sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[sfrench/cifs-2.6.git] / fs / coredump.c
1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
4 #include <linux/freezer.h>
5 #include <linux/mm.h>
6 #include <linux/stat.h>
7 #include <linux/fcntl.h>
8 #include <linux/swap.h>
9 #include <linux/string.h>
10 #include <linux/init.h>
11 #include <linux/pagemap.h>
12 #include <linux/perf_event.h>
13 #include <linux/highmem.h>
14 #include <linux/spinlock.h>
15 #include <linux/key.h>
16 #include <linux/personality.h>
17 #include <linux/binfmts.h>
18 #include <linux/coredump.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/utsname.h>
21 #include <linux/pid_namespace.h>
22 #include <linux/module.h>
23 #include <linux/namei.h>
24 #include <linux/mount.h>
25 #include <linux/security.h>
26 #include <linux/syscalls.h>
27 #include <linux/tsacct_kern.h>
28 #include <linux/cn_proc.h>
29 #include <linux/audit.h>
30 #include <linux/tracehook.h>
31 #include <linux/kmod.h>
32 #include <linux/fsnotify.h>
33 #include <linux/fs_struct.h>
34 #include <linux/pipe_fs_i.h>
35 #include <linux/oom.h>
36 #include <linux/compat.h>
37 #include <linux/sched.h>
38 #include <linux/fs.h>
39 #include <linux/path.h>
40 #include <linux/timekeeping.h>
41
42 #include <linux/uaccess.h>
43 #include <asm/mmu_context.h>
44 #include <asm/tlb.h>
45 #include <asm/exec.h>
46
47 #include <trace/events/task.h>
48 #include "internal.h"
49
50 #include <trace/events/sched.h>
51
52 int core_uses_pid;
53 unsigned int core_pipe_limit;
54 char core_pattern[CORENAME_MAX_SIZE] = "core";
55 static int core_name_size = CORENAME_MAX_SIZE;
56
57 struct core_name {
58         char *corename;
59         int used, size;
60 };
61
62 /* The maximal length of core_pattern is also specified in sysctl.c */
63
64 static int expand_corename(struct core_name *cn, int size)
65 {
66         char *corename = krealloc(cn->corename, size, GFP_KERNEL);
67
68         if (!corename)
69                 return -ENOMEM;
70
71         if (size > core_name_size) /* racy but harmless */
72                 core_name_size = size;
73
74         cn->size = ksize(corename);
75         cn->corename = corename;
76         return 0;
77 }
78
79 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
80                                      va_list arg)
81 {
82         int free, need;
83         va_list arg_copy;
84
85 again:
86         free = cn->size - cn->used;
87
88         va_copy(arg_copy, arg);
89         need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
90         va_end(arg_copy);
91
92         if (need < free) {
93                 cn->used += need;
94                 return 0;
95         }
96
97         if (!expand_corename(cn, cn->size + need - free + 1))
98                 goto again;
99
100         return -ENOMEM;
101 }
102
103 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
104 {
105         va_list arg;
106         int ret;
107
108         va_start(arg, fmt);
109         ret = cn_vprintf(cn, fmt, arg);
110         va_end(arg);
111
112         return ret;
113 }
114
115 static __printf(2, 3)
116 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
117 {
118         int cur = cn->used;
119         va_list arg;
120         int ret;
121
122         va_start(arg, fmt);
123         ret = cn_vprintf(cn, fmt, arg);
124         va_end(arg);
125
126         if (ret == 0) {
127                 /*
128                  * Ensure that this coredump name component can't cause the
129                  * resulting corefile path to consist of a ".." or ".".
130                  */
131                 if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
132                                 (cn->used - cur == 2 && cn->corename[cur] == '.'
133                                 && cn->corename[cur+1] == '.'))
134                         cn->corename[cur] = '!';
135
136                 /*
137                  * Empty names are fishy and could be used to create a "//" in a
138                  * corefile name, causing the coredump to happen one directory
139                  * level too high. Enforce that all components of the core
140                  * pattern are at least one character long.
141                  */
142                 if (cn->used == cur)
143                         ret = cn_printf(cn, "!");
144         }
145
146         for (; cur < cn->used; ++cur) {
147                 if (cn->corename[cur] == '/')
148                         cn->corename[cur] = '!';
149         }
150         return ret;
151 }
152
153 static int cn_print_exe_file(struct core_name *cn)
154 {
155         struct file *exe_file;
156         char *pathbuf, *path;
157         int ret;
158
159         exe_file = get_mm_exe_file(current->mm);
160         if (!exe_file)
161                 return cn_esc_printf(cn, "%s (path unknown)", current->comm);
162
163         pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
164         if (!pathbuf) {
165                 ret = -ENOMEM;
166                 goto put_exe_file;
167         }
168
169         path = file_path(exe_file, pathbuf, PATH_MAX);
170         if (IS_ERR(path)) {
171                 ret = PTR_ERR(path);
172                 goto free_buf;
173         }
174
175         ret = cn_esc_printf(cn, "%s", path);
176
177 free_buf:
178         kfree(pathbuf);
179 put_exe_file:
180         fput(exe_file);
181         return ret;
182 }
183
184 /* format_corename will inspect the pattern parameter, and output a
185  * name into corename, which must have space for at least
186  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
187  */
188 static int format_corename(struct core_name *cn, struct coredump_params *cprm)
189 {
190         const struct cred *cred = current_cred();
191         const char *pat_ptr = core_pattern;
192         int ispipe = (*pat_ptr == '|');
193         int pid_in_pattern = 0;
194         int err = 0;
195
196         cn->used = 0;
197         cn->corename = NULL;
198         if (expand_corename(cn, core_name_size))
199                 return -ENOMEM;
200         cn->corename[0] = '\0';
201
202         if (ispipe)
203                 ++pat_ptr;
204
205         /* Repeat as long as we have more pattern to process and more output
206            space */
207         while (*pat_ptr) {
208                 if (*pat_ptr != '%') {
209                         err = cn_printf(cn, "%c", *pat_ptr++);
210                 } else {
211                         switch (*++pat_ptr) {
212                         /* single % at the end, drop that */
213                         case 0:
214                                 goto out;
215                         /* Double percent, output one percent */
216                         case '%':
217                                 err = cn_printf(cn, "%c", '%');
218                                 break;
219                         /* pid */
220                         case 'p':
221                                 pid_in_pattern = 1;
222                                 err = cn_printf(cn, "%d",
223                                               task_tgid_vnr(current));
224                                 break;
225                         /* global pid */
226                         case 'P':
227                                 err = cn_printf(cn, "%d",
228                                               task_tgid_nr(current));
229                                 break;
230                         case 'i':
231                                 err = cn_printf(cn, "%d",
232                                               task_pid_vnr(current));
233                                 break;
234                         case 'I':
235                                 err = cn_printf(cn, "%d",
236                                               task_pid_nr(current));
237                                 break;
238                         /* uid */
239                         case 'u':
240                                 err = cn_printf(cn, "%u",
241                                                 from_kuid(&init_user_ns,
242                                                           cred->uid));
243                                 break;
244                         /* gid */
245                         case 'g':
246                                 err = cn_printf(cn, "%u",
247                                                 from_kgid(&init_user_ns,
248                                                           cred->gid));
249                                 break;
250                         case 'd':
251                                 err = cn_printf(cn, "%d",
252                                         __get_dumpable(cprm->mm_flags));
253                                 break;
254                         /* signal that caused the coredump */
255                         case 's':
256                                 err = cn_printf(cn, "%d",
257                                                 cprm->siginfo->si_signo);
258                                 break;
259                         /* UNIX time of coredump */
260                         case 't': {
261                                 time64_t time;
262
263                                 time = ktime_get_real_seconds();
264                                 err = cn_printf(cn, "%lld", time);
265                                 break;
266                         }
267                         /* hostname */
268                         case 'h':
269                                 down_read(&uts_sem);
270                                 err = cn_esc_printf(cn, "%s",
271                                               utsname()->nodename);
272                                 up_read(&uts_sem);
273                                 break;
274                         /* executable */
275                         case 'e':
276                                 err = cn_esc_printf(cn, "%s", current->comm);
277                                 break;
278                         case 'E':
279                                 err = cn_print_exe_file(cn);
280                                 break;
281                         /* core limit size */
282                         case 'c':
283                                 err = cn_printf(cn, "%lu",
284                                               rlimit(RLIMIT_CORE));
285                                 break;
286                         default:
287                                 break;
288                         }
289                         ++pat_ptr;
290                 }
291
292                 if (err)
293                         return err;
294         }
295
296 out:
297         /* Backward compatibility with core_uses_pid:
298          *
299          * If core_pattern does not include a %p (as is the default)
300          * and core_uses_pid is set, then .%pid will be appended to
301          * the filename. Do not do this for piped commands. */
302         if (!ispipe && !pid_in_pattern && core_uses_pid) {
303                 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
304                 if (err)
305                         return err;
306         }
307         return ispipe;
308 }
309
310 static int zap_process(struct task_struct *start, int exit_code, int flags)
311 {
312         struct task_struct *t;
313         int nr = 0;
314
315         /* ignore all signals except SIGKILL, see prepare_signal() */
316         start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
317         start->signal->group_exit_code = exit_code;
318         start->signal->group_stop_count = 0;
319
320         for_each_thread(start, t) {
321                 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
322                 if (t != current && t->mm) {
323                         sigaddset(&t->pending.signal, SIGKILL);
324                         signal_wake_up(t, 1);
325                         nr++;
326                 }
327         }
328
329         return nr;
330 }
331
332 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
333                         struct core_state *core_state, int exit_code)
334 {
335         struct task_struct *g, *p;
336         unsigned long flags;
337         int nr = -EAGAIN;
338
339         spin_lock_irq(&tsk->sighand->siglock);
340         if (!signal_group_exit(tsk->signal)) {
341                 mm->core_state = core_state;
342                 tsk->signal->group_exit_task = tsk;
343                 nr = zap_process(tsk, exit_code, 0);
344                 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
345         }
346         spin_unlock_irq(&tsk->sighand->siglock);
347         if (unlikely(nr < 0))
348                 return nr;
349
350         tsk->flags |= PF_DUMPCORE;
351         if (atomic_read(&mm->mm_users) == nr + 1)
352                 goto done;
353         /*
354          * We should find and kill all tasks which use this mm, and we should
355          * count them correctly into ->nr_threads. We don't take tasklist
356          * lock, but this is safe wrt:
357          *
358          * fork:
359          *      None of sub-threads can fork after zap_process(leader). All
360          *      processes which were created before this point should be
361          *      visible to zap_threads() because copy_process() adds the new
362          *      process to the tail of init_task.tasks list, and lock/unlock
363          *      of ->siglock provides a memory barrier.
364          *
365          * do_exit:
366          *      The caller holds mm->mmap_sem. This means that the task which
367          *      uses this mm can't pass exit_mm(), so it can't exit or clear
368          *      its ->mm.
369          *
370          * de_thread:
371          *      It does list_replace_rcu(&leader->tasks, &current->tasks),
372          *      we must see either old or new leader, this does not matter.
373          *      However, it can change p->sighand, so lock_task_sighand(p)
374          *      must be used. Since p->mm != NULL and we hold ->mmap_sem
375          *      it can't fail.
376          *
377          *      Note also that "g" can be the old leader with ->mm == NULL
378          *      and already unhashed and thus removed from ->thread_group.
379          *      This is OK, __unhash_process()->list_del_rcu() does not
380          *      clear the ->next pointer, we will find the new leader via
381          *      next_thread().
382          */
383         rcu_read_lock();
384         for_each_process(g) {
385                 if (g == tsk->group_leader)
386                         continue;
387                 if (g->flags & PF_KTHREAD)
388                         continue;
389
390                 for_each_thread(g, p) {
391                         if (unlikely(!p->mm))
392                                 continue;
393                         if (unlikely(p->mm == mm)) {
394                                 lock_task_sighand(p, &flags);
395                                 nr += zap_process(p, exit_code,
396                                                         SIGNAL_GROUP_EXIT);
397                                 unlock_task_sighand(p, &flags);
398                         }
399                         break;
400                 }
401         }
402         rcu_read_unlock();
403 done:
404         atomic_set(&core_state->nr_threads, nr);
405         return nr;
406 }
407
408 static int coredump_wait(int exit_code, struct core_state *core_state)
409 {
410         struct task_struct *tsk = current;
411         struct mm_struct *mm = tsk->mm;
412         int core_waiters = -EBUSY;
413
414         init_completion(&core_state->startup);
415         core_state->dumper.task = tsk;
416         core_state->dumper.next = NULL;
417
418         if (down_write_killable(&mm->mmap_sem))
419                 return -EINTR;
420
421         if (!mm->core_state)
422                 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
423         up_write(&mm->mmap_sem);
424
425         if (core_waiters > 0) {
426                 struct core_thread *ptr;
427
428                 freezer_do_not_count();
429                 wait_for_completion(&core_state->startup);
430                 freezer_count();
431                 /*
432                  * Wait for all the threads to become inactive, so that
433                  * all the thread context (extended register state, like
434                  * fpu etc) gets copied to the memory.
435                  */
436                 ptr = core_state->dumper.next;
437                 while (ptr != NULL) {
438                         wait_task_inactive(ptr->task, 0);
439                         ptr = ptr->next;
440                 }
441         }
442
443         return core_waiters;
444 }
445
446 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
447 {
448         struct core_thread *curr, *next;
449         struct task_struct *task;
450
451         spin_lock_irq(&current->sighand->siglock);
452         if (core_dumped && !__fatal_signal_pending(current))
453                 current->signal->group_exit_code |= 0x80;
454         current->signal->group_exit_task = NULL;
455         current->signal->flags = SIGNAL_GROUP_EXIT;
456         spin_unlock_irq(&current->sighand->siglock);
457
458         next = mm->core_state->dumper.next;
459         while ((curr = next) != NULL) {
460                 next = curr->next;
461                 task = curr->task;
462                 /*
463                  * see exit_mm(), curr->task must not see
464                  * ->task == NULL before we read ->next.
465                  */
466                 smp_mb();
467                 curr->task = NULL;
468                 wake_up_process(task);
469         }
470
471         mm->core_state = NULL;
472 }
473
474 static bool dump_interrupted(void)
475 {
476         /*
477          * SIGKILL or freezing() interrupt the coredumping. Perhaps we
478          * can do try_to_freeze() and check __fatal_signal_pending(),
479          * but then we need to teach dump_write() to restart and clear
480          * TIF_SIGPENDING.
481          */
482         return signal_pending(current);
483 }
484
485 static void wait_for_dump_helpers(struct file *file)
486 {
487         struct pipe_inode_info *pipe = file->private_data;
488
489         pipe_lock(pipe);
490         pipe->readers++;
491         pipe->writers--;
492         wake_up_interruptible_sync(&pipe->wait);
493         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
494         pipe_unlock(pipe);
495
496         /*
497          * We actually want wait_event_freezable() but then we need
498          * to clear TIF_SIGPENDING and improve dump_interrupted().
499          */
500         wait_event_interruptible(pipe->wait, pipe->readers == 1);
501
502         pipe_lock(pipe);
503         pipe->readers--;
504         pipe->writers++;
505         pipe_unlock(pipe);
506 }
507
508 /*
509  * umh_pipe_setup
510  * helper function to customize the process used
511  * to collect the core in userspace.  Specifically
512  * it sets up a pipe and installs it as fd 0 (stdin)
513  * for the process.  Returns 0 on success, or
514  * PTR_ERR on failure.
515  * Note that it also sets the core limit to 1.  This
516  * is a special value that we use to trap recursive
517  * core dumps
518  */
519 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
520 {
521         struct file *files[2];
522         struct coredump_params *cp = (struct coredump_params *)info->data;
523         int err = create_pipe_files(files, 0);
524         if (err)
525                 return err;
526
527         cp->file = files[1];
528
529         err = replace_fd(0, files[0], 0);
530         fput(files[0]);
531         /* and disallow core files too */
532         current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
533
534         return err;
535 }
536
537 void do_coredump(const siginfo_t *siginfo)
538 {
539         struct core_state core_state;
540         struct core_name cn;
541         struct mm_struct *mm = current->mm;
542         struct linux_binfmt * binfmt;
543         const struct cred *old_cred;
544         struct cred *cred;
545         int retval = 0;
546         int ispipe;
547         struct files_struct *displaced;
548         /* require nonrelative corefile path and be extra careful */
549         bool need_suid_safe = false;
550         bool core_dumped = false;
551         static atomic_t core_dump_count = ATOMIC_INIT(0);
552         struct coredump_params cprm = {
553                 .siginfo = siginfo,
554                 .regs = signal_pt_regs(),
555                 .limit = rlimit(RLIMIT_CORE),
556                 /*
557                  * We must use the same mm->flags while dumping core to avoid
558                  * inconsistency of bit flags, since this flag is not protected
559                  * by any locks.
560                  */
561                 .mm_flags = mm->flags,
562         };
563
564         audit_core_dumps(siginfo->si_signo);
565
566         binfmt = mm->binfmt;
567         if (!binfmt || !binfmt->core_dump)
568                 goto fail;
569         if (!__get_dumpable(cprm.mm_flags))
570                 goto fail;
571
572         cred = prepare_creds();
573         if (!cred)
574                 goto fail;
575         /*
576          * We cannot trust fsuid as being the "true" uid of the process
577          * nor do we know its entire history. We only know it was tainted
578          * so we dump it as root in mode 2, and only into a controlled
579          * environment (pipe handler or fully qualified path).
580          */
581         if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
582                 /* Setuid core dump mode */
583                 cred->fsuid = GLOBAL_ROOT_UID;  /* Dump root private */
584                 need_suid_safe = true;
585         }
586
587         retval = coredump_wait(siginfo->si_signo, &core_state);
588         if (retval < 0)
589                 goto fail_creds;
590
591         old_cred = override_creds(cred);
592
593         ispipe = format_corename(&cn, &cprm);
594
595         if (ispipe) {
596                 int dump_count;
597                 char **helper_argv;
598                 struct subprocess_info *sub_info;
599
600                 if (ispipe < 0) {
601                         printk(KERN_WARNING "format_corename failed\n");
602                         printk(KERN_WARNING "Aborting core\n");
603                         goto fail_unlock;
604                 }
605
606                 if (cprm.limit == 1) {
607                         /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
608                          *
609                          * Normally core limits are irrelevant to pipes, since
610                          * we're not writing to the file system, but we use
611                          * cprm.limit of 1 here as a special value, this is a
612                          * consistent way to catch recursive crashes.
613                          * We can still crash if the core_pattern binary sets
614                          * RLIM_CORE = !1, but it runs as root, and can do
615                          * lots of stupid things.
616                          *
617                          * Note that we use task_tgid_vnr here to grab the pid
618                          * of the process group leader.  That way we get the
619                          * right pid if a thread in a multi-threaded
620                          * core_pattern process dies.
621                          */
622                         printk(KERN_WARNING
623                                 "Process %d(%s) has RLIMIT_CORE set to 1\n",
624                                 task_tgid_vnr(current), current->comm);
625                         printk(KERN_WARNING "Aborting core\n");
626                         goto fail_unlock;
627                 }
628                 cprm.limit = RLIM_INFINITY;
629
630                 dump_count = atomic_inc_return(&core_dump_count);
631                 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
632                         printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
633                                task_tgid_vnr(current), current->comm);
634                         printk(KERN_WARNING "Skipping core dump\n");
635                         goto fail_dropcount;
636                 }
637
638                 helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
639                 if (!helper_argv) {
640                         printk(KERN_WARNING "%s failed to allocate memory\n",
641                                __func__);
642                         goto fail_dropcount;
643                 }
644
645                 retval = -ENOMEM;
646                 sub_info = call_usermodehelper_setup(helper_argv[0],
647                                                 helper_argv, NULL, GFP_KERNEL,
648                                                 umh_pipe_setup, NULL, &cprm);
649                 if (sub_info)
650                         retval = call_usermodehelper_exec(sub_info,
651                                                           UMH_WAIT_EXEC);
652
653                 argv_free(helper_argv);
654                 if (retval) {
655                         printk(KERN_INFO "Core dump to |%s pipe failed\n",
656                                cn.corename);
657                         goto close_fail;
658                 }
659         } else {
660                 struct inode *inode;
661                 int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
662                                  O_LARGEFILE | O_EXCL;
663
664                 if (cprm.limit < binfmt->min_coredump)
665                         goto fail_unlock;
666
667                 if (need_suid_safe && cn.corename[0] != '/') {
668                         printk(KERN_WARNING "Pid %d(%s) can only dump core "\
669                                 "to fully qualified path!\n",
670                                 task_tgid_vnr(current), current->comm);
671                         printk(KERN_WARNING "Skipping core dump\n");
672                         goto fail_unlock;
673                 }
674
675                 /*
676                  * Unlink the file if it exists unless this is a SUID
677                  * binary - in that case, we're running around with root
678                  * privs and don't want to unlink another user's coredump.
679                  */
680                 if (!need_suid_safe) {
681                         mm_segment_t old_fs;
682
683                         old_fs = get_fs();
684                         set_fs(KERNEL_DS);
685                         /*
686                          * If it doesn't exist, that's fine. If there's some
687                          * other problem, we'll catch it at the filp_open().
688                          */
689                         (void) sys_unlink((const char __user *)cn.corename);
690                         set_fs(old_fs);
691                 }
692
693                 /*
694                  * There is a race between unlinking and creating the
695                  * file, but if that causes an EEXIST here, that's
696                  * fine - another process raced with us while creating
697                  * the corefile, and the other process won. To userspace,
698                  * what matters is that at least one of the two processes
699                  * writes its coredump successfully, not which one.
700                  */
701                 if (need_suid_safe) {
702                         /*
703                          * Using user namespaces, normal user tasks can change
704                          * their current->fs->root to point to arbitrary
705                          * directories. Since the intention of the "only dump
706                          * with a fully qualified path" rule is to control where
707                          * coredumps may be placed using root privileges,
708                          * current->fs->root must not be used. Instead, use the
709                          * root directory of init_task.
710                          */
711                         struct path root;
712
713                         task_lock(&init_task);
714                         get_fs_root(init_task.fs, &root);
715                         task_unlock(&init_task);
716                         cprm.file = file_open_root(root.dentry, root.mnt,
717                                 cn.corename, open_flags, 0600);
718                         path_put(&root);
719                 } else {
720                         cprm.file = filp_open(cn.corename, open_flags, 0600);
721                 }
722                 if (IS_ERR(cprm.file))
723                         goto fail_unlock;
724
725                 inode = file_inode(cprm.file);
726                 if (inode->i_nlink > 1)
727                         goto close_fail;
728                 if (d_unhashed(cprm.file->f_path.dentry))
729                         goto close_fail;
730                 /*
731                  * AK: actually i see no reason to not allow this for named
732                  * pipes etc, but keep the previous behaviour for now.
733                  */
734                 if (!S_ISREG(inode->i_mode))
735                         goto close_fail;
736                 /*
737                  * Don't dump core if the filesystem changed owner or mode
738                  * of the file during file creation. This is an issue when
739                  * a process dumps core while its cwd is e.g. on a vfat
740                  * filesystem.
741                  */
742                 if (!uid_eq(inode->i_uid, current_fsuid()))
743                         goto close_fail;
744                 if ((inode->i_mode & 0677) != 0600)
745                         goto close_fail;
746                 if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
747                         goto close_fail;
748                 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
749                         goto close_fail;
750         }
751
752         /* get us an unshared descriptor table; almost always a no-op */
753         retval = unshare_files(&displaced);
754         if (retval)
755                 goto close_fail;
756         if (displaced)
757                 put_files_struct(displaced);
758         if (!dump_interrupted()) {
759                 file_start_write(cprm.file);
760                 core_dumped = binfmt->core_dump(&cprm);
761                 file_end_write(cprm.file);
762         }
763         if (ispipe && core_pipe_limit)
764                 wait_for_dump_helpers(cprm.file);
765 close_fail:
766         if (cprm.file)
767                 filp_close(cprm.file, NULL);
768 fail_dropcount:
769         if (ispipe)
770                 atomic_dec(&core_dump_count);
771 fail_unlock:
772         kfree(cn.corename);
773         coredump_finish(mm, core_dumped);
774         revert_creds(old_cred);
775 fail_creds:
776         put_cred(cred);
777 fail:
778         return;
779 }
780
781 /*
782  * Core dumping helper functions.  These are the only things you should
783  * do on a core-file: use only these functions to write out all the
784  * necessary info.
785  */
786 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
787 {
788         struct file *file = cprm->file;
789         loff_t pos = file->f_pos;
790         ssize_t n;
791         if (cprm->written + nr > cprm->limit)
792                 return 0;
793         while (nr) {
794                 if (dump_interrupted())
795                         return 0;
796                 n = __kernel_write(file, addr, nr, &pos);
797                 if (n <= 0)
798                         return 0;
799                 file->f_pos = pos;
800                 cprm->written += n;
801                 cprm->pos += n;
802                 nr -= n;
803         }
804         return 1;
805 }
806 EXPORT_SYMBOL(dump_emit);
807
808 int dump_skip(struct coredump_params *cprm, size_t nr)
809 {
810         static char zeroes[PAGE_SIZE];
811         struct file *file = cprm->file;
812         if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
813                 if (dump_interrupted() ||
814                     file->f_op->llseek(file, nr, SEEK_CUR) < 0)
815                         return 0;
816                 cprm->pos += nr;
817                 return 1;
818         } else {
819                 while (nr > PAGE_SIZE) {
820                         if (!dump_emit(cprm, zeroes, PAGE_SIZE))
821                                 return 0;
822                         nr -= PAGE_SIZE;
823                 }
824                 return dump_emit(cprm, zeroes, nr);
825         }
826 }
827 EXPORT_SYMBOL(dump_skip);
828
829 int dump_align(struct coredump_params *cprm, int align)
830 {
831         unsigned mod = cprm->pos & (align - 1);
832         if (align & (align - 1))
833                 return 0;
834         return mod ? dump_skip(cprm, align - mod) : 1;
835 }
836 EXPORT_SYMBOL(dump_align);
837
838 /*
839  * Ensures that file size is big enough to contain the current file
840  * postion. This prevents gdb from complaining about a truncated file
841  * if the last "write" to the file was dump_skip.
842  */
843 void dump_truncate(struct coredump_params *cprm)
844 {
845         struct file *file = cprm->file;
846         loff_t offset;
847
848         if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
849                 offset = file->f_op->llseek(file, 0, SEEK_CUR);
850                 if (i_size_read(file->f_mapping->host) < offset)
851                         do_truncate(file->f_path.dentry, offset, 0, file);
852         }
853 }
854 EXPORT_SYMBOL(dump_truncate);