Merge remote-tracking branches 'asoc/fix/intel', 'asoc/fix/topology' and 'asoc/fix...
[sfrench/cifs-2.6.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/iomap.h>
26 #include <linux/mm.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/notifier.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <trace/events/block.h>
49
50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
52                          unsigned long bio_flags,
53                          struct writeback_control *wbc);
54
55 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
56
57 void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
58 {
59         bh->b_end_io = handler;
60         bh->b_private = private;
61 }
62 EXPORT_SYMBOL(init_buffer);
63
64 inline void touch_buffer(struct buffer_head *bh)
65 {
66         trace_block_touch_buffer(bh);
67         mark_page_accessed(bh->b_page);
68 }
69 EXPORT_SYMBOL(touch_buffer);
70
71 void __lock_buffer(struct buffer_head *bh)
72 {
73         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76
77 void unlock_buffer(struct buffer_head *bh)
78 {
79         clear_bit_unlock(BH_Lock, &bh->b_state);
80         smp_mb__after_atomic();
81         wake_up_bit(&bh->b_state, BH_Lock);
82 }
83 EXPORT_SYMBOL(unlock_buffer);
84
85 /*
86  * Returns if the page has dirty or writeback buffers. If all the buffers
87  * are unlocked and clean then the PageDirty information is stale. If
88  * any of the pages are locked, it is assumed they are locked for IO.
89  */
90 void buffer_check_dirty_writeback(struct page *page,
91                                      bool *dirty, bool *writeback)
92 {
93         struct buffer_head *head, *bh;
94         *dirty = false;
95         *writeback = false;
96
97         BUG_ON(!PageLocked(page));
98
99         if (!page_has_buffers(page))
100                 return;
101
102         if (PageWriteback(page))
103                 *writeback = true;
104
105         head = page_buffers(page);
106         bh = head;
107         do {
108                 if (buffer_locked(bh))
109                         *writeback = true;
110
111                 if (buffer_dirty(bh))
112                         *dirty = true;
113
114                 bh = bh->b_this_page;
115         } while (bh != head);
116 }
117 EXPORT_SYMBOL(buffer_check_dirty_writeback);
118
119 /*
120  * Block until a buffer comes unlocked.  This doesn't stop it
121  * from becoming locked again - you have to lock it yourself
122  * if you want to preserve its state.
123  */
124 void __wait_on_buffer(struct buffer_head * bh)
125 {
126         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
127 }
128 EXPORT_SYMBOL(__wait_on_buffer);
129
130 static void
131 __clear_page_buffers(struct page *page)
132 {
133         ClearPagePrivate(page);
134         set_page_private(page, 0);
135         put_page(page);
136 }
137
138 static void buffer_io_error(struct buffer_head *bh, char *msg)
139 {
140         if (!test_bit(BH_Quiet, &bh->b_state))
141                 printk_ratelimited(KERN_ERR
142                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
143                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
144 }
145
146 /*
147  * End-of-IO handler helper function which does not touch the bh after
148  * unlocking it.
149  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
150  * a race there is benign: unlock_buffer() only use the bh's address for
151  * hashing after unlocking the buffer, so it doesn't actually touch the bh
152  * itself.
153  */
154 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
155 {
156         if (uptodate) {
157                 set_buffer_uptodate(bh);
158         } else {
159                 /* This happens, due to failed read-ahead attempts. */
160                 clear_buffer_uptodate(bh);
161         }
162         unlock_buffer(bh);
163 }
164
165 /*
166  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
167  * unlock the buffer. This is what ll_rw_block uses too.
168  */
169 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
170 {
171         __end_buffer_read_notouch(bh, uptodate);
172         put_bh(bh);
173 }
174 EXPORT_SYMBOL(end_buffer_read_sync);
175
176 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
177 {
178         if (uptodate) {
179                 set_buffer_uptodate(bh);
180         } else {
181                 buffer_io_error(bh, ", lost sync page write");
182                 set_buffer_write_io_error(bh);
183                 clear_buffer_uptodate(bh);
184         }
185         unlock_buffer(bh);
186         put_bh(bh);
187 }
188 EXPORT_SYMBOL(end_buffer_write_sync);
189
190 /*
191  * Various filesystems appear to want __find_get_block to be non-blocking.
192  * But it's the page lock which protects the buffers.  To get around this,
193  * we get exclusion from try_to_free_buffers with the blockdev mapping's
194  * private_lock.
195  *
196  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
197  * may be quite high.  This code could TryLock the page, and if that
198  * succeeds, there is no need to take private_lock. (But if
199  * private_lock is contended then so is mapping->tree_lock).
200  */
201 static struct buffer_head *
202 __find_get_block_slow(struct block_device *bdev, sector_t block)
203 {
204         struct inode *bd_inode = bdev->bd_inode;
205         struct address_space *bd_mapping = bd_inode->i_mapping;
206         struct buffer_head *ret = NULL;
207         pgoff_t index;
208         struct buffer_head *bh;
209         struct buffer_head *head;
210         struct page *page;
211         int all_mapped = 1;
212
213         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
214         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
215         if (!page)
216                 goto out;
217
218         spin_lock(&bd_mapping->private_lock);
219         if (!page_has_buffers(page))
220                 goto out_unlock;
221         head = page_buffers(page);
222         bh = head;
223         do {
224                 if (!buffer_mapped(bh))
225                         all_mapped = 0;
226                 else if (bh->b_blocknr == block) {
227                         ret = bh;
228                         get_bh(bh);
229                         goto out_unlock;
230                 }
231                 bh = bh->b_this_page;
232         } while (bh != head);
233
234         /* we might be here because some of the buffers on this page are
235          * not mapped.  This is due to various races between
236          * file io on the block device and getblk.  It gets dealt with
237          * elsewhere, don't buffer_error if we had some unmapped buffers
238          */
239         if (all_mapped) {
240                 printk("__find_get_block_slow() failed. "
241                         "block=%llu, b_blocknr=%llu\n",
242                         (unsigned long long)block,
243                         (unsigned long long)bh->b_blocknr);
244                 printk("b_state=0x%08lx, b_size=%zu\n",
245                         bh->b_state, bh->b_size);
246                 printk("device %pg blocksize: %d\n", bdev,
247                         1 << bd_inode->i_blkbits);
248         }
249 out_unlock:
250         spin_unlock(&bd_mapping->private_lock);
251         put_page(page);
252 out:
253         return ret;
254 }
255
256 /*
257  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
258  */
259 static void free_more_memory(void)
260 {
261         struct zoneref *z;
262         int nid;
263
264         wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
265         yield();
266
267         for_each_online_node(nid) {
268
269                 z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
270                                                 gfp_zone(GFP_NOFS), NULL);
271                 if (z->zone)
272                         try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
273                                                 GFP_NOFS, NULL);
274         }
275 }
276
277 /*
278  * I/O completion handler for block_read_full_page() - pages
279  * which come unlocked at the end of I/O.
280  */
281 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
282 {
283         unsigned long flags;
284         struct buffer_head *first;
285         struct buffer_head *tmp;
286         struct page *page;
287         int page_uptodate = 1;
288
289         BUG_ON(!buffer_async_read(bh));
290
291         page = bh->b_page;
292         if (uptodate) {
293                 set_buffer_uptodate(bh);
294         } else {
295                 clear_buffer_uptodate(bh);
296                 buffer_io_error(bh, ", async page read");
297                 SetPageError(page);
298         }
299
300         /*
301          * Be _very_ careful from here on. Bad things can happen if
302          * two buffer heads end IO at almost the same time and both
303          * decide that the page is now completely done.
304          */
305         first = page_buffers(page);
306         local_irq_save(flags);
307         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
308         clear_buffer_async_read(bh);
309         unlock_buffer(bh);
310         tmp = bh;
311         do {
312                 if (!buffer_uptodate(tmp))
313                         page_uptodate = 0;
314                 if (buffer_async_read(tmp)) {
315                         BUG_ON(!buffer_locked(tmp));
316                         goto still_busy;
317                 }
318                 tmp = tmp->b_this_page;
319         } while (tmp != bh);
320         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
321         local_irq_restore(flags);
322
323         /*
324          * If none of the buffers had errors and they are all
325          * uptodate then we can set the page uptodate.
326          */
327         if (page_uptodate && !PageError(page))
328                 SetPageUptodate(page);
329         unlock_page(page);
330         return;
331
332 still_busy:
333         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
334         local_irq_restore(flags);
335         return;
336 }
337
338 /*
339  * Completion handler for block_write_full_page() - pages which are unlocked
340  * during I/O, and which have PageWriteback cleared upon I/O completion.
341  */
342 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
343 {
344         unsigned long flags;
345         struct buffer_head *first;
346         struct buffer_head *tmp;
347         struct page *page;
348
349         BUG_ON(!buffer_async_write(bh));
350
351         page = bh->b_page;
352         if (uptodate) {
353                 set_buffer_uptodate(bh);
354         } else {
355                 buffer_io_error(bh, ", lost async page write");
356                 mapping_set_error(page->mapping, -EIO);
357                 set_buffer_write_io_error(bh);
358                 clear_buffer_uptodate(bh);
359                 SetPageError(page);
360         }
361
362         first = page_buffers(page);
363         local_irq_save(flags);
364         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
365
366         clear_buffer_async_write(bh);
367         unlock_buffer(bh);
368         tmp = bh->b_this_page;
369         while (tmp != bh) {
370                 if (buffer_async_write(tmp)) {
371                         BUG_ON(!buffer_locked(tmp));
372                         goto still_busy;
373                 }
374                 tmp = tmp->b_this_page;
375         }
376         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
377         local_irq_restore(flags);
378         end_page_writeback(page);
379         return;
380
381 still_busy:
382         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
383         local_irq_restore(flags);
384         return;
385 }
386 EXPORT_SYMBOL(end_buffer_async_write);
387
388 /*
389  * If a page's buffers are under async readin (end_buffer_async_read
390  * completion) then there is a possibility that another thread of
391  * control could lock one of the buffers after it has completed
392  * but while some of the other buffers have not completed.  This
393  * locked buffer would confuse end_buffer_async_read() into not unlocking
394  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
395  * that this buffer is not under async I/O.
396  *
397  * The page comes unlocked when it has no locked buffer_async buffers
398  * left.
399  *
400  * PageLocked prevents anyone starting new async I/O reads any of
401  * the buffers.
402  *
403  * PageWriteback is used to prevent simultaneous writeout of the same
404  * page.
405  *
406  * PageLocked prevents anyone from starting writeback of a page which is
407  * under read I/O (PageWriteback is only ever set against a locked page).
408  */
409 static void mark_buffer_async_read(struct buffer_head *bh)
410 {
411         bh->b_end_io = end_buffer_async_read;
412         set_buffer_async_read(bh);
413 }
414
415 static void mark_buffer_async_write_endio(struct buffer_head *bh,
416                                           bh_end_io_t *handler)
417 {
418         bh->b_end_io = handler;
419         set_buffer_async_write(bh);
420 }
421
422 void mark_buffer_async_write(struct buffer_head *bh)
423 {
424         mark_buffer_async_write_endio(bh, end_buffer_async_write);
425 }
426 EXPORT_SYMBOL(mark_buffer_async_write);
427
428
429 /*
430  * fs/buffer.c contains helper functions for buffer-backed address space's
431  * fsync functions.  A common requirement for buffer-based filesystems is
432  * that certain data from the backing blockdev needs to be written out for
433  * a successful fsync().  For example, ext2 indirect blocks need to be
434  * written back and waited upon before fsync() returns.
435  *
436  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
437  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
438  * management of a list of dependent buffers at ->i_mapping->private_list.
439  *
440  * Locking is a little subtle: try_to_free_buffers() will remove buffers
441  * from their controlling inode's queue when they are being freed.  But
442  * try_to_free_buffers() will be operating against the *blockdev* mapping
443  * at the time, not against the S_ISREG file which depends on those buffers.
444  * So the locking for private_list is via the private_lock in the address_space
445  * which backs the buffers.  Which is different from the address_space 
446  * against which the buffers are listed.  So for a particular address_space,
447  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
448  * mapping->private_list will always be protected by the backing blockdev's
449  * ->private_lock.
450  *
451  * Which introduces a requirement: all buffers on an address_space's
452  * ->private_list must be from the same address_space: the blockdev's.
453  *
454  * address_spaces which do not place buffers at ->private_list via these
455  * utility functions are free to use private_lock and private_list for
456  * whatever they want.  The only requirement is that list_empty(private_list)
457  * be true at clear_inode() time.
458  *
459  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
460  * filesystems should do that.  invalidate_inode_buffers() should just go
461  * BUG_ON(!list_empty).
462  *
463  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
464  * take an address_space, not an inode.  And it should be called
465  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
466  * queued up.
467  *
468  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
469  * list if it is already on a list.  Because if the buffer is on a list,
470  * it *must* already be on the right one.  If not, the filesystem is being
471  * silly.  This will save a ton of locking.  But first we have to ensure
472  * that buffers are taken *off* the old inode's list when they are freed
473  * (presumably in truncate).  That requires careful auditing of all
474  * filesystems (do it inside bforget()).  It could also be done by bringing
475  * b_inode back.
476  */
477
478 /*
479  * The buffer's backing address_space's private_lock must be held
480  */
481 static void __remove_assoc_queue(struct buffer_head *bh)
482 {
483         list_del_init(&bh->b_assoc_buffers);
484         WARN_ON(!bh->b_assoc_map);
485         if (buffer_write_io_error(bh))
486                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
487         bh->b_assoc_map = NULL;
488 }
489
490 int inode_has_buffers(struct inode *inode)
491 {
492         return !list_empty(&inode->i_data.private_list);
493 }
494
495 /*
496  * osync is designed to support O_SYNC io.  It waits synchronously for
497  * all already-submitted IO to complete, but does not queue any new
498  * writes to the disk.
499  *
500  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
501  * you dirty the buffers, and then use osync_inode_buffers to wait for
502  * completion.  Any other dirty buffers which are not yet queued for
503  * write will not be flushed to disk by the osync.
504  */
505 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
506 {
507         struct buffer_head *bh;
508         struct list_head *p;
509         int err = 0;
510
511         spin_lock(lock);
512 repeat:
513         list_for_each_prev(p, list) {
514                 bh = BH_ENTRY(p);
515                 if (buffer_locked(bh)) {
516                         get_bh(bh);
517                         spin_unlock(lock);
518                         wait_on_buffer(bh);
519                         if (!buffer_uptodate(bh))
520                                 err = -EIO;
521                         brelse(bh);
522                         spin_lock(lock);
523                         goto repeat;
524                 }
525         }
526         spin_unlock(lock);
527         return err;
528 }
529
530 static void do_thaw_one(struct super_block *sb, void *unused)
531 {
532         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
533                 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
534 }
535
536 static void do_thaw_all(struct work_struct *work)
537 {
538         iterate_supers(do_thaw_one, NULL);
539         kfree(work);
540         printk(KERN_WARNING "Emergency Thaw complete\n");
541 }
542
543 /**
544  * emergency_thaw_all -- forcibly thaw every frozen filesystem
545  *
546  * Used for emergency unfreeze of all filesystems via SysRq
547  */
548 void emergency_thaw_all(void)
549 {
550         struct work_struct *work;
551
552         work = kmalloc(sizeof(*work), GFP_ATOMIC);
553         if (work) {
554                 INIT_WORK(work, do_thaw_all);
555                 schedule_work(work);
556         }
557 }
558
559 /**
560  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
561  * @mapping: the mapping which wants those buffers written
562  *
563  * Starts I/O against the buffers at mapping->private_list, and waits upon
564  * that I/O.
565  *
566  * Basically, this is a convenience function for fsync().
567  * @mapping is a file or directory which needs those buffers to be written for
568  * a successful fsync().
569  */
570 int sync_mapping_buffers(struct address_space *mapping)
571 {
572         struct address_space *buffer_mapping = mapping->private_data;
573
574         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
575                 return 0;
576
577         return fsync_buffers_list(&buffer_mapping->private_lock,
578                                         &mapping->private_list);
579 }
580 EXPORT_SYMBOL(sync_mapping_buffers);
581
582 /*
583  * Called when we've recently written block `bblock', and it is known that
584  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
585  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
586  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
587  */
588 void write_boundary_block(struct block_device *bdev,
589                         sector_t bblock, unsigned blocksize)
590 {
591         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
592         if (bh) {
593                 if (buffer_dirty(bh))
594                         ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
595                 put_bh(bh);
596         }
597 }
598
599 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
600 {
601         struct address_space *mapping = inode->i_mapping;
602         struct address_space *buffer_mapping = bh->b_page->mapping;
603
604         mark_buffer_dirty(bh);
605         if (!mapping->private_data) {
606                 mapping->private_data = buffer_mapping;
607         } else {
608                 BUG_ON(mapping->private_data != buffer_mapping);
609         }
610         if (!bh->b_assoc_map) {
611                 spin_lock(&buffer_mapping->private_lock);
612                 list_move_tail(&bh->b_assoc_buffers,
613                                 &mapping->private_list);
614                 bh->b_assoc_map = mapping;
615                 spin_unlock(&buffer_mapping->private_lock);
616         }
617 }
618 EXPORT_SYMBOL(mark_buffer_dirty_inode);
619
620 /*
621  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
622  * dirty.
623  *
624  * If warn is true, then emit a warning if the page is not uptodate and has
625  * not been truncated.
626  *
627  * The caller must hold lock_page_memcg().
628  */
629 static void __set_page_dirty(struct page *page, struct address_space *mapping,
630                              int warn)
631 {
632         unsigned long flags;
633
634         spin_lock_irqsave(&mapping->tree_lock, flags);
635         if (page->mapping) {    /* Race with truncate? */
636                 WARN_ON_ONCE(warn && !PageUptodate(page));
637                 account_page_dirtied(page, mapping);
638                 radix_tree_tag_set(&mapping->page_tree,
639                                 page_index(page), PAGECACHE_TAG_DIRTY);
640         }
641         spin_unlock_irqrestore(&mapping->tree_lock, flags);
642 }
643
644 /*
645  * Add a page to the dirty page list.
646  *
647  * It is a sad fact of life that this function is called from several places
648  * deeply under spinlocking.  It may not sleep.
649  *
650  * If the page has buffers, the uptodate buffers are set dirty, to preserve
651  * dirty-state coherency between the page and the buffers.  It the page does
652  * not have buffers then when they are later attached they will all be set
653  * dirty.
654  *
655  * The buffers are dirtied before the page is dirtied.  There's a small race
656  * window in which a writepage caller may see the page cleanness but not the
657  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
658  * before the buffers, a concurrent writepage caller could clear the page dirty
659  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
660  * page on the dirty page list.
661  *
662  * We use private_lock to lock against try_to_free_buffers while using the
663  * page's buffer list.  Also use this to protect against clean buffers being
664  * added to the page after it was set dirty.
665  *
666  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
667  * address_space though.
668  */
669 int __set_page_dirty_buffers(struct page *page)
670 {
671         int newly_dirty;
672         struct address_space *mapping = page_mapping(page);
673
674         if (unlikely(!mapping))
675                 return !TestSetPageDirty(page);
676
677         spin_lock(&mapping->private_lock);
678         if (page_has_buffers(page)) {
679                 struct buffer_head *head = page_buffers(page);
680                 struct buffer_head *bh = head;
681
682                 do {
683                         set_buffer_dirty(bh);
684                         bh = bh->b_this_page;
685                 } while (bh != head);
686         }
687         /*
688          * Lock out page->mem_cgroup migration to keep PageDirty
689          * synchronized with per-memcg dirty page counters.
690          */
691         lock_page_memcg(page);
692         newly_dirty = !TestSetPageDirty(page);
693         spin_unlock(&mapping->private_lock);
694
695         if (newly_dirty)
696                 __set_page_dirty(page, mapping, 1);
697
698         unlock_page_memcg(page);
699
700         if (newly_dirty)
701                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
702
703         return newly_dirty;
704 }
705 EXPORT_SYMBOL(__set_page_dirty_buffers);
706
707 /*
708  * Write out and wait upon a list of buffers.
709  *
710  * We have conflicting pressures: we want to make sure that all
711  * initially dirty buffers get waited on, but that any subsequently
712  * dirtied buffers don't.  After all, we don't want fsync to last
713  * forever if somebody is actively writing to the file.
714  *
715  * Do this in two main stages: first we copy dirty buffers to a
716  * temporary inode list, queueing the writes as we go.  Then we clean
717  * up, waiting for those writes to complete.
718  * 
719  * During this second stage, any subsequent updates to the file may end
720  * up refiling the buffer on the original inode's dirty list again, so
721  * there is a chance we will end up with a buffer queued for write but
722  * not yet completed on that list.  So, as a final cleanup we go through
723  * the osync code to catch these locked, dirty buffers without requeuing
724  * any newly dirty buffers for write.
725  */
726 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
727 {
728         struct buffer_head *bh;
729         struct list_head tmp;
730         struct address_space *mapping;
731         int err = 0, err2;
732         struct blk_plug plug;
733
734         INIT_LIST_HEAD(&tmp);
735         blk_start_plug(&plug);
736
737         spin_lock(lock);
738         while (!list_empty(list)) {
739                 bh = BH_ENTRY(list->next);
740                 mapping = bh->b_assoc_map;
741                 __remove_assoc_queue(bh);
742                 /* Avoid race with mark_buffer_dirty_inode() which does
743                  * a lockless check and we rely on seeing the dirty bit */
744                 smp_mb();
745                 if (buffer_dirty(bh) || buffer_locked(bh)) {
746                         list_add(&bh->b_assoc_buffers, &tmp);
747                         bh->b_assoc_map = mapping;
748                         if (buffer_dirty(bh)) {
749                                 get_bh(bh);
750                                 spin_unlock(lock);
751                                 /*
752                                  * Ensure any pending I/O completes so that
753                                  * write_dirty_buffer() actually writes the
754                                  * current contents - it is a noop if I/O is
755                                  * still in flight on potentially older
756                                  * contents.
757                                  */
758                                 write_dirty_buffer(bh, REQ_SYNC);
759
760                                 /*
761                                  * Kick off IO for the previous mapping. Note
762                                  * that we will not run the very last mapping,
763                                  * wait_on_buffer() will do that for us
764                                  * through sync_buffer().
765                                  */
766                                 brelse(bh);
767                                 spin_lock(lock);
768                         }
769                 }
770         }
771
772         spin_unlock(lock);
773         blk_finish_plug(&plug);
774         spin_lock(lock);
775
776         while (!list_empty(&tmp)) {
777                 bh = BH_ENTRY(tmp.prev);
778                 get_bh(bh);
779                 mapping = bh->b_assoc_map;
780                 __remove_assoc_queue(bh);
781                 /* Avoid race with mark_buffer_dirty_inode() which does
782                  * a lockless check and we rely on seeing the dirty bit */
783                 smp_mb();
784                 if (buffer_dirty(bh)) {
785                         list_add(&bh->b_assoc_buffers,
786                                  &mapping->private_list);
787                         bh->b_assoc_map = mapping;
788                 }
789                 spin_unlock(lock);
790                 wait_on_buffer(bh);
791                 if (!buffer_uptodate(bh))
792                         err = -EIO;
793                 brelse(bh);
794                 spin_lock(lock);
795         }
796         
797         spin_unlock(lock);
798         err2 = osync_buffers_list(lock, list);
799         if (err)
800                 return err;
801         else
802                 return err2;
803 }
804
805 /*
806  * Invalidate any and all dirty buffers on a given inode.  We are
807  * probably unmounting the fs, but that doesn't mean we have already
808  * done a sync().  Just drop the buffers from the inode list.
809  *
810  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
811  * assumes that all the buffers are against the blockdev.  Not true
812  * for reiserfs.
813  */
814 void invalidate_inode_buffers(struct inode *inode)
815 {
816         if (inode_has_buffers(inode)) {
817                 struct address_space *mapping = &inode->i_data;
818                 struct list_head *list = &mapping->private_list;
819                 struct address_space *buffer_mapping = mapping->private_data;
820
821                 spin_lock(&buffer_mapping->private_lock);
822                 while (!list_empty(list))
823                         __remove_assoc_queue(BH_ENTRY(list->next));
824                 spin_unlock(&buffer_mapping->private_lock);
825         }
826 }
827 EXPORT_SYMBOL(invalidate_inode_buffers);
828
829 /*
830  * Remove any clean buffers from the inode's buffer list.  This is called
831  * when we're trying to free the inode itself.  Those buffers can pin it.
832  *
833  * Returns true if all buffers were removed.
834  */
835 int remove_inode_buffers(struct inode *inode)
836 {
837         int ret = 1;
838
839         if (inode_has_buffers(inode)) {
840                 struct address_space *mapping = &inode->i_data;
841                 struct list_head *list = &mapping->private_list;
842                 struct address_space *buffer_mapping = mapping->private_data;
843
844                 spin_lock(&buffer_mapping->private_lock);
845                 while (!list_empty(list)) {
846                         struct buffer_head *bh = BH_ENTRY(list->next);
847                         if (buffer_dirty(bh)) {
848                                 ret = 0;
849                                 break;
850                         }
851                         __remove_assoc_queue(bh);
852                 }
853                 spin_unlock(&buffer_mapping->private_lock);
854         }
855         return ret;
856 }
857
858 /*
859  * Create the appropriate buffers when given a page for data area and
860  * the size of each buffer.. Use the bh->b_this_page linked list to
861  * follow the buffers created.  Return NULL if unable to create more
862  * buffers.
863  *
864  * The retry flag is used to differentiate async IO (paging, swapping)
865  * which may not fail from ordinary buffer allocations.
866  */
867 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
868                 int retry)
869 {
870         struct buffer_head *bh, *head;
871         long offset;
872
873 try_again:
874         head = NULL;
875         offset = PAGE_SIZE;
876         while ((offset -= size) >= 0) {
877                 bh = alloc_buffer_head(GFP_NOFS);
878                 if (!bh)
879                         goto no_grow;
880
881                 bh->b_this_page = head;
882                 bh->b_blocknr = -1;
883                 head = bh;
884
885                 bh->b_size = size;
886
887                 /* Link the buffer to its page */
888                 set_bh_page(bh, page, offset);
889         }
890         return head;
891 /*
892  * In case anything failed, we just free everything we got.
893  */
894 no_grow:
895         if (head) {
896                 do {
897                         bh = head;
898                         head = head->b_this_page;
899                         free_buffer_head(bh);
900                 } while (head);
901         }
902
903         /*
904          * Return failure for non-async IO requests.  Async IO requests
905          * are not allowed to fail, so we have to wait until buffer heads
906          * become available.  But we don't want tasks sleeping with 
907          * partially complete buffers, so all were released above.
908          */
909         if (!retry)
910                 return NULL;
911
912         /* We're _really_ low on memory. Now we just
913          * wait for old buffer heads to become free due to
914          * finishing IO.  Since this is an async request and
915          * the reserve list is empty, we're sure there are 
916          * async buffer heads in use.
917          */
918         free_more_memory();
919         goto try_again;
920 }
921 EXPORT_SYMBOL_GPL(alloc_page_buffers);
922
923 static inline void
924 link_dev_buffers(struct page *page, struct buffer_head *head)
925 {
926         struct buffer_head *bh, *tail;
927
928         bh = head;
929         do {
930                 tail = bh;
931                 bh = bh->b_this_page;
932         } while (bh);
933         tail->b_this_page = head;
934         attach_page_buffers(page, head);
935 }
936
937 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
938 {
939         sector_t retval = ~((sector_t)0);
940         loff_t sz = i_size_read(bdev->bd_inode);
941
942         if (sz) {
943                 unsigned int sizebits = blksize_bits(size);
944                 retval = (sz >> sizebits);
945         }
946         return retval;
947 }
948
949 /*
950  * Initialise the state of a blockdev page's buffers.
951  */ 
952 static sector_t
953 init_page_buffers(struct page *page, struct block_device *bdev,
954                         sector_t block, int size)
955 {
956         struct buffer_head *head = page_buffers(page);
957         struct buffer_head *bh = head;
958         int uptodate = PageUptodate(page);
959         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
960
961         do {
962                 if (!buffer_mapped(bh)) {
963                         init_buffer(bh, NULL, NULL);
964                         bh->b_bdev = bdev;
965                         bh->b_blocknr = block;
966                         if (uptodate)
967                                 set_buffer_uptodate(bh);
968                         if (block < end_block)
969                                 set_buffer_mapped(bh);
970                 }
971                 block++;
972                 bh = bh->b_this_page;
973         } while (bh != head);
974
975         /*
976          * Caller needs to validate requested block against end of device.
977          */
978         return end_block;
979 }
980
981 /*
982  * Create the page-cache page that contains the requested block.
983  *
984  * This is used purely for blockdev mappings.
985  */
986 static int
987 grow_dev_page(struct block_device *bdev, sector_t block,
988               pgoff_t index, int size, int sizebits, gfp_t gfp)
989 {
990         struct inode *inode = bdev->bd_inode;
991         struct page *page;
992         struct buffer_head *bh;
993         sector_t end_block;
994         int ret = 0;            /* Will call free_more_memory() */
995         gfp_t gfp_mask;
996
997         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
998
999         /*
1000          * XXX: __getblk_slow() can not really deal with failure and
1001          * will endlessly loop on improvised global reclaim.  Prefer
1002          * looping in the allocator rather than here, at least that
1003          * code knows what it's doing.
1004          */
1005         gfp_mask |= __GFP_NOFAIL;
1006
1007         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1008         if (!page)
1009                 return ret;
1010
1011         BUG_ON(!PageLocked(page));
1012
1013         if (page_has_buffers(page)) {
1014                 bh = page_buffers(page);
1015                 if (bh->b_size == size) {
1016                         end_block = init_page_buffers(page, bdev,
1017                                                 (sector_t)index << sizebits,
1018                                                 size);
1019                         goto done;
1020                 }
1021                 if (!try_to_free_buffers(page))
1022                         goto failed;
1023         }
1024
1025         /*
1026          * Allocate some buffers for this page
1027          */
1028         bh = alloc_page_buffers(page, size, 0);
1029         if (!bh)
1030                 goto failed;
1031
1032         /*
1033          * Link the page to the buffers and initialise them.  Take the
1034          * lock to be atomic wrt __find_get_block(), which does not
1035          * run under the page lock.
1036          */
1037         spin_lock(&inode->i_mapping->private_lock);
1038         link_dev_buffers(page, bh);
1039         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1040                         size);
1041         spin_unlock(&inode->i_mapping->private_lock);
1042 done:
1043         ret = (block < end_block) ? 1 : -ENXIO;
1044 failed:
1045         unlock_page(page);
1046         put_page(page);
1047         return ret;
1048 }
1049
1050 /*
1051  * Create buffers for the specified block device block's page.  If
1052  * that page was dirty, the buffers are set dirty also.
1053  */
1054 static int
1055 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1056 {
1057         pgoff_t index;
1058         int sizebits;
1059
1060         sizebits = -1;
1061         do {
1062                 sizebits++;
1063         } while ((size << sizebits) < PAGE_SIZE);
1064
1065         index = block >> sizebits;
1066
1067         /*
1068          * Check for a block which wants to lie outside our maximum possible
1069          * pagecache index.  (this comparison is done using sector_t types).
1070          */
1071         if (unlikely(index != block >> sizebits)) {
1072                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1073                         "device %pg\n",
1074                         __func__, (unsigned long long)block,
1075                         bdev);
1076                 return -EIO;
1077         }
1078
1079         /* Create a page with the proper size buffers.. */
1080         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1081 }
1082
1083 static struct buffer_head *
1084 __getblk_slow(struct block_device *bdev, sector_t block,
1085              unsigned size, gfp_t gfp)
1086 {
1087         /* Size must be multiple of hard sectorsize */
1088         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1089                         (size < 512 || size > PAGE_SIZE))) {
1090                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1091                                         size);
1092                 printk(KERN_ERR "logical block size: %d\n",
1093                                         bdev_logical_block_size(bdev));
1094
1095                 dump_stack();
1096                 return NULL;
1097         }
1098
1099         for (;;) {
1100                 struct buffer_head *bh;
1101                 int ret;
1102
1103                 bh = __find_get_block(bdev, block, size);
1104                 if (bh)
1105                         return bh;
1106
1107                 ret = grow_buffers(bdev, block, size, gfp);
1108                 if (ret < 0)
1109                         return NULL;
1110                 if (ret == 0)
1111                         free_more_memory();
1112         }
1113 }
1114
1115 /*
1116  * The relationship between dirty buffers and dirty pages:
1117  *
1118  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1119  * the page is tagged dirty in its radix tree.
1120  *
1121  * At all times, the dirtiness of the buffers represents the dirtiness of
1122  * subsections of the page.  If the page has buffers, the page dirty bit is
1123  * merely a hint about the true dirty state.
1124  *
1125  * When a page is set dirty in its entirety, all its buffers are marked dirty
1126  * (if the page has buffers).
1127  *
1128  * When a buffer is marked dirty, its page is dirtied, but the page's other
1129  * buffers are not.
1130  *
1131  * Also.  When blockdev buffers are explicitly read with bread(), they
1132  * individually become uptodate.  But their backing page remains not
1133  * uptodate - even if all of its buffers are uptodate.  A subsequent
1134  * block_read_full_page() against that page will discover all the uptodate
1135  * buffers, will set the page uptodate and will perform no I/O.
1136  */
1137
1138 /**
1139  * mark_buffer_dirty - mark a buffer_head as needing writeout
1140  * @bh: the buffer_head to mark dirty
1141  *
1142  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1143  * backing page dirty, then tag the page as dirty in its address_space's radix
1144  * tree and then attach the address_space's inode to its superblock's dirty
1145  * inode list.
1146  *
1147  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1148  * mapping->tree_lock and mapping->host->i_lock.
1149  */
1150 void mark_buffer_dirty(struct buffer_head *bh)
1151 {
1152         WARN_ON_ONCE(!buffer_uptodate(bh));
1153
1154         trace_block_dirty_buffer(bh);
1155
1156         /*
1157          * Very *carefully* optimize the it-is-already-dirty case.
1158          *
1159          * Don't let the final "is it dirty" escape to before we
1160          * perhaps modified the buffer.
1161          */
1162         if (buffer_dirty(bh)) {
1163                 smp_mb();
1164                 if (buffer_dirty(bh))
1165                         return;
1166         }
1167
1168         if (!test_set_buffer_dirty(bh)) {
1169                 struct page *page = bh->b_page;
1170                 struct address_space *mapping = NULL;
1171
1172                 lock_page_memcg(page);
1173                 if (!TestSetPageDirty(page)) {
1174                         mapping = page_mapping(page);
1175                         if (mapping)
1176                                 __set_page_dirty(page, mapping, 0);
1177                 }
1178                 unlock_page_memcg(page);
1179                 if (mapping)
1180                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1181         }
1182 }
1183 EXPORT_SYMBOL(mark_buffer_dirty);
1184
1185 /*
1186  * Decrement a buffer_head's reference count.  If all buffers against a page
1187  * have zero reference count, are clean and unlocked, and if the page is clean
1188  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1189  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1190  * a page but it ends up not being freed, and buffers may later be reattached).
1191  */
1192 void __brelse(struct buffer_head * buf)
1193 {
1194         if (atomic_read(&buf->b_count)) {
1195                 put_bh(buf);
1196                 return;
1197         }
1198         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1199 }
1200 EXPORT_SYMBOL(__brelse);
1201
1202 /*
1203  * bforget() is like brelse(), except it discards any
1204  * potentially dirty data.
1205  */
1206 void __bforget(struct buffer_head *bh)
1207 {
1208         clear_buffer_dirty(bh);
1209         if (bh->b_assoc_map) {
1210                 struct address_space *buffer_mapping = bh->b_page->mapping;
1211
1212                 spin_lock(&buffer_mapping->private_lock);
1213                 list_del_init(&bh->b_assoc_buffers);
1214                 bh->b_assoc_map = NULL;
1215                 spin_unlock(&buffer_mapping->private_lock);
1216         }
1217         __brelse(bh);
1218 }
1219 EXPORT_SYMBOL(__bforget);
1220
1221 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1222 {
1223         lock_buffer(bh);
1224         if (buffer_uptodate(bh)) {
1225                 unlock_buffer(bh);
1226                 return bh;
1227         } else {
1228                 get_bh(bh);
1229                 bh->b_end_io = end_buffer_read_sync;
1230                 submit_bh(REQ_OP_READ, 0, bh);
1231                 wait_on_buffer(bh);
1232                 if (buffer_uptodate(bh))
1233                         return bh;
1234         }
1235         brelse(bh);
1236         return NULL;
1237 }
1238
1239 /*
1240  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1241  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1242  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1243  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1244  * CPU's LRUs at the same time.
1245  *
1246  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1247  * sb_find_get_block().
1248  *
1249  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1250  * a local interrupt disable for that.
1251  */
1252
1253 #define BH_LRU_SIZE     16
1254
1255 struct bh_lru {
1256         struct buffer_head *bhs[BH_LRU_SIZE];
1257 };
1258
1259 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1260
1261 #ifdef CONFIG_SMP
1262 #define bh_lru_lock()   local_irq_disable()
1263 #define bh_lru_unlock() local_irq_enable()
1264 #else
1265 #define bh_lru_lock()   preempt_disable()
1266 #define bh_lru_unlock() preempt_enable()
1267 #endif
1268
1269 static inline void check_irqs_on(void)
1270 {
1271 #ifdef irqs_disabled
1272         BUG_ON(irqs_disabled());
1273 #endif
1274 }
1275
1276 /*
1277  * The LRU management algorithm is dopey-but-simple.  Sorry.
1278  */
1279 static void bh_lru_install(struct buffer_head *bh)
1280 {
1281         struct buffer_head *evictee = NULL;
1282
1283         check_irqs_on();
1284         bh_lru_lock();
1285         if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1286                 struct buffer_head *bhs[BH_LRU_SIZE];
1287                 int in;
1288                 int out = 0;
1289
1290                 get_bh(bh);
1291                 bhs[out++] = bh;
1292                 for (in = 0; in < BH_LRU_SIZE; in++) {
1293                         struct buffer_head *bh2 =
1294                                 __this_cpu_read(bh_lrus.bhs[in]);
1295
1296                         if (bh2 == bh) {
1297                                 __brelse(bh2);
1298                         } else {
1299                                 if (out >= BH_LRU_SIZE) {
1300                                         BUG_ON(evictee != NULL);
1301                                         evictee = bh2;
1302                                 } else {
1303                                         bhs[out++] = bh2;
1304                                 }
1305                         }
1306                 }
1307                 while (out < BH_LRU_SIZE)
1308                         bhs[out++] = NULL;
1309                 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1310         }
1311         bh_lru_unlock();
1312
1313         if (evictee)
1314                 __brelse(evictee);
1315 }
1316
1317 /*
1318  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1319  */
1320 static struct buffer_head *
1321 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1322 {
1323         struct buffer_head *ret = NULL;
1324         unsigned int i;
1325
1326         check_irqs_on();
1327         bh_lru_lock();
1328         for (i = 0; i < BH_LRU_SIZE; i++) {
1329                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1330
1331                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1332                     bh->b_size == size) {
1333                         if (i) {
1334                                 while (i) {
1335                                         __this_cpu_write(bh_lrus.bhs[i],
1336                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1337                                         i--;
1338                                 }
1339                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1340                         }
1341                         get_bh(bh);
1342                         ret = bh;
1343                         break;
1344                 }
1345         }
1346         bh_lru_unlock();
1347         return ret;
1348 }
1349
1350 /*
1351  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1352  * it in the LRU and mark it as accessed.  If it is not present then return
1353  * NULL
1354  */
1355 struct buffer_head *
1356 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1357 {
1358         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1359
1360         if (bh == NULL) {
1361                 /* __find_get_block_slow will mark the page accessed */
1362                 bh = __find_get_block_slow(bdev, block);
1363                 if (bh)
1364                         bh_lru_install(bh);
1365         } else
1366                 touch_buffer(bh);
1367
1368         return bh;
1369 }
1370 EXPORT_SYMBOL(__find_get_block);
1371
1372 /*
1373  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1374  * which corresponds to the passed block_device, block and size. The
1375  * returned buffer has its reference count incremented.
1376  *
1377  * __getblk_gfp() will lock up the machine if grow_dev_page's
1378  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1379  */
1380 struct buffer_head *
1381 __getblk_gfp(struct block_device *bdev, sector_t block,
1382              unsigned size, gfp_t gfp)
1383 {
1384         struct buffer_head *bh = __find_get_block(bdev, block, size);
1385
1386         might_sleep();
1387         if (bh == NULL)
1388                 bh = __getblk_slow(bdev, block, size, gfp);
1389         return bh;
1390 }
1391 EXPORT_SYMBOL(__getblk_gfp);
1392
1393 /*
1394  * Do async read-ahead on a buffer..
1395  */
1396 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1397 {
1398         struct buffer_head *bh = __getblk(bdev, block, size);
1399         if (likely(bh)) {
1400                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1401                 brelse(bh);
1402         }
1403 }
1404 EXPORT_SYMBOL(__breadahead);
1405
1406 /**
1407  *  __bread_gfp() - reads a specified block and returns the bh
1408  *  @bdev: the block_device to read from
1409  *  @block: number of block
1410  *  @size: size (in bytes) to read
1411  *  @gfp: page allocation flag
1412  *
1413  *  Reads a specified block, and returns buffer head that contains it.
1414  *  The page cache can be allocated from non-movable area
1415  *  not to prevent page migration if you set gfp to zero.
1416  *  It returns NULL if the block was unreadable.
1417  */
1418 struct buffer_head *
1419 __bread_gfp(struct block_device *bdev, sector_t block,
1420                    unsigned size, gfp_t gfp)
1421 {
1422         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1423
1424         if (likely(bh) && !buffer_uptodate(bh))
1425                 bh = __bread_slow(bh);
1426         return bh;
1427 }
1428 EXPORT_SYMBOL(__bread_gfp);
1429
1430 /*
1431  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1432  * This doesn't race because it runs in each cpu either in irq
1433  * or with preempt disabled.
1434  */
1435 static void invalidate_bh_lru(void *arg)
1436 {
1437         struct bh_lru *b = &get_cpu_var(bh_lrus);
1438         int i;
1439
1440         for (i = 0; i < BH_LRU_SIZE; i++) {
1441                 brelse(b->bhs[i]);
1442                 b->bhs[i] = NULL;
1443         }
1444         put_cpu_var(bh_lrus);
1445 }
1446
1447 static bool has_bh_in_lru(int cpu, void *dummy)
1448 {
1449         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1450         int i;
1451         
1452         for (i = 0; i < BH_LRU_SIZE; i++) {
1453                 if (b->bhs[i])
1454                         return 1;
1455         }
1456
1457         return 0;
1458 }
1459
1460 void invalidate_bh_lrus(void)
1461 {
1462         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1463 }
1464 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1465
1466 void set_bh_page(struct buffer_head *bh,
1467                 struct page *page, unsigned long offset)
1468 {
1469         bh->b_page = page;
1470         BUG_ON(offset >= PAGE_SIZE);
1471         if (PageHighMem(page))
1472                 /*
1473                  * This catches illegal uses and preserves the offset:
1474                  */
1475                 bh->b_data = (char *)(0 + offset);
1476         else
1477                 bh->b_data = page_address(page) + offset;
1478 }
1479 EXPORT_SYMBOL(set_bh_page);
1480
1481 /*
1482  * Called when truncating a buffer on a page completely.
1483  */
1484
1485 /* Bits that are cleared during an invalidate */
1486 #define BUFFER_FLAGS_DISCARD \
1487         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1488          1 << BH_Delay | 1 << BH_Unwritten)
1489
1490 static void discard_buffer(struct buffer_head * bh)
1491 {
1492         unsigned long b_state, b_state_old;
1493
1494         lock_buffer(bh);
1495         clear_buffer_dirty(bh);
1496         bh->b_bdev = NULL;
1497         b_state = bh->b_state;
1498         for (;;) {
1499                 b_state_old = cmpxchg(&bh->b_state, b_state,
1500                                       (b_state & ~BUFFER_FLAGS_DISCARD));
1501                 if (b_state_old == b_state)
1502                         break;
1503                 b_state = b_state_old;
1504         }
1505         unlock_buffer(bh);
1506 }
1507
1508 /**
1509  * block_invalidatepage - invalidate part or all of a buffer-backed page
1510  *
1511  * @page: the page which is affected
1512  * @offset: start of the range to invalidate
1513  * @length: length of the range to invalidate
1514  *
1515  * block_invalidatepage() is called when all or part of the page has become
1516  * invalidated by a truncate operation.
1517  *
1518  * block_invalidatepage() does not have to release all buffers, but it must
1519  * ensure that no dirty buffer is left outside @offset and that no I/O
1520  * is underway against any of the blocks which are outside the truncation
1521  * point.  Because the caller is about to free (and possibly reuse) those
1522  * blocks on-disk.
1523  */
1524 void block_invalidatepage(struct page *page, unsigned int offset,
1525                           unsigned int length)
1526 {
1527         struct buffer_head *head, *bh, *next;
1528         unsigned int curr_off = 0;
1529         unsigned int stop = length + offset;
1530
1531         BUG_ON(!PageLocked(page));
1532         if (!page_has_buffers(page))
1533                 goto out;
1534
1535         /*
1536          * Check for overflow
1537          */
1538         BUG_ON(stop > PAGE_SIZE || stop < length);
1539
1540         head = page_buffers(page);
1541         bh = head;
1542         do {
1543                 unsigned int next_off = curr_off + bh->b_size;
1544                 next = bh->b_this_page;
1545
1546                 /*
1547                  * Are we still fully in range ?
1548                  */
1549                 if (next_off > stop)
1550                         goto out;
1551
1552                 /*
1553                  * is this block fully invalidated?
1554                  */
1555                 if (offset <= curr_off)
1556                         discard_buffer(bh);
1557                 curr_off = next_off;
1558                 bh = next;
1559         } while (bh != head);
1560
1561         /*
1562          * We release buffers only if the entire page is being invalidated.
1563          * The get_block cached value has been unconditionally invalidated,
1564          * so real IO is not possible anymore.
1565          */
1566         if (offset == 0)
1567                 try_to_release_page(page, 0);
1568 out:
1569         return;
1570 }
1571 EXPORT_SYMBOL(block_invalidatepage);
1572
1573
1574 /*
1575  * We attach and possibly dirty the buffers atomically wrt
1576  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1577  * is already excluded via the page lock.
1578  */
1579 void create_empty_buffers(struct page *page,
1580                         unsigned long blocksize, unsigned long b_state)
1581 {
1582         struct buffer_head *bh, *head, *tail;
1583
1584         head = alloc_page_buffers(page, blocksize, 1);
1585         bh = head;
1586         do {
1587                 bh->b_state |= b_state;
1588                 tail = bh;
1589                 bh = bh->b_this_page;
1590         } while (bh);
1591         tail->b_this_page = head;
1592
1593         spin_lock(&page->mapping->private_lock);
1594         if (PageUptodate(page) || PageDirty(page)) {
1595                 bh = head;
1596                 do {
1597                         if (PageDirty(page))
1598                                 set_buffer_dirty(bh);
1599                         if (PageUptodate(page))
1600                                 set_buffer_uptodate(bh);
1601                         bh = bh->b_this_page;
1602                 } while (bh != head);
1603         }
1604         attach_page_buffers(page, head);
1605         spin_unlock(&page->mapping->private_lock);
1606 }
1607 EXPORT_SYMBOL(create_empty_buffers);
1608
1609 /**
1610  * clean_bdev_aliases: clean a range of buffers in block device
1611  * @bdev: Block device to clean buffers in
1612  * @block: Start of a range of blocks to clean
1613  * @len: Number of blocks to clean
1614  *
1615  * We are taking a range of blocks for data and we don't want writeback of any
1616  * buffer-cache aliases starting from return from this function and until the
1617  * moment when something will explicitly mark the buffer dirty (hopefully that
1618  * will not happen until we will free that block ;-) We don't even need to mark
1619  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1620  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1621  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1622  * would confuse anyone who might pick it with bread() afterwards...
1623  *
1624  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1625  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1626  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1627  * need to.  That happens here.
1628  */
1629 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1630 {
1631         struct inode *bd_inode = bdev->bd_inode;
1632         struct address_space *bd_mapping = bd_inode->i_mapping;
1633         struct pagevec pvec;
1634         pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1635         pgoff_t end;
1636         int i;
1637         struct buffer_head *bh;
1638         struct buffer_head *head;
1639
1640         end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1641         pagevec_init(&pvec, 0);
1642         while (index <= end && pagevec_lookup(&pvec, bd_mapping, index,
1643                         min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
1644                 for (i = 0; i < pagevec_count(&pvec); i++) {
1645                         struct page *page = pvec.pages[i];
1646
1647                         index = page->index;
1648                         if (index > end)
1649                                 break;
1650                         if (!page_has_buffers(page))
1651                                 continue;
1652                         /*
1653                          * We use page lock instead of bd_mapping->private_lock
1654                          * to pin buffers here since we can afford to sleep and
1655                          * it scales better than a global spinlock lock.
1656                          */
1657                         lock_page(page);
1658                         /* Recheck when the page is locked which pins bhs */
1659                         if (!page_has_buffers(page))
1660                                 goto unlock_page;
1661                         head = page_buffers(page);
1662                         bh = head;
1663                         do {
1664                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1665                                         goto next;
1666                                 if (bh->b_blocknr >= block + len)
1667                                         break;
1668                                 clear_buffer_dirty(bh);
1669                                 wait_on_buffer(bh);
1670                                 clear_buffer_req(bh);
1671 next:
1672                                 bh = bh->b_this_page;
1673                         } while (bh != head);
1674 unlock_page:
1675                         unlock_page(page);
1676                 }
1677                 pagevec_release(&pvec);
1678                 cond_resched();
1679                 index++;
1680         }
1681 }
1682 EXPORT_SYMBOL(clean_bdev_aliases);
1683
1684 /*
1685  * Size is a power-of-two in the range 512..PAGE_SIZE,
1686  * and the case we care about most is PAGE_SIZE.
1687  *
1688  * So this *could* possibly be written with those
1689  * constraints in mind (relevant mostly if some
1690  * architecture has a slow bit-scan instruction)
1691  */
1692 static inline int block_size_bits(unsigned int blocksize)
1693 {
1694         return ilog2(blocksize);
1695 }
1696
1697 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1698 {
1699         BUG_ON(!PageLocked(page));
1700
1701         if (!page_has_buffers(page))
1702                 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1703         return page_buffers(page);
1704 }
1705
1706 /*
1707  * NOTE! All mapped/uptodate combinations are valid:
1708  *
1709  *      Mapped  Uptodate        Meaning
1710  *
1711  *      No      No              "unknown" - must do get_block()
1712  *      No      Yes             "hole" - zero-filled
1713  *      Yes     No              "allocated" - allocated on disk, not read in
1714  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1715  *
1716  * "Dirty" is valid only with the last case (mapped+uptodate).
1717  */
1718
1719 /*
1720  * While block_write_full_page is writing back the dirty buffers under
1721  * the page lock, whoever dirtied the buffers may decide to clean them
1722  * again at any time.  We handle that by only looking at the buffer
1723  * state inside lock_buffer().
1724  *
1725  * If block_write_full_page() is called for regular writeback
1726  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1727  * locked buffer.   This only can happen if someone has written the buffer
1728  * directly, with submit_bh().  At the address_space level PageWriteback
1729  * prevents this contention from occurring.
1730  *
1731  * If block_write_full_page() is called with wbc->sync_mode ==
1732  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1733  * causes the writes to be flagged as synchronous writes.
1734  */
1735 int __block_write_full_page(struct inode *inode, struct page *page,
1736                         get_block_t *get_block, struct writeback_control *wbc,
1737                         bh_end_io_t *handler)
1738 {
1739         int err;
1740         sector_t block;
1741         sector_t last_block;
1742         struct buffer_head *bh, *head;
1743         unsigned int blocksize, bbits;
1744         int nr_underway = 0;
1745         int write_flags = wbc_to_write_flags(wbc);
1746
1747         head = create_page_buffers(page, inode,
1748                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1749
1750         /*
1751          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1752          * here, and the (potentially unmapped) buffers may become dirty at
1753          * any time.  If a buffer becomes dirty here after we've inspected it
1754          * then we just miss that fact, and the page stays dirty.
1755          *
1756          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1757          * handle that here by just cleaning them.
1758          */
1759
1760         bh = head;
1761         blocksize = bh->b_size;
1762         bbits = block_size_bits(blocksize);
1763
1764         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1765         last_block = (i_size_read(inode) - 1) >> bbits;
1766
1767         /*
1768          * Get all the dirty buffers mapped to disk addresses and
1769          * handle any aliases from the underlying blockdev's mapping.
1770          */
1771         do {
1772                 if (block > last_block) {
1773                         /*
1774                          * mapped buffers outside i_size will occur, because
1775                          * this page can be outside i_size when there is a
1776                          * truncate in progress.
1777                          */
1778                         /*
1779                          * The buffer was zeroed by block_write_full_page()
1780                          */
1781                         clear_buffer_dirty(bh);
1782                         set_buffer_uptodate(bh);
1783                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1784                            buffer_dirty(bh)) {
1785                         WARN_ON(bh->b_size != blocksize);
1786                         err = get_block(inode, block, bh, 1);
1787                         if (err)
1788                                 goto recover;
1789                         clear_buffer_delay(bh);
1790                         if (buffer_new(bh)) {
1791                                 /* blockdev mappings never come here */
1792                                 clear_buffer_new(bh);
1793                                 clean_bdev_bh_alias(bh);
1794                         }
1795                 }
1796                 bh = bh->b_this_page;
1797                 block++;
1798         } while (bh != head);
1799
1800         do {
1801                 if (!buffer_mapped(bh))
1802                         continue;
1803                 /*
1804                  * If it's a fully non-blocking write attempt and we cannot
1805                  * lock the buffer then redirty the page.  Note that this can
1806                  * potentially cause a busy-wait loop from writeback threads
1807                  * and kswapd activity, but those code paths have their own
1808                  * higher-level throttling.
1809                  */
1810                 if (wbc->sync_mode != WB_SYNC_NONE) {
1811                         lock_buffer(bh);
1812                 } else if (!trylock_buffer(bh)) {
1813                         redirty_page_for_writepage(wbc, page);
1814                         continue;
1815                 }
1816                 if (test_clear_buffer_dirty(bh)) {
1817                         mark_buffer_async_write_endio(bh, handler);
1818                 } else {
1819                         unlock_buffer(bh);
1820                 }
1821         } while ((bh = bh->b_this_page) != head);
1822
1823         /*
1824          * The page and its buffers are protected by PageWriteback(), so we can
1825          * drop the bh refcounts early.
1826          */
1827         BUG_ON(PageWriteback(page));
1828         set_page_writeback(page);
1829
1830         do {
1831                 struct buffer_head *next = bh->b_this_page;
1832                 if (buffer_async_write(bh)) {
1833                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
1834                         nr_underway++;
1835                 }
1836                 bh = next;
1837         } while (bh != head);
1838         unlock_page(page);
1839
1840         err = 0;
1841 done:
1842         if (nr_underway == 0) {
1843                 /*
1844                  * The page was marked dirty, but the buffers were
1845                  * clean.  Someone wrote them back by hand with
1846                  * ll_rw_block/submit_bh.  A rare case.
1847                  */
1848                 end_page_writeback(page);
1849
1850                 /*
1851                  * The page and buffer_heads can be released at any time from
1852                  * here on.
1853                  */
1854         }
1855         return err;
1856
1857 recover:
1858         /*
1859          * ENOSPC, or some other error.  We may already have added some
1860          * blocks to the file, so we need to write these out to avoid
1861          * exposing stale data.
1862          * The page is currently locked and not marked for writeback
1863          */
1864         bh = head;
1865         /* Recovery: lock and submit the mapped buffers */
1866         do {
1867                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1868                     !buffer_delay(bh)) {
1869                         lock_buffer(bh);
1870                         mark_buffer_async_write_endio(bh, handler);
1871                 } else {
1872                         /*
1873                          * The buffer may have been set dirty during
1874                          * attachment to a dirty page.
1875                          */
1876                         clear_buffer_dirty(bh);
1877                 }
1878         } while ((bh = bh->b_this_page) != head);
1879         SetPageError(page);
1880         BUG_ON(PageWriteback(page));
1881         mapping_set_error(page->mapping, err);
1882         set_page_writeback(page);
1883         do {
1884                 struct buffer_head *next = bh->b_this_page;
1885                 if (buffer_async_write(bh)) {
1886                         clear_buffer_dirty(bh);
1887                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
1888                         nr_underway++;
1889                 }
1890                 bh = next;
1891         } while (bh != head);
1892         unlock_page(page);
1893         goto done;
1894 }
1895 EXPORT_SYMBOL(__block_write_full_page);
1896
1897 /*
1898  * If a page has any new buffers, zero them out here, and mark them uptodate
1899  * and dirty so they'll be written out (in order to prevent uninitialised
1900  * block data from leaking). And clear the new bit.
1901  */
1902 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1903 {
1904         unsigned int block_start, block_end;
1905         struct buffer_head *head, *bh;
1906
1907         BUG_ON(!PageLocked(page));
1908         if (!page_has_buffers(page))
1909                 return;
1910
1911         bh = head = page_buffers(page);
1912         block_start = 0;
1913         do {
1914                 block_end = block_start + bh->b_size;
1915
1916                 if (buffer_new(bh)) {
1917                         if (block_end > from && block_start < to) {
1918                                 if (!PageUptodate(page)) {
1919                                         unsigned start, size;
1920
1921                                         start = max(from, block_start);
1922                                         size = min(to, block_end) - start;
1923
1924                                         zero_user(page, start, size);
1925                                         set_buffer_uptodate(bh);
1926                                 }
1927
1928                                 clear_buffer_new(bh);
1929                                 mark_buffer_dirty(bh);
1930                         }
1931                 }
1932
1933                 block_start = block_end;
1934                 bh = bh->b_this_page;
1935         } while (bh != head);
1936 }
1937 EXPORT_SYMBOL(page_zero_new_buffers);
1938
1939 static void
1940 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1941                 struct iomap *iomap)
1942 {
1943         loff_t offset = block << inode->i_blkbits;
1944
1945         bh->b_bdev = iomap->bdev;
1946
1947         /*
1948          * Block points to offset in file we need to map, iomap contains
1949          * the offset at which the map starts. If the map ends before the
1950          * current block, then do not map the buffer and let the caller
1951          * handle it.
1952          */
1953         BUG_ON(offset >= iomap->offset + iomap->length);
1954
1955         switch (iomap->type) {
1956         case IOMAP_HOLE:
1957                 /*
1958                  * If the buffer is not up to date or beyond the current EOF,
1959                  * we need to mark it as new to ensure sub-block zeroing is
1960                  * executed if necessary.
1961                  */
1962                 if (!buffer_uptodate(bh) ||
1963                     (offset >= i_size_read(inode)))
1964                         set_buffer_new(bh);
1965                 break;
1966         case IOMAP_DELALLOC:
1967                 if (!buffer_uptodate(bh) ||
1968                     (offset >= i_size_read(inode)))
1969                         set_buffer_new(bh);
1970                 set_buffer_uptodate(bh);
1971                 set_buffer_mapped(bh);
1972                 set_buffer_delay(bh);
1973                 break;
1974         case IOMAP_UNWRITTEN:
1975                 /*
1976                  * For unwritten regions, we always need to ensure that
1977                  * sub-block writes cause the regions in the block we are not
1978                  * writing to are zeroed. Set the buffer as new to ensure this.
1979                  */
1980                 set_buffer_new(bh);
1981                 set_buffer_unwritten(bh);
1982                 /* FALLTHRU */
1983         case IOMAP_MAPPED:
1984                 if (offset >= i_size_read(inode))
1985                         set_buffer_new(bh);
1986                 bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1987                                 ((offset - iomap->offset) >> inode->i_blkbits);
1988                 set_buffer_mapped(bh);
1989                 break;
1990         }
1991 }
1992
1993 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1994                 get_block_t *get_block, struct iomap *iomap)
1995 {
1996         unsigned from = pos & (PAGE_SIZE - 1);
1997         unsigned to = from + len;
1998         struct inode *inode = page->mapping->host;
1999         unsigned block_start, block_end;
2000         sector_t block;
2001         int err = 0;
2002         unsigned blocksize, bbits;
2003         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2004
2005         BUG_ON(!PageLocked(page));
2006         BUG_ON(from > PAGE_SIZE);
2007         BUG_ON(to > PAGE_SIZE);
2008         BUG_ON(from > to);
2009
2010         head = create_page_buffers(page, inode, 0);
2011         blocksize = head->b_size;
2012         bbits = block_size_bits(blocksize);
2013
2014         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2015
2016         for(bh = head, block_start = 0; bh != head || !block_start;
2017             block++, block_start=block_end, bh = bh->b_this_page) {
2018                 block_end = block_start + blocksize;
2019                 if (block_end <= from || block_start >= to) {
2020                         if (PageUptodate(page)) {
2021                                 if (!buffer_uptodate(bh))
2022                                         set_buffer_uptodate(bh);
2023                         }
2024                         continue;
2025                 }
2026                 if (buffer_new(bh))
2027                         clear_buffer_new(bh);
2028                 if (!buffer_mapped(bh)) {
2029                         WARN_ON(bh->b_size != blocksize);
2030                         if (get_block) {
2031                                 err = get_block(inode, block, bh, 1);
2032                                 if (err)
2033                                         break;
2034                         } else {
2035                                 iomap_to_bh(inode, block, bh, iomap);
2036                         }
2037
2038                         if (buffer_new(bh)) {
2039                                 clean_bdev_bh_alias(bh);
2040                                 if (PageUptodate(page)) {
2041                                         clear_buffer_new(bh);
2042                                         set_buffer_uptodate(bh);
2043                                         mark_buffer_dirty(bh);
2044                                         continue;
2045                                 }
2046                                 if (block_end > to || block_start < from)
2047                                         zero_user_segments(page,
2048                                                 to, block_end,
2049                                                 block_start, from);
2050                                 continue;
2051                         }
2052                 }
2053                 if (PageUptodate(page)) {
2054                         if (!buffer_uptodate(bh))
2055                                 set_buffer_uptodate(bh);
2056                         continue; 
2057                 }
2058                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2059                     !buffer_unwritten(bh) &&
2060                      (block_start < from || block_end > to)) {
2061                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2062                         *wait_bh++=bh;
2063                 }
2064         }
2065         /*
2066          * If we issued read requests - let them complete.
2067          */
2068         while(wait_bh > wait) {
2069                 wait_on_buffer(*--wait_bh);
2070                 if (!buffer_uptodate(*wait_bh))
2071                         err = -EIO;
2072         }
2073         if (unlikely(err))
2074                 page_zero_new_buffers(page, from, to);
2075         return err;
2076 }
2077
2078 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2079                 get_block_t *get_block)
2080 {
2081         return __block_write_begin_int(page, pos, len, get_block, NULL);
2082 }
2083 EXPORT_SYMBOL(__block_write_begin);
2084
2085 static int __block_commit_write(struct inode *inode, struct page *page,
2086                 unsigned from, unsigned to)
2087 {
2088         unsigned block_start, block_end;
2089         int partial = 0;
2090         unsigned blocksize;
2091         struct buffer_head *bh, *head;
2092
2093         bh = head = page_buffers(page);
2094         blocksize = bh->b_size;
2095
2096         block_start = 0;
2097         do {
2098                 block_end = block_start + blocksize;
2099                 if (block_end <= from || block_start >= to) {
2100                         if (!buffer_uptodate(bh))
2101                                 partial = 1;
2102                 } else {
2103                         set_buffer_uptodate(bh);
2104                         mark_buffer_dirty(bh);
2105                 }
2106                 clear_buffer_new(bh);
2107
2108                 block_start = block_end;
2109                 bh = bh->b_this_page;
2110         } while (bh != head);
2111
2112         /*
2113          * If this is a partial write which happened to make all buffers
2114          * uptodate then we can optimize away a bogus readpage() for
2115          * the next read(). Here we 'discover' whether the page went
2116          * uptodate as a result of this (potentially partial) write.
2117          */
2118         if (!partial)
2119                 SetPageUptodate(page);
2120         return 0;
2121 }
2122
2123 /*
2124  * block_write_begin takes care of the basic task of block allocation and
2125  * bringing partial write blocks uptodate first.
2126  *
2127  * The filesystem needs to handle block truncation upon failure.
2128  */
2129 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2130                 unsigned flags, struct page **pagep, get_block_t *get_block)
2131 {
2132         pgoff_t index = pos >> PAGE_SHIFT;
2133         struct page *page;
2134         int status;
2135
2136         page = grab_cache_page_write_begin(mapping, index, flags);
2137         if (!page)
2138                 return -ENOMEM;
2139
2140         status = __block_write_begin(page, pos, len, get_block);
2141         if (unlikely(status)) {
2142                 unlock_page(page);
2143                 put_page(page);
2144                 page = NULL;
2145         }
2146
2147         *pagep = page;
2148         return status;
2149 }
2150 EXPORT_SYMBOL(block_write_begin);
2151
2152 int block_write_end(struct file *file, struct address_space *mapping,
2153                         loff_t pos, unsigned len, unsigned copied,
2154                         struct page *page, void *fsdata)
2155 {
2156         struct inode *inode = mapping->host;
2157         unsigned start;
2158
2159         start = pos & (PAGE_SIZE - 1);
2160
2161         if (unlikely(copied < len)) {
2162                 /*
2163                  * The buffers that were written will now be uptodate, so we
2164                  * don't have to worry about a readpage reading them and
2165                  * overwriting a partial write. However if we have encountered
2166                  * a short write and only partially written into a buffer, it
2167                  * will not be marked uptodate, so a readpage might come in and
2168                  * destroy our partial write.
2169                  *
2170                  * Do the simplest thing, and just treat any short write to a
2171                  * non uptodate page as a zero-length write, and force the
2172                  * caller to redo the whole thing.
2173                  */
2174                 if (!PageUptodate(page))
2175                         copied = 0;
2176
2177                 page_zero_new_buffers(page, start+copied, start+len);
2178         }
2179         flush_dcache_page(page);
2180
2181         /* This could be a short (even 0-length) commit */
2182         __block_commit_write(inode, page, start, start+copied);
2183
2184         return copied;
2185 }
2186 EXPORT_SYMBOL(block_write_end);
2187
2188 int generic_write_end(struct file *file, struct address_space *mapping,
2189                         loff_t pos, unsigned len, unsigned copied,
2190                         struct page *page, void *fsdata)
2191 {
2192         struct inode *inode = mapping->host;
2193         loff_t old_size = inode->i_size;
2194         int i_size_changed = 0;
2195
2196         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2197
2198         /*
2199          * No need to use i_size_read() here, the i_size
2200          * cannot change under us because we hold i_mutex.
2201          *
2202          * But it's important to update i_size while still holding page lock:
2203          * page writeout could otherwise come in and zero beyond i_size.
2204          */
2205         if (pos+copied > inode->i_size) {
2206                 i_size_write(inode, pos+copied);
2207                 i_size_changed = 1;
2208         }
2209
2210         unlock_page(page);
2211         put_page(page);
2212
2213         if (old_size < pos)
2214                 pagecache_isize_extended(inode, old_size, pos);
2215         /*
2216          * Don't mark the inode dirty under page lock. First, it unnecessarily
2217          * makes the holding time of page lock longer. Second, it forces lock
2218          * ordering of page lock and transaction start for journaling
2219          * filesystems.
2220          */
2221         if (i_size_changed)
2222                 mark_inode_dirty(inode);
2223
2224         return copied;
2225 }
2226 EXPORT_SYMBOL(generic_write_end);
2227
2228 /*
2229  * block_is_partially_uptodate checks whether buffers within a page are
2230  * uptodate or not.
2231  *
2232  * Returns true if all buffers which correspond to a file portion
2233  * we want to read are uptodate.
2234  */
2235 int block_is_partially_uptodate(struct page *page, unsigned long from,
2236                                         unsigned long count)
2237 {
2238         unsigned block_start, block_end, blocksize;
2239         unsigned to;
2240         struct buffer_head *bh, *head;
2241         int ret = 1;
2242
2243         if (!page_has_buffers(page))
2244                 return 0;
2245
2246         head = page_buffers(page);
2247         blocksize = head->b_size;
2248         to = min_t(unsigned, PAGE_SIZE - from, count);
2249         to = from + to;
2250         if (from < blocksize && to > PAGE_SIZE - blocksize)
2251                 return 0;
2252
2253         bh = head;
2254         block_start = 0;
2255         do {
2256                 block_end = block_start + blocksize;
2257                 if (block_end > from && block_start < to) {
2258                         if (!buffer_uptodate(bh)) {
2259                                 ret = 0;
2260                                 break;
2261                         }
2262                         if (block_end >= to)
2263                                 break;
2264                 }
2265                 block_start = block_end;
2266                 bh = bh->b_this_page;
2267         } while (bh != head);
2268
2269         return ret;
2270 }
2271 EXPORT_SYMBOL(block_is_partially_uptodate);
2272
2273 /*
2274  * Generic "read page" function for block devices that have the normal
2275  * get_block functionality. This is most of the block device filesystems.
2276  * Reads the page asynchronously --- the unlock_buffer() and
2277  * set/clear_buffer_uptodate() functions propagate buffer state into the
2278  * page struct once IO has completed.
2279  */
2280 int block_read_full_page(struct page *page, get_block_t *get_block)
2281 {
2282         struct inode *inode = page->mapping->host;
2283         sector_t iblock, lblock;
2284         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2285         unsigned int blocksize, bbits;
2286         int nr, i;
2287         int fully_mapped = 1;
2288
2289         head = create_page_buffers(page, inode, 0);
2290         blocksize = head->b_size;
2291         bbits = block_size_bits(blocksize);
2292
2293         iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2294         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2295         bh = head;
2296         nr = 0;
2297         i = 0;
2298
2299         do {
2300                 if (buffer_uptodate(bh))
2301                         continue;
2302
2303                 if (!buffer_mapped(bh)) {
2304                         int err = 0;
2305
2306                         fully_mapped = 0;
2307                         if (iblock < lblock) {
2308                                 WARN_ON(bh->b_size != blocksize);
2309                                 err = get_block(inode, iblock, bh, 0);
2310                                 if (err)
2311                                         SetPageError(page);
2312                         }
2313                         if (!buffer_mapped(bh)) {
2314                                 zero_user(page, i * blocksize, blocksize);
2315                                 if (!err)
2316                                         set_buffer_uptodate(bh);
2317                                 continue;
2318                         }
2319                         /*
2320                          * get_block() might have updated the buffer
2321                          * synchronously
2322                          */
2323                         if (buffer_uptodate(bh))
2324                                 continue;
2325                 }
2326                 arr[nr++] = bh;
2327         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2328
2329         if (fully_mapped)
2330                 SetPageMappedToDisk(page);
2331
2332         if (!nr) {
2333                 /*
2334                  * All buffers are uptodate - we can set the page uptodate
2335                  * as well. But not if get_block() returned an error.
2336                  */
2337                 if (!PageError(page))
2338                         SetPageUptodate(page);
2339                 unlock_page(page);
2340                 return 0;
2341         }
2342
2343         /* Stage two: lock the buffers */
2344         for (i = 0; i < nr; i++) {
2345                 bh = arr[i];
2346                 lock_buffer(bh);
2347                 mark_buffer_async_read(bh);
2348         }
2349
2350         /*
2351          * Stage 3: start the IO.  Check for uptodateness
2352          * inside the buffer lock in case another process reading
2353          * the underlying blockdev brought it uptodate (the sct fix).
2354          */
2355         for (i = 0; i < nr; i++) {
2356                 bh = arr[i];
2357                 if (buffer_uptodate(bh))
2358                         end_buffer_async_read(bh, 1);
2359                 else
2360                         submit_bh(REQ_OP_READ, 0, bh);
2361         }
2362         return 0;
2363 }
2364 EXPORT_SYMBOL(block_read_full_page);
2365
2366 /* utility function for filesystems that need to do work on expanding
2367  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2368  * deal with the hole.  
2369  */
2370 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2371 {
2372         struct address_space *mapping = inode->i_mapping;
2373         struct page *page;
2374         void *fsdata;
2375         int err;
2376
2377         err = inode_newsize_ok(inode, size);
2378         if (err)
2379                 goto out;
2380
2381         err = pagecache_write_begin(NULL, mapping, size, 0,
2382                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2383                                 &page, &fsdata);
2384         if (err)
2385                 goto out;
2386
2387         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2388         BUG_ON(err > 0);
2389
2390 out:
2391         return err;
2392 }
2393 EXPORT_SYMBOL(generic_cont_expand_simple);
2394
2395 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2396                             loff_t pos, loff_t *bytes)
2397 {
2398         struct inode *inode = mapping->host;
2399         unsigned int blocksize = i_blocksize(inode);
2400         struct page *page;
2401         void *fsdata;
2402         pgoff_t index, curidx;
2403         loff_t curpos;
2404         unsigned zerofrom, offset, len;
2405         int err = 0;
2406
2407         index = pos >> PAGE_SHIFT;
2408         offset = pos & ~PAGE_MASK;
2409
2410         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2411                 zerofrom = curpos & ~PAGE_MASK;
2412                 if (zerofrom & (blocksize-1)) {
2413                         *bytes |= (blocksize-1);
2414                         (*bytes)++;
2415                 }
2416                 len = PAGE_SIZE - zerofrom;
2417
2418                 err = pagecache_write_begin(file, mapping, curpos, len,
2419                                                 AOP_FLAG_UNINTERRUPTIBLE,
2420                                                 &page, &fsdata);
2421                 if (err)
2422                         goto out;
2423                 zero_user(page, zerofrom, len);
2424                 err = pagecache_write_end(file, mapping, curpos, len, len,
2425                                                 page, fsdata);
2426                 if (err < 0)
2427                         goto out;
2428                 BUG_ON(err != len);
2429                 err = 0;
2430
2431                 balance_dirty_pages_ratelimited(mapping);
2432
2433                 if (unlikely(fatal_signal_pending(current))) {
2434                         err = -EINTR;
2435                         goto out;
2436                 }
2437         }
2438
2439         /* page covers the boundary, find the boundary offset */
2440         if (index == curidx) {
2441                 zerofrom = curpos & ~PAGE_MASK;
2442                 /* if we will expand the thing last block will be filled */
2443                 if (offset <= zerofrom) {
2444                         goto out;
2445                 }
2446                 if (zerofrom & (blocksize-1)) {
2447                         *bytes |= (blocksize-1);
2448                         (*bytes)++;
2449                 }
2450                 len = offset - zerofrom;
2451
2452                 err = pagecache_write_begin(file, mapping, curpos, len,
2453                                                 AOP_FLAG_UNINTERRUPTIBLE,
2454                                                 &page, &fsdata);
2455                 if (err)
2456                         goto out;
2457                 zero_user(page, zerofrom, len);
2458                 err = pagecache_write_end(file, mapping, curpos, len, len,
2459                                                 page, fsdata);
2460                 if (err < 0)
2461                         goto out;
2462                 BUG_ON(err != len);
2463                 err = 0;
2464         }
2465 out:
2466         return err;
2467 }
2468
2469 /*
2470  * For moronic filesystems that do not allow holes in file.
2471  * We may have to extend the file.
2472  */
2473 int cont_write_begin(struct file *file, struct address_space *mapping,
2474                         loff_t pos, unsigned len, unsigned flags,
2475                         struct page **pagep, void **fsdata,
2476                         get_block_t *get_block, loff_t *bytes)
2477 {
2478         struct inode *inode = mapping->host;
2479         unsigned int blocksize = i_blocksize(inode);
2480         unsigned int zerofrom;
2481         int err;
2482
2483         err = cont_expand_zero(file, mapping, pos, bytes);
2484         if (err)
2485                 return err;
2486
2487         zerofrom = *bytes & ~PAGE_MASK;
2488         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2489                 *bytes |= (blocksize-1);
2490                 (*bytes)++;
2491         }
2492
2493         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2494 }
2495 EXPORT_SYMBOL(cont_write_begin);
2496
2497 int block_commit_write(struct page *page, unsigned from, unsigned to)
2498 {
2499         struct inode *inode = page->mapping->host;
2500         __block_commit_write(inode,page,from,to);
2501         return 0;
2502 }
2503 EXPORT_SYMBOL(block_commit_write);
2504
2505 /*
2506  * block_page_mkwrite() is not allowed to change the file size as it gets
2507  * called from a page fault handler when a page is first dirtied. Hence we must
2508  * be careful to check for EOF conditions here. We set the page up correctly
2509  * for a written page which means we get ENOSPC checking when writing into
2510  * holes and correct delalloc and unwritten extent mapping on filesystems that
2511  * support these features.
2512  *
2513  * We are not allowed to take the i_mutex here so we have to play games to
2514  * protect against truncate races as the page could now be beyond EOF.  Because
2515  * truncate writes the inode size before removing pages, once we have the
2516  * page lock we can determine safely if the page is beyond EOF. If it is not
2517  * beyond EOF, then the page is guaranteed safe against truncation until we
2518  * unlock the page.
2519  *
2520  * Direct callers of this function should protect against filesystem freezing
2521  * using sb_start_pagefault() - sb_end_pagefault() functions.
2522  */
2523 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2524                          get_block_t get_block)
2525 {
2526         struct page *page = vmf->page;
2527         struct inode *inode = file_inode(vma->vm_file);
2528         unsigned long end;
2529         loff_t size;
2530         int ret;
2531
2532         lock_page(page);
2533         size = i_size_read(inode);
2534         if ((page->mapping != inode->i_mapping) ||
2535             (page_offset(page) > size)) {
2536                 /* We overload EFAULT to mean page got truncated */
2537                 ret = -EFAULT;
2538                 goto out_unlock;
2539         }
2540
2541         /* page is wholly or partially inside EOF */
2542         if (((page->index + 1) << PAGE_SHIFT) > size)
2543                 end = size & ~PAGE_MASK;
2544         else
2545                 end = PAGE_SIZE;
2546
2547         ret = __block_write_begin(page, 0, end, get_block);
2548         if (!ret)
2549                 ret = block_commit_write(page, 0, end);
2550
2551         if (unlikely(ret < 0))
2552                 goto out_unlock;
2553         set_page_dirty(page);
2554         wait_for_stable_page(page);
2555         return 0;
2556 out_unlock:
2557         unlock_page(page);
2558         return ret;
2559 }
2560 EXPORT_SYMBOL(block_page_mkwrite);
2561
2562 /*
2563  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2564  * immediately, while under the page lock.  So it needs a special end_io
2565  * handler which does not touch the bh after unlocking it.
2566  */
2567 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2568 {
2569         __end_buffer_read_notouch(bh, uptodate);
2570 }
2571
2572 /*
2573  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2574  * the page (converting it to circular linked list and taking care of page
2575  * dirty races).
2576  */
2577 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2578 {
2579         struct buffer_head *bh;
2580
2581         BUG_ON(!PageLocked(page));
2582
2583         spin_lock(&page->mapping->private_lock);
2584         bh = head;
2585         do {
2586                 if (PageDirty(page))
2587                         set_buffer_dirty(bh);
2588                 if (!bh->b_this_page)
2589                         bh->b_this_page = head;
2590                 bh = bh->b_this_page;
2591         } while (bh != head);
2592         attach_page_buffers(page, head);
2593         spin_unlock(&page->mapping->private_lock);
2594 }
2595
2596 /*
2597  * On entry, the page is fully not uptodate.
2598  * On exit the page is fully uptodate in the areas outside (from,to)
2599  * The filesystem needs to handle block truncation upon failure.
2600  */
2601 int nobh_write_begin(struct address_space *mapping,
2602                         loff_t pos, unsigned len, unsigned flags,
2603                         struct page **pagep, void **fsdata,
2604                         get_block_t *get_block)
2605 {
2606         struct inode *inode = mapping->host;
2607         const unsigned blkbits = inode->i_blkbits;
2608         const unsigned blocksize = 1 << blkbits;
2609         struct buffer_head *head, *bh;
2610         struct page *page;
2611         pgoff_t index;
2612         unsigned from, to;
2613         unsigned block_in_page;
2614         unsigned block_start, block_end;
2615         sector_t block_in_file;
2616         int nr_reads = 0;
2617         int ret = 0;
2618         int is_mapped_to_disk = 1;
2619
2620         index = pos >> PAGE_SHIFT;
2621         from = pos & (PAGE_SIZE - 1);
2622         to = from + len;
2623
2624         page = grab_cache_page_write_begin(mapping, index, flags);
2625         if (!page)
2626                 return -ENOMEM;
2627         *pagep = page;
2628         *fsdata = NULL;
2629
2630         if (page_has_buffers(page)) {
2631                 ret = __block_write_begin(page, pos, len, get_block);
2632                 if (unlikely(ret))
2633                         goto out_release;
2634                 return ret;
2635         }
2636
2637         if (PageMappedToDisk(page))
2638                 return 0;
2639
2640         /*
2641          * Allocate buffers so that we can keep track of state, and potentially
2642          * attach them to the page if an error occurs. In the common case of
2643          * no error, they will just be freed again without ever being attached
2644          * to the page (which is all OK, because we're under the page lock).
2645          *
2646          * Be careful: the buffer linked list is a NULL terminated one, rather
2647          * than the circular one we're used to.
2648          */
2649         head = alloc_page_buffers(page, blocksize, 0);
2650         if (!head) {
2651                 ret = -ENOMEM;
2652                 goto out_release;
2653         }
2654
2655         block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2656
2657         /*
2658          * We loop across all blocks in the page, whether or not they are
2659          * part of the affected region.  This is so we can discover if the
2660          * page is fully mapped-to-disk.
2661          */
2662         for (block_start = 0, block_in_page = 0, bh = head;
2663                   block_start < PAGE_SIZE;
2664                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2665                 int create;
2666
2667                 block_end = block_start + blocksize;
2668                 bh->b_state = 0;
2669                 create = 1;
2670                 if (block_start >= to)
2671                         create = 0;
2672                 ret = get_block(inode, block_in_file + block_in_page,
2673                                         bh, create);
2674                 if (ret)
2675                         goto failed;
2676                 if (!buffer_mapped(bh))
2677                         is_mapped_to_disk = 0;
2678                 if (buffer_new(bh))
2679                         clean_bdev_bh_alias(bh);
2680                 if (PageUptodate(page)) {
2681                         set_buffer_uptodate(bh);
2682                         continue;
2683                 }
2684                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2685                         zero_user_segments(page, block_start, from,
2686                                                         to, block_end);
2687                         continue;
2688                 }
2689                 if (buffer_uptodate(bh))
2690                         continue;       /* reiserfs does this */
2691                 if (block_start < from || block_end > to) {
2692                         lock_buffer(bh);
2693                         bh->b_end_io = end_buffer_read_nobh;
2694                         submit_bh(REQ_OP_READ, 0, bh);
2695                         nr_reads++;
2696                 }
2697         }
2698
2699         if (nr_reads) {
2700                 /*
2701                  * The page is locked, so these buffers are protected from
2702                  * any VM or truncate activity.  Hence we don't need to care
2703                  * for the buffer_head refcounts.
2704                  */
2705                 for (bh = head; bh; bh = bh->b_this_page) {
2706                         wait_on_buffer(bh);
2707                         if (!buffer_uptodate(bh))
2708                                 ret = -EIO;
2709                 }
2710                 if (ret)
2711                         goto failed;
2712         }
2713
2714         if (is_mapped_to_disk)
2715                 SetPageMappedToDisk(page);
2716
2717         *fsdata = head; /* to be released by nobh_write_end */
2718
2719         return 0;
2720
2721 failed:
2722         BUG_ON(!ret);
2723         /*
2724          * Error recovery is a bit difficult. We need to zero out blocks that
2725          * were newly allocated, and dirty them to ensure they get written out.
2726          * Buffers need to be attached to the page at this point, otherwise
2727          * the handling of potential IO errors during writeout would be hard
2728          * (could try doing synchronous writeout, but what if that fails too?)
2729          */
2730         attach_nobh_buffers(page, head);
2731         page_zero_new_buffers(page, from, to);
2732
2733 out_release:
2734         unlock_page(page);
2735         put_page(page);
2736         *pagep = NULL;
2737
2738         return ret;
2739 }
2740 EXPORT_SYMBOL(nobh_write_begin);
2741
2742 int nobh_write_end(struct file *file, struct address_space *mapping,
2743                         loff_t pos, unsigned len, unsigned copied,
2744                         struct page *page, void *fsdata)
2745 {
2746         struct inode *inode = page->mapping->host;
2747         struct buffer_head *head = fsdata;
2748         struct buffer_head *bh;
2749         BUG_ON(fsdata != NULL && page_has_buffers(page));
2750
2751         if (unlikely(copied < len) && head)
2752                 attach_nobh_buffers(page, head);
2753         if (page_has_buffers(page))
2754                 return generic_write_end(file, mapping, pos, len,
2755                                         copied, page, fsdata);
2756
2757         SetPageUptodate(page);
2758         set_page_dirty(page);
2759         if (pos+copied > inode->i_size) {
2760                 i_size_write(inode, pos+copied);
2761                 mark_inode_dirty(inode);
2762         }
2763
2764         unlock_page(page);
2765         put_page(page);
2766
2767         while (head) {
2768                 bh = head;
2769                 head = head->b_this_page;
2770                 free_buffer_head(bh);
2771         }
2772
2773         return copied;
2774 }
2775 EXPORT_SYMBOL(nobh_write_end);
2776
2777 /*
2778  * nobh_writepage() - based on block_full_write_page() except
2779  * that it tries to operate without attaching bufferheads to
2780  * the page.
2781  */
2782 int nobh_writepage(struct page *page, get_block_t *get_block,
2783                         struct writeback_control *wbc)
2784 {
2785         struct inode * const inode = page->mapping->host;
2786         loff_t i_size = i_size_read(inode);
2787         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2788         unsigned offset;
2789         int ret;
2790
2791         /* Is the page fully inside i_size? */
2792         if (page->index < end_index)
2793                 goto out;
2794
2795         /* Is the page fully outside i_size? (truncate in progress) */
2796         offset = i_size & (PAGE_SIZE-1);
2797         if (page->index >= end_index+1 || !offset) {
2798                 /*
2799                  * The page may have dirty, unmapped buffers.  For example,
2800                  * they may have been added in ext3_writepage().  Make them
2801                  * freeable here, so the page does not leak.
2802                  */
2803 #if 0
2804                 /* Not really sure about this  - do we need this ? */
2805                 if (page->mapping->a_ops->invalidatepage)
2806                         page->mapping->a_ops->invalidatepage(page, offset);
2807 #endif
2808                 unlock_page(page);
2809                 return 0; /* don't care */
2810         }
2811
2812         /*
2813          * The page straddles i_size.  It must be zeroed out on each and every
2814          * writepage invocation because it may be mmapped.  "A file is mapped
2815          * in multiples of the page size.  For a file that is not a multiple of
2816          * the  page size, the remaining memory is zeroed when mapped, and
2817          * writes to that region are not written out to the file."
2818          */
2819         zero_user_segment(page, offset, PAGE_SIZE);
2820 out:
2821         ret = mpage_writepage(page, get_block, wbc);
2822         if (ret == -EAGAIN)
2823                 ret = __block_write_full_page(inode, page, get_block, wbc,
2824                                               end_buffer_async_write);
2825         return ret;
2826 }
2827 EXPORT_SYMBOL(nobh_writepage);
2828
2829 int nobh_truncate_page(struct address_space *mapping,
2830                         loff_t from, get_block_t *get_block)
2831 {
2832         pgoff_t index = from >> PAGE_SHIFT;
2833         unsigned offset = from & (PAGE_SIZE-1);
2834         unsigned blocksize;
2835         sector_t iblock;
2836         unsigned length, pos;
2837         struct inode *inode = mapping->host;
2838         struct page *page;
2839         struct buffer_head map_bh;
2840         int err;
2841
2842         blocksize = i_blocksize(inode);
2843         length = offset & (blocksize - 1);
2844
2845         /* Block boundary? Nothing to do */
2846         if (!length)
2847                 return 0;
2848
2849         length = blocksize - length;
2850         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2851
2852         page = grab_cache_page(mapping, index);
2853         err = -ENOMEM;
2854         if (!page)
2855                 goto out;
2856
2857         if (page_has_buffers(page)) {
2858 has_buffers:
2859                 unlock_page(page);
2860                 put_page(page);
2861                 return block_truncate_page(mapping, from, get_block);
2862         }
2863
2864         /* Find the buffer that contains "offset" */
2865         pos = blocksize;
2866         while (offset >= pos) {
2867                 iblock++;
2868                 pos += blocksize;
2869         }
2870
2871         map_bh.b_size = blocksize;
2872         map_bh.b_state = 0;
2873         err = get_block(inode, iblock, &map_bh, 0);
2874         if (err)
2875                 goto unlock;
2876         /* unmapped? It's a hole - nothing to do */
2877         if (!buffer_mapped(&map_bh))
2878                 goto unlock;
2879
2880         /* Ok, it's mapped. Make sure it's up-to-date */
2881         if (!PageUptodate(page)) {
2882                 err = mapping->a_ops->readpage(NULL, page);
2883                 if (err) {
2884                         put_page(page);
2885                         goto out;
2886                 }
2887                 lock_page(page);
2888                 if (!PageUptodate(page)) {
2889                         err = -EIO;
2890                         goto unlock;
2891                 }
2892                 if (page_has_buffers(page))
2893                         goto has_buffers;
2894         }
2895         zero_user(page, offset, length);
2896         set_page_dirty(page);
2897         err = 0;
2898
2899 unlock:
2900         unlock_page(page);
2901         put_page(page);
2902 out:
2903         return err;
2904 }
2905 EXPORT_SYMBOL(nobh_truncate_page);
2906
2907 int block_truncate_page(struct address_space *mapping,
2908                         loff_t from, get_block_t *get_block)
2909 {
2910         pgoff_t index = from >> PAGE_SHIFT;
2911         unsigned offset = from & (PAGE_SIZE-1);
2912         unsigned blocksize;
2913         sector_t iblock;
2914         unsigned length, pos;
2915         struct inode *inode = mapping->host;
2916         struct page *page;
2917         struct buffer_head *bh;
2918         int err;
2919
2920         blocksize = i_blocksize(inode);
2921         length = offset & (blocksize - 1);
2922
2923         /* Block boundary? Nothing to do */
2924         if (!length)
2925                 return 0;
2926
2927         length = blocksize - length;
2928         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2929         
2930         page = grab_cache_page(mapping, index);
2931         err = -ENOMEM;
2932         if (!page)
2933                 goto out;
2934
2935         if (!page_has_buffers(page))
2936                 create_empty_buffers(page, blocksize, 0);
2937
2938         /* Find the buffer that contains "offset" */
2939         bh = page_buffers(page);
2940         pos = blocksize;
2941         while (offset >= pos) {
2942                 bh = bh->b_this_page;
2943                 iblock++;
2944                 pos += blocksize;
2945         }
2946
2947         err = 0;
2948         if (!buffer_mapped(bh)) {
2949                 WARN_ON(bh->b_size != blocksize);
2950                 err = get_block(inode, iblock, bh, 0);
2951                 if (err)
2952                         goto unlock;
2953                 /* unmapped? It's a hole - nothing to do */
2954                 if (!buffer_mapped(bh))
2955                         goto unlock;
2956         }
2957
2958         /* Ok, it's mapped. Make sure it's up-to-date */
2959         if (PageUptodate(page))
2960                 set_buffer_uptodate(bh);
2961
2962         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2963                 err = -EIO;
2964                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2965                 wait_on_buffer(bh);
2966                 /* Uhhuh. Read error. Complain and punt. */
2967                 if (!buffer_uptodate(bh))
2968                         goto unlock;
2969         }
2970
2971         zero_user(page, offset, length);
2972         mark_buffer_dirty(bh);
2973         err = 0;
2974
2975 unlock:
2976         unlock_page(page);
2977         put_page(page);
2978 out:
2979         return err;
2980 }
2981 EXPORT_SYMBOL(block_truncate_page);
2982
2983 /*
2984  * The generic ->writepage function for buffer-backed address_spaces
2985  */
2986 int block_write_full_page(struct page *page, get_block_t *get_block,
2987                         struct writeback_control *wbc)
2988 {
2989         struct inode * const inode = page->mapping->host;
2990         loff_t i_size = i_size_read(inode);
2991         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2992         unsigned offset;
2993
2994         /* Is the page fully inside i_size? */
2995         if (page->index < end_index)
2996                 return __block_write_full_page(inode, page, get_block, wbc,
2997                                                end_buffer_async_write);
2998
2999         /* Is the page fully outside i_size? (truncate in progress) */
3000         offset = i_size & (PAGE_SIZE-1);
3001         if (page->index >= end_index+1 || !offset) {
3002                 /*
3003                  * The page may have dirty, unmapped buffers.  For example,
3004                  * they may have been added in ext3_writepage().  Make them
3005                  * freeable here, so the page does not leak.
3006                  */
3007                 do_invalidatepage(page, 0, PAGE_SIZE);
3008                 unlock_page(page);
3009                 return 0; /* don't care */
3010         }
3011
3012         /*
3013          * The page straddles i_size.  It must be zeroed out on each and every
3014          * writepage invocation because it may be mmapped.  "A file is mapped
3015          * in multiples of the page size.  For a file that is not a multiple of
3016          * the  page size, the remaining memory is zeroed when mapped, and
3017          * writes to that region are not written out to the file."
3018          */
3019         zero_user_segment(page, offset, PAGE_SIZE);
3020         return __block_write_full_page(inode, page, get_block, wbc,
3021                                                         end_buffer_async_write);
3022 }
3023 EXPORT_SYMBOL(block_write_full_page);
3024
3025 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3026                             get_block_t *get_block)
3027 {
3028         struct buffer_head tmp;
3029         struct inode *inode = mapping->host;
3030         tmp.b_state = 0;
3031         tmp.b_blocknr = 0;
3032         tmp.b_size = i_blocksize(inode);
3033         get_block(inode, block, &tmp, 0);
3034         return tmp.b_blocknr;
3035 }
3036 EXPORT_SYMBOL(generic_block_bmap);
3037
3038 static void end_bio_bh_io_sync(struct bio *bio)
3039 {
3040         struct buffer_head *bh = bio->bi_private;
3041
3042         if (unlikely(bio_flagged(bio, BIO_QUIET)))
3043                 set_bit(BH_Quiet, &bh->b_state);
3044
3045         bh->b_end_io(bh, !bio->bi_error);
3046         bio_put(bio);
3047 }
3048
3049 /*
3050  * This allows us to do IO even on the odd last sectors
3051  * of a device, even if the block size is some multiple
3052  * of the physical sector size.
3053  *
3054  * We'll just truncate the bio to the size of the device,
3055  * and clear the end of the buffer head manually.
3056  *
3057  * Truly out-of-range accesses will turn into actual IO
3058  * errors, this only handles the "we need to be able to
3059  * do IO at the final sector" case.
3060  */
3061 void guard_bio_eod(int op, struct bio *bio)
3062 {
3063         sector_t maxsector;
3064         struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3065         unsigned truncated_bytes;
3066
3067         maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
3068         if (!maxsector)
3069                 return;
3070
3071         /*
3072          * If the *whole* IO is past the end of the device,
3073          * let it through, and the IO layer will turn it into
3074          * an EIO.
3075          */
3076         if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3077                 return;
3078
3079         maxsector -= bio->bi_iter.bi_sector;
3080         if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3081                 return;
3082
3083         /* Uhhuh. We've got a bio that straddles the device size! */
3084         truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3085
3086         /* Truncate the bio.. */
3087         bio->bi_iter.bi_size -= truncated_bytes;
3088         bvec->bv_len -= truncated_bytes;
3089
3090         /* ..and clear the end of the buffer for reads */
3091         if (op == REQ_OP_READ) {
3092                 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3093                                 truncated_bytes);
3094         }
3095 }
3096
3097 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3098                          unsigned long bio_flags, struct writeback_control *wbc)
3099 {
3100         struct bio *bio;
3101
3102         BUG_ON(!buffer_locked(bh));
3103         BUG_ON(!buffer_mapped(bh));
3104         BUG_ON(!bh->b_end_io);
3105         BUG_ON(buffer_delay(bh));
3106         BUG_ON(buffer_unwritten(bh));
3107
3108         /*
3109          * Only clear out a write error when rewriting
3110          */
3111         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3112                 clear_buffer_write_io_error(bh);
3113
3114         /*
3115          * from here on down, it's all bio -- do the initial mapping,
3116          * submit_bio -> generic_make_request may further map this bio around
3117          */
3118         bio = bio_alloc(GFP_NOIO, 1);
3119
3120         if (wbc) {
3121                 wbc_init_bio(wbc, bio);
3122                 wbc_account_io(wbc, bh->b_page, bh->b_size);
3123         }
3124
3125         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3126         bio->bi_bdev = bh->b_bdev;
3127
3128         bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3129         BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3130
3131         bio->bi_end_io = end_bio_bh_io_sync;
3132         bio->bi_private = bh;
3133         bio->bi_flags |= bio_flags;
3134
3135         /* Take care of bh's that straddle the end of the device */
3136         guard_bio_eod(op, bio);
3137
3138         if (buffer_meta(bh))
3139                 op_flags |= REQ_META;
3140         if (buffer_prio(bh))
3141                 op_flags |= REQ_PRIO;
3142         bio_set_op_attrs(bio, op, op_flags);
3143
3144         submit_bio(bio);
3145         return 0;
3146 }
3147
3148 int _submit_bh(int op, int op_flags, struct buffer_head *bh,
3149                unsigned long bio_flags)
3150 {
3151         return submit_bh_wbc(op, op_flags, bh, bio_flags, NULL);
3152 }
3153 EXPORT_SYMBOL_GPL(_submit_bh);
3154
3155 int submit_bh(int op, int op_flags,  struct buffer_head *bh)
3156 {
3157         return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3158 }
3159 EXPORT_SYMBOL(submit_bh);
3160
3161 /**
3162  * ll_rw_block: low-level access to block devices (DEPRECATED)
3163  * @op: whether to %READ or %WRITE
3164  * @op_flags: req_flag_bits
3165  * @nr: number of &struct buffer_heads in the array
3166  * @bhs: array of pointers to &struct buffer_head
3167  *
3168  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3169  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3170  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3171  * %REQ_RAHEAD.
3172  *
3173  * This function drops any buffer that it cannot get a lock on (with the
3174  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3175  * request, and any buffer that appears to be up-to-date when doing read
3176  * request.  Further it marks as clean buffers that are processed for
3177  * writing (the buffer cache won't assume that they are actually clean
3178  * until the buffer gets unlocked).
3179  *
3180  * ll_rw_block sets b_end_io to simple completion handler that marks
3181  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3182  * any waiters. 
3183  *
3184  * All of the buffers must be for the same device, and must also be a
3185  * multiple of the current approved size for the device.
3186  */
3187 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3188 {
3189         int i;
3190
3191         for (i = 0; i < nr; i++) {
3192                 struct buffer_head *bh = bhs[i];
3193
3194                 if (!trylock_buffer(bh))
3195                         continue;
3196                 if (op == WRITE) {
3197                         if (test_clear_buffer_dirty(bh)) {
3198                                 bh->b_end_io = end_buffer_write_sync;
3199                                 get_bh(bh);
3200                                 submit_bh(op, op_flags, bh);
3201                                 continue;
3202                         }
3203                 } else {
3204                         if (!buffer_uptodate(bh)) {
3205                                 bh->b_end_io = end_buffer_read_sync;
3206                                 get_bh(bh);
3207                                 submit_bh(op, op_flags, bh);
3208                                 continue;
3209                         }
3210                 }
3211                 unlock_buffer(bh);
3212         }
3213 }
3214 EXPORT_SYMBOL(ll_rw_block);
3215
3216 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3217 {
3218         lock_buffer(bh);
3219         if (!test_clear_buffer_dirty(bh)) {
3220                 unlock_buffer(bh);
3221                 return;
3222         }
3223         bh->b_end_io = end_buffer_write_sync;
3224         get_bh(bh);
3225         submit_bh(REQ_OP_WRITE, op_flags, bh);
3226 }
3227 EXPORT_SYMBOL(write_dirty_buffer);
3228
3229 /*
3230  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3231  * and then start new I/O and then wait upon it.  The caller must have a ref on
3232  * the buffer_head.
3233  */
3234 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3235 {
3236         int ret = 0;
3237
3238         WARN_ON(atomic_read(&bh->b_count) < 1);
3239         lock_buffer(bh);
3240         if (test_clear_buffer_dirty(bh)) {
3241                 get_bh(bh);
3242                 bh->b_end_io = end_buffer_write_sync;
3243                 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3244                 wait_on_buffer(bh);
3245                 if (!ret && !buffer_uptodate(bh))
3246                         ret = -EIO;
3247         } else {
3248                 unlock_buffer(bh);
3249         }
3250         return ret;
3251 }
3252 EXPORT_SYMBOL(__sync_dirty_buffer);
3253
3254 int sync_dirty_buffer(struct buffer_head *bh)
3255 {
3256         return __sync_dirty_buffer(bh, REQ_SYNC);
3257 }
3258 EXPORT_SYMBOL(sync_dirty_buffer);
3259
3260 /*
3261  * try_to_free_buffers() checks if all the buffers on this particular page
3262  * are unused, and releases them if so.
3263  *
3264  * Exclusion against try_to_free_buffers may be obtained by either
3265  * locking the page or by holding its mapping's private_lock.
3266  *
3267  * If the page is dirty but all the buffers are clean then we need to
3268  * be sure to mark the page clean as well.  This is because the page
3269  * may be against a block device, and a later reattachment of buffers
3270  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3271  * filesystem data on the same device.
3272  *
3273  * The same applies to regular filesystem pages: if all the buffers are
3274  * clean then we set the page clean and proceed.  To do that, we require
3275  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3276  * private_lock.
3277  *
3278  * try_to_free_buffers() is non-blocking.
3279  */
3280 static inline int buffer_busy(struct buffer_head *bh)
3281 {
3282         return atomic_read(&bh->b_count) |
3283                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3284 }
3285
3286 static int
3287 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3288 {
3289         struct buffer_head *head = page_buffers(page);
3290         struct buffer_head *bh;
3291
3292         bh = head;
3293         do {
3294                 if (buffer_write_io_error(bh) && page->mapping)
3295                         mapping_set_error(page->mapping, -EIO);
3296                 if (buffer_busy(bh))
3297                         goto failed;
3298                 bh = bh->b_this_page;
3299         } while (bh != head);
3300
3301         do {
3302                 struct buffer_head *next = bh->b_this_page;
3303
3304                 if (bh->b_assoc_map)
3305                         __remove_assoc_queue(bh);
3306                 bh = next;
3307         } while (bh != head);
3308         *buffers_to_free = head;
3309         __clear_page_buffers(page);
3310         return 1;
3311 failed:
3312         return 0;
3313 }
3314
3315 int try_to_free_buffers(struct page *page)
3316 {
3317         struct address_space * const mapping = page->mapping;
3318         struct buffer_head *buffers_to_free = NULL;
3319         int ret = 0;
3320
3321         BUG_ON(!PageLocked(page));
3322         if (PageWriteback(page))
3323                 return 0;
3324
3325         if (mapping == NULL) {          /* can this still happen? */
3326                 ret = drop_buffers(page, &buffers_to_free);
3327                 goto out;
3328         }
3329
3330         spin_lock(&mapping->private_lock);
3331         ret = drop_buffers(page, &buffers_to_free);
3332
3333         /*
3334          * If the filesystem writes its buffers by hand (eg ext3)
3335          * then we can have clean buffers against a dirty page.  We
3336          * clean the page here; otherwise the VM will never notice
3337          * that the filesystem did any IO at all.
3338          *
3339          * Also, during truncate, discard_buffer will have marked all
3340          * the page's buffers clean.  We discover that here and clean
3341          * the page also.
3342          *
3343          * private_lock must be held over this entire operation in order
3344          * to synchronise against __set_page_dirty_buffers and prevent the
3345          * dirty bit from being lost.
3346          */
3347         if (ret)
3348                 cancel_dirty_page(page);
3349         spin_unlock(&mapping->private_lock);
3350 out:
3351         if (buffers_to_free) {
3352                 struct buffer_head *bh = buffers_to_free;
3353
3354                 do {
3355                         struct buffer_head *next = bh->b_this_page;
3356                         free_buffer_head(bh);
3357                         bh = next;
3358                 } while (bh != buffers_to_free);
3359         }
3360         return ret;
3361 }
3362 EXPORT_SYMBOL(try_to_free_buffers);
3363
3364 /*
3365  * There are no bdflush tunables left.  But distributions are
3366  * still running obsolete flush daemons, so we terminate them here.
3367  *
3368  * Use of bdflush() is deprecated and will be removed in a future kernel.
3369  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3370  */
3371 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3372 {
3373         static int msg_count;
3374
3375         if (!capable(CAP_SYS_ADMIN))
3376                 return -EPERM;
3377
3378         if (msg_count < 5) {
3379                 msg_count++;
3380                 printk(KERN_INFO
3381                         "warning: process `%s' used the obsolete bdflush"
3382                         " system call\n", current->comm);
3383                 printk(KERN_INFO "Fix your initscripts?\n");
3384         }
3385
3386         if (func == 1)
3387                 do_exit(0);
3388         return 0;
3389 }
3390
3391 /*
3392  * Buffer-head allocation
3393  */
3394 static struct kmem_cache *bh_cachep __read_mostly;
3395
3396 /*
3397  * Once the number of bh's in the machine exceeds this level, we start
3398  * stripping them in writeback.
3399  */
3400 static unsigned long max_buffer_heads;
3401
3402 int buffer_heads_over_limit;
3403
3404 struct bh_accounting {
3405         int nr;                 /* Number of live bh's */
3406         int ratelimit;          /* Limit cacheline bouncing */
3407 };
3408
3409 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3410
3411 static void recalc_bh_state(void)
3412 {
3413         int i;
3414         int tot = 0;
3415
3416         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3417                 return;
3418         __this_cpu_write(bh_accounting.ratelimit, 0);
3419         for_each_online_cpu(i)
3420                 tot += per_cpu(bh_accounting, i).nr;
3421         buffer_heads_over_limit = (tot > max_buffer_heads);
3422 }
3423
3424 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3425 {
3426         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3427         if (ret) {
3428                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3429                 preempt_disable();
3430                 __this_cpu_inc(bh_accounting.nr);
3431                 recalc_bh_state();
3432                 preempt_enable();
3433         }
3434         return ret;
3435 }
3436 EXPORT_SYMBOL(alloc_buffer_head);
3437
3438 void free_buffer_head(struct buffer_head *bh)
3439 {
3440         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3441         kmem_cache_free(bh_cachep, bh);
3442         preempt_disable();
3443         __this_cpu_dec(bh_accounting.nr);
3444         recalc_bh_state();
3445         preempt_enable();
3446 }
3447 EXPORT_SYMBOL(free_buffer_head);
3448
3449 static int buffer_exit_cpu_dead(unsigned int cpu)
3450 {
3451         int i;
3452         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3453
3454         for (i = 0; i < BH_LRU_SIZE; i++) {
3455                 brelse(b->bhs[i]);
3456                 b->bhs[i] = NULL;
3457         }
3458         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3459         per_cpu(bh_accounting, cpu).nr = 0;
3460         return 0;
3461 }
3462
3463 /**
3464  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3465  * @bh: struct buffer_head
3466  *
3467  * Return true if the buffer is up-to-date and false,
3468  * with the buffer locked, if not.
3469  */
3470 int bh_uptodate_or_lock(struct buffer_head *bh)
3471 {
3472         if (!buffer_uptodate(bh)) {
3473                 lock_buffer(bh);
3474                 if (!buffer_uptodate(bh))
3475                         return 0;
3476                 unlock_buffer(bh);
3477         }
3478         return 1;
3479 }
3480 EXPORT_SYMBOL(bh_uptodate_or_lock);
3481
3482 /**
3483  * bh_submit_read - Submit a locked buffer for reading
3484  * @bh: struct buffer_head
3485  *
3486  * Returns zero on success and -EIO on error.
3487  */
3488 int bh_submit_read(struct buffer_head *bh)
3489 {
3490         BUG_ON(!buffer_locked(bh));
3491
3492         if (buffer_uptodate(bh)) {
3493                 unlock_buffer(bh);
3494                 return 0;
3495         }
3496
3497         get_bh(bh);
3498         bh->b_end_io = end_buffer_read_sync;
3499         submit_bh(REQ_OP_READ, 0, bh);
3500         wait_on_buffer(bh);
3501         if (buffer_uptodate(bh))
3502                 return 0;
3503         return -EIO;
3504 }
3505 EXPORT_SYMBOL(bh_submit_read);
3506
3507 void __init buffer_init(void)
3508 {
3509         unsigned long nrpages;
3510         int ret;
3511
3512         bh_cachep = kmem_cache_create("buffer_head",
3513                         sizeof(struct buffer_head), 0,
3514                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3515                                 SLAB_MEM_SPREAD),
3516                                 NULL);
3517
3518         /*
3519          * Limit the bh occupancy to 10% of ZONE_NORMAL
3520          */
3521         nrpages = (nr_free_buffer_pages() * 10) / 100;
3522         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3523         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3524                                         NULL, buffer_exit_cpu_dead);
3525         WARN_ON(ret < 0);
3526 }