Merge tag 'edac_for_4.20_2' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp
[sfrench/cifs-2.6.git] / fs / dax.c
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40
41 static inline unsigned int pe_order(enum page_entry_size pe_size)
42 {
43         if (pe_size == PE_SIZE_PTE)
44                 return PAGE_SHIFT - PAGE_SHIFT;
45         if (pe_size == PE_SIZE_PMD)
46                 return PMD_SHIFT - PAGE_SHIFT;
47         if (pe_size == PE_SIZE_PUD)
48                 return PUD_SHIFT - PAGE_SHIFT;
49         return ~0;
50 }
51
52 /* We choose 4096 entries - same as per-zone page wait tables */
53 #define DAX_WAIT_TABLE_BITS 12
54 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
55
56 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
57 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
58 #define PG_PMD_NR       (PMD_SIZE >> PAGE_SHIFT)
59
60 /* The order of a PMD entry */
61 #define PMD_ORDER       (PMD_SHIFT - PAGE_SHIFT)
62
63 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
64
65 static int __init init_dax_wait_table(void)
66 {
67         int i;
68
69         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
70                 init_waitqueue_head(wait_table + i);
71         return 0;
72 }
73 fs_initcall(init_dax_wait_table);
74
75 /*
76  * DAX pagecache entries use XArray value entries so they can't be mistaken
77  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
78  * and two more to tell us if the entry is a zero page or an empty entry that
79  * is just used for locking.  In total four special bits.
80  *
81  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
82  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
83  * block allocation.
84  */
85 #define DAX_SHIFT       (4)
86 #define DAX_LOCKED      (1UL << 0)
87 #define DAX_PMD         (1UL << 1)
88 #define DAX_ZERO_PAGE   (1UL << 2)
89 #define DAX_EMPTY       (1UL << 3)
90
91 static unsigned long dax_to_pfn(void *entry)
92 {
93         return xa_to_value(entry) >> DAX_SHIFT;
94 }
95
96 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
97 {
98         return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
99 }
100
101 static void *dax_make_page_entry(struct page *page)
102 {
103         pfn_t pfn = page_to_pfn_t(page);
104         return dax_make_entry(pfn, PageHead(page) ? DAX_PMD : 0);
105 }
106
107 static bool dax_is_locked(void *entry)
108 {
109         return xa_to_value(entry) & DAX_LOCKED;
110 }
111
112 static unsigned int dax_entry_order(void *entry)
113 {
114         if (xa_to_value(entry) & DAX_PMD)
115                 return PMD_ORDER;
116         return 0;
117 }
118
119 static int dax_is_pmd_entry(void *entry)
120 {
121         return xa_to_value(entry) & DAX_PMD;
122 }
123
124 static int dax_is_pte_entry(void *entry)
125 {
126         return !(xa_to_value(entry) & DAX_PMD);
127 }
128
129 static int dax_is_zero_entry(void *entry)
130 {
131         return xa_to_value(entry) & DAX_ZERO_PAGE;
132 }
133
134 static int dax_is_empty_entry(void *entry)
135 {
136         return xa_to_value(entry) & DAX_EMPTY;
137 }
138
139 /*
140  * DAX page cache entry locking
141  */
142 struct exceptional_entry_key {
143         struct xarray *xa;
144         pgoff_t entry_start;
145 };
146
147 struct wait_exceptional_entry_queue {
148         wait_queue_entry_t wait;
149         struct exceptional_entry_key key;
150 };
151
152 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
153                 void *entry, struct exceptional_entry_key *key)
154 {
155         unsigned long hash;
156         unsigned long index = xas->xa_index;
157
158         /*
159          * If 'entry' is a PMD, align the 'index' that we use for the wait
160          * queue to the start of that PMD.  This ensures that all offsets in
161          * the range covered by the PMD map to the same bit lock.
162          */
163         if (dax_is_pmd_entry(entry))
164                 index &= ~PG_PMD_COLOUR;
165         key->xa = xas->xa;
166         key->entry_start = index;
167
168         hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
169         return wait_table + hash;
170 }
171
172 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
173                 unsigned int mode, int sync, void *keyp)
174 {
175         struct exceptional_entry_key *key = keyp;
176         struct wait_exceptional_entry_queue *ewait =
177                 container_of(wait, struct wait_exceptional_entry_queue, wait);
178
179         if (key->xa != ewait->key.xa ||
180             key->entry_start != ewait->key.entry_start)
181                 return 0;
182         return autoremove_wake_function(wait, mode, sync, NULL);
183 }
184
185 /*
186  * @entry may no longer be the entry at the index in the mapping.
187  * The important information it's conveying is whether the entry at
188  * this index used to be a PMD entry.
189  */
190 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
191 {
192         struct exceptional_entry_key key;
193         wait_queue_head_t *wq;
194
195         wq = dax_entry_waitqueue(xas, entry, &key);
196
197         /*
198          * Checking for locked entry and prepare_to_wait_exclusive() happens
199          * under the i_pages lock, ditto for entry handling in our callers.
200          * So at this point all tasks that could have seen our entry locked
201          * must be in the waitqueue and the following check will see them.
202          */
203         if (waitqueue_active(wq))
204                 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
205 }
206
207 /*
208  * Look up entry in page cache, wait for it to become unlocked if it
209  * is a DAX entry and return it.  The caller must subsequently call
210  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
211  * if it did.
212  *
213  * Must be called with the i_pages lock held.
214  */
215 static void *get_unlocked_entry(struct xa_state *xas)
216 {
217         void *entry;
218         struct wait_exceptional_entry_queue ewait;
219         wait_queue_head_t *wq;
220
221         init_wait(&ewait.wait);
222         ewait.wait.func = wake_exceptional_entry_func;
223
224         for (;;) {
225                 entry = xas_load(xas);
226                 if (!entry || xa_is_internal(entry) ||
227                                 WARN_ON_ONCE(!xa_is_value(entry)) ||
228                                 !dax_is_locked(entry))
229                         return entry;
230
231                 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
232                 prepare_to_wait_exclusive(wq, &ewait.wait,
233                                           TASK_UNINTERRUPTIBLE);
234                 xas_unlock_irq(xas);
235                 xas_reset(xas);
236                 schedule();
237                 finish_wait(wq, &ewait.wait);
238                 xas_lock_irq(xas);
239         }
240 }
241
242 static void put_unlocked_entry(struct xa_state *xas, void *entry)
243 {
244         /* If we were the only waiter woken, wake the next one */
245         if (entry)
246                 dax_wake_entry(xas, entry, false);
247 }
248
249 /*
250  * We used the xa_state to get the entry, but then we locked the entry and
251  * dropped the xa_lock, so we know the xa_state is stale and must be reset
252  * before use.
253  */
254 static void dax_unlock_entry(struct xa_state *xas, void *entry)
255 {
256         void *old;
257
258         xas_reset(xas);
259         xas_lock_irq(xas);
260         old = xas_store(xas, entry);
261         xas_unlock_irq(xas);
262         BUG_ON(!dax_is_locked(old));
263         dax_wake_entry(xas, entry, false);
264 }
265
266 /*
267  * Return: The entry stored at this location before it was locked.
268  */
269 static void *dax_lock_entry(struct xa_state *xas, void *entry)
270 {
271         unsigned long v = xa_to_value(entry);
272         return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
273 }
274
275 static unsigned long dax_entry_size(void *entry)
276 {
277         if (dax_is_zero_entry(entry))
278                 return 0;
279         else if (dax_is_empty_entry(entry))
280                 return 0;
281         else if (dax_is_pmd_entry(entry))
282                 return PMD_SIZE;
283         else
284                 return PAGE_SIZE;
285 }
286
287 static unsigned long dax_end_pfn(void *entry)
288 {
289         return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
290 }
291
292 /*
293  * Iterate through all mapped pfns represented by an entry, i.e. skip
294  * 'empty' and 'zero' entries.
295  */
296 #define for_each_mapped_pfn(entry, pfn) \
297         for (pfn = dax_to_pfn(entry); \
298                         pfn < dax_end_pfn(entry); pfn++)
299
300 /*
301  * TODO: for reflink+dax we need a way to associate a single page with
302  * multiple address_space instances at different linear_page_index()
303  * offsets.
304  */
305 static void dax_associate_entry(void *entry, struct address_space *mapping,
306                 struct vm_area_struct *vma, unsigned long address)
307 {
308         unsigned long size = dax_entry_size(entry), pfn, index;
309         int i = 0;
310
311         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
312                 return;
313
314         index = linear_page_index(vma, address & ~(size - 1));
315         for_each_mapped_pfn(entry, pfn) {
316                 struct page *page = pfn_to_page(pfn);
317
318                 WARN_ON_ONCE(page->mapping);
319                 page->mapping = mapping;
320                 page->index = index + i++;
321         }
322 }
323
324 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
325                 bool trunc)
326 {
327         unsigned long pfn;
328
329         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
330                 return;
331
332         for_each_mapped_pfn(entry, pfn) {
333                 struct page *page = pfn_to_page(pfn);
334
335                 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
336                 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
337                 page->mapping = NULL;
338                 page->index = 0;
339         }
340 }
341
342 static struct page *dax_busy_page(void *entry)
343 {
344         unsigned long pfn;
345
346         for_each_mapped_pfn(entry, pfn) {
347                 struct page *page = pfn_to_page(pfn);
348
349                 if (page_ref_count(page) > 1)
350                         return page;
351         }
352         return NULL;
353 }
354
355 bool dax_lock_mapping_entry(struct page *page)
356 {
357         XA_STATE(xas, NULL, 0);
358         void *entry;
359
360         for (;;) {
361                 struct address_space *mapping = READ_ONCE(page->mapping);
362
363                 if (!dax_mapping(mapping))
364                         return false;
365
366                 /*
367                  * In the device-dax case there's no need to lock, a
368                  * struct dev_pagemap pin is sufficient to keep the
369                  * inode alive, and we assume we have dev_pagemap pin
370                  * otherwise we would not have a valid pfn_to_page()
371                  * translation.
372                  */
373                 if (S_ISCHR(mapping->host->i_mode))
374                         return true;
375
376                 xas.xa = &mapping->i_pages;
377                 xas_lock_irq(&xas);
378                 if (mapping != page->mapping) {
379                         xas_unlock_irq(&xas);
380                         continue;
381                 }
382                 xas_set(&xas, page->index);
383                 entry = xas_load(&xas);
384                 if (dax_is_locked(entry)) {
385                         entry = get_unlocked_entry(&xas);
386                         /* Did the page move while we slept? */
387                         if (dax_to_pfn(entry) != page_to_pfn(page)) {
388                                 xas_unlock_irq(&xas);
389                                 continue;
390                         }
391                 }
392                 dax_lock_entry(&xas, entry);
393                 xas_unlock_irq(&xas);
394                 return true;
395         }
396 }
397
398 void dax_unlock_mapping_entry(struct page *page)
399 {
400         struct address_space *mapping = page->mapping;
401         XA_STATE(xas, &mapping->i_pages, page->index);
402
403         if (S_ISCHR(mapping->host->i_mode))
404                 return;
405
406         dax_unlock_entry(&xas, dax_make_page_entry(page));
407 }
408
409 /*
410  * Find page cache entry at given index. If it is a DAX entry, return it
411  * with the entry locked. If the page cache doesn't contain an entry at
412  * that index, add a locked empty entry.
413  *
414  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
415  * either return that locked entry or will return VM_FAULT_FALLBACK.
416  * This will happen if there are any PTE entries within the PMD range
417  * that we are requesting.
418  *
419  * We always favor PTE entries over PMD entries. There isn't a flow where we
420  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
421  * insertion will fail if it finds any PTE entries already in the tree, and a
422  * PTE insertion will cause an existing PMD entry to be unmapped and
423  * downgraded to PTE entries.  This happens for both PMD zero pages as
424  * well as PMD empty entries.
425  *
426  * The exception to this downgrade path is for PMD entries that have
427  * real storage backing them.  We will leave these real PMD entries in
428  * the tree, and PTE writes will simply dirty the entire PMD entry.
429  *
430  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
431  * persistent memory the benefit is doubtful. We can add that later if we can
432  * show it helps.
433  *
434  * On error, this function does not return an ERR_PTR.  Instead it returns
435  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
436  * overlap with xarray value entries.
437  */
438 static void *grab_mapping_entry(struct xa_state *xas,
439                 struct address_space *mapping, unsigned long size_flag)
440 {
441         unsigned long index = xas->xa_index;
442         bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
443         void *entry;
444
445 retry:
446         xas_lock_irq(xas);
447         entry = get_unlocked_entry(xas);
448         if (xa_is_internal(entry))
449                 goto fallback;
450
451         if (entry) {
452                 if (WARN_ON_ONCE(!xa_is_value(entry))) {
453                         xas_set_err(xas, EIO);
454                         goto out_unlock;
455                 }
456
457                 if (size_flag & DAX_PMD) {
458                         if (dax_is_pte_entry(entry)) {
459                                 put_unlocked_entry(xas, entry);
460                                 goto fallback;
461                         }
462                 } else { /* trying to grab a PTE entry */
463                         if (dax_is_pmd_entry(entry) &&
464                             (dax_is_zero_entry(entry) ||
465                              dax_is_empty_entry(entry))) {
466                                 pmd_downgrade = true;
467                         }
468                 }
469         }
470
471         if (pmd_downgrade) {
472                 /*
473                  * Make sure 'entry' remains valid while we drop
474                  * the i_pages lock.
475                  */
476                 dax_lock_entry(xas, entry);
477
478                 /*
479                  * Besides huge zero pages the only other thing that gets
480                  * downgraded are empty entries which don't need to be
481                  * unmapped.
482                  */
483                 if (dax_is_zero_entry(entry)) {
484                         xas_unlock_irq(xas);
485                         unmap_mapping_pages(mapping,
486                                         xas->xa_index & ~PG_PMD_COLOUR,
487                                         PG_PMD_NR, false);
488                         xas_reset(xas);
489                         xas_lock_irq(xas);
490                 }
491
492                 dax_disassociate_entry(entry, mapping, false);
493                 xas_store(xas, NULL);   /* undo the PMD join */
494                 dax_wake_entry(xas, entry, true);
495                 mapping->nrexceptional--;
496                 entry = NULL;
497                 xas_set(xas, index);
498         }
499
500         if (entry) {
501                 dax_lock_entry(xas, entry);
502         } else {
503                 entry = dax_make_entry(pfn_to_pfn_t(0), size_flag | DAX_EMPTY);
504                 dax_lock_entry(xas, entry);
505                 if (xas_error(xas))
506                         goto out_unlock;
507                 mapping->nrexceptional++;
508         }
509
510 out_unlock:
511         xas_unlock_irq(xas);
512         if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
513                 goto retry;
514         if (xas->xa_node == XA_ERROR(-ENOMEM))
515                 return xa_mk_internal(VM_FAULT_OOM);
516         if (xas_error(xas))
517                 return xa_mk_internal(VM_FAULT_SIGBUS);
518         return entry;
519 fallback:
520         xas_unlock_irq(xas);
521         return xa_mk_internal(VM_FAULT_FALLBACK);
522 }
523
524 /**
525  * dax_layout_busy_page - find first pinned page in @mapping
526  * @mapping: address space to scan for a page with ref count > 1
527  *
528  * DAX requires ZONE_DEVICE mapped pages. These pages are never
529  * 'onlined' to the page allocator so they are considered idle when
530  * page->count == 1. A filesystem uses this interface to determine if
531  * any page in the mapping is busy, i.e. for DMA, or other
532  * get_user_pages() usages.
533  *
534  * It is expected that the filesystem is holding locks to block the
535  * establishment of new mappings in this address_space. I.e. it expects
536  * to be able to run unmap_mapping_range() and subsequently not race
537  * mapping_mapped() becoming true.
538  */
539 struct page *dax_layout_busy_page(struct address_space *mapping)
540 {
541         XA_STATE(xas, &mapping->i_pages, 0);
542         void *entry;
543         unsigned int scanned = 0;
544         struct page *page = NULL;
545
546         /*
547          * In the 'limited' case get_user_pages() for dax is disabled.
548          */
549         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
550                 return NULL;
551
552         if (!dax_mapping(mapping) || !mapping_mapped(mapping))
553                 return NULL;
554
555         /*
556          * If we race get_user_pages_fast() here either we'll see the
557          * elevated page count in the iteration and wait, or
558          * get_user_pages_fast() will see that the page it took a reference
559          * against is no longer mapped in the page tables and bail to the
560          * get_user_pages() slow path.  The slow path is protected by
561          * pte_lock() and pmd_lock(). New references are not taken without
562          * holding those locks, and unmap_mapping_range() will not zero the
563          * pte or pmd without holding the respective lock, so we are
564          * guaranteed to either see new references or prevent new
565          * references from being established.
566          */
567         unmap_mapping_range(mapping, 0, 0, 1);
568
569         xas_lock_irq(&xas);
570         xas_for_each(&xas, entry, ULONG_MAX) {
571                 if (WARN_ON_ONCE(!xa_is_value(entry)))
572                         continue;
573                 if (unlikely(dax_is_locked(entry)))
574                         entry = get_unlocked_entry(&xas);
575                 if (entry)
576                         page = dax_busy_page(entry);
577                 put_unlocked_entry(&xas, entry);
578                 if (page)
579                         break;
580                 if (++scanned % XA_CHECK_SCHED)
581                         continue;
582
583                 xas_pause(&xas);
584                 xas_unlock_irq(&xas);
585                 cond_resched();
586                 xas_lock_irq(&xas);
587         }
588         xas_unlock_irq(&xas);
589         return page;
590 }
591 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
592
593 static int __dax_invalidate_entry(struct address_space *mapping,
594                                           pgoff_t index, bool trunc)
595 {
596         XA_STATE(xas, &mapping->i_pages, index);
597         int ret = 0;
598         void *entry;
599
600         xas_lock_irq(&xas);
601         entry = get_unlocked_entry(&xas);
602         if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
603                 goto out;
604         if (!trunc &&
605             (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
606              xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
607                 goto out;
608         dax_disassociate_entry(entry, mapping, trunc);
609         xas_store(&xas, NULL);
610         mapping->nrexceptional--;
611         ret = 1;
612 out:
613         put_unlocked_entry(&xas, entry);
614         xas_unlock_irq(&xas);
615         return ret;
616 }
617
618 /*
619  * Delete DAX entry at @index from @mapping.  Wait for it
620  * to be unlocked before deleting it.
621  */
622 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
623 {
624         int ret = __dax_invalidate_entry(mapping, index, true);
625
626         /*
627          * This gets called from truncate / punch_hole path. As such, the caller
628          * must hold locks protecting against concurrent modifications of the
629          * page cache (usually fs-private i_mmap_sem for writing). Since the
630          * caller has seen a DAX entry for this index, we better find it
631          * at that index as well...
632          */
633         WARN_ON_ONCE(!ret);
634         return ret;
635 }
636
637 /*
638  * Invalidate DAX entry if it is clean.
639  */
640 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
641                                       pgoff_t index)
642 {
643         return __dax_invalidate_entry(mapping, index, false);
644 }
645
646 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
647                 sector_t sector, size_t size, struct page *to,
648                 unsigned long vaddr)
649 {
650         void *vto, *kaddr;
651         pgoff_t pgoff;
652         long rc;
653         int id;
654
655         rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
656         if (rc)
657                 return rc;
658
659         id = dax_read_lock();
660         rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
661         if (rc < 0) {
662                 dax_read_unlock(id);
663                 return rc;
664         }
665         vto = kmap_atomic(to);
666         copy_user_page(vto, (void __force *)kaddr, vaddr, to);
667         kunmap_atomic(vto);
668         dax_read_unlock(id);
669         return 0;
670 }
671
672 /*
673  * By this point grab_mapping_entry() has ensured that we have a locked entry
674  * of the appropriate size so we don't have to worry about downgrading PMDs to
675  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
676  * already in the tree, we will skip the insertion and just dirty the PMD as
677  * appropriate.
678  */
679 static void *dax_insert_entry(struct xa_state *xas,
680                 struct address_space *mapping, struct vm_fault *vmf,
681                 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
682 {
683         void *new_entry = dax_make_entry(pfn, flags);
684
685         if (dirty)
686                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
687
688         if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
689                 unsigned long index = xas->xa_index;
690                 /* we are replacing a zero page with block mapping */
691                 if (dax_is_pmd_entry(entry))
692                         unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
693                                         PG_PMD_NR, false);
694                 else /* pte entry */
695                         unmap_mapping_pages(mapping, index, 1, false);
696         }
697
698         xas_reset(xas);
699         xas_lock_irq(xas);
700         if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
701                 dax_disassociate_entry(entry, mapping, false);
702                 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
703         }
704
705         if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
706                 /*
707                  * Only swap our new entry into the page cache if the current
708                  * entry is a zero page or an empty entry.  If a normal PTE or
709                  * PMD entry is already in the cache, we leave it alone.  This
710                  * means that if we are trying to insert a PTE and the
711                  * existing entry is a PMD, we will just leave the PMD in the
712                  * tree and dirty it if necessary.
713                  */
714                 void *old = dax_lock_entry(xas, new_entry);
715                 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
716                                         DAX_LOCKED));
717                 entry = new_entry;
718         } else {
719                 xas_load(xas);  /* Walk the xa_state */
720         }
721
722         if (dirty)
723                 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
724
725         xas_unlock_irq(xas);
726         return entry;
727 }
728
729 static inline
730 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
731 {
732         unsigned long address;
733
734         address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
735         VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
736         return address;
737 }
738
739 /* Walk all mappings of a given index of a file and writeprotect them */
740 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
741                 unsigned long pfn)
742 {
743         struct vm_area_struct *vma;
744         pte_t pte, *ptep = NULL;
745         pmd_t *pmdp = NULL;
746         spinlock_t *ptl;
747
748         i_mmap_lock_read(mapping);
749         vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
750                 unsigned long address, start, end;
751
752                 cond_resched();
753
754                 if (!(vma->vm_flags & VM_SHARED))
755                         continue;
756
757                 address = pgoff_address(index, vma);
758
759                 /*
760                  * Note because we provide start/end to follow_pte_pmd it will
761                  * call mmu_notifier_invalidate_range_start() on our behalf
762                  * before taking any lock.
763                  */
764                 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
765                         continue;
766
767                 /*
768                  * No need to call mmu_notifier_invalidate_range() as we are
769                  * downgrading page table protection not changing it to point
770                  * to a new page.
771                  *
772                  * See Documentation/vm/mmu_notifier.rst
773                  */
774                 if (pmdp) {
775 #ifdef CONFIG_FS_DAX_PMD
776                         pmd_t pmd;
777
778                         if (pfn != pmd_pfn(*pmdp))
779                                 goto unlock_pmd;
780                         if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
781                                 goto unlock_pmd;
782
783                         flush_cache_page(vma, address, pfn);
784                         pmd = pmdp_huge_clear_flush(vma, address, pmdp);
785                         pmd = pmd_wrprotect(pmd);
786                         pmd = pmd_mkclean(pmd);
787                         set_pmd_at(vma->vm_mm, address, pmdp, pmd);
788 unlock_pmd:
789 #endif
790                         spin_unlock(ptl);
791                 } else {
792                         if (pfn != pte_pfn(*ptep))
793                                 goto unlock_pte;
794                         if (!pte_dirty(*ptep) && !pte_write(*ptep))
795                                 goto unlock_pte;
796
797                         flush_cache_page(vma, address, pfn);
798                         pte = ptep_clear_flush(vma, address, ptep);
799                         pte = pte_wrprotect(pte);
800                         pte = pte_mkclean(pte);
801                         set_pte_at(vma->vm_mm, address, ptep, pte);
802 unlock_pte:
803                         pte_unmap_unlock(ptep, ptl);
804                 }
805
806                 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
807         }
808         i_mmap_unlock_read(mapping);
809 }
810
811 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
812                 struct address_space *mapping, void *entry)
813 {
814         unsigned long pfn;
815         long ret = 0;
816         size_t size;
817
818         /*
819          * A page got tagged dirty in DAX mapping? Something is seriously
820          * wrong.
821          */
822         if (WARN_ON(!xa_is_value(entry)))
823                 return -EIO;
824
825         if (unlikely(dax_is_locked(entry))) {
826                 void *old_entry = entry;
827
828                 entry = get_unlocked_entry(xas);
829
830                 /* Entry got punched out / reallocated? */
831                 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
832                         goto put_unlocked;
833                 /*
834                  * Entry got reallocated elsewhere? No need to writeback.
835                  * We have to compare pfns as we must not bail out due to
836                  * difference in lockbit or entry type.
837                  */
838                 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
839                         goto put_unlocked;
840                 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
841                                         dax_is_zero_entry(entry))) {
842                         ret = -EIO;
843                         goto put_unlocked;
844                 }
845
846                 /* Another fsync thread may have already done this entry */
847                 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
848                         goto put_unlocked;
849         }
850
851         /* Lock the entry to serialize with page faults */
852         dax_lock_entry(xas, entry);
853
854         /*
855          * We can clear the tag now but we have to be careful so that concurrent
856          * dax_writeback_one() calls for the same index cannot finish before we
857          * actually flush the caches. This is achieved as the calls will look
858          * at the entry only under the i_pages lock and once they do that
859          * they will see the entry locked and wait for it to unlock.
860          */
861         xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
862         xas_unlock_irq(xas);
863
864         /*
865          * Even if dax_writeback_mapping_range() was given a wbc->range_start
866          * in the middle of a PMD, the 'index' we are given will be aligned to
867          * the start index of the PMD, as will the pfn we pull from 'entry'.
868          * This allows us to flush for PMD_SIZE and not have to worry about
869          * partial PMD writebacks.
870          */
871         pfn = dax_to_pfn(entry);
872         size = PAGE_SIZE << dax_entry_order(entry);
873
874         dax_entry_mkclean(mapping, xas->xa_index, pfn);
875         dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
876         /*
877          * After we have flushed the cache, we can clear the dirty tag. There
878          * cannot be new dirty data in the pfn after the flush has completed as
879          * the pfn mappings are writeprotected and fault waits for mapping
880          * entry lock.
881          */
882         xas_reset(xas);
883         xas_lock_irq(xas);
884         xas_store(xas, entry);
885         xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
886         dax_wake_entry(xas, entry, false);
887
888         trace_dax_writeback_one(mapping->host, xas->xa_index,
889                         size >> PAGE_SHIFT);
890         return ret;
891
892  put_unlocked:
893         put_unlocked_entry(xas, entry);
894         return ret;
895 }
896
897 /*
898  * Flush the mapping to the persistent domain within the byte range of [start,
899  * end]. This is required by data integrity operations to ensure file data is
900  * on persistent storage prior to completion of the operation.
901  */
902 int dax_writeback_mapping_range(struct address_space *mapping,
903                 struct block_device *bdev, struct writeback_control *wbc)
904 {
905         XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
906         struct inode *inode = mapping->host;
907         pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
908         struct dax_device *dax_dev;
909         void *entry;
910         int ret = 0;
911         unsigned int scanned = 0;
912
913         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
914                 return -EIO;
915
916         if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
917                 return 0;
918
919         dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
920         if (!dax_dev)
921                 return -EIO;
922
923         trace_dax_writeback_range(inode, xas.xa_index, end_index);
924
925         tag_pages_for_writeback(mapping, xas.xa_index, end_index);
926
927         xas_lock_irq(&xas);
928         xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
929                 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
930                 if (ret < 0) {
931                         mapping_set_error(mapping, ret);
932                         break;
933                 }
934                 if (++scanned % XA_CHECK_SCHED)
935                         continue;
936
937                 xas_pause(&xas);
938                 xas_unlock_irq(&xas);
939                 cond_resched();
940                 xas_lock_irq(&xas);
941         }
942         xas_unlock_irq(&xas);
943         put_dax(dax_dev);
944         trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
945         return ret;
946 }
947 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
948
949 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
950 {
951         return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
952 }
953
954 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
955                          pfn_t *pfnp)
956 {
957         const sector_t sector = dax_iomap_sector(iomap, pos);
958         pgoff_t pgoff;
959         int id, rc;
960         long length;
961
962         rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
963         if (rc)
964                 return rc;
965         id = dax_read_lock();
966         length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
967                                    NULL, pfnp);
968         if (length < 0) {
969                 rc = length;
970                 goto out;
971         }
972         rc = -EINVAL;
973         if (PFN_PHYS(length) < size)
974                 goto out;
975         if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
976                 goto out;
977         /* For larger pages we need devmap */
978         if (length > 1 && !pfn_t_devmap(*pfnp))
979                 goto out;
980         rc = 0;
981 out:
982         dax_read_unlock(id);
983         return rc;
984 }
985
986 /*
987  * The user has performed a load from a hole in the file.  Allocating a new
988  * page in the file would cause excessive storage usage for workloads with
989  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
990  * If this page is ever written to we will re-fault and change the mapping to
991  * point to real DAX storage instead.
992  */
993 static vm_fault_t dax_load_hole(struct xa_state *xas,
994                 struct address_space *mapping, void **entry,
995                 struct vm_fault *vmf)
996 {
997         struct inode *inode = mapping->host;
998         unsigned long vaddr = vmf->address;
999         pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1000         vm_fault_t ret;
1001
1002         *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1003                         DAX_ZERO_PAGE, false);
1004
1005         ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1006         trace_dax_load_hole(inode, vmf, ret);
1007         return ret;
1008 }
1009
1010 static bool dax_range_is_aligned(struct block_device *bdev,
1011                                  unsigned int offset, unsigned int length)
1012 {
1013         unsigned short sector_size = bdev_logical_block_size(bdev);
1014
1015         if (!IS_ALIGNED(offset, sector_size))
1016                 return false;
1017         if (!IS_ALIGNED(length, sector_size))
1018                 return false;
1019
1020         return true;
1021 }
1022
1023 int __dax_zero_page_range(struct block_device *bdev,
1024                 struct dax_device *dax_dev, sector_t sector,
1025                 unsigned int offset, unsigned int size)
1026 {
1027         if (dax_range_is_aligned(bdev, offset, size)) {
1028                 sector_t start_sector = sector + (offset >> 9);
1029
1030                 return blkdev_issue_zeroout(bdev, start_sector,
1031                                 size >> 9, GFP_NOFS, 0);
1032         } else {
1033                 pgoff_t pgoff;
1034                 long rc, id;
1035                 void *kaddr;
1036
1037                 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1038                 if (rc)
1039                         return rc;
1040
1041                 id = dax_read_lock();
1042                 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1043                 if (rc < 0) {
1044                         dax_read_unlock(id);
1045                         return rc;
1046                 }
1047                 memset(kaddr + offset, 0, size);
1048                 dax_flush(dax_dev, kaddr + offset, size);
1049                 dax_read_unlock(id);
1050         }
1051         return 0;
1052 }
1053 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1054
1055 static loff_t
1056 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1057                 struct iomap *iomap)
1058 {
1059         struct block_device *bdev = iomap->bdev;
1060         struct dax_device *dax_dev = iomap->dax_dev;
1061         struct iov_iter *iter = data;
1062         loff_t end = pos + length, done = 0;
1063         ssize_t ret = 0;
1064         size_t xfer;
1065         int id;
1066
1067         if (iov_iter_rw(iter) == READ) {
1068                 end = min(end, i_size_read(inode));
1069                 if (pos >= end)
1070                         return 0;
1071
1072                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1073                         return iov_iter_zero(min(length, end - pos), iter);
1074         }
1075
1076         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1077                 return -EIO;
1078
1079         /*
1080          * Write can allocate block for an area which has a hole page mapped
1081          * into page tables. We have to tear down these mappings so that data
1082          * written by write(2) is visible in mmap.
1083          */
1084         if (iomap->flags & IOMAP_F_NEW) {
1085                 invalidate_inode_pages2_range(inode->i_mapping,
1086                                               pos >> PAGE_SHIFT,
1087                                               (end - 1) >> PAGE_SHIFT);
1088         }
1089
1090         id = dax_read_lock();
1091         while (pos < end) {
1092                 unsigned offset = pos & (PAGE_SIZE - 1);
1093                 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1094                 const sector_t sector = dax_iomap_sector(iomap, pos);
1095                 ssize_t map_len;
1096                 pgoff_t pgoff;
1097                 void *kaddr;
1098
1099                 if (fatal_signal_pending(current)) {
1100                         ret = -EINTR;
1101                         break;
1102                 }
1103
1104                 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1105                 if (ret)
1106                         break;
1107
1108                 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1109                                 &kaddr, NULL);
1110                 if (map_len < 0) {
1111                         ret = map_len;
1112                         break;
1113                 }
1114
1115                 map_len = PFN_PHYS(map_len);
1116                 kaddr += offset;
1117                 map_len -= offset;
1118                 if (map_len > end - pos)
1119                         map_len = end - pos;
1120
1121                 /*
1122                  * The userspace address for the memory copy has already been
1123                  * validated via access_ok() in either vfs_read() or
1124                  * vfs_write(), depending on which operation we are doing.
1125                  */
1126                 if (iov_iter_rw(iter) == WRITE)
1127                         xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1128                                         map_len, iter);
1129                 else
1130                         xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1131                                         map_len, iter);
1132
1133                 pos += xfer;
1134                 length -= xfer;
1135                 done += xfer;
1136
1137                 if (xfer == 0)
1138                         ret = -EFAULT;
1139                 if (xfer < map_len)
1140                         break;
1141         }
1142         dax_read_unlock(id);
1143
1144         return done ? done : ret;
1145 }
1146
1147 /**
1148  * dax_iomap_rw - Perform I/O to a DAX file
1149  * @iocb:       The control block for this I/O
1150  * @iter:       The addresses to do I/O from or to
1151  * @ops:        iomap ops passed from the file system
1152  *
1153  * This function performs read and write operations to directly mapped
1154  * persistent memory.  The callers needs to take care of read/write exclusion
1155  * and evicting any page cache pages in the region under I/O.
1156  */
1157 ssize_t
1158 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1159                 const struct iomap_ops *ops)
1160 {
1161         struct address_space *mapping = iocb->ki_filp->f_mapping;
1162         struct inode *inode = mapping->host;
1163         loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1164         unsigned flags = 0;
1165
1166         if (iov_iter_rw(iter) == WRITE) {
1167                 lockdep_assert_held_exclusive(&inode->i_rwsem);
1168                 flags |= IOMAP_WRITE;
1169         } else {
1170                 lockdep_assert_held(&inode->i_rwsem);
1171         }
1172
1173         while (iov_iter_count(iter)) {
1174                 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1175                                 iter, dax_iomap_actor);
1176                 if (ret <= 0)
1177                         break;
1178                 pos += ret;
1179                 done += ret;
1180         }
1181
1182         iocb->ki_pos += done;
1183         return done ? done : ret;
1184 }
1185 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1186
1187 static vm_fault_t dax_fault_return(int error)
1188 {
1189         if (error == 0)
1190                 return VM_FAULT_NOPAGE;
1191         if (error == -ENOMEM)
1192                 return VM_FAULT_OOM;
1193         return VM_FAULT_SIGBUS;
1194 }
1195
1196 /*
1197  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1198  * flushed on write-faults (non-cow), but not read-faults.
1199  */
1200 static bool dax_fault_is_synchronous(unsigned long flags,
1201                 struct vm_area_struct *vma, struct iomap *iomap)
1202 {
1203         return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1204                 && (iomap->flags & IOMAP_F_DIRTY);
1205 }
1206
1207 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1208                                int *iomap_errp, const struct iomap_ops *ops)
1209 {
1210         struct vm_area_struct *vma = vmf->vma;
1211         struct address_space *mapping = vma->vm_file->f_mapping;
1212         XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1213         struct inode *inode = mapping->host;
1214         unsigned long vaddr = vmf->address;
1215         loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1216         struct iomap iomap = { 0 };
1217         unsigned flags = IOMAP_FAULT;
1218         int error, major = 0;
1219         bool write = vmf->flags & FAULT_FLAG_WRITE;
1220         bool sync;
1221         vm_fault_t ret = 0;
1222         void *entry;
1223         pfn_t pfn;
1224
1225         trace_dax_pte_fault(inode, vmf, ret);
1226         /*
1227          * Check whether offset isn't beyond end of file now. Caller is supposed
1228          * to hold locks serializing us with truncate / punch hole so this is
1229          * a reliable test.
1230          */
1231         if (pos >= i_size_read(inode)) {
1232                 ret = VM_FAULT_SIGBUS;
1233                 goto out;
1234         }
1235
1236         if (write && !vmf->cow_page)
1237                 flags |= IOMAP_WRITE;
1238
1239         entry = grab_mapping_entry(&xas, mapping, 0);
1240         if (xa_is_internal(entry)) {
1241                 ret = xa_to_internal(entry);
1242                 goto out;
1243         }
1244
1245         /*
1246          * It is possible, particularly with mixed reads & writes to private
1247          * mappings, that we have raced with a PMD fault that overlaps with
1248          * the PTE we need to set up.  If so just return and the fault will be
1249          * retried.
1250          */
1251         if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1252                 ret = VM_FAULT_NOPAGE;
1253                 goto unlock_entry;
1254         }
1255
1256         /*
1257          * Note that we don't bother to use iomap_apply here: DAX required
1258          * the file system block size to be equal the page size, which means
1259          * that we never have to deal with more than a single extent here.
1260          */
1261         error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1262         if (iomap_errp)
1263                 *iomap_errp = error;
1264         if (error) {
1265                 ret = dax_fault_return(error);
1266                 goto unlock_entry;
1267         }
1268         if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1269                 error = -EIO;   /* fs corruption? */
1270                 goto error_finish_iomap;
1271         }
1272
1273         if (vmf->cow_page) {
1274                 sector_t sector = dax_iomap_sector(&iomap, pos);
1275
1276                 switch (iomap.type) {
1277                 case IOMAP_HOLE:
1278                 case IOMAP_UNWRITTEN:
1279                         clear_user_highpage(vmf->cow_page, vaddr);
1280                         break;
1281                 case IOMAP_MAPPED:
1282                         error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1283                                         sector, PAGE_SIZE, vmf->cow_page, vaddr);
1284                         break;
1285                 default:
1286                         WARN_ON_ONCE(1);
1287                         error = -EIO;
1288                         break;
1289                 }
1290
1291                 if (error)
1292                         goto error_finish_iomap;
1293
1294                 __SetPageUptodate(vmf->cow_page);
1295                 ret = finish_fault(vmf);
1296                 if (!ret)
1297                         ret = VM_FAULT_DONE_COW;
1298                 goto finish_iomap;
1299         }
1300
1301         sync = dax_fault_is_synchronous(flags, vma, &iomap);
1302
1303         switch (iomap.type) {
1304         case IOMAP_MAPPED:
1305                 if (iomap.flags & IOMAP_F_NEW) {
1306                         count_vm_event(PGMAJFAULT);
1307                         count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1308                         major = VM_FAULT_MAJOR;
1309                 }
1310                 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1311                 if (error < 0)
1312                         goto error_finish_iomap;
1313
1314                 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1315                                                  0, write && !sync);
1316
1317                 /*
1318                  * If we are doing synchronous page fault and inode needs fsync,
1319                  * we can insert PTE into page tables only after that happens.
1320                  * Skip insertion for now and return the pfn so that caller can
1321                  * insert it after fsync is done.
1322                  */
1323                 if (sync) {
1324                         if (WARN_ON_ONCE(!pfnp)) {
1325                                 error = -EIO;
1326                                 goto error_finish_iomap;
1327                         }
1328                         *pfnp = pfn;
1329                         ret = VM_FAULT_NEEDDSYNC | major;
1330                         goto finish_iomap;
1331                 }
1332                 trace_dax_insert_mapping(inode, vmf, entry);
1333                 if (write)
1334                         ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1335                 else
1336                         ret = vmf_insert_mixed(vma, vaddr, pfn);
1337
1338                 goto finish_iomap;
1339         case IOMAP_UNWRITTEN:
1340         case IOMAP_HOLE:
1341                 if (!write) {
1342                         ret = dax_load_hole(&xas, mapping, &entry, vmf);
1343                         goto finish_iomap;
1344                 }
1345                 /*FALLTHRU*/
1346         default:
1347                 WARN_ON_ONCE(1);
1348                 error = -EIO;
1349                 break;
1350         }
1351
1352  error_finish_iomap:
1353         ret = dax_fault_return(error);
1354  finish_iomap:
1355         if (ops->iomap_end) {
1356                 int copied = PAGE_SIZE;
1357
1358                 if (ret & VM_FAULT_ERROR)
1359                         copied = 0;
1360                 /*
1361                  * The fault is done by now and there's no way back (other
1362                  * thread may be already happily using PTE we have installed).
1363                  * Just ignore error from ->iomap_end since we cannot do much
1364                  * with it.
1365                  */
1366                 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1367         }
1368  unlock_entry:
1369         dax_unlock_entry(&xas, entry);
1370  out:
1371         trace_dax_pte_fault_done(inode, vmf, ret);
1372         return ret | major;
1373 }
1374
1375 #ifdef CONFIG_FS_DAX_PMD
1376 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1377                 struct iomap *iomap, void **entry)
1378 {
1379         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1380         unsigned long pmd_addr = vmf->address & PMD_MASK;
1381         struct inode *inode = mapping->host;
1382         struct page *zero_page;
1383         spinlock_t *ptl;
1384         pmd_t pmd_entry;
1385         pfn_t pfn;
1386
1387         zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1388
1389         if (unlikely(!zero_page))
1390                 goto fallback;
1391
1392         pfn = page_to_pfn_t(zero_page);
1393         *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1394                         DAX_PMD | DAX_ZERO_PAGE, false);
1395
1396         ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1397         if (!pmd_none(*(vmf->pmd))) {
1398                 spin_unlock(ptl);
1399                 goto fallback;
1400         }
1401
1402         pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1403         pmd_entry = pmd_mkhuge(pmd_entry);
1404         set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1405         spin_unlock(ptl);
1406         trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1407         return VM_FAULT_NOPAGE;
1408
1409 fallback:
1410         trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1411         return VM_FAULT_FALLBACK;
1412 }
1413
1414 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1415                                const struct iomap_ops *ops)
1416 {
1417         struct vm_area_struct *vma = vmf->vma;
1418         struct address_space *mapping = vma->vm_file->f_mapping;
1419         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1420         unsigned long pmd_addr = vmf->address & PMD_MASK;
1421         bool write = vmf->flags & FAULT_FLAG_WRITE;
1422         bool sync;
1423         unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1424         struct inode *inode = mapping->host;
1425         vm_fault_t result = VM_FAULT_FALLBACK;
1426         struct iomap iomap = { 0 };
1427         pgoff_t max_pgoff;
1428         void *entry;
1429         loff_t pos;
1430         int error;
1431         pfn_t pfn;
1432
1433         /*
1434          * Check whether offset isn't beyond end of file now. Caller is
1435          * supposed to hold locks serializing us with truncate / punch hole so
1436          * this is a reliable test.
1437          */
1438         max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1439
1440         trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1441
1442         /*
1443          * Make sure that the faulting address's PMD offset (color) matches
1444          * the PMD offset from the start of the file.  This is necessary so
1445          * that a PMD range in the page table overlaps exactly with a PMD
1446          * range in the page cache.
1447          */
1448         if ((vmf->pgoff & PG_PMD_COLOUR) !=
1449             ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1450                 goto fallback;
1451
1452         /* Fall back to PTEs if we're going to COW */
1453         if (write && !(vma->vm_flags & VM_SHARED))
1454                 goto fallback;
1455
1456         /* If the PMD would extend outside the VMA */
1457         if (pmd_addr < vma->vm_start)
1458                 goto fallback;
1459         if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1460                 goto fallback;
1461
1462         if (xas.xa_index >= max_pgoff) {
1463                 result = VM_FAULT_SIGBUS;
1464                 goto out;
1465         }
1466
1467         /* If the PMD would extend beyond the file size */
1468         if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1469                 goto fallback;
1470
1471         /*
1472          * grab_mapping_entry() will make sure we get an empty PMD entry,
1473          * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1474          * entry is already in the array, for instance), it will return
1475          * VM_FAULT_FALLBACK.
1476          */
1477         entry = grab_mapping_entry(&xas, mapping, DAX_PMD);
1478         if (xa_is_internal(entry)) {
1479                 result = xa_to_internal(entry);
1480                 goto fallback;
1481         }
1482
1483         /*
1484          * It is possible, particularly with mixed reads & writes to private
1485          * mappings, that we have raced with a PTE fault that overlaps with
1486          * the PMD we need to set up.  If so just return and the fault will be
1487          * retried.
1488          */
1489         if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1490                         !pmd_devmap(*vmf->pmd)) {
1491                 result = 0;
1492                 goto unlock_entry;
1493         }
1494
1495         /*
1496          * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1497          * setting up a mapping, so really we're using iomap_begin() as a way
1498          * to look up our filesystem block.
1499          */
1500         pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1501         error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1502         if (error)
1503                 goto unlock_entry;
1504
1505         if (iomap.offset + iomap.length < pos + PMD_SIZE)
1506                 goto finish_iomap;
1507
1508         sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1509
1510         switch (iomap.type) {
1511         case IOMAP_MAPPED:
1512                 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1513                 if (error < 0)
1514                         goto finish_iomap;
1515
1516                 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1517                                                 DAX_PMD, write && !sync);
1518
1519                 /*
1520                  * If we are doing synchronous page fault and inode needs fsync,
1521                  * we can insert PMD into page tables only after that happens.
1522                  * Skip insertion for now and return the pfn so that caller can
1523                  * insert it after fsync is done.
1524                  */
1525                 if (sync) {
1526                         if (WARN_ON_ONCE(!pfnp))
1527                                 goto finish_iomap;
1528                         *pfnp = pfn;
1529                         result = VM_FAULT_NEEDDSYNC;
1530                         goto finish_iomap;
1531                 }
1532
1533                 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1534                 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1535                                             write);
1536                 break;
1537         case IOMAP_UNWRITTEN:
1538         case IOMAP_HOLE:
1539                 if (WARN_ON_ONCE(write))
1540                         break;
1541                 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1542                 break;
1543         default:
1544                 WARN_ON_ONCE(1);
1545                 break;
1546         }
1547
1548  finish_iomap:
1549         if (ops->iomap_end) {
1550                 int copied = PMD_SIZE;
1551
1552                 if (result == VM_FAULT_FALLBACK)
1553                         copied = 0;
1554                 /*
1555                  * The fault is done by now and there's no way back (other
1556                  * thread may be already happily using PMD we have installed).
1557                  * Just ignore error from ->iomap_end since we cannot do much
1558                  * with it.
1559                  */
1560                 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1561                                 &iomap);
1562         }
1563  unlock_entry:
1564         dax_unlock_entry(&xas, entry);
1565  fallback:
1566         if (result == VM_FAULT_FALLBACK) {
1567                 split_huge_pmd(vma, vmf->pmd, vmf->address);
1568                 count_vm_event(THP_FAULT_FALLBACK);
1569         }
1570 out:
1571         trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1572         return result;
1573 }
1574 #else
1575 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1576                                const struct iomap_ops *ops)
1577 {
1578         return VM_FAULT_FALLBACK;
1579 }
1580 #endif /* CONFIG_FS_DAX_PMD */
1581
1582 /**
1583  * dax_iomap_fault - handle a page fault on a DAX file
1584  * @vmf: The description of the fault
1585  * @pe_size: Size of the page to fault in
1586  * @pfnp: PFN to insert for synchronous faults if fsync is required
1587  * @iomap_errp: Storage for detailed error code in case of error
1588  * @ops: Iomap ops passed from the file system
1589  *
1590  * When a page fault occurs, filesystems may call this helper in
1591  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1592  * has done all the necessary locking for page fault to proceed
1593  * successfully.
1594  */
1595 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1596                     pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1597 {
1598         switch (pe_size) {
1599         case PE_SIZE_PTE:
1600                 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1601         case PE_SIZE_PMD:
1602                 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1603         default:
1604                 return VM_FAULT_FALLBACK;
1605         }
1606 }
1607 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1608
1609 /*
1610  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1611  * @vmf: The description of the fault
1612  * @pfn: PFN to insert
1613  * @order: Order of entry to insert.
1614  *
1615  * This function inserts a writeable PTE or PMD entry into the page tables
1616  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1617  */
1618 static vm_fault_t
1619 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1620 {
1621         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1622         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1623         void *entry;
1624         vm_fault_t ret;
1625
1626         xas_lock_irq(&xas);
1627         entry = get_unlocked_entry(&xas);
1628         /* Did we race with someone splitting entry or so? */
1629         if (!entry ||
1630             (order == 0 && !dax_is_pte_entry(entry)) ||
1631             (order == PMD_ORDER && (xa_is_internal(entry) ||
1632                                     !dax_is_pmd_entry(entry)))) {
1633                 put_unlocked_entry(&xas, entry);
1634                 xas_unlock_irq(&xas);
1635                 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1636                                                       VM_FAULT_NOPAGE);
1637                 return VM_FAULT_NOPAGE;
1638         }
1639         xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1640         dax_lock_entry(&xas, entry);
1641         xas_unlock_irq(&xas);
1642         if (order == 0)
1643                 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1644 #ifdef CONFIG_FS_DAX_PMD
1645         else if (order == PMD_ORDER)
1646                 ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1647                         pfn, true);
1648 #endif
1649         else
1650                 ret = VM_FAULT_FALLBACK;
1651         dax_unlock_entry(&xas, entry);
1652         trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1653         return ret;
1654 }
1655
1656 /**
1657  * dax_finish_sync_fault - finish synchronous page fault
1658  * @vmf: The description of the fault
1659  * @pe_size: Size of entry to be inserted
1660  * @pfn: PFN to insert
1661  *
1662  * This function ensures that the file range touched by the page fault is
1663  * stored persistently on the media and handles inserting of appropriate page
1664  * table entry.
1665  */
1666 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1667                 enum page_entry_size pe_size, pfn_t pfn)
1668 {
1669         int err;
1670         loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1671         unsigned int order = pe_order(pe_size);
1672         size_t len = PAGE_SIZE << order;
1673
1674         err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1675         if (err)
1676                 return VM_FAULT_SIGBUS;
1677         return dax_insert_pfn_mkwrite(vmf, pfn, order);
1678 }
1679 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);