculate the first inode in the inode table block.  Inode
5064          * numbers are one-based.  That is, the first inode in a block
5065          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5066          */
5067         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5068         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5069                 if (ino == orig_ino)
5070                         continue;
5071                 oi.raw_inode = (struct ext4_inode *) buf;
5072                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5073         }
5074 }
5075
5076 /*
5077  * Post the struct inode info into an on-disk inode location in the
5078  * buffer-cache.  This gobbles the caller's reference to the
5079  * buffer_head in the inode location struct.
5080  *
5081  * The caller must have write access to iloc->bh.
5082  */
5083 static int ext4_do_update_inode(handle_t *handle,
5084                                 struct inode *inode,
5085                                 struct ext4_iloc *iloc)
5086 {
5087         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5088         struct ext4_inode_info *ei = EXT4_I(inode);
5089         struct buffer_head *bh = iloc->bh;
5090         struct super_block *sb = inode->i_sb;
5091         int err = 0, rc, block;
5092         int need_datasync = 0, set_large_file = 0;
5093         uid_t i_uid;
5094         gid_t i_gid;
5095         projid_t i_projid;
5096
5097         spin_lock(&ei->i_raw_lock);
5098
5099         /* For fields not tracked in the in-memory inode,
5100          * initialise them to zero for new inodes. */
5101         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5102                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5103
5104         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5105         i_uid = i_uid_read(inode);
5106         i_gid = i_gid_read(inode);
5107         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5108         if (!(test_opt(inode->i_sb, NO_UID32))) {
5109                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5110                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5111 /*
5112  * Fix up interoperability with old kernels. Otherwise, old inodes get
5113  * re-used with the upper 16 bits of the uid/gid intact
5114  */
5115                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5116                         raw_inode->i_uid_high = 0;
5117                         raw_inode->i_gid_high = 0;
5118                 } else {
5119                         raw_inode->i_uid_high =
5120                                 cpu_to_le16(high_16_bits(i_uid));
5121                         raw_inode->i_gid_high =
5122                                 cpu_to_le16(high_16_bits(i_gid));
5123                 }
5124         } else {
5125                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5126                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5127                 raw_inode->i_uid_high = 0;
5128                 raw_inode->i_gid_high = 0;
5129         }
5130         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5131
5132         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5133         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5134         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5135         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5136
5137         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5138         if (err) {
5139                 spin_unlock(&ei->i_raw_lock);
5140                 goto out_brelse;
5141         }
5142         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5143         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5144         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5145                 raw_inode->i_file_acl_high =
5146                         cpu_to_le16(ei->i_file_acl >> 32);
5147         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5148         if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5149                 ext4_isize_set(raw_inode, ei->i_disksize);
5150                 need_datasync = 1;
5151         }
5152         if (ei->i_disksize > 0x7fffffffULL) {
5153                 if (!ext4_has_feature_large_file(sb) ||
5154                                 EXT4_SB(sb)->s_es->s_rev_level ==
5155                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5156                         set_large_file = 1;
5157         }
5158         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5159         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5160                 if (old_valid_dev(inode->i_rdev)) {
5161                         raw_inode->i_block[0] =
5162                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5163                         raw_inode->i_block[1] = 0;
5164                 } else {
5165                         raw_inode->i_block[0] = 0;
5166                         raw_inode->i_block[1] =
5167                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5168                         raw_inode->i_block[2] = 0;
5169                 }
5170         } else if (!ext4_has_inline_data(inode)) {
5171                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5172                         raw_inode->i_block[block] = ei->i_data[block];
5173         }
5174
5175         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5176                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5177                 if (ei->i_extra_isize) {
5178                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5179                                 raw_inode->i_version_hi =
5180                                         cpu_to_le32(inode->i_version >> 32);
5181                         raw_inode->i_extra_isize =
5182                                 cpu_to_le16(ei->i_extra_isize);
5183                 }
5184         }
5185
5186         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5187                i_projid != EXT4_DEF_PROJID);
5188
5189         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5190             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5191                 raw_inode->i_projid = cpu_to_le32(i_projid);
5192
5193         ext4_inode_csum_set(inode, raw_inode, ei);
5194         spin_unlock(&ei->i_raw_lock);
5195         if (inode->i_sb->s_flags & SB_LAZYTIME)
5196                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5197                                               bh->b_data);
5198
5199         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5200         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5201         if (!err)
5202                 err = rc;
5203         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5204         if (set_large_file) {
5205                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5206                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5207                 if (err)
5208                         goto out_brelse;
5209                 ext4_update_dynamic_rev(sb);
5210                 ext4_set_feature_large_file(sb);
5211                 ext4_handle_sync(handle);
5212                 err = ext4_handle_dirty_super(handle, sb);
5213         }
5214         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5215 out_brelse:
5216         brelse(bh);
5217         ext4_std_error(inode->i_sb, err);
5218         return err;
5219 }
5220
5221 /*
5222  * ext4_write_inode()
5223  *
5224  * We are called from a few places:
5225  *
5226  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5227  *   Here, there will be no transaction running. We wait for any running
5228  *   transaction to commit.
5229  *
5230  * - Within flush work (sys_sync(), kupdate and such).
5231  *   We wait on commit, if told to.
5232  *
5233  * - Within iput_final() -> write_inode_now()
5234  *   We wait on commit, if told to.
5235  *
5236  * In all cases it is actually safe for us to return without doing anything,
5237  * because the inode has been copied into a raw inode buffer in
5238  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5239  * writeback.
5240  *
5241  * Note that we are absolutely dependent upon all inode dirtiers doing the
5242  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5243  * which we are interested.
5244  *
5245  * It would be a bug for them to not do this.  The code:
5246  *
5247  *      mark_inode_dirty(inode)
5248  *      stuff();
5249  *      inode->i_size = expr;
5250  *
5251  * is in error because write_inode() could occur while `stuff()' is running,
5252  * and the new i_size will be lost.  Plus the inode will no longer be on the
5253  * superblock's dirty inode list.
5254  */
5255 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5256 {
5257         int err;
5258
5259         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5260                 return 0;
5261
5262         if (EXT4_SB(inode->i_sb)->s_journal) {
5263                 if (ext4_journal_current_handle()) {
5264                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5265                         dump_stack();
5266                         return -EIO;
5267                 }
5268
5269                 /*
5270                  * No need to force transaction in WB_SYNC_NONE mode. Also
5271                  * ext4_sync_fs() will force the commit after everything is
5272                  * written.
5273                  */
5274                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5275                         return 0;
5276
5277                 err = ext4_force_commit(inode->i_sb);
5278         } else {
5279                 struct ext4_iloc iloc;
5280
5281                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5282                 if (err)
5283                         return err;
5284                 /*
5285                  * sync(2) will flush the whole buffer cache. No need to do
5286                  * it here separately for each inode.
5287                  */
5288                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5289                         sync_dirty_buffer(iloc.bh);
5290                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5291                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5292                                          "IO error syncing inode");
5293                         err = -EIO;
5294                 }
5295                 brelse(iloc.bh);
5296         }
5297         return err;
5298 }
5299
5300 /*
5301  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5302  * buffers that are attached to a page stradding i_size and are undergoing
5303  * commit. In that case we have to wait for commit to finish and try again.
5304  */
5305 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5306 {
5307         struct page *page;
5308         unsigned offset;
5309         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5310         tid_t commit_tid = 0;
5311         int ret;
5312
5313         offset = inode->i_size & (PAGE_SIZE - 1);
5314         /*
5315          * All buffers in the last page remain valid? Then there's nothing to
5316          * do. We do the check mainly to optimize the common PAGE_SIZE ==
5317          * blocksize case
5318          */
5319         if (offset > PAGE_SIZE - i_blocksize(inode))
5320                 return;
5321         while (1) {
5322                 page = find_lock_page(inode->i_mapping,
5323                                       inode->i_size >> PAGE_SHIFT);
5324                 if (!page)
5325                         return;
5326                 ret = __ext4_journalled_invalidatepage(page, offset,
5327                                                 PAGE_SIZE - offset);
5328                 unlock_page(page);
5329                 put_page(page);
5330                 if (ret != -EBUSY)
5331                         return;
5332                 commit_tid = 0;
5333                 read_lock(&journal->j_state_lock);
5334                 if (journal->j_committing_transaction)
5335                         commit_tid = journal->j_committing_transaction->t_tid;
5336                 read_unlock(&journal->j_state_lock);
5337                 if (commit_tid)
5338                         jbd2_log_wait_commit(journal, commit_tid);
5339         }
5340 }
5341
5342 /*
5343  * ext4_setattr()
5344  *
5345  * Called from notify_change.
5346  *
5347  * We want to trap VFS attempts to truncate the file as soon as
5348  * possible.  In particular, we want to make sure that when the VFS
5349  * shrinks i_size, we put the inode on the orphan list and modify
5350  * i_disksize immediately, so that during the subsequent flushing of
5351  * dirty pages and freeing of disk blocks, we can guarantee that any
5352  * commit will leave the blocks being flushed in an unused state on
5353  * disk.  (On recovery, the inode will get truncated and the blocks will
5354  * be freed, so we have a strong guarantee that no future commit will
5355  * leave these blocks visible to the user.)
5356  *
5357  * Another thing we have to assure is that if we are in ordered mode
5358  * and inode is still attached to the committing transaction, we must
5359  * we start writeout of all the dirty pages which are being truncated.
5360  * This way we are sure that all the data written in the previous
5361  * transaction are already on disk (truncate waits for pages under
5362  * writeback).
5363  *
5364  * Called with inode->i_mutex down.
5365  */
5366 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5367 {
5368         struct inode *inode = d_inode(dentry);
5369         int error, rc = 0;
5370         int orphan = 0;
5371         const unsigned int ia_valid = attr->ia_valid;
5372
5373         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5374                 return -EIO;
5375
5376         error = setattr_prepare(dentry, attr);
5377         if (error)
5378                 return error;
5379
5380         error = fscrypt_prepare_setattr(dentry, attr);
5381         if (error)
5382                 return error;
5383
5384         if (is_quota_modification(inode, attr)) {
5385                 error = dquot_initialize(inode);
5386                 if (error)
5387                         return error;
5388         }
5389         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5390             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5391                 handle_t *handle;
5392
5393                 /* (user+group)*(old+new) structure, inode write (sb,
5394                  * inode block, ? - but truncate inode update has it) */
5395                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5396                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5397                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5398                 if (IS_ERR(handle)) {
5399                         error = PTR_ERR(handle);
5400                         goto err_out;
5401                 }
5402
5403                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5404                  * counts xattr inode references.
5405                  */
5406                 down_read(&EXT4_I(inode)->xattr_sem);
5407                 error = dquot_transfer(inode, attr);
5408                 up_read(&EXT4_I(inode)->xattr_sem);
5409
5410                 if (error) {
5411                         ext4_journal_stop(handle);
5412                         return error;
5413                 }
5414                 /* Update corresponding info in inode so that everything is in
5415                  * one transaction */
5416                 if (attr->ia_valid & ATTR_UID)
5417                         inode->i_uid = attr->ia_uid;
5418                 if (attr->ia_valid & ATTR_GID)
5419                         inode->i_gid = attr->ia_gid;
5420                 error = ext4_mark_inode_dirty(handle, inode);
5421                 ext4_journal_stop(handle);
5422         }
5423
5424         if (attr->ia_valid & ATTR_SIZE) {
5425                 handle_t *handle;
5426                 loff_t oldsize = inode->i_size;
5427                 int shrink = (attr->ia_size <= inode->i_size);
5428
5429                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5430                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5431
5432                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5433                                 return -EFBIG;
5434                 }
5435                 if (!S_ISREG(inode->i_mode))
5436                         return -EINVAL;
5437
5438                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5439                         inode_inc_iversion(inode);
5440
5441                 if (ext4_should_order_data(inode) &&
5442                     (attr->ia_size < inode->i_size)) {
5443                         error = ext4_begin_ordered_truncate(inode,
5444                                                             attr->ia_size);
5445                         if (error)
5446                                 goto err_out;
5447                 }
5448                 if (attr->ia_size != inode->i_size) {
5449                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5450                         if (IS_ERR(handle)) {
5451                                 error = PTR_ERR(handle);
5452                                 goto err_out;
5453                         }
5454                         if (ext4_handle_valid(handle) && shrink) {
5455                                 error = ext4_orphan_add(handle, inode);
5456                                 orphan = 1;
5457                         }
5458                         /*
5459                          * Update c/mtime on truncate up, ext4_truncate() will
5460                          * update c/mtime in shrink case below
5461                          */
5462                         if (!shrink) {
5463                                 inode->i_mtime = current_time(inode);
5464                                 inode->i_ctime = inode->i_mtime;
5465                         }
5466                         down_write(&EXT4_I(inode)->i_data_sem);
5467                         EXT4_I(inode)->i_disksize = attr->ia_size;
5468                         rc = ext4_mark_inode_dirty(handle, inode);
5469                         if (!error)
5470                                 error = rc;
5471                         /*
5472                          * We have to update i_size under i_data_sem together
5473                          * with i_disksize to avoid races with writeback code
5474                          * running ext4_wb_update_i_disksize().
5475                          */
5476                         if (!error)
5477                                 i_size_write(inode, attr->ia_size);
5478                         up_write(&EXT4_I(inode)->i_data_sem);
5479                         ext4_journal_stop(handle);
5480                         if (error) {
5481                                 if (orphan)
5482                                         ext4_orphan_del(NULL, inode);
5483                                 goto err_out;
5484                         }
5485                 }
5486                 if (!shrink)
5487                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5488
5489                 /*
5490                  * Blocks are going to be removed from the inode. Wait
5491                  * for dio in flight.  Temporarily disable
5492                  * dioread_nolock to prevent livelock.
5493                  */
5494                 if (orphan) {
5495                         if (!ext4_should_journal_data(inode)) {
5496                                 ext4_inode_block_unlocked_dio(inode);
5497                                 inode_dio_wait(inode);
5498                                 ext4_inode_resume_unlocked_dio(inode);
5499                         } else
5500                                 ext4_wait_for_tail_page_commit(inode);
5501                 }
5502                 down_write(&EXT4_I(inode)->i_mmap_sem);
5503                 /*
5504                  * Truncate pagecache after we've waited for commit
5505                  * in data=journal mode to make pages freeable.
5506                  */
5507                 truncate_pagecache(inode, inode->i_size);
5508                 if (shrink) {
5509                         rc = ext4_truncate(inode);
5510                         if (rc)
5511                                 error = rc;
5512                 }
5513                 up_write(&EXT4_I(inode)->i_mmap_sem);
5514         }
5515
5516         if (!error) {
5517                 setattr_copy(inode, attr);
5518                 mark_inode_dirty(inode);
5519         }
5520
5521         /*
5522          * If the call to ext4_truncate failed to get a transaction handle at
5523          * all, we need to clean up the in-core orphan list manually.
5524          */
5525         if (orphan && inode->i_nlink)
5526                 ext4_orphan_del(NULL, inode);
5527
5528         if (!error && (ia_valid & ATTR_MODE))
5529                 rc = posix_acl_chmod(inode, inode->i_mode);
5530
5531 err_out:
5532         ext4_std_error(inode->i_sb, error);
5533         if (!error)
5534                 error = rc;
5535         return error;
5536 }
5537
5538 int ext4_getattr(const struct path *path, struct kstat *stat,
5539                  u32 request_mask, unsigned int query_flags)
5540 {
5541         struct inode *inode = d_inode(path->dentry);
5542         struct ext4_inode *raw_inode;
5543         struct ext4_inode_info *ei = EXT4_I(inode);
5544         unsigned int flags;
5545
5546         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5547                 stat->result_mask |= STATX_BTIME;
5548                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5549                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5550         }
5551
5552         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5553         if (flags & EXT4_APPEND_FL)
5554                 stat->attributes |= STATX_ATTR_APPEND;
5555         if (flags & EXT4_COMPR_FL)
5556                 stat->attributes |= STATX_ATTR_COMPRESSED;
5557         if (flags & EXT4_ENCRYPT_FL)
5558                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5559         if (flags & EXT4_IMMUTABLE_FL)
5560                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5561         if (flags & EXT4_NODUMP_FL)
5562                 stat->attributes |= STATX_ATTR_NODUMP;
5563
5564         stat->attributes_mask |= (STATX_ATTR_APPEND |
5565                                   STATX_ATTR_COMPRESSED |
5566                                   STATX_ATTR_ENCRYPTED |
5567                                   STATX_ATTR_IMMUTABLE |
5568                                   STATX_ATTR_NODUMP);
5569
5570         generic_fillattr(inode, stat);
5571         return 0;
5572 }
5573
5574 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5575                       u32 request_mask, unsigned int query_flags)
5576 {
5577         struct inode *inode = d_inode(path->dentry);
5578         u64 delalloc_blocks;
5579
5580         ext4_getattr(path, stat, request_mask, query_flags);
5581
5582         /*
5583          * If there is inline data in the inode, the inode will normally not
5584          * have data blocks allocated (it may have an external xattr block).
5585          * Report at least one sector for such files, so tools like tar, rsync,
5586          * others don't incorrectly think the file is completely sparse.
5587          */
5588         if (unlikely(ext4_has_inline_data(inode)))
5589                 stat->blocks += (stat->size + 511) >> 9;
5590
5591         /*
5592          * We can't update i_blocks if the block allocation is delayed
5593          * otherwise in the case of system crash before the real block
5594          * allocation is done, we will have i_blocks inconsistent with
5595          * on-disk file blocks.
5596          * We always keep i_blocks updated together with real
5597          * allocation. But to not confuse with user, stat
5598          * will return the blocks that include the delayed allocation
5599          * blocks for this file.
5600          */
5601         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5602                                    EXT4_I(inode)->i_reserved_data_blocks);
5603         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5604         return 0;
5605 }
5606
5607 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5608                                    int pextents)
5609 {
5610         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5611                 return ext4_ind_trans_blocks(inode, lblocks);
5612         return ext4_ext_index_trans_blocks(inode, pextents);
5613 }
5614
5615 /*
5616  * Account for index blocks, block groups bitmaps and block group
5617  * descriptor blocks if modify datablocks and index blocks
5618  * worse case, the indexs blocks spread over different block groups
5619  *
5620  * If datablocks are discontiguous, they are possible to spread over
5621  * different block groups too. If they are contiguous, with flexbg,
5622  * they could still across block group boundary.
5623  *
5624  * Also account for superblock, inode, quota and xattr blocks
5625  */
5626 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5627                                   int pextents)
5628 {
5629         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5630         int gdpblocks;
5631         int idxblocks;
5632         int ret = 0;
5633
5634         /*
5635          * How many index blocks need to touch to map @lblocks logical blocks
5636          * to @pextents physical extents?
5637          */
5638         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5639
5640         ret = idxblocks;
5641
5642         /*
5643          * Now let's see how many group bitmaps and group descriptors need
5644          * to account
5645          */
5646         groups = idxblocks + pextents;
5647         gdpblocks = groups;
5648         if (groups > ngroups)
5649                 groups = ngroups;
5650         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5651                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5652
5653         /* bitmaps and block group descriptor blocks */
5654         ret += groups + gdpblocks;
5655
5656         /* Blocks for super block, inode, quota and xattr blocks */
5657         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5658
5659         return ret;
5660 }
5661
5662 /*
5663  * Calculate the total number of credits to reserve to fit
5664  * the modification of a single pages into a single transaction,
5665  * which may include multiple chunks of block allocations.
5666  *
5667  * This could be called via ext4_write_begin()
5668  *
5669  * We need to consider the worse case, when
5670  * one new block per extent.
5671  */
5672 int ext4_writepage_trans_blocks(struct inode *inode)
5673 {
5674         int bpp = ext4_journal_blocks_per_page(inode);
5675         int ret;
5676
5677         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5678
5679         /* Account for data blocks for journalled mode */
5680         if (ext4_should_journal_data(inode))
5681                 ret += bpp;
5682         return ret;
5683 }
5684
5685 /*
5686  * Calculate the journal credits for a chunk of data modification.
5687  *
5688  * This is called from DIO, fallocate or whoever calling
5689  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5690  *
5691  * journal buffers for data blocks are not included here, as DIO
5692  * and fallocate do no need to journal data buffers.
5693  */
5694 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5695 {
5696         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5697 }
5698
5699 /*
5700  * The caller must have previously called ext4_reserve_inode_write().
5701  * Give this, we know that the caller already has write access to iloc->bh.
5702  */
5703 int ext4_mark_iloc_dirty(handle_t *handle,
5704                          struct inode *inode, struct ext4_iloc *iloc)
5705 {
5706         int err = 0;
5707
5708         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5709                 return -EIO;
5710
5711         if (IS_I_VERSION(inode))
5712                 inode_inc_iversion(inode);
5713
5714         /* the do_update_inode consumes one bh->b_count */
5715         get_bh(iloc->bh);
5716
5717         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5718         err = ext4_do_update_inode(handle, inode, iloc);
5719         put_bh(iloc->bh);
5720         return err;
5721 }
5722
5723 /*
5724  * On success, We end up with an outstanding reference count against
5725  * iloc->bh.  This _must_ be cleaned up later.
5726  */
5727
5728 int
5729 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5730                          struct ext4_iloc *iloc)
5731 {
5732         int err;
5733
5734         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5735                 return -EIO;
5736
5737         err = ext4_get_inode_loc(inode, iloc);
5738         if (!err) {
5739                 BUFFER_TRACE(iloc->bh, "get_write_access");
5740                 err = ext4_journal_get_write_access(handle, iloc->bh);
5741                 if (err) {
5742                         brelse(iloc->bh);
5743                         iloc->bh = NULL;
5744                 }
5745         }
5746         ext4_std_error(inode->i_sb, err);
5747         return err;
5748 }
5749
5750 static int __ext4_expand_extra_isize(struct inode *inode,
5751                                      unsigned int new_extra_isize,
5752                                      struct ext4_iloc *iloc,
5753                                      handle_t *handle, int *no_expand)
5754 {
5755         struct ext4_inode *raw_inode;
5756         struct ext4_xattr_ibody_header *header;
5757         int error;
5758
5759         raw_inode = ext4_raw_inode(iloc);
5760
5761         header = IHDR(inode, raw_inode);
5762
5763         /* No extended attributes present */
5764         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5765             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5766                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5767                        EXT4_I(inode)->i_extra_isize, 0,
5768                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5769                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5770                 return 0;
5771         }
5772
5773         /* try to expand with EAs present */
5774         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5775                                            raw_inode, handle);
5776         if (error) {
5777                 /*
5778                  * Inode size expansion failed; don't try again
5779                  */
5780                 *no_expand = 1;
5781         }
5782
5783         return error;
5784 }
5785
5786 /*
5787  * Expand an inode by new_extra_isize bytes.
5788  * Returns 0 on success or negative error number on failure.
5789  */
5790 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5791                                           unsigned int new_extra_isize,
5792                                           struct ext4_iloc iloc,
5793                                           handle_t *handle)
5794 {
5795         int no_expand;
5796         int error;
5797
5798         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5799                 return -EOVERFLOW;
5800
5801         /*
5802          * In nojournal mode, we can immediately attempt to expand
5803          * the inode.  When journaled, we first need to obtain extra
5804          * buffer credits since we may write into the EA block
5805          * with this same handle. If journal_extend fails, then it will
5806          * only result in a minor loss of functionality for that inode.
5807          * If this is felt to be critical, then e2fsck should be run to
5808          * force a large enough s_min_extra_isize.
5809          */
5810         if (ext4_handle_valid(handle) &&
5811             jbd2_journal_extend(handle,
5812                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5813                 return -ENOSPC;
5814
5815         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5816                 return -EBUSY;
5817
5818         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5819                                           handle, &no_expand);
5820         ext4_write_unlock_xattr(inode, &no_expand);
5821
5822         return error;
5823 }
5824
5825 int ext4_expand_extra_isize(struct inode *inode,
5826                             unsigned int new_extra_isize,
5827                             struct ext4_iloc *iloc)
5828 {
5829         handle_t *handle;
5830         int no_expand;
5831         int error, rc;
5832
5833         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5834                 brelse(iloc->bh);
5835                 return -EOVERFLOW;
5836         }
5837
5838         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5839                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5840         if (IS_ERR(handle)) {
5841                 error = PTR_ERR(handle);
5842                 brelse(iloc->bh);
5843                 return error;
5844         }
5845
5846         ext4_write_lock_xattr(inode, &no_expand);
5847
5848         BUFFER_TRACE(iloc.bh, "get_write_access");
5849         error = ext4_journal_get_write_access(handle, iloc->bh);
5850         if (error) {
5851                 brelse(iloc->bh);
5852                 goto out_stop;
5853         }
5854
5855         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5856                                           handle, &no_expand);
5857
5858         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5859         if (!error)
5860                 error = rc;
5861
5862         ext4_write_unlock_xattr(inode, &no_expand);
5863 out_stop:
5864         ext4_journal_stop(handle);
5865         return error;
5866 }
5867
5868 /*
5869  * What we do here is to mark the in-core inode as clean with respect to inode
5870  * dirtiness (it may still be data-dirty).
5871  * This means that the in-core inode may be reaped by prune_icache
5872  * without having to perform any I/O.  This is a very good thing,
5873  * because *any* task may call prune_icache - even ones which
5874  * have a transaction open against a different journal.
5875  *
5876  * Is this cheating?  Not really.  Sure, we haven't written the
5877  * inode out, but prune_icache isn't a user-visible syncing function.
5878  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5879  * we start and wait on commits.
5880  */
5881 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5882 {
5883         struct ext4_iloc iloc;
5884         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5885         int err;
5886
5887         might_sleep();
5888         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5889         err = ext4_reserve_inode_write(handle, inode, &iloc);
5890         if (err)
5891                 return err;
5892
5893         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5894                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5895                                                iloc, handle);
5896
5897         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5898 }
5899
5900 /*
5901  * ext4_dirty_inode() is called from __mark_inode_dirty()
5902  *
5903  * We're really interested in the case where a file is being extended.
5904  * i_size has been changed by generic_commit_write() and we thus need
5905  * to include the updated inode in the current transaction.
5906  *
5907  * Also, dquot_alloc_block() will always dirty the inode when blocks
5908  * are allocated to the file.
5909  *
5910  * If the inode is marked synchronous, we don't honour that here - doing
5911  * so would cause a commit on atime updates, which we don't bother doing.
5912  * We handle synchronous inodes at the highest possible level.
5913  *
5914  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5915  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5916  * to copy into the on-disk inode structure are the timestamp files.
5917  */
5918 void ext4_dirty_inode(struct inode *inode, int flags)
5919 {
5920         handle_t *handle;
5921
5922         if (flags == I_DIRTY_TIME)
5923                 return;
5924         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5925         if (IS_ERR(handle))
5926                 goto out;
5927
5928         ext4_mark_inode_dirty(handle, inode);
5929
5930         ext4_journal_stop(handle);
5931 out:
5932         return;
5933 }
5934
5935 #if 0
5936 /*
5937  * Bind an inode's backing buffer_head into this transaction, to prevent
5938  * it from being flushed to disk early.  Unlike
5939  * ext4_reserve_inode_write, this leaves behind no bh reference and
5940  * returns no iloc structure, so the caller needs to repeat the iloc
5941  * lookup to mark the inode dirty later.
5942  */
5943 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5944 {
5945         struct ext4_iloc iloc;
5946
5947         int err = 0;
5948         if (handle) {
5949                 err = ext4_get_inode_loc(inode, &iloc);
5950                 if (!err) {
5951                         BUFFER_TRACE(iloc.bh, "get_write_access");
5952                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5953                         if (!err)
5954                                 err = ext4_handle_dirty_metadata(handle,
5955                                                                  NULL,
5956                                                                  iloc.bh);
5957                         brelse(iloc.bh);
5958                 }
5959         }
5960         ext4_std_error(inode->i_sb, err);
5961         return err;
5962 }
5963 #endif
5964
5965 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5966 {
5967         journal_t *journal;
5968         handle_t *handle;
5969         int err;
5970         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5971
5972         /*
5973          * We have to be very careful here: changing a data block's
5974          * journaling status dynamically is dangerous.  If we write a
5975          * data block to the journal, change the status and then delete
5976          * that block, we risk forgetting to revoke the old log record
5977          * from the journal and so a subsequent replay can corrupt data.
5978          * So, first we make sure that the journal is empty and that
5979          * nobody is changing anything.
5980          */
5981
5982         journal = EXT4_JOURNAL(inode);
5983         if (!journal)
5984                 return 0;
5985         if (is_journal_aborted(journal))
5986                 return -EROFS;
5987
5988         /* Wait for all existing dio workers */
5989         ext4_inode_block_unlocked_dio(inode);
5990         inode_dio_wait(inode);
5991
5992         /*
5993          * Before flushing the journal and switching inode's aops, we have
5994          * to flush all dirty data the inode has. There can be outstanding
5995          * delayed allocations, there can be unwritten extents created by
5996          * fallocate or buffered writes in dioread_nolock mode covered by
5997          * dirty data which can be converted only after flushing the dirty
5998          * data (and journalled aops don't know how to handle these cases).
5999          */
6000         if (val) {
6001                 down_write(&EXT4_I(inode)->i_mmap_sem);
6002                 err = filemap_write_and_wait(inode->i_mapping);
6003                 if (err < 0) {
6004                         up_write(&EXT4_I(inode)->i_mmap_sem);
6005                         ext4_inode_resume_unlocked_dio(inode);
6006                         return err;
6007                 }
6008         }
6009
6010         percpu_down_write(&sbi->s_journal_flag_rwsem);
6011         jbd2_journal_lock_updates(journal);
6012
6013         /*
6014          * OK, there are no updates running now, and all cached data is
6015          * synced to disk.  We are now in a completely consistent state
6016          * which doesn't have anything in the journal, and we know that
6017          * no filesystem updates are running, so it is safe to modify
6018          * the inode's in-core data-journaling state flag now.
6019          */
6020
6021         if (val)
6022                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6023         else {
6024                 err = jbd2_journal_flush(journal);
6025                 if (err < 0) {
6026                         jbd2_journal_unlock_updates(journal);
6027                         percpu_up_write(&sbi->s_journal_flag_rwsem);
6028                         ext4_inode_resume_unlocked_dio(inode);
6029                         return err;
6030                 }
6031                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6032         }
6033         ext4_set_aops(inode);
6034
6035         jbd2_journal_unlock_updates(journal);
6036         percpu_up_write(&sbi->s_journal_flag_rwsem);
6037
6038         if (val)
6039                 up_write(&EXT4_I(inode)->i_mmap_sem);
6040         ext4_inode_resume_unlocked_dio(inode);
6041
6042         /* Finally we can mark the inode as dirty. */
6043
6044         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6045         if (IS_ERR(handle))
6046                 return PTR_ERR(handle);
6047
6048         err = ext4_mark_inode_dirty(handle, inode);
6049         ext4_handle_sync(handle);
6050         ext4_journal_stop(handle);
6051         ext4_std_error(inode->i_sb, err);
6052
6053         return err;
6054 }
6055
6056 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6057 {
6058         return !buffer_mapped(bh);
6059 }
6060
6061 int ext4_page_mkwrite(struct vm_fault *vmf)
6062 {
6063         struct vm_area_struct *vma = vmf->vma;
6064         struct page *page = vmf->page;
6065         loff_t size;
6066         unsigned long len;
6067         int ret;
6068         struct file *file = vma->vm_file;
6069         struct inode *inode = file_inode(file);
6070         struct address_space *mapping = inode->i_mapping;
6071         handle_t *handle;
6072         get_block_t *get_block;
6073         int retries = 0;
6074
6075         sb_start_pagefault(inode->i_sb);
6076         file_update_time(vma->vm_file);
6077
6078         down_read(&EXT4_I(inode)->i_mmap_sem);
6079
6080         ret = ext4_convert_inline_data(inode);
6081         if (ret)
6082                 goto out_ret;
6083
6084         /* Delalloc case is easy... */
6085         if (test_opt(inode->i_sb, DELALLOC) &&
6086             !ext4_should_journal_data(inode) &&
6087             !ext4_nonda_switch(inode->i_sb)) {
6088                 do {
6089                         ret = block_page_mkwrite(vma, vmf,
6090                                                    ext4_da_get_block_prep);
6091                 } while (ret == -ENOSPC &&
6092                        ext4_should_retry_alloc(inode->i_sb, &retries));
6093                 goto out_ret;
6094         }
6095
6096         lock_page(page);
6097         size = i_size_read(inode);
6098         /* Page got truncated from under us? */
6099         if (page->mapping != mapping || page_offset(page) > size) {
6100                 unlock_page(page);
6101                 ret = VM_FAULT_NOPAGE;
6102                 goto out;
6103         }
6104
6105         if (page->index == size >> PAGE_SHIFT)
6106                 len = size & ~PAGE_MASK;
6107         else
6108                 len = PAGE_SIZE;
6109         /*
6110          * Return if we have all the buffers mapped. This avoids the need to do
6111          * journal_start/journal_stop which can block and take a long time
6112          */
6113         if (page_has_buffers(page)) {
6114                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6115                                             0, len, NULL,
6116                                             ext4_bh_unmapped)) {
6117                         /* Wait so that we don't change page under IO */
6118                         wait_for_stable_page(page);
6119                         ret = VM_FAULT_LOCKED;
6120                         goto out;
6121                 }
6122         }
6123         unlock_page(page);
6124         /* OK, we need to fill the hole... */
6125         if (ext4_should_dioread_nolock(inode))
6126                 get_block = ext4_get_block_unwritten;
6127         else
6128                 get_block = ext4_get_block;
6129 retry_alloc:
6130         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6131                                     ext4_writepage_trans_blocks(inode));
6132         if (IS_ERR(handle)) {
6133                 ret = VM_FAULT_SIGBUS;
6134                 goto out;
6135         }
6136         ret = block_page_mkwrite(vma, vmf, get_block);
6137         if (!ret && ext4_should_journal_data(inode)) {
6138                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6139                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
6140                         unlock_page(page);
6141                         ret = VM_FAULT_SIGBUS;
6142                         ext4_journal_stop(handle);
6143                         goto out;
6144                 }
6145                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6146         }
6147         ext4_journal_stop(handle);
6148         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6149                 goto retry_alloc;
6150 out_ret:
6151         ret = block_page_mkwrite_return(ret);
6152 out:
6153         up_read(&EXT4_I(inode)->i_mmap_sem);
6154         sb_end_pagefault(inode->i_sb);
6155         return ret;
6156 }
6157
6158 int ext4_filemap_fault(struct vm_fault *vmf)
6159 {
6160         struct inode *inode = file_inode(vmf->vma->vm_file);
6161         int err;
6162
6163         down_read(&EXT4_I(inode)->i_mmap_sem);
6164         err = filemap_fault(vmf);
6165         up_read(&EXT4_I(inode)->i_mmap_sem);
6166
6167         return err;
6168 }