btrfs: use device_list_mutex when removing stale devices
[sfrench/cifs-2.6.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "ctree.h"
18 #include "extent_map.h"
19 #include "disk-io.h"
20 #include "transaction.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
27 #include "math.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30
31 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
32         [BTRFS_RAID_RAID10] = {
33                 .sub_stripes    = 2,
34                 .dev_stripes    = 1,
35                 .devs_max       = 0,    /* 0 == as many as possible */
36                 .devs_min       = 4,
37                 .tolerated_failures = 1,
38                 .devs_increment = 2,
39                 .ncopies        = 2,
40                 .raid_name      = "raid10",
41                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
42                 .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
43         },
44         [BTRFS_RAID_RAID1] = {
45                 .sub_stripes    = 1,
46                 .dev_stripes    = 1,
47                 .devs_max       = 2,
48                 .devs_min       = 2,
49                 .tolerated_failures = 1,
50                 .devs_increment = 2,
51                 .ncopies        = 2,
52                 .raid_name      = "raid1",
53                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
54                 .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
55         },
56         [BTRFS_RAID_DUP] = {
57                 .sub_stripes    = 1,
58                 .dev_stripes    = 2,
59                 .devs_max       = 1,
60                 .devs_min       = 1,
61                 .tolerated_failures = 0,
62                 .devs_increment = 1,
63                 .ncopies        = 2,
64                 .raid_name      = "dup",
65                 .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
66                 .mindev_error   = 0,
67         },
68         [BTRFS_RAID_RAID0] = {
69                 .sub_stripes    = 1,
70                 .dev_stripes    = 1,
71                 .devs_max       = 0,
72                 .devs_min       = 2,
73                 .tolerated_failures = 0,
74                 .devs_increment = 1,
75                 .ncopies        = 1,
76                 .raid_name      = "raid0",
77                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
78                 .mindev_error   = 0,
79         },
80         [BTRFS_RAID_SINGLE] = {
81                 .sub_stripes    = 1,
82                 .dev_stripes    = 1,
83                 .devs_max       = 1,
84                 .devs_min       = 1,
85                 .tolerated_failures = 0,
86                 .devs_increment = 1,
87                 .ncopies        = 1,
88                 .raid_name      = "single",
89                 .bg_flag        = 0,
90                 .mindev_error   = 0,
91         },
92         [BTRFS_RAID_RAID5] = {
93                 .sub_stripes    = 1,
94                 .dev_stripes    = 1,
95                 .devs_max       = 0,
96                 .devs_min       = 2,
97                 .tolerated_failures = 1,
98                 .devs_increment = 1,
99                 .ncopies        = 2,
100                 .raid_name      = "raid5",
101                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
102                 .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
103         },
104         [BTRFS_RAID_RAID6] = {
105                 .sub_stripes    = 1,
106                 .dev_stripes    = 1,
107                 .devs_max       = 0,
108                 .devs_min       = 3,
109                 .tolerated_failures = 2,
110                 .devs_increment = 1,
111                 .ncopies        = 3,
112                 .raid_name      = "raid6",
113                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
114                 .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
115         },
116 };
117
118 const char *get_raid_name(enum btrfs_raid_types type)
119 {
120         if (type >= BTRFS_NR_RAID_TYPES)
121                 return NULL;
122
123         return btrfs_raid_array[type].raid_name;
124 }
125
126 static int init_first_rw_device(struct btrfs_trans_handle *trans,
127                                 struct btrfs_fs_info *fs_info);
128 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
129 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
130 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
131 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
132 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
133                              enum btrfs_map_op op,
134                              u64 logical, u64 *length,
135                              struct btrfs_bio **bbio_ret,
136                              int mirror_num, int need_raid_map);
137
138 /*
139  * Device locking
140  * ==============
141  *
142  * There are several mutexes that protect manipulation of devices and low-level
143  * structures like chunks but not block groups, extents or files
144  *
145  * uuid_mutex (global lock)
146  * ------------------------
147  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
148  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
149  * device) or requested by the device= mount option
150  *
151  * the mutex can be very coarse and can cover long-running operations
152  *
153  * protects: updates to fs_devices counters like missing devices, rw devices,
154  * seeding, structure cloning, openning/closing devices at mount/umount time
155  *
156  * global::fs_devs - add, remove, updates to the global list
157  *
158  * does not protect: manipulation of the fs_devices::devices list!
159  *
160  * btrfs_device::name - renames (write side), read is RCU
161  *
162  * fs_devices::device_list_mutex (per-fs, with RCU)
163  * ------------------------------------------------
164  * protects updates to fs_devices::devices, ie. adding and deleting
165  *
166  * simple list traversal with read-only actions can be done with RCU protection
167  *
168  * may be used to exclude some operations from running concurrently without any
169  * modifications to the list (see write_all_supers)
170  *
171  * balance_mutex
172  * -------------
173  * protects balance structures (status, state) and context accessed from
174  * several places (internally, ioctl)
175  *
176  * chunk_mutex
177  * -----------
178  * protects chunks, adding or removing during allocation, trim or when a new
179  * device is added/removed
180  *
181  * cleaner_mutex
182  * -------------
183  * a big lock that is held by the cleaner thread and prevents running subvolume
184  * cleaning together with relocation or delayed iputs
185  *
186  *
187  * Lock nesting
188  * ============
189  *
190  * uuid_mutex
191  *   volume_mutex
192  *     device_list_mutex
193  *       chunk_mutex
194  *     balance_mutex
195  *
196  *
197  * Exclusive operations, BTRFS_FS_EXCL_OP
198  * ======================================
199  *
200  * Maintains the exclusivity of the following operations that apply to the
201  * whole filesystem and cannot run in parallel.
202  *
203  * - Balance (*)
204  * - Device add
205  * - Device remove
206  * - Device replace (*)
207  * - Resize
208  *
209  * The device operations (as above) can be in one of the following states:
210  *
211  * - Running state
212  * - Paused state
213  * - Completed state
214  *
215  * Only device operations marked with (*) can go into the Paused state for the
216  * following reasons:
217  *
218  * - ioctl (only Balance can be Paused through ioctl)
219  * - filesystem remounted as read-only
220  * - filesystem unmounted and mounted as read-only
221  * - system power-cycle and filesystem mounted as read-only
222  * - filesystem or device errors leading to forced read-only
223  *
224  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
225  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
226  * A device operation in Paused or Running state can be canceled or resumed
227  * either by ioctl (Balance only) or when remounted as read-write.
228  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
229  * completed.
230  */
231
232 DEFINE_MUTEX(uuid_mutex);
233 static LIST_HEAD(fs_uuids);
234 struct list_head *btrfs_get_fs_uuids(void)
235 {
236         return &fs_uuids;
237 }
238
239 /*
240  * alloc_fs_devices - allocate struct btrfs_fs_devices
241  * @fsid:       if not NULL, copy the uuid to fs_devices::fsid
242  *
243  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
244  * The returned struct is not linked onto any lists and can be destroyed with
245  * kfree() right away.
246  */
247 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
248 {
249         struct btrfs_fs_devices *fs_devs;
250
251         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
252         if (!fs_devs)
253                 return ERR_PTR(-ENOMEM);
254
255         mutex_init(&fs_devs->device_list_mutex);
256
257         INIT_LIST_HEAD(&fs_devs->devices);
258         INIT_LIST_HEAD(&fs_devs->resized_devices);
259         INIT_LIST_HEAD(&fs_devs->alloc_list);
260         INIT_LIST_HEAD(&fs_devs->fs_list);
261         if (fsid)
262                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
263
264         return fs_devs;
265 }
266
267 void btrfs_free_device(struct btrfs_device *device)
268 {
269         rcu_string_free(device->name);
270         bio_put(device->flush_bio);
271         kfree(device);
272 }
273
274 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
275 {
276         struct btrfs_device *device;
277         WARN_ON(fs_devices->opened);
278         while (!list_empty(&fs_devices->devices)) {
279                 device = list_entry(fs_devices->devices.next,
280                                     struct btrfs_device, dev_list);
281                 list_del(&device->dev_list);
282                 btrfs_free_device(device);
283         }
284         kfree(fs_devices);
285 }
286
287 static void btrfs_kobject_uevent(struct block_device *bdev,
288                                  enum kobject_action action)
289 {
290         int ret;
291
292         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
293         if (ret)
294                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
295                         action,
296                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
297                         &disk_to_dev(bdev->bd_disk)->kobj);
298 }
299
300 void __exit btrfs_cleanup_fs_uuids(void)
301 {
302         struct btrfs_fs_devices *fs_devices;
303
304         while (!list_empty(&fs_uuids)) {
305                 fs_devices = list_entry(fs_uuids.next,
306                                         struct btrfs_fs_devices, fs_list);
307                 list_del(&fs_devices->fs_list);
308                 free_fs_devices(fs_devices);
309         }
310 }
311
312 /*
313  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
314  * Returned struct is not linked onto any lists and must be destroyed using
315  * btrfs_free_device.
316  */
317 static struct btrfs_device *__alloc_device(void)
318 {
319         struct btrfs_device *dev;
320
321         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
322         if (!dev)
323                 return ERR_PTR(-ENOMEM);
324
325         /*
326          * Preallocate a bio that's always going to be used for flushing device
327          * barriers and matches the device lifespan
328          */
329         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
330         if (!dev->flush_bio) {
331                 kfree(dev);
332                 return ERR_PTR(-ENOMEM);
333         }
334
335         INIT_LIST_HEAD(&dev->dev_list);
336         INIT_LIST_HEAD(&dev->dev_alloc_list);
337         INIT_LIST_HEAD(&dev->resized_list);
338
339         spin_lock_init(&dev->io_lock);
340
341         atomic_set(&dev->reada_in_flight, 0);
342         atomic_set(&dev->dev_stats_ccnt, 0);
343         btrfs_device_data_ordered_init(dev);
344         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
345         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
346
347         return dev;
348 }
349
350 /*
351  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
352  * return NULL.
353  *
354  * If devid and uuid are both specified, the match must be exact, otherwise
355  * only devid is used.
356  */
357 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
358                 u64 devid, const u8 *uuid)
359 {
360         struct btrfs_device *dev;
361
362         list_for_each_entry(dev, &fs_devices->devices, dev_list) {
363                 if (dev->devid == devid &&
364                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
365                         return dev;
366                 }
367         }
368         return NULL;
369 }
370
371 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
372 {
373         struct btrfs_fs_devices *fs_devices;
374
375         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
376                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
377                         return fs_devices;
378         }
379         return NULL;
380 }
381
382 static int
383 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
384                       int flush, struct block_device **bdev,
385                       struct buffer_head **bh)
386 {
387         int ret;
388
389         *bdev = blkdev_get_by_path(device_path, flags, holder);
390
391         if (IS_ERR(*bdev)) {
392                 ret = PTR_ERR(*bdev);
393                 goto error;
394         }
395
396         if (flush)
397                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
398         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
399         if (ret) {
400                 blkdev_put(*bdev, flags);
401                 goto error;
402         }
403         invalidate_bdev(*bdev);
404         *bh = btrfs_read_dev_super(*bdev);
405         if (IS_ERR(*bh)) {
406                 ret = PTR_ERR(*bh);
407                 blkdev_put(*bdev, flags);
408                 goto error;
409         }
410
411         return 0;
412
413 error:
414         *bdev = NULL;
415         *bh = NULL;
416         return ret;
417 }
418
419 static void requeue_list(struct btrfs_pending_bios *pending_bios,
420                         struct bio *head, struct bio *tail)
421 {
422
423         struct bio *old_head;
424
425         old_head = pending_bios->head;
426         pending_bios->head = head;
427         if (pending_bios->tail)
428                 tail->bi_next = old_head;
429         else
430                 pending_bios->tail = tail;
431 }
432
433 /*
434  * we try to collect pending bios for a device so we don't get a large
435  * number of procs sending bios down to the same device.  This greatly
436  * improves the schedulers ability to collect and merge the bios.
437  *
438  * But, it also turns into a long list of bios to process and that is sure
439  * to eventually make the worker thread block.  The solution here is to
440  * make some progress and then put this work struct back at the end of
441  * the list if the block device is congested.  This way, multiple devices
442  * can make progress from a single worker thread.
443  */
444 static noinline void run_scheduled_bios(struct btrfs_device *device)
445 {
446         struct btrfs_fs_info *fs_info = device->fs_info;
447         struct bio *pending;
448         struct backing_dev_info *bdi;
449         struct btrfs_pending_bios *pending_bios;
450         struct bio *tail;
451         struct bio *cur;
452         int again = 0;
453         unsigned long num_run;
454         unsigned long batch_run = 0;
455         unsigned long last_waited = 0;
456         int force_reg = 0;
457         int sync_pending = 0;
458         struct blk_plug plug;
459
460         /*
461          * this function runs all the bios we've collected for
462          * a particular device.  We don't want to wander off to
463          * another device without first sending all of these down.
464          * So, setup a plug here and finish it off before we return
465          */
466         blk_start_plug(&plug);
467
468         bdi = device->bdev->bd_bdi;
469
470 loop:
471         spin_lock(&device->io_lock);
472
473 loop_lock:
474         num_run = 0;
475
476         /* take all the bios off the list at once and process them
477          * later on (without the lock held).  But, remember the
478          * tail and other pointers so the bios can be properly reinserted
479          * into the list if we hit congestion
480          */
481         if (!force_reg && device->pending_sync_bios.head) {
482                 pending_bios = &device->pending_sync_bios;
483                 force_reg = 1;
484         } else {
485                 pending_bios = &device->pending_bios;
486                 force_reg = 0;
487         }
488
489         pending = pending_bios->head;
490         tail = pending_bios->tail;
491         WARN_ON(pending && !tail);
492
493         /*
494          * if pending was null this time around, no bios need processing
495          * at all and we can stop.  Otherwise it'll loop back up again
496          * and do an additional check so no bios are missed.
497          *
498          * device->running_pending is used to synchronize with the
499          * schedule_bio code.
500          */
501         if (device->pending_sync_bios.head == NULL &&
502             device->pending_bios.head == NULL) {
503                 again = 0;
504                 device->running_pending = 0;
505         } else {
506                 again = 1;
507                 device->running_pending = 1;
508         }
509
510         pending_bios->head = NULL;
511         pending_bios->tail = NULL;
512
513         spin_unlock(&device->io_lock);
514
515         while (pending) {
516
517                 rmb();
518                 /* we want to work on both lists, but do more bios on the
519                  * sync list than the regular list
520                  */
521                 if ((num_run > 32 &&
522                     pending_bios != &device->pending_sync_bios &&
523                     device->pending_sync_bios.head) ||
524                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
525                     device->pending_bios.head)) {
526                         spin_lock(&device->io_lock);
527                         requeue_list(pending_bios, pending, tail);
528                         goto loop_lock;
529                 }
530
531                 cur = pending;
532                 pending = pending->bi_next;
533                 cur->bi_next = NULL;
534
535                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
536
537                 /*
538                  * if we're doing the sync list, record that our
539                  * plug has some sync requests on it
540                  *
541                  * If we're doing the regular list and there are
542                  * sync requests sitting around, unplug before
543                  * we add more
544                  */
545                 if (pending_bios == &device->pending_sync_bios) {
546                         sync_pending = 1;
547                 } else if (sync_pending) {
548                         blk_finish_plug(&plug);
549                         blk_start_plug(&plug);
550                         sync_pending = 0;
551                 }
552
553                 btrfsic_submit_bio(cur);
554                 num_run++;
555                 batch_run++;
556
557                 cond_resched();
558
559                 /*
560                  * we made progress, there is more work to do and the bdi
561                  * is now congested.  Back off and let other work structs
562                  * run instead
563                  */
564                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
565                     fs_info->fs_devices->open_devices > 1) {
566                         struct io_context *ioc;
567
568                         ioc = current->io_context;
569
570                         /*
571                          * the main goal here is that we don't want to
572                          * block if we're going to be able to submit
573                          * more requests without blocking.
574                          *
575                          * This code does two great things, it pokes into
576                          * the elevator code from a filesystem _and_
577                          * it makes assumptions about how batching works.
578                          */
579                         if (ioc && ioc->nr_batch_requests > 0 &&
580                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
581                             (last_waited == 0 ||
582                              ioc->last_waited == last_waited)) {
583                                 /*
584                                  * we want to go through our batch of
585                                  * requests and stop.  So, we copy out
586                                  * the ioc->last_waited time and test
587                                  * against it before looping
588                                  */
589                                 last_waited = ioc->last_waited;
590                                 cond_resched();
591                                 continue;
592                         }
593                         spin_lock(&device->io_lock);
594                         requeue_list(pending_bios, pending, tail);
595                         device->running_pending = 1;
596
597                         spin_unlock(&device->io_lock);
598                         btrfs_queue_work(fs_info->submit_workers,
599                                          &device->work);
600                         goto done;
601                 }
602         }
603
604         cond_resched();
605         if (again)
606                 goto loop;
607
608         spin_lock(&device->io_lock);
609         if (device->pending_bios.head || device->pending_sync_bios.head)
610                 goto loop_lock;
611         spin_unlock(&device->io_lock);
612
613 done:
614         blk_finish_plug(&plug);
615 }
616
617 static void pending_bios_fn(struct btrfs_work *work)
618 {
619         struct btrfs_device *device;
620
621         device = container_of(work, struct btrfs_device, work);
622         run_scheduled_bios(device);
623 }
624
625 /*
626  *  Search and remove all stale (devices which are not mounted) devices.
627  *  When both inputs are NULL, it will search and release all stale devices.
628  *  path:       Optional. When provided will it release all unmounted devices
629  *              matching this path only.
630  *  skip_dev:   Optional. Will skip this device when searching for the stale
631  *              devices.
632  */
633 static void btrfs_free_stale_devices(const char *path,
634                                      struct btrfs_device *skip_device)
635 {
636         struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
637         struct btrfs_device *device, *tmp_device;
638
639         list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
640                 mutex_lock(&fs_devices->device_list_mutex);
641                 if (fs_devices->opened) {
642                         mutex_unlock(&fs_devices->device_list_mutex);
643                         continue;
644                 }
645
646                 list_for_each_entry_safe(device, tmp_device,
647                                          &fs_devices->devices, dev_list) {
648                         int not_found = 0;
649
650                         if (skip_device && skip_device == device)
651                                 continue;
652                         if (path && !device->name)
653                                 continue;
654
655                         rcu_read_lock();
656                         if (path)
657                                 not_found = strcmp(rcu_str_deref(device->name),
658                                                    path);
659                         rcu_read_unlock();
660                         if (not_found)
661                                 continue;
662
663                         /* delete the stale device */
664                         fs_devices->num_devices--;
665                         list_del(&device->dev_list);
666                         btrfs_free_device(device);
667
668                         if (fs_devices->num_devices == 0)
669                                 break;
670                 }
671                 mutex_unlock(&fs_devices->device_list_mutex);
672                 if (fs_devices->num_devices == 0) {
673                         btrfs_sysfs_remove_fsid(fs_devices);
674                         list_del(&fs_devices->fs_list);
675                         free_fs_devices(fs_devices);
676                 }
677         }
678 }
679
680 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
681                         struct btrfs_device *device, fmode_t flags,
682                         void *holder)
683 {
684         struct request_queue *q;
685         struct block_device *bdev;
686         struct buffer_head *bh;
687         struct btrfs_super_block *disk_super;
688         u64 devid;
689         int ret;
690
691         if (device->bdev)
692                 return -EINVAL;
693         if (!device->name)
694                 return -EINVAL;
695
696         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
697                                     &bdev, &bh);
698         if (ret)
699                 return ret;
700
701         disk_super = (struct btrfs_super_block *)bh->b_data;
702         devid = btrfs_stack_device_id(&disk_super->dev_item);
703         if (devid != device->devid)
704                 goto error_brelse;
705
706         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
707                 goto error_brelse;
708
709         device->generation = btrfs_super_generation(disk_super);
710
711         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
712                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
713                 fs_devices->seeding = 1;
714         } else {
715                 if (bdev_read_only(bdev))
716                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
717                 else
718                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
719         }
720
721         q = bdev_get_queue(bdev);
722         if (!blk_queue_nonrot(q))
723                 fs_devices->rotating = 1;
724
725         device->bdev = bdev;
726         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
727         device->mode = flags;
728
729         fs_devices->open_devices++;
730         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
731             device->devid != BTRFS_DEV_REPLACE_DEVID) {
732                 fs_devices->rw_devices++;
733                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
734         }
735         brelse(bh);
736
737         return 0;
738
739 error_brelse:
740         brelse(bh);
741         blkdev_put(bdev, flags);
742
743         return -EINVAL;
744 }
745
746 /*
747  * Add new device to list of registered devices
748  *
749  * Returns:
750  * device pointer which was just added or updated when successful
751  * error pointer when failed
752  */
753 static noinline struct btrfs_device *device_list_add(const char *path,
754                            struct btrfs_super_block *disk_super,
755                            bool *new_device_added)
756 {
757         struct btrfs_device *device;
758         struct btrfs_fs_devices *fs_devices;
759         struct rcu_string *name;
760         u64 found_transid = btrfs_super_generation(disk_super);
761         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
762
763         fs_devices = find_fsid(disk_super->fsid);
764         if (!fs_devices) {
765                 fs_devices = alloc_fs_devices(disk_super->fsid);
766                 if (IS_ERR(fs_devices))
767                         return ERR_CAST(fs_devices);
768
769                 mutex_lock(&fs_devices->device_list_mutex);
770                 list_add(&fs_devices->fs_list, &fs_uuids);
771
772                 device = NULL;
773         } else {
774                 mutex_lock(&fs_devices->device_list_mutex);
775                 device = find_device(fs_devices, devid,
776                                 disk_super->dev_item.uuid);
777         }
778
779         if (!device) {
780                 if (fs_devices->opened) {
781                         mutex_unlock(&fs_devices->device_list_mutex);
782                         return ERR_PTR(-EBUSY);
783                 }
784
785                 device = btrfs_alloc_device(NULL, &devid,
786                                             disk_super->dev_item.uuid);
787                 if (IS_ERR(device)) {
788                         mutex_unlock(&fs_devices->device_list_mutex);
789                         /* we can safely leave the fs_devices entry around */
790                         return device;
791                 }
792
793                 name = rcu_string_strdup(path, GFP_NOFS);
794                 if (!name) {
795                         btrfs_free_device(device);
796                         mutex_unlock(&fs_devices->device_list_mutex);
797                         return ERR_PTR(-ENOMEM);
798                 }
799                 rcu_assign_pointer(device->name, name);
800
801                 list_add_rcu(&device->dev_list, &fs_devices->devices);
802                 fs_devices->num_devices++;
803
804                 device->fs_devices = fs_devices;
805                 *new_device_added = true;
806
807                 if (disk_super->label[0])
808                         pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
809                                 disk_super->label, devid, found_transid, path);
810                 else
811                         pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
812                                 disk_super->fsid, devid, found_transid, path);
813
814         } else if (!device->name || strcmp(device->name->str, path)) {
815                 /*
816                  * When FS is already mounted.
817                  * 1. If you are here and if the device->name is NULL that
818                  *    means this device was missing at time of FS mount.
819                  * 2. If you are here and if the device->name is different
820                  *    from 'path' that means either
821                  *      a. The same device disappeared and reappeared with
822                  *         different name. or
823                  *      b. The missing-disk-which-was-replaced, has
824                  *         reappeared now.
825                  *
826                  * We must allow 1 and 2a above. But 2b would be a spurious
827                  * and unintentional.
828                  *
829                  * Further in case of 1 and 2a above, the disk at 'path'
830                  * would have missed some transaction when it was away and
831                  * in case of 2a the stale bdev has to be updated as well.
832                  * 2b must not be allowed at all time.
833                  */
834
835                 /*
836                  * For now, we do allow update to btrfs_fs_device through the
837                  * btrfs dev scan cli after FS has been mounted.  We're still
838                  * tracking a problem where systems fail mount by subvolume id
839                  * when we reject replacement on a mounted FS.
840                  */
841                 if (!fs_devices->opened && found_transid < device->generation) {
842                         /*
843                          * That is if the FS is _not_ mounted and if you
844                          * are here, that means there is more than one
845                          * disk with same uuid and devid.We keep the one
846                          * with larger generation number or the last-in if
847                          * generation are equal.
848                          */
849                         mutex_unlock(&fs_devices->device_list_mutex);
850                         return ERR_PTR(-EEXIST);
851                 }
852
853                 name = rcu_string_strdup(path, GFP_NOFS);
854                 if (!name) {
855                         mutex_unlock(&fs_devices->device_list_mutex);
856                         return ERR_PTR(-ENOMEM);
857                 }
858                 rcu_string_free(device->name);
859                 rcu_assign_pointer(device->name, name);
860                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
861                         fs_devices->missing_devices--;
862                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
863                 }
864         }
865
866         /*
867          * Unmount does not free the btrfs_device struct but would zero
868          * generation along with most of the other members. So just update
869          * it back. We need it to pick the disk with largest generation
870          * (as above).
871          */
872         if (!fs_devices->opened)
873                 device->generation = found_transid;
874
875         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
876
877         mutex_unlock(&fs_devices->device_list_mutex);
878         return device;
879 }
880
881 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
882 {
883         struct btrfs_fs_devices *fs_devices;
884         struct btrfs_device *device;
885         struct btrfs_device *orig_dev;
886
887         fs_devices = alloc_fs_devices(orig->fsid);
888         if (IS_ERR(fs_devices))
889                 return fs_devices;
890
891         mutex_lock(&orig->device_list_mutex);
892         fs_devices->total_devices = orig->total_devices;
893
894         /* We have held the volume lock, it is safe to get the devices. */
895         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
896                 struct rcu_string *name;
897
898                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
899                                             orig_dev->uuid);
900                 if (IS_ERR(device))
901                         goto error;
902
903                 /*
904                  * This is ok to do without rcu read locked because we hold the
905                  * uuid mutex so nothing we touch in here is going to disappear.
906                  */
907                 if (orig_dev->name) {
908                         name = rcu_string_strdup(orig_dev->name->str,
909                                         GFP_KERNEL);
910                         if (!name) {
911                                 btrfs_free_device(device);
912                                 goto error;
913                         }
914                         rcu_assign_pointer(device->name, name);
915                 }
916
917                 list_add(&device->dev_list, &fs_devices->devices);
918                 device->fs_devices = fs_devices;
919                 fs_devices->num_devices++;
920         }
921         mutex_unlock(&orig->device_list_mutex);
922         return fs_devices;
923 error:
924         mutex_unlock(&orig->device_list_mutex);
925         free_fs_devices(fs_devices);
926         return ERR_PTR(-ENOMEM);
927 }
928
929 /*
930  * After we have read the system tree and know devids belonging to
931  * this filesystem, remove the device which does not belong there.
932  */
933 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
934 {
935         struct btrfs_device *device, *next;
936         struct btrfs_device *latest_dev = NULL;
937
938         mutex_lock(&uuid_mutex);
939 again:
940         /* This is the initialized path, it is safe to release the devices. */
941         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
942                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
943                                                         &device->dev_state)) {
944                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
945                              &device->dev_state) &&
946                              (!latest_dev ||
947                               device->generation > latest_dev->generation)) {
948                                 latest_dev = device;
949                         }
950                         continue;
951                 }
952
953                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
954                         /*
955                          * In the first step, keep the device which has
956                          * the correct fsid and the devid that is used
957                          * for the dev_replace procedure.
958                          * In the second step, the dev_replace state is
959                          * read from the device tree and it is known
960                          * whether the procedure is really active or
961                          * not, which means whether this device is
962                          * used or whether it should be removed.
963                          */
964                         if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
965                                                   &device->dev_state)) {
966                                 continue;
967                         }
968                 }
969                 if (device->bdev) {
970                         blkdev_put(device->bdev, device->mode);
971                         device->bdev = NULL;
972                         fs_devices->open_devices--;
973                 }
974                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
975                         list_del_init(&device->dev_alloc_list);
976                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
977                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
978                                       &device->dev_state))
979                                 fs_devices->rw_devices--;
980                 }
981                 list_del_init(&device->dev_list);
982                 fs_devices->num_devices--;
983                 btrfs_free_device(device);
984         }
985
986         if (fs_devices->seed) {
987                 fs_devices = fs_devices->seed;
988                 goto again;
989         }
990
991         fs_devices->latest_bdev = latest_dev->bdev;
992
993         mutex_unlock(&uuid_mutex);
994 }
995
996 static void free_device_rcu(struct rcu_head *head)
997 {
998         struct btrfs_device *device;
999
1000         device = container_of(head, struct btrfs_device, rcu);
1001         btrfs_free_device(device);
1002 }
1003
1004 static void btrfs_close_bdev(struct btrfs_device *device)
1005 {
1006         if (!device->bdev)
1007                 return;
1008
1009         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1010                 sync_blockdev(device->bdev);
1011                 invalidate_bdev(device->bdev);
1012         }
1013
1014         blkdev_put(device->bdev, device->mode);
1015 }
1016
1017 static void btrfs_close_one_device(struct btrfs_device *device)
1018 {
1019         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1020         struct btrfs_device *new_device;
1021         struct rcu_string *name;
1022
1023         if (device->bdev)
1024                 fs_devices->open_devices--;
1025
1026         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1027             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1028                 list_del_init(&device->dev_alloc_list);
1029                 fs_devices->rw_devices--;
1030         }
1031
1032         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1033                 fs_devices->missing_devices--;
1034
1035         btrfs_close_bdev(device);
1036
1037         new_device = btrfs_alloc_device(NULL, &device->devid,
1038                                         device->uuid);
1039         BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1040
1041         /* Safe because we are under uuid_mutex */
1042         if (device->name) {
1043                 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1044                 BUG_ON(!name); /* -ENOMEM */
1045                 rcu_assign_pointer(new_device->name, name);
1046         }
1047
1048         list_replace_rcu(&device->dev_list, &new_device->dev_list);
1049         new_device->fs_devices = device->fs_devices;
1050
1051         call_rcu(&device->rcu, free_device_rcu);
1052 }
1053
1054 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1055 {
1056         struct btrfs_device *device, *tmp;
1057
1058         if (--fs_devices->opened > 0)
1059                 return 0;
1060
1061         mutex_lock(&fs_devices->device_list_mutex);
1062         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1063                 btrfs_close_one_device(device);
1064         }
1065         mutex_unlock(&fs_devices->device_list_mutex);
1066
1067         WARN_ON(fs_devices->open_devices);
1068         WARN_ON(fs_devices->rw_devices);
1069         fs_devices->opened = 0;
1070         fs_devices->seeding = 0;
1071
1072         return 0;
1073 }
1074
1075 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1076 {
1077         struct btrfs_fs_devices *seed_devices = NULL;
1078         int ret;
1079
1080         mutex_lock(&uuid_mutex);
1081         ret = close_fs_devices(fs_devices);
1082         if (!fs_devices->opened) {
1083                 seed_devices = fs_devices->seed;
1084                 fs_devices->seed = NULL;
1085         }
1086         mutex_unlock(&uuid_mutex);
1087
1088         while (seed_devices) {
1089                 fs_devices = seed_devices;
1090                 seed_devices = fs_devices->seed;
1091                 close_fs_devices(fs_devices);
1092                 free_fs_devices(fs_devices);
1093         }
1094         return ret;
1095 }
1096
1097 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1098                                 fmode_t flags, void *holder)
1099 {
1100         struct btrfs_device *device;
1101         struct btrfs_device *latest_dev = NULL;
1102         int ret = 0;
1103
1104         flags |= FMODE_EXCL;
1105
1106         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1107                 /* Just open everything we can; ignore failures here */
1108                 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1109                         continue;
1110
1111                 if (!latest_dev ||
1112                     device->generation > latest_dev->generation)
1113                         latest_dev = device;
1114         }
1115         if (fs_devices->open_devices == 0) {
1116                 ret = -EINVAL;
1117                 goto out;
1118         }
1119         fs_devices->opened = 1;
1120         fs_devices->latest_bdev = latest_dev->bdev;
1121         fs_devices->total_rw_bytes = 0;
1122 out:
1123         return ret;
1124 }
1125
1126 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1127 {
1128         struct btrfs_device *dev1, *dev2;
1129
1130         dev1 = list_entry(a, struct btrfs_device, dev_list);
1131         dev2 = list_entry(b, struct btrfs_device, dev_list);
1132
1133         if (dev1->devid < dev2->devid)
1134                 return -1;
1135         else if (dev1->devid > dev2->devid)
1136                 return 1;
1137         return 0;
1138 }
1139
1140 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1141                        fmode_t flags, void *holder)
1142 {
1143         int ret;
1144
1145         mutex_lock(&uuid_mutex);
1146         mutex_lock(&fs_devices->device_list_mutex);
1147         if (fs_devices->opened) {
1148                 fs_devices->opened++;
1149                 ret = 0;
1150         } else {
1151                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1152                 ret = open_fs_devices(fs_devices, flags, holder);
1153         }
1154         mutex_unlock(&fs_devices->device_list_mutex);
1155         mutex_unlock(&uuid_mutex);
1156
1157         return ret;
1158 }
1159
1160 static void btrfs_release_disk_super(struct page *page)
1161 {
1162         kunmap(page);
1163         put_page(page);
1164 }
1165
1166 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1167                                  struct page **page,
1168                                  struct btrfs_super_block **disk_super)
1169 {
1170         void *p;
1171         pgoff_t index;
1172
1173         /* make sure our super fits in the device */
1174         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1175                 return 1;
1176
1177         /* make sure our super fits in the page */
1178         if (sizeof(**disk_super) > PAGE_SIZE)
1179                 return 1;
1180
1181         /* make sure our super doesn't straddle pages on disk */
1182         index = bytenr >> PAGE_SHIFT;
1183         if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1184                 return 1;
1185
1186         /* pull in the page with our super */
1187         *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1188                                    index, GFP_KERNEL);
1189
1190         if (IS_ERR_OR_NULL(*page))
1191                 return 1;
1192
1193         p = kmap(*page);
1194
1195         /* align our pointer to the offset of the super block */
1196         *disk_super = p + (bytenr & ~PAGE_MASK);
1197
1198         if (btrfs_super_bytenr(*disk_super) != bytenr ||
1199             btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1200                 btrfs_release_disk_super(*page);
1201                 return 1;
1202         }
1203
1204         if ((*disk_super)->label[0] &&
1205                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1206                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1207
1208         return 0;
1209 }
1210
1211 /*
1212  * Look for a btrfs signature on a device. This may be called out of the mount path
1213  * and we are not allowed to call set_blocksize during the scan. The superblock
1214  * is read via pagecache
1215  */
1216 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1217                           struct btrfs_fs_devices **fs_devices_ret)
1218 {
1219         struct btrfs_super_block *disk_super;
1220         bool new_device_added = false;
1221         struct btrfs_device *device;
1222         struct block_device *bdev;
1223         struct page *page;
1224         int ret = 0;
1225         u64 bytenr;
1226
1227         /*
1228          * we would like to check all the supers, but that would make
1229          * a btrfs mount succeed after a mkfs from a different FS.
1230          * So, we need to add a special mount option to scan for
1231          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1232          */
1233         bytenr = btrfs_sb_offset(0);
1234         flags |= FMODE_EXCL;
1235
1236         bdev = blkdev_get_by_path(path, flags, holder);
1237         if (IS_ERR(bdev))
1238                 return PTR_ERR(bdev);
1239
1240         if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1241                 ret = -EINVAL;
1242                 goto error_bdev_put;
1243         }
1244
1245         mutex_lock(&uuid_mutex);
1246         device = device_list_add(path, disk_super, &new_device_added);
1247         if (IS_ERR(device)) {
1248                 ret = PTR_ERR(device);
1249         } else {
1250                 *fs_devices_ret = device->fs_devices;
1251                 if (new_device_added)
1252                         btrfs_free_stale_devices(path, device);
1253         }
1254         mutex_unlock(&uuid_mutex);
1255
1256         btrfs_release_disk_super(page);
1257
1258 error_bdev_put:
1259         blkdev_put(bdev, flags);
1260
1261         return ret;
1262 }
1263
1264 static int contains_pending_extent(struct btrfs_transaction *transaction,
1265                                    struct btrfs_device *device,
1266                                    u64 *start, u64 len)
1267 {
1268         struct btrfs_fs_info *fs_info = device->fs_info;
1269         struct extent_map *em;
1270         struct list_head *search_list = &fs_info->pinned_chunks;
1271         int ret = 0;
1272         u64 physical_start = *start;
1273
1274         if (transaction)
1275                 search_list = &transaction->pending_chunks;
1276 again:
1277         list_for_each_entry(em, search_list, list) {
1278                 struct map_lookup *map;
1279                 int i;
1280
1281                 map = em->map_lookup;
1282                 for (i = 0; i < map->num_stripes; i++) {
1283                         u64 end;
1284
1285                         if (map->stripes[i].dev != device)
1286                                 continue;
1287                         if (map->stripes[i].physical >= physical_start + len ||
1288                             map->stripes[i].physical + em->orig_block_len <=
1289                             physical_start)
1290                                 continue;
1291                         /*
1292                          * Make sure that while processing the pinned list we do
1293                          * not override our *start with a lower value, because
1294                          * we can have pinned chunks that fall within this
1295                          * device hole and that have lower physical addresses
1296                          * than the pending chunks we processed before. If we
1297                          * do not take this special care we can end up getting
1298                          * 2 pending chunks that start at the same physical
1299                          * device offsets because the end offset of a pinned
1300                          * chunk can be equal to the start offset of some
1301                          * pending chunk.
1302                          */
1303                         end = map->stripes[i].physical + em->orig_block_len;
1304                         if (end > *start) {
1305                                 *start = end;
1306                                 ret = 1;
1307                         }
1308                 }
1309         }
1310         if (search_list != &fs_info->pinned_chunks) {
1311                 search_list = &fs_info->pinned_chunks;
1312                 goto again;
1313         }
1314
1315         return ret;
1316 }
1317
1318
1319 /*
1320  * find_free_dev_extent_start - find free space in the specified device
1321  * @device:       the device which we search the free space in
1322  * @num_bytes:    the size of the free space that we need
1323  * @search_start: the position from which to begin the search
1324  * @start:        store the start of the free space.
1325  * @len:          the size of the free space. that we find, or the size
1326  *                of the max free space if we don't find suitable free space
1327  *
1328  * this uses a pretty simple search, the expectation is that it is
1329  * called very infrequently and that a given device has a small number
1330  * of extents
1331  *
1332  * @start is used to store the start of the free space if we find. But if we
1333  * don't find suitable free space, it will be used to store the start position
1334  * of the max free space.
1335  *
1336  * @len is used to store the size of the free space that we find.
1337  * But if we don't find suitable free space, it is used to store the size of
1338  * the max free space.
1339  */
1340 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1341                                struct btrfs_device *device, u64 num_bytes,
1342                                u64 search_start, u64 *start, u64 *len)
1343 {
1344         struct btrfs_fs_info *fs_info = device->fs_info;
1345         struct btrfs_root *root = fs_info->dev_root;
1346         struct btrfs_key key;
1347         struct btrfs_dev_extent *dev_extent;
1348         struct btrfs_path *path;
1349         u64 hole_size;
1350         u64 max_hole_start;
1351         u64 max_hole_size;
1352         u64 extent_end;
1353         u64 search_end = device->total_bytes;
1354         int ret;
1355         int slot;
1356         struct extent_buffer *l;
1357
1358         /*
1359          * We don't want to overwrite the superblock on the drive nor any area
1360          * used by the boot loader (grub for example), so we make sure to start
1361          * at an offset of at least 1MB.
1362          */
1363         search_start = max_t(u64, search_start, SZ_1M);
1364
1365         path = btrfs_alloc_path();
1366         if (!path)
1367                 return -ENOMEM;
1368
1369         max_hole_start = search_start;
1370         max_hole_size = 0;
1371
1372 again:
1373         if (search_start >= search_end ||
1374                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1375                 ret = -ENOSPC;
1376                 goto out;
1377         }
1378
1379         path->reada = READA_FORWARD;
1380         path->search_commit_root = 1;
1381         path->skip_locking = 1;
1382
1383         key.objectid = device->devid;
1384         key.offset = search_start;
1385         key.type = BTRFS_DEV_EXTENT_KEY;
1386
1387         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1388         if (ret < 0)
1389                 goto out;
1390         if (ret > 0) {
1391                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1392                 if (ret < 0)
1393                         goto out;
1394         }
1395
1396         while (1) {
1397                 l = path->nodes[0];
1398                 slot = path->slots[0];
1399                 if (slot >= btrfs_header_nritems(l)) {
1400                         ret = btrfs_next_leaf(root, path);
1401                         if (ret == 0)
1402                                 continue;
1403                         if (ret < 0)
1404                                 goto out;
1405
1406                         break;
1407                 }
1408                 btrfs_item_key_to_cpu(l, &key, slot);
1409
1410                 if (key.objectid < device->devid)
1411                         goto next;
1412
1413                 if (key.objectid > device->devid)
1414                         break;
1415
1416                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1417                         goto next;
1418
1419                 if (key.offset > search_start) {
1420                         hole_size = key.offset - search_start;
1421
1422                         /*
1423                          * Have to check before we set max_hole_start, otherwise
1424                          * we could end up sending back this offset anyway.
1425                          */
1426                         if (contains_pending_extent(transaction, device,
1427                                                     &search_start,
1428                                                     hole_size)) {
1429                                 if (key.offset >= search_start) {
1430                                         hole_size = key.offset - search_start;
1431                                 } else {
1432                                         WARN_ON_ONCE(1);
1433                                         hole_size = 0;
1434                                 }
1435                         }
1436
1437                         if (hole_size > max_hole_size) {
1438                                 max_hole_start = search_start;
1439                                 max_hole_size = hole_size;
1440                         }
1441
1442                         /*
1443                          * If this free space is greater than which we need,
1444                          * it must be the max free space that we have found
1445                          * until now, so max_hole_start must point to the start
1446                          * of this free space and the length of this free space
1447                          * is stored in max_hole_size. Thus, we return
1448                          * max_hole_start and max_hole_size and go back to the
1449                          * caller.
1450                          */
1451                         if (hole_size >= num_bytes) {
1452                                 ret = 0;
1453                                 goto out;
1454                         }
1455                 }
1456
1457                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1458                 extent_end = key.offset + btrfs_dev_extent_length(l,
1459                                                                   dev_extent);
1460                 if (extent_end > search_start)
1461                         search_start = extent_end;
1462 next:
1463                 path->slots[0]++;
1464                 cond_resched();
1465         }
1466
1467         /*
1468          * At this point, search_start should be the end of
1469          * allocated dev extents, and when shrinking the device,
1470          * search_end may be smaller than search_start.
1471          */
1472         if (search_end > search_start) {
1473                 hole_size = search_end - search_start;
1474
1475                 if (contains_pending_extent(transaction, device, &search_start,
1476                                             hole_size)) {
1477                         btrfs_release_path(path);
1478                         goto again;
1479                 }
1480
1481                 if (hole_size > max_hole_size) {
1482                         max_hole_start = search_start;
1483                         max_hole_size = hole_size;
1484                 }
1485         }
1486
1487         /* See above. */
1488         if (max_hole_size < num_bytes)
1489                 ret = -ENOSPC;
1490         else
1491                 ret = 0;
1492
1493 out:
1494         btrfs_free_path(path);
1495         *start = max_hole_start;
1496         if (len)
1497                 *len = max_hole_size;
1498         return ret;
1499 }
1500
1501 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1502                          struct btrfs_device *device, u64 num_bytes,
1503                          u64 *start, u64 *len)
1504 {
1505         /* FIXME use last free of some kind */
1506         return find_free_dev_extent_start(trans->transaction, device,
1507                                           num_bytes, 0, start, len);
1508 }
1509
1510 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1511                           struct btrfs_device *device,
1512                           u64 start, u64 *dev_extent_len)
1513 {
1514         struct btrfs_fs_info *fs_info = device->fs_info;
1515         struct btrfs_root *root = fs_info->dev_root;
1516         int ret;
1517         struct btrfs_path *path;
1518         struct btrfs_key key;
1519         struct btrfs_key found_key;
1520         struct extent_buffer *leaf = NULL;
1521         struct btrfs_dev_extent *extent = NULL;
1522
1523         path = btrfs_alloc_path();
1524         if (!path)
1525                 return -ENOMEM;
1526
1527         key.objectid = device->devid;
1528         key.offset = start;
1529         key.type = BTRFS_DEV_EXTENT_KEY;
1530 again:
1531         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1532         if (ret > 0) {
1533                 ret = btrfs_previous_item(root, path, key.objectid,
1534                                           BTRFS_DEV_EXTENT_KEY);
1535                 if (ret)
1536                         goto out;
1537                 leaf = path->nodes[0];
1538                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1539                 extent = btrfs_item_ptr(leaf, path->slots[0],
1540                                         struct btrfs_dev_extent);
1541                 BUG_ON(found_key.offset > start || found_key.offset +
1542                        btrfs_dev_extent_length(leaf, extent) < start);
1543                 key = found_key;
1544                 btrfs_release_path(path);
1545                 goto again;
1546         } else if (ret == 0) {
1547                 leaf = path->nodes[0];
1548                 extent = btrfs_item_ptr(leaf, path->slots[0],
1549                                         struct btrfs_dev_extent);
1550         } else {
1551                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1552                 goto out;
1553         }
1554
1555         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1556
1557         ret = btrfs_del_item(trans, root, path);
1558         if (ret) {
1559                 btrfs_handle_fs_error(fs_info, ret,
1560                                       "Failed to remove dev extent item");
1561         } else {
1562                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1563         }
1564 out:
1565         btrfs_free_path(path);
1566         return ret;
1567 }
1568
1569 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1570                                   struct btrfs_device *device,
1571                                   u64 chunk_offset, u64 start, u64 num_bytes)
1572 {
1573         int ret;
1574         struct btrfs_path *path;
1575         struct btrfs_fs_info *fs_info = device->fs_info;
1576         struct btrfs_root *root = fs_info->dev_root;
1577         struct btrfs_dev_extent *extent;
1578         struct extent_buffer *leaf;
1579         struct btrfs_key key;
1580
1581         WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1582         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1583         path = btrfs_alloc_path();
1584         if (!path)
1585                 return -ENOMEM;
1586
1587         key.objectid = device->devid;
1588         key.offset = start;
1589         key.type = BTRFS_DEV_EXTENT_KEY;
1590         ret = btrfs_insert_empty_item(trans, root, path, &key,
1591                                       sizeof(*extent));
1592         if (ret)
1593                 goto out;
1594
1595         leaf = path->nodes[0];
1596         extent = btrfs_item_ptr(leaf, path->slots[0],
1597                                 struct btrfs_dev_extent);
1598         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1599                                         BTRFS_CHUNK_TREE_OBJECTID);
1600         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1601                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1602         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1603
1604         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1605         btrfs_mark_buffer_dirty(leaf);
1606 out:
1607         btrfs_free_path(path);
1608         return ret;
1609 }
1610
1611 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1612 {
1613         struct extent_map_tree *em_tree;
1614         struct extent_map *em;
1615         struct rb_node *n;
1616         u64 ret = 0;
1617
1618         em_tree = &fs_info->mapping_tree.map_tree;
1619         read_lock(&em_tree->lock);
1620         n = rb_last(&em_tree->map);
1621         if (n) {
1622                 em = rb_entry(n, struct extent_map, rb_node);
1623                 ret = em->start + em->len;
1624         }
1625         read_unlock(&em_tree->lock);
1626
1627         return ret;
1628 }
1629
1630 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1631                                     u64 *devid_ret)
1632 {
1633         int ret;
1634         struct btrfs_key key;
1635         struct btrfs_key found_key;
1636         struct btrfs_path *path;
1637
1638         path = btrfs_alloc_path();
1639         if (!path)
1640                 return -ENOMEM;
1641
1642         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1643         key.type = BTRFS_DEV_ITEM_KEY;
1644         key.offset = (u64)-1;
1645
1646         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1647         if (ret < 0)
1648                 goto error;
1649
1650         BUG_ON(ret == 0); /* Corruption */
1651
1652         ret = btrfs_previous_item(fs_info->chunk_root, path,
1653                                   BTRFS_DEV_ITEMS_OBJECTID,
1654                                   BTRFS_DEV_ITEM_KEY);
1655         if (ret) {
1656                 *devid_ret = 1;
1657         } else {
1658                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1659                                       path->slots[0]);
1660                 *devid_ret = found_key.offset + 1;
1661         }
1662         ret = 0;
1663 error:
1664         btrfs_free_path(path);
1665         return ret;
1666 }
1667
1668 /*
1669  * the device information is stored in the chunk root
1670  * the btrfs_device struct should be fully filled in
1671  */
1672 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1673                             struct btrfs_fs_info *fs_info,
1674                             struct btrfs_device *device)
1675 {
1676         struct btrfs_root *root = fs_info->chunk_root;
1677         int ret;
1678         struct btrfs_path *path;
1679         struct btrfs_dev_item *dev_item;
1680         struct extent_buffer *leaf;
1681         struct btrfs_key key;
1682         unsigned long ptr;
1683
1684         path = btrfs_alloc_path();
1685         if (!path)
1686                 return -ENOMEM;
1687
1688         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1689         key.type = BTRFS_DEV_ITEM_KEY;
1690         key.offset = device->devid;
1691
1692         ret = btrfs_insert_empty_item(trans, root, path, &key,
1693                                       sizeof(*dev_item));
1694         if (ret)
1695                 goto out;
1696
1697         leaf = path->nodes[0];
1698         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1699
1700         btrfs_set_device_id(leaf, dev_item, device->devid);
1701         btrfs_set_device_generation(leaf, dev_item, 0);
1702         btrfs_set_device_type(leaf, dev_item, device->type);
1703         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1704         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1705         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1706         btrfs_set_device_total_bytes(leaf, dev_item,
1707                                      btrfs_device_get_disk_total_bytes(device));
1708         btrfs_set_device_bytes_used(leaf, dev_item,
1709                                     btrfs_device_get_bytes_used(device));
1710         btrfs_set_device_group(leaf, dev_item, 0);
1711         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1712         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1713         btrfs_set_device_start_offset(leaf, dev_item, 0);
1714
1715         ptr = btrfs_device_uuid(dev_item);
1716         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1717         ptr = btrfs_device_fsid(dev_item);
1718         write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1719         btrfs_mark_buffer_dirty(leaf);
1720
1721         ret = 0;
1722 out:
1723         btrfs_free_path(path);
1724         return ret;
1725 }
1726
1727 /*
1728  * Function to update ctime/mtime for a given device path.
1729  * Mainly used for ctime/mtime based probe like libblkid.
1730  */
1731 static void update_dev_time(const char *path_name)
1732 {
1733         struct file *filp;
1734
1735         filp = filp_open(path_name, O_RDWR, 0);
1736         if (IS_ERR(filp))
1737                 return;
1738         file_update_time(filp);
1739         filp_close(filp, NULL);
1740 }
1741
1742 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1743                              struct btrfs_device *device)
1744 {
1745         struct btrfs_root *root = fs_info->chunk_root;
1746         int ret;
1747         struct btrfs_path *path;
1748         struct btrfs_key key;
1749         struct btrfs_trans_handle *trans;
1750
1751         path = btrfs_alloc_path();
1752         if (!path)
1753                 return -ENOMEM;
1754
1755         trans = btrfs_start_transaction(root, 0);
1756         if (IS_ERR(trans)) {
1757                 btrfs_free_path(path);
1758                 return PTR_ERR(trans);
1759         }
1760         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1761         key.type = BTRFS_DEV_ITEM_KEY;
1762         key.offset = device->devid;
1763
1764         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1765         if (ret) {
1766                 if (ret > 0)
1767                         ret = -ENOENT;
1768                 btrfs_abort_transaction(trans, ret);
1769                 btrfs_end_transaction(trans);
1770                 goto out;
1771         }
1772
1773         ret = btrfs_del_item(trans, root, path);
1774         if (ret) {
1775                 btrfs_abort_transaction(trans, ret);
1776                 btrfs_end_transaction(trans);
1777         }
1778
1779 out:
1780         btrfs_free_path(path);
1781         if (!ret)
1782                 ret = btrfs_commit_transaction(trans);
1783         return ret;
1784 }
1785
1786 /*
1787  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1788  * filesystem. It's up to the caller to adjust that number regarding eg. device
1789  * replace.
1790  */
1791 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1792                 u64 num_devices)
1793 {
1794         u64 all_avail;
1795         unsigned seq;
1796         int i;
1797
1798         do {
1799                 seq = read_seqbegin(&fs_info->profiles_lock);
1800
1801                 all_avail = fs_info->avail_data_alloc_bits |
1802                             fs_info->avail_system_alloc_bits |
1803                             fs_info->avail_metadata_alloc_bits;
1804         } while (read_seqretry(&fs_info->profiles_lock, seq));
1805
1806         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1807                 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1808                         continue;
1809
1810                 if (num_devices < btrfs_raid_array[i].devs_min) {
1811                         int ret = btrfs_raid_array[i].mindev_error;
1812
1813                         if (ret)
1814                                 return ret;
1815                 }
1816         }
1817
1818         return 0;
1819 }
1820
1821 static struct btrfs_device * btrfs_find_next_active_device(
1822                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1823 {
1824         struct btrfs_device *next_device;
1825
1826         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1827                 if (next_device != device &&
1828                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1829                     && next_device->bdev)
1830                         return next_device;
1831         }
1832
1833         return NULL;
1834 }
1835
1836 /*
1837  * Helper function to check if the given device is part of s_bdev / latest_bdev
1838  * and replace it with the provided or the next active device, in the context
1839  * where this function called, there should be always be another device (or
1840  * this_dev) which is active.
1841  */
1842 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1843                 struct btrfs_device *device, struct btrfs_device *this_dev)
1844 {
1845         struct btrfs_device *next_device;
1846
1847         if (this_dev)
1848                 next_device = this_dev;
1849         else
1850                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1851                                                                 device);
1852         ASSERT(next_device);
1853
1854         if (fs_info->sb->s_bdev &&
1855                         (fs_info->sb->s_bdev == device->bdev))
1856                 fs_info->sb->s_bdev = next_device->bdev;
1857
1858         if (fs_info->fs_devices->latest_bdev == device->bdev)
1859                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1860 }
1861
1862 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1863                 u64 devid)
1864 {
1865         struct btrfs_device *device;
1866         struct btrfs_fs_devices *cur_devices;
1867         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1868         u64 num_devices;
1869         int ret = 0;
1870
1871         mutex_lock(&uuid_mutex);
1872
1873         num_devices = fs_devices->num_devices;
1874         btrfs_dev_replace_read_lock(&fs_info->dev_replace);
1875         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1876                 WARN_ON(num_devices < 1);
1877                 num_devices--;
1878         }
1879         btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
1880
1881         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1882         if (ret)
1883                 goto out;
1884
1885         ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1886                                            &device);
1887         if (ret)
1888                 goto out;
1889
1890         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1891                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1892                 goto out;
1893         }
1894
1895         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1896             fs_info->fs_devices->rw_devices == 1) {
1897                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1898                 goto out;
1899         }
1900
1901         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1902                 mutex_lock(&fs_info->chunk_mutex);
1903                 list_del_init(&device->dev_alloc_list);
1904                 device->fs_devices->rw_devices--;
1905                 mutex_unlock(&fs_info->chunk_mutex);
1906         }
1907
1908         mutex_unlock(&uuid_mutex);
1909         ret = btrfs_shrink_device(device, 0);
1910         mutex_lock(&uuid_mutex);
1911         if (ret)
1912                 goto error_undo;
1913
1914         /*
1915          * TODO: the superblock still includes this device in its num_devices
1916          * counter although write_all_supers() is not locked out. This
1917          * could give a filesystem state which requires a degraded mount.
1918          */
1919         ret = btrfs_rm_dev_item(fs_info, device);
1920         if (ret)
1921                 goto error_undo;
1922
1923         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
1924         btrfs_scrub_cancel_dev(fs_info, device);
1925
1926         /*
1927          * the device list mutex makes sure that we don't change
1928          * the device list while someone else is writing out all
1929          * the device supers. Whoever is writing all supers, should
1930          * lock the device list mutex before getting the number of
1931          * devices in the super block (super_copy). Conversely,
1932          * whoever updates the number of devices in the super block
1933          * (super_copy) should hold the device list mutex.
1934          */
1935
1936         /*
1937          * In normal cases the cur_devices == fs_devices. But in case
1938          * of deleting a seed device, the cur_devices should point to
1939          * its own fs_devices listed under the fs_devices->seed.
1940          */
1941         cur_devices = device->fs_devices;
1942         mutex_lock(&fs_devices->device_list_mutex);
1943         list_del_rcu(&device->dev_list);
1944
1945         cur_devices->num_devices--;
1946         cur_devices->total_devices--;
1947         /* Update total_devices of the parent fs_devices if it's seed */
1948         if (cur_devices != fs_devices)
1949                 fs_devices->total_devices--;
1950
1951         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1952                 cur_devices->missing_devices--;
1953
1954         btrfs_assign_next_active_device(fs_info, device, NULL);
1955
1956         if (device->bdev) {
1957                 cur_devices->open_devices--;
1958                 /* remove sysfs entry */
1959                 btrfs_sysfs_rm_device_link(fs_devices, device);
1960         }
1961
1962         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1963         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1964         mutex_unlock(&fs_devices->device_list_mutex);
1965
1966         /*
1967          * at this point, the device is zero sized and detached from
1968          * the devices list.  All that's left is to zero out the old
1969          * supers and free the device.
1970          */
1971         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
1972                 btrfs_scratch_superblocks(device->bdev, device->name->str);
1973
1974         btrfs_close_bdev(device);
1975         call_rcu(&device->rcu, free_device_rcu);
1976
1977         if (cur_devices->open_devices == 0) {
1978                 while (fs_devices) {
1979                         if (fs_devices->seed == cur_devices) {
1980                                 fs_devices->seed = cur_devices->seed;
1981                                 break;
1982                         }
1983                         fs_devices = fs_devices->seed;
1984                 }
1985                 cur_devices->seed = NULL;
1986                 close_fs_devices(cur_devices);
1987                 free_fs_devices(cur_devices);
1988         }
1989
1990 out:
1991         mutex_unlock(&uuid_mutex);
1992         return ret;
1993
1994 error_undo:
1995         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1996                 mutex_lock(&fs_info->chunk_mutex);
1997                 list_add(&device->dev_alloc_list,
1998                          &fs_devices->alloc_list);
1999                 device->fs_devices->rw_devices++;
2000                 mutex_unlock(&fs_info->chunk_mutex);
2001         }
2002         goto out;
2003 }
2004
2005 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
2006                                         struct btrfs_device *srcdev)
2007 {
2008         struct btrfs_fs_devices *fs_devices;
2009
2010         lockdep_assert_held(&fs_info->fs_devices->device_list_mutex);
2011
2012         /*
2013          * in case of fs with no seed, srcdev->fs_devices will point
2014          * to fs_devices of fs_info. However when the dev being replaced is
2015          * a seed dev it will point to the seed's local fs_devices. In short
2016          * srcdev will have its correct fs_devices in both the cases.
2017          */
2018         fs_devices = srcdev->fs_devices;
2019
2020         list_del_rcu(&srcdev->dev_list);
2021         list_del(&srcdev->dev_alloc_list);
2022         fs_devices->num_devices--;
2023         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2024                 fs_devices->missing_devices--;
2025
2026         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2027                 fs_devices->rw_devices--;
2028
2029         if (srcdev->bdev)
2030                 fs_devices->open_devices--;
2031 }
2032
2033 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2034                                       struct btrfs_device *srcdev)
2035 {
2036         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2037
2038         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2039                 /* zero out the old super if it is writable */
2040                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2041         }
2042
2043         btrfs_close_bdev(srcdev);
2044         call_rcu(&srcdev->rcu, free_device_rcu);
2045
2046         /* if this is no devs we rather delete the fs_devices */
2047         if (!fs_devices->num_devices) {
2048                 struct btrfs_fs_devices *tmp_fs_devices;
2049
2050                 /*
2051                  * On a mounted FS, num_devices can't be zero unless it's a
2052                  * seed. In case of a seed device being replaced, the replace
2053                  * target added to the sprout FS, so there will be no more
2054                  * device left under the seed FS.
2055                  */
2056                 ASSERT(fs_devices->seeding);
2057
2058                 tmp_fs_devices = fs_info->fs_devices;
2059                 while (tmp_fs_devices) {
2060                         if (tmp_fs_devices->seed == fs_devices) {
2061                                 tmp_fs_devices->seed = fs_devices->seed;
2062                                 break;
2063                         }
2064                         tmp_fs_devices = tmp_fs_devices->seed;
2065                 }
2066                 fs_devices->seed = NULL;
2067                 close_fs_devices(fs_devices);
2068                 free_fs_devices(fs_devices);
2069         }
2070 }
2071
2072 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2073                                       struct btrfs_device *tgtdev)
2074 {
2075         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2076
2077         WARN_ON(!tgtdev);
2078         mutex_lock(&fs_devices->device_list_mutex);
2079
2080         btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2081
2082         if (tgtdev->bdev)
2083                 fs_devices->open_devices--;
2084
2085         fs_devices->num_devices--;
2086
2087         btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2088
2089         list_del_rcu(&tgtdev->dev_list);
2090
2091         mutex_unlock(&fs_devices->device_list_mutex);
2092
2093         /*
2094          * The update_dev_time() with in btrfs_scratch_superblocks()
2095          * may lead to a call to btrfs_show_devname() which will try
2096          * to hold device_list_mutex. And here this device
2097          * is already out of device list, so we don't have to hold
2098          * the device_list_mutex lock.
2099          */
2100         btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2101
2102         btrfs_close_bdev(tgtdev);
2103         call_rcu(&tgtdev->rcu, free_device_rcu);
2104 }
2105
2106 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2107                                      const char *device_path,
2108                                      struct btrfs_device **device)
2109 {
2110         int ret = 0;
2111         struct btrfs_super_block *disk_super;
2112         u64 devid;
2113         u8 *dev_uuid;
2114         struct block_device *bdev;
2115         struct buffer_head *bh;
2116
2117         *device = NULL;
2118         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2119                                     fs_info->bdev_holder, 0, &bdev, &bh);
2120         if (ret)
2121                 return ret;
2122         disk_super = (struct btrfs_super_block *)bh->b_data;
2123         devid = btrfs_stack_device_id(&disk_super->dev_item);
2124         dev_uuid = disk_super->dev_item.uuid;
2125         *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2126         brelse(bh);
2127         if (!*device)
2128                 ret = -ENOENT;
2129         blkdev_put(bdev, FMODE_READ);
2130         return ret;
2131 }
2132
2133 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2134                                          const char *device_path,
2135                                          struct btrfs_device **device)
2136 {
2137         *device = NULL;
2138         if (strcmp(device_path, "missing") == 0) {
2139                 struct list_head *devices;
2140                 struct btrfs_device *tmp;
2141
2142                 devices = &fs_info->fs_devices->devices;
2143                 list_for_each_entry(tmp, devices, dev_list) {
2144                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2145                                         &tmp->dev_state) && !tmp->bdev) {
2146                                 *device = tmp;
2147                                 break;
2148                         }
2149                 }
2150
2151                 if (!*device)
2152                         return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2153
2154                 return 0;
2155         } else {
2156                 return btrfs_find_device_by_path(fs_info, device_path, device);
2157         }
2158 }
2159
2160 /*
2161  * Lookup a device given by device id, or the path if the id is 0.
2162  */
2163 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2164                                  const char *devpath,
2165                                  struct btrfs_device **device)
2166 {
2167         int ret;
2168
2169         if (devid) {
2170                 ret = 0;
2171                 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2172                 if (!*device)
2173                         ret = -ENOENT;
2174         } else {
2175                 if (!devpath || !devpath[0])
2176                         return -EINVAL;
2177
2178                 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2179                                                            device);
2180         }
2181         return ret;
2182 }
2183
2184 /*
2185  * does all the dirty work required for changing file system's UUID.
2186  */
2187 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2188 {
2189         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2190         struct btrfs_fs_devices *old_devices;
2191         struct btrfs_fs_devices *seed_devices;
2192         struct btrfs_super_block *disk_super = fs_info->super_copy;
2193         struct btrfs_device *device;
2194         u64 super_flags;
2195
2196         lockdep_assert_held(&uuid_mutex);
2197         if (!fs_devices->seeding)
2198                 return -EINVAL;
2199
2200         seed_devices = alloc_fs_devices(NULL);
2201         if (IS_ERR(seed_devices))
2202                 return PTR_ERR(seed_devices);
2203
2204         old_devices = clone_fs_devices(fs_devices);
2205         if (IS_ERR(old_devices)) {
2206                 kfree(seed_devices);
2207                 return PTR_ERR(old_devices);
2208         }
2209
2210         list_add(&old_devices->fs_list, &fs_uuids);
2211
2212         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2213         seed_devices->opened = 1;
2214         INIT_LIST_HEAD(&seed_devices->devices);
2215         INIT_LIST_HEAD(&seed_devices->alloc_list);
2216         mutex_init(&seed_devices->device_list_mutex);
2217
2218         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2219         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2220                               synchronize_rcu);
2221         list_for_each_entry(device, &seed_devices->devices, dev_list)
2222                 device->fs_devices = seed_devices;
2223
2224         mutex_lock(&fs_info->chunk_mutex);
2225         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2226         mutex_unlock(&fs_info->chunk_mutex);
2227
2228         fs_devices->seeding = 0;
2229         fs_devices->num_devices = 0;
2230         fs_devices->open_devices = 0;
2231         fs_devices->missing_devices = 0;
2232         fs_devices->rotating = 0;
2233         fs_devices->seed = seed_devices;
2234
2235         generate_random_uuid(fs_devices->fsid);
2236         memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2237         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2238         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2239
2240         super_flags = btrfs_super_flags(disk_super) &
2241                       ~BTRFS_SUPER_FLAG_SEEDING;
2242         btrfs_set_super_flags(disk_super, super_flags);
2243
2244         return 0;
2245 }
2246
2247 /*
2248  * Store the expected generation for seed devices in device items.
2249  */
2250 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2251                                struct btrfs_fs_info *fs_info)
2252 {
2253         struct btrfs_root *root = fs_info->chunk_root;
2254         struct btrfs_path *path;
2255         struct extent_buffer *leaf;
2256         struct btrfs_dev_item *dev_item;
2257         struct btrfs_device *device;
2258         struct btrfs_key key;
2259         u8 fs_uuid[BTRFS_FSID_SIZE];
2260         u8 dev_uuid[BTRFS_UUID_SIZE];
2261         u64 devid;
2262         int ret;
2263
2264         path = btrfs_alloc_path();
2265         if (!path)
2266                 return -ENOMEM;
2267
2268         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2269         key.offset = 0;
2270         key.type = BTRFS_DEV_ITEM_KEY;
2271
2272         while (1) {
2273                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2274                 if (ret < 0)
2275                         goto error;
2276
2277                 leaf = path->nodes[0];
2278 next_slot:
2279                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2280                         ret = btrfs_next_leaf(root, path);
2281                         if (ret > 0)
2282                                 break;
2283                         if (ret < 0)
2284                                 goto error;
2285                         leaf = path->nodes[0];
2286                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2287                         btrfs_release_path(path);
2288                         continue;
2289                 }
2290
2291                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2292                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2293                     key.type != BTRFS_DEV_ITEM_KEY)
2294                         break;
2295
2296                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2297                                           struct btrfs_dev_item);
2298                 devid = btrfs_device_id(leaf, dev_item);
2299                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2300                                    BTRFS_UUID_SIZE);
2301                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2302                                    BTRFS_FSID_SIZE);
2303                 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2304                 BUG_ON(!device); /* Logic error */
2305
2306                 if (device->fs_devices->seeding) {
2307                         btrfs_set_device_generation(leaf, dev_item,
2308                                                     device->generation);
2309                         btrfs_mark_buffer_dirty(leaf);
2310                 }
2311
2312                 path->slots[0]++;
2313                 goto next_slot;
2314         }
2315         ret = 0;
2316 error:
2317         btrfs_free_path(path);
2318         return ret;
2319 }
2320
2321 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2322 {
2323         struct btrfs_root *root = fs_info->dev_root;
2324         struct request_queue *q;
2325         struct btrfs_trans_handle *trans;
2326         struct btrfs_device *device;
2327         struct block_device *bdev;
2328         struct super_block *sb = fs_info->sb;
2329         struct rcu_string *name;
2330         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2331         u64 tmp;
2332         int seeding_dev = 0;
2333         int ret = 0;
2334         bool unlocked = false;
2335
2336         if (sb_rdonly(sb) && !fs_devices->seeding)
2337                 return -EROFS;
2338
2339         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2340                                   fs_info->bdev_holder);
2341         if (IS_ERR(bdev))
2342                 return PTR_ERR(bdev);
2343
2344         if (fs_devices->seeding) {
2345                 seeding_dev = 1;
2346                 down_write(&sb->s_umount);
2347                 mutex_lock(&uuid_mutex);
2348         }
2349
2350         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2351
2352         mutex_lock(&fs_devices->device_list_mutex);
2353         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2354                 if (device->bdev == bdev) {
2355                         ret = -EEXIST;
2356                         mutex_unlock(
2357                                 &fs_devices->device_list_mutex);
2358                         goto error;
2359                 }
2360         }
2361         mutex_unlock(&fs_devices->device_list_mutex);
2362
2363         device = btrfs_alloc_device(fs_info, NULL, NULL);
2364         if (IS_ERR(device)) {
2365                 /* we can safely leave the fs_devices entry around */
2366                 ret = PTR_ERR(device);
2367                 goto error;
2368         }
2369
2370         name = rcu_string_strdup(device_path, GFP_KERNEL);
2371         if (!name) {
2372                 ret = -ENOMEM;
2373                 goto error_free_device;
2374         }
2375         rcu_assign_pointer(device->name, name);
2376
2377         trans = btrfs_start_transaction(root, 0);
2378         if (IS_ERR(trans)) {
2379                 ret = PTR_ERR(trans);
2380                 goto error_free_device;
2381         }
2382
2383         q = bdev_get_queue(bdev);
2384         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2385         device->generation = trans->transid;
2386         device->io_width = fs_info->sectorsize;
2387         device->io_align = fs_info->sectorsize;
2388         device->sector_size = fs_info->sectorsize;
2389         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2390                                          fs_info->sectorsize);
2391         device->disk_total_bytes = device->total_bytes;
2392         device->commit_total_bytes = device->total_bytes;
2393         device->fs_info = fs_info;
2394         device->bdev = bdev;
2395         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2396         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2397         device->mode = FMODE_EXCL;
2398         device->dev_stats_valid = 1;
2399         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2400
2401         if (seeding_dev) {
2402                 sb->s_flags &= ~SB_RDONLY;
2403                 ret = btrfs_prepare_sprout(fs_info);
2404                 if (ret) {
2405                         btrfs_abort_transaction(trans, ret);
2406                         goto error_trans;
2407                 }
2408         }
2409
2410         device->fs_devices = fs_devices;
2411
2412         mutex_lock(&fs_devices->device_list_mutex);
2413         mutex_lock(&fs_info->chunk_mutex);
2414         list_add_rcu(&device->dev_list, &fs_devices->devices);
2415         list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2416         fs_devices->num_devices++;
2417         fs_devices->open_devices++;
2418         fs_devices->rw_devices++;
2419         fs_devices->total_devices++;
2420         fs_devices->total_rw_bytes += device->total_bytes;
2421
2422         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2423
2424         if (!blk_queue_nonrot(q))
2425                 fs_devices->rotating = 1;
2426
2427         tmp = btrfs_super_total_bytes(fs_info->super_copy);
2428         btrfs_set_super_total_bytes(fs_info->super_copy,
2429                 round_down(tmp + device->total_bytes, fs_info->sectorsize));
2430
2431         tmp = btrfs_super_num_devices(fs_info->super_copy);
2432         btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2433
2434         /* add sysfs device entry */
2435         btrfs_sysfs_add_device_link(fs_devices, device);
2436
2437         /*
2438          * we've got more storage, clear any full flags on the space
2439          * infos
2440          */
2441         btrfs_clear_space_info_full(fs_info);
2442
2443         mutex_unlock(&fs_info->chunk_mutex);
2444         mutex_unlock(&fs_devices->device_list_mutex);
2445
2446         if (seeding_dev) {
2447                 mutex_lock(&fs_info->chunk_mutex);
2448                 ret = init_first_rw_device(trans, fs_info);
2449                 mutex_unlock(&fs_info->chunk_mutex);
2450                 if (ret) {
2451                         btrfs_abort_transaction(trans, ret);
2452                         goto error_sysfs;
2453                 }
2454         }
2455
2456         ret = btrfs_add_dev_item(trans, fs_info, device);
2457         if (ret) {
2458                 btrfs_abort_transaction(trans, ret);
2459                 goto error_sysfs;
2460         }
2461
2462         if (seeding_dev) {
2463                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2464
2465                 ret = btrfs_finish_sprout(trans, fs_info);
2466                 if (ret) {
2467                         btrfs_abort_transaction(trans, ret);
2468                         goto error_sysfs;
2469                 }
2470
2471                 /* Sprouting would change fsid of the mounted root,
2472                  * so rename the fsid on the sysfs
2473                  */
2474                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2475                                                 fs_info->fsid);
2476                 if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
2477                         btrfs_warn(fs_info,
2478                                    "sysfs: failed to create fsid for sprout");
2479         }
2480
2481         ret = btrfs_commit_transaction(trans);
2482
2483         if (seeding_dev) {
2484                 mutex_unlock(&uuid_mutex);
2485                 up_write(&sb->s_umount);
2486                 unlocked = true;
2487
2488                 if (ret) /* transaction commit */
2489                         return ret;
2490
2491                 ret = btrfs_relocate_sys_chunks(fs_info);
2492                 if (ret < 0)
2493                         btrfs_handle_fs_error(fs_info, ret,
2494                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2495                 trans = btrfs_attach_transaction(root);
2496                 if (IS_ERR(trans)) {
2497                         if (PTR_ERR(trans) == -ENOENT)
2498                                 return 0;
2499                         ret = PTR_ERR(trans);
2500                         trans = NULL;
2501                         goto error_sysfs;
2502                 }
2503                 ret = btrfs_commit_transaction(trans);
2504         }
2505
2506         /* Update ctime/mtime for libblkid */
2507         update_dev_time(device_path);
2508         return ret;
2509
2510 error_sysfs:
2511         btrfs_sysfs_rm_device_link(fs_devices, device);
2512 error_trans:
2513         if (seeding_dev)
2514                 sb->s_flags |= SB_RDONLY;
2515         if (trans)
2516                 btrfs_end_transaction(trans);
2517 error_free_device:
2518         btrfs_free_device(device);
2519 error:
2520         blkdev_put(bdev, FMODE_EXCL);
2521         if (seeding_dev && !unlocked) {
2522                 mutex_unlock(&uuid_mutex);
2523                 up_write(&sb->s_umount);
2524         }
2525         return ret;
2526 }
2527
2528 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2529                                         struct btrfs_device *device)
2530 {
2531         int ret;
2532         struct btrfs_path *path;
2533         struct btrfs_root *root = device->fs_info->chunk_root;
2534         struct btrfs_dev_item *dev_item;
2535         struct extent_buffer *leaf;
2536         struct btrfs_key key;
2537
2538         path = btrfs_alloc_path();
2539         if (!path)
2540                 return -ENOMEM;
2541
2542         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2543         key.type = BTRFS_DEV_ITEM_KEY;
2544         key.offset = device->devid;
2545
2546         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2547         if (ret < 0)
2548                 goto out;
2549
2550         if (ret > 0) {
2551                 ret = -ENOENT;
2552                 goto out;
2553         }
2554
2555         leaf = path->nodes[0];
2556         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2557
2558         btrfs_set_device_id(leaf, dev_item, device->devid);
2559         btrfs_set_device_type(leaf, dev_item, device->type);
2560         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2561         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2562         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2563         btrfs_set_device_total_bytes(leaf, dev_item,
2564                                      btrfs_device_get_disk_total_bytes(device));
2565         btrfs_set_device_bytes_used(leaf, dev_item,
2566                                     btrfs_device_get_bytes_used(device));
2567         btrfs_mark_buffer_dirty(leaf);
2568
2569 out:
2570         btrfs_free_path(path);
2571         return ret;
2572 }
2573
2574 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2575                       struct btrfs_device *device, u64 new_size)
2576 {
2577         struct btrfs_fs_info *fs_info = device->fs_info;
2578         struct btrfs_super_block *super_copy = fs_info->super_copy;
2579         struct btrfs_fs_devices *fs_devices;
2580         u64 old_total;
2581         u64 diff;
2582
2583         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2584                 return -EACCES;
2585
2586         new_size = round_down(new_size, fs_info->sectorsize);
2587
2588         mutex_lock(&fs_info->chunk_mutex);
2589         old_total = btrfs_super_total_bytes(super_copy);
2590         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2591
2592         if (new_size <= device->total_bytes ||
2593             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2594                 mutex_unlock(&fs_info->chunk_mutex);
2595                 return -EINVAL;
2596         }
2597
2598         fs_devices = fs_info->fs_devices;
2599
2600         btrfs_set_super_total_bytes(super_copy,
2601                         round_down(old_total + diff, fs_info->sectorsize));
2602         device->fs_devices->total_rw_bytes += diff;
2603
2604         btrfs_device_set_total_bytes(device, new_size);
2605         btrfs_device_set_disk_total_bytes(device, new_size);
2606         btrfs_clear_space_info_full(device->fs_info);
2607         if (list_empty(&device->resized_list))
2608                 list_add_tail(&device->resized_list,
2609                               &fs_devices->resized_devices);
2610         mutex_unlock(&fs_info->chunk_mutex);
2611
2612         return btrfs_update_device(trans, device);
2613 }
2614
2615 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2616                             struct btrfs_fs_info *fs_info, u64 chunk_offset)
2617 {
2618         struct btrfs_root *root = fs_info->chunk_root;
2619         int ret;
2620         struct btrfs_path *path;
2621         struct btrfs_key key;
2622
2623         path = btrfs_alloc_path();
2624         if (!path)
2625                 return -ENOMEM;
2626
2627         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2628         key.offset = chunk_offset;
2629         key.type = BTRFS_CHUNK_ITEM_KEY;
2630
2631         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2632         if (ret < 0)
2633                 goto out;
2634         else if (ret > 0) { /* Logic error or corruption */
2635                 btrfs_handle_fs_error(fs_info, -ENOENT,
2636                                       "Failed lookup while freeing chunk.");
2637                 ret = -ENOENT;
2638                 goto out;
2639         }
2640
2641         ret = btrfs_del_item(trans, root, path);
2642         if (ret < 0)
2643                 btrfs_handle_fs_error(fs_info, ret,
2644                                       "Failed to delete chunk item.");
2645 out:
2646         btrfs_free_path(path);
2647         return ret;
2648 }
2649
2650 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2651 {
2652         struct btrfs_super_block *super_copy = fs_info->super_copy;
2653         struct btrfs_disk_key *disk_key;
2654         struct btrfs_chunk *chunk;
2655         u8 *ptr;
2656         int ret = 0;
2657         u32 num_stripes;
2658         u32 array_size;
2659         u32 len = 0;
2660         u32 cur;
2661         struct btrfs_key key;
2662
2663         mutex_lock(&fs_info->chunk_mutex);
2664         array_size = btrfs_super_sys_array_size(super_copy);
2665
2666         ptr = super_copy->sys_chunk_array;
2667         cur = 0;
2668
2669         while (cur < array_size) {
2670                 disk_key = (struct btrfs_disk_key *)ptr;
2671                 btrfs_disk_key_to_cpu(&key, disk_key);
2672
2673                 len = sizeof(*disk_key);
2674
2675                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2676                         chunk = (struct btrfs_chunk *)(ptr + len);
2677                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2678                         len += btrfs_chunk_item_size(num_stripes);
2679                 } else {
2680                         ret = -EIO;
2681                         break;
2682                 }
2683                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2684                     key.offset == chunk_offset) {
2685                         memmove(ptr, ptr + len, array_size - (cur + len));
2686                         array_size -= len;
2687                         btrfs_set_super_sys_array_size(super_copy, array_size);
2688                 } else {
2689                         ptr += len;
2690                         cur += len;
2691                 }
2692         }
2693         mutex_unlock(&fs_info->chunk_mutex);
2694         return ret;
2695 }
2696
2697 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2698                                         u64 logical, u64 length)
2699 {
2700         struct extent_map_tree *em_tree;
2701         struct extent_map *em;
2702
2703         em_tree = &fs_info->mapping_tree.map_tree;
2704         read_lock(&em_tree->lock);
2705         em = lookup_extent_mapping(em_tree, logical, length);
2706         read_unlock(&em_tree->lock);
2707
2708         if (!em) {
2709                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2710                            logical, length);
2711                 return ERR_PTR(-EINVAL);
2712         }
2713
2714         if (em->start > logical || em->start + em->len < logical) {
2715                 btrfs_crit(fs_info,
2716                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2717                            logical, length, em->start, em->start + em->len);
2718                 free_extent_map(em);
2719                 return ERR_PTR(-EINVAL);
2720         }
2721
2722         /* callers are responsible for dropping em's ref. */
2723         return em;
2724 }
2725
2726 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2727                        struct btrfs_fs_info *fs_info, u64 chunk_offset)
2728 {
2729         struct extent_map *em;
2730         struct map_lookup *map;
2731         u64 dev_extent_len = 0;
2732         int i, ret = 0;
2733         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2734
2735         em = get_chunk_map(fs_info, chunk_offset, 1);
2736         if (IS_ERR(em)) {
2737                 /*
2738                  * This is a logic error, but we don't want to just rely on the
2739                  * user having built with ASSERT enabled, so if ASSERT doesn't
2740                  * do anything we still error out.
2741                  */
2742                 ASSERT(0);
2743                 return PTR_ERR(em);
2744         }
2745         map = em->map_lookup;
2746         mutex_lock(&fs_info->chunk_mutex);
2747         check_system_chunk(trans, map->type);
2748         mutex_unlock(&fs_info->chunk_mutex);
2749
2750         /*
2751          * Take the device list mutex to prevent races with the final phase of
2752          * a device replace operation that replaces the device object associated
2753          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2754          */
2755         mutex_lock(&fs_devices->device_list_mutex);
2756         for (i = 0; i < map->num_stripes; i++) {
2757                 struct btrfs_device *device = map->stripes[i].dev;
2758                 ret = btrfs_free_dev_extent(trans, device,
2759                                             map->stripes[i].physical,
2760                                             &dev_extent_len);
2761                 if (ret) {
2762                         mutex_unlock(&fs_devices->device_list_mutex);
2763                         btrfs_abort_transaction(trans, ret);
2764                         goto out;
2765                 }
2766
2767                 if (device->bytes_used > 0) {
2768                         mutex_lock(&fs_info->chunk_mutex);
2769                         btrfs_device_set_bytes_used(device,
2770                                         device->bytes_used - dev_extent_len);
2771                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2772                         btrfs_clear_space_info_full(fs_info);
2773                         mutex_unlock(&fs_info->chunk_mutex);
2774                 }
2775
2776                 if (map->stripes[i].dev) {
2777                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2778                         if (ret) {
2779                                 mutex_unlock(&fs_devices->device_list_mutex);
2780                                 btrfs_abort_transaction(trans, ret);
2781                                 goto out;
2782                         }
2783                 }
2784         }
2785         mutex_unlock(&fs_devices->device_list_mutex);
2786
2787         ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2788         if (ret) {
2789                 btrfs_abort_transaction(trans, ret);
2790                 goto out;
2791         }
2792
2793         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2794
2795         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2796                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2797                 if (ret) {
2798                         btrfs_abort_transaction(trans, ret);
2799                         goto out;
2800                 }
2801         }
2802
2803         ret = btrfs_remove_block_group(trans, chunk_offset, em);
2804         if (ret) {
2805                 btrfs_abort_transaction(trans, ret);
2806                 goto out;
2807         }
2808
2809 out:
2810         /* once for us */
2811         free_extent_map(em);
2812         return ret;
2813 }
2814
2815 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2816 {
2817         struct btrfs_root *root = fs_info->chunk_root;
2818         struct btrfs_trans_handle *trans;
2819         int ret;
2820
2821         /*
2822          * Prevent races with automatic removal of unused block groups.
2823          * After we relocate and before we remove the chunk with offset
2824          * chunk_offset, automatic removal of the block group can kick in,
2825          * resulting in a failure when calling btrfs_remove_chunk() below.
2826          *
2827          * Make sure to acquire this mutex before doing a tree search (dev
2828          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2829          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2830          * we release the path used to search the chunk/dev tree and before
2831          * the current task acquires this mutex and calls us.
2832          */
2833         lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
2834
2835         ret = btrfs_can_relocate(fs_info, chunk_offset);
2836         if (ret)
2837                 return -ENOSPC;
2838
2839         /* step one, relocate all the extents inside this chunk */
2840         btrfs_scrub_pause(fs_info);
2841         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2842         btrfs_scrub_continue(fs_info);
2843         if (ret)
2844                 return ret;
2845
2846         /*
2847          * We add the kobjects here (and after forcing data chunk creation)
2848          * since relocation is the only place we'll create chunks of a new
2849          * type at runtime.  The only place where we'll remove the last
2850          * chunk of a type is the call immediately below this one.  Even
2851          * so, we're protected against races with the cleaner thread since
2852          * we're covered by the delete_unused_bgs_mutex.
2853          */
2854         btrfs_add_raid_kobjects(fs_info);
2855
2856         trans = btrfs_start_trans_remove_block_group(root->fs_info,
2857                                                      chunk_offset);
2858         if (IS_ERR(trans)) {
2859                 ret = PTR_ERR(trans);
2860                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2861                 return ret;
2862         }
2863
2864         /*
2865          * step two, delete the device extents and the
2866          * chunk tree entries
2867          */
2868         ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2869         btrfs_end_transaction(trans);
2870         return ret;
2871 }
2872
2873 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2874 {
2875         struct btrfs_root *chunk_root = fs_info->chunk_root;
2876         struct btrfs_path *path;
2877         struct extent_buffer *leaf;
2878         struct btrfs_chunk *chunk;
2879         struct btrfs_key key;
2880         struct btrfs_key found_key;
2881         u64 chunk_type;
2882         bool retried = false;
2883         int failed = 0;
2884         int ret;
2885
2886         path = btrfs_alloc_path();
2887         if (!path)
2888                 return -ENOMEM;
2889
2890 again:
2891         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2892         key.offset = (u64)-1;
2893         key.type = BTRFS_CHUNK_ITEM_KEY;
2894
2895         while (1) {
2896                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2897                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2898                 if (ret < 0) {
2899                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2900                         goto error;
2901                 }
2902                 BUG_ON(ret == 0); /* Corruption */
2903
2904                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2905                                           key.type);
2906                 if (ret)
2907                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2908                 if (ret < 0)
2909                         goto error;
2910                 if (ret > 0)
2911                         break;
2912
2913                 leaf = path->nodes[0];
2914                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2915
2916                 chunk = btrfs_item_ptr(leaf, path->slots[0],
2917                                        struct btrfs_chunk);
2918                 chunk_type = btrfs_chunk_type(leaf, chunk);
2919                 btrfs_release_path(path);
2920
2921                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2922                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
2923                         if (ret == -ENOSPC)
2924                                 failed++;
2925                         else
2926                                 BUG_ON(ret);
2927                 }
2928                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2929
2930                 if (found_key.offset == 0)
2931                         break;
2932                 key.offset = found_key.offset - 1;
2933         }
2934         ret = 0;
2935         if (failed && !retried) {
2936                 failed = 0;
2937                 retried = true;
2938                 goto again;
2939         } else if (WARN_ON(failed && retried)) {
2940                 ret = -ENOSPC;
2941         }
2942 error:
2943         btrfs_free_path(path);
2944         return ret;
2945 }
2946
2947 /*
2948  * return 1 : allocate a data chunk successfully,
2949  * return <0: errors during allocating a data chunk,
2950  * return 0 : no need to allocate a data chunk.
2951  */
2952 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
2953                                       u64 chunk_offset)
2954 {
2955         struct btrfs_block_group_cache *cache;
2956         u64 bytes_used;
2957         u64 chunk_type;
2958
2959         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2960         ASSERT(cache);
2961         chunk_type = cache->flags;
2962         btrfs_put_block_group(cache);
2963
2964         if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
2965                 spin_lock(&fs_info->data_sinfo->lock);
2966                 bytes_used = fs_info->data_sinfo->bytes_used;
2967                 spin_unlock(&fs_info->data_sinfo->lock);
2968
2969                 if (!bytes_used) {
2970                         struct btrfs_trans_handle *trans;
2971                         int ret;
2972
2973                         trans = btrfs_join_transaction(fs_info->tree_root);
2974                         if (IS_ERR(trans))
2975                                 return PTR_ERR(trans);
2976
2977                         ret = btrfs_force_chunk_alloc(trans,
2978                                                       BTRFS_BLOCK_GROUP_DATA);
2979                         btrfs_end_transaction(trans);
2980                         if (ret < 0)
2981                                 return ret;
2982
2983                         btrfs_add_raid_kobjects(fs_info);
2984
2985                         return 1;
2986                 }
2987         }
2988         return 0;
2989 }
2990
2991 static int insert_balance_item(struct btrfs_fs_info *fs_info,
2992                                struct btrfs_balance_control *bctl)
2993 {
2994         struct btrfs_root *root = fs_info->tree_root;
2995         struct btrfs_trans_handle *trans;
2996         struct btrfs_balance_item *item;
2997         struct btrfs_disk_balance_args disk_bargs;
2998         struct btrfs_path *path;
2999         struct extent_buffer *leaf;
3000         struct btrfs_key key;
3001         int ret, err;
3002
3003         path = btrfs_alloc_path();
3004         if (!path)
3005                 return -ENOMEM;
3006
3007         trans = btrfs_start_transaction(root, 0);
3008         if (IS_ERR(trans)) {
3009                 btrfs_free_path(path);
3010                 return PTR_ERR(trans);
3011         }
3012
3013         key.objectid = BTRFS_BALANCE_OBJECTID;
3014         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3015         key.offset = 0;
3016
3017         ret = btrfs_insert_empty_item(trans, root, path, &key,
3018                                       sizeof(*item));
3019         if (ret)
3020                 goto out;
3021
3022         leaf = path->nodes[0];
3023         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3024
3025         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3026
3027         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3028         btrfs_set_balance_data(leaf, item, &disk_bargs);
3029         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3030         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3031         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3032         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3033
3034         btrfs_set_balance_flags(leaf, item, bctl->flags);
3035
3036         btrfs_mark_buffer_dirty(leaf);
3037 out:
3038         btrfs_free_path(path);
3039         err = btrfs_commit_transaction(trans);
3040         if (err && !ret)
3041                 ret = err;
3042         return ret;
3043 }
3044
3045 static int del_balance_item(struct btrfs_fs_info *fs_info)
3046 {
3047         struct btrfs_root *root = fs_info->tree_root;
3048         struct btrfs_trans_handle *trans;
3049         struct btrfs_path *path;
3050         struct btrfs_key key;
3051         int ret, err;
3052
3053         path = btrfs_alloc_path();
3054         if (!path)
3055                 return -ENOMEM;
3056
3057         trans = btrfs_start_transaction(root, 0);
3058         if (IS_ERR(trans)) {
3059                 btrfs_free_path(path);
3060                 return PTR_ERR(trans);
3061         }
3062
3063         key.objectid = BTRFS_BALANCE_OBJECTID;
3064         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3065         key.offset = 0;
3066
3067         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3068         if (ret < 0)
3069                 goto out;
3070         if (ret > 0) {
3071                 ret = -ENOENT;
3072                 goto out;
3073         }
3074
3075         ret = btrfs_del_item(trans, root, path);
3076 out:
3077         btrfs_free_path(path);
3078         err = btrfs_commit_transaction(trans);
3079         if (err && !ret)
3080                 ret = err;
3081         return ret;
3082 }
3083
3084 /*
3085  * This is a heuristic used to reduce the number of chunks balanced on
3086  * resume after balance was interrupted.
3087  */
3088 static void update_balance_args(struct btrfs_balance_control *bctl)
3089 {
3090         /*
3091          * Turn on soft mode for chunk types that were being converted.
3092          */
3093         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3094                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3095         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3096                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3097         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3098                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3099
3100         /*
3101          * Turn on usage filter if is not already used.  The idea is
3102          * that chunks that we have already balanced should be
3103          * reasonably full.  Don't do it for chunks that are being
3104          * converted - that will keep us from relocating unconverted
3105          * (albeit full) chunks.
3106          */
3107         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3108             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3109             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3110                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3111                 bctl->data.usage = 90;
3112         }
3113         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3114             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3115             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3116                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3117                 bctl->sys.usage = 90;
3118         }
3119         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3120             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3121             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3122                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3123                 bctl->meta.usage = 90;
3124         }
3125 }
3126
3127 /*
3128  * Clear the balance status in fs_info and delete the balance item from disk.
3129  */
3130 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3131 {
3132         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3133         int ret;
3134
3135         BUG_ON(!fs_info->balance_ctl);
3136
3137         spin_lock(&fs_info->balance_lock);
3138         fs_info->balance_ctl = NULL;
3139         spin_unlock(&fs_info->balance_lock);
3140
3141         kfree(bctl);
3142         ret = del_balance_item(fs_info);
3143         if (ret)
3144                 btrfs_handle_fs_error(fs_info, ret, NULL);
3145 }
3146
3147 /*
3148  * Balance filters.  Return 1 if chunk should be filtered out
3149  * (should not be balanced).
3150  */
3151 static int chunk_profiles_filter(u64 chunk_type,
3152                                  struct btrfs_balance_args *bargs)
3153 {
3154         chunk_type = chunk_to_extended(chunk_type) &
3155                                 BTRFS_EXTENDED_PROFILE_MASK;
3156
3157         if (bargs->profiles & chunk_type)
3158                 return 0;
3159
3160         return 1;
3161 }
3162
3163 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3164                               struct btrfs_balance_args *bargs)
3165 {
3166         struct btrfs_block_group_cache *cache;
3167         u64 chunk_used;
3168         u64 user_thresh_min;
3169         u64 user_thresh_max;
3170         int ret = 1;
3171
3172         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3173         chunk_used = btrfs_block_group_used(&cache->item);
3174
3175         if (bargs->usage_min == 0)
3176                 user_thresh_min = 0;
3177         else
3178                 user_thresh_min = div_factor_fine(cache->key.offset,
3179                                         bargs->usage_min);
3180
3181         if (bargs->usage_max == 0)
3182                 user_thresh_max = 1;
3183         else if (bargs->usage_max > 100)
3184                 user_thresh_max = cache->key.offset;
3185         else
3186                 user_thresh_max = div_factor_fine(cache->key.offset,
3187                                         bargs->usage_max);
3188
3189         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3190                 ret = 0;
3191
3192         btrfs_put_block_group(cache);
3193         return ret;
3194 }
3195
3196 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3197                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3198 {
3199         struct btrfs_block_group_cache *cache;
3200         u64 chunk_used, user_thresh;
3201         int ret = 1;
3202
3203         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3204         chunk_used = btrfs_block_group_used(&cache->item);
3205
3206         if (bargs->usage_min == 0)
3207                 user_thresh = 1;
3208         else if (bargs->usage > 100)
3209                 user_thresh = cache->key.offset;
3210         else
3211                 user_thresh = div_factor_fine(cache->key.offset,
3212                                               bargs->usage);
3213
3214         if (chunk_used < user_thresh)
3215                 ret = 0;
3216
3217         btrfs_put_block_group(cache);
3218         return ret;
3219 }
3220
3221 static int chunk_devid_filter(struct extent_buffer *leaf,
3222                               struct btrfs_chunk *chunk,
3223                               struct btrfs_balance_args *bargs)
3224 {
3225         struct btrfs_stripe *stripe;
3226         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3227         int i;
3228
3229         for (i = 0; i < num_stripes; i++) {
3230                 stripe = btrfs_stripe_nr(chunk, i);
3231                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3232                         return 0;
3233         }
3234
3235         return 1;
3236 }
3237
3238 /* [pstart, pend) */
3239 static int chunk_drange_filter(struct extent_buffer *leaf,
3240                                struct btrfs_chunk *chunk,
3241                                struct btrfs_balance_args *bargs)
3242 {
3243         struct btrfs_stripe *stripe;
3244         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3245         u64 stripe_offset;
3246         u64 stripe_length;
3247         int factor;
3248         int i;
3249
3250         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3251                 return 0;
3252
3253         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3254              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3255                 factor = num_stripes / 2;
3256         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3257                 factor = num_stripes - 1;
3258         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3259                 factor = num_stripes - 2;
3260         } else {
3261                 factor = num_stripes;
3262         }
3263
3264         for (i = 0; i < num_stripes; i++) {
3265                 stripe = btrfs_stripe_nr(chunk, i);
3266                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3267                         continue;
3268
3269                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3270                 stripe_length = btrfs_chunk_length(leaf, chunk);
3271                 stripe_length = div_u64(stripe_length, factor);
3272
3273                 if (stripe_offset < bargs->pend &&
3274                     stripe_offset + stripe_length > bargs->pstart)
3275                         return 0;
3276         }
3277
3278         return 1;
3279 }
3280
3281 /* [vstart, vend) */
3282 static int chunk_vrange_filter(struct extent_buffer *leaf,
3283                                struct btrfs_chunk *chunk,
3284                                u64 chunk_offset,
3285                                struct btrfs_balance_args *bargs)
3286 {
3287         if (chunk_offset < bargs->vend &&
3288             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3289                 /* at least part of the chunk is inside this vrange */
3290                 return 0;
3291
3292         return 1;
3293 }
3294
3295 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3296                                struct btrfs_chunk *chunk,
3297                                struct btrfs_balance_args *bargs)
3298 {
3299         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3300
3301         if (bargs->stripes_min <= num_stripes
3302                         && num_stripes <= bargs->stripes_max)
3303                 return 0;
3304
3305         return 1;
3306 }
3307
3308 static int chunk_soft_convert_filter(u64 chunk_type,
3309                                      struct btrfs_balance_args *bargs)
3310 {
3311         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3312                 return 0;
3313
3314         chunk_type = chunk_to_extended(chunk_type) &
3315                                 BTRFS_EXTENDED_PROFILE_MASK;
3316
3317         if (bargs->target == chunk_type)
3318                 return 1;
3319
3320         return 0;
3321 }
3322
3323 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3324                                 struct extent_buffer *leaf,
3325                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3326 {
3327         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3328         struct btrfs_balance_args *bargs = NULL;
3329         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3330
3331         /* type filter */
3332         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3333               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3334                 return 0;
3335         }
3336
3337         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3338                 bargs = &bctl->data;
3339         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3340                 bargs = &bctl->sys;
3341         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3342                 bargs = &bctl->meta;
3343
3344         /* profiles filter */
3345         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3346             chunk_profiles_filter(chunk_type, bargs)) {
3347                 return 0;
3348         }
3349
3350         /* usage filter */
3351         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3352             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3353                 return 0;
3354         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3355             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3356                 return 0;
3357         }
3358
3359         /* devid filter */
3360         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3361             chunk_devid_filter(leaf, chunk, bargs)) {
3362                 return 0;
3363         }
3364
3365         /* drange filter, makes sense only with devid filter */
3366         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3367             chunk_drange_filter(leaf, chunk, bargs)) {
3368                 return 0;
3369         }
3370
3371         /* vrange filter */
3372         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3373             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3374                 return 0;
3375         }
3376
3377         /* stripes filter */
3378         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3379             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3380                 return 0;
3381         }
3382
3383         /* soft profile changing mode */
3384         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3385             chunk_soft_convert_filter(chunk_type, bargs)) {
3386                 return 0;
3387         }
3388
3389         /*
3390          * limited by count, must be the last filter
3391          */
3392         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3393                 if (bargs->limit == 0)
3394                         return 0;
3395                 else
3396                         bargs->limit--;
3397         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3398                 /*
3399                  * Same logic as the 'limit' filter; the minimum cannot be
3400                  * determined here because we do not have the global information
3401                  * about the count of all chunks that satisfy the filters.
3402                  */
3403                 if (bargs->limit_max == 0)
3404                         return 0;
3405                 else
3406                         bargs->limit_max--;
3407         }
3408
3409         return 1;
3410 }
3411
3412 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3413 {
3414         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3415         struct btrfs_root *chunk_root = fs_info->chunk_root;
3416         struct btrfs_root *dev_root = fs_info->dev_root;
3417         struct list_head *devices;
3418         struct btrfs_device *device;
3419         u64 old_size;
3420         u64 size_to_free;
3421         u64 chunk_type;
3422         struct btrfs_chunk *chunk;
3423         struct btrfs_path *path = NULL;
3424         struct btrfs_key key;
3425         struct btrfs_key found_key;
3426         struct btrfs_trans_handle *trans;
3427         struct extent_buffer *leaf;
3428         int slot;
3429         int ret;
3430         int enospc_errors = 0;
3431         bool counting = true;
3432         /* The single value limit and min/max limits use the same bytes in the */
3433         u64 limit_data = bctl->data.limit;
3434         u64 limit_meta = bctl->meta.limit;
3435         u64 limit_sys = bctl->sys.limit;
3436         u32 count_data = 0;
3437         u32 count_meta = 0;
3438         u32 count_sys = 0;
3439         int chunk_reserved = 0;
3440
3441         /* step one make some room on all the devices */
3442         devices = &fs_info->fs_devices->devices;
3443         list_for_each_entry(device, devices, dev_list) {
3444                 old_size = btrfs_device_get_total_bytes(device);
3445                 size_to_free = div_factor(old_size, 1);
3446                 size_to_free = min_t(u64, size_to_free, SZ_1M);
3447                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
3448                     btrfs_device_get_total_bytes(device) -
3449                     btrfs_device_get_bytes_used(device) > size_to_free ||
3450                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
3451                         continue;
3452
3453                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3454                 if (ret == -ENOSPC)
3455                         break;
3456                 if (ret) {
3457                         /* btrfs_shrink_device never returns ret > 0 */
3458                         WARN_ON(ret > 0);
3459                         goto error;
3460                 }
3461
3462                 trans = btrfs_start_transaction(dev_root, 0);
3463                 if (IS_ERR(trans)) {
3464                         ret = PTR_ERR(trans);
3465                         btrfs_info_in_rcu(fs_info,
3466                  "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3467                                           rcu_str_deref(device->name), ret,
3468                                           old_size, old_size - size_to_free);
3469                         goto error;
3470                 }
3471
3472                 ret = btrfs_grow_device(trans, device, old_size);
3473                 if (ret) {
3474                         btrfs_end_transaction(trans);
3475                         /* btrfs_grow_device never returns ret > 0 */
3476                         WARN_ON(ret > 0);
3477                         btrfs_info_in_rcu(fs_info,
3478                  "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3479                                           rcu_str_deref(device->name), ret,
3480                                           old_size, old_size - size_to_free);
3481                         goto error;
3482                 }
3483
3484                 btrfs_end_transaction(trans);
3485         }
3486
3487         /* step two, relocate all the chunks */
3488         path = btrfs_alloc_path();
3489         if (!path) {
3490                 ret = -ENOMEM;
3491                 goto error;
3492         }
3493
3494         /* zero out stat counters */
3495         spin_lock(&fs_info->balance_lock);
3496         memset(&bctl->stat, 0, sizeof(bctl->stat));
3497         spin_unlock(&fs_info->balance_lock);
3498 again:
3499         if (!counting) {
3500                 /*
3501                  * The single value limit and min/max limits use the same bytes
3502                  * in the
3503                  */
3504                 bctl->data.limit = limit_data;
3505                 bctl->meta.limit = limit_meta;
3506                 bctl->sys.limit = limit_sys;
3507         }
3508         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3509         key.offset = (u64)-1;
3510         key.type = BTRFS_CHUNK_ITEM_KEY;
3511
3512         while (1) {
3513                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3514                     atomic_read(&fs_info->balance_cancel_req)) {
3515                         ret = -ECANCELED;
3516                         goto error;
3517                 }
3518
3519                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3520                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3521                 if (ret < 0) {
3522                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3523                         goto error;
3524                 }
3525
3526                 /*
3527                  * this shouldn't happen, it means the last relocate
3528                  * failed
3529                  */
3530                 if (ret == 0)
3531                         BUG(); /* FIXME break ? */
3532
3533                 ret = btrfs_previous_item(chunk_root, path, 0,
3534                                           BTRFS_CHUNK_ITEM_KEY);
3535                 if (ret) {
3536                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3537                         ret = 0;
3538                         break;
3539                 }
3540
3541                 leaf = path->nodes[0];
3542                 slot = path->slots[0];
3543                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3544
3545                 if (found_key.objectid != key.objectid) {
3546                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3547                         break;
3548                 }
3549
3550                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3551                 chunk_type = btrfs_chunk_type(leaf, chunk);
3552
3553                 if (!counting) {
3554                         spin_lock(&fs_info->balance_lock);
3555                         bctl->stat.considered++;
3556                         spin_unlock(&fs_info->balance_lock);
3557                 }
3558
3559                 ret = should_balance_chunk(fs_info, leaf, chunk,
3560                                            found_key.offset);
3561
3562                 btrfs_release_path(path);
3563                 if (!ret) {
3564                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3565                         goto loop;
3566                 }
3567
3568                 if (counting) {
3569                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3570                         spin_lock(&fs_info->balance_lock);
3571                         bctl->stat.expected++;
3572                         spin_unlock(&fs_info->balance_lock);
3573
3574                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3575                                 count_data++;
3576                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3577                                 count_sys++;
3578                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3579                                 count_meta++;
3580
3581                         goto loop;
3582                 }
3583
3584                 /*
3585                  * Apply limit_min filter, no need to check if the LIMITS
3586                  * filter is used, limit_min is 0 by default
3587                  */
3588                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3589                                         count_data < bctl->data.limit_min)
3590                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3591                                         count_meta < bctl->meta.limit_min)
3592                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3593                                         count_sys < bctl->sys.limit_min)) {
3594                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3595                         goto loop;
3596                 }
3597
3598                 if (!chunk_reserved) {
3599                         /*
3600                          * We may be relocating the only data chunk we have,
3601                          * which could potentially end up with losing data's
3602                          * raid profile, so lets allocate an empty one in
3603                          * advance.
3604                          */
3605                         ret = btrfs_may_alloc_data_chunk(fs_info,
3606                                                          found_key.offset);
3607                         if (ret < 0) {
3608                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3609                                 goto error;
3610                         } else if (ret == 1) {
3611                                 chunk_reserved = 1;
3612                         }
3613                 }
3614
3615                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3616                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3617                 if (ret && ret != -ENOSPC)
3618                         goto error;
3619                 if (ret == -ENOSPC) {
3620                         enospc_errors++;
3621                 } else {
3622                         spin_lock(&fs_info->balance_lock);
3623                         bctl->stat.completed++;
3624                         spin_unlock(&fs_info->balance_lock);
3625                 }
3626 loop:
3627                 if (found_key.offset == 0)
3628                         break;
3629                 key.offset = found_key.offset - 1;
3630         }
3631
3632         if (counting) {
3633                 btrfs_release_path(path);
3634                 counting = false;
3635                 goto again;
3636         }
3637 error:
3638         btrfs_free_path(path);
3639         if (enospc_errors) {
3640                 btrfs_info(fs_info, "%d enospc errors during balance",
3641                            enospc_errors);
3642                 if (!ret)
3643                         ret = -ENOSPC;
3644         }
3645
3646         return ret;
3647 }
3648
3649 /**
3650  * alloc_profile_is_valid - see if a given profile is valid and reduced
3651  * @flags: profile to validate
3652  * @extended: if true @flags is treated as an extended profile
3653  */
3654 static int alloc_profile_is_valid(u64 flags, int extended)
3655 {
3656         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3657                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3658
3659         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3660
3661         /* 1) check that all other bits are zeroed */
3662         if (flags & ~mask)
3663                 return 0;
3664
3665         /* 2) see if profile is reduced */
3666         if (flags == 0)
3667                 return !extended; /* "0" is valid for usual profiles */
3668
3669         /* true if exactly one bit set */
3670         return (flags & (flags - 1)) == 0;
3671 }
3672
3673 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3674 {
3675         /* cancel requested || normal exit path */
3676         return atomic_read(&fs_info->balance_cancel_req) ||
3677                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3678                  atomic_read(&fs_info->balance_cancel_req) == 0);
3679 }
3680
3681 /* Non-zero return value signifies invalidity */
3682 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3683                 u64 allowed)
3684 {
3685         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3686                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3687                  (bctl_arg->target & ~allowed)));
3688 }
3689
3690 /*
3691  * Should be called with balance mutexe held
3692  */
3693 int btrfs_balance(struct btrfs_fs_info *fs_info,
3694                   struct btrfs_balance_control *bctl,
3695                   struct btrfs_ioctl_balance_args *bargs)
3696 {
3697         u64 meta_target, data_target;
3698         u64 allowed;
3699         int mixed = 0;
3700         int ret;
3701         u64 num_devices;
3702         unsigned seq;
3703
3704         if (btrfs_fs_closing(fs_info) ||
3705             atomic_read(&fs_info->balance_pause_req) ||
3706             atomic_read(&fs_info->balance_cancel_req)) {
3707                 ret = -EINVAL;
3708                 goto out;
3709         }
3710
3711         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3712         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3713                 mixed = 1;
3714
3715         /*
3716          * In case of mixed groups both data and meta should be picked,
3717          * and identical options should be given for both of them.
3718          */
3719         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3720         if (mixed && (bctl->flags & allowed)) {
3721                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3722                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3723                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3724                         btrfs_err(fs_info,
3725           "balance: mixed groups data and metadata options must be the same");
3726                         ret = -EINVAL;
3727                         goto out;
3728                 }
3729         }
3730
3731         num_devices = fs_info->fs_devices->num_devices;
3732         btrfs_dev_replace_read_lock(&fs_info->dev_replace);
3733         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3734                 BUG_ON(num_devices < 1);
3735                 num_devices--;
3736         }
3737         btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
3738         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3739         if (num_devices > 1)
3740                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3741         if (num_devices > 2)
3742                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3743         if (num_devices > 3)
3744                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3745                             BTRFS_BLOCK_GROUP_RAID6);
3746         if (validate_convert_profile(&bctl->data, allowed)) {
3747                 int index = btrfs_bg_flags_to_raid_index(bctl->data.target);
3748
3749                 btrfs_err(fs_info,
3750                           "balance: invalid convert data profile %s",
3751                           get_raid_name(index));
3752                 ret = -EINVAL;
3753                 goto out;
3754         }
3755         if (validate_convert_profile(&bctl->meta, allowed)) {
3756                 int index = btrfs_bg_flags_to_raid_index(bctl->meta.target);
3757
3758                 btrfs_err(fs_info,
3759                           "balance: invalid convert metadata profile %s",
3760                           get_raid_name(index));
3761                 ret = -EINVAL;
3762                 goto out;
3763         }
3764         if (validate_convert_profile(&bctl->sys, allowed)) {
3765                 int index = btrfs_bg_flags_to_raid_index(bctl->sys.target);
3766
3767                 btrfs_err(fs_info,
3768                           "balance: invalid convert system profile %s",
3769                           get_raid_name(index));
3770                 ret = -EINVAL;
3771                 goto out;
3772         }
3773
3774         /* allow to reduce meta or sys integrity only if force set */
3775         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3776                         BTRFS_BLOCK_GROUP_RAID10 |
3777                         BTRFS_BLOCK_GROUP_RAID5 |
3778                         BTRFS_BLOCK_GROUP_RAID6;
3779         do {
3780                 seq = read_seqbegin(&fs_info->profiles_lock);
3781
3782                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3783                      (fs_info->avail_system_alloc_bits & allowed) &&
3784                      !(bctl->sys.target & allowed)) ||
3785                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3786                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3787                      !(bctl->meta.target & allowed))) {
3788                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3789                                 btrfs_info(fs_info,
3790                                 "balance: force reducing metadata integrity");
3791                         } else {
3792                                 btrfs_err(fs_info,
3793         "balance: reduces metadata integrity, use --force if you want this");
3794                                 ret = -EINVAL;
3795                                 goto out;
3796                         }
3797                 }
3798         } while (read_seqretry(&fs_info->profiles_lock, seq));
3799
3800         /* if we're not converting, the target field is uninitialized */
3801         meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3802                 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3803         data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3804                 bctl->data.target : fs_info->avail_data_alloc_bits;
3805         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3806                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3807                 int meta_index = btrfs_bg_flags_to_raid_index(meta_target);
3808                 int data_index = btrfs_bg_flags_to_raid_index(data_target);
3809
3810                 btrfs_warn(fs_info,
3811         "balance: metadata profile %s has lower redundancy than data profile %s",
3812                            get_raid_name(meta_index), get_raid_name(data_index));
3813         }
3814
3815         ret = insert_balance_item(fs_info, bctl);
3816         if (ret && ret != -EEXIST)
3817                 goto out;
3818
3819         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3820                 BUG_ON(ret == -EEXIST);
3821                 BUG_ON(fs_info->balance_ctl);
3822                 spin_lock(&fs_info->balance_lock);
3823                 fs_info->balance_ctl = bctl;
3824                 spin_unlock(&fs_info->balance_lock);
3825         } else {
3826                 BUG_ON(ret != -EEXIST);
3827                 spin_lock(&fs_info->balance_lock);
3828                 update_balance_args(bctl);
3829                 spin_unlock(&fs_info->balance_lock);
3830         }
3831
3832         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
3833         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3834         mutex_unlock(&fs_info->balance_mutex);
3835
3836         ret = __btrfs_balance(fs_info);
3837
3838         mutex_lock(&fs_info->balance_mutex);
3839         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3840
3841         if (bargs) {
3842                 memset(bargs, 0, sizeof(*bargs));
3843                 btrfs_update_ioctl_balance_args(fs_info, bargs);
3844         }
3845
3846         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3847             balance_need_close(fs_info)) {
3848                 reset_balance_state(fs_info);
3849                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3850         }
3851
3852         wake_up(&fs_info->balance_wait_q);
3853
3854         return ret;
3855 out:
3856         if (bctl->flags & BTRFS_BALANCE_RESUME)
3857                 reset_balance_state(fs_info);
3858         else
3859                 kfree(bctl);
3860         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3861
3862         return ret;
3863 }
3864
3865 static int balance_kthread(void *data)
3866 {
3867         struct btrfs_fs_info *fs_info = data;
3868         int ret = 0;
3869
3870         mutex_lock(&fs_info->balance_mutex);
3871         if (fs_info->balance_ctl) {
3872                 btrfs_info(fs_info, "balance: resuming");
3873                 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
3874         }
3875         mutex_unlock(&fs_info->balance_mutex);
3876
3877         return ret;
3878 }
3879
3880 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3881 {
3882         struct task_struct *tsk;
3883
3884         mutex_lock(&fs_info->balance_mutex);
3885         if (!fs_info->balance_ctl) {
3886                 mutex_unlock(&fs_info->balance_mutex);
3887                 return 0;
3888         }
3889         mutex_unlock(&fs_info->balance_mutex);
3890
3891         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3892                 btrfs_info(fs_info, "balance: resume skipped");
3893                 return 0;
3894         }
3895
3896         /*
3897          * A ro->rw remount sequence should continue with the paused balance
3898          * regardless of who pauses it, system or the user as of now, so set
3899          * the resume flag.
3900          */
3901         spin_lock(&fs_info->balance_lock);
3902         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
3903         spin_unlock(&fs_info->balance_lock);
3904
3905         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3906         return PTR_ERR_OR_ZERO(tsk);
3907 }
3908
3909 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3910 {
3911         struct btrfs_balance_control *bctl;
3912         struct btrfs_balance_item *item;
3913         struct btrfs_disk_balance_args disk_bargs;
3914         struct btrfs_path *path;
3915         struct extent_buffer *leaf;
3916         struct btrfs_key key;
3917         int ret;
3918
3919         path = btrfs_alloc_path();
3920         if (!path)
3921                 return -ENOMEM;
3922
3923         key.objectid = BTRFS_BALANCE_OBJECTID;
3924         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3925         key.offset = 0;
3926
3927         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3928         if (ret < 0)
3929                 goto out;
3930         if (ret > 0) { /* ret = -ENOENT; */
3931                 ret = 0;
3932                 goto out;
3933         }
3934
3935         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3936         if (!bctl) {
3937                 ret = -ENOMEM;
3938                 goto out;
3939         }
3940
3941         leaf = path->nodes[0];
3942         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3943
3944         bctl->flags = btrfs_balance_flags(leaf, item);
3945         bctl->flags |= BTRFS_BALANCE_RESUME;
3946
3947         btrfs_balance_data(leaf, item, &disk_bargs);
3948         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3949         btrfs_balance_meta(leaf, item, &disk_bargs);
3950         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3951         btrfs_balance_sys(leaf, item, &disk_bargs);
3952         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3953
3954         /*
3955          * This should never happen, as the paused balance state is recovered
3956          * during mount without any chance of other exclusive ops to collide.
3957          *
3958          * This gives the exclusive op status to balance and keeps in paused
3959          * state until user intervention (cancel or umount). If the ownership
3960          * cannot be assigned, show a message but do not fail. The balance
3961          * is in a paused state and must have fs_info::balance_ctl properly
3962          * set up.
3963          */
3964         if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
3965                 btrfs_warn(fs_info,
3966         "balance: cannot set exclusive op status, resume manually");
3967
3968         mutex_lock(&fs_info->balance_mutex);
3969         BUG_ON(fs_info->balance_ctl);
3970         spin_lock(&fs_info->balance_lock);
3971         fs_info->balance_ctl = bctl;
3972         spin_unlock(&fs_info->balance_lock);
3973         mutex_unlock(&fs_info->balance_mutex);
3974 out:
3975         btrfs_free_path(path);
3976         return ret;
3977 }
3978
3979 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3980 {
3981         int ret = 0;
3982
3983         mutex_lock(&fs_info->balance_mutex);
3984         if (!fs_info->balance_ctl) {
3985                 mutex_unlock(&fs_info->balance_mutex);
3986                 return -ENOTCONN;
3987         }
3988
3989         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3990                 atomic_inc(&fs_info->balance_pause_req);
3991                 mutex_unlock(&fs_info->balance_mutex);
3992
3993                 wait_event(fs_info->balance_wait_q,
3994                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
3995
3996                 mutex_lock(&fs_info->balance_mutex);
3997                 /* we are good with balance_ctl ripped off from under us */
3998                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
3999                 atomic_dec(&fs_info->balance_pause_req);
4000         } else {
4001                 ret = -ENOTCONN;
4002         }
4003
4004         mutex_unlock(&fs_info->balance_mutex);
4005         return ret;
4006 }
4007
4008 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4009 {
4010         mutex_lock(&fs_info->balance_mutex);
4011         if (!fs_info->balance_ctl) {
4012                 mutex_unlock(&fs_info->balance_mutex);
4013                 return -ENOTCONN;
4014         }
4015
4016         /*
4017          * A paused balance with the item stored on disk can be resumed at
4018          * mount time if the mount is read-write. Otherwise it's still paused
4019          * and we must not allow cancelling as it deletes the item.
4020          */
4021         if (sb_rdonly(fs_info->sb)) {
4022                 mutex_unlock(&fs_info->balance_mutex);
4023                 return -EROFS;
4024         }
4025
4026         atomic_inc(&fs_info->balance_cancel_req);
4027         /*
4028          * if we are running just wait and return, balance item is
4029          * deleted in btrfs_balance in this case
4030          */
4031         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4032                 mutex_unlock(&fs_info->balance_mutex);
4033                 wait_event(fs_info->balance_wait_q,
4034                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4035                 mutex_lock(&fs_info->balance_mutex);
4036         } else {
4037                 mutex_unlock(&fs_info->balance_mutex);
4038                 /*
4039                  * Lock released to allow other waiters to continue, we'll
4040                  * reexamine the status again.
4041                  */
4042                 mutex_lock(&fs_info->balance_mutex);
4043
4044                 if (fs_info->balance_ctl) {
4045                         reset_balance_state(fs_info);
4046                         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4047                         btrfs_info(fs_info, "balance: canceled");
4048                 }
4049         }
4050
4051         BUG_ON(fs_info->balance_ctl ||
4052                 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4053         atomic_dec(&fs_info->balance_cancel_req);
4054         mutex_unlock(&fs_info->balance_mutex);
4055         return 0;
4056 }
4057
4058 static int btrfs_uuid_scan_kthread(void *data)
4059 {
4060         struct btrfs_fs_info *fs_info = data;
4061         struct btrfs_root *root = fs_info->tree_root;
4062         struct btrfs_key key;
4063         struct btrfs_path *path = NULL;
4064         int ret = 0;
4065         struct extent_buffer *eb;
4066         int slot;
4067         struct btrfs_root_item root_item;
4068         u32 item_size;
4069         struct btrfs_trans_handle *trans = NULL;
4070
4071         path = btrfs_alloc_path();
4072         if (!path) {
4073                 ret = -ENOMEM;
4074                 goto out;
4075         }
4076
4077         key.objectid = 0;
4078         key.type = BTRFS_ROOT_ITEM_KEY;
4079         key.offset = 0;
4080
4081         while (1) {
4082                 ret = btrfs_search_forward(root, &key, path,
4083                                 BTRFS_OLDEST_GENERATION);
4084                 if (ret) {
4085                         if (ret > 0)
4086                                 ret = 0;
4087                         break;
4088                 }
4089
4090                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4091                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4092                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4093                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4094                         goto skip;
4095
4096                 eb = path->nodes[0];
4097                 slot = path->slots[0];
4098                 item_size = btrfs_item_size_nr(eb, slot);
4099                 if (item_size < sizeof(root_item))
4100                         goto skip;
4101
4102                 read_extent_buffer(eb, &root_item,
4103                                    btrfs_item_ptr_offset(eb, slot),
4104                                    (int)sizeof(root_item));
4105                 if (btrfs_root_refs(&root_item) == 0)
4106                         goto skip;
4107
4108                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4109                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4110                         if (trans)
4111                                 goto update_tree;
4112
4113                         btrfs_release_path(path);
4114                         /*
4115                          * 1 - subvol uuid item
4116                          * 1 - received_subvol uuid item
4117                          */
4118                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4119                         if (IS_ERR(trans)) {
4120                                 ret = PTR_ERR(trans);
4121                                 break;
4122                         }
4123                         continue;
4124                 } else {
4125                         goto skip;
4126                 }
4127 update_tree:
4128                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4129                         ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4130                                                   BTRFS_UUID_KEY_SUBVOL,
4131                                                   key.objectid);
4132                         if (ret < 0) {
4133                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4134                                         ret);
4135                                 break;
4136                         }
4137                 }
4138
4139                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4140                         ret = btrfs_uuid_tree_add(trans,
4141                                                   root_item.received_uuid,
4142                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4143                                                   key.objectid);
4144                         if (ret < 0) {
4145                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4146                                         ret);
4147                                 break;
4148                         }
4149                 }
4150
4151 skip:
4152                 if (trans) {
4153                         ret = btrfs_end_transaction(trans);
4154                         trans = NULL;
4155                         if (ret)
4156                                 break;
4157                 }
4158
4159                 btrfs_release_path(path);
4160                 if (key.offset < (u64)-1) {
4161                         key.offset++;
4162                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4163                         key.offset = 0;
4164                         key.type = BTRFS_ROOT_ITEM_KEY;
4165                 } else if (key.objectid < (u64)-1) {
4166                         key.offset = 0;
4167                         key.type = BTRFS_ROOT_ITEM_KEY;
4168                         key.objectid++;
4169                 } else {
4170                         break;
4171                 }
4172                 cond_resched();
4173         }
4174
4175 out:
4176         btrfs_free_path(path);
4177         if (trans && !IS_ERR(trans))
4178                 btrfs_end_transaction(trans);
4179         if (ret)
4180                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4181         else
4182                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4183         up(&fs_info->uuid_tree_rescan_sem);
4184         return 0;
4185 }
4186
4187 /*
4188  * Callback for btrfs_uuid_tree_iterate().
4189  * returns:
4190  * 0    check succeeded, the entry is not outdated.
4191  * < 0  if an error occurred.
4192  * > 0  if the check failed, which means the caller shall remove the entry.
4193  */
4194 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4195                                        u8 *uuid, u8 type, u64 subid)
4196 {
4197         struct btrfs_key key;
4198         int ret = 0;
4199         struct btrfs_root *subvol_root;
4200
4201         if (type != BTRFS_UUID_KEY_SUBVOL &&
4202             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4203                 goto out;
4204
4205         key.objectid = subid;
4206         key.type = BTRFS_ROOT_ITEM_KEY;
4207         key.offset = (u64)-1;
4208         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4209         if (IS_ERR(subvol_root)) {
4210                 ret = PTR_ERR(subvol_root);
4211                 if (ret == -ENOENT)
4212                         ret = 1;
4213                 goto out;
4214         }
4215
4216         switch (type) {
4217         case BTRFS_UUID_KEY_SUBVOL:
4218                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4219                         ret = 1;
4220                 break;
4221         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4222                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4223                            BTRFS_UUID_SIZE))
4224                         ret = 1;
4225                 break;
4226         }
4227
4228 out:
4229         return ret;
4230 }
4231
4232 static int btrfs_uuid_rescan_kthread(void *data)
4233 {
4234         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4235         int ret;
4236
4237         /*
4238          * 1st step is to iterate through the existing UUID tree and
4239          * to delete all entries that contain outdated data.
4240          * 2nd step is to add all missing entries to the UUID tree.
4241          */
4242         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4243         if (ret < 0) {
4244                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4245                 up(&fs_info->uuid_tree_rescan_sem);
4246                 return ret;
4247         }
4248         return btrfs_uuid_scan_kthread(data);
4249 }
4250
4251 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4252 {
4253         struct btrfs_trans_handle *trans;
4254         struct btrfs_root *tree_root = fs_info->tree_root;
4255         struct btrfs_root *uuid_root;
4256         struct task_struct *task;
4257         int ret;
4258
4259         /*
4260          * 1 - root node
4261          * 1 - root item
4262          */
4263         trans = btrfs_start_transaction(tree_root, 2);
4264         if (IS_ERR(trans))
4265                 return PTR_ERR(trans);
4266
4267         uuid_root = btrfs_create_tree(trans, fs_info,
4268                                       BTRFS_UUID_TREE_OBJECTID);
4269         if (IS_ERR(uuid_root)) {
4270                 ret = PTR_ERR(uuid_root);
4271                 btrfs_abort_transaction(trans, ret);
4272                 btrfs_end_transaction(trans);
4273                 return ret;
4274         }
4275
4276         fs_info->uuid_root = uuid_root;
4277
4278         ret = btrfs_commit_transaction(trans);
4279         if (ret)
4280                 return ret;
4281
4282         down(&fs_info->uuid_tree_rescan_sem);
4283         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4284         if (IS_ERR(task)) {
4285                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4286                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4287                 up(&fs_info->uuid_tree_rescan_sem);
4288                 return PTR_ERR(task);
4289         }
4290
4291         return 0;
4292 }
4293
4294 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4295 {
4296         struct task_struct *task;
4297
4298         down(&fs_info->uuid_tree_rescan_sem);
4299         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4300         if (IS_ERR(task)) {
4301                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4302                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4303                 up(&fs_info->uuid_tree_rescan_sem);
4304                 return PTR_ERR(task);
4305         }
4306
4307         return 0;
4308 }
4309
4310 /*
4311  * shrinking a device means finding all of the device extents past
4312  * the new size, and then following the back refs to the chunks.
4313  * The chunk relocation code actually frees the device extent
4314  */
4315 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4316 {
4317         struct btrfs_fs_info *fs_info = device->fs_info;
4318         struct btrfs_root *root = fs_info->dev_root;
4319         struct btrfs_trans_handle *trans;
4320         struct btrfs_dev_extent *dev_extent = NULL;
4321         struct btrfs_path *path;
4322         u64 length;
4323         u64 chunk_offset;
4324         int ret;
4325         int slot;
4326         int failed = 0;
4327         bool retried = false;
4328         bool checked_pending_chunks = false;
4329         struct extent_buffer *l;
4330         struct btrfs_key key;
4331         struct btrfs_super_block *super_copy = fs_info->super_copy;
4332         u64 old_total = btrfs_super_total_bytes(super_copy);
4333         u64 old_size = btrfs_device_get_total_bytes(device);
4334         u64 diff;
4335
4336         new_size = round_down(new_size, fs_info->sectorsize);
4337         diff = round_down(old_size - new_size, fs_info->sectorsize);
4338
4339         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4340                 return -EINVAL;
4341
4342         path = btrfs_alloc_path();
4343         if (!path)
4344                 return -ENOMEM;
4345
4346         path->reada = READA_BACK;
4347
4348         mutex_lock(&fs_info->chunk_mutex);
4349
4350         btrfs_device_set_total_bytes(device, new_size);
4351         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4352                 device->fs_devices->total_rw_bytes -= diff;
4353                 atomic64_sub(diff, &fs_info->free_chunk_space);
4354         }
4355         mutex_unlock(&fs_info->chunk_mutex);
4356
4357 again:
4358         key.objectid = device->devid;
4359         key.offset = (u64)-1;
4360         key.type = BTRFS_DEV_EXTENT_KEY;
4361
4362         do {
4363                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4364                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4365                 if (ret < 0) {
4366                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4367                         goto done;
4368                 }
4369
4370                 ret = btrfs_previous_item(root, path, 0, key.type);
4371                 if (ret)
4372                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4373                 if (ret < 0)
4374                         goto done;
4375                 if (ret) {
4376                         ret = 0;
4377                         btrfs_release_path(path);
4378                         break;
4379                 }
4380
4381                 l = path->nodes[0];
4382                 slot = path->slots[0];
4383                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4384
4385                 if (key.objectid != device->devid) {
4386                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4387                         btrfs_release_path(path);
4388                         break;
4389                 }
4390
4391                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4392                 length = btrfs_dev_extent_length(l, dev_extent);
4393
4394                 if (key.offset + length <= new_size) {
4395                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4396                         btrfs_release_path(path);
4397                         break;
4398                 }
4399
4400                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4401                 btrfs_release_path(path);
4402
4403                 /*
4404                  * We may be relocating the only data chunk we have,
4405                  * which could potentially end up with losing data's
4406                  * raid profile, so lets allocate an empty one in
4407                  * advance.
4408                  */
4409                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4410                 if (ret < 0) {
4411                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4412                         goto done;
4413                 }
4414
4415                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4416                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4417                 if (ret && ret != -ENOSPC)
4418                         goto done;
4419                 if (ret == -ENOSPC)
4420                         failed++;
4421         } while (key.offset-- > 0);
4422
4423         if (failed && !retried) {
4424                 failed = 0;
4425                 retried = true;
4426                 goto again;
4427         } else if (failed && retried) {
4428                 ret = -ENOSPC;
4429                 goto done;
4430         }
4431
4432         /* Shrinking succeeded, else we would be at "done". */
4433         trans = btrfs_start_transaction(root, 0);
4434         if (IS_ERR(trans)) {
4435                 ret = PTR_ERR(trans);
4436                 goto done;
4437         }
4438
4439         mutex_lock(&fs_info->chunk_mutex);
4440
4441         /*
4442          * We checked in the above loop all device extents that were already in
4443          * the device tree. However before we have updated the device's
4444          * total_bytes to the new size, we might have had chunk allocations that
4445          * have not complete yet (new block groups attached to transaction
4446          * handles), and therefore their device extents were not yet in the
4447          * device tree and we missed them in the loop above. So if we have any
4448          * pending chunk using a device extent that overlaps the device range
4449          * that we can not use anymore, commit the current transaction and
4450          * repeat the search on the device tree - this way we guarantee we will
4451          * not have chunks using device extents that end beyond 'new_size'.
4452          */
4453         if (!checked_pending_chunks) {
4454                 u64 start = new_size;
4455                 u64 len = old_size - new_size;
4456
4457                 if (contains_pending_extent(trans->transaction, device,
4458                                             &start, len)) {
4459                         mutex_unlock(&fs_info->chunk_mutex);
4460                         checked_pending_chunks = true;
4461                         failed = 0;
4462                         retried = false;
4463                         ret = btrfs_commit_transaction(trans);
4464                         if (ret)
4465                                 goto done;
4466                         goto again;
4467                 }
4468         }
4469
4470         btrfs_device_set_disk_total_bytes(device, new_size);
4471         if (list_empty(&device->resized_list))
4472                 list_add_tail(&device->resized_list,
4473                               &fs_info->fs_devices->resized_devices);
4474
4475         WARN_ON(diff > old_total);
4476         btrfs_set_super_total_bytes(super_copy,
4477                         round_down(old_total - diff, fs_info->sectorsize));
4478         mutex_unlock(&fs_info->chunk_mutex);
4479
4480         /* Now btrfs_update_device() will change the on-disk size. */
4481         ret = btrfs_update_device(trans, device);
4482         btrfs_end_transaction(trans);
4483 done:
4484         btrfs_free_path(path);
4485         if (ret) {
4486                 mutex_lock(&fs_info->chunk_mutex);
4487                 btrfs_device_set_total_bytes(device, old_size);
4488                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4489                         device->fs_devices->total_rw_bytes += diff;
4490                 atomic64_add(diff, &fs_info->free_chunk_space);
4491                 mutex_unlock(&fs_info->chunk_mutex);
4492         }
4493         return ret;
4494 }
4495
4496 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4497                            struct btrfs_key *key,
4498                            struct btrfs_chunk *chunk, int item_size)
4499 {
4500         struct btrfs_super_block *super_copy = fs_info->super_copy;
4501         struct btrfs_disk_key disk_key;
4502         u32 array_size;
4503         u8 *ptr;
4504
4505         mutex_lock(&fs_info->chunk_mutex);
4506         array_size = btrfs_super_sys_array_size(super_copy);
4507         if (array_size + item_size + sizeof(disk_key)
4508                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4509                 mutex_unlock(&fs_info->chunk_mutex);
4510                 return -EFBIG;
4511         }
4512
4513         ptr = super_copy->sys_chunk_array + array_size;
4514         btrfs_cpu_key_to_disk(&disk_key, key);
4515         memcpy(ptr, &disk_key, sizeof(disk_key));
4516         ptr += sizeof(disk_key);
4517         memcpy(ptr, chunk, item_size);
4518         item_size += sizeof(disk_key);
4519         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4520         mutex_unlock(&fs_info->chunk_mutex);
4521
4522         return 0;
4523 }
4524
4525 /*
4526  * sort the devices in descending order by max_avail, total_avail
4527  */
4528 static int btrfs_cmp_device_info(const void *a, const void *b)
4529 {
4530         const struct btrfs_device_info *di_a = a;
4531         const struct btrfs_device_info *di_b = b;
4532
4533         if (di_a->max_avail > di_b->max_avail)
4534                 return -1;
4535         if (di_a->max_avail < di_b->max_avail)
4536                 return 1;
4537         if (di_a->total_avail > di_b->total_avail)
4538                 return -1;
4539         if (di_a->total_avail < di_b->total_avail)
4540                 return 1;
4541         return 0;
4542 }
4543
4544 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4545 {
4546         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4547                 return;
4548
4549         btrfs_set_fs_incompat(info, RAID56);
4550 }
4551
4552 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info)        \
4553                         - sizeof(struct btrfs_chunk))           \
4554                         / sizeof(struct btrfs_stripe) + 1)
4555
4556 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4557                                 - 2 * sizeof(struct btrfs_disk_key)     \
4558                                 - 2 * sizeof(struct btrfs_chunk))       \
4559                                 / sizeof(struct btrfs_stripe) + 1)
4560
4561 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4562                                u64 start, u64 type)
4563 {
4564         struct btrfs_fs_info *info = trans->fs_info;
4565         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4566         struct btrfs_device *device;
4567         struct map_lookup *map = NULL;
4568         struct extent_map_tree *em_tree;
4569         struct extent_map *em;
4570         struct btrfs_device_info *devices_info = NULL;
4571         u64 total_avail;
4572         int num_stripes;        /* total number of stripes to allocate */
4573         int data_stripes;       /* number of stripes that count for
4574                                    block group size */
4575         int sub_stripes;        /* sub_stripes info for map */
4576         int dev_stripes;        /* stripes per dev */
4577         int devs_max;           /* max devs to use */
4578         int devs_min;           /* min devs needed */
4579         int devs_increment;     /* ndevs has to be a multiple of this */
4580         int ncopies;            /* how many copies to data has */
4581         int ret;
4582         u64 max_stripe_size;
4583         u64 max_chunk_size;
4584         u64 stripe_size;
4585         u64 num_bytes;
4586         int ndevs;
4587         int i;
4588         int j;
4589         int index;
4590
4591         BUG_ON(!alloc_profile_is_valid(type, 0));
4592
4593         if (list_empty(&fs_devices->alloc_list)) {
4594                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4595                         btrfs_debug(info, "%s: no writable device", __func__);
4596                 return -ENOSPC;
4597         }
4598
4599         index = btrfs_bg_flags_to_raid_index(type);
4600
4601         sub_stripes = btrfs_raid_array[index].sub_stripes;
4602         dev_stripes = btrfs_raid_array[index].dev_stripes;
4603         devs_max = btrfs_raid_array[index].devs_max;
4604         devs_min = btrfs_raid_array[index].devs_min;
4605         devs_increment = btrfs_raid_array[index].devs_increment;
4606         ncopies = btrfs_raid_array[index].ncopies;
4607
4608         if (type & BTRFS_BLOCK_GROUP_DATA) {
4609                 max_stripe_size = SZ_1G;
4610                 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4611                 if (!devs_max)
4612                         devs_max = BTRFS_MAX_DEVS(info);
4613         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4614                 /* for larger filesystems, use larger metadata chunks */
4615                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4616                         max_stripe_size = SZ_1G;
4617                 else
4618                         max_stripe_size = SZ_256M;
4619                 max_chunk_size = max_stripe_size;
4620                 if (!devs_max)
4621                         devs_max = BTRFS_MAX_DEVS(info);
4622         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4623                 max_stripe_size = SZ_32M;
4624                 max_chunk_size = 2 * max_stripe_size;
4625                 if (!devs_max)
4626                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4627         } else {
4628                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4629                        type);
4630                 BUG_ON(1);
4631         }
4632
4633         /* we don't want a chunk larger than 10% of writeable space */
4634         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4635                              max_chunk_size);
4636
4637         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4638                                GFP_NOFS);
4639         if (!devices_info)
4640                 return -ENOMEM;
4641
4642         /*
4643          * in the first pass through the devices list, we gather information
4644          * about the available holes on each device.
4645          */
4646         ndevs = 0;
4647         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4648                 u64 max_avail;
4649                 u64 dev_offset;
4650
4651                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4652                         WARN(1, KERN_ERR
4653                                "BTRFS: read-only device in alloc_list\n");
4654                         continue;
4655                 }
4656
4657                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4658                                         &device->dev_state) ||
4659                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4660                         continue;
4661
4662                 if (device->total_bytes > device->bytes_used)
4663                         total_avail = device->total_bytes - device->bytes_used;
4664                 else
4665                         total_avail = 0;
4666
4667                 /* If there is no space on this device, skip it. */
4668                 if (total_avail == 0)
4669                         continue;
4670
4671                 ret = find_free_dev_extent(trans, device,
4672                                            max_stripe_size * dev_stripes,
4673                                            &dev_offset, &max_avail);
4674                 if (ret && ret != -ENOSPC)
4675                         goto error;
4676
4677                 if (ret == 0)
4678                         max_avail = max_stripe_size * dev_stripes;
4679
4680                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4681                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
4682                                 btrfs_debug(info,
4683                         "%s: devid %llu has no free space, have=%llu want=%u",
4684                                             __func__, device->devid, max_avail,
4685                                             BTRFS_STRIPE_LEN * dev_stripes);
4686                         continue;
4687                 }
4688
4689                 if (ndevs == fs_devices->rw_devices) {
4690                         WARN(1, "%s: found more than %llu devices\n",
4691                              __func__, fs_devices->rw_devices);
4692                         break;
4693                 }
4694                 devices_info[ndevs].dev_offset = dev_offset;
4695                 devices_info[ndevs].max_avail = max_avail;
4696                 devices_info[ndevs].total_avail = total_avail;
4697                 devices_info[ndevs].dev = device;
4698                 ++ndevs;
4699         }
4700
4701         /*
4702          * now sort the devices by hole size / available space
4703          */
4704         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4705              btrfs_cmp_device_info, NULL);
4706
4707         /* round down to number of usable stripes */
4708         ndevs = round_down(ndevs, devs_increment);
4709
4710         if (ndevs < devs_min) {
4711                 ret = -ENOSPC;
4712                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4713                         btrfs_debug(info,
4714         "%s: not enough devices with free space: have=%d minimum required=%d",
4715                                     __func__, ndevs, devs_min);
4716                 }
4717                 goto error;
4718         }
4719
4720         ndevs = min(ndevs, devs_max);
4721
4722         /*
4723          * The primary goal is to maximize the number of stripes, so use as
4724          * many devices as possible, even if the stripes are not maximum sized.
4725          *
4726          * The DUP profile stores more than one stripe per device, the
4727          * max_avail is the total size so we have to adjust.
4728          */
4729         stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4730         num_stripes = ndevs * dev_stripes;
4731
4732         /*
4733          * this will have to be fixed for RAID1 and RAID10 over
4734          * more drives
4735          */
4736         data_stripes = num_stripes / ncopies;
4737
4738         if (type & BTRFS_BLOCK_GROUP_RAID5)
4739                 data_stripes = num_stripes - 1;
4740
4741         if (type & BTRFS_BLOCK_GROUP_RAID6)
4742                 data_stripes = num_stripes - 2;
4743
4744         /*
4745          * Use the number of data stripes to figure out how big this chunk
4746          * is really going to be in terms of logical address space,
4747          * and compare that answer with the max chunk size
4748          */
4749         if (stripe_size * data_stripes > max_chunk_size) {
4750                 stripe_size = div_u64(max_chunk_size, data_stripes);
4751
4752                 /* bump the answer up to a 16MB boundary */
4753                 stripe_size = round_up(stripe_size, SZ_16M);
4754
4755                 /*
4756                  * But don't go higher than the limits we found while searching
4757                  * for free extents
4758                  */
4759                 stripe_size = min(devices_info[ndevs - 1].max_avail,
4760                                   stripe_size);
4761         }
4762
4763         /* align to BTRFS_STRIPE_LEN */
4764         stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4765
4766         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4767         if (!map) {
4768                 ret = -ENOMEM;
4769                 goto error;
4770         }
4771         map->num_stripes = num_stripes;
4772
4773         for (i = 0; i < ndevs; ++i) {
4774                 for (j = 0; j < dev_stripes; ++j) {
4775                         int s = i * dev_stripes + j;
4776                         map->stripes[s].dev = devices_info[i].dev;
4777                         map->stripes[s].physical = devices_info[i].dev_offset +
4778                                                    j * stripe_size;
4779                 }
4780         }
4781         map->stripe_len = BTRFS_STRIPE_LEN;
4782         map->io_align = BTRFS_STRIPE_LEN;
4783         map->io_width = BTRFS_STRIPE_LEN;
4784         map->type = type;
4785         map->sub_stripes = sub_stripes;
4786
4787         num_bytes = stripe_size * data_stripes;
4788
4789         trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4790
4791         em = alloc_extent_map();
4792         if (!em) {
4793                 kfree(map);
4794                 ret = -ENOMEM;
4795                 goto error;
4796         }
4797         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4798         em->map_lookup = map;
4799         em->start = start;
4800         em->len = num_bytes;
4801         em->block_start = 0;
4802         em->block_len = em->len;
4803         em->orig_block_len = stripe_size;
4804
4805         em_tree = &info->mapping_tree.map_tree;
4806         write_lock(&em_tree->lock);
4807         ret = add_extent_mapping(em_tree, em, 0);
4808         if (ret) {
4809                 write_unlock(&em_tree->lock);
4810                 free_extent_map(em);
4811                 goto error;
4812         }
4813
4814         list_add_tail(&em->list, &trans->transaction->pending_chunks);
4815         refcount_inc(&em->refs);
4816         write_unlock(&em_tree->lock);
4817
4818         ret = btrfs_make_block_group(trans, 0, type, start, num_bytes);
4819         if (ret)
4820                 goto error_del_extent;
4821
4822         for (i = 0; i < map->num_stripes; i++) {
4823                 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4824                 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4825         }
4826
4827         atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4828
4829         free_extent_map(em);
4830         check_raid56_incompat_flag(info, type);
4831
4832         kfree(devices_info);
4833         return 0;
4834
4835 error_del_extent:
4836         write_lock(&em_tree->lock);
4837         remove_extent_mapping(em_tree, em);
4838         write_unlock(&em_tree->lock);
4839
4840         /* One for our allocation */
4841         free_extent_map(em);
4842         /* One for the tree reference */
4843         free_extent_map(em);
4844         /* One for the pending_chunks list reference */
4845         free_extent_map(em);
4846 error:
4847         kfree(devices_info);
4848         return ret;
4849 }
4850
4851 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4852                                 struct btrfs_fs_info *fs_info,
4853                                 u64 chunk_offset, u64 chunk_size)
4854 {
4855         struct btrfs_root *extent_root = fs_info->extent_root;
4856         struct btrfs_root *chunk_root = fs_info->chunk_root;
4857         struct btrfs_key key;
4858         struct btrfs_device *device;
4859         struct btrfs_chunk *chunk;
4860         struct btrfs_stripe *stripe;
4861         struct extent_map *em;
4862         struct map_lookup *map;
4863         size_t item_size;
4864         u64 dev_offset;
4865         u64 stripe_size;
4866         int i = 0;
4867         int ret = 0;
4868
4869         em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4870         if (IS_ERR(em))
4871                 return PTR_ERR(em);
4872
4873         map = em->map_lookup;
4874         item_size = btrfs_chunk_item_size(map->num_stripes);
4875         stripe_size = em->orig_block_len;
4876
4877         chunk = kzalloc(item_size, GFP_NOFS);
4878         if (!chunk) {
4879                 ret = -ENOMEM;
4880                 goto out;
4881         }
4882
4883         /*
4884          * Take the device list mutex to prevent races with the final phase of
4885          * a device replace operation that replaces the device object associated
4886          * with the map's stripes, because the device object's id can change
4887          * at any time during that final phase of the device replace operation
4888          * (dev-replace.c:btrfs_dev_replace_finishing()).
4889          */
4890         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4891         for (i = 0; i < map->num_stripes; i++) {
4892                 device = map->stripes[i].dev;
4893                 dev_offset = map->stripes[i].physical;
4894
4895                 ret = btrfs_update_device(trans, device);
4896                 if (ret)
4897                         break;
4898                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4899                                              dev_offset, stripe_size);
4900                 if (ret)
4901                         break;
4902         }
4903         if (ret) {
4904                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4905                 goto out;
4906         }
4907
4908         stripe = &chunk->stripe;
4909         for (i = 0; i < map->num_stripes; i++) {
4910                 device = map->stripes[i].dev;
4911                 dev_offset = map->stripes[i].physical;
4912
4913                 btrfs_set_stack_stripe_devid(stripe, device->devid);
4914                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4915                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4916                 stripe++;
4917         }
4918         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4919
4920         btrfs_set_stack_chunk_length(chunk, chunk_size);
4921         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4922         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4923         btrfs_set_stack_chunk_type(chunk, map->type);
4924         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4925         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4926         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4927         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4928         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4929
4930         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4931         key.type = BTRFS_CHUNK_ITEM_KEY;
4932         key.offset = chunk_offset;
4933
4934         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4935         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4936                 /*
4937                  * TODO: Cleanup of inserted chunk root in case of
4938                  * failure.
4939                  */
4940                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4941         }
4942
4943 out:
4944         kfree(chunk);
4945         free_extent_map(em);
4946         return ret;
4947 }
4948
4949 /*
4950  * Chunk allocation falls into two parts. The first part does works
4951  * that make the new allocated chunk useable, but not do any operation
4952  * that modifies the chunk tree. The second part does the works that
4953  * require modifying the chunk tree. This division is important for the
4954  * bootstrap process of adding storage to a seed btrfs.
4955  */
4956 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
4957 {
4958         u64 chunk_offset;
4959
4960         lockdep_assert_held(&trans->fs_info->chunk_mutex);
4961         chunk_offset = find_next_chunk(trans->fs_info);
4962         return __btrfs_alloc_chunk(trans, chunk_offset, type);
4963 }
4964
4965 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4966                                          struct btrfs_fs_info *fs_info)
4967 {
4968         u64 chunk_offset;
4969         u64 sys_chunk_offset;
4970         u64 alloc_profile;
4971         int ret;
4972
4973         chunk_offset = find_next_chunk(fs_info);
4974         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
4975         ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
4976         if (ret)
4977                 return ret;
4978
4979         sys_chunk_offset = find_next_chunk(fs_info);
4980         alloc_profile = btrfs_system_alloc_profile(fs_info);
4981         ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
4982         return ret;
4983 }
4984
4985 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4986 {
4987         int max_errors;
4988
4989         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4990                          BTRFS_BLOCK_GROUP_RAID10 |
4991                          BTRFS_BLOCK_GROUP_RAID5 |
4992                          BTRFS_BLOCK_GROUP_DUP)) {
4993                 max_errors = 1;
4994         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4995                 max_errors = 2;
4996         } else {
4997                 max_errors = 0;
4998         }
4999
5000         return max_errors;
5001 }
5002
5003 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5004 {
5005         struct extent_map *em;
5006         struct map_lookup *map;
5007         int readonly = 0;
5008         int miss_ndevs = 0;
5009         int i;
5010
5011         em = get_chunk_map(fs_info, chunk_offset, 1);
5012         if (IS_ERR(em))
5013                 return 1;
5014
5015         map = em->map_lookup;
5016         for (i = 0; i < map->num_stripes; i++) {
5017                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5018                                         &map->stripes[i].dev->dev_state)) {
5019                         miss_ndevs++;
5020                         continue;
5021                 }
5022                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5023                                         &map->stripes[i].dev->dev_state)) {
5024                         readonly = 1;
5025                         goto end;
5026                 }
5027         }
5028
5029         /*
5030          * If the number of missing devices is larger than max errors,
5031          * we can not write the data into that chunk successfully, so
5032          * set it readonly.
5033          */
5034         if (miss_ndevs > btrfs_chunk_max_errors(map))
5035                 readonly = 1;
5036 end:
5037         free_extent_map(em);
5038         return readonly;
5039 }
5040
5041 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5042 {
5043         extent_map_tree_init(&tree->map_tree);
5044 }
5045
5046 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5047 {
5048         struct extent_map *em;
5049
5050         while (1) {
5051                 write_lock(&tree->map_tree.lock);
5052                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5053                 if (em)
5054                         remove_extent_mapping(&tree->map_tree, em);
5055                 write_unlock(&tree->map_tree.lock);
5056                 if (!em)
5057                         break;
5058                 /* once for us */
5059                 free_extent_map(em);
5060                 /* once for the tree */
5061                 free_extent_map(em);
5062         }
5063 }
5064
5065 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5066 {
5067         struct extent_map *em;
5068         struct map_lookup *map;
5069         int ret;
5070
5071         em = get_chunk_map(fs_info, logical, len);
5072         if (IS_ERR(em))
5073                 /*
5074                  * We could return errors for these cases, but that could get
5075                  * ugly and we'd probably do the same thing which is just not do
5076                  * anything else and exit, so return 1 so the callers don't try
5077                  * to use other copies.
5078                  */
5079                 return 1;
5080
5081         map = em->map_lookup;
5082         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5083                 ret = map->num_stripes;
5084         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5085                 ret = map->sub_stripes;
5086         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5087                 ret = 2;
5088         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5089                 /*
5090                  * There could be two corrupted data stripes, we need
5091                  * to loop retry in order to rebuild the correct data.
5092                  *
5093                  * Fail a stripe at a time on every retry except the
5094                  * stripe under reconstruction.
5095                  */
5096                 ret = map->num_stripes;
5097         else
5098                 ret = 1;
5099         free_extent_map(em);
5100
5101         btrfs_dev_replace_read_lock(&fs_info->dev_replace);
5102         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5103             fs_info->dev_replace.tgtdev)
5104                 ret++;
5105         btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
5106
5107         return ret;
5108 }
5109
5110 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5111                                     u64 logical)
5112 {
5113         struct extent_map *em;
5114         struct map_lookup *map;
5115         unsigned long len = fs_info->sectorsize;
5116
5117         em = get_chunk_map(fs_info, logical, len);
5118
5119         if (!WARN_ON(IS_ERR(em))) {
5120                 map = em->map_lookup;
5121                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5122                         len = map->stripe_len * nr_data_stripes(map);
5123                 free_extent_map(em);
5124         }
5125         return len;
5126 }
5127
5128 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5129 {
5130         struct extent_map *em;
5131         struct map_lookup *map;
5132         int ret = 0;
5133
5134         em = get_chunk_map(fs_info, logical, len);
5135
5136         if(!WARN_ON(IS_ERR(em))) {
5137                 map = em->map_lookup;
5138                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5139                         ret = 1;
5140                 free_extent_map(em);
5141         }
5142         return ret;
5143 }
5144
5145 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5146                             struct map_lookup *map, int first,
5147                             int dev_replace_is_ongoing)
5148 {
5149         int i;
5150         int num_stripes;
5151         int preferred_mirror;
5152         int tolerance;
5153         struct btrfs_device *srcdev;
5154
5155         ASSERT((map->type &
5156                  (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)));
5157
5158         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5159                 num_stripes = map->sub_stripes;
5160         else
5161                 num_stripes = map->num_stripes;
5162
5163         preferred_mirror = first + current->pid % num_stripes;
5164
5165         if (dev_replace_is_ongoing &&
5166             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5167              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5168                 srcdev = fs_info->dev_replace.srcdev;
5169         else
5170                 srcdev = NULL;
5171
5172         /*
5173          * try to avoid the drive that is the source drive for a
5174          * dev-replace procedure, only choose it if no other non-missing
5175          * mirror is available
5176          */
5177         for (tolerance = 0; tolerance < 2; tolerance++) {
5178                 if (map->stripes[preferred_mirror].dev->bdev &&
5179                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5180                         return preferred_mirror;
5181                 for (i = first; i < first + num_stripes; i++) {
5182                         if (map->stripes[i].dev->bdev &&
5183                             (tolerance || map->stripes[i].dev != srcdev))
5184                                 return i;
5185                 }
5186         }
5187
5188         /* we couldn't find one that doesn't fail.  Just return something
5189          * and the io error handling code will clean up eventually
5190          */
5191         return preferred_mirror;
5192 }
5193
5194 static inline int parity_smaller(u64 a, u64 b)
5195 {
5196         return a > b;
5197 }
5198
5199 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5200 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5201 {
5202         struct btrfs_bio_stripe s;
5203         int i;
5204         u64 l;
5205         int again = 1;
5206
5207         while (again) {
5208                 again = 0;
5209                 for (i = 0; i < num_stripes - 1; i++) {
5210                         if (parity_smaller(bbio->raid_map[i],
5211                                            bbio->raid_map[i+1])) {
5212                                 s = bbio->stripes[i];
5213                                 l = bbio->raid_map[i];
5214                                 bbio->stripes[i] = bbio->stripes[i+1];
5215                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5216                                 bbio->stripes[i+1] = s;
5217                                 bbio->raid_map[i+1] = l;
5218
5219                                 again = 1;
5220                         }
5221                 }
5222         }
5223 }
5224
5225 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5226 {
5227         struct btrfs_bio *bbio = kzalloc(
5228                  /* the size of the btrfs_bio */
5229                 sizeof(struct btrfs_bio) +
5230                 /* plus the variable array for the stripes */
5231                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5232                 /* plus the variable array for the tgt dev */
5233                 sizeof(int) * (real_stripes) +
5234                 /*
5235                  * plus the raid_map, which includes both the tgt dev
5236                  * and the stripes
5237                  */
5238                 sizeof(u64) * (total_stripes),
5239                 GFP_NOFS|__GFP_NOFAIL);
5240
5241         atomic_set(&bbio->error, 0);
5242         refcount_set(&bbio->refs, 1);
5243
5244         return bbio;
5245 }
5246
5247 void btrfs_get_bbio(struct btrfs_bio *bbio)
5248 {
5249         WARN_ON(!refcount_read(&bbio->refs));
5250         refcount_inc(&bbio->refs);
5251 }
5252
5253 void btrfs_put_bbio(struct btrfs_bio *bbio)
5254 {
5255         if (!bbio)
5256                 return;
5257         if (refcount_dec_and_test(&bbio->refs))
5258                 kfree(bbio);
5259 }
5260
5261 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5262 /*
5263  * Please note that, discard won't be sent to target device of device
5264  * replace.
5265  */
5266 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5267                                          u64 logical, u64 length,
5268                                          struct btrfs_bio **bbio_ret)
5269 {
5270         struct extent_map *em;
5271         struct map_lookup *map;
5272         struct btrfs_bio *bbio;
5273         u64 offset;
5274         u64 stripe_nr;
5275         u64 stripe_nr_end;
5276         u64 stripe_end_offset;
5277         u64 stripe_cnt;
5278         u64 stripe_len;
5279         u64 stripe_offset;
5280         u64 num_stripes;
5281         u32 stripe_index;
5282         u32 factor = 0;
5283         u32 sub_stripes = 0;
5284         u64 stripes_per_dev = 0;
5285         u32 remaining_stripes = 0;
5286         u32 last_stripe = 0;
5287         int ret = 0;
5288         int i;
5289
5290         /* discard always return a bbio */
5291         ASSERT(bbio_ret);
5292
5293         em = get_chunk_map(fs_info, logical, length);
5294         if (IS_ERR(em))
5295                 return PTR_ERR(em);
5296
5297         map = em->map_lookup;
5298         /* we don't discard raid56 yet */
5299         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5300                 ret = -EOPNOTSUPP;
5301                 goto out;
5302         }
5303
5304         offset = logical - em->start;
5305         length = min_t(u64, em->len - offset, length);
5306
5307         stripe_len = map->stripe_len;
5308         /*
5309          * stripe_nr counts the total number of stripes we have to stride
5310          * to get to this block
5311          */
5312         stripe_nr = div64_u64(offset, stripe_len);
5313
5314         /* stripe_offset is the offset of this block in its stripe */
5315         stripe_offset = offset - stripe_nr * stripe_len;
5316
5317         stripe_nr_end = round_up(offset + length, map->stripe_len);
5318         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5319         stripe_cnt = stripe_nr_end - stripe_nr;
5320         stripe_end_offset = stripe_nr_end * map->stripe_len -
5321                             (offset + length);
5322         /*
5323          * after this, stripe_nr is the number of stripes on this
5324          * device we have to walk to find the data, and stripe_index is
5325          * the number of our device in the stripe array
5326          */
5327         num_stripes = 1;
5328         stripe_index = 0;
5329         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5330                          BTRFS_BLOCK_GROUP_RAID10)) {
5331                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5332                         sub_stripes = 1;
5333                 else
5334                         sub_stripes = map->sub_stripes;
5335
5336                 factor = map->num_stripes / sub_stripes;
5337                 num_stripes = min_t(u64, map->num_stripes,
5338                                     sub_stripes * stripe_cnt);
5339                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5340                 stripe_index *= sub_stripes;
5341                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5342                                               &remaining_stripes);
5343                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5344                 last_stripe *= sub_stripes;
5345         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5346                                 BTRFS_BLOCK_GROUP_DUP)) {
5347                 num_stripes = map->num_stripes;
5348         } else {
5349                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5350                                         &stripe_index);
5351         }
5352
5353         bbio = alloc_btrfs_bio(num_stripes, 0);
5354         if (!bbio) {
5355                 ret = -ENOMEM;
5356                 goto out;
5357         }
5358
5359         for (i = 0; i < num_stripes; i++) {
5360                 bbio->stripes[i].physical =
5361                         map->stripes[stripe_index].physical +
5362                         stripe_offset + stripe_nr * map->stripe_len;
5363                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5364
5365                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5366                                  BTRFS_BLOCK_GROUP_RAID10)) {
5367                         bbio->stripes[i].length = stripes_per_dev *
5368                                 map->stripe_len;
5369
5370                         if (i / sub_stripes < remaining_stripes)
5371                                 bbio->stripes[i].length +=
5372                                         map->stripe_len;
5373
5374                         /*
5375                          * Special for the first stripe and
5376                          * the last stripe:
5377                          *
5378                          * |-------|...|-------|
5379                          *     |----------|
5380                          *    off     end_off
5381                          */
5382                         if (i < sub_stripes)
5383                                 bbio->stripes[i].length -=
5384                                         stripe_offset;
5385
5386                         if (stripe_index >= last_stripe &&
5387                             stripe_index <= (last_stripe +
5388                                              sub_stripes - 1))
5389                                 bbio->stripes[i].length -=
5390                                         stripe_end_offset;
5391
5392                         if (i == sub_stripes - 1)
5393                                 stripe_offset = 0;
5394                 } else {
5395                         bbio->stripes[i].length = length;
5396                 }
5397
5398                 stripe_index++;
5399                 if (stripe_index == map->num_stripes) {
5400                         stripe_index = 0;
5401                         stripe_nr++;
5402                 }
5403         }
5404
5405         *bbio_ret = bbio;
5406         bbio->map_type = map->type;
5407         bbio->num_stripes = num_stripes;
5408 out:
5409         free_extent_map(em);
5410         return ret;
5411 }
5412
5413 /*
5414  * In dev-replace case, for repair case (that's the only case where the mirror
5415  * is selected explicitly when calling btrfs_map_block), blocks left of the
5416  * left cursor can also be read from the target drive.
5417  *
5418  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5419  * array of stripes.
5420  * For READ, it also needs to be supported using the same mirror number.
5421  *
5422  * If the requested block is not left of the left cursor, EIO is returned. This
5423  * can happen because btrfs_num_copies() returns one more in the dev-replace
5424  * case.
5425  */
5426 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5427                                          u64 logical, u64 length,
5428                                          u64 srcdev_devid, int *mirror_num,
5429                                          u64 *physical)
5430 {
5431         struct btrfs_bio *bbio = NULL;
5432         int num_stripes;
5433         int index_srcdev = 0;
5434         int found = 0;
5435         u64 physical_of_found = 0;
5436         int i;
5437         int ret = 0;
5438
5439         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5440                                 logical, &length, &bbio, 0, 0);
5441         if (ret) {
5442                 ASSERT(bbio == NULL);
5443                 return ret;
5444         }
5445
5446         num_stripes = bbio->num_stripes;
5447         if (*mirror_num > num_stripes) {
5448                 /*
5449                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5450                  * that means that the requested area is not left of the left
5451                  * cursor
5452                  */
5453                 btrfs_put_bbio(bbio);
5454                 return -EIO;
5455         }
5456
5457         /*
5458          * process the rest of the function using the mirror_num of the source
5459          * drive. Therefore look it up first.  At the end, patch the device
5460          * pointer to the one of the target drive.
5461          */
5462         for (i = 0; i < num_stripes; i++) {
5463                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5464                         continue;
5465
5466                 /*
5467                  * In case of DUP, in order to keep it simple, only add the
5468                  * mirror with the lowest physical address
5469                  */
5470                 if (found &&
5471                     physical_of_found <= bbio->stripes[i].physical)
5472                         continue;
5473
5474                 index_srcdev = i;
5475                 found = 1;
5476                 physical_of_found = bbio->stripes[i].physical;
5477         }
5478
5479         btrfs_put_bbio(bbio);
5480
5481         ASSERT(found);
5482         if (!found)
5483                 return -EIO;
5484
5485         *mirror_num = index_srcdev + 1;
5486         *physical = physical_of_found;
5487         return ret;
5488 }
5489
5490 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5491                                       struct btrfs_bio **bbio_ret,
5492                                       struct btrfs_dev_replace *dev_replace,
5493                                       int *num_stripes_ret, int *max_errors_ret)
5494 {
5495         struct btrfs_bio *bbio = *bbio_ret;
5496         u64 srcdev_devid = dev_replace->srcdev->devid;
5497         int tgtdev_indexes = 0;
5498         int num_stripes = *num_stripes_ret;
5499         int max_errors = *max_errors_ret;
5500         int i;
5501
5502         if (op == BTRFS_MAP_WRITE) {
5503                 int index_where_to_add;
5504
5505                 /*
5506                  * duplicate the write operations while the dev replace
5507                  * procedure is running. Since the copying of the old disk to
5508                  * the new disk takes place at run time while the filesystem is
5509                  * mounted writable, the regular write operations to the old
5510                  * disk have to be duplicated to go to the new disk as well.
5511                  *
5512                  * Note that device->missing is handled by the caller, and that
5513                  * the write to the old disk is already set up in the stripes
5514                  * array.
5515                  */
5516                 index_where_to_add = num_stripes;
5517                 for (i = 0; i < num_stripes; i++) {
5518                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5519                                 /* write to new disk, too */
5520                                 struct btrfs_bio_stripe *new =
5521                                         bbio->stripes + index_where_to_add;
5522                                 struct btrfs_bio_stripe *old =
5523                                         bbio->stripes + i;
5524
5525                                 new->physical = old->physical;
5526                                 new->length = old->length;
5527                                 new->dev = dev_replace->tgtdev;
5528                                 bbio->tgtdev_map[i] = index_where_to_add;
5529                                 index_where_to_add++;
5530                                 max_errors++;
5531                                 tgtdev_indexes++;
5532                         }
5533                 }
5534                 num_stripes = index_where_to_add;
5535         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5536                 int index_srcdev = 0;
5537                 int found = 0;
5538                 u64 physical_of_found = 0;
5539
5540                 /*
5541                  * During the dev-replace procedure, the target drive can also
5542                  * be used to read data in case it is needed to repair a corrupt
5543                  * block elsewhere. This is possible if the requested area is
5544                  * left of the left cursor. In this area, the target drive is a
5545                  * full copy of the source drive.
5546                  */
5547                 for (i = 0; i < num_stripes; i++) {
5548                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5549                                 /*
5550                                  * In case of DUP, in order to keep it simple,
5551                                  * only add the mirror with the lowest physical
5552                                  * address
5553                                  */
5554                                 if (found &&
5555                                     physical_of_found <=
5556                                      bbio->stripes[i].physical)
5557                                         continue;
5558                                 index_srcdev = i;
5559                                 found = 1;
5560                                 physical_of_found = bbio->stripes[i].physical;
5561                         }
5562                 }
5563                 if (found) {
5564                         struct btrfs_bio_stripe *tgtdev_stripe =
5565                                 bbio->stripes + num_stripes;
5566
5567                         tgtdev_stripe->physical = physical_of_found;
5568                         tgtdev_stripe->length =
5569                                 bbio->stripes[index_srcdev].length;
5570                         tgtdev_stripe->dev = dev_replace->tgtdev;
5571                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5572
5573                         tgtdev_indexes++;
5574                         num_stripes++;
5575                 }
5576         }
5577
5578         *num_stripes_ret = num_stripes;
5579         *max_errors_ret = max_errors;
5580         bbio->num_tgtdevs = tgtdev_indexes;
5581         *bbio_ret = bbio;
5582 }
5583
5584 static bool need_full_stripe(enum btrfs_map_op op)
5585 {
5586         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5587 }
5588
5589 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5590                              enum btrfs_map_op op,
5591                              u64 logical, u64 *length,
5592                              struct btrfs_bio **bbio_ret,
5593                              int mirror_num, int need_raid_map)
5594 {
5595         struct extent_map *em;
5596         struct map_lookup *map;
5597         u64 offset;
5598         u64 stripe_offset;
5599         u64 stripe_nr;
5600         u64 stripe_len;
5601         u32 stripe_index;
5602         int i;
5603         int ret = 0;
5604         int num_stripes;
5605         int max_errors = 0;
5606         int tgtdev_indexes = 0;
5607         struct btrfs_bio *bbio = NULL;
5608         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5609         int dev_replace_is_ongoing = 0;
5610         int num_alloc_stripes;
5611         int patch_the_first_stripe_for_dev_replace = 0;
5612         u64 physical_to_patch_in_first_stripe = 0;
5613         u64 raid56_full_stripe_start = (u64)-1;
5614
5615         if (op == BTRFS_MAP_DISCARD)
5616                 return __btrfs_map_block_for_discard(fs_info, logical,
5617                                                      *length, bbio_ret);
5618
5619         em = get_chunk_map(fs_info, logical, *length);
5620         if (IS_ERR(em))
5621                 return PTR_ERR(em);
5622
5623         map = em->map_lookup;
5624         offset = logical - em->start;
5625
5626         stripe_len = map->stripe_len;
5627         stripe_nr = offset;
5628         /*
5629          * stripe_nr counts the total number of stripes we have to stride
5630          * to get to this block
5631          */
5632         stripe_nr = div64_u64(stripe_nr, stripe_len);
5633
5634         stripe_offset = stripe_nr * stripe_len;
5635         if (offset < stripe_offset) {
5636                 btrfs_crit(fs_info,
5637                            "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5638                            stripe_offset, offset, em->start, logical,
5639                            stripe_len);
5640                 free_extent_map(em);
5641                 return -EINVAL;
5642         }
5643
5644         /* stripe_offset is the offset of this block in its stripe*/
5645         stripe_offset = offset - stripe_offset;
5646
5647         /* if we're here for raid56, we need to know the stripe aligned start */
5648         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5649                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5650                 raid56_full_stripe_start = offset;
5651
5652                 /* allow a write of a full stripe, but make sure we don't
5653                  * allow straddling of stripes
5654                  */
5655                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5656                                 full_stripe_len);
5657                 raid56_full_stripe_start *= full_stripe_len;
5658         }
5659
5660         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5661                 u64 max_len;
5662                 /* For writes to RAID[56], allow a full stripeset across all disks.
5663                    For other RAID types and for RAID[56] reads, just allow a single
5664                    stripe (on a single disk). */
5665                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5666                     (op == BTRFS_MAP_WRITE)) {
5667                         max_len = stripe_len * nr_data_stripes(map) -
5668                                 (offset - raid56_full_stripe_start);
5669                 } else {
5670                         /* we limit the length of each bio to what fits in a stripe */
5671                         max_len = stripe_len - stripe_offset;
5672                 }
5673                 *length = min_t(u64, em->len - offset, max_len);
5674         } else {
5675                 *length = em->len - offset;
5676         }
5677
5678         /* This is for when we're called from btrfs_merge_bio_hook() and all
5679            it cares about is the length */
5680         if (!bbio_ret)
5681                 goto out;
5682
5683         btrfs_dev_replace_read_lock(dev_replace);
5684         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5685         if (!dev_replace_is_ongoing)
5686                 btrfs_dev_replace_read_unlock(dev_replace);
5687         else
5688                 btrfs_dev_replace_set_lock_blocking(dev_replace);
5689
5690         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5691             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5692                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5693                                                     dev_replace->srcdev->devid,
5694                                                     &mirror_num,
5695                                             &physical_to_patch_in_first_stripe);
5696                 if (ret)
5697                         goto out;
5698                 else
5699                         patch_the_first_stripe_for_dev_replace = 1;
5700         } else if (mirror_num > map->num_stripes) {
5701                 mirror_num = 0;
5702         }
5703
5704         num_stripes = 1;
5705         stripe_index = 0;
5706         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5707                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5708                                 &stripe_index);
5709                 if (!need_full_stripe(op))
5710                         mirror_num = 1;
5711         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5712                 if (need_full_stripe(op))
5713                         num_stripes = map->num_stripes;
5714                 else if (mirror_num)
5715                         stripe_index = mirror_num - 1;
5716                 else {
5717                         stripe_index = find_live_mirror(fs_info, map, 0,
5718                                             dev_replace_is_ongoing);
5719                         mirror_num = stripe_index + 1;
5720                 }
5721
5722         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5723                 if (need_full_stripe(op)) {
5724                         num_stripes = map->num_stripes;
5725                 } else if (mirror_num) {
5726                         stripe_index = mirror_num - 1;
5727                 } else {
5728                         mirror_num = 1;
5729                 }
5730
5731         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5732                 u32 factor = map->num_stripes / map->sub_stripes;
5733
5734                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5735                 stripe_index *= map->sub_stripes;
5736
5737                 if (need_full_stripe(op))
5738                         num_stripes = map->sub_stripes;
5739                 else if (mirror_num)
5740                         stripe_index += mirror_num - 1;
5741                 else {
5742                         int old_stripe_index = stripe_index;
5743                         stripe_index = find_live_mirror(fs_info, map,
5744                                               stripe_index,
5745                                               dev_replace_is_ongoing);
5746                         mirror_num = stripe_index - old_stripe_index + 1;
5747                 }
5748
5749         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5750                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5751                         /* push stripe_nr back to the start of the full stripe */
5752                         stripe_nr = div64_u64(raid56_full_stripe_start,
5753                                         stripe_len * nr_data_stripes(map));
5754
5755                         /* RAID[56] write or recovery. Return all stripes */
5756                         num_stripes = map->num_stripes;
5757                         max_errors = nr_parity_stripes(map);
5758
5759                         *length = map->stripe_len;
5760                         stripe_index = 0;
5761                         stripe_offset = 0;
5762                 } else {
5763                         /*
5764                          * Mirror #0 or #1 means the original data block.
5765                          * Mirror #2 is RAID5 parity block.
5766                          * Mirror #3 is RAID6 Q block.
5767                          */
5768                         stripe_nr = div_u64_rem(stripe_nr,
5769                                         nr_data_stripes(map), &stripe_index);
5770                         if (mirror_num > 1)
5771                                 stripe_index = nr_data_stripes(map) +
5772                                                 mirror_num - 2;
5773
5774                         /* We distribute the parity blocks across stripes */
5775                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5776                                         &stripe_index);
5777                         if (!need_full_stripe(op) && mirror_num <= 1)
5778                                 mirror_num = 1;
5779                 }
5780         } else {
5781                 /*
5782                  * after this, stripe_nr is the number of stripes on this
5783                  * device we have to walk to find the data, and stripe_index is
5784                  * the number of our device in the stripe array
5785                  */
5786                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5787                                 &stripe_index);
5788                 mirror_num = stripe_index + 1;
5789         }
5790         if (stripe_index >= map->num_stripes) {
5791                 btrfs_crit(fs_info,
5792                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5793                            stripe_index, map->num_stripes);
5794                 ret = -EINVAL;
5795                 goto out;
5796         }
5797
5798         num_alloc_stripes = num_stripes;
5799         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5800                 if (op == BTRFS_MAP_WRITE)
5801                         num_alloc_stripes <<= 1;
5802                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5803                         num_alloc_stripes++;
5804                 tgtdev_indexes = num_stripes;
5805         }
5806
5807         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5808         if (!bbio) {
5809                 ret = -ENOMEM;
5810                 goto out;
5811         }
5812         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5813                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5814
5815         /* build raid_map */
5816         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5817             (need_full_stripe(op) || mirror_num > 1)) {
5818                 u64 tmp;
5819                 unsigned rot;
5820
5821                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5822                                  sizeof(struct btrfs_bio_stripe) *
5823                                  num_alloc_stripes +
5824                                  sizeof(int) * tgtdev_indexes);
5825
5826                 /* Work out the disk rotation on this stripe-set */
5827                 div_u64_rem(stripe_nr, num_stripes, &rot);
5828
5829                 /* Fill in the logical address of each stripe */
5830                 tmp = stripe_nr * nr_data_stripes(map);
5831                 for (i = 0; i < nr_data_stripes(map); i++)
5832                         bbio->raid_map[(i+rot) % num_stripes] =
5833                                 em->start + (tmp + i) * map->stripe_len;
5834
5835                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5836                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5837                         bbio->raid_map[(i+rot+1) % num_stripes] =
5838                                 RAID6_Q_STRIPE;
5839         }
5840
5841
5842         for (i = 0; i < num_stripes; i++) {
5843                 bbio->stripes[i].physical =
5844                         map->stripes[stripe_index].physical +
5845                         stripe_offset +
5846                         stripe_nr * map->stripe_len;
5847                 bbio->stripes[i].dev =
5848                         map->stripes[stripe_index].dev;
5849                 stripe_index++;
5850         }
5851
5852         if (need_full_stripe(op))
5853                 max_errors = btrfs_chunk_max_errors(map);
5854
5855         if (bbio->raid_map)
5856                 sort_parity_stripes(bbio, num_stripes);
5857
5858         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5859             need_full_stripe(op)) {
5860                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5861                                           &max_errors);
5862         }
5863
5864         *bbio_ret = bbio;
5865         bbio->map_type = map->type;
5866         bbio->num_stripes = num_stripes;
5867         bbio->max_errors = max_errors;
5868         bbio->mirror_num = mirror_num;
5869
5870         /*
5871          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5872          * mirror_num == num_stripes + 1 && dev_replace target drive is
5873          * available as a mirror
5874          */
5875         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5876                 WARN_ON(num_stripes > 1);
5877                 bbio->stripes[0].dev = dev_replace->tgtdev;
5878                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5879                 bbio->mirror_num = map->num_stripes + 1;
5880         }
5881 out:
5882         if (dev_replace_is_ongoing) {
5883                 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5884                 btrfs_dev_replace_read_unlock(dev_replace);
5885         }
5886         free_extent_map(em);
5887         return ret;
5888 }
5889
5890 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5891                       u64 logical, u64 *length,
5892                       struct btrfs_bio **bbio_ret, int mirror_num)
5893 {
5894         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5895                                  mirror_num, 0);
5896 }
5897
5898 /* For Scrub/replace */
5899 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5900                      u64 logical, u64 *length,
5901                      struct btrfs_bio **bbio_ret)
5902 {
5903         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5904 }
5905
5906 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
5907                      u64 physical, u64 **logical, int *naddrs, int *stripe_len)
5908 {
5909         struct extent_map *em;
5910         struct map_lookup *map;
5911         u64 *buf;
5912         u64 bytenr;
5913         u64 length;
5914         u64 stripe_nr;
5915         u64 rmap_len;
5916         int i, j, nr = 0;
5917
5918         em = get_chunk_map(fs_info, chunk_start, 1);
5919         if (IS_ERR(em))
5920                 return -EIO;
5921
5922         map = em->map_lookup;
5923         length = em->len;
5924         rmap_len = map->stripe_len;
5925
5926         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5927                 length = div_u64(length, map->num_stripes / map->sub_stripes);
5928         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5929                 length = div_u64(length, map->num_stripes);
5930         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5931                 length = div_u64(length, nr_data_stripes(map));
5932                 rmap_len = map->stripe_len * nr_data_stripes(map);
5933         }
5934
5935         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5936         BUG_ON(!buf); /* -ENOMEM */
5937
5938         for (i = 0; i < map->num_stripes; i++) {
5939                 if (map->stripes[i].physical > physical ||
5940                     map->stripes[i].physical + length <= physical)
5941                         continue;
5942
5943                 stripe_nr = physical - map->stripes[i].physical;
5944                 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
5945
5946                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5947                         stripe_nr = stripe_nr * map->num_stripes + i;
5948                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5949                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5950                         stripe_nr = stripe_nr * map->num_stripes + i;
5951                 } /* else if RAID[56], multiply by nr_data_stripes().
5952                    * Alternatively, just use rmap_len below instead of
5953                    * map->stripe_len */
5954
5955                 bytenr = chunk_start + stripe_nr * rmap_len;
5956                 WARN_ON(nr >= map->num_stripes);
5957                 for (j = 0; j < nr; j++) {
5958                         if (buf[j] == bytenr)
5959                                 break;
5960                 }
5961                 if (j == nr) {
5962                         WARN_ON(nr >= map->num_stripes);
5963                         buf[nr++] = bytenr;
5964                 }
5965         }
5966
5967         *logical = buf;
5968         *naddrs = nr;
5969         *stripe_len = rmap_len;
5970
5971         free_extent_map(em);
5972         return 0;
5973 }
5974
5975 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5976 {
5977         bio->bi_private = bbio->private;
5978         bio->bi_end_io = bbio->end_io;
5979         bio_endio(bio);
5980
5981         btrfs_put_bbio(bbio);
5982 }
5983
5984 static void btrfs_end_bio(struct bio *bio)
5985 {
5986         struct btrfs_bio *bbio = bio->bi_private;
5987         int is_orig_bio = 0;
5988
5989         if (bio->bi_status) {
5990                 atomic_inc(&bbio->error);
5991                 if (bio->bi_status == BLK_STS_IOERR ||
5992                     bio->bi_status == BLK_STS_TARGET) {
5993                         unsigned int stripe_index =
5994                                 btrfs_io_bio(bio)->stripe_index;
5995                         struct btrfs_device *dev;
5996
5997                         BUG_ON(stripe_index >= bbio->num_stripes);
5998                         dev = bbio->stripes[stripe_index].dev;
5999                         if (dev->bdev) {
6000                                 if (bio_op(bio) == REQ_OP_WRITE)
6001                                         btrfs_dev_stat_inc_and_print(dev,
6002                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6003                                 else
6004                                         btrfs_dev_stat_inc_and_print(dev,
6005                                                 BTRFS_DEV_STAT_READ_ERRS);
6006                                 if (bio->bi_opf & REQ_PREFLUSH)
6007                                         btrfs_dev_stat_inc_and_print(dev,
6008                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6009                         }
6010                 }
6011         }
6012
6013         if (bio == bbio->orig_bio)
6014                 is_orig_bio = 1;
6015
6016         btrfs_bio_counter_dec(bbio->fs_info);
6017
6018         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6019                 if (!is_orig_bio) {
6020                         bio_put(bio);
6021                         bio = bbio->orig_bio;
6022                 }
6023
6024                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6025                 /* only send an error to the higher layers if it is
6026                  * beyond the tolerance of the btrfs bio
6027                  */
6028                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6029                         bio->bi_status = BLK_STS_IOERR;
6030                 } else {
6031                         /*
6032                          * this bio is actually up to date, we didn't
6033                          * go over the max number of errors
6034                          */
6035                         bio->bi_status = BLK_STS_OK;
6036                 }
6037
6038                 btrfs_end_bbio(bbio, bio);
6039         } else if (!is_orig_bio) {
6040                 bio_put(bio);
6041         }
6042 }
6043
6044 /*
6045  * see run_scheduled_bios for a description of why bios are collected for
6046  * async submit.
6047  *
6048  * This will add one bio to the pending list for a device and make sure
6049  * the work struct is scheduled.
6050  */
6051 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6052                                         struct bio *bio)
6053 {
6054         struct btrfs_fs_info *fs_info = device->fs_info;
6055         int should_queue = 1;
6056         struct btrfs_pending_bios *pending_bios;
6057
6058         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
6059             !device->bdev) {
6060                 bio_io_error(bio);
6061                 return;
6062         }
6063
6064         /* don't bother with additional async steps for reads, right now */
6065         if (bio_op(bio) == REQ_OP_READ) {
6066                 btrfsic_submit_bio(bio);
6067                 return;
6068         }
6069
6070         WARN_ON(bio->bi_next);
6071         bio->bi_next = NULL;
6072
6073         spin_lock(&device->io_lock);
6074         if (op_is_sync(bio->bi_opf))
6075                 pending_bios = &device->pending_sync_bios;
6076         else
6077                 pending_bios = &device->pending_bios;
6078
6079         if (pending_bios->tail)
6080                 pending_bios->tail->bi_next = bio;
6081
6082         pending_bios->tail = bio;
6083         if (!pending_bios->head)
6084                 pending_bios->head = bio;
6085         if (device->running_pending)
6086                 should_queue = 0;
6087
6088         spin_unlock(&device->io_lock);
6089
6090         if (should_queue)
6091                 btrfs_queue_work(fs_info->submit_workers, &device->work);
6092 }
6093
6094 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6095                               u64 physical, int dev_nr, int async)
6096 {
6097         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6098         struct btrfs_fs_info *fs_info = bbio->fs_info;
6099
6100         bio->bi_private = bbio;
6101         btrfs_io_bio(bio)->stripe_index = dev_nr;
6102         bio->bi_end_io = btrfs_end_bio;
6103         bio->bi_iter.bi_sector = physical >> 9;
6104 #ifdef DEBUG
6105         {
6106                 struct rcu_string *name;
6107
6108                 rcu_read_lock();
6109                 name = rcu_dereference(dev->name);
6110                 btrfs_debug(fs_info,
6111                         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6112                         bio_op(bio), bio->bi_opf,
6113                         (u64)bio->bi_iter.bi_sector,
6114                         (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6115                         bio->bi_iter.bi_size);
6116                 rcu_read_unlock();
6117         }
6118 #endif
6119         bio_set_dev(bio, dev->bdev);
6120
6121         btrfs_bio_counter_inc_noblocked(fs_info);
6122
6123         if (async)
6124                 btrfs_schedule_bio(dev, bio);
6125         else
6126                 btrfsic_submit_bio(bio);
6127 }
6128
6129 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6130 {
6131         atomic_inc(&bbio->error);
6132         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6133                 /* Should be the original bio. */
6134                 WARN_ON(bio != bbio->orig_bio);
6135
6136                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6137                 bio->bi_iter.bi_sector = logical >> 9;
6138                 if (atomic_read(&bbio->error) > bbio->max_errors)
6139                         bio->bi_status = BLK_STS_IOERR;
6140                 else
6141                         bio->bi_status = BLK_STS_OK;
6142                 btrfs_end_bbio(bbio, bio);
6143         }
6144 }
6145
6146 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6147                            int mirror_num, int async_submit)
6148 {
6149         struct btrfs_device *dev;
6150         struct bio *first_bio = bio;
6151         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6152         u64 length = 0;
6153         u64 map_length;
6154         int ret;
6155         int dev_nr;
6156         int total_devs;
6157         struct btrfs_bio *bbio = NULL;
6158
6159         length = bio->bi_iter.bi_size;
6160         map_length = length;
6161
6162         btrfs_bio_counter_inc_blocked(fs_info);
6163         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6164                                 &map_length, &bbio, mirror_num, 1);
6165         if (ret) {
6166                 btrfs_bio_counter_dec(fs_info);
6167                 return errno_to_blk_status(ret);
6168         }
6169
6170         total_devs = bbio->num_stripes;
6171         bbio->orig_bio = first_bio;
6172         bbio->private = first_bio->bi_private;
6173         bbio->end_io = first_bio->bi_end_io;
6174         bbio->fs_info = fs_info;
6175         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6176
6177         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6178             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6179                 /* In this case, map_length has been set to the length of
6180                    a single stripe; not the whole write */
6181                 if (bio_op(bio) == REQ_OP_WRITE) {
6182                         ret = raid56_parity_write(fs_info, bio, bbio,
6183                                                   map_length);
6184                 } else {
6185                         ret = raid56_parity_recover(fs_info, bio, bbio,
6186                                                     map_length, mirror_num, 1);
6187                 }
6188
6189                 btrfs_bio_counter_dec(fs_info);
6190                 return errno_to_blk_status(ret);
6191         }
6192
6193         if (map_length < length) {
6194                 btrfs_crit(fs_info,
6195                            "mapping failed logical %llu bio len %llu len %llu",
6196                            logical, length, map_length);
6197                 BUG();
6198         }
6199
6200         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6201                 dev = bbio->stripes[dev_nr].dev;
6202                 if (!dev || !dev->bdev ||
6203                     (bio_op(first_bio) == REQ_OP_WRITE &&
6204                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6205                         bbio_error(bbio, first_bio, logical);
6206                         continue;
6207                 }
6208
6209                 if (dev_nr < total_devs - 1)
6210                         bio = btrfs_bio_clone(first_bio);
6211                 else
6212                         bio = first_bio;
6213
6214                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6215                                   dev_nr, async_submit);
6216         }
6217         btrfs_bio_counter_dec(fs_info);
6218         return BLK_STS_OK;
6219 }
6220
6221 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6222                                        u8 *uuid, u8 *fsid)
6223 {
6224         struct btrfs_device *device;
6225         struct btrfs_fs_devices *cur_devices;
6226
6227         cur_devices = fs_info->fs_devices;
6228         while (cur_devices) {
6229                 if (!fsid ||
6230                     !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6231                         device = find_device(cur_devices, devid, uuid);
6232                         if (device)
6233                                 return device;
6234                 }
6235                 cur_devices = cur_devices->seed;
6236         }
6237         return NULL;
6238 }
6239
6240 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6241                                             u64 devid, u8 *dev_uuid)
6242 {
6243         struct btrfs_device *device;
6244
6245         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6246         if (IS_ERR(device))
6247                 return device;
6248
6249         list_add(&device->dev_list, &fs_devices->devices);
6250         device->fs_devices = fs_devices;
6251         fs_devices->num_devices++;
6252
6253         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6254         fs_devices->missing_devices++;
6255
6256         return device;
6257 }
6258
6259 /**
6260  * btrfs_alloc_device - allocate struct btrfs_device
6261  * @fs_info:    used only for generating a new devid, can be NULL if
6262  *              devid is provided (i.e. @devid != NULL).
6263  * @devid:      a pointer to devid for this device.  If NULL a new devid
6264  *              is generated.
6265  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6266  *              is generated.
6267  *
6268  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6269  * on error.  Returned struct is not linked onto any lists and must be
6270  * destroyed with btrfs_free_device.
6271  */
6272 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6273                                         const u64 *devid,
6274                                         const u8 *uuid)
6275 {
6276         struct btrfs_device *dev;
6277         u64 tmp;
6278
6279         if (WARN_ON(!devid && !fs_info))
6280                 return ERR_PTR(-EINVAL);
6281
6282         dev = __alloc_device();
6283         if (IS_ERR(dev))
6284                 return dev;
6285
6286         if (devid)
6287                 tmp = *devid;
6288         else {
6289                 int ret;
6290
6291                 ret = find_next_devid(fs_info, &tmp);
6292                 if (ret) {
6293                         btrfs_free_device(dev);
6294                         return ERR_PTR(ret);
6295                 }
6296         }
6297         dev->devid = tmp;
6298
6299         if (uuid)
6300                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6301         else
6302                 generate_random_uuid(dev->uuid);
6303
6304         btrfs_init_work(&dev->work, btrfs_submit_helper,
6305                         pending_bios_fn, NULL, NULL);
6306
6307         return dev;
6308 }
6309
6310 /* Return -EIO if any error, otherwise return 0. */
6311 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6312                                    struct extent_buffer *leaf,
6313                                    struct btrfs_chunk *chunk, u64 logical)
6314 {
6315         u64 length;
6316         u64 stripe_len;
6317         u16 num_stripes;
6318         u16 sub_stripes;
6319         u64 type;
6320
6321         length = btrfs_chunk_length(leaf, chunk);
6322         stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6323         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6324         sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6325         type = btrfs_chunk_type(leaf, chunk);
6326
6327         if (!num_stripes) {
6328                 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6329                           num_stripes);
6330                 return -EIO;
6331         }
6332         if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6333                 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6334                 return -EIO;
6335         }
6336         if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6337                 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6338                           btrfs_chunk_sector_size(leaf, chunk));
6339                 return -EIO;
6340         }
6341         if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6342                 btrfs_err(fs_info, "invalid chunk length %llu", length);
6343                 return -EIO;
6344         }
6345         if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6346                 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6347                           stripe_len);
6348                 return -EIO;
6349         }
6350         if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6351             type) {
6352                 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6353                           ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6354                             BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6355                           btrfs_chunk_type(leaf, chunk));
6356                 return -EIO;
6357         }
6358         if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6359             (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6360             (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6361             (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6362             (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6363             ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6364              num_stripes != 1)) {
6365                 btrfs_err(fs_info,
6366                         "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6367                         num_stripes, sub_stripes,
6368                         type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6369                 return -EIO;
6370         }
6371
6372         return 0;
6373 }
6374
6375 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6376                                         u64 devid, u8 *uuid, bool error)
6377 {
6378         if (error)
6379                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6380                               devid, uuid);
6381         else
6382                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6383                               devid, uuid);
6384 }
6385
6386 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6387                           struct extent_buffer *leaf,
6388                           struct btrfs_chunk *chunk)
6389 {
6390         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6391         struct map_lookup *map;
6392         struct extent_map *em;
6393         u64 logical;
6394         u64 length;
6395         u64 devid;
6396         u8 uuid[BTRFS_UUID_SIZE];
6397         int num_stripes;
6398         int ret;
6399         int i;
6400
6401         logical = key->offset;
6402         length = btrfs_chunk_length(leaf, chunk);
6403         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6404
6405         ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6406         if (ret)
6407                 return ret;
6408
6409         read_lock(&map_tree->map_tree.lock);
6410         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6411         read_unlock(&map_tree->map_tree.lock);
6412
6413         /* already mapped? */
6414         if (em && em->start <= logical && em->start + em->len > logical) {
6415                 free_extent_map(em);
6416                 return 0;
6417         } else if (em) {
6418                 free_extent_map(em);
6419         }
6420
6421         em = alloc_extent_map();
6422         if (!em)
6423                 return -ENOMEM;
6424         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6425         if (!map) {
6426                 free_extent_map(em);
6427                 return -ENOMEM;
6428         }
6429
6430         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6431         em->map_lookup = map;
6432         em->start = logical;
6433         em->len = length;
6434         em->orig_start = 0;
6435         em->block_start = 0;
6436         em->block_len = em->len;
6437
6438         map->num_stripes = num_stripes;
6439         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6440         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6441         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6442         map->type = btrfs_chunk_type(leaf, chunk);
6443         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6444         for (i = 0; i < num_stripes; i++) {
6445                 map->stripes[i].physical =
6446                         btrfs_stripe_offset_nr(leaf, chunk, i);
6447                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6448                 read_extent_buffer(leaf, uuid, (unsigned long)
6449                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6450                                    BTRFS_UUID_SIZE);
6451                 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6452                                                         uuid, NULL);
6453                 if (!map->stripes[i].dev &&
6454                     !btrfs_test_opt(fs_info, DEGRADED)) {
6455                         free_extent_map(em);
6456                         btrfs_report_missing_device(fs_info, devid, uuid, true);
6457                         return -ENOENT;
6458                 }
6459                 if (!map->stripes[i].dev) {
6460                         map->stripes[i].dev =
6461                                 add_missing_dev(fs_info->fs_devices, devid,
6462                                                 uuid);
6463                         if (IS_ERR(map->stripes[i].dev)) {
6464                                 free_extent_map(em);
6465                                 btrfs_err(fs_info,
6466                                         "failed to init missing dev %llu: %ld",
6467                                         devid, PTR_ERR(map->stripes[i].dev));
6468                                 return PTR_ERR(map->stripes[i].dev);
6469                         }
6470                         btrfs_report_missing_device(fs_info, devid, uuid, false);
6471                 }
6472                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6473                                 &(map->stripes[i].dev->dev_state));
6474
6475         }
6476
6477         write_lock(&map_tree->map_tree.lock);
6478         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6479         write_unlock(&map_tree->map_tree.lock);
6480         BUG_ON(ret); /* Tree corruption */
6481         free_extent_map(em);
6482
6483         return 0;
6484 }
6485
6486 static void fill_device_from_item(struct extent_buffer *leaf,
6487                                  struct btrfs_dev_item *dev_item,
6488                                  struct btrfs_device *device)
6489 {
6490         unsigned long ptr;
6491
6492         device->devid = btrfs_device_id(leaf, dev_item);
6493         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6494         device->total_bytes = device->disk_total_bytes;
6495         device->commit_total_bytes = device->disk_total_bytes;
6496         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6497         device->commit_bytes_used = device->bytes_used;
6498         device->type = btrfs_device_type(leaf, dev_item);
6499         device->io_align = btrfs_device_io_align(leaf, dev_item);
6500         device->io_width = btrfs_device_io_width(leaf, dev_item);
6501         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6502         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6503         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6504
6505         ptr = btrfs_device_uuid(dev_item);
6506         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6507 }
6508
6509 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6510                                                   u8 *fsid)
6511 {
6512         struct btrfs_fs_devices *fs_devices;
6513         int ret;
6514
6515         lockdep_assert_held(&uuid_mutex);
6516         ASSERT(fsid);
6517
6518         fs_devices = fs_info->fs_devices->seed;
6519         while (fs_devices) {
6520                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6521                         return fs_devices;
6522
6523                 fs_devices = fs_devices->seed;
6524         }
6525
6526         fs_devices = find_fsid(fsid);
6527         if (!fs_devices) {
6528                 if (!btrfs_test_opt(fs_info, DEGRADED))
6529                         return ERR_PTR(-ENOENT);
6530
6531                 fs_devices = alloc_fs_devices(fsid);
6532                 if (IS_ERR(fs_devices))
6533                         return fs_devices;
6534
6535                 fs_devices->seeding = 1;
6536                 fs_devices->opened = 1;
6537                 return fs_devices;
6538         }
6539
6540         fs_devices = clone_fs_devices(fs_devices);
6541         if (IS_ERR(fs_devices))
6542                 return fs_devices;
6543
6544         ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6545         if (ret) {
6546                 free_fs_devices(fs_devices);
6547                 fs_devices = ERR_PTR(ret);
6548                 goto out;
6549         }
6550
6551         if (!fs_devices->seeding) {
6552                 close_fs_devices(fs_devices);
6553                 free_fs_devices(fs_devices);
6554                 fs_devices = ERR_PTR(-EINVAL);
6555                 goto out;
6556         }
6557
6558         fs_devices->seed = fs_info->fs_devices->seed;
6559         fs_info->fs_devices->seed = fs_devices;
6560 out:
6561         return fs_devices;
6562 }
6563
6564 static int read_one_dev(struct btrfs_fs_info *fs_info,
6565                         struct extent_buffer *leaf,
6566                         struct btrfs_dev_item *dev_item)
6567 {
6568         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6569         struct btrfs_device *device;
6570         u64 devid;
6571         int ret;
6572         u8 fs_uuid[BTRFS_FSID_SIZE];
6573         u8 dev_uuid[BTRFS_UUID_SIZE];
6574
6575         devid = btrfs_device_id(leaf, dev_item);
6576         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6577                            BTRFS_UUID_SIZE);
6578         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6579                            BTRFS_FSID_SIZE);
6580
6581         if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6582                 fs_devices = open_seed_devices(fs_info, fs_uuid);
6583                 if (IS_ERR(fs_devices))
6584                         return PTR_ERR(fs_devices);
6585         }
6586
6587         device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6588         if (!device) {
6589                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6590                         btrfs_report_missing_device(fs_info, devid,
6591                                                         dev_uuid, true);
6592                         return -ENOENT;
6593                 }
6594
6595                 device = add_missing_dev(fs_devices, devid, dev_uuid);
6596                 if (IS_ERR(device)) {
6597                         btrfs_err(fs_info,
6598                                 "failed to add missing dev %llu: %ld",
6599                                 devid, PTR_ERR(device));
6600                         return PTR_ERR(device);
6601                 }
6602                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6603         } else {
6604                 if (!device->bdev) {
6605                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
6606                                 btrfs_report_missing_device(fs_info,
6607                                                 devid, dev_uuid, true);
6608                                 return -ENOENT;
6609                         }
6610                         btrfs_report_missing_device(fs_info, devid,
6611                                                         dev_uuid, false);
6612                 }
6613
6614                 if (!device->bdev &&
6615                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6616                         /*
6617                          * this happens when a device that was properly setup
6618                          * in the device info lists suddenly goes bad.
6619                          * device->bdev is NULL, and so we have to set
6620                          * device->missing to one here
6621                          */
6622                         device->fs_devices->missing_devices++;
6623                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6624                 }
6625
6626                 /* Move the device to its own fs_devices */
6627                 if (device->fs_devices != fs_devices) {
6628                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6629                                                         &device->dev_state));
6630
6631                         list_move(&device->dev_list, &fs_devices->devices);
6632                         device->fs_devices->num_devices--;
6633                         fs_devices->num_devices++;
6634
6635                         device->fs_devices->missing_devices--;
6636                         fs_devices->missing_devices++;
6637
6638                         device->fs_devices = fs_devices;
6639                 }
6640         }
6641
6642         if (device->fs_devices != fs_info->fs_devices) {
6643                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6644                 if (device->generation !=
6645                     btrfs_device_generation(leaf, dev_item))
6646                         return -EINVAL;
6647         }
6648
6649         fill_device_from_item(leaf, dev_item, device);
6650         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6651         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6652            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6653                 device->fs_devices->total_rw_bytes += device->total_bytes;
6654                 atomic64_add(device->total_bytes - device->bytes_used,
6655                                 &fs_info->free_chunk_space);
6656         }
6657         ret = 0;
6658         return ret;
6659 }
6660
6661 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6662 {
6663         struct btrfs_root *root = fs_info->tree_root;
6664         struct btrfs_super_block *super_copy = fs_info->super_copy;
6665         struct extent_buffer *sb;
6666         struct btrfs_disk_key *disk_key;
6667         struct btrfs_chunk *chunk;
6668         u8 *array_ptr;
6669         unsigned long sb_array_offset;
6670         int ret = 0;
6671         u32 num_stripes;
6672         u32 array_size;
6673         u32 len = 0;
6674         u32 cur_offset;
6675         u64 type;
6676         struct btrfs_key key;
6677
6678         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6679         /*
6680          * This will create extent buffer of nodesize, superblock size is
6681          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6682          * overallocate but we can keep it as-is, only the first page is used.
6683          */
6684         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6685         if (IS_ERR(sb))
6686                 return PTR_ERR(sb);
6687         set_extent_buffer_uptodate(sb);
6688         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6689         /*
6690          * The sb extent buffer is artificial and just used to read the system array.
6691          * set_extent_buffer_uptodate() call does not properly mark all it's
6692          * pages up-to-date when the page is larger: extent does not cover the
6693          * whole page and consequently check_page_uptodate does not find all
6694          * the page's extents up-to-date (the hole beyond sb),
6695          * write_extent_buffer then triggers a WARN_ON.
6696          *
6697          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6698          * but sb spans only this function. Add an explicit SetPageUptodate call
6699          * to silence the warning eg. on PowerPC 64.
6700          */
6701         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6702                 SetPageUptodate(sb->pages[0]);
6703
6704         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6705         array_size = btrfs_super_sys_array_size(super_copy);
6706
6707         array_ptr = super_copy->sys_chunk_array;
6708         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6709         cur_offset = 0;
6710
6711         while (cur_offset < array_size) {
6712                 disk_key = (struct btrfs_disk_key *)array_ptr;
6713                 len = sizeof(*disk_key);
6714                 if (cur_offset + len > array_size)
6715                         goto out_short_read;
6716
6717                 btrfs_disk_key_to_cpu(&key, disk_key);
6718
6719                 array_ptr += len;
6720                 sb_array_offset += len;
6721                 cur_offset += len;
6722
6723                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6724                         chunk = (struct btrfs_chunk *)sb_array_offset;
6725                         /*
6726                          * At least one btrfs_chunk with one stripe must be
6727                          * present, exact stripe count check comes afterwards
6728                          */
6729                         len = btrfs_chunk_item_size(1);
6730                         if (cur_offset + len > array_size)
6731                                 goto out_short_read;
6732
6733                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6734                         if (!num_stripes) {
6735                                 btrfs_err(fs_info,
6736                                         "invalid number of stripes %u in sys_array at offset %u",
6737                                         num_stripes, cur_offset);
6738                                 ret = -EIO;
6739                                 break;
6740                         }
6741
6742                         type = btrfs_chunk_type(sb, chunk);
6743                         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6744                                 btrfs_err(fs_info,
6745                             "invalid chunk type %llu in sys_array at offset %u",
6746                                         type, cur_offset);
6747                                 ret = -EIO;
6748                                 break;
6749                         }
6750
6751                         len = btrfs_chunk_item_size(num_stripes);
6752                         if (cur_offset + len > array_size)
6753                                 goto out_short_read;
6754
6755                         ret = read_one_chunk(fs_info, &key, sb, chunk);
6756                         if (ret)
6757                                 break;
6758                 } else {
6759                         btrfs_err(fs_info,
6760                             "unexpected item type %u in sys_array at offset %u",
6761                                   (u32)key.type, cur_offset);
6762                         ret = -EIO;
6763                         break;
6764                 }
6765                 array_ptr += len;
6766                 sb_array_offset += len;
6767                 cur_offset += len;
6768         }
6769         clear_extent_buffer_uptodate(sb);
6770         free_extent_buffer_stale(sb);
6771         return ret;
6772
6773 out_short_read:
6774         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6775                         len, cur_offset);
6776         clear_extent_buffer_uptodate(sb);
6777         free_extent_buffer_stale(sb);
6778         return -EIO;
6779 }
6780
6781 /*
6782  * Check if all chunks in the fs are OK for read-write degraded mount
6783  *
6784  * If the @failing_dev is specified, it's accounted as missing.
6785  *
6786  * Return true if all chunks meet the minimal RW mount requirements.
6787  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6788  */
6789 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6790                                         struct btrfs_device *failing_dev)
6791 {
6792         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6793         struct extent_map *em;
6794         u64 next_start = 0;
6795         bool ret = true;
6796
6797         read_lock(&map_tree->map_tree.lock);
6798         em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6799         read_unlock(&map_tree->map_tree.lock);
6800         /* No chunk at all? Return false anyway */
6801         if (!em) {
6802                 ret = false;
6803                 goto out;
6804         }
6805         while (em) {
6806                 struct map_lookup *map;
6807                 int missing = 0;
6808                 int max_tolerated;
6809                 int i;
6810
6811                 map = em->map_lookup;
6812                 max_tolerated =
6813                         btrfs_get_num_tolerated_disk_barrier_failures(
6814                                         map->type);
6815                 for (i = 0; i < map->num_stripes; i++) {
6816                         struct btrfs_device *dev = map->stripes[i].dev;
6817
6818                         if (!dev || !dev->bdev ||
6819                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6820                             dev->last_flush_error)
6821                                 missing++;
6822                         else if (failing_dev && failing_dev == dev)
6823                                 missing++;
6824                 }
6825                 if (missing > max_tolerated) {
6826                         if (!failing_dev)
6827                                 btrfs_warn(fs_info,
6828         "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6829                                    em->start, missing, max_tolerated);
6830                         free_extent_map(em);
6831                         ret = false;
6832                         goto out;
6833                 }
6834                 next_start = extent_map_end(em);
6835                 free_extent_map(em);
6836
6837                 read_lock(&map_tree->map_tree.lock);
6838                 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6839                                            (u64)(-1) - next_start);
6840                 read_unlock(&map_tree->map_tree.lock);
6841         }
6842 out:
6843         return ret;
6844 }
6845
6846 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6847 {
6848         struct btrfs_root *root = fs_info->chunk_root;
6849         struct btrfs_path *path;
6850         struct extent_buffer *leaf;
6851         struct btrfs_key key;
6852         struct btrfs_key found_key;
6853         int ret;
6854         int slot;
6855         u64 total_dev = 0;
6856
6857         path = btrfs_alloc_path();
6858         if (!path)
6859                 return -ENOMEM;
6860
6861         /*
6862          * uuid_mutex is needed only if we are mounting a sprout FS
6863          * otherwise we don't need it.
6864          */
6865         mutex_lock(&uuid_mutex);
6866         mutex_lock(&fs_info->chunk_mutex);
6867
6868         /*
6869          * Read all device items, and then all the chunk items. All
6870          * device items are found before any chunk item (their object id
6871          * is smaller than the lowest possible object id for a chunk
6872          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6873          */
6874         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6875         key.offset = 0;
6876         key.type = 0;
6877         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6878         if (ret < 0)
6879                 goto error;
6880         while (1) {
6881                 leaf = path->nodes[0];
6882                 slot = path->slots[0];
6883                 if (slot >= btrfs_header_nritems(leaf)) {
6884                         ret = btrfs_next_leaf(root, path);
6885                         if (ret == 0)
6886                                 continue;
6887                         if (ret < 0)
6888                                 goto error;
6889                         break;
6890                 }
6891                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6892                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6893                         struct btrfs_dev_item *dev_item;
6894                         dev_item = btrfs_item_ptr(leaf, slot,
6895                                                   struct btrfs_dev_item);
6896                         ret = read_one_dev(fs_info, leaf, dev_item);
6897                         if (ret)
6898                                 goto error;
6899                         total_dev++;
6900                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6901                         struct btrfs_chunk *chunk;
6902                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6903                         ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6904                         if (ret)
6905                                 goto error;
6906                 }
6907                 path->slots[0]++;
6908         }
6909
6910         /*
6911          * After loading chunk tree, we've got all device information,
6912          * do another round of validation checks.
6913          */
6914         if (total_dev != fs_info->fs_devices->total_devices) {
6915                 btrfs_err(fs_info,
6916            "super_num_devices %llu mismatch with num_devices %llu found here",
6917                           btrfs_super_num_devices(fs_info->super_copy),
6918                           total_dev);
6919                 ret = -EINVAL;
6920                 goto error;
6921         }
6922         if (btrfs_super_total_bytes(fs_info->super_copy) <
6923             fs_info->fs_devices->total_rw_bytes) {
6924                 btrfs_err(fs_info,
6925         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6926                           btrfs_super_total_bytes(fs_info->super_copy),
6927                           fs_info->fs_devices->total_rw_bytes);
6928                 ret = -EINVAL;
6929                 goto error;
6930         }
6931         ret = 0;
6932 error:
6933         mutex_unlock(&fs_info->chunk_mutex);
6934         mutex_unlock(&uuid_mutex);
6935
6936         btrfs_free_path(path);
6937         return ret;
6938 }
6939
6940 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6941 {
6942         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6943         struct btrfs_device *device;
6944
6945         while (fs_devices) {
6946                 mutex_lock(&fs_devices->device_list_mutex);
6947                 list_for_each_entry(device, &fs_devices->devices, dev_list)
6948                         device->fs_info = fs_info;
6949                 mutex_unlock(&fs_devices->device_list_mutex);
6950
6951                 fs_devices = fs_devices->seed;
6952         }
6953 }
6954
6955 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6956 {
6957         int i;
6958
6959         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6960                 btrfs_dev_stat_reset(dev, i);
6961 }
6962
6963 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6964 {
6965         struct btrfs_key key;
6966         struct btrfs_key found_key;
6967         struct btrfs_root *dev_root = fs_info->dev_root;
6968         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6969         struct extent_buffer *eb;
6970         int slot;
6971         int ret = 0;
6972         struct btrfs_device *device;
6973         struct btrfs_path *path = NULL;
6974         int i;
6975
6976         path = btrfs_alloc_path();
6977         if (!path) {
6978                 ret = -ENOMEM;
6979                 goto out;
6980         }
6981
6982         mutex_lock(&fs_devices->device_list_mutex);
6983         list_for_each_entry(device, &fs_devices->devices, dev_list) {
6984                 int item_size;
6985                 struct btrfs_dev_stats_item *ptr;
6986
6987                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6988                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6989                 key.offset = device->devid;
6990                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6991                 if (ret) {
6992                         __btrfs_reset_dev_stats(device);
6993                         device->dev_stats_valid = 1;
6994                         btrfs_release_path(path);
6995                         continue;
6996                 }
6997                 slot = path->slots[0];
6998                 eb = path->nodes[0];
6999                 btrfs_item_key_to_cpu(eb, &found_key, slot);
7000                 item_size = btrfs_item_size_nr(eb, slot);
7001
7002                 ptr = btrfs_item_ptr(eb, slot,
7003                                      struct btrfs_dev_stats_item);
7004
7005                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7006                         if (item_size >= (1 + i) * sizeof(__le64))
7007                                 btrfs_dev_stat_set(device, i,
7008                                         btrfs_dev_stats_value(eb, ptr, i));
7009                         else
7010                                 btrfs_dev_stat_reset(device, i);
7011                 }
7012
7013                 device->dev_stats_valid = 1;
7014                 btrfs_dev_stat_print_on_load(device);
7015                 btrfs_release_path(path);
7016         }
7017         mutex_unlock(&fs_devices->device_list_mutex);
7018
7019 out:
7020         btrfs_free_path(path);
7021         return ret < 0 ? ret : 0;
7022 }
7023
7024 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7025                                 struct btrfs_fs_info *fs_info,
7026                                 struct btrfs_device *device)
7027 {
7028         struct btrfs_root *dev_root = fs_info->dev_root;
7029         struct btrfs_path *path;
7030         struct btrfs_key key;
7031         struct extent_buffer *eb;
7032         struct btrfs_dev_stats_item *ptr;
7033         int ret;
7034         int i;
7035
7036         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7037         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7038         key.offset = device->devid;
7039
7040         path = btrfs_alloc_path();
7041         if (!path)
7042                 return -ENOMEM;
7043         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7044         if (ret < 0) {
7045                 btrfs_warn_in_rcu(fs_info,
7046                         "error %d while searching for dev_stats item for device %s",
7047                               ret, rcu_str_deref(device->name));
7048                 goto out;
7049         }
7050
7051         if (ret == 0 &&
7052             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7053                 /* need to delete old one and insert a new one */
7054                 ret = btrfs_del_item(trans, dev_root, path);
7055                 if (ret != 0) {
7056                         btrfs_warn_in_rcu(fs_info,
7057                                 "delete too small dev_stats item for device %s failed %d",
7058                                       rcu_str_deref(device->name), ret);
7059                         goto out;
7060                 }
7061                 ret = 1;
7062         }
7063
7064         if (ret == 1) {
7065                 /* need to insert a new item */
7066                 btrfs_release_path(path);
7067                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7068                                               &key, sizeof(*ptr));
7069                 if (ret < 0) {
7070                         btrfs_warn_in_rcu(fs_info,
7071                                 "insert dev_stats item for device %s failed %d",
7072                                 rcu_str_deref(device->name), ret);
7073                         goto out;
7074                 }
7075         }
7076
7077         eb = path->nodes[0];
7078         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7079         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7080                 btrfs_set_dev_stats_value(eb, ptr, i,
7081                                           btrfs_dev_stat_read(device, i));
7082         btrfs_mark_buffer_dirty(eb);
7083
7084 out:
7085         btrfs_free_path(path);
7086         return ret;
7087 }
7088
7089 /*
7090  * called from commit_transaction. Writes all changed device stats to disk.
7091  */
7092 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7093                         struct btrfs_fs_info *fs_info)
7094 {
7095         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7096         struct btrfs_device *device;
7097         int stats_cnt;
7098         int ret = 0;
7099
7100         mutex_lock(&fs_devices->device_list_mutex);
7101         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7102                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7103                 if (!device->dev_stats_valid || stats_cnt == 0)
7104                         continue;
7105
7106
7107                 /*
7108                  * There is a LOAD-LOAD control dependency between the value of
7109                  * dev_stats_ccnt and updating the on-disk values which requires
7110                  * reading the in-memory counters. Such control dependencies
7111                  * require explicit read memory barriers.
7112                  *
7113                  * This memory barriers pairs with smp_mb__before_atomic in
7114                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7115                  * barrier implied by atomic_xchg in
7116                  * btrfs_dev_stats_read_and_reset
7117                  */
7118                 smp_rmb();
7119
7120                 ret = update_dev_stat_item(trans, fs_info, device);
7121                 if (!ret)
7122                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7123         }
7124         mutex_unlock(&fs_devices->device_list_mutex);
7125
7126         return ret;
7127 }
7128
7129 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7130 {
7131         btrfs_dev_stat_inc(dev, index);
7132         btrfs_dev_stat_print_on_error(dev);
7133 }
7134
7135 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7136 {
7137         if (!dev->dev_stats_valid)
7138                 return;
7139         btrfs_err_rl_in_rcu(dev->fs_info,
7140                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7141                            rcu_str_deref(dev->name),
7142                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7143                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7144                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7145                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7146                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7147 }
7148
7149 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7150 {
7151         int i;
7152
7153         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7154                 if (btrfs_dev_stat_read(dev, i) != 0)
7155                         break;
7156         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7157                 return; /* all values == 0, suppress message */
7158
7159         btrfs_info_in_rcu(dev->fs_info,
7160                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7161                rcu_str_deref(dev->name),
7162                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7163                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7164                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7165                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7166                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7167 }
7168
7169 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7170                         struct btrfs_ioctl_get_dev_stats *stats)
7171 {
7172         struct btrfs_device *dev;
7173         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7174         int i;
7175
7176         mutex_lock(&fs_devices->device_list_mutex);
7177         dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7178         mutex_unlock(&fs_devices->device_list_mutex);
7179
7180         if (!dev) {
7181                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7182                 return -ENODEV;
7183         } else if (!dev->dev_stats_valid) {
7184                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7185                 return -ENODEV;
7186         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7187                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7188                         if (stats->nr_items > i)
7189                                 stats->values[i] =
7190                                         btrfs_dev_stat_read_and_reset(dev, i);
7191                         else
7192                                 btrfs_dev_stat_reset(dev, i);
7193                 }
7194         } else {
7195                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7196                         if (stats->nr_items > i)
7197                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7198         }
7199         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7200                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7201         return 0;
7202 }
7203
7204 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7205 {
7206         struct buffer_head *bh;
7207         struct btrfs_super_block *disk_super;
7208         int copy_num;
7209
7210         if (!bdev)
7211                 return;
7212
7213         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7214                 copy_num++) {
7215
7216                 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7217                         continue;
7218
7219                 disk_super = (struct btrfs_super_block *)bh->b_data;
7220
7221                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7222                 set_buffer_dirty(bh);
7223                 sync_dirty_buffer(bh);
7224                 brelse(bh);
7225         }
7226
7227         /* Notify udev that device has changed */
7228         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7229
7230         /* Update ctime/mtime for device path for libblkid */
7231         update_dev_time(device_path);
7232 }
7233
7234 /*
7235  * Update the size of all devices, which is used for writing out the
7236  * super blocks.
7237  */
7238 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7239 {
7240         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7241         struct btrfs_device *curr, *next;
7242
7243         if (list_empty(&fs_devices->resized_devices))
7244                 return;
7245
7246         mutex_lock(&fs_devices->device_list_mutex);
7247         mutex_lock(&fs_info->chunk_mutex);
7248         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7249                                  resized_list) {
7250                 list_del_init(&curr->resized_list);
7251                 curr->commit_total_bytes = curr->disk_total_bytes;
7252         }
7253         mutex_unlock(&fs_info->chunk_mutex);
7254         mutex_unlock(&fs_devices->device_list_mutex);
7255 }
7256
7257 /* Must be invoked during the transaction commit */
7258 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans)
7259 {
7260         struct btrfs_fs_info *fs_info = trans->fs_info;
7261         struct extent_map *em;
7262         struct map_lookup *map;
7263         struct btrfs_device *dev;
7264         int i;
7265
7266         if (list_empty(&trans->pending_chunks))
7267                 return;
7268
7269         /* In order to kick the device replace finish process */
7270         mutex_lock(&fs_info->chunk_mutex);
7271         list_for_each_entry(em, &trans->pending_chunks, list) {
7272                 map = em->map_lookup;
7273
7274                 for (i = 0; i < map->num_stripes; i++) {
7275                         dev = map->stripes[i].dev;
7276                         dev->commit_bytes_used = dev->bytes_used;
7277                 }
7278         }
7279         mutex_unlock(&fs_info->chunk_mutex);
7280 }
7281
7282 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7283 {
7284         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7285         while (fs_devices) {
7286                 fs_devices->fs_info = fs_info;
7287                 fs_devices = fs_devices->seed;
7288         }
7289 }
7290
7291 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7292 {
7293         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7294         while (fs_devices) {
7295                 fs_devices->fs_info = NULL;
7296                 fs_devices = fs_devices->seed;
7297         }
7298 }