Merge branch 'pm-cpufreq'
[sfrench/cifs-2.6.git] / fs / dax.c
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/sched/signal.h>
31 #include <linux/uio.h>
32 #include <linux/vmstat.h>
33 #include <linux/pfn_t.h>
34 #include <linux/sizes.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/iomap.h>
37 #include "internal.h"
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/fs_dax.h>
41
42 /* We choose 4096 entries - same as per-zone page wait tables */
43 #define DAX_WAIT_TABLE_BITS 12
44 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
45
46 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
47
48 static int __init init_dax_wait_table(void)
49 {
50         int i;
51
52         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
53                 init_waitqueue_head(wait_table + i);
54         return 0;
55 }
56 fs_initcall(init_dax_wait_table);
57
58 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
59 {
60         struct request_queue *q = bdev->bd_queue;
61         long rc = -EIO;
62
63         dax->addr = ERR_PTR(-EIO);
64         if (blk_queue_enter(q, true) != 0)
65                 return rc;
66
67         rc = bdev_direct_access(bdev, dax);
68         if (rc < 0) {
69                 dax->addr = ERR_PTR(rc);
70                 blk_queue_exit(q);
71                 return rc;
72         }
73         return rc;
74 }
75
76 static void dax_unmap_atomic(struct block_device *bdev,
77                 const struct blk_dax_ctl *dax)
78 {
79         if (IS_ERR(dax->addr))
80                 return;
81         blk_queue_exit(bdev->bd_queue);
82 }
83
84 static int dax_is_pmd_entry(void *entry)
85 {
86         return (unsigned long)entry & RADIX_DAX_PMD;
87 }
88
89 static int dax_is_pte_entry(void *entry)
90 {
91         return !((unsigned long)entry & RADIX_DAX_PMD);
92 }
93
94 static int dax_is_zero_entry(void *entry)
95 {
96         return (unsigned long)entry & RADIX_DAX_HZP;
97 }
98
99 static int dax_is_empty_entry(void *entry)
100 {
101         return (unsigned long)entry & RADIX_DAX_EMPTY;
102 }
103
104 struct page *read_dax_sector(struct block_device *bdev, sector_t n)
105 {
106         struct page *page = alloc_pages(GFP_KERNEL, 0);
107         struct blk_dax_ctl dax = {
108                 .size = PAGE_SIZE,
109                 .sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
110         };
111         long rc;
112
113         if (!page)
114                 return ERR_PTR(-ENOMEM);
115
116         rc = dax_map_atomic(bdev, &dax);
117         if (rc < 0)
118                 return ERR_PTR(rc);
119         memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
120         dax_unmap_atomic(bdev, &dax);
121         return page;
122 }
123
124 /*
125  * DAX radix tree locking
126  */
127 struct exceptional_entry_key {
128         struct address_space *mapping;
129         pgoff_t entry_start;
130 };
131
132 struct wait_exceptional_entry_queue {
133         wait_queue_t wait;
134         struct exceptional_entry_key key;
135 };
136
137 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
138                 pgoff_t index, void *entry, struct exceptional_entry_key *key)
139 {
140         unsigned long hash;
141
142         /*
143          * If 'entry' is a PMD, align the 'index' that we use for the wait
144          * queue to the start of that PMD.  This ensures that all offsets in
145          * the range covered by the PMD map to the same bit lock.
146          */
147         if (dax_is_pmd_entry(entry))
148                 index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1);
149
150         key->mapping = mapping;
151         key->entry_start = index;
152
153         hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
154         return wait_table + hash;
155 }
156
157 static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
158                                        int sync, void *keyp)
159 {
160         struct exceptional_entry_key *key = keyp;
161         struct wait_exceptional_entry_queue *ewait =
162                 container_of(wait, struct wait_exceptional_entry_queue, wait);
163
164         if (key->mapping != ewait->key.mapping ||
165             key->entry_start != ewait->key.entry_start)
166                 return 0;
167         return autoremove_wake_function(wait, mode, sync, NULL);
168 }
169
170 /*
171  * Check whether the given slot is locked. The function must be called with
172  * mapping->tree_lock held
173  */
174 static inline int slot_locked(struct address_space *mapping, void **slot)
175 {
176         unsigned long entry = (unsigned long)
177                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
178         return entry & RADIX_DAX_ENTRY_LOCK;
179 }
180
181 /*
182  * Mark the given slot is locked. The function must be called with
183  * mapping->tree_lock held
184  */
185 static inline void *lock_slot(struct address_space *mapping, void **slot)
186 {
187         unsigned long entry = (unsigned long)
188                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
189
190         entry |= RADIX_DAX_ENTRY_LOCK;
191         radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
192         return (void *)entry;
193 }
194
195 /*
196  * Mark the given slot is unlocked. The function must be called with
197  * mapping->tree_lock held
198  */
199 static inline void *unlock_slot(struct address_space *mapping, void **slot)
200 {
201         unsigned long entry = (unsigned long)
202                 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
203
204         entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
205         radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry);
206         return (void *)entry;
207 }
208
209 /*
210  * Lookup entry in radix tree, wait for it to become unlocked if it is
211  * exceptional entry and return it. The caller must call
212  * put_unlocked_mapping_entry() when he decided not to lock the entry or
213  * put_locked_mapping_entry() when he locked the entry and now wants to
214  * unlock it.
215  *
216  * The function must be called with mapping->tree_lock held.
217  */
218 static void *get_unlocked_mapping_entry(struct address_space *mapping,
219                                         pgoff_t index, void ***slotp)
220 {
221         void *entry, **slot;
222         struct wait_exceptional_entry_queue ewait;
223         wait_queue_head_t *wq;
224
225         init_wait(&ewait.wait);
226         ewait.wait.func = wake_exceptional_entry_func;
227
228         for (;;) {
229                 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL,
230                                           &slot);
231                 if (!entry || !radix_tree_exceptional_entry(entry) ||
232                     !slot_locked(mapping, slot)) {
233                         if (slotp)
234                                 *slotp = slot;
235                         return entry;
236                 }
237
238                 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
239                 prepare_to_wait_exclusive(wq, &ewait.wait,
240                                           TASK_UNINTERRUPTIBLE);
241                 spin_unlock_irq(&mapping->tree_lock);
242                 schedule();
243                 finish_wait(wq, &ewait.wait);
244                 spin_lock_irq(&mapping->tree_lock);
245         }
246 }
247
248 static void dax_unlock_mapping_entry(struct address_space *mapping,
249                                      pgoff_t index)
250 {
251         void *entry, **slot;
252
253         spin_lock_irq(&mapping->tree_lock);
254         entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
255         if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
256                          !slot_locked(mapping, slot))) {
257                 spin_unlock_irq(&mapping->tree_lock);
258                 return;
259         }
260         unlock_slot(mapping, slot);
261         spin_unlock_irq(&mapping->tree_lock);
262         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
263 }
264
265 static void put_locked_mapping_entry(struct address_space *mapping,
266                                      pgoff_t index, void *entry)
267 {
268         if (!radix_tree_exceptional_entry(entry)) {
269                 unlock_page(entry);
270                 put_page(entry);
271         } else {
272                 dax_unlock_mapping_entry(mapping, index);
273         }
274 }
275
276 /*
277  * Called when we are done with radix tree entry we looked up via
278  * get_unlocked_mapping_entry() and which we didn't lock in the end.
279  */
280 static void put_unlocked_mapping_entry(struct address_space *mapping,
281                                        pgoff_t index, void *entry)
282 {
283         if (!radix_tree_exceptional_entry(entry))
284                 return;
285
286         /* We have to wake up next waiter for the radix tree entry lock */
287         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
288 }
289
290 /*
291  * Find radix tree entry at given index. If it points to a page, return with
292  * the page locked. If it points to the exceptional entry, return with the
293  * radix tree entry locked. If the radix tree doesn't contain given index,
294  * create empty exceptional entry for the index and return with it locked.
295  *
296  * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
297  * either return that locked entry or will return an error.  This error will
298  * happen if there are any 4k entries (either zero pages or DAX entries)
299  * within the 2MiB range that we are requesting.
300  *
301  * We always favor 4k entries over 2MiB entries. There isn't a flow where we
302  * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
303  * insertion will fail if it finds any 4k entries already in the tree, and a
304  * 4k insertion will cause an existing 2MiB entry to be unmapped and
305  * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
306  * well as 2MiB empty entries.
307  *
308  * The exception to this downgrade path is for 2MiB DAX PMD entries that have
309  * real storage backing them.  We will leave these real 2MiB DAX entries in
310  * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
311  *
312  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
313  * persistent memory the benefit is doubtful. We can add that later if we can
314  * show it helps.
315  */
316 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
317                 unsigned long size_flag)
318 {
319         bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
320         void *entry, **slot;
321
322 restart:
323         spin_lock_irq(&mapping->tree_lock);
324         entry = get_unlocked_mapping_entry(mapping, index, &slot);
325
326         if (entry) {
327                 if (size_flag & RADIX_DAX_PMD) {
328                         if (!radix_tree_exceptional_entry(entry) ||
329                             dax_is_pte_entry(entry)) {
330                                 put_unlocked_mapping_entry(mapping, index,
331                                                 entry);
332                                 entry = ERR_PTR(-EEXIST);
333                                 goto out_unlock;
334                         }
335                 } else { /* trying to grab a PTE entry */
336                         if (radix_tree_exceptional_entry(entry) &&
337                             dax_is_pmd_entry(entry) &&
338                             (dax_is_zero_entry(entry) ||
339                              dax_is_empty_entry(entry))) {
340                                 pmd_downgrade = true;
341                         }
342                 }
343         }
344
345         /* No entry for given index? Make sure radix tree is big enough. */
346         if (!entry || pmd_downgrade) {
347                 int err;
348
349                 if (pmd_downgrade) {
350                         /*
351                          * Make sure 'entry' remains valid while we drop
352                          * mapping->tree_lock.
353                          */
354                         entry = lock_slot(mapping, slot);
355                 }
356
357                 spin_unlock_irq(&mapping->tree_lock);
358                 /*
359                  * Besides huge zero pages the only other thing that gets
360                  * downgraded are empty entries which don't need to be
361                  * unmapped.
362                  */
363                 if (pmd_downgrade && dax_is_zero_entry(entry))
364                         unmap_mapping_range(mapping,
365                                 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
366
367                 err = radix_tree_preload(
368                                 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
369                 if (err) {
370                         if (pmd_downgrade)
371                                 put_locked_mapping_entry(mapping, index, entry);
372                         return ERR_PTR(err);
373                 }
374                 spin_lock_irq(&mapping->tree_lock);
375
376                 if (pmd_downgrade) {
377                         radix_tree_delete(&mapping->page_tree, index);
378                         mapping->nrexceptional--;
379                         dax_wake_mapping_entry_waiter(mapping, index, entry,
380                                         true);
381                 }
382
383                 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
384
385                 err = __radix_tree_insert(&mapping->page_tree, index,
386                                 dax_radix_order(entry), entry);
387                 radix_tree_preload_end();
388                 if (err) {
389                         spin_unlock_irq(&mapping->tree_lock);
390                         /*
391                          * Someone already created the entry?  This is a
392                          * normal failure when inserting PMDs in a range
393                          * that already contains PTEs.  In that case we want
394                          * to return -EEXIST immediately.
395                          */
396                         if (err == -EEXIST && !(size_flag & RADIX_DAX_PMD))
397                                 goto restart;
398                         /*
399                          * Our insertion of a DAX PMD entry failed, most
400                          * likely because it collided with a PTE sized entry
401                          * at a different index in the PMD range.  We haven't
402                          * inserted anything into the radix tree and have no
403                          * waiters to wake.
404                          */
405                         return ERR_PTR(err);
406                 }
407                 /* Good, we have inserted empty locked entry into the tree. */
408                 mapping->nrexceptional++;
409                 spin_unlock_irq(&mapping->tree_lock);
410                 return entry;
411         }
412         /* Normal page in radix tree? */
413         if (!radix_tree_exceptional_entry(entry)) {
414                 struct page *page = entry;
415
416                 get_page(page);
417                 spin_unlock_irq(&mapping->tree_lock);
418                 lock_page(page);
419                 /* Page got truncated? Retry... */
420                 if (unlikely(page->mapping != mapping)) {
421                         unlock_page(page);
422                         put_page(page);
423                         goto restart;
424                 }
425                 return page;
426         }
427         entry = lock_slot(mapping, slot);
428  out_unlock:
429         spin_unlock_irq(&mapping->tree_lock);
430         return entry;
431 }
432
433 /*
434  * We do not necessarily hold the mapping->tree_lock when we call this
435  * function so it is possible that 'entry' is no longer a valid item in the
436  * radix tree.  This is okay because all we really need to do is to find the
437  * correct waitqueue where tasks might be waiting for that old 'entry' and
438  * wake them.
439  */
440 void dax_wake_mapping_entry_waiter(struct address_space *mapping,
441                 pgoff_t index, void *entry, bool wake_all)
442 {
443         struct exceptional_entry_key key;
444         wait_queue_head_t *wq;
445
446         wq = dax_entry_waitqueue(mapping, index, entry, &key);
447
448         /*
449          * Checking for locked entry and prepare_to_wait_exclusive() happens
450          * under mapping->tree_lock, ditto for entry handling in our callers.
451          * So at this point all tasks that could have seen our entry locked
452          * must be in the waitqueue and the following check will see them.
453          */
454         if (waitqueue_active(wq))
455                 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
456 }
457
458 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
459                                           pgoff_t index, bool trunc)
460 {
461         int ret = 0;
462         void *entry;
463         struct radix_tree_root *page_tree = &mapping->page_tree;
464
465         spin_lock_irq(&mapping->tree_lock);
466         entry = get_unlocked_mapping_entry(mapping, index, NULL);
467         if (!entry || !radix_tree_exceptional_entry(entry))
468                 goto out;
469         if (!trunc &&
470             (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
471              radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)))
472                 goto out;
473         radix_tree_delete(page_tree, index);
474         mapping->nrexceptional--;
475         ret = 1;
476 out:
477         put_unlocked_mapping_entry(mapping, index, entry);
478         spin_unlock_irq(&mapping->tree_lock);
479         return ret;
480 }
481 /*
482  * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
483  * entry to get unlocked before deleting it.
484  */
485 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
486 {
487         int ret = __dax_invalidate_mapping_entry(mapping, index, true);
488
489         /*
490          * This gets called from truncate / punch_hole path. As such, the caller
491          * must hold locks protecting against concurrent modifications of the
492          * radix tree (usually fs-private i_mmap_sem for writing). Since the
493          * caller has seen exceptional entry for this index, we better find it
494          * at that index as well...
495          */
496         WARN_ON_ONCE(!ret);
497         return ret;
498 }
499
500 /*
501  * Invalidate exceptional DAX entry if easily possible. This handles DAX
502  * entries for invalidate_inode_pages() so we evict the entry only if we can
503  * do so without blocking.
504  */
505 int dax_invalidate_mapping_entry(struct address_space *mapping, pgoff_t index)
506 {
507         int ret = 0;
508         void *entry, **slot;
509         struct radix_tree_root *page_tree = &mapping->page_tree;
510
511         spin_lock_irq(&mapping->tree_lock);
512         entry = __radix_tree_lookup(page_tree, index, NULL, &slot);
513         if (!entry || !radix_tree_exceptional_entry(entry) ||
514             slot_locked(mapping, slot))
515                 goto out;
516         if (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) ||
517             radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
518                 goto out;
519         radix_tree_delete(page_tree, index);
520         mapping->nrexceptional--;
521         ret = 1;
522 out:
523         spin_unlock_irq(&mapping->tree_lock);
524         if (ret)
525                 dax_wake_mapping_entry_waiter(mapping, index, entry, true);
526         return ret;
527 }
528
529 /*
530  * Invalidate exceptional DAX entry if it is clean.
531  */
532 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
533                                       pgoff_t index)
534 {
535         return __dax_invalidate_mapping_entry(mapping, index, false);
536 }
537
538 /*
539  * The user has performed a load from a hole in the file.  Allocating
540  * a new page in the file would cause excessive storage usage for
541  * workloads with sparse files.  We allocate a page cache page instead.
542  * We'll kick it out of the page cache if it's ever written to,
543  * otherwise it will simply fall out of the page cache under memory
544  * pressure without ever having been dirtied.
545  */
546 static int dax_load_hole(struct address_space *mapping, void **entry,
547                          struct vm_fault *vmf)
548 {
549         struct page *page;
550         int ret;
551
552         /* Hole page already exists? Return it...  */
553         if (!radix_tree_exceptional_entry(*entry)) {
554                 page = *entry;
555                 goto out;
556         }
557
558         /* This will replace locked radix tree entry with a hole page */
559         page = find_or_create_page(mapping, vmf->pgoff,
560                                    vmf->gfp_mask | __GFP_ZERO);
561         if (!page)
562                 return VM_FAULT_OOM;
563  out:
564         vmf->page = page;
565         ret = finish_fault(vmf);
566         vmf->page = NULL;
567         *entry = page;
568         if (!ret) {
569                 /* Grab reference for PTE that is now referencing the page */
570                 get_page(page);
571                 return VM_FAULT_NOPAGE;
572         }
573         return ret;
574 }
575
576 static int copy_user_dax(struct block_device *bdev, sector_t sector, size_t size,
577                 struct page *to, unsigned long vaddr)
578 {
579         struct blk_dax_ctl dax = {
580                 .sector = sector,
581                 .size = size,
582         };
583         void *vto;
584
585         if (dax_map_atomic(bdev, &dax) < 0)
586                 return PTR_ERR(dax.addr);
587         vto = kmap_atomic(to);
588         copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
589         kunmap_atomic(vto);
590         dax_unmap_atomic(bdev, &dax);
591         return 0;
592 }
593
594 /*
595  * By this point grab_mapping_entry() has ensured that we have a locked entry
596  * of the appropriate size so we don't have to worry about downgrading PMDs to
597  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
598  * already in the tree, we will skip the insertion and just dirty the PMD as
599  * appropriate.
600  */
601 static void *dax_insert_mapping_entry(struct address_space *mapping,
602                                       struct vm_fault *vmf,
603                                       void *entry, sector_t sector,
604                                       unsigned long flags)
605 {
606         struct radix_tree_root *page_tree = &mapping->page_tree;
607         int error = 0;
608         bool hole_fill = false;
609         void *new_entry;
610         pgoff_t index = vmf->pgoff;
611
612         if (vmf->flags & FAULT_FLAG_WRITE)
613                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
614
615         /* Replacing hole page with block mapping? */
616         if (!radix_tree_exceptional_entry(entry)) {
617                 hole_fill = true;
618                 /*
619                  * Unmap the page now before we remove it from page cache below.
620                  * The page is locked so it cannot be faulted in again.
621                  */
622                 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
623                                     PAGE_SIZE, 0);
624                 error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
625                 if (error)
626                         return ERR_PTR(error);
627         } else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) {
628                 /* replacing huge zero page with PMD block mapping */
629                 unmap_mapping_range(mapping,
630                         (vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0);
631         }
632
633         spin_lock_irq(&mapping->tree_lock);
634         new_entry = dax_radix_locked_entry(sector, flags);
635
636         if (hole_fill) {
637                 __delete_from_page_cache(entry, NULL);
638                 /* Drop pagecache reference */
639                 put_page(entry);
640                 error = __radix_tree_insert(page_tree, index,
641                                 dax_radix_order(new_entry), new_entry);
642                 if (error) {
643                         new_entry = ERR_PTR(error);
644                         goto unlock;
645                 }
646                 mapping->nrexceptional++;
647         } else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
648                 /*
649                  * Only swap our new entry into the radix tree if the current
650                  * entry is a zero page or an empty entry.  If a normal PTE or
651                  * PMD entry is already in the tree, we leave it alone.  This
652                  * means that if we are trying to insert a PTE and the
653                  * existing entry is a PMD, we will just leave the PMD in the
654                  * tree and dirty it if necessary.
655                  */
656                 struct radix_tree_node *node;
657                 void **slot;
658                 void *ret;
659
660                 ret = __radix_tree_lookup(page_tree, index, &node, &slot);
661                 WARN_ON_ONCE(ret != entry);
662                 __radix_tree_replace(page_tree, node, slot,
663                                      new_entry, NULL, NULL);
664         }
665         if (vmf->flags & FAULT_FLAG_WRITE)
666                 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
667  unlock:
668         spin_unlock_irq(&mapping->tree_lock);
669         if (hole_fill) {
670                 radix_tree_preload_end();
671                 /*
672                  * We don't need hole page anymore, it has been replaced with
673                  * locked radix tree entry now.
674                  */
675                 if (mapping->a_ops->freepage)
676                         mapping->a_ops->freepage(entry);
677                 unlock_page(entry);
678                 put_page(entry);
679         }
680         return new_entry;
681 }
682
683 static inline unsigned long
684 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
685 {
686         unsigned long address;
687
688         address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
689         VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
690         return address;
691 }
692
693 /* Walk all mappings of a given index of a file and writeprotect them */
694 static void dax_mapping_entry_mkclean(struct address_space *mapping,
695                                       pgoff_t index, unsigned long pfn)
696 {
697         struct vm_area_struct *vma;
698         pte_t pte, *ptep = NULL;
699         pmd_t *pmdp = NULL;
700         spinlock_t *ptl;
701         bool changed;
702
703         i_mmap_lock_read(mapping);
704         vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
705                 unsigned long address;
706
707                 cond_resched();
708
709                 if (!(vma->vm_flags & VM_SHARED))
710                         continue;
711
712                 address = pgoff_address(index, vma);
713                 changed = false;
714                 if (follow_pte_pmd(vma->vm_mm, address, &ptep, &pmdp, &ptl))
715                         continue;
716
717                 if (pmdp) {
718 #ifdef CONFIG_FS_DAX_PMD
719                         pmd_t pmd;
720
721                         if (pfn != pmd_pfn(*pmdp))
722                                 goto unlock_pmd;
723                         if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
724                                 goto unlock_pmd;
725
726                         flush_cache_page(vma, address, pfn);
727                         pmd = pmdp_huge_clear_flush(vma, address, pmdp);
728                         pmd = pmd_wrprotect(pmd);
729                         pmd = pmd_mkclean(pmd);
730                         set_pmd_at(vma->vm_mm, address, pmdp, pmd);
731                         changed = true;
732 unlock_pmd:
733                         spin_unlock(ptl);
734 #endif
735                 } else {
736                         if (pfn != pte_pfn(*ptep))
737                                 goto unlock_pte;
738                         if (!pte_dirty(*ptep) && !pte_write(*ptep))
739                                 goto unlock_pte;
740
741                         flush_cache_page(vma, address, pfn);
742                         pte = ptep_clear_flush(vma, address, ptep);
743                         pte = pte_wrprotect(pte);
744                         pte = pte_mkclean(pte);
745                         set_pte_at(vma->vm_mm, address, ptep, pte);
746                         changed = true;
747 unlock_pte:
748                         pte_unmap_unlock(ptep, ptl);
749                 }
750
751                 if (changed)
752                         mmu_notifier_invalidate_page(vma->vm_mm, address);
753         }
754         i_mmap_unlock_read(mapping);
755 }
756
757 static int dax_writeback_one(struct block_device *bdev,
758                 struct address_space *mapping, pgoff_t index, void *entry)
759 {
760         struct radix_tree_root *page_tree = &mapping->page_tree;
761         struct blk_dax_ctl dax;
762         void *entry2, **slot;
763         int ret = 0;
764
765         /*
766          * A page got tagged dirty in DAX mapping? Something is seriously
767          * wrong.
768          */
769         if (WARN_ON(!radix_tree_exceptional_entry(entry)))
770                 return -EIO;
771
772         spin_lock_irq(&mapping->tree_lock);
773         entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
774         /* Entry got punched out / reallocated? */
775         if (!entry2 || !radix_tree_exceptional_entry(entry2))
776                 goto put_unlocked;
777         /*
778          * Entry got reallocated elsewhere? No need to writeback. We have to
779          * compare sectors as we must not bail out due to difference in lockbit
780          * or entry type.
781          */
782         if (dax_radix_sector(entry2) != dax_radix_sector(entry))
783                 goto put_unlocked;
784         if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
785                                 dax_is_zero_entry(entry))) {
786                 ret = -EIO;
787                 goto put_unlocked;
788         }
789
790         /* Another fsync thread may have already written back this entry */
791         if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
792                 goto put_unlocked;
793         /* Lock the entry to serialize with page faults */
794         entry = lock_slot(mapping, slot);
795         /*
796          * We can clear the tag now but we have to be careful so that concurrent
797          * dax_writeback_one() calls for the same index cannot finish before we
798          * actually flush the caches. This is achieved as the calls will look
799          * at the entry only under tree_lock and once they do that they will
800          * see the entry locked and wait for it to unlock.
801          */
802         radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
803         spin_unlock_irq(&mapping->tree_lock);
804
805         /*
806          * Even if dax_writeback_mapping_range() was given a wbc->range_start
807          * in the middle of a PMD, the 'index' we are given will be aligned to
808          * the start index of the PMD, as will the sector we pull from
809          * 'entry'.  This allows us to flush for PMD_SIZE and not have to
810          * worry about partial PMD writebacks.
811          */
812         dax.sector = dax_radix_sector(entry);
813         dax.size = PAGE_SIZE << dax_radix_order(entry);
814
815         /*
816          * We cannot hold tree_lock while calling dax_map_atomic() because it
817          * eventually calls cond_resched().
818          */
819         ret = dax_map_atomic(bdev, &dax);
820         if (ret < 0) {
821                 put_locked_mapping_entry(mapping, index, entry);
822                 return ret;
823         }
824
825         if (WARN_ON_ONCE(ret < dax.size)) {
826                 ret = -EIO;
827                 goto unmap;
828         }
829
830         dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(dax.pfn));
831         wb_cache_pmem(dax.addr, dax.size);
832         /*
833          * After we have flushed the cache, we can clear the dirty tag. There
834          * cannot be new dirty data in the pfn after the flush has completed as
835          * the pfn mappings are writeprotected and fault waits for mapping
836          * entry lock.
837          */
838         spin_lock_irq(&mapping->tree_lock);
839         radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY);
840         spin_unlock_irq(&mapping->tree_lock);
841  unmap:
842         dax_unmap_atomic(bdev, &dax);
843         put_locked_mapping_entry(mapping, index, entry);
844         return ret;
845
846  put_unlocked:
847         put_unlocked_mapping_entry(mapping, index, entry2);
848         spin_unlock_irq(&mapping->tree_lock);
849         return ret;
850 }
851
852 /*
853  * Flush the mapping to the persistent domain within the byte range of [start,
854  * end]. This is required by data integrity operations to ensure file data is
855  * on persistent storage prior to completion of the operation.
856  */
857 int dax_writeback_mapping_range(struct address_space *mapping,
858                 struct block_device *bdev, struct writeback_control *wbc)
859 {
860         struct inode *inode = mapping->host;
861         pgoff_t start_index, end_index;
862         pgoff_t indices[PAGEVEC_SIZE];
863         struct pagevec pvec;
864         bool done = false;
865         int i, ret = 0;
866
867         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
868                 return -EIO;
869
870         if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
871                 return 0;
872
873         start_index = wbc->range_start >> PAGE_SHIFT;
874         end_index = wbc->range_end >> PAGE_SHIFT;
875
876         tag_pages_for_writeback(mapping, start_index, end_index);
877
878         pagevec_init(&pvec, 0);
879         while (!done) {
880                 pvec.nr = find_get_entries_tag(mapping, start_index,
881                                 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
882                                 pvec.pages, indices);
883
884                 if (pvec.nr == 0)
885                         break;
886
887                 for (i = 0; i < pvec.nr; i++) {
888                         if (indices[i] > end_index) {
889                                 done = true;
890                                 break;
891                         }
892
893                         ret = dax_writeback_one(bdev, mapping, indices[i],
894                                         pvec.pages[i]);
895                         if (ret < 0)
896                                 return ret;
897                 }
898         }
899         return 0;
900 }
901 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
902
903 static int dax_insert_mapping(struct address_space *mapping,
904                 struct block_device *bdev, sector_t sector, size_t size,
905                 void **entryp, struct vm_area_struct *vma, struct vm_fault *vmf)
906 {
907         unsigned long vaddr = vmf->address;
908         struct blk_dax_ctl dax = {
909                 .sector = sector,
910                 .size = size,
911         };
912         void *ret;
913         void *entry = *entryp;
914
915         if (dax_map_atomic(bdev, &dax) < 0)
916                 return PTR_ERR(dax.addr);
917         dax_unmap_atomic(bdev, &dax);
918
919         ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector, 0);
920         if (IS_ERR(ret))
921                 return PTR_ERR(ret);
922         *entryp = ret;
923
924         return vm_insert_mixed(vma, vaddr, dax.pfn);
925 }
926
927 /**
928  * dax_pfn_mkwrite - handle first write to DAX page
929  * @vmf: The description of the fault
930  */
931 int dax_pfn_mkwrite(struct vm_fault *vmf)
932 {
933         struct file *file = vmf->vma->vm_file;
934         struct address_space *mapping = file->f_mapping;
935         void *entry, **slot;
936         pgoff_t index = vmf->pgoff;
937
938         spin_lock_irq(&mapping->tree_lock);
939         entry = get_unlocked_mapping_entry(mapping, index, &slot);
940         if (!entry || !radix_tree_exceptional_entry(entry)) {
941                 if (entry)
942                         put_unlocked_mapping_entry(mapping, index, entry);
943                 spin_unlock_irq(&mapping->tree_lock);
944                 return VM_FAULT_NOPAGE;
945         }
946         radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
947         entry = lock_slot(mapping, slot);
948         spin_unlock_irq(&mapping->tree_lock);
949         /*
950          * If we race with somebody updating the PTE and finish_mkwrite_fault()
951          * fails, we don't care. We need to return VM_FAULT_NOPAGE and retry
952          * the fault in either case.
953          */
954         finish_mkwrite_fault(vmf);
955         put_locked_mapping_entry(mapping, index, entry);
956         return VM_FAULT_NOPAGE;
957 }
958 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
959
960 static bool dax_range_is_aligned(struct block_device *bdev,
961                                  unsigned int offset, unsigned int length)
962 {
963         unsigned short sector_size = bdev_logical_block_size(bdev);
964
965         if (!IS_ALIGNED(offset, sector_size))
966                 return false;
967         if (!IS_ALIGNED(length, sector_size))
968                 return false;
969
970         return true;
971 }
972
973 int __dax_zero_page_range(struct block_device *bdev, sector_t sector,
974                 unsigned int offset, unsigned int length)
975 {
976         struct blk_dax_ctl dax = {
977                 .sector         = sector,
978                 .size           = PAGE_SIZE,
979         };
980
981         if (dax_range_is_aligned(bdev, offset, length)) {
982                 sector_t start_sector = dax.sector + (offset >> 9);
983
984                 return blkdev_issue_zeroout(bdev, start_sector,
985                                 length >> 9, GFP_NOFS, true);
986         } else {
987                 if (dax_map_atomic(bdev, &dax) < 0)
988                         return PTR_ERR(dax.addr);
989                 clear_pmem(dax.addr + offset, length);
990                 dax_unmap_atomic(bdev, &dax);
991         }
992         return 0;
993 }
994 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
995
996 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
997 {
998         return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9);
999 }
1000
1001 static loff_t
1002 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1003                 struct iomap *iomap)
1004 {
1005         struct iov_iter *iter = data;
1006         loff_t end = pos + length, done = 0;
1007         ssize_t ret = 0;
1008
1009         if (iov_iter_rw(iter) == READ) {
1010                 end = min(end, i_size_read(inode));
1011                 if (pos >= end)
1012                         return 0;
1013
1014                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1015                         return iov_iter_zero(min(length, end - pos), iter);
1016         }
1017
1018         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1019                 return -EIO;
1020
1021         /*
1022          * Write can allocate block for an area which has a hole page mapped
1023          * into page tables. We have to tear down these mappings so that data
1024          * written by write(2) is visible in mmap.
1025          */
1026         if ((iomap->flags & IOMAP_F_NEW) && inode->i_mapping->nrpages) {
1027                 invalidate_inode_pages2_range(inode->i_mapping,
1028                                               pos >> PAGE_SHIFT,
1029                                               (end - 1) >> PAGE_SHIFT);
1030         }
1031
1032         while (pos < end) {
1033                 unsigned offset = pos & (PAGE_SIZE - 1);
1034                 struct blk_dax_ctl dax = { 0 };
1035                 ssize_t map_len;
1036
1037                 if (fatal_signal_pending(current)) {
1038                         ret = -EINTR;
1039                         break;
1040                 }
1041
1042                 dax.sector = dax_iomap_sector(iomap, pos);
1043                 dax.size = (length + offset + PAGE_SIZE - 1) & PAGE_MASK;
1044                 map_len = dax_map_atomic(iomap->bdev, &dax);
1045                 if (map_len < 0) {
1046                         ret = map_len;
1047                         break;
1048                 }
1049
1050                 dax.addr += offset;
1051                 map_len -= offset;
1052                 if (map_len > end - pos)
1053                         map_len = end - pos;
1054
1055                 if (iov_iter_rw(iter) == WRITE)
1056                         map_len = copy_from_iter_pmem(dax.addr, map_len, iter);
1057                 else
1058                         map_len = copy_to_iter(dax.addr, map_len, iter);
1059                 dax_unmap_atomic(iomap->bdev, &dax);
1060                 if (map_len <= 0) {
1061                         ret = map_len ? map_len : -EFAULT;
1062                         break;
1063                 }
1064
1065                 pos += map_len;
1066                 length -= map_len;
1067                 done += map_len;
1068         }
1069
1070         return done ? done : ret;
1071 }
1072
1073 /**
1074  * dax_iomap_rw - Perform I/O to a DAX file
1075  * @iocb:       The control block for this I/O
1076  * @iter:       The addresses to do I/O from or to
1077  * @ops:        iomap ops passed from the file system
1078  *
1079  * This function performs read and write operations to directly mapped
1080  * persistent memory.  The callers needs to take care of read/write exclusion
1081  * and evicting any page cache pages in the region under I/O.
1082  */
1083 ssize_t
1084 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1085                 const struct iomap_ops *ops)
1086 {
1087         struct address_space *mapping = iocb->ki_filp->f_mapping;
1088         struct inode *inode = mapping->host;
1089         loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1090         unsigned flags = 0;
1091
1092         if (iov_iter_rw(iter) == WRITE) {
1093                 lockdep_assert_held_exclusive(&inode->i_rwsem);
1094                 flags |= IOMAP_WRITE;
1095         } else {
1096                 lockdep_assert_held(&inode->i_rwsem);
1097         }
1098
1099         while (iov_iter_count(iter)) {
1100                 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1101                                 iter, dax_iomap_actor);
1102                 if (ret <= 0)
1103                         break;
1104                 pos += ret;
1105                 done += ret;
1106         }
1107
1108         iocb->ki_pos += done;
1109         return done ? done : ret;
1110 }
1111 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1112
1113 static int dax_fault_return(int error)
1114 {
1115         if (error == 0)
1116                 return VM_FAULT_NOPAGE;
1117         if (error == -ENOMEM)
1118                 return VM_FAULT_OOM;
1119         return VM_FAULT_SIGBUS;
1120 }
1121
1122 static int dax_iomap_pte_fault(struct vm_fault *vmf,
1123                                const struct iomap_ops *ops)
1124 {
1125         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1126         struct inode *inode = mapping->host;
1127         unsigned long vaddr = vmf->address;
1128         loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1129         sector_t sector;
1130         struct iomap iomap = { 0 };
1131         unsigned flags = IOMAP_FAULT;
1132         int error, major = 0;
1133         int vmf_ret = 0;
1134         void *entry;
1135
1136         /*
1137          * Check whether offset isn't beyond end of file now. Caller is supposed
1138          * to hold locks serializing us with truncate / punch hole so this is
1139          * a reliable test.
1140          */
1141         if (pos >= i_size_read(inode))
1142                 return VM_FAULT_SIGBUS;
1143
1144         if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1145                 flags |= IOMAP_WRITE;
1146
1147         /*
1148          * Note that we don't bother to use iomap_apply here: DAX required
1149          * the file system block size to be equal the page size, which means
1150          * that we never have to deal with more than a single extent here.
1151          */
1152         error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1153         if (error)
1154                 return dax_fault_return(error);
1155         if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1156                 vmf_ret = dax_fault_return(-EIO);       /* fs corruption? */
1157                 goto finish_iomap;
1158         }
1159
1160         entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1161         if (IS_ERR(entry)) {
1162                 vmf_ret = dax_fault_return(PTR_ERR(entry));
1163                 goto finish_iomap;
1164         }
1165
1166         sector = dax_iomap_sector(&iomap, pos);
1167
1168         if (vmf->cow_page) {
1169                 switch (iomap.type) {
1170                 case IOMAP_HOLE:
1171                 case IOMAP_UNWRITTEN:
1172                         clear_user_highpage(vmf->cow_page, vaddr);
1173                         break;
1174                 case IOMAP_MAPPED:
1175                         error = copy_user_dax(iomap.bdev, sector, PAGE_SIZE,
1176                                         vmf->cow_page, vaddr);
1177                         break;
1178                 default:
1179                         WARN_ON_ONCE(1);
1180                         error = -EIO;
1181                         break;
1182                 }
1183
1184                 if (error)
1185                         goto error_unlock_entry;
1186
1187                 __SetPageUptodate(vmf->cow_page);
1188                 vmf_ret = finish_fault(vmf);
1189                 if (!vmf_ret)
1190                         vmf_ret = VM_FAULT_DONE_COW;
1191                 goto unlock_entry;
1192         }
1193
1194         switch (iomap.type) {
1195         case IOMAP_MAPPED:
1196                 if (iomap.flags & IOMAP_F_NEW) {
1197                         count_vm_event(PGMAJFAULT);
1198                         mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT);
1199                         major = VM_FAULT_MAJOR;
1200                 }
1201                 error = dax_insert_mapping(mapping, iomap.bdev, sector,
1202                                 PAGE_SIZE, &entry, vmf->vma, vmf);
1203                 /* -EBUSY is fine, somebody else faulted on the same PTE */
1204                 if (error == -EBUSY)
1205                         error = 0;
1206                 break;
1207         case IOMAP_UNWRITTEN:
1208         case IOMAP_HOLE:
1209                 if (!(vmf->flags & FAULT_FLAG_WRITE)) {
1210                         vmf_ret = dax_load_hole(mapping, &entry, vmf);
1211                         goto unlock_entry;
1212                 }
1213                 /*FALLTHRU*/
1214         default:
1215                 WARN_ON_ONCE(1);
1216                 error = -EIO;
1217                 break;
1218         }
1219
1220  error_unlock_entry:
1221         vmf_ret = dax_fault_return(error) | major;
1222  unlock_entry:
1223         put_locked_mapping_entry(mapping, vmf->pgoff, entry);
1224  finish_iomap:
1225         if (ops->iomap_end) {
1226                 int copied = PAGE_SIZE;
1227
1228                 if (vmf_ret & VM_FAULT_ERROR)
1229                         copied = 0;
1230                 /*
1231                  * The fault is done by now and there's no way back (other
1232                  * thread may be already happily using PTE we have installed).
1233                  * Just ignore error from ->iomap_end since we cannot do much
1234                  * with it.
1235                  */
1236                 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1237         }
1238         return vmf_ret;
1239 }
1240
1241 #ifdef CONFIG_FS_DAX_PMD
1242 /*
1243  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
1244  * more often than one might expect in the below functions.
1245  */
1246 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
1247
1248 static int dax_pmd_insert_mapping(struct vm_fault *vmf, struct iomap *iomap,
1249                 loff_t pos, void **entryp)
1250 {
1251         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1252         struct block_device *bdev = iomap->bdev;
1253         struct inode *inode = mapping->host;
1254         struct blk_dax_ctl dax = {
1255                 .sector = dax_iomap_sector(iomap, pos),
1256                 .size = PMD_SIZE,
1257         };
1258         long length = dax_map_atomic(bdev, &dax);
1259         void *ret = NULL;
1260
1261         if (length < 0) /* dax_map_atomic() failed */
1262                 goto fallback;
1263         if (length < PMD_SIZE)
1264                 goto unmap_fallback;
1265         if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR)
1266                 goto unmap_fallback;
1267         if (!pfn_t_devmap(dax.pfn))
1268                 goto unmap_fallback;
1269
1270         dax_unmap_atomic(bdev, &dax);
1271
1272         ret = dax_insert_mapping_entry(mapping, vmf, *entryp, dax.sector,
1273                         RADIX_DAX_PMD);
1274         if (IS_ERR(ret))
1275                 goto fallback;
1276         *entryp = ret;
1277
1278         trace_dax_pmd_insert_mapping(inode, vmf, length, dax.pfn, ret);
1279         return vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1280                         dax.pfn, vmf->flags & FAULT_FLAG_WRITE);
1281
1282  unmap_fallback:
1283         dax_unmap_atomic(bdev, &dax);
1284 fallback:
1285         trace_dax_pmd_insert_mapping_fallback(inode, vmf, length,
1286                         dax.pfn, ret);
1287         return VM_FAULT_FALLBACK;
1288 }
1289
1290 static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1291                 void **entryp)
1292 {
1293         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1294         unsigned long pmd_addr = vmf->address & PMD_MASK;
1295         struct inode *inode = mapping->host;
1296         struct page *zero_page;
1297         void *ret = NULL;
1298         spinlock_t *ptl;
1299         pmd_t pmd_entry;
1300
1301         zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1302
1303         if (unlikely(!zero_page))
1304                 goto fallback;
1305
1306         ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0,
1307                         RADIX_DAX_PMD | RADIX_DAX_HZP);
1308         if (IS_ERR(ret))
1309                 goto fallback;
1310         *entryp = ret;
1311
1312         ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1313         if (!pmd_none(*(vmf->pmd))) {
1314                 spin_unlock(ptl);
1315                 goto fallback;
1316         }
1317
1318         pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1319         pmd_entry = pmd_mkhuge(pmd_entry);
1320         set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1321         spin_unlock(ptl);
1322         trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1323         return VM_FAULT_NOPAGE;
1324
1325 fallback:
1326         trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1327         return VM_FAULT_FALLBACK;
1328 }
1329
1330 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1331                                const struct iomap_ops *ops)
1332 {
1333         struct vm_area_struct *vma = vmf->vma;
1334         struct address_space *mapping = vma->vm_file->f_mapping;
1335         unsigned long pmd_addr = vmf->address & PMD_MASK;
1336         bool write = vmf->flags & FAULT_FLAG_WRITE;
1337         unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1338         struct inode *inode = mapping->host;
1339         int result = VM_FAULT_FALLBACK;
1340         struct iomap iomap = { 0 };
1341         pgoff_t max_pgoff, pgoff;
1342         void *entry;
1343         loff_t pos;
1344         int error;
1345
1346         /*
1347          * Check whether offset isn't beyond end of file now. Caller is
1348          * supposed to hold locks serializing us with truncate / punch hole so
1349          * this is a reliable test.
1350          */
1351         pgoff = linear_page_index(vma, pmd_addr);
1352         max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT;
1353
1354         trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1355
1356         /* Fall back to PTEs if we're going to COW */
1357         if (write && !(vma->vm_flags & VM_SHARED))
1358                 goto fallback;
1359
1360         /* If the PMD would extend outside the VMA */
1361         if (pmd_addr < vma->vm_start)
1362                 goto fallback;
1363         if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1364                 goto fallback;
1365
1366         if (pgoff > max_pgoff) {
1367                 result = VM_FAULT_SIGBUS;
1368                 goto out;
1369         }
1370
1371         /* If the PMD would extend beyond the file size */
1372         if ((pgoff | PG_PMD_COLOUR) > max_pgoff)
1373                 goto fallback;
1374
1375         /*
1376          * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1377          * setting up a mapping, so really we're using iomap_begin() as a way
1378          * to look up our filesystem block.
1379          */
1380         pos = (loff_t)pgoff << PAGE_SHIFT;
1381         error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1382         if (error)
1383                 goto fallback;
1384
1385         if (iomap.offset + iomap.length < pos + PMD_SIZE)
1386                 goto finish_iomap;
1387
1388         /*
1389          * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX
1390          * PMD or a HZP entry.  If it can't (because a 4k page is already in
1391          * the tree, for instance), it will return -EEXIST and we just fall
1392          * back to 4k entries.
1393          */
1394         entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1395         if (IS_ERR(entry))
1396                 goto finish_iomap;
1397
1398         switch (iomap.type) {
1399         case IOMAP_MAPPED:
1400                 result = dax_pmd_insert_mapping(vmf, &iomap, pos, &entry);
1401                 break;
1402         case IOMAP_UNWRITTEN:
1403         case IOMAP_HOLE:
1404                 if (WARN_ON_ONCE(write))
1405                         goto unlock_entry;
1406                 result = dax_pmd_load_hole(vmf, &iomap, &entry);
1407                 break;
1408         default:
1409                 WARN_ON_ONCE(1);
1410                 break;
1411         }
1412
1413  unlock_entry:
1414         put_locked_mapping_entry(mapping, pgoff, entry);
1415  finish_iomap:
1416         if (ops->iomap_end) {
1417                 int copied = PMD_SIZE;
1418
1419                 if (result == VM_FAULT_FALLBACK)
1420                         copied = 0;
1421                 /*
1422                  * The fault is done by now and there's no way back (other
1423                  * thread may be already happily using PMD we have installed).
1424                  * Just ignore error from ->iomap_end since we cannot do much
1425                  * with it.
1426                  */
1427                 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1428                                 &iomap);
1429         }
1430  fallback:
1431         if (result == VM_FAULT_FALLBACK) {
1432                 split_huge_pmd(vma, vmf->pmd, vmf->address);
1433                 count_vm_event(THP_FAULT_FALLBACK);
1434         }
1435 out:
1436         trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1437         return result;
1438 }
1439 #else
1440 static int dax_iomap_pmd_fault(struct vm_fault *vmf,
1441                                const struct iomap_ops *ops)
1442 {
1443         return VM_FAULT_FALLBACK;
1444 }
1445 #endif /* CONFIG_FS_DAX_PMD */
1446
1447 /**
1448  * dax_iomap_fault - handle a page fault on a DAX file
1449  * @vmf: The description of the fault
1450  * @ops: iomap ops passed from the file system
1451  *
1452  * When a page fault occurs, filesystems may call this helper in
1453  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1454  * has done all the necessary locking for page fault to proceed
1455  * successfully.
1456  */
1457 int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1458                     const struct iomap_ops *ops)
1459 {
1460         switch (pe_size) {
1461         case PE_SIZE_PTE:
1462                 return dax_iomap_pte_fault(vmf, ops);
1463         case PE_SIZE_PMD:
1464                 return dax_iomap_pmd_fault(vmf, ops);
1465         default:
1466                 return VM_FAULT_FALLBACK;
1467         }
1468 }
1469 EXPORT_SYMBOL_GPL(dax_iomap_fault);