Merge tag 'regulator-fix-v4.16-suspend' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/iomap.h>
26 #include <linux/mm.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/notifier.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <trace/events/block.h>
49
50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
52                          enum rw_hint hint, struct writeback_control *wbc);
53
54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
55
56 inline void touch_buffer(struct buffer_head *bh)
57 {
58         trace_block_touch_buffer(bh);
59         mark_page_accessed(bh->b_page);
60 }
61 EXPORT_SYMBOL(touch_buffer);
62
63 void __lock_buffer(struct buffer_head *bh)
64 {
65         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
66 }
67 EXPORT_SYMBOL(__lock_buffer);
68
69 void unlock_buffer(struct buffer_head *bh)
70 {
71         clear_bit_unlock(BH_Lock, &bh->b_state);
72         smp_mb__after_atomic();
73         wake_up_bit(&bh->b_state, BH_Lock);
74 }
75 EXPORT_SYMBOL(unlock_buffer);
76
77 /*
78  * Returns if the page has dirty or writeback buffers. If all the buffers
79  * are unlocked and clean then the PageDirty information is stale. If
80  * any of the pages are locked, it is assumed they are locked for IO.
81  */
82 void buffer_check_dirty_writeback(struct page *page,
83                                      bool *dirty, bool *writeback)
84 {
85         struct buffer_head *head, *bh;
86         *dirty = false;
87         *writeback = false;
88
89         BUG_ON(!PageLocked(page));
90
91         if (!page_has_buffers(page))
92                 return;
93
94         if (PageWriteback(page))
95                 *writeback = true;
96
97         head = page_buffers(page);
98         bh = head;
99         do {
100                 if (buffer_locked(bh))
101                         *writeback = true;
102
103                 if (buffer_dirty(bh))
104                         *dirty = true;
105
106                 bh = bh->b_this_page;
107         } while (bh != head);
108 }
109 EXPORT_SYMBOL(buffer_check_dirty_writeback);
110
111 /*
112  * Block until a buffer comes unlocked.  This doesn't stop it
113  * from becoming locked again - you have to lock it yourself
114  * if you want to preserve its state.
115  */
116 void __wait_on_buffer(struct buffer_head * bh)
117 {
118         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
119 }
120 EXPORT_SYMBOL(__wait_on_buffer);
121
122 static void
123 __clear_page_buffers(struct page *page)
124 {
125         ClearPagePrivate(page);
126         set_page_private(page, 0);
127         put_page(page);
128 }
129
130 static void buffer_io_error(struct buffer_head *bh, char *msg)
131 {
132         if (!test_bit(BH_Quiet, &bh->b_state))
133                 printk_ratelimited(KERN_ERR
134                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
135                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
136 }
137
138 /*
139  * End-of-IO handler helper function which does not touch the bh after
140  * unlocking it.
141  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
142  * a race there is benign: unlock_buffer() only use the bh's address for
143  * hashing after unlocking the buffer, so it doesn't actually touch the bh
144  * itself.
145  */
146 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
147 {
148         if (uptodate) {
149                 set_buffer_uptodate(bh);
150         } else {
151                 /* This happens, due to failed read-ahead attempts. */
152                 clear_buffer_uptodate(bh);
153         }
154         unlock_buffer(bh);
155 }
156
157 /*
158  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
159  * unlock the buffer. This is what ll_rw_block uses too.
160  */
161 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
162 {
163         __end_buffer_read_notouch(bh, uptodate);
164         put_bh(bh);
165 }
166 EXPORT_SYMBOL(end_buffer_read_sync);
167
168 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
169 {
170         if (uptodate) {
171                 set_buffer_uptodate(bh);
172         } else {
173                 buffer_io_error(bh, ", lost sync page write");
174                 mark_buffer_write_io_error(bh);
175                 clear_buffer_uptodate(bh);
176         }
177         unlock_buffer(bh);
178         put_bh(bh);
179 }
180 EXPORT_SYMBOL(end_buffer_write_sync);
181
182 /*
183  * Various filesystems appear to want __find_get_block to be non-blocking.
184  * But it's the page lock which protects the buffers.  To get around this,
185  * we get exclusion from try_to_free_buffers with the blockdev mapping's
186  * private_lock.
187  *
188  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
189  * may be quite high.  This code could TryLock the page, and if that
190  * succeeds, there is no need to take private_lock. (But if
191  * private_lock is contended then so is mapping->tree_lock).
192  */
193 static struct buffer_head *
194 __find_get_block_slow(struct block_device *bdev, sector_t block)
195 {
196         struct inode *bd_inode = bdev->bd_inode;
197         struct address_space *bd_mapping = bd_inode->i_mapping;
198         struct buffer_head *ret = NULL;
199         pgoff_t index;
200         struct buffer_head *bh;
201         struct buffer_head *head;
202         struct page *page;
203         int all_mapped = 1;
204
205         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
206         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
207         if (!page)
208                 goto out;
209
210         spin_lock(&bd_mapping->private_lock);
211         if (!page_has_buffers(page))
212                 goto out_unlock;
213         head = page_buffers(page);
214         bh = head;
215         do {
216                 if (!buffer_mapped(bh))
217                         all_mapped = 0;
218                 else if (bh->b_blocknr == block) {
219                         ret = bh;
220                         get_bh(bh);
221                         goto out_unlock;
222                 }
223                 bh = bh->b_this_page;
224         } while (bh != head);
225
226         /* we might be here because some of the buffers on this page are
227          * not mapped.  This is due to various races between
228          * file io on the block device and getblk.  It gets dealt with
229          * elsewhere, don't buffer_error if we had some unmapped buffers
230          */
231         if (all_mapped) {
232                 printk("__find_get_block_slow() failed. "
233                         "block=%llu, b_blocknr=%llu\n",
234                         (unsigned long long)block,
235                         (unsigned long long)bh->b_blocknr);
236                 printk("b_state=0x%08lx, b_size=%zu\n",
237                         bh->b_state, bh->b_size);
238                 printk("device %pg blocksize: %d\n", bdev,
239                         1 << bd_inode->i_blkbits);
240         }
241 out_unlock:
242         spin_unlock(&bd_mapping->private_lock);
243         put_page(page);
244 out:
245         return ret;
246 }
247
248 /*
249  * I/O completion handler for block_read_full_page() - pages
250  * which come unlocked at the end of I/O.
251  */
252 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
253 {
254         unsigned long flags;
255         struct buffer_head *first;
256         struct buffer_head *tmp;
257         struct page *page;
258         int page_uptodate = 1;
259
260         BUG_ON(!buffer_async_read(bh));
261
262         page = bh->b_page;
263         if (uptodate) {
264                 set_buffer_uptodate(bh);
265         } else {
266                 clear_buffer_uptodate(bh);
267                 buffer_io_error(bh, ", async page read");
268                 SetPageError(page);
269         }
270
271         /*
272          * Be _very_ careful from here on. Bad things can happen if
273          * two buffer heads end IO at almost the same time and both
274          * decide that the page is now completely done.
275          */
276         first = page_buffers(page);
277         local_irq_save(flags);
278         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
279         clear_buffer_async_read(bh);
280         unlock_buffer(bh);
281         tmp = bh;
282         do {
283                 if (!buffer_uptodate(tmp))
284                         page_uptodate = 0;
285                 if (buffer_async_read(tmp)) {
286                         BUG_ON(!buffer_locked(tmp));
287                         goto still_busy;
288                 }
289                 tmp = tmp->b_this_page;
290         } while (tmp != bh);
291         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
292         local_irq_restore(flags);
293
294         /*
295          * If none of the buffers had errors and they are all
296          * uptodate then we can set the page uptodate.
297          */
298         if (page_uptodate && !PageError(page))
299                 SetPageUptodate(page);
300         unlock_page(page);
301         return;
302
303 still_busy:
304         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
305         local_irq_restore(flags);
306         return;
307 }
308
309 /*
310  * Completion handler for block_write_full_page() - pages which are unlocked
311  * during I/O, and which have PageWriteback cleared upon I/O completion.
312  */
313 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
314 {
315         unsigned long flags;
316         struct buffer_head *first;
317         struct buffer_head *tmp;
318         struct page *page;
319
320         BUG_ON(!buffer_async_write(bh));
321
322         page = bh->b_page;
323         if (uptodate) {
324                 set_buffer_uptodate(bh);
325         } else {
326                 buffer_io_error(bh, ", lost async page write");
327                 mark_buffer_write_io_error(bh);
328                 clear_buffer_uptodate(bh);
329                 SetPageError(page);
330         }
331
332         first = page_buffers(page);
333         local_irq_save(flags);
334         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
335
336         clear_buffer_async_write(bh);
337         unlock_buffer(bh);
338         tmp = bh->b_this_page;
339         while (tmp != bh) {
340                 if (buffer_async_write(tmp)) {
341                         BUG_ON(!buffer_locked(tmp));
342                         goto still_busy;
343                 }
344                 tmp = tmp->b_this_page;
345         }
346         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
347         local_irq_restore(flags);
348         end_page_writeback(page);
349         return;
350
351 still_busy:
352         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
353         local_irq_restore(flags);
354         return;
355 }
356 EXPORT_SYMBOL(end_buffer_async_write);
357
358 /*
359  * If a page's buffers are under async readin (end_buffer_async_read
360  * completion) then there is a possibility that another thread of
361  * control could lock one of the buffers after it has completed
362  * but while some of the other buffers have not completed.  This
363  * locked buffer would confuse end_buffer_async_read() into not unlocking
364  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
365  * that this buffer is not under async I/O.
366  *
367  * The page comes unlocked when it has no locked buffer_async buffers
368  * left.
369  *
370  * PageLocked prevents anyone starting new async I/O reads any of
371  * the buffers.
372  *
373  * PageWriteback is used to prevent simultaneous writeout of the same
374  * page.
375  *
376  * PageLocked prevents anyone from starting writeback of a page which is
377  * under read I/O (PageWriteback is only ever set against a locked page).
378  */
379 static void mark_buffer_async_read(struct buffer_head *bh)
380 {
381         bh->b_end_io = end_buffer_async_read;
382         set_buffer_async_read(bh);
383 }
384
385 static void mark_buffer_async_write_endio(struct buffer_head *bh,
386                                           bh_end_io_t *handler)
387 {
388         bh->b_end_io = handler;
389         set_buffer_async_write(bh);
390 }
391
392 void mark_buffer_async_write(struct buffer_head *bh)
393 {
394         mark_buffer_async_write_endio(bh, end_buffer_async_write);
395 }
396 EXPORT_SYMBOL(mark_buffer_async_write);
397
398
399 /*
400  * fs/buffer.c contains helper functions for buffer-backed address space's
401  * fsync functions.  A common requirement for buffer-based filesystems is
402  * that certain data from the backing blockdev needs to be written out for
403  * a successful fsync().  For example, ext2 indirect blocks need to be
404  * written back and waited upon before fsync() returns.
405  *
406  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
407  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
408  * management of a list of dependent buffers at ->i_mapping->private_list.
409  *
410  * Locking is a little subtle: try_to_free_buffers() will remove buffers
411  * from their controlling inode's queue when they are being freed.  But
412  * try_to_free_buffers() will be operating against the *blockdev* mapping
413  * at the time, not against the S_ISREG file which depends on those buffers.
414  * So the locking for private_list is via the private_lock in the address_space
415  * which backs the buffers.  Which is different from the address_space 
416  * against which the buffers are listed.  So for a particular address_space,
417  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
418  * mapping->private_list will always be protected by the backing blockdev's
419  * ->private_lock.
420  *
421  * Which introduces a requirement: all buffers on an address_space's
422  * ->private_list must be from the same address_space: the blockdev's.
423  *
424  * address_spaces which do not place buffers at ->private_list via these
425  * utility functions are free to use private_lock and private_list for
426  * whatever they want.  The only requirement is that list_empty(private_list)
427  * be true at clear_inode() time.
428  *
429  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
430  * filesystems should do that.  invalidate_inode_buffers() should just go
431  * BUG_ON(!list_empty).
432  *
433  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
434  * take an address_space, not an inode.  And it should be called
435  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
436  * queued up.
437  *
438  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
439  * list if it is already on a list.  Because if the buffer is on a list,
440  * it *must* already be on the right one.  If not, the filesystem is being
441  * silly.  This will save a ton of locking.  But first we have to ensure
442  * that buffers are taken *off* the old inode's list when they are freed
443  * (presumably in truncate).  That requires careful auditing of all
444  * filesystems (do it inside bforget()).  It could also be done by bringing
445  * b_inode back.
446  */
447
448 /*
449  * The buffer's backing address_space's private_lock must be held
450  */
451 static void __remove_assoc_queue(struct buffer_head *bh)
452 {
453         list_del_init(&bh->b_assoc_buffers);
454         WARN_ON(!bh->b_assoc_map);
455         bh->b_assoc_map = NULL;
456 }
457
458 int inode_has_buffers(struct inode *inode)
459 {
460         return !list_empty(&inode->i_data.private_list);
461 }
462
463 /*
464  * osync is designed to support O_SYNC io.  It waits synchronously for
465  * all already-submitted IO to complete, but does not queue any new
466  * writes to the disk.
467  *
468  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
469  * you dirty the buffers, and then use osync_inode_buffers to wait for
470  * completion.  Any other dirty buffers which are not yet queued for
471  * write will not be flushed to disk by the osync.
472  */
473 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
474 {
475         struct buffer_head *bh;
476         struct list_head *p;
477         int err = 0;
478
479         spin_lock(lock);
480 repeat:
481         list_for_each_prev(p, list) {
482                 bh = BH_ENTRY(p);
483                 if (buffer_locked(bh)) {
484                         get_bh(bh);
485                         spin_unlock(lock);
486                         wait_on_buffer(bh);
487                         if (!buffer_uptodate(bh))
488                                 err = -EIO;
489                         brelse(bh);
490                         spin_lock(lock);
491                         goto repeat;
492                 }
493         }
494         spin_unlock(lock);
495         return err;
496 }
497
498 static void do_thaw_one(struct super_block *sb, void *unused)
499 {
500         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
501                 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
502 }
503
504 static void do_thaw_all(struct work_struct *work)
505 {
506         iterate_supers(do_thaw_one, NULL);
507         kfree(work);
508         printk(KERN_WARNING "Emergency Thaw complete\n");
509 }
510
511 /**
512  * emergency_thaw_all -- forcibly thaw every frozen filesystem
513  *
514  * Used for emergency unfreeze of all filesystems via SysRq
515  */
516 void emergency_thaw_all(void)
517 {
518         struct work_struct *work;
519
520         work = kmalloc(sizeof(*work), GFP_ATOMIC);
521         if (work) {
522                 INIT_WORK(work, do_thaw_all);
523                 schedule_work(work);
524         }
525 }
526
527 /**
528  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
529  * @mapping: the mapping which wants those buffers written
530  *
531  * Starts I/O against the buffers at mapping->private_list, and waits upon
532  * that I/O.
533  *
534  * Basically, this is a convenience function for fsync().
535  * @mapping is a file or directory which needs those buffers to be written for
536  * a successful fsync().
537  */
538 int sync_mapping_buffers(struct address_space *mapping)
539 {
540         struct address_space *buffer_mapping = mapping->private_data;
541
542         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
543                 return 0;
544
545         return fsync_buffers_list(&buffer_mapping->private_lock,
546                                         &mapping->private_list);
547 }
548 EXPORT_SYMBOL(sync_mapping_buffers);
549
550 /*
551  * Called when we've recently written block `bblock', and it is known that
552  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
553  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
554  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
555  */
556 void write_boundary_block(struct block_device *bdev,
557                         sector_t bblock, unsigned blocksize)
558 {
559         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
560         if (bh) {
561                 if (buffer_dirty(bh))
562                         ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
563                 put_bh(bh);
564         }
565 }
566
567 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
568 {
569         struct address_space *mapping = inode->i_mapping;
570         struct address_space *buffer_mapping = bh->b_page->mapping;
571
572         mark_buffer_dirty(bh);
573         if (!mapping->private_data) {
574                 mapping->private_data = buffer_mapping;
575         } else {
576                 BUG_ON(mapping->private_data != buffer_mapping);
577         }
578         if (!bh->b_assoc_map) {
579                 spin_lock(&buffer_mapping->private_lock);
580                 list_move_tail(&bh->b_assoc_buffers,
581                                 &mapping->private_list);
582                 bh->b_assoc_map = mapping;
583                 spin_unlock(&buffer_mapping->private_lock);
584         }
585 }
586 EXPORT_SYMBOL(mark_buffer_dirty_inode);
587
588 /*
589  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
590  * dirty.
591  *
592  * If warn is true, then emit a warning if the page is not uptodate and has
593  * not been truncated.
594  *
595  * The caller must hold lock_page_memcg().
596  */
597 static void __set_page_dirty(struct page *page, struct address_space *mapping,
598                              int warn)
599 {
600         unsigned long flags;
601
602         spin_lock_irqsave(&mapping->tree_lock, flags);
603         if (page->mapping) {    /* Race with truncate? */
604                 WARN_ON_ONCE(warn && !PageUptodate(page));
605                 account_page_dirtied(page, mapping);
606                 radix_tree_tag_set(&mapping->page_tree,
607                                 page_index(page), PAGECACHE_TAG_DIRTY);
608         }
609         spin_unlock_irqrestore(&mapping->tree_lock, flags);
610 }
611
612 /*
613  * Add a page to the dirty page list.
614  *
615  * It is a sad fact of life that this function is called from several places
616  * deeply under spinlocking.  It may not sleep.
617  *
618  * If the page has buffers, the uptodate buffers are set dirty, to preserve
619  * dirty-state coherency between the page and the buffers.  It the page does
620  * not have buffers then when they are later attached they will all be set
621  * dirty.
622  *
623  * The buffers are dirtied before the page is dirtied.  There's a small race
624  * window in which a writepage caller may see the page cleanness but not the
625  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
626  * before the buffers, a concurrent writepage caller could clear the page dirty
627  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
628  * page on the dirty page list.
629  *
630  * We use private_lock to lock against try_to_free_buffers while using the
631  * page's buffer list.  Also use this to protect against clean buffers being
632  * added to the page after it was set dirty.
633  *
634  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
635  * address_space though.
636  */
637 int __set_page_dirty_buffers(struct page *page)
638 {
639         int newly_dirty;
640         struct address_space *mapping = page_mapping(page);
641
642         if (unlikely(!mapping))
643                 return !TestSetPageDirty(page);
644
645         spin_lock(&mapping->private_lock);
646         if (page_has_buffers(page)) {
647                 struct buffer_head *head = page_buffers(page);
648                 struct buffer_head *bh = head;
649
650                 do {
651                         set_buffer_dirty(bh);
652                         bh = bh->b_this_page;
653                 } while (bh != head);
654         }
655         /*
656          * Lock out page->mem_cgroup migration to keep PageDirty
657          * synchronized with per-memcg dirty page counters.
658          */
659         lock_page_memcg(page);
660         newly_dirty = !TestSetPageDirty(page);
661         spin_unlock(&mapping->private_lock);
662
663         if (newly_dirty)
664                 __set_page_dirty(page, mapping, 1);
665
666         unlock_page_memcg(page);
667
668         if (newly_dirty)
669                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
670
671         return newly_dirty;
672 }
673 EXPORT_SYMBOL(__set_page_dirty_buffers);
674
675 /*
676  * Write out and wait upon a list of buffers.
677  *
678  * We have conflicting pressures: we want to make sure that all
679  * initially dirty buffers get waited on, but that any subsequently
680  * dirtied buffers don't.  After all, we don't want fsync to last
681  * forever if somebody is actively writing to the file.
682  *
683  * Do this in two main stages: first we copy dirty buffers to a
684  * temporary inode list, queueing the writes as we go.  Then we clean
685  * up, waiting for those writes to complete.
686  * 
687  * During this second stage, any subsequent updates to the file may end
688  * up refiling the buffer on the original inode's dirty list again, so
689  * there is a chance we will end up with a buffer queued for write but
690  * not yet completed on that list.  So, as a final cleanup we go through
691  * the osync code to catch these locked, dirty buffers without requeuing
692  * any newly dirty buffers for write.
693  */
694 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
695 {
696         struct buffer_head *bh;
697         struct list_head tmp;
698         struct address_space *mapping;
699         int err = 0, err2;
700         struct blk_plug plug;
701
702         INIT_LIST_HEAD(&tmp);
703         blk_start_plug(&plug);
704
705         spin_lock(lock);
706         while (!list_empty(list)) {
707                 bh = BH_ENTRY(list->next);
708                 mapping = bh->b_assoc_map;
709                 __remove_assoc_queue(bh);
710                 /* Avoid race with mark_buffer_dirty_inode() which does
711                  * a lockless check and we rely on seeing the dirty bit */
712                 smp_mb();
713                 if (buffer_dirty(bh) || buffer_locked(bh)) {
714                         list_add(&bh->b_assoc_buffers, &tmp);
715                         bh->b_assoc_map = mapping;
716                         if (buffer_dirty(bh)) {
717                                 get_bh(bh);
718                                 spin_unlock(lock);
719                                 /*
720                                  * Ensure any pending I/O completes so that
721                                  * write_dirty_buffer() actually writes the
722                                  * current contents - it is a noop if I/O is
723                                  * still in flight on potentially older
724                                  * contents.
725                                  */
726                                 write_dirty_buffer(bh, REQ_SYNC);
727
728                                 /*
729                                  * Kick off IO for the previous mapping. Note
730                                  * that we will not run the very last mapping,
731                                  * wait_on_buffer() will do that for us
732                                  * through sync_buffer().
733                                  */
734                                 brelse(bh);
735                                 spin_lock(lock);
736                         }
737                 }
738         }
739
740         spin_unlock(lock);
741         blk_finish_plug(&plug);
742         spin_lock(lock);
743
744         while (!list_empty(&tmp)) {
745                 bh = BH_ENTRY(tmp.prev);
746                 get_bh(bh);
747                 mapping = bh->b_assoc_map;
748                 __remove_assoc_queue(bh);
749                 /* Avoid race with mark_buffer_dirty_inode() which does
750                  * a lockless check and we rely on seeing the dirty bit */
751                 smp_mb();
752                 if (buffer_dirty(bh)) {
753                         list_add(&bh->b_assoc_buffers,
754                                  &mapping->private_list);
755                         bh->b_assoc_map = mapping;
756                 }
757                 spin_unlock(lock);
758                 wait_on_buffer(bh);
759                 if (!buffer_uptodate(bh))
760                         err = -EIO;
761                 brelse(bh);
762                 spin_lock(lock);
763         }
764         
765         spin_unlock(lock);
766         err2 = osync_buffers_list(lock, list);
767         if (err)
768                 return err;
769         else
770                 return err2;
771 }
772
773 /*
774  * Invalidate any and all dirty buffers on a given inode.  We are
775  * probably unmounting the fs, but that doesn't mean we have already
776  * done a sync().  Just drop the buffers from the inode list.
777  *
778  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
779  * assumes that all the buffers are against the blockdev.  Not true
780  * for reiserfs.
781  */
782 void invalidate_inode_buffers(struct inode *inode)
783 {
784         if (inode_has_buffers(inode)) {
785                 struct address_space *mapping = &inode->i_data;
786                 struct list_head *list = &mapping->private_list;
787                 struct address_space *buffer_mapping = mapping->private_data;
788
789                 spin_lock(&buffer_mapping->private_lock);
790                 while (!list_empty(list))
791                         __remove_assoc_queue(BH_ENTRY(list->next));
792                 spin_unlock(&buffer_mapping->private_lock);
793         }
794 }
795 EXPORT_SYMBOL(invalidate_inode_buffers);
796
797 /*
798  * Remove any clean buffers from the inode's buffer list.  This is called
799  * when we're trying to free the inode itself.  Those buffers can pin it.
800  *
801  * Returns true if all buffers were removed.
802  */
803 int remove_inode_buffers(struct inode *inode)
804 {
805         int ret = 1;
806
807         if (inode_has_buffers(inode)) {
808                 struct address_space *mapping = &inode->i_data;
809                 struct list_head *list = &mapping->private_list;
810                 struct address_space *buffer_mapping = mapping->private_data;
811
812                 spin_lock(&buffer_mapping->private_lock);
813                 while (!list_empty(list)) {
814                         struct buffer_head *bh = BH_ENTRY(list->next);
815                         if (buffer_dirty(bh)) {
816                                 ret = 0;
817                                 break;
818                         }
819                         __remove_assoc_queue(bh);
820                 }
821                 spin_unlock(&buffer_mapping->private_lock);
822         }
823         return ret;
824 }
825
826 /*
827  * Create the appropriate buffers when given a page for data area and
828  * the size of each buffer.. Use the bh->b_this_page linked list to
829  * follow the buffers created.  Return NULL if unable to create more
830  * buffers.
831  *
832  * The retry flag is used to differentiate async IO (paging, swapping)
833  * which may not fail from ordinary buffer allocations.
834  */
835 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
836                 bool retry)
837 {
838         struct buffer_head *bh, *head;
839         gfp_t gfp = GFP_NOFS;
840         long offset;
841
842         if (retry)
843                 gfp |= __GFP_NOFAIL;
844
845         head = NULL;
846         offset = PAGE_SIZE;
847         while ((offset -= size) >= 0) {
848                 bh = alloc_buffer_head(gfp);
849                 if (!bh)
850                         goto no_grow;
851
852                 bh->b_this_page = head;
853                 bh->b_blocknr = -1;
854                 head = bh;
855
856                 bh->b_size = size;
857
858                 /* Link the buffer to its page */
859                 set_bh_page(bh, page, offset);
860         }
861         return head;
862 /*
863  * In case anything failed, we just free everything we got.
864  */
865 no_grow:
866         if (head) {
867                 do {
868                         bh = head;
869                         head = head->b_this_page;
870                         free_buffer_head(bh);
871                 } while (head);
872         }
873
874         return NULL;
875 }
876 EXPORT_SYMBOL_GPL(alloc_page_buffers);
877
878 static inline void
879 link_dev_buffers(struct page *page, struct buffer_head *head)
880 {
881         struct buffer_head *bh, *tail;
882
883         bh = head;
884         do {
885                 tail = bh;
886                 bh = bh->b_this_page;
887         } while (bh);
888         tail->b_this_page = head;
889         attach_page_buffers(page, head);
890 }
891
892 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
893 {
894         sector_t retval = ~((sector_t)0);
895         loff_t sz = i_size_read(bdev->bd_inode);
896
897         if (sz) {
898                 unsigned int sizebits = blksize_bits(size);
899                 retval = (sz >> sizebits);
900         }
901         return retval;
902 }
903
904 /*
905  * Initialise the state of a blockdev page's buffers.
906  */ 
907 static sector_t
908 init_page_buffers(struct page *page, struct block_device *bdev,
909                         sector_t block, int size)
910 {
911         struct buffer_head *head = page_buffers(page);
912         struct buffer_head *bh = head;
913         int uptodate = PageUptodate(page);
914         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
915
916         do {
917                 if (!buffer_mapped(bh)) {
918                         bh->b_end_io = NULL;
919                         bh->b_private = NULL;
920                         bh->b_bdev = bdev;
921                         bh->b_blocknr = block;
922                         if (uptodate)
923                                 set_buffer_uptodate(bh);
924                         if (block < end_block)
925                                 set_buffer_mapped(bh);
926                 }
927                 block++;
928                 bh = bh->b_this_page;
929         } while (bh != head);
930
931         /*
932          * Caller needs to validate requested block against end of device.
933          */
934         return end_block;
935 }
936
937 /*
938  * Create the page-cache page that contains the requested block.
939  *
940  * This is used purely for blockdev mappings.
941  */
942 static int
943 grow_dev_page(struct block_device *bdev, sector_t block,
944               pgoff_t index, int size, int sizebits, gfp_t gfp)
945 {
946         struct inode *inode = bdev->bd_inode;
947         struct page *page;
948         struct buffer_head *bh;
949         sector_t end_block;
950         int ret = 0;            /* Will call free_more_memory() */
951         gfp_t gfp_mask;
952
953         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
954
955         /*
956          * XXX: __getblk_slow() can not really deal with failure and
957          * will endlessly loop on improvised global reclaim.  Prefer
958          * looping in the allocator rather than here, at least that
959          * code knows what it's doing.
960          */
961         gfp_mask |= __GFP_NOFAIL;
962
963         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
964
965         BUG_ON(!PageLocked(page));
966
967         if (page_has_buffers(page)) {
968                 bh = page_buffers(page);
969                 if (bh->b_size == size) {
970                         end_block = init_page_buffers(page, bdev,
971                                                 (sector_t)index << sizebits,
972                                                 size);
973                         goto done;
974                 }
975                 if (!try_to_free_buffers(page))
976                         goto failed;
977         }
978
979         /*
980          * Allocate some buffers for this page
981          */
982         bh = alloc_page_buffers(page, size, true);
983
984         /*
985          * Link the page to the buffers and initialise them.  Take the
986          * lock to be atomic wrt __find_get_block(), which does not
987          * run under the page lock.
988          */
989         spin_lock(&inode->i_mapping->private_lock);
990         link_dev_buffers(page, bh);
991         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
992                         size);
993         spin_unlock(&inode->i_mapping->private_lock);
994 done:
995         ret = (block < end_block) ? 1 : -ENXIO;
996 failed:
997         unlock_page(page);
998         put_page(page);
999         return ret;
1000 }
1001
1002 /*
1003  * Create buffers for the specified block device block's page.  If
1004  * that page was dirty, the buffers are set dirty also.
1005  */
1006 static int
1007 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1008 {
1009         pgoff_t index;
1010         int sizebits;
1011
1012         sizebits = -1;
1013         do {
1014                 sizebits++;
1015         } while ((size << sizebits) < PAGE_SIZE);
1016
1017         index = block >> sizebits;
1018
1019         /*
1020          * Check for a block which wants to lie outside our maximum possible
1021          * pagecache index.  (this comparison is done using sector_t types).
1022          */
1023         if (unlikely(index != block >> sizebits)) {
1024                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1025                         "device %pg\n",
1026                         __func__, (unsigned long long)block,
1027                         bdev);
1028                 return -EIO;
1029         }
1030
1031         /* Create a page with the proper size buffers.. */
1032         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1033 }
1034
1035 static struct buffer_head *
1036 __getblk_slow(struct block_device *bdev, sector_t block,
1037              unsigned size, gfp_t gfp)
1038 {
1039         /* Size must be multiple of hard sectorsize */
1040         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1041                         (size < 512 || size > PAGE_SIZE))) {
1042                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1043                                         size);
1044                 printk(KERN_ERR "logical block size: %d\n",
1045                                         bdev_logical_block_size(bdev));
1046
1047                 dump_stack();
1048                 return NULL;
1049         }
1050
1051         for (;;) {
1052                 struct buffer_head *bh;
1053                 int ret;
1054
1055                 bh = __find_get_block(bdev, block, size);
1056                 if (bh)
1057                         return bh;
1058
1059                 ret = grow_buffers(bdev, block, size, gfp);
1060                 if (ret < 0)
1061                         return NULL;
1062         }
1063 }
1064
1065 /*
1066  * The relationship between dirty buffers and dirty pages:
1067  *
1068  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1069  * the page is tagged dirty in its radix tree.
1070  *
1071  * At all times, the dirtiness of the buffers represents the dirtiness of
1072  * subsections of the page.  If the page has buffers, the page dirty bit is
1073  * merely a hint about the true dirty state.
1074  *
1075  * When a page is set dirty in its entirety, all its buffers are marked dirty
1076  * (if the page has buffers).
1077  *
1078  * When a buffer is marked dirty, its page is dirtied, but the page's other
1079  * buffers are not.
1080  *
1081  * Also.  When blockdev buffers are explicitly read with bread(), they
1082  * individually become uptodate.  But their backing page remains not
1083  * uptodate - even if all of its buffers are uptodate.  A subsequent
1084  * block_read_full_page() against that page will discover all the uptodate
1085  * buffers, will set the page uptodate and will perform no I/O.
1086  */
1087
1088 /**
1089  * mark_buffer_dirty - mark a buffer_head as needing writeout
1090  * @bh: the buffer_head to mark dirty
1091  *
1092  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1093  * backing page dirty, then tag the page as dirty in its address_space's radix
1094  * tree and then attach the address_space's inode to its superblock's dirty
1095  * inode list.
1096  *
1097  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1098  * mapping->tree_lock and mapping->host->i_lock.
1099  */
1100 void mark_buffer_dirty(struct buffer_head *bh)
1101 {
1102         WARN_ON_ONCE(!buffer_uptodate(bh));
1103
1104         trace_block_dirty_buffer(bh);
1105
1106         /*
1107          * Very *carefully* optimize the it-is-already-dirty case.
1108          *
1109          * Don't let the final "is it dirty" escape to before we
1110          * perhaps modified the buffer.
1111          */
1112         if (buffer_dirty(bh)) {
1113                 smp_mb();
1114                 if (buffer_dirty(bh))
1115                         return;
1116         }
1117
1118         if (!test_set_buffer_dirty(bh)) {
1119                 struct page *page = bh->b_page;
1120                 struct address_space *mapping = NULL;
1121
1122                 lock_page_memcg(page);
1123                 if (!TestSetPageDirty(page)) {
1124                         mapping = page_mapping(page);
1125                         if (mapping)
1126                                 __set_page_dirty(page, mapping, 0);
1127                 }
1128                 unlock_page_memcg(page);
1129                 if (mapping)
1130                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1131         }
1132 }
1133 EXPORT_SYMBOL(mark_buffer_dirty);
1134
1135 void mark_buffer_write_io_error(struct buffer_head *bh)
1136 {
1137         set_buffer_write_io_error(bh);
1138         /* FIXME: do we need to set this in both places? */
1139         if (bh->b_page && bh->b_page->mapping)
1140                 mapping_set_error(bh->b_page->mapping, -EIO);
1141         if (bh->b_assoc_map)
1142                 mapping_set_error(bh->b_assoc_map, -EIO);
1143 }
1144 EXPORT_SYMBOL(mark_buffer_write_io_error);
1145
1146 /*
1147  * Decrement a buffer_head's reference count.  If all buffers against a page
1148  * have zero reference count, are clean and unlocked, and if the page is clean
1149  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1150  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1151  * a page but it ends up not being freed, and buffers may later be reattached).
1152  */
1153 void __brelse(struct buffer_head * buf)
1154 {
1155         if (atomic_read(&buf->b_count)) {
1156                 put_bh(buf);
1157                 return;
1158         }
1159         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1160 }
1161 EXPORT_SYMBOL(__brelse);
1162
1163 /*
1164  * bforget() is like brelse(), except it discards any
1165  * potentially dirty data.
1166  */
1167 void __bforget(struct buffer_head *bh)
1168 {
1169         clear_buffer_dirty(bh);
1170         if (bh->b_assoc_map) {
1171                 struct address_space *buffer_mapping = bh->b_page->mapping;
1172
1173                 spin_lock(&buffer_mapping->private_lock);
1174                 list_del_init(&bh->b_assoc_buffers);
1175                 bh->b_assoc_map = NULL;
1176                 spin_unlock(&buffer_mapping->private_lock);
1177         }
1178         __brelse(bh);
1179 }
1180 EXPORT_SYMBOL(__bforget);
1181
1182 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1183 {
1184         lock_buffer(bh);
1185         if (buffer_uptodate(bh)) {
1186                 unlock_buffer(bh);
1187                 return bh;
1188         } else {
1189                 get_bh(bh);
1190                 bh->b_end_io = end_buffer_read_sync;
1191                 submit_bh(REQ_OP_READ, 0, bh);
1192                 wait_on_buffer(bh);
1193                 if (buffer_uptodate(bh))
1194                         return bh;
1195         }
1196         brelse(bh);
1197         return NULL;
1198 }
1199
1200 /*
1201  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1202  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1203  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1204  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1205  * CPU's LRUs at the same time.
1206  *
1207  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1208  * sb_find_get_block().
1209  *
1210  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1211  * a local interrupt disable for that.
1212  */
1213
1214 #define BH_LRU_SIZE     16
1215
1216 struct bh_lru {
1217         struct buffer_head *bhs[BH_LRU_SIZE];
1218 };
1219
1220 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1221
1222 #ifdef CONFIG_SMP
1223 #define bh_lru_lock()   local_irq_disable()
1224 #define bh_lru_unlock() local_irq_enable()
1225 #else
1226 #define bh_lru_lock()   preempt_disable()
1227 #define bh_lru_unlock() preempt_enable()
1228 #endif
1229
1230 static inline void check_irqs_on(void)
1231 {
1232 #ifdef irqs_disabled
1233         BUG_ON(irqs_disabled());
1234 #endif
1235 }
1236
1237 /*
1238  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1239  * inserted at the front, and the buffer_head at the back if any is evicted.
1240  * Or, if already in the LRU it is moved to the front.
1241  */
1242 static void bh_lru_install(struct buffer_head *bh)
1243 {
1244         struct buffer_head *evictee = bh;
1245         struct bh_lru *b;
1246         int i;
1247
1248         check_irqs_on();
1249         bh_lru_lock();
1250
1251         b = this_cpu_ptr(&bh_lrus);
1252         for (i = 0; i < BH_LRU_SIZE; i++) {
1253                 swap(evictee, b->bhs[i]);
1254                 if (evictee == bh) {
1255                         bh_lru_unlock();
1256                         return;
1257                 }
1258         }
1259
1260         get_bh(bh);
1261         bh_lru_unlock();
1262         brelse(evictee);
1263 }
1264
1265 /*
1266  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1267  */
1268 static struct buffer_head *
1269 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1270 {
1271         struct buffer_head *ret = NULL;
1272         unsigned int i;
1273
1274         check_irqs_on();
1275         bh_lru_lock();
1276         for (i = 0; i < BH_LRU_SIZE; i++) {
1277                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1278
1279                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1280                     bh->b_size == size) {
1281                         if (i) {
1282                                 while (i) {
1283                                         __this_cpu_write(bh_lrus.bhs[i],
1284                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1285                                         i--;
1286                                 }
1287                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1288                         }
1289                         get_bh(bh);
1290                         ret = bh;
1291                         break;
1292                 }
1293         }
1294         bh_lru_unlock();
1295         return ret;
1296 }
1297
1298 /*
1299  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1300  * it in the LRU and mark it as accessed.  If it is not present then return
1301  * NULL
1302  */
1303 struct buffer_head *
1304 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1305 {
1306         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1307
1308         if (bh == NULL) {
1309                 /* __find_get_block_slow will mark the page accessed */
1310                 bh = __find_get_block_slow(bdev, block);
1311                 if (bh)
1312                         bh_lru_install(bh);
1313         } else
1314                 touch_buffer(bh);
1315
1316         return bh;
1317 }
1318 EXPORT_SYMBOL(__find_get_block);
1319
1320 /*
1321  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1322  * which corresponds to the passed block_device, block and size. The
1323  * returned buffer has its reference count incremented.
1324  *
1325  * __getblk_gfp() will lock up the machine if grow_dev_page's
1326  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1327  */
1328 struct buffer_head *
1329 __getblk_gfp(struct block_device *bdev, sector_t block,
1330              unsigned size, gfp_t gfp)
1331 {
1332         struct buffer_head *bh = __find_get_block(bdev, block, size);
1333
1334         might_sleep();
1335         if (bh == NULL)
1336                 bh = __getblk_slow(bdev, block, size, gfp);
1337         return bh;
1338 }
1339 EXPORT_SYMBOL(__getblk_gfp);
1340
1341 /*
1342  * Do async read-ahead on a buffer..
1343  */
1344 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1345 {
1346         struct buffer_head *bh = __getblk(bdev, block, size);
1347         if (likely(bh)) {
1348                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1349                 brelse(bh);
1350         }
1351 }
1352 EXPORT_SYMBOL(__breadahead);
1353
1354 /**
1355  *  __bread_gfp() - reads a specified block and returns the bh
1356  *  @bdev: the block_device to read from
1357  *  @block: number of block
1358  *  @size: size (in bytes) to read
1359  *  @gfp: page allocation flag
1360  *
1361  *  Reads a specified block, and returns buffer head that contains it.
1362  *  The page cache can be allocated from non-movable area
1363  *  not to prevent page migration if you set gfp to zero.
1364  *  It returns NULL if the block was unreadable.
1365  */
1366 struct buffer_head *
1367 __bread_gfp(struct block_device *bdev, sector_t block,
1368                    unsigned size, gfp_t gfp)
1369 {
1370         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1371
1372         if (likely(bh) && !buffer_uptodate(bh))
1373                 bh = __bread_slow(bh);
1374         return bh;
1375 }
1376 EXPORT_SYMBOL(__bread_gfp);
1377
1378 /*
1379  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1380  * This doesn't race because it runs in each cpu either in irq
1381  * or with preempt disabled.
1382  */
1383 static void invalidate_bh_lru(void *arg)
1384 {
1385         struct bh_lru *b = &get_cpu_var(bh_lrus);
1386         int i;
1387
1388         for (i = 0; i < BH_LRU_SIZE; i++) {
1389                 brelse(b->bhs[i]);
1390                 b->bhs[i] = NULL;
1391         }
1392         put_cpu_var(bh_lrus);
1393 }
1394
1395 static bool has_bh_in_lru(int cpu, void *dummy)
1396 {
1397         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1398         int i;
1399         
1400         for (i = 0; i < BH_LRU_SIZE; i++) {
1401                 if (b->bhs[i])
1402                         return 1;
1403         }
1404
1405         return 0;
1406 }
1407
1408 void invalidate_bh_lrus(void)
1409 {
1410         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1411 }
1412 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1413
1414 void set_bh_page(struct buffer_head *bh,
1415                 struct page *page, unsigned long offset)
1416 {
1417         bh->b_page = page;
1418         BUG_ON(offset >= PAGE_SIZE);
1419         if (PageHighMem(page))
1420                 /*
1421                  * This catches illegal uses and preserves the offset:
1422                  */
1423                 bh->b_data = (char *)(0 + offset);
1424         else
1425                 bh->b_data = page_address(page) + offset;
1426 }
1427 EXPORT_SYMBOL(set_bh_page);
1428
1429 /*
1430  * Called when truncating a buffer on a page completely.
1431  */
1432
1433 /* Bits that are cleared during an invalidate */
1434 #define BUFFER_FLAGS_DISCARD \
1435         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1436          1 << BH_Delay | 1 << BH_Unwritten)
1437
1438 static void discard_buffer(struct buffer_head * bh)
1439 {
1440         unsigned long b_state, b_state_old;
1441
1442         lock_buffer(bh);
1443         clear_buffer_dirty(bh);
1444         bh->b_bdev = NULL;
1445         b_state = bh->b_state;
1446         for (;;) {
1447                 b_state_old = cmpxchg(&bh->b_state, b_state,
1448                                       (b_state & ~BUFFER_FLAGS_DISCARD));
1449                 if (b_state_old == b_state)
1450                         break;
1451                 b_state = b_state_old;
1452         }
1453         unlock_buffer(bh);
1454 }
1455
1456 /**
1457  * block_invalidatepage - invalidate part or all of a buffer-backed page
1458  *
1459  * @page: the page which is affected
1460  * @offset: start of the range to invalidate
1461  * @length: length of the range to invalidate
1462  *
1463  * block_invalidatepage() is called when all or part of the page has become
1464  * invalidated by a truncate operation.
1465  *
1466  * block_invalidatepage() does not have to release all buffers, but it must
1467  * ensure that no dirty buffer is left outside @offset and that no I/O
1468  * is underway against any of the blocks which are outside the truncation
1469  * point.  Because the caller is about to free (and possibly reuse) those
1470  * blocks on-disk.
1471  */
1472 void block_invalidatepage(struct page *page, unsigned int offset,
1473                           unsigned int length)
1474 {
1475         struct buffer_head *head, *bh, *next;
1476         unsigned int curr_off = 0;
1477         unsigned int stop = length + offset;
1478
1479         BUG_ON(!PageLocked(page));
1480         if (!page_has_buffers(page))
1481                 goto out;
1482
1483         /*
1484          * Check for overflow
1485          */
1486         BUG_ON(stop > PAGE_SIZE || stop < length);
1487
1488         head = page_buffers(page);
1489         bh = head;
1490         do {
1491                 unsigned int next_off = curr_off + bh->b_size;
1492                 next = bh->b_this_page;
1493
1494                 /*
1495                  * Are we still fully in range ?
1496                  */
1497                 if (next_off > stop)
1498                         goto out;
1499
1500                 /*
1501                  * is this block fully invalidated?
1502                  */
1503                 if (offset <= curr_off)
1504                         discard_buffer(bh);
1505                 curr_off = next_off;
1506                 bh = next;
1507         } while (bh != head);
1508
1509         /*
1510          * We release buffers only if the entire page is being invalidated.
1511          * The get_block cached value has been unconditionally invalidated,
1512          * so real IO is not possible anymore.
1513          */
1514         if (offset == 0)
1515                 try_to_release_page(page, 0);
1516 out:
1517         return;
1518 }
1519 EXPORT_SYMBOL(block_invalidatepage);
1520
1521
1522 /*
1523  * We attach and possibly dirty the buffers atomically wrt
1524  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1525  * is already excluded via the page lock.
1526  */
1527 void create_empty_buffers(struct page *page,
1528                         unsigned long blocksize, unsigned long b_state)
1529 {
1530         struct buffer_head *bh, *head, *tail;
1531
1532         head = alloc_page_buffers(page, blocksize, true);
1533         bh = head;
1534         do {
1535                 bh->b_state |= b_state;
1536                 tail = bh;
1537                 bh = bh->b_this_page;
1538         } while (bh);
1539         tail->b_this_page = head;
1540
1541         spin_lock(&page->mapping->private_lock);
1542         if (PageUptodate(page) || PageDirty(page)) {
1543                 bh = head;
1544                 do {
1545                         if (PageDirty(page))
1546                                 set_buffer_dirty(bh);
1547                         if (PageUptodate(page))
1548                                 set_buffer_uptodate(bh);
1549                         bh = bh->b_this_page;
1550                 } while (bh != head);
1551         }
1552         attach_page_buffers(page, head);
1553         spin_unlock(&page->mapping->private_lock);
1554 }
1555 EXPORT_SYMBOL(create_empty_buffers);
1556
1557 /**
1558  * clean_bdev_aliases: clean a range of buffers in block device
1559  * @bdev: Block device to clean buffers in
1560  * @block: Start of a range of blocks to clean
1561  * @len: Number of blocks to clean
1562  *
1563  * We are taking a range of blocks for data and we don't want writeback of any
1564  * buffer-cache aliases starting from return from this function and until the
1565  * moment when something will explicitly mark the buffer dirty (hopefully that
1566  * will not happen until we will free that block ;-) We don't even need to mark
1567  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1568  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1569  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1570  * would confuse anyone who might pick it with bread() afterwards...
1571  *
1572  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1573  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1574  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1575  * need to.  That happens here.
1576  */
1577 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1578 {
1579         struct inode *bd_inode = bdev->bd_inode;
1580         struct address_space *bd_mapping = bd_inode->i_mapping;
1581         struct pagevec pvec;
1582         pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1583         pgoff_t end;
1584         int i, count;
1585         struct buffer_head *bh;
1586         struct buffer_head *head;
1587
1588         end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1589         pagevec_init(&pvec);
1590         while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1591                 count = pagevec_count(&pvec);
1592                 for (i = 0; i < count; i++) {
1593                         struct page *page = pvec.pages[i];
1594
1595                         if (!page_has_buffers(page))
1596                                 continue;
1597                         /*
1598                          * We use page lock instead of bd_mapping->private_lock
1599                          * to pin buffers here since we can afford to sleep and
1600                          * it scales better than a global spinlock lock.
1601                          */
1602                         lock_page(page);
1603                         /* Recheck when the page is locked which pins bhs */
1604                         if (!page_has_buffers(page))
1605                                 goto unlock_page;
1606                         head = page_buffers(page);
1607                         bh = head;
1608                         do {
1609                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1610                                         goto next;
1611                                 if (bh->b_blocknr >= block + len)
1612                                         break;
1613                                 clear_buffer_dirty(bh);
1614                                 wait_on_buffer(bh);
1615                                 clear_buffer_req(bh);
1616 next:
1617                                 bh = bh->b_this_page;
1618                         } while (bh != head);
1619 unlock_page:
1620                         unlock_page(page);
1621                 }
1622                 pagevec_release(&pvec);
1623                 cond_resched();
1624                 /* End of range already reached? */
1625                 if (index > end || !index)
1626                         break;
1627         }
1628 }
1629 EXPORT_SYMBOL(clean_bdev_aliases);
1630
1631 /*
1632  * Size is a power-of-two in the range 512..PAGE_SIZE,
1633  * and the case we care about most is PAGE_SIZE.
1634  *
1635  * So this *could* possibly be written with those
1636  * constraints in mind (relevant mostly if some
1637  * architecture has a slow bit-scan instruction)
1638  */
1639 static inline int block_size_bits(unsigned int blocksize)
1640 {
1641         return ilog2(blocksize);
1642 }
1643
1644 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1645 {
1646         BUG_ON(!PageLocked(page));
1647
1648         if (!page_has_buffers(page))
1649                 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1650                                      b_state);
1651         return page_buffers(page);
1652 }
1653
1654 /*
1655  * NOTE! All mapped/uptodate combinations are valid:
1656  *
1657  *      Mapped  Uptodate        Meaning
1658  *
1659  *      No      No              "unknown" - must do get_block()
1660  *      No      Yes             "hole" - zero-filled
1661  *      Yes     No              "allocated" - allocated on disk, not read in
1662  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1663  *
1664  * "Dirty" is valid only with the last case (mapped+uptodate).
1665  */
1666
1667 /*
1668  * While block_write_full_page is writing back the dirty buffers under
1669  * the page lock, whoever dirtied the buffers may decide to clean them
1670  * again at any time.  We handle that by only looking at the buffer
1671  * state inside lock_buffer().
1672  *
1673  * If block_write_full_page() is called for regular writeback
1674  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1675  * locked buffer.   This only can happen if someone has written the buffer
1676  * directly, with submit_bh().  At the address_space level PageWriteback
1677  * prevents this contention from occurring.
1678  *
1679  * If block_write_full_page() is called with wbc->sync_mode ==
1680  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1681  * causes the writes to be flagged as synchronous writes.
1682  */
1683 int __block_write_full_page(struct inode *inode, struct page *page,
1684                         get_block_t *get_block, struct writeback_control *wbc,
1685                         bh_end_io_t *handler)
1686 {
1687         int err;
1688         sector_t block;
1689         sector_t last_block;
1690         struct buffer_head *bh, *head;
1691         unsigned int blocksize, bbits;
1692         int nr_underway = 0;
1693         int write_flags = wbc_to_write_flags(wbc);
1694
1695         head = create_page_buffers(page, inode,
1696                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1697
1698         /*
1699          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1700          * here, and the (potentially unmapped) buffers may become dirty at
1701          * any time.  If a buffer becomes dirty here after we've inspected it
1702          * then we just miss that fact, and the page stays dirty.
1703          *
1704          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1705          * handle that here by just cleaning them.
1706          */
1707
1708         bh = head;
1709         blocksize = bh->b_size;
1710         bbits = block_size_bits(blocksize);
1711
1712         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1713         last_block = (i_size_read(inode) - 1) >> bbits;
1714
1715         /*
1716          * Get all the dirty buffers mapped to disk addresses and
1717          * handle any aliases from the underlying blockdev's mapping.
1718          */
1719         do {
1720                 if (block > last_block) {
1721                         /*
1722                          * mapped buffers outside i_size will occur, because
1723                          * this page can be outside i_size when there is a
1724                          * truncate in progress.
1725                          */
1726                         /*
1727                          * The buffer was zeroed by block_write_full_page()
1728                          */
1729                         clear_buffer_dirty(bh);
1730                         set_buffer_uptodate(bh);
1731                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1732                            buffer_dirty(bh)) {
1733                         WARN_ON(bh->b_size != blocksize);
1734                         err = get_block(inode, block, bh, 1);
1735                         if (err)
1736                                 goto recover;
1737                         clear_buffer_delay(bh);
1738                         if (buffer_new(bh)) {
1739                                 /* blockdev mappings never come here */
1740                                 clear_buffer_new(bh);
1741                                 clean_bdev_bh_alias(bh);
1742                         }
1743                 }
1744                 bh = bh->b_this_page;
1745                 block++;
1746         } while (bh != head);
1747
1748         do {
1749                 if (!buffer_mapped(bh))
1750                         continue;
1751                 /*
1752                  * If it's a fully non-blocking write attempt and we cannot
1753                  * lock the buffer then redirty the page.  Note that this can
1754                  * potentially cause a busy-wait loop from writeback threads
1755                  * and kswapd activity, but those code paths have their own
1756                  * higher-level throttling.
1757                  */
1758                 if (wbc->sync_mode != WB_SYNC_NONE) {
1759                         lock_buffer(bh);
1760                 } else if (!trylock_buffer(bh)) {
1761                         redirty_page_for_writepage(wbc, page);
1762                         continue;
1763                 }
1764                 if (test_clear_buffer_dirty(bh)) {
1765                         mark_buffer_async_write_endio(bh, handler);
1766                 } else {
1767                         unlock_buffer(bh);
1768                 }
1769         } while ((bh = bh->b_this_page) != head);
1770
1771         /*
1772          * The page and its buffers are protected by PageWriteback(), so we can
1773          * drop the bh refcounts early.
1774          */
1775         BUG_ON(PageWriteback(page));
1776         set_page_writeback(page);
1777
1778         do {
1779                 struct buffer_head *next = bh->b_this_page;
1780                 if (buffer_async_write(bh)) {
1781                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1782                                         inode->i_write_hint, wbc);
1783                         nr_underway++;
1784                 }
1785                 bh = next;
1786         } while (bh != head);
1787         unlock_page(page);
1788
1789         err = 0;
1790 done:
1791         if (nr_underway == 0) {
1792                 /*
1793                  * The page was marked dirty, but the buffers were
1794                  * clean.  Someone wrote them back by hand with
1795                  * ll_rw_block/submit_bh.  A rare case.
1796                  */
1797                 end_page_writeback(page);
1798
1799                 /*
1800                  * The page and buffer_heads can be released at any time from
1801                  * here on.
1802                  */
1803         }
1804         return err;
1805
1806 recover:
1807         /*
1808          * ENOSPC, or some other error.  We may already have added some
1809          * blocks to the file, so we need to write these out to avoid
1810          * exposing stale data.
1811          * The page is currently locked and not marked for writeback
1812          */
1813         bh = head;
1814         /* Recovery: lock and submit the mapped buffers */
1815         do {
1816                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1817                     !buffer_delay(bh)) {
1818                         lock_buffer(bh);
1819                         mark_buffer_async_write_endio(bh, handler);
1820                 } else {
1821                         /*
1822                          * The buffer may have been set dirty during
1823                          * attachment to a dirty page.
1824                          */
1825                         clear_buffer_dirty(bh);
1826                 }
1827         } while ((bh = bh->b_this_page) != head);
1828         SetPageError(page);
1829         BUG_ON(PageWriteback(page));
1830         mapping_set_error(page->mapping, err);
1831         set_page_writeback(page);
1832         do {
1833                 struct buffer_head *next = bh->b_this_page;
1834                 if (buffer_async_write(bh)) {
1835                         clear_buffer_dirty(bh);
1836                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1837                                         inode->i_write_hint, wbc);
1838                         nr_underway++;
1839                 }
1840                 bh = next;
1841         } while (bh != head);
1842         unlock_page(page);
1843         goto done;
1844 }
1845 EXPORT_SYMBOL(__block_write_full_page);
1846
1847 /*
1848  * If a page has any new buffers, zero them out here, and mark them uptodate
1849  * and dirty so they'll be written out (in order to prevent uninitialised
1850  * block data from leaking). And clear the new bit.
1851  */
1852 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1853 {
1854         unsigned int block_start, block_end;
1855         struct buffer_head *head, *bh;
1856
1857         BUG_ON(!PageLocked(page));
1858         if (!page_has_buffers(page))
1859                 return;
1860
1861         bh = head = page_buffers(page);
1862         block_start = 0;
1863         do {
1864                 block_end = block_start + bh->b_size;
1865
1866                 if (buffer_new(bh)) {
1867                         if (block_end > from && block_start < to) {
1868                                 if (!PageUptodate(page)) {
1869                                         unsigned start, size;
1870
1871                                         start = max(from, block_start);
1872                                         size = min(to, block_end) - start;
1873
1874                                         zero_user(page, start, size);
1875                                         set_buffer_uptodate(bh);
1876                                 }
1877
1878                                 clear_buffer_new(bh);
1879                                 mark_buffer_dirty(bh);
1880                         }
1881                 }
1882
1883                 block_start = block_end;
1884                 bh = bh->b_this_page;
1885         } while (bh != head);
1886 }
1887 EXPORT_SYMBOL(page_zero_new_buffers);
1888
1889 static void
1890 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1891                 struct iomap *iomap)
1892 {
1893         loff_t offset = block << inode->i_blkbits;
1894
1895         bh->b_bdev = iomap->bdev;
1896
1897         /*
1898          * Block points to offset in file we need to map, iomap contains
1899          * the offset at which the map starts. If the map ends before the
1900          * current block, then do not map the buffer and let the caller
1901          * handle it.
1902          */
1903         BUG_ON(offset >= iomap->offset + iomap->length);
1904
1905         switch (iomap->type) {
1906         case IOMAP_HOLE:
1907                 /*
1908                  * If the buffer is not up to date or beyond the current EOF,
1909                  * we need to mark it as new to ensure sub-block zeroing is
1910                  * executed if necessary.
1911                  */
1912                 if (!buffer_uptodate(bh) ||
1913                     (offset >= i_size_read(inode)))
1914                         set_buffer_new(bh);
1915                 break;
1916         case IOMAP_DELALLOC:
1917                 if (!buffer_uptodate(bh) ||
1918                     (offset >= i_size_read(inode)))
1919                         set_buffer_new(bh);
1920                 set_buffer_uptodate(bh);
1921                 set_buffer_mapped(bh);
1922                 set_buffer_delay(bh);
1923                 break;
1924         case IOMAP_UNWRITTEN:
1925                 /*
1926                  * For unwritten regions, we always need to ensure that
1927                  * sub-block writes cause the regions in the block we are not
1928                  * writing to are zeroed. Set the buffer as new to ensure this.
1929                  */
1930                 set_buffer_new(bh);
1931                 set_buffer_unwritten(bh);
1932                 /* FALLTHRU */
1933         case IOMAP_MAPPED:
1934                 if (offset >= i_size_read(inode))
1935                         set_buffer_new(bh);
1936                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1937                                 inode->i_blkbits;
1938                 set_buffer_mapped(bh);
1939                 break;
1940         }
1941 }
1942
1943 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1944                 get_block_t *get_block, struct iomap *iomap)
1945 {
1946         unsigned from = pos & (PAGE_SIZE - 1);
1947         unsigned to = from + len;
1948         struct inode *inode = page->mapping->host;
1949         unsigned block_start, block_end;
1950         sector_t block;
1951         int err = 0;
1952         unsigned blocksize, bbits;
1953         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1954
1955         BUG_ON(!PageLocked(page));
1956         BUG_ON(from > PAGE_SIZE);
1957         BUG_ON(to > PAGE_SIZE);
1958         BUG_ON(from > to);
1959
1960         head = create_page_buffers(page, inode, 0);
1961         blocksize = head->b_size;
1962         bbits = block_size_bits(blocksize);
1963
1964         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1965
1966         for(bh = head, block_start = 0; bh != head || !block_start;
1967             block++, block_start=block_end, bh = bh->b_this_page) {
1968                 block_end = block_start + blocksize;
1969                 if (block_end <= from || block_start >= to) {
1970                         if (PageUptodate(page)) {
1971                                 if (!buffer_uptodate(bh))
1972                                         set_buffer_uptodate(bh);
1973                         }
1974                         continue;
1975                 }
1976                 if (buffer_new(bh))
1977                         clear_buffer_new(bh);
1978                 if (!buffer_mapped(bh)) {
1979                         WARN_ON(bh->b_size != blocksize);
1980                         if (get_block) {
1981                                 err = get_block(inode, block, bh, 1);
1982                                 if (err)
1983                                         break;
1984                         } else {
1985                                 iomap_to_bh(inode, block, bh, iomap);
1986                         }
1987
1988                         if (buffer_new(bh)) {
1989                                 clean_bdev_bh_alias(bh);
1990                                 if (PageUptodate(page)) {
1991                                         clear_buffer_new(bh);
1992                                         set_buffer_uptodate(bh);
1993                                         mark_buffer_dirty(bh);
1994                                         continue;
1995                                 }
1996                                 if (block_end > to || block_start < from)
1997                                         zero_user_segments(page,
1998                                                 to, block_end,
1999                                                 block_start, from);
2000                                 continue;
2001                         }
2002                 }
2003                 if (PageUptodate(page)) {
2004                         if (!buffer_uptodate(bh))
2005                                 set_buffer_uptodate(bh);
2006                         continue; 
2007                 }
2008                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2009                     !buffer_unwritten(bh) &&
2010                      (block_start < from || block_end > to)) {
2011                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2012                         *wait_bh++=bh;
2013                 }
2014         }
2015         /*
2016          * If we issued read requests - let them complete.
2017          */
2018         while(wait_bh > wait) {
2019                 wait_on_buffer(*--wait_bh);
2020                 if (!buffer_uptodate(*wait_bh))
2021                         err = -EIO;
2022         }
2023         if (unlikely(err))
2024                 page_zero_new_buffers(page, from, to);
2025         return err;
2026 }
2027
2028 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2029                 get_block_t *get_block)
2030 {
2031         return __block_write_begin_int(page, pos, len, get_block, NULL);
2032 }
2033 EXPORT_SYMBOL(__block_write_begin);
2034
2035 static int __block_commit_write(struct inode *inode, struct page *page,
2036                 unsigned from, unsigned to)
2037 {
2038         unsigned block_start, block_end;
2039         int partial = 0;
2040         unsigned blocksize;
2041         struct buffer_head *bh, *head;
2042
2043         bh = head = page_buffers(page);
2044         blocksize = bh->b_size;
2045
2046         block_start = 0;
2047         do {
2048                 block_end = block_start + blocksize;
2049                 if (block_end <= from || block_start >= to) {
2050                         if (!buffer_uptodate(bh))
2051                                 partial = 1;
2052                 } else {
2053                         set_buffer_uptodate(bh);
2054                         mark_buffer_dirty(bh);
2055                 }
2056                 clear_buffer_new(bh);
2057
2058                 block_start = block_end;
2059                 bh = bh->b_this_page;
2060         } while (bh != head);
2061
2062         /*
2063          * If this is a partial write which happened to make all buffers
2064          * uptodate then we can optimize away a bogus readpage() for
2065          * the next read(). Here we 'discover' whether the page went
2066          * uptodate as a result of this (potentially partial) write.
2067          */
2068         if (!partial)
2069                 SetPageUptodate(page);
2070         return 0;
2071 }
2072
2073 /*
2074  * block_write_begin takes care of the basic task of block allocation and
2075  * bringing partial write blocks uptodate first.
2076  *
2077  * The filesystem needs to handle block truncation upon failure.
2078  */
2079 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2080                 unsigned flags, struct page **pagep, get_block_t *get_block)
2081 {
2082         pgoff_t index = pos >> PAGE_SHIFT;
2083         struct page *page;
2084         int status;
2085
2086         page = grab_cache_page_write_begin(mapping, index, flags);
2087         if (!page)
2088                 return -ENOMEM;
2089
2090         status = __block_write_begin(page, pos, len, get_block);
2091         if (unlikely(status)) {
2092                 unlock_page(page);
2093                 put_page(page);
2094                 page = NULL;
2095         }
2096
2097         *pagep = page;
2098         return status;
2099 }
2100 EXPORT_SYMBOL(block_write_begin);
2101
2102 int block_write_end(struct file *file, struct address_space *mapping,
2103                         loff_t pos, unsigned len, unsigned copied,
2104                         struct page *page, void *fsdata)
2105 {
2106         struct inode *inode = mapping->host;
2107         unsigned start;
2108
2109         start = pos & (PAGE_SIZE - 1);
2110
2111         if (unlikely(copied < len)) {
2112                 /*
2113                  * The buffers that were written will now be uptodate, so we
2114                  * don't have to worry about a readpage reading them and
2115                  * overwriting a partial write. However if we have encountered
2116                  * a short write and only partially written into a buffer, it
2117                  * will not be marked uptodate, so a readpage might come in and
2118                  * destroy our partial write.
2119                  *
2120                  * Do the simplest thing, and just treat any short write to a
2121                  * non uptodate page as a zero-length write, and force the
2122                  * caller to redo the whole thing.
2123                  */
2124                 if (!PageUptodate(page))
2125                         copied = 0;
2126
2127                 page_zero_new_buffers(page, start+copied, start+len);
2128         }
2129         flush_dcache_page(page);
2130
2131         /* This could be a short (even 0-length) commit */
2132         __block_commit_write(inode, page, start, start+copied);
2133
2134         return copied;
2135 }
2136 EXPORT_SYMBOL(block_write_end);
2137
2138 int generic_write_end(struct file *file, struct address_space *mapping,
2139                         loff_t pos, unsigned len, unsigned copied,
2140                         struct page *page, void *fsdata)
2141 {
2142         struct inode *inode = mapping->host;
2143         loff_t old_size = inode->i_size;
2144         int i_size_changed = 0;
2145
2146         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2147
2148         /*
2149          * No need to use i_size_read() here, the i_size
2150          * cannot change under us because we hold i_mutex.
2151          *
2152          * But it's important to update i_size while still holding page lock:
2153          * page writeout could otherwise come in and zero beyond i_size.
2154          */
2155         if (pos+copied > inode->i_size) {
2156                 i_size_write(inode, pos+copied);
2157                 i_size_changed = 1;
2158         }
2159
2160         unlock_page(page);
2161         put_page(page);
2162
2163         if (old_size < pos)
2164                 pagecache_isize_extended(inode, old_size, pos);
2165         /*
2166          * Don't mark the inode dirty under page lock. First, it unnecessarily
2167          * makes the holding time of page lock longer. Second, it forces lock
2168          * ordering of page lock and transaction start for journaling
2169          * filesystems.
2170          */
2171         if (i_size_changed)
2172                 mark_inode_dirty(inode);
2173
2174         return copied;
2175 }
2176 EXPORT_SYMBOL(generic_write_end);
2177
2178 /*
2179  * block_is_partially_uptodate checks whether buffers within a page are
2180  * uptodate or not.
2181  *
2182  * Returns true if all buffers which correspond to a file portion
2183  * we want to read are uptodate.
2184  */
2185 int block_is_partially_uptodate(struct page *page, unsigned long from,
2186                                         unsigned long count)
2187 {
2188         unsigned block_start, block_end, blocksize;
2189         unsigned to;
2190         struct buffer_head *bh, *head;
2191         int ret = 1;
2192
2193         if (!page_has_buffers(page))
2194                 return 0;
2195
2196         head = page_buffers(page);
2197         blocksize = head->b_size;
2198         to = min_t(unsigned, PAGE_SIZE - from, count);
2199         to = from + to;
2200         if (from < blocksize && to > PAGE_SIZE - blocksize)
2201                 return 0;
2202
2203         bh = head;
2204         block_start = 0;
2205         do {
2206                 block_end = block_start + blocksize;
2207                 if (block_end > from && block_start < to) {
2208                         if (!buffer_uptodate(bh)) {
2209                                 ret = 0;
2210                                 break;
2211                         }
2212                         if (block_end >= to)
2213                                 break;
2214                 }
2215                 block_start = block_end;
2216                 bh = bh->b_this_page;
2217         } while (bh != head);
2218
2219         return ret;
2220 }
2221 EXPORT_SYMBOL(block_is_partially_uptodate);
2222
2223 /*
2224  * Generic "read page" function for block devices that have the normal
2225  * get_block functionality. This is most of the block device filesystems.
2226  * Reads the page asynchronously --- the unlock_buffer() and
2227  * set/clear_buffer_uptodate() functions propagate buffer state into the
2228  * page struct once IO has completed.
2229  */
2230 int block_read_full_page(struct page *page, get_block_t *get_block)
2231 {
2232         struct inode *inode = page->mapping->host;
2233         sector_t iblock, lblock;
2234         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2235         unsigned int blocksize, bbits;
2236         int nr, i;
2237         int fully_mapped = 1;
2238
2239         head = create_page_buffers(page, inode, 0);
2240         blocksize = head->b_size;
2241         bbits = block_size_bits(blocksize);
2242
2243         iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2244         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2245         bh = head;
2246         nr = 0;
2247         i = 0;
2248
2249         do {
2250                 if (buffer_uptodate(bh))
2251                         continue;
2252
2253                 if (!buffer_mapped(bh)) {
2254                         int err = 0;
2255
2256                         fully_mapped = 0;
2257                         if (iblock < lblock) {
2258                                 WARN_ON(bh->b_size != blocksize);
2259                                 err = get_block(inode, iblock, bh, 0);
2260                                 if (err)
2261                                         SetPageError(page);
2262                         }
2263                         if (!buffer_mapped(bh)) {
2264                                 zero_user(page, i * blocksize, blocksize);
2265                                 if (!err)
2266                                         set_buffer_uptodate(bh);
2267                                 continue;
2268                         }
2269                         /*
2270                          * get_block() might have updated the buffer
2271                          * synchronously
2272                          */
2273                         if (buffer_uptodate(bh))
2274                                 continue;
2275                 }
2276                 arr[nr++] = bh;
2277         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2278
2279         if (fully_mapped)
2280                 SetPageMappedToDisk(page);
2281
2282         if (!nr) {
2283                 /*
2284                  * All buffers are uptodate - we can set the page uptodate
2285                  * as well. But not if get_block() returned an error.
2286                  */
2287                 if (!PageError(page))
2288                         SetPageUptodate(page);
2289                 unlock_page(page);
2290                 return 0;
2291         }
2292
2293         /* Stage two: lock the buffers */
2294         for (i = 0; i < nr; i++) {
2295                 bh = arr[i];
2296                 lock_buffer(bh);
2297                 mark_buffer_async_read(bh);
2298         }
2299
2300         /*
2301          * Stage 3: start the IO.  Check for uptodateness
2302          * inside the buffer lock in case another process reading
2303          * the underlying blockdev brought it uptodate (the sct fix).
2304          */
2305         for (i = 0; i < nr; i++) {
2306                 bh = arr[i];
2307                 if (buffer_uptodate(bh))
2308                         end_buffer_async_read(bh, 1);
2309                 else
2310                         submit_bh(REQ_OP_READ, 0, bh);
2311         }
2312         return 0;
2313 }
2314 EXPORT_SYMBOL(block_read_full_page);
2315
2316 /* utility function for filesystems that need to do work on expanding
2317  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2318  * deal with the hole.  
2319  */
2320 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2321 {
2322         struct address_space *mapping = inode->i_mapping;
2323         struct page *page;
2324         void *fsdata;
2325         int err;
2326
2327         err = inode_newsize_ok(inode, size);
2328         if (err)
2329                 goto out;
2330
2331         err = pagecache_write_begin(NULL, mapping, size, 0,
2332                                     AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2333         if (err)
2334                 goto out;
2335
2336         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2337         BUG_ON(err > 0);
2338
2339 out:
2340         return err;
2341 }
2342 EXPORT_SYMBOL(generic_cont_expand_simple);
2343
2344 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2345                             loff_t pos, loff_t *bytes)
2346 {
2347         struct inode *inode = mapping->host;
2348         unsigned int blocksize = i_blocksize(inode);
2349         struct page *page;
2350         void *fsdata;
2351         pgoff_t index, curidx;
2352         loff_t curpos;
2353         unsigned zerofrom, offset, len;
2354         int err = 0;
2355
2356         index = pos >> PAGE_SHIFT;
2357         offset = pos & ~PAGE_MASK;
2358
2359         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2360                 zerofrom = curpos & ~PAGE_MASK;
2361                 if (zerofrom & (blocksize-1)) {
2362                         *bytes |= (blocksize-1);
2363                         (*bytes)++;
2364                 }
2365                 len = PAGE_SIZE - zerofrom;
2366
2367                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2368                                             &page, &fsdata);
2369                 if (err)
2370                         goto out;
2371                 zero_user(page, zerofrom, len);
2372                 err = pagecache_write_end(file, mapping, curpos, len, len,
2373                                                 page, fsdata);
2374                 if (err < 0)
2375                         goto out;
2376                 BUG_ON(err != len);
2377                 err = 0;
2378
2379                 balance_dirty_pages_ratelimited(mapping);
2380
2381                 if (unlikely(fatal_signal_pending(current))) {
2382                         err = -EINTR;
2383                         goto out;
2384                 }
2385         }
2386
2387         /* page covers the boundary, find the boundary offset */
2388         if (index == curidx) {
2389                 zerofrom = curpos & ~PAGE_MASK;
2390                 /* if we will expand the thing last block will be filled */
2391                 if (offset <= zerofrom) {
2392                         goto out;
2393                 }
2394                 if (zerofrom & (blocksize-1)) {
2395                         *bytes |= (blocksize-1);
2396                         (*bytes)++;
2397                 }
2398                 len = offset - zerofrom;
2399
2400                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2401                                             &page, &fsdata);
2402                 if (err)
2403                         goto out;
2404                 zero_user(page, zerofrom, len);
2405                 err = pagecache_write_end(file, mapping, curpos, len, len,
2406                                                 page, fsdata);
2407                 if (err < 0)
2408                         goto out;
2409                 BUG_ON(err != len);
2410                 err = 0;
2411         }
2412 out:
2413         return err;
2414 }
2415
2416 /*
2417  * For moronic filesystems that do not allow holes in file.
2418  * We may have to extend the file.
2419  */
2420 int cont_write_begin(struct file *file, struct address_space *mapping,
2421                         loff_t pos, unsigned len, unsigned flags,
2422                         struct page **pagep, void **fsdata,
2423                         get_block_t *get_block, loff_t *bytes)
2424 {
2425         struct inode *inode = mapping->host;
2426         unsigned int blocksize = i_blocksize(inode);
2427         unsigned int zerofrom;
2428         int err;
2429
2430         err = cont_expand_zero(file, mapping, pos, bytes);
2431         if (err)
2432                 return err;
2433
2434         zerofrom = *bytes & ~PAGE_MASK;
2435         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2436                 *bytes |= (blocksize-1);
2437                 (*bytes)++;
2438         }
2439
2440         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2441 }
2442 EXPORT_SYMBOL(cont_write_begin);
2443
2444 int block_commit_write(struct page *page, unsigned from, unsigned to)
2445 {
2446         struct inode *inode = page->mapping->host;
2447         __block_commit_write(inode,page,from,to);
2448         return 0;
2449 }
2450 EXPORT_SYMBOL(block_commit_write);
2451
2452 /*
2453  * block_page_mkwrite() is not allowed to change the file size as it gets
2454  * called from a page fault handler when a page is first dirtied. Hence we must
2455  * be careful to check for EOF conditions here. We set the page up correctly
2456  * for a written page which means we get ENOSPC checking when writing into
2457  * holes and correct delalloc and unwritten extent mapping on filesystems that
2458  * support these features.
2459  *
2460  * We are not allowed to take the i_mutex here so we have to play games to
2461  * protect against truncate races as the page could now be beyond EOF.  Because
2462  * truncate writes the inode size before removing pages, once we have the
2463  * page lock we can determine safely if the page is beyond EOF. If it is not
2464  * beyond EOF, then the page is guaranteed safe against truncation until we
2465  * unlock the page.
2466  *
2467  * Direct callers of this function should protect against filesystem freezing
2468  * using sb_start_pagefault() - sb_end_pagefault() functions.
2469  */
2470 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2471                          get_block_t get_block)
2472 {
2473         struct page *page = vmf->page;
2474         struct inode *inode = file_inode(vma->vm_file);
2475         unsigned long end;
2476         loff_t size;
2477         int ret;
2478
2479         lock_page(page);
2480         size = i_size_read(inode);
2481         if ((page->mapping != inode->i_mapping) ||
2482             (page_offset(page) > size)) {
2483                 /* We overload EFAULT to mean page got truncated */
2484                 ret = -EFAULT;
2485                 goto out_unlock;
2486         }
2487
2488         /* page is wholly or partially inside EOF */
2489         if (((page->index + 1) << PAGE_SHIFT) > size)
2490                 end = size & ~PAGE_MASK;
2491         else
2492                 end = PAGE_SIZE;
2493
2494         ret = __block_write_begin(page, 0, end, get_block);
2495         if (!ret)
2496                 ret = block_commit_write(page, 0, end);
2497
2498         if (unlikely(ret < 0))
2499                 goto out_unlock;
2500         set_page_dirty(page);
2501         wait_for_stable_page(page);
2502         return 0;
2503 out_unlock:
2504         unlock_page(page);
2505         return ret;
2506 }
2507 EXPORT_SYMBOL(block_page_mkwrite);
2508
2509 /*
2510  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2511  * immediately, while under the page lock.  So it needs a special end_io
2512  * handler which does not touch the bh after unlocking it.
2513  */
2514 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2515 {
2516         __end_buffer_read_notouch(bh, uptodate);
2517 }
2518
2519 /*
2520  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2521  * the page (converting it to circular linked list and taking care of page
2522  * dirty races).
2523  */
2524 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2525 {
2526         struct buffer_head *bh;
2527
2528         BUG_ON(!PageLocked(page));
2529
2530         spin_lock(&page->mapping->private_lock);
2531         bh = head;
2532         do {
2533                 if (PageDirty(page))
2534                         set_buffer_dirty(bh);
2535                 if (!bh->b_this_page)
2536                         bh->b_this_page = head;
2537                 bh = bh->b_this_page;
2538         } while (bh != head);
2539         attach_page_buffers(page, head);
2540         spin_unlock(&page->mapping->private_lock);
2541 }
2542
2543 /*
2544  * On entry, the page is fully not uptodate.
2545  * On exit the page is fully uptodate in the areas outside (from,to)
2546  * The filesystem needs to handle block truncation upon failure.
2547  */
2548 int nobh_write_begin(struct address_space *mapping,
2549                         loff_t pos, unsigned len, unsigned flags,
2550                         struct page **pagep, void **fsdata,
2551                         get_block_t *get_block)
2552 {
2553         struct inode *inode = mapping->host;
2554         const unsigned blkbits = inode->i_blkbits;
2555         const unsigned blocksize = 1 << blkbits;
2556         struct buffer_head *head, *bh;
2557         struct page *page;
2558         pgoff_t index;
2559         unsigned from, to;
2560         unsigned block_in_page;
2561         unsigned block_start, block_end;
2562         sector_t block_in_file;
2563         int nr_reads = 0;
2564         int ret = 0;
2565         int is_mapped_to_disk = 1;
2566
2567         index = pos >> PAGE_SHIFT;
2568         from = pos & (PAGE_SIZE - 1);
2569         to = from + len;
2570
2571         page = grab_cache_page_write_begin(mapping, index, flags);
2572         if (!page)
2573                 return -ENOMEM;
2574         *pagep = page;
2575         *fsdata = NULL;
2576
2577         if (page_has_buffers(page)) {
2578                 ret = __block_write_begin(page, pos, len, get_block);
2579                 if (unlikely(ret))
2580                         goto out_release;
2581                 return ret;
2582         }
2583
2584         if (PageMappedToDisk(page))
2585                 return 0;
2586
2587         /*
2588          * Allocate buffers so that we can keep track of state, and potentially
2589          * attach them to the page if an error occurs. In the common case of
2590          * no error, they will just be freed again without ever being attached
2591          * to the page (which is all OK, because we're under the page lock).
2592          *
2593          * Be careful: the buffer linked list is a NULL terminated one, rather
2594          * than the circular one we're used to.
2595          */
2596         head = alloc_page_buffers(page, blocksize, false);
2597         if (!head) {
2598                 ret = -ENOMEM;
2599                 goto out_release;
2600         }
2601
2602         block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2603
2604         /*
2605          * We loop across all blocks in the page, whether or not they are
2606          * part of the affected region.  This is so we can discover if the
2607          * page is fully mapped-to-disk.
2608          */
2609         for (block_start = 0, block_in_page = 0, bh = head;
2610                   block_start < PAGE_SIZE;
2611                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2612                 int create;
2613
2614                 block_end = block_start + blocksize;
2615                 bh->b_state = 0;
2616                 create = 1;
2617                 if (block_start >= to)
2618                         create = 0;
2619                 ret = get_block(inode, block_in_file + block_in_page,
2620                                         bh, create);
2621                 if (ret)
2622                         goto failed;
2623                 if (!buffer_mapped(bh))
2624                         is_mapped_to_disk = 0;
2625                 if (buffer_new(bh))
2626                         clean_bdev_bh_alias(bh);
2627                 if (PageUptodate(page)) {
2628                         set_buffer_uptodate(bh);
2629                         continue;
2630                 }
2631                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2632                         zero_user_segments(page, block_start, from,
2633                                                         to, block_end);
2634                         continue;
2635                 }
2636                 if (buffer_uptodate(bh))
2637                         continue;       /* reiserfs does this */
2638                 if (block_start < from || block_end > to) {
2639                         lock_buffer(bh);
2640                         bh->b_end_io = end_buffer_read_nobh;
2641                         submit_bh(REQ_OP_READ, 0, bh);
2642                         nr_reads++;
2643                 }
2644         }
2645
2646         if (nr_reads) {
2647                 /*
2648                  * The page is locked, so these buffers are protected from
2649                  * any VM or truncate activity.  Hence we don't need to care
2650                  * for the buffer_head refcounts.
2651                  */
2652                 for (bh = head; bh; bh = bh->b_this_page) {
2653                         wait_on_buffer(bh);
2654                         if (!buffer_uptodate(bh))
2655                                 ret = -EIO;
2656                 }
2657                 if (ret)
2658                         goto failed;
2659         }
2660
2661         if (is_mapped_to_disk)
2662                 SetPageMappedToDisk(page);
2663
2664         *fsdata = head; /* to be released by nobh_write_end */
2665
2666         return 0;
2667
2668 failed:
2669         BUG_ON(!ret);
2670         /*
2671          * Error recovery is a bit difficult. We need to zero out blocks that
2672          * were newly allocated, and dirty them to ensure they get written out.
2673          * Buffers need to be attached to the page at this point, otherwise
2674          * the handling of potential IO errors during writeout would be hard
2675          * (could try doing synchronous writeout, but what if that fails too?)
2676          */
2677         attach_nobh_buffers(page, head);
2678         page_zero_new_buffers(page, from, to);
2679
2680 out_release:
2681         unlock_page(page);
2682         put_page(page);
2683         *pagep = NULL;
2684
2685         return ret;
2686 }
2687 EXPORT_SYMBOL(nobh_write_begin);
2688
2689 int nobh_write_end(struct file *file, struct address_space *mapping,
2690                         loff_t pos, unsigned len, unsigned copied,
2691                         struct page *page, void *fsdata)
2692 {
2693         struct inode *inode = page->mapping->host;
2694         struct buffer_head *head = fsdata;
2695         struct buffer_head *bh;
2696         BUG_ON(fsdata != NULL && page_has_buffers(page));
2697
2698         if (unlikely(copied < len) && head)
2699                 attach_nobh_buffers(page, head);
2700         if (page_has_buffers(page))
2701                 return generic_write_end(file, mapping, pos, len,
2702                                         copied, page, fsdata);
2703
2704         SetPageUptodate(page);
2705         set_page_dirty(page);
2706         if (pos+copied > inode->i_size) {
2707                 i_size_write(inode, pos+copied);
2708                 mark_inode_dirty(inode);
2709         }
2710
2711         unlock_page(page);
2712         put_page(page);
2713
2714         while (head) {
2715                 bh = head;
2716                 head = head->b_this_page;
2717                 free_buffer_head(bh);
2718         }
2719
2720         return copied;
2721 }
2722 EXPORT_SYMBOL(nobh_write_end);
2723
2724 /*
2725  * nobh_writepage() - based on block_full_write_page() except
2726  * that it tries to operate without attaching bufferheads to
2727  * the page.
2728  */
2729 int nobh_writepage(struct page *page, get_block_t *get_block,
2730                         struct writeback_control *wbc)
2731 {
2732         struct inode * const inode = page->mapping->host;
2733         loff_t i_size = i_size_read(inode);
2734         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2735         unsigned offset;
2736         int ret;
2737
2738         /* Is the page fully inside i_size? */
2739         if (page->index < end_index)
2740                 goto out;
2741
2742         /* Is the page fully outside i_size? (truncate in progress) */
2743         offset = i_size & (PAGE_SIZE-1);
2744         if (page->index >= end_index+1 || !offset) {
2745                 /*
2746                  * The page may have dirty, unmapped buffers.  For example,
2747                  * they may have been added in ext3_writepage().  Make them
2748                  * freeable here, so the page does not leak.
2749                  */
2750 #if 0
2751                 /* Not really sure about this  - do we need this ? */
2752                 if (page->mapping->a_ops->invalidatepage)
2753                         page->mapping->a_ops->invalidatepage(page, offset);
2754 #endif
2755                 unlock_page(page);
2756                 return 0; /* don't care */
2757         }
2758
2759         /*
2760          * The page straddles i_size.  It must be zeroed out on each and every
2761          * writepage invocation because it may be mmapped.  "A file is mapped
2762          * in multiples of the page size.  For a file that is not a multiple of
2763          * the  page size, the remaining memory is zeroed when mapped, and
2764          * writes to that region are not written out to the file."
2765          */
2766         zero_user_segment(page, offset, PAGE_SIZE);
2767 out:
2768         ret = mpage_writepage(page, get_block, wbc);
2769         if (ret == -EAGAIN)
2770                 ret = __block_write_full_page(inode, page, get_block, wbc,
2771                                               end_buffer_async_write);
2772         return ret;
2773 }
2774 EXPORT_SYMBOL(nobh_writepage);
2775
2776 int nobh_truncate_page(struct address_space *mapping,
2777                         loff_t from, get_block_t *get_block)
2778 {
2779         pgoff_t index = from >> PAGE_SHIFT;
2780         unsigned offset = from & (PAGE_SIZE-1);
2781         unsigned blocksize;
2782         sector_t iblock;
2783         unsigned length, pos;
2784         struct inode *inode = mapping->host;
2785         struct page *page;
2786         struct buffer_head map_bh;
2787         int err;
2788
2789         blocksize = i_blocksize(inode);
2790         length = offset & (blocksize - 1);
2791
2792         /* Block boundary? Nothing to do */
2793         if (!length)
2794                 return 0;
2795
2796         length = blocksize - length;
2797         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2798
2799         page = grab_cache_page(mapping, index);
2800         err = -ENOMEM;
2801         if (!page)
2802                 goto out;
2803
2804         if (page_has_buffers(page)) {
2805 has_buffers:
2806                 unlock_page(page);
2807                 put_page(page);
2808                 return block_truncate_page(mapping, from, get_block);
2809         }
2810
2811         /* Find the buffer that contains "offset" */
2812         pos = blocksize;
2813         while (offset >= pos) {
2814                 iblock++;
2815                 pos += blocksize;
2816         }
2817
2818         map_bh.b_size = blocksize;
2819         map_bh.b_state = 0;
2820         err = get_block(inode, iblock, &map_bh, 0);
2821         if (err)
2822                 goto unlock;
2823         /* unmapped? It's a hole - nothing to do */
2824         if (!buffer_mapped(&map_bh))
2825                 goto unlock;
2826
2827         /* Ok, it's mapped. Make sure it's up-to-date */
2828         if (!PageUptodate(page)) {
2829                 err = mapping->a_ops->readpage(NULL, page);
2830                 if (err) {
2831                         put_page(page);
2832                         goto out;
2833                 }
2834                 lock_page(page);
2835                 if (!PageUptodate(page)) {
2836                         err = -EIO;
2837                         goto unlock;
2838                 }
2839                 if (page_has_buffers(page))
2840                         goto has_buffers;
2841         }
2842         zero_user(page, offset, length);
2843         set_page_dirty(page);
2844         err = 0;
2845
2846 unlock:
2847         unlock_page(page);
2848         put_page(page);
2849 out:
2850         return err;
2851 }
2852 EXPORT_SYMBOL(nobh_truncate_page);
2853
2854 int block_truncate_page(struct address_space *mapping,
2855                         loff_t from, get_block_t *get_block)
2856 {
2857         pgoff_t index = from >> PAGE_SHIFT;
2858         unsigned offset = from & (PAGE_SIZE-1);
2859         unsigned blocksize;
2860         sector_t iblock;
2861         unsigned length, pos;
2862         struct inode *inode = mapping->host;
2863         struct page *page;
2864         struct buffer_head *bh;
2865         int err;
2866
2867         blocksize = i_blocksize(inode);
2868         length = offset & (blocksize - 1);
2869
2870         /* Block boundary? Nothing to do */
2871         if (!length)
2872                 return 0;
2873
2874         length = blocksize - length;
2875         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2876         
2877         page = grab_cache_page(mapping, index);
2878         err = -ENOMEM;
2879         if (!page)
2880                 goto out;
2881
2882         if (!page_has_buffers(page))
2883                 create_empty_buffers(page, blocksize, 0);
2884
2885         /* Find the buffer that contains "offset" */
2886         bh = page_buffers(page);
2887         pos = blocksize;
2888         while (offset >= pos) {
2889                 bh = bh->b_this_page;
2890                 iblock++;
2891                 pos += blocksize;
2892         }
2893
2894         err = 0;
2895         if (!buffer_mapped(bh)) {
2896                 WARN_ON(bh->b_size != blocksize);
2897                 err = get_block(inode, iblock, bh, 0);
2898                 if (err)
2899                         goto unlock;
2900                 /* unmapped? It's a hole - nothing to do */
2901                 if (!buffer_mapped(bh))
2902                         goto unlock;
2903         }
2904
2905         /* Ok, it's mapped. Make sure it's up-to-date */
2906         if (PageUptodate(page))
2907                 set_buffer_uptodate(bh);
2908
2909         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2910                 err = -EIO;
2911                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2912                 wait_on_buffer(bh);
2913                 /* Uhhuh. Read error. Complain and punt. */
2914                 if (!buffer_uptodate(bh))
2915                         goto unlock;
2916         }
2917
2918         zero_user(page, offset, length);
2919         mark_buffer_dirty(bh);
2920         err = 0;
2921
2922 unlock:
2923         unlock_page(page);
2924         put_page(page);
2925 out:
2926         return err;
2927 }
2928 EXPORT_SYMBOL(block_truncate_page);
2929
2930 /*
2931  * The generic ->writepage function for buffer-backed address_spaces
2932  */
2933 int block_write_full_page(struct page *page, get_block_t *get_block,
2934                         struct writeback_control *wbc)
2935 {
2936         struct inode * const inode = page->mapping->host;
2937         loff_t i_size = i_size_read(inode);
2938         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2939         unsigned offset;
2940
2941         /* Is the page fully inside i_size? */
2942         if (page->index < end_index)
2943                 return __block_write_full_page(inode, page, get_block, wbc,
2944                                                end_buffer_async_write);
2945
2946         /* Is the page fully outside i_size? (truncate in progress) */
2947         offset = i_size & (PAGE_SIZE-1);
2948         if (page->index >= end_index+1 || !offset) {
2949                 /*
2950                  * The page may have dirty, unmapped buffers.  For example,
2951                  * they may have been added in ext3_writepage().  Make them
2952                  * freeable here, so the page does not leak.
2953                  */
2954                 do_invalidatepage(page, 0, PAGE_SIZE);
2955                 unlock_page(page);
2956                 return 0; /* don't care */
2957         }
2958
2959         /*
2960          * The page straddles i_size.  It must be zeroed out on each and every
2961          * writepage invocation because it may be mmapped.  "A file is mapped
2962          * in multiples of the page size.  For a file that is not a multiple of
2963          * the  page size, the remaining memory is zeroed when mapped, and
2964          * writes to that region are not written out to the file."
2965          */
2966         zero_user_segment(page, offset, PAGE_SIZE);
2967         return __block_write_full_page(inode, page, get_block, wbc,
2968                                                         end_buffer_async_write);
2969 }
2970 EXPORT_SYMBOL(block_write_full_page);
2971
2972 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2973                             get_block_t *get_block)
2974 {
2975         struct inode *inode = mapping->host;
2976         struct buffer_head tmp = {
2977                 .b_size = i_blocksize(inode),
2978         };
2979
2980         get_block(inode, block, &tmp, 0);
2981         return tmp.b_blocknr;
2982 }
2983 EXPORT_SYMBOL(generic_block_bmap);
2984
2985 static void end_bio_bh_io_sync(struct bio *bio)
2986 {
2987         struct buffer_head *bh = bio->bi_private;
2988
2989         if (unlikely(bio_flagged(bio, BIO_QUIET)))
2990                 set_bit(BH_Quiet, &bh->b_state);
2991
2992         bh->b_end_io(bh, !bio->bi_status);
2993         bio_put(bio);
2994 }
2995
2996 /*
2997  * This allows us to do IO even on the odd last sectors
2998  * of a device, even if the block size is some multiple
2999  * of the physical sector size.
3000  *
3001  * We'll just truncate the bio to the size of the device,
3002  * and clear the end of the buffer head manually.
3003  *
3004  * Truly out-of-range accesses will turn into actual IO
3005  * errors, this only handles the "we need to be able to
3006  * do IO at the final sector" case.
3007  */
3008 void guard_bio_eod(int op, struct bio *bio)
3009 {
3010         sector_t maxsector;
3011         struct bio_vec *bvec = bio_last_bvec_all(bio);
3012         unsigned truncated_bytes;
3013         struct hd_struct *part;
3014
3015         rcu_read_lock();
3016         part = __disk_get_part(bio->bi_disk, bio->bi_partno);
3017         if (part)
3018                 maxsector = part_nr_sects_read(part);
3019         else
3020                 maxsector = get_capacity(bio->bi_disk);
3021         rcu_read_unlock();
3022
3023         if (!maxsector)
3024                 return;
3025
3026         /*
3027          * If the *whole* IO is past the end of the device,
3028          * let it through, and the IO layer will turn it into
3029          * an EIO.
3030          */
3031         if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3032                 return;
3033
3034         maxsector -= bio->bi_iter.bi_sector;
3035         if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3036                 return;
3037
3038         /* Uhhuh. We've got a bio that straddles the device size! */
3039         truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3040
3041         /* Truncate the bio.. */
3042         bio->bi_iter.bi_size -= truncated_bytes;
3043         bvec->bv_len -= truncated_bytes;
3044
3045         /* ..and clear the end of the buffer for reads */
3046         if (op == REQ_OP_READ) {
3047                 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3048                                 truncated_bytes);
3049         }
3050 }
3051
3052 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3053                          enum rw_hint write_hint, struct writeback_control *wbc)
3054 {
3055         struct bio *bio;
3056
3057         BUG_ON(!buffer_locked(bh));
3058         BUG_ON(!buffer_mapped(bh));
3059         BUG_ON(!bh->b_end_io);
3060         BUG_ON(buffer_delay(bh));
3061         BUG_ON(buffer_unwritten(bh));
3062
3063         /*
3064          * Only clear out a write error when rewriting
3065          */
3066         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3067                 clear_buffer_write_io_error(bh);
3068
3069         /*
3070          * from here on down, it's all bio -- do the initial mapping,
3071          * submit_bio -> generic_make_request may further map this bio around
3072          */
3073         bio = bio_alloc(GFP_NOIO, 1);
3074
3075         if (wbc) {
3076                 wbc_init_bio(wbc, bio);
3077                 wbc_account_io(wbc, bh->b_page, bh->b_size);
3078         }
3079
3080         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3081         bio_set_dev(bio, bh->b_bdev);
3082         bio->bi_write_hint = write_hint;
3083
3084         bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3085         BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3086
3087         bio->bi_end_io = end_bio_bh_io_sync;
3088         bio->bi_private = bh;
3089
3090         /* Take care of bh's that straddle the end of the device */
3091         guard_bio_eod(op, bio);
3092
3093         if (buffer_meta(bh))
3094                 op_flags |= REQ_META;
3095         if (buffer_prio(bh))
3096                 op_flags |= REQ_PRIO;
3097         bio_set_op_attrs(bio, op, op_flags);
3098
3099         submit_bio(bio);
3100         return 0;
3101 }
3102
3103 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3104 {
3105         return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3106 }
3107 EXPORT_SYMBOL(submit_bh);
3108
3109 /**
3110  * ll_rw_block: low-level access to block devices (DEPRECATED)
3111  * @op: whether to %READ or %WRITE
3112  * @op_flags: req_flag_bits
3113  * @nr: number of &struct buffer_heads in the array
3114  * @bhs: array of pointers to &struct buffer_head
3115  *
3116  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3117  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3118  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3119  * %REQ_RAHEAD.
3120  *
3121  * This function drops any buffer that it cannot get a lock on (with the
3122  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3123  * request, and any buffer that appears to be up-to-date when doing read
3124  * request.  Further it marks as clean buffers that are processed for
3125  * writing (the buffer cache won't assume that they are actually clean
3126  * until the buffer gets unlocked).
3127  *
3128  * ll_rw_block sets b_end_io to simple completion handler that marks
3129  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3130  * any waiters. 
3131  *
3132  * All of the buffers must be for the same device, and must also be a
3133  * multiple of the current approved size for the device.
3134  */
3135 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3136 {
3137         int i;
3138
3139         for (i = 0; i < nr; i++) {
3140                 struct buffer_head *bh = bhs[i];
3141
3142                 if (!trylock_buffer(bh))
3143                         continue;
3144                 if (op == WRITE) {
3145                         if (test_clear_buffer_dirty(bh)) {
3146                                 bh->b_end_io = end_buffer_write_sync;
3147                                 get_bh(bh);
3148                                 submit_bh(op, op_flags, bh);
3149                                 continue;
3150                         }
3151                 } else {
3152                         if (!buffer_uptodate(bh)) {
3153                                 bh->b_end_io = end_buffer_read_sync;
3154                                 get_bh(bh);
3155                                 submit_bh(op, op_flags, bh);
3156                                 continue;
3157                         }
3158                 }
3159                 unlock_buffer(bh);
3160         }
3161 }
3162 EXPORT_SYMBOL(ll_rw_block);
3163
3164 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3165 {
3166         lock_buffer(bh);
3167         if (!test_clear_buffer_dirty(bh)) {
3168                 unlock_buffer(bh);
3169                 return;
3170         }
3171         bh->b_end_io = end_buffer_write_sync;
3172         get_bh(bh);
3173         submit_bh(REQ_OP_WRITE, op_flags, bh);
3174 }
3175 EXPORT_SYMBOL(write_dirty_buffer);
3176
3177 /*
3178  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3179  * and then start new I/O and then wait upon it.  The caller must have a ref on
3180  * the buffer_head.
3181  */
3182 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3183 {
3184         int ret = 0;
3185
3186         WARN_ON(atomic_read(&bh->b_count) < 1);
3187         lock_buffer(bh);
3188         if (test_clear_buffer_dirty(bh)) {
3189                 get_bh(bh);
3190                 bh->b_end_io = end_buffer_write_sync;
3191                 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3192                 wait_on_buffer(bh);
3193                 if (!ret && !buffer_uptodate(bh))
3194                         ret = -EIO;
3195         } else {
3196                 unlock_buffer(bh);
3197         }
3198         return ret;
3199 }
3200 EXPORT_SYMBOL(__sync_dirty_buffer);
3201
3202 int sync_dirty_buffer(struct buffer_head *bh)
3203 {
3204         return __sync_dirty_buffer(bh, REQ_SYNC);
3205 }
3206 EXPORT_SYMBOL(sync_dirty_buffer);
3207
3208 /*
3209  * try_to_free_buffers() checks if all the buffers on this particular page
3210  * are unused, and releases them if so.
3211  *
3212  * Exclusion against try_to_free_buffers may be obtained by either
3213  * locking the page or by holding its mapping's private_lock.
3214  *
3215  * If the page is dirty but all the buffers are clean then we need to
3216  * be sure to mark the page clean as well.  This is because the page
3217  * may be against a block device, and a later reattachment of buffers
3218  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3219  * filesystem data on the same device.
3220  *
3221  * The same applies to regular filesystem pages: if all the buffers are
3222  * clean then we set the page clean and proceed.  To do that, we require
3223  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3224  * private_lock.
3225  *
3226  * try_to_free_buffers() is non-blocking.
3227  */
3228 static inline int buffer_busy(struct buffer_head *bh)
3229 {
3230         return atomic_read(&bh->b_count) |
3231                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3232 }
3233
3234 static int
3235 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3236 {
3237         struct buffer_head *head = page_buffers(page);
3238         struct buffer_head *bh;
3239
3240         bh = head;
3241         do {
3242                 if (buffer_busy(bh))
3243                         goto failed;
3244                 bh = bh->b_this_page;
3245         } while (bh != head);
3246
3247         do {
3248                 struct buffer_head *next = bh->b_this_page;
3249
3250                 if (bh->b_assoc_map)
3251                         __remove_assoc_queue(bh);
3252                 bh = next;
3253         } while (bh != head);
3254         *buffers_to_free = head;
3255         __clear_page_buffers(page);
3256         return 1;
3257 failed:
3258         return 0;
3259 }
3260
3261 int try_to_free_buffers(struct page *page)
3262 {
3263         struct address_space * const mapping = page->mapping;
3264         struct buffer_head *buffers_to_free = NULL;
3265         int ret = 0;
3266
3267         BUG_ON(!PageLocked(page));
3268         if (PageWriteback(page))
3269                 return 0;
3270
3271         if (mapping == NULL) {          /* can this still happen? */
3272                 ret = drop_buffers(page, &buffers_to_free);
3273                 goto out;
3274         }
3275
3276         spin_lock(&mapping->private_lock);
3277         ret = drop_buffers(page, &buffers_to_free);
3278
3279         /*
3280          * If the filesystem writes its buffers by hand (eg ext3)
3281          * then we can have clean buffers against a dirty page.  We
3282          * clean the page here; otherwise the VM will never notice
3283          * that the filesystem did any IO at all.
3284          *
3285          * Also, during truncate, discard_buffer will have marked all
3286          * the page's buffers clean.  We discover that here and clean
3287          * the page also.
3288          *
3289          * private_lock must be held over this entire operation in order
3290          * to synchronise against __set_page_dirty_buffers and prevent the
3291          * dirty bit from being lost.
3292          */
3293         if (ret)
3294                 cancel_dirty_page(page);
3295         spin_unlock(&mapping->private_lock);
3296 out:
3297         if (buffers_to_free) {
3298                 struct buffer_head *bh = buffers_to_free;
3299
3300                 do {
3301                         struct buffer_head *next = bh->b_this_page;
3302                         free_buffer_head(bh);
3303                         bh = next;
3304                 } while (bh != buffers_to_free);
3305         }
3306         return ret;
3307 }
3308 EXPORT_SYMBOL(try_to_free_buffers);
3309
3310 /*
3311  * There are no bdflush tunables left.  But distributions are
3312  * still running obsolete flush daemons, so we terminate them here.
3313  *
3314  * Use of bdflush() is deprecated and will be removed in a future kernel.
3315  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3316  */
3317 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3318 {
3319         static int msg_count;
3320
3321         if (!capable(CAP_SYS_ADMIN))
3322                 return -EPERM;
3323
3324         if (msg_count < 5) {
3325                 msg_count++;
3326                 printk(KERN_INFO
3327                         "warning: process `%s' used the obsolete bdflush"
3328                         " system call\n", current->comm);
3329                 printk(KERN_INFO "Fix your initscripts?\n");
3330         }
3331
3332         if (func == 1)
3333                 do_exit(0);
3334         return 0;
3335 }
3336
3337 /*
3338  * Buffer-head allocation
3339  */
3340 static struct kmem_cache *bh_cachep __read_mostly;
3341
3342 /*
3343  * Once the number of bh's in the machine exceeds this level, we start
3344  * stripping them in writeback.
3345  */
3346 static unsigned long max_buffer_heads;
3347
3348 int buffer_heads_over_limit;
3349
3350 struct bh_accounting {
3351         int nr;                 /* Number of live bh's */
3352         int ratelimit;          /* Limit cacheline bouncing */
3353 };
3354
3355 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3356
3357 static void recalc_bh_state(void)
3358 {
3359         int i;
3360         int tot = 0;
3361
3362         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3363                 return;
3364         __this_cpu_write(bh_accounting.ratelimit, 0);
3365         for_each_online_cpu(i)
3366                 tot += per_cpu(bh_accounting, i).nr;
3367         buffer_heads_over_limit = (tot > max_buffer_heads);
3368 }
3369
3370 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3371 {
3372         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3373         if (ret) {
3374                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3375                 preempt_disable();
3376                 __this_cpu_inc(bh_accounting.nr);
3377                 recalc_bh_state();
3378                 preempt_enable();
3379         }
3380         return ret;
3381 }
3382 EXPORT_SYMBOL(alloc_buffer_head);
3383
3384 void free_buffer_head(struct buffer_head *bh)
3385 {
3386         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3387         kmem_cache_free(bh_cachep, bh);
3388         preempt_disable();
3389         __this_cpu_dec(bh_accounting.nr);
3390         recalc_bh_state();
3391         preempt_enable();
3392 }
3393 EXPORT_SYMBOL(free_buffer_head);
3394
3395 static int buffer_exit_cpu_dead(unsigned int cpu)
3396 {
3397         int i;
3398         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3399
3400         for (i = 0; i < BH_LRU_SIZE; i++) {
3401                 brelse(b->bhs[i]);
3402                 b->bhs[i] = NULL;
3403         }
3404         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3405         per_cpu(bh_accounting, cpu).nr = 0;
3406         return 0;
3407 }
3408
3409 /**
3410  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3411  * @bh: struct buffer_head
3412  *
3413  * Return true if the buffer is up-to-date and false,
3414  * with the buffer locked, if not.
3415  */
3416 int bh_uptodate_or_lock(struct buffer_head *bh)
3417 {
3418         if (!buffer_uptodate(bh)) {
3419                 lock_buffer(bh);
3420                 if (!buffer_uptodate(bh))
3421                         return 0;
3422                 unlock_buffer(bh);
3423         }
3424         return 1;
3425 }
3426 EXPORT_SYMBOL(bh_uptodate_or_lock);
3427
3428 /**
3429  * bh_submit_read - Submit a locked buffer for reading
3430  * @bh: struct buffer_head
3431  *
3432  * Returns zero on success and -EIO on error.
3433  */
3434 int bh_submit_read(struct buffer_head *bh)
3435 {
3436         BUG_ON(!buffer_locked(bh));
3437
3438         if (buffer_uptodate(bh)) {
3439                 unlock_buffer(bh);
3440                 return 0;
3441         }
3442
3443         get_bh(bh);
3444         bh->b_end_io = end_buffer_read_sync;
3445         submit_bh(REQ_OP_READ, 0, bh);
3446         wait_on_buffer(bh);
3447         if (buffer_uptodate(bh))
3448                 return 0;
3449         return -EIO;
3450 }
3451 EXPORT_SYMBOL(bh_submit_read);
3452
3453 /*
3454  * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
3455  *
3456  * Returns the offset within the file on success, and -ENOENT otherwise.
3457  */
3458 static loff_t
3459 page_seek_hole_data(struct page *page, loff_t lastoff, int whence)
3460 {
3461         loff_t offset = page_offset(page);
3462         struct buffer_head *bh, *head;
3463         bool seek_data = whence == SEEK_DATA;
3464
3465         if (lastoff < offset)
3466                 lastoff = offset;
3467
3468         bh = head = page_buffers(page);
3469         do {
3470                 offset += bh->b_size;
3471                 if (lastoff >= offset)
3472                         continue;
3473
3474                 /*
3475                  * Unwritten extents that have data in the page cache covering
3476                  * them can be identified by the BH_Unwritten state flag.
3477                  * Pages with multiple buffers might have a mix of holes, data
3478                  * and unwritten extents - any buffer with valid data in it
3479                  * should have BH_Uptodate flag set on it.
3480                  */
3481
3482                 if ((buffer_unwritten(bh) || buffer_uptodate(bh)) == seek_data)
3483                         return lastoff;
3484
3485                 lastoff = offset;
3486         } while ((bh = bh->b_this_page) != head);
3487         return -ENOENT;
3488 }
3489
3490 /*
3491  * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3492  *
3493  * Within unwritten extents, the page cache determines which parts are holes
3494  * and which are data: unwritten and uptodate buffer heads count as data;
3495  * everything else counts as a hole.
3496  *
3497  * Returns the resulting offset on successs, and -ENOENT otherwise.
3498  */
3499 loff_t
3500 page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
3501                           int whence)
3502 {
3503         pgoff_t index = offset >> PAGE_SHIFT;
3504         pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
3505         loff_t lastoff = offset;
3506         struct pagevec pvec;
3507
3508         if (length <= 0)
3509                 return -ENOENT;
3510
3511         pagevec_init(&pvec);
3512
3513         do {
3514                 unsigned nr_pages, i;
3515
3516                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
3517                                                 end - 1);
3518                 if (nr_pages == 0)
3519                         break;
3520
3521                 for (i = 0; i < nr_pages; i++) {
3522                         struct page *page = pvec.pages[i];
3523
3524                         /*
3525                          * At this point, the page may be truncated or
3526                          * invalidated (changing page->mapping to NULL), or
3527                          * even swizzled back from swapper_space to tmpfs file
3528                          * mapping.  However, page->index will not change
3529                          * because we have a reference on the page.
3530                          *
3531                          * If current page offset is beyond where we've ended,
3532                          * we've found a hole.
3533                          */
3534                         if (whence == SEEK_HOLE &&
3535                             lastoff < page_offset(page))
3536                                 goto check_range;
3537
3538                         lock_page(page);
3539                         if (likely(page->mapping == inode->i_mapping) &&
3540                             page_has_buffers(page)) {
3541                                 lastoff = page_seek_hole_data(page, lastoff, whence);
3542                                 if (lastoff >= 0) {
3543                                         unlock_page(page);
3544                                         goto check_range;
3545                                 }
3546                         }
3547                         unlock_page(page);
3548                         lastoff = page_offset(page) + PAGE_SIZE;
3549                 }
3550                 pagevec_release(&pvec);
3551         } while (index < end);
3552
3553         /* When no page at lastoff and we are not done, we found a hole. */
3554         if (whence != SEEK_HOLE)
3555                 goto not_found;
3556
3557 check_range:
3558         if (lastoff < offset + length)
3559                 goto out;
3560 not_found:
3561         lastoff = -ENOENT;
3562 out:
3563         pagevec_release(&pvec);
3564         return lastoff;
3565 }
3566
3567 void __init buffer_init(void)
3568 {
3569         unsigned long nrpages;
3570         int ret;
3571
3572         bh_cachep = kmem_cache_create("buffer_head",
3573                         sizeof(struct buffer_head), 0,
3574                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3575                                 SLAB_MEM_SPREAD),
3576                                 NULL);
3577
3578         /*
3579          * Limit the bh occupancy to 10% of ZONE_NORMAL
3580          */
3581         nrpages = (nr_free_buffer_pages() * 10) / 100;
3582         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3583         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3584                                         NULL, buffer_exit_cpu_dead);
3585         WARN_ON(ret < 0);
3586 }