Merge tag 'upstream-4.19-rc1' of git://git.infradead.org/linux-ubifs
[sfrench/cifs-2.6.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "ctree.h"
18 #include "extent_map.h"
19 #include "disk-io.h"
20 #include "transaction.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
27 #include "math.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30
31 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
32         [BTRFS_RAID_RAID10] = {
33                 .sub_stripes    = 2,
34                 .dev_stripes    = 1,
35                 .devs_max       = 0,    /* 0 == as many as possible */
36                 .devs_min       = 4,
37                 .tolerated_failures = 1,
38                 .devs_increment = 2,
39                 .ncopies        = 2,
40                 .raid_name      = "raid10",
41                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
42                 .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
43         },
44         [BTRFS_RAID_RAID1] = {
45                 .sub_stripes    = 1,
46                 .dev_stripes    = 1,
47                 .devs_max       = 2,
48                 .devs_min       = 2,
49                 .tolerated_failures = 1,
50                 .devs_increment = 2,
51                 .ncopies        = 2,
52                 .raid_name      = "raid1",
53                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
54                 .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
55         },
56         [BTRFS_RAID_DUP] = {
57                 .sub_stripes    = 1,
58                 .dev_stripes    = 2,
59                 .devs_max       = 1,
60                 .devs_min       = 1,
61                 .tolerated_failures = 0,
62                 .devs_increment = 1,
63                 .ncopies        = 2,
64                 .raid_name      = "dup",
65                 .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
66                 .mindev_error   = 0,
67         },
68         [BTRFS_RAID_RAID0] = {
69                 .sub_stripes    = 1,
70                 .dev_stripes    = 1,
71                 .devs_max       = 0,
72                 .devs_min       = 2,
73                 .tolerated_failures = 0,
74                 .devs_increment = 1,
75                 .ncopies        = 1,
76                 .raid_name      = "raid0",
77                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
78                 .mindev_error   = 0,
79         },
80         [BTRFS_RAID_SINGLE] = {
81                 .sub_stripes    = 1,
82                 .dev_stripes    = 1,
83                 .devs_max       = 1,
84                 .devs_min       = 1,
85                 .tolerated_failures = 0,
86                 .devs_increment = 1,
87                 .ncopies        = 1,
88                 .raid_name      = "single",
89                 .bg_flag        = 0,
90                 .mindev_error   = 0,
91         },
92         [BTRFS_RAID_RAID5] = {
93                 .sub_stripes    = 1,
94                 .dev_stripes    = 1,
95                 .devs_max       = 0,
96                 .devs_min       = 2,
97                 .tolerated_failures = 1,
98                 .devs_increment = 1,
99                 .ncopies        = 2,
100                 .raid_name      = "raid5",
101                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
102                 .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
103         },
104         [BTRFS_RAID_RAID6] = {
105                 .sub_stripes    = 1,
106                 .dev_stripes    = 1,
107                 .devs_max       = 0,
108                 .devs_min       = 3,
109                 .tolerated_failures = 2,
110                 .devs_increment = 1,
111                 .ncopies        = 3,
112                 .raid_name      = "raid6",
113                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
114                 .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
115         },
116 };
117
118 const char *get_raid_name(enum btrfs_raid_types type)
119 {
120         if (type >= BTRFS_NR_RAID_TYPES)
121                 return NULL;
122
123         return btrfs_raid_array[type].raid_name;
124 }
125
126 static int init_first_rw_device(struct btrfs_trans_handle *trans,
127                                 struct btrfs_fs_info *fs_info);
128 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
129 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
130 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
131 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
132 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
133                              enum btrfs_map_op op,
134                              u64 logical, u64 *length,
135                              struct btrfs_bio **bbio_ret,
136                              int mirror_num, int need_raid_map);
137
138 /*
139  * Device locking
140  * ==============
141  *
142  * There are several mutexes that protect manipulation of devices and low-level
143  * structures like chunks but not block groups, extents or files
144  *
145  * uuid_mutex (global lock)
146  * ------------------------
147  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
148  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
149  * device) or requested by the device= mount option
150  *
151  * the mutex can be very coarse and can cover long-running operations
152  *
153  * protects: updates to fs_devices counters like missing devices, rw devices,
154  * seeding, structure cloning, openning/closing devices at mount/umount time
155  *
156  * global::fs_devs - add, remove, updates to the global list
157  *
158  * does not protect: manipulation of the fs_devices::devices list!
159  *
160  * btrfs_device::name - renames (write side), read is RCU
161  *
162  * fs_devices::device_list_mutex (per-fs, with RCU)
163  * ------------------------------------------------
164  * protects updates to fs_devices::devices, ie. adding and deleting
165  *
166  * simple list traversal with read-only actions can be done with RCU protection
167  *
168  * may be used to exclude some operations from running concurrently without any
169  * modifications to the list (see write_all_supers)
170  *
171  * balance_mutex
172  * -------------
173  * protects balance structures (status, state) and context accessed from
174  * several places (internally, ioctl)
175  *
176  * chunk_mutex
177  * -----------
178  * protects chunks, adding or removing during allocation, trim or when a new
179  * device is added/removed
180  *
181  * cleaner_mutex
182  * -------------
183  * a big lock that is held by the cleaner thread and prevents running subvolume
184  * cleaning together with relocation or delayed iputs
185  *
186  *
187  * Lock nesting
188  * ============
189  *
190  * uuid_mutex
191  *   volume_mutex
192  *     device_list_mutex
193  *       chunk_mutex
194  *     balance_mutex
195  *
196  *
197  * Exclusive operations, BTRFS_FS_EXCL_OP
198  * ======================================
199  *
200  * Maintains the exclusivity of the following operations that apply to the
201  * whole filesystem and cannot run in parallel.
202  *
203  * - Balance (*)
204  * - Device add
205  * - Device remove
206  * - Device replace (*)
207  * - Resize
208  *
209  * The device operations (as above) can be in one of the following states:
210  *
211  * - Running state
212  * - Paused state
213  * - Completed state
214  *
215  * Only device operations marked with (*) can go into the Paused state for the
216  * following reasons:
217  *
218  * - ioctl (only Balance can be Paused through ioctl)
219  * - filesystem remounted as read-only
220  * - filesystem unmounted and mounted as read-only
221  * - system power-cycle and filesystem mounted as read-only
222  * - filesystem or device errors leading to forced read-only
223  *
224  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
225  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
226  * A device operation in Paused or Running state can be canceled or resumed
227  * either by ioctl (Balance only) or when remounted as read-write.
228  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
229  * completed.
230  */
231
232 DEFINE_MUTEX(uuid_mutex);
233 static LIST_HEAD(fs_uuids);
234 struct list_head *btrfs_get_fs_uuids(void)
235 {
236         return &fs_uuids;
237 }
238
239 /*
240  * alloc_fs_devices - allocate struct btrfs_fs_devices
241  * @fsid:       if not NULL, copy the uuid to fs_devices::fsid
242  *
243  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
244  * The returned struct is not linked onto any lists and can be destroyed with
245  * kfree() right away.
246  */
247 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
248 {
249         struct btrfs_fs_devices *fs_devs;
250
251         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
252         if (!fs_devs)
253                 return ERR_PTR(-ENOMEM);
254
255         mutex_init(&fs_devs->device_list_mutex);
256
257         INIT_LIST_HEAD(&fs_devs->devices);
258         INIT_LIST_HEAD(&fs_devs->resized_devices);
259         INIT_LIST_HEAD(&fs_devs->alloc_list);
260         INIT_LIST_HEAD(&fs_devs->fs_list);
261         if (fsid)
262                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
263
264         return fs_devs;
265 }
266
267 void btrfs_free_device(struct btrfs_device *device)
268 {
269         rcu_string_free(device->name);
270         bio_put(device->flush_bio);
271         kfree(device);
272 }
273
274 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
275 {
276         struct btrfs_device *device;
277         WARN_ON(fs_devices->opened);
278         while (!list_empty(&fs_devices->devices)) {
279                 device = list_entry(fs_devices->devices.next,
280                                     struct btrfs_device, dev_list);
281                 list_del(&device->dev_list);
282                 btrfs_free_device(device);
283         }
284         kfree(fs_devices);
285 }
286
287 static void btrfs_kobject_uevent(struct block_device *bdev,
288                                  enum kobject_action action)
289 {
290         int ret;
291
292         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
293         if (ret)
294                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
295                         action,
296                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
297                         &disk_to_dev(bdev->bd_disk)->kobj);
298 }
299
300 void __exit btrfs_cleanup_fs_uuids(void)
301 {
302         struct btrfs_fs_devices *fs_devices;
303
304         while (!list_empty(&fs_uuids)) {
305                 fs_devices = list_entry(fs_uuids.next,
306                                         struct btrfs_fs_devices, fs_list);
307                 list_del(&fs_devices->fs_list);
308                 free_fs_devices(fs_devices);
309         }
310 }
311
312 /*
313  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
314  * Returned struct is not linked onto any lists and must be destroyed using
315  * btrfs_free_device.
316  */
317 static struct btrfs_device *__alloc_device(void)
318 {
319         struct btrfs_device *dev;
320
321         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
322         if (!dev)
323                 return ERR_PTR(-ENOMEM);
324
325         /*
326          * Preallocate a bio that's always going to be used for flushing device
327          * barriers and matches the device lifespan
328          */
329         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
330         if (!dev->flush_bio) {
331                 kfree(dev);
332                 return ERR_PTR(-ENOMEM);
333         }
334
335         INIT_LIST_HEAD(&dev->dev_list);
336         INIT_LIST_HEAD(&dev->dev_alloc_list);
337         INIT_LIST_HEAD(&dev->resized_list);
338
339         spin_lock_init(&dev->io_lock);
340
341         atomic_set(&dev->reada_in_flight, 0);
342         atomic_set(&dev->dev_stats_ccnt, 0);
343         btrfs_device_data_ordered_init(dev);
344         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
345         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
346
347         return dev;
348 }
349
350 /*
351  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
352  * return NULL.
353  *
354  * If devid and uuid are both specified, the match must be exact, otherwise
355  * only devid is used.
356  */
357 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
358                 u64 devid, const u8 *uuid)
359 {
360         struct btrfs_device *dev;
361
362         list_for_each_entry(dev, &fs_devices->devices, dev_list) {
363                 if (dev->devid == devid &&
364                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
365                         return dev;
366                 }
367         }
368         return NULL;
369 }
370
371 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
372 {
373         struct btrfs_fs_devices *fs_devices;
374
375         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
376                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
377                         return fs_devices;
378         }
379         return NULL;
380 }
381
382 static int
383 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
384                       int flush, struct block_device **bdev,
385                       struct buffer_head **bh)
386 {
387         int ret;
388
389         *bdev = blkdev_get_by_path(device_path, flags, holder);
390
391         if (IS_ERR(*bdev)) {
392                 ret = PTR_ERR(*bdev);
393                 goto error;
394         }
395
396         if (flush)
397                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
398         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
399         if (ret) {
400                 blkdev_put(*bdev, flags);
401                 goto error;
402         }
403         invalidate_bdev(*bdev);
404         *bh = btrfs_read_dev_super(*bdev);
405         if (IS_ERR(*bh)) {
406                 ret = PTR_ERR(*bh);
407                 blkdev_put(*bdev, flags);
408                 goto error;
409         }
410
411         return 0;
412
413 error:
414         *bdev = NULL;
415         *bh = NULL;
416         return ret;
417 }
418
419 static void requeue_list(struct btrfs_pending_bios *pending_bios,
420                         struct bio *head, struct bio *tail)
421 {
422
423         struct bio *old_head;
424
425         old_head = pending_bios->head;
426         pending_bios->head = head;
427         if (pending_bios->tail)
428                 tail->bi_next = old_head;
429         else
430                 pending_bios->tail = tail;
431 }
432
433 /*
434  * we try to collect pending bios for a device so we don't get a large
435  * number of procs sending bios down to the same device.  This greatly
436  * improves the schedulers ability to collect and merge the bios.
437  *
438  * But, it also turns into a long list of bios to process and that is sure
439  * to eventually make the worker thread block.  The solution here is to
440  * make some progress and then put this work struct back at the end of
441  * the list if the block device is congested.  This way, multiple devices
442  * can make progress from a single worker thread.
443  */
444 static noinline void run_scheduled_bios(struct btrfs_device *device)
445 {
446         struct btrfs_fs_info *fs_info = device->fs_info;
447         struct bio *pending;
448         struct backing_dev_info *bdi;
449         struct btrfs_pending_bios *pending_bios;
450         struct bio *tail;
451         struct bio *cur;
452         int again = 0;
453         unsigned long num_run;
454         unsigned long batch_run = 0;
455         unsigned long last_waited = 0;
456         int force_reg = 0;
457         int sync_pending = 0;
458         struct blk_plug plug;
459
460         /*
461          * this function runs all the bios we've collected for
462          * a particular device.  We don't want to wander off to
463          * another device without first sending all of these down.
464          * So, setup a plug here and finish it off before we return
465          */
466         blk_start_plug(&plug);
467
468         bdi = device->bdev->bd_bdi;
469
470 loop:
471         spin_lock(&device->io_lock);
472
473 loop_lock:
474         num_run = 0;
475
476         /* take all the bios off the list at once and process them
477          * later on (without the lock held).  But, remember the
478          * tail and other pointers so the bios can be properly reinserted
479          * into the list if we hit congestion
480          */
481         if (!force_reg && device->pending_sync_bios.head) {
482                 pending_bios = &device->pending_sync_bios;
483                 force_reg = 1;
484         } else {
485                 pending_bios = &device->pending_bios;
486                 force_reg = 0;
487         }
488
489         pending = pending_bios->head;
490         tail = pending_bios->tail;
491         WARN_ON(pending && !tail);
492
493         /*
494          * if pending was null this time around, no bios need processing
495          * at all and we can stop.  Otherwise it'll loop back up again
496          * and do an additional check so no bios are missed.
497          *
498          * device->running_pending is used to synchronize with the
499          * schedule_bio code.
500          */
501         if (device->pending_sync_bios.head == NULL &&
502             device->pending_bios.head == NULL) {
503                 again = 0;
504                 device->running_pending = 0;
505         } else {
506                 again = 1;
507                 device->running_pending = 1;
508         }
509
510         pending_bios->head = NULL;
511         pending_bios->tail = NULL;
512
513         spin_unlock(&device->io_lock);
514
515         while (pending) {
516
517                 rmb();
518                 /* we want to work on both lists, but do more bios on the
519                  * sync list than the regular list
520                  */
521                 if ((num_run > 32 &&
522                     pending_bios != &device->pending_sync_bios &&
523                     device->pending_sync_bios.head) ||
524                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
525                     device->pending_bios.head)) {
526                         spin_lock(&device->io_lock);
527                         requeue_list(pending_bios, pending, tail);
528                         goto loop_lock;
529                 }
530
531                 cur = pending;
532                 pending = pending->bi_next;
533                 cur->bi_next = NULL;
534
535                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
536
537                 /*
538                  * if we're doing the sync list, record that our
539                  * plug has some sync requests on it
540                  *
541                  * If we're doing the regular list and there are
542                  * sync requests sitting around, unplug before
543                  * we add more
544                  */
545                 if (pending_bios == &device->pending_sync_bios) {
546                         sync_pending = 1;
547                 } else if (sync_pending) {
548                         blk_finish_plug(&plug);
549                         blk_start_plug(&plug);
550                         sync_pending = 0;
551                 }
552
553                 btrfsic_submit_bio(cur);
554                 num_run++;
555                 batch_run++;
556
557                 cond_resched();
558
559                 /*
560                  * we made progress, there is more work to do and the bdi
561                  * is now congested.  Back off and let other work structs
562                  * run instead
563                  */
564                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
565                     fs_info->fs_devices->open_devices > 1) {
566                         struct io_context *ioc;
567
568                         ioc = current->io_context;
569
570                         /*
571                          * the main goal here is that we don't want to
572                          * block if we're going to be able to submit
573                          * more requests without blocking.
574                          *
575                          * This code does two great things, it pokes into
576                          * the elevator code from a filesystem _and_
577                          * it makes assumptions about how batching works.
578                          */
579                         if (ioc && ioc->nr_batch_requests > 0 &&
580                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
581                             (last_waited == 0 ||
582                              ioc->last_waited == last_waited)) {
583                                 /*
584                                  * we want to go through our batch of
585                                  * requests and stop.  So, we copy out
586                                  * the ioc->last_waited time and test
587                                  * against it before looping
588                                  */
589                                 last_waited = ioc->last_waited;
590                                 cond_resched();
591                                 continue;
592                         }
593                         spin_lock(&device->io_lock);
594                         requeue_list(pending_bios, pending, tail);
595                         device->running_pending = 1;
596
597                         spin_unlock(&device->io_lock);
598                         btrfs_queue_work(fs_info->submit_workers,
599                                          &device->work);
600                         goto done;
601                 }
602         }
603
604         cond_resched();
605         if (again)
606                 goto loop;
607
608         spin_lock(&device->io_lock);
609         if (device->pending_bios.head || device->pending_sync_bios.head)
610                 goto loop_lock;
611         spin_unlock(&device->io_lock);
612
613 done:
614         blk_finish_plug(&plug);
615 }
616
617 static void pending_bios_fn(struct btrfs_work *work)
618 {
619         struct btrfs_device *device;
620
621         device = container_of(work, struct btrfs_device, work);
622         run_scheduled_bios(device);
623 }
624
625 /*
626  *  Search and remove all stale (devices which are not mounted) devices.
627  *  When both inputs are NULL, it will search and release all stale devices.
628  *  path:       Optional. When provided will it release all unmounted devices
629  *              matching this path only.
630  *  skip_dev:   Optional. Will skip this device when searching for the stale
631  *              devices.
632  */
633 static void btrfs_free_stale_devices(const char *path,
634                                      struct btrfs_device *skip_device)
635 {
636         struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
637         struct btrfs_device *device, *tmp_device;
638
639         list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
640                 mutex_lock(&fs_devices->device_list_mutex);
641                 if (fs_devices->opened) {
642                         mutex_unlock(&fs_devices->device_list_mutex);
643                         continue;
644                 }
645
646                 list_for_each_entry_safe(device, tmp_device,
647                                          &fs_devices->devices, dev_list) {
648                         int not_found = 0;
649
650                         if (skip_device && skip_device == device)
651                                 continue;
652                         if (path && !device->name)
653                                 continue;
654
655                         rcu_read_lock();
656                         if (path)
657                                 not_found = strcmp(rcu_str_deref(device->name),
658                                                    path);
659                         rcu_read_unlock();
660                         if (not_found)
661                                 continue;
662
663                         /* delete the stale device */
664                         fs_devices->num_devices--;
665                         list_del(&device->dev_list);
666                         btrfs_free_device(device);
667
668                         if (fs_devices->num_devices == 0)
669                                 break;
670                 }
671                 mutex_unlock(&fs_devices->device_list_mutex);
672                 if (fs_devices->num_devices == 0) {
673                         btrfs_sysfs_remove_fsid(fs_devices);
674                         list_del(&fs_devices->fs_list);
675                         free_fs_devices(fs_devices);
676                 }
677         }
678 }
679
680 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
681                         struct btrfs_device *device, fmode_t flags,
682                         void *holder)
683 {
684         struct request_queue *q;
685         struct block_device *bdev;
686         struct buffer_head *bh;
687         struct btrfs_super_block *disk_super;
688         u64 devid;
689         int ret;
690
691         if (device->bdev)
692                 return -EINVAL;
693         if (!device->name)
694                 return -EINVAL;
695
696         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
697                                     &bdev, &bh);
698         if (ret)
699                 return ret;
700
701         disk_super = (struct btrfs_super_block *)bh->b_data;
702         devid = btrfs_stack_device_id(&disk_super->dev_item);
703         if (devid != device->devid)
704                 goto error_brelse;
705
706         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
707                 goto error_brelse;
708
709         device->generation = btrfs_super_generation(disk_super);
710
711         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
712                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
713                 fs_devices->seeding = 1;
714         } else {
715                 if (bdev_read_only(bdev))
716                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
717                 else
718                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
719         }
720
721         q = bdev_get_queue(bdev);
722         if (!blk_queue_nonrot(q))
723                 fs_devices->rotating = 1;
724
725         device->bdev = bdev;
726         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
727         device->mode = flags;
728
729         fs_devices->open_devices++;
730         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
731             device->devid != BTRFS_DEV_REPLACE_DEVID) {
732                 fs_devices->rw_devices++;
733                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
734         }
735         brelse(bh);
736
737         return 0;
738
739 error_brelse:
740         brelse(bh);
741         blkdev_put(bdev, flags);
742
743         return -EINVAL;
744 }
745
746 /*
747  * Add new device to list of registered devices
748  *
749  * Returns:
750  * device pointer which was just added or updated when successful
751  * error pointer when failed
752  */
753 static noinline struct btrfs_device *device_list_add(const char *path,
754                            struct btrfs_super_block *disk_super,
755                            bool *new_device_added)
756 {
757         struct btrfs_device *device;
758         struct btrfs_fs_devices *fs_devices;
759         struct rcu_string *name;
760         u64 found_transid = btrfs_super_generation(disk_super);
761         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
762
763         fs_devices = find_fsid(disk_super->fsid);
764         if (!fs_devices) {
765                 fs_devices = alloc_fs_devices(disk_super->fsid);
766                 if (IS_ERR(fs_devices))
767                         return ERR_CAST(fs_devices);
768
769                 mutex_lock(&fs_devices->device_list_mutex);
770                 list_add(&fs_devices->fs_list, &fs_uuids);
771
772                 device = NULL;
773         } else {
774                 mutex_lock(&fs_devices->device_list_mutex);
775                 device = find_device(fs_devices, devid,
776                                 disk_super->dev_item.uuid);
777         }
778
779         if (!device) {
780                 if (fs_devices->opened) {
781                         mutex_unlock(&fs_devices->device_list_mutex);
782                         return ERR_PTR(-EBUSY);
783                 }
784
785                 device = btrfs_alloc_device(NULL, &devid,
786                                             disk_super->dev_item.uuid);
787                 if (IS_ERR(device)) {
788                         mutex_unlock(&fs_devices->device_list_mutex);
789                         /* we can safely leave the fs_devices entry around */
790                         return device;
791                 }
792
793                 name = rcu_string_strdup(path, GFP_NOFS);
794                 if (!name) {
795                         btrfs_free_device(device);
796                         mutex_unlock(&fs_devices->device_list_mutex);
797                         return ERR_PTR(-ENOMEM);
798                 }
799                 rcu_assign_pointer(device->name, name);
800
801                 list_add_rcu(&device->dev_list, &fs_devices->devices);
802                 fs_devices->num_devices++;
803
804                 device->fs_devices = fs_devices;
805                 *new_device_added = true;
806
807                 if (disk_super->label[0])
808                         pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
809                                 disk_super->label, devid, found_transid, path);
810                 else
811                         pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
812                                 disk_super->fsid, devid, found_transid, path);
813
814         } else if (!device->name || strcmp(device->name->str, path)) {
815                 /*
816                  * When FS is already mounted.
817                  * 1. If you are here and if the device->name is NULL that
818                  *    means this device was missing at time of FS mount.
819                  * 2. If you are here and if the device->name is different
820                  *    from 'path' that means either
821                  *      a. The same device disappeared and reappeared with
822                  *         different name. or
823                  *      b. The missing-disk-which-was-replaced, has
824                  *         reappeared now.
825                  *
826                  * We must allow 1 and 2a above. But 2b would be a spurious
827                  * and unintentional.
828                  *
829                  * Further in case of 1 and 2a above, the disk at 'path'
830                  * would have missed some transaction when it was away and
831                  * in case of 2a the stale bdev has to be updated as well.
832                  * 2b must not be allowed at all time.
833                  */
834
835                 /*
836                  * For now, we do allow update to btrfs_fs_device through the
837                  * btrfs dev scan cli after FS has been mounted.  We're still
838                  * tracking a problem where systems fail mount by subvolume id
839                  * when we reject replacement on a mounted FS.
840                  */
841                 if (!fs_devices->opened && found_transid < device->generation) {
842                         /*
843                          * That is if the FS is _not_ mounted and if you
844                          * are here, that means there is more than one
845                          * disk with same uuid and devid.We keep the one
846                          * with larger generation number or the last-in if
847                          * generation are equal.
848                          */
849                         mutex_unlock(&fs_devices->device_list_mutex);
850                         return ERR_PTR(-EEXIST);
851                 }
852
853                 name = rcu_string_strdup(path, GFP_NOFS);
854                 if (!name) {
855                         mutex_unlock(&fs_devices->device_list_mutex);
856                         return ERR_PTR(-ENOMEM);
857                 }
858                 rcu_string_free(device->name);
859                 rcu_assign_pointer(device->name, name);
860                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
861                         fs_devices->missing_devices--;
862                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
863                 }
864         }
865
866         /*
867          * Unmount does not free the btrfs_device struct but would zero
868          * generation along with most of the other members. So just update
869          * it back. We need it to pick the disk with largest generation
870          * (as above).
871          */
872         if (!fs_devices->opened)
873                 device->generation = found_transid;
874
875         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
876
877         mutex_unlock(&fs_devices->device_list_mutex);
878         return device;
879 }
880
881 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
882 {
883         struct btrfs_fs_devices *fs_devices;
884         struct btrfs_device *device;
885         struct btrfs_device *orig_dev;
886
887         fs_devices = alloc_fs_devices(orig->fsid);
888         if (IS_ERR(fs_devices))
889                 return fs_devices;
890
891         mutex_lock(&orig->device_list_mutex);
892         fs_devices->total_devices = orig->total_devices;
893
894         /* We have held the volume lock, it is safe to get the devices. */
895         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
896                 struct rcu_string *name;
897
898                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
899                                             orig_dev->uuid);
900                 if (IS_ERR(device))
901                         goto error;
902
903                 /*
904                  * This is ok to do without rcu read locked because we hold the
905                  * uuid mutex so nothing we touch in here is going to disappear.
906                  */
907                 if (orig_dev->name) {
908                         name = rcu_string_strdup(orig_dev->name->str,
909                                         GFP_KERNEL);
910                         if (!name) {
911                                 btrfs_free_device(device);
912                                 goto error;
913                         }
914                         rcu_assign_pointer(device->name, name);
915                 }
916
917                 list_add(&device->dev_list, &fs_devices->devices);
918                 device->fs_devices = fs_devices;
919                 fs_devices->num_devices++;
920         }
921         mutex_unlock(&orig->device_list_mutex);
922         return fs_devices;
923 error:
924         mutex_unlock(&orig->device_list_mutex);
925         free_fs_devices(fs_devices);
926         return ERR_PTR(-ENOMEM);
927 }
928
929 /*
930  * After we have read the system tree and know devids belonging to
931  * this filesystem, remove the device which does not belong there.
932  */
933 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
934 {
935         struct btrfs_device *device, *next;
936         struct btrfs_device *latest_dev = NULL;
937
938         mutex_lock(&uuid_mutex);
939 again:
940         /* This is the initialized path, it is safe to release the devices. */
941         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
942                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
943                                                         &device->dev_state)) {
944                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
945                              &device->dev_state) &&
946                              (!latest_dev ||
947                               device->generation > latest_dev->generation)) {
948                                 latest_dev = device;
949                         }
950                         continue;
951                 }
952
953                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
954                         /*
955                          * In the first step, keep the device which has
956                          * the correct fsid and the devid that is used
957                          * for the dev_replace procedure.
958                          * In the second step, the dev_replace state is
959                          * read from the device tree and it is known
960                          * whether the procedure is really active or
961                          * not, which means whether this device is
962                          * used or whether it should be removed.
963                          */
964                         if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
965                                                   &device->dev_state)) {
966                                 continue;
967                         }
968                 }
969                 if (device->bdev) {
970                         blkdev_put(device->bdev, device->mode);
971                         device->bdev = NULL;
972                         fs_devices->open_devices--;
973                 }
974                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
975                         list_del_init(&device->dev_alloc_list);
976                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
977                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
978                                       &device->dev_state))
979                                 fs_devices->rw_devices--;
980                 }
981                 list_del_init(&device->dev_list);
982                 fs_devices->num_devices--;
983                 btrfs_free_device(device);
984         }
985
986         if (fs_devices->seed) {
987                 fs_devices = fs_devices->seed;
988                 goto again;
989         }
990
991         fs_devices->latest_bdev = latest_dev->bdev;
992
993         mutex_unlock(&uuid_mutex);
994 }
995
996 static void free_device_rcu(struct rcu_head *head)
997 {
998         struct btrfs_device *device;
999
1000         device = container_of(head, struct btrfs_device, rcu);
1001         btrfs_free_device(device);
1002 }
1003
1004 static void btrfs_close_bdev(struct btrfs_device *device)
1005 {
1006         if (!device->bdev)
1007                 return;
1008
1009         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1010                 sync_blockdev(device->bdev);
1011                 invalidate_bdev(device->bdev);
1012         }
1013
1014         blkdev_put(device->bdev, device->mode);
1015 }
1016
1017 static void btrfs_close_one_device(struct btrfs_device *device)
1018 {
1019         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1020         struct btrfs_device *new_device;
1021         struct rcu_string *name;
1022
1023         if (device->bdev)
1024                 fs_devices->open_devices--;
1025
1026         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1027             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1028                 list_del_init(&device->dev_alloc_list);
1029                 fs_devices->rw_devices--;
1030         }
1031
1032         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1033                 fs_devices->missing_devices--;
1034
1035         btrfs_close_bdev(device);
1036
1037         new_device = btrfs_alloc_device(NULL, &device->devid,
1038                                         device->uuid);
1039         BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1040
1041         /* Safe because we are under uuid_mutex */
1042         if (device->name) {
1043                 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1044                 BUG_ON(!name); /* -ENOMEM */
1045                 rcu_assign_pointer(new_device->name, name);
1046         }
1047
1048         list_replace_rcu(&device->dev_list, &new_device->dev_list);
1049         new_device->fs_devices = device->fs_devices;
1050
1051         call_rcu(&device->rcu, free_device_rcu);
1052 }
1053
1054 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1055 {
1056         struct btrfs_device *device, *tmp;
1057
1058         if (--fs_devices->opened > 0)
1059                 return 0;
1060
1061         mutex_lock(&fs_devices->device_list_mutex);
1062         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1063                 btrfs_close_one_device(device);
1064         }
1065         mutex_unlock(&fs_devices->device_list_mutex);
1066
1067         WARN_ON(fs_devices->open_devices);
1068         WARN_ON(fs_devices->rw_devices);
1069         fs_devices->opened = 0;
1070         fs_devices->seeding = 0;
1071
1072         return 0;
1073 }
1074
1075 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1076 {
1077         struct btrfs_fs_devices *seed_devices = NULL;
1078         int ret;
1079
1080         mutex_lock(&uuid_mutex);
1081         ret = close_fs_devices(fs_devices);
1082         if (!fs_devices->opened) {
1083                 seed_devices = fs_devices->seed;
1084                 fs_devices->seed = NULL;
1085         }
1086         mutex_unlock(&uuid_mutex);
1087
1088         while (seed_devices) {
1089                 fs_devices = seed_devices;
1090                 seed_devices = fs_devices->seed;
1091                 close_fs_devices(fs_devices);
1092                 free_fs_devices(fs_devices);
1093         }
1094         return ret;
1095 }
1096
1097 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1098                                 fmode_t flags, void *holder)
1099 {
1100         struct btrfs_device *device;
1101         struct btrfs_device *latest_dev = NULL;
1102         int ret = 0;
1103
1104         flags |= FMODE_EXCL;
1105
1106         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1107                 /* Just open everything we can; ignore failures here */
1108                 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1109                         continue;
1110
1111                 if (!latest_dev ||
1112                     device->generation > latest_dev->generation)
1113                         latest_dev = device;
1114         }
1115         if (fs_devices->open_devices == 0) {
1116                 ret = -EINVAL;
1117                 goto out;
1118         }
1119         fs_devices->opened = 1;
1120         fs_devices->latest_bdev = latest_dev->bdev;
1121         fs_devices->total_rw_bytes = 0;
1122 out:
1123         return ret;
1124 }
1125
1126 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1127 {
1128         struct btrfs_device *dev1, *dev2;
1129
1130         dev1 = list_entry(a, struct btrfs_device, dev_list);
1131         dev2 = list_entry(b, struct btrfs_device, dev_list);
1132
1133         if (dev1->devid < dev2->devid)
1134                 return -1;
1135         else if (dev1->devid > dev2->devid)
1136                 return 1;
1137         return 0;
1138 }
1139
1140 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1141                        fmode_t flags, void *holder)
1142 {
1143         int ret;
1144
1145         lockdep_assert_held(&uuid_mutex);
1146
1147         mutex_lock(&fs_devices->device_list_mutex);
1148         if (fs_devices->opened) {
1149                 fs_devices->opened++;
1150                 ret = 0;
1151         } else {
1152                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1153                 ret = open_fs_devices(fs_devices, flags, holder);
1154         }
1155         mutex_unlock(&fs_devices->device_list_mutex);
1156
1157         return ret;
1158 }
1159
1160 static void btrfs_release_disk_super(struct page *page)
1161 {
1162         kunmap(page);
1163         put_page(page);
1164 }
1165
1166 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1167                                  struct page **page,
1168                                  struct btrfs_super_block **disk_super)
1169 {
1170         void *p;
1171         pgoff_t index;
1172
1173         /* make sure our super fits in the device */
1174         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1175                 return 1;
1176
1177         /* make sure our super fits in the page */
1178         if (sizeof(**disk_super) > PAGE_SIZE)
1179                 return 1;
1180
1181         /* make sure our super doesn't straddle pages on disk */
1182         index = bytenr >> PAGE_SHIFT;
1183         if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1184                 return 1;
1185
1186         /* pull in the page with our super */
1187         *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1188                                    index, GFP_KERNEL);
1189
1190         if (IS_ERR_OR_NULL(*page))
1191                 return 1;
1192
1193         p = kmap(*page);
1194
1195         /* align our pointer to the offset of the super block */
1196         *disk_super = p + (bytenr & ~PAGE_MASK);
1197
1198         if (btrfs_super_bytenr(*disk_super) != bytenr ||
1199             btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1200                 btrfs_release_disk_super(*page);
1201                 return 1;
1202         }
1203
1204         if ((*disk_super)->label[0] &&
1205                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1206                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1207
1208         return 0;
1209 }
1210
1211 /*
1212  * Look for a btrfs signature on a device. This may be called out of the mount path
1213  * and we are not allowed to call set_blocksize during the scan. The superblock
1214  * is read via pagecache
1215  */
1216 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1217                                            void *holder)
1218 {
1219         struct btrfs_super_block *disk_super;
1220         bool new_device_added = false;
1221         struct btrfs_device *device = NULL;
1222         struct block_device *bdev;
1223         struct page *page;
1224         u64 bytenr;
1225
1226         lockdep_assert_held(&uuid_mutex);
1227
1228         /*
1229          * we would like to check all the supers, but that would make
1230          * a btrfs mount succeed after a mkfs from a different FS.
1231          * So, we need to add a special mount option to scan for
1232          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1233          */
1234         bytenr = btrfs_sb_offset(0);
1235         flags |= FMODE_EXCL;
1236
1237         bdev = blkdev_get_by_path(path, flags, holder);
1238         if (IS_ERR(bdev))
1239                 return ERR_CAST(bdev);
1240
1241         if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1242                 device = ERR_PTR(-EINVAL);
1243                 goto error_bdev_put;
1244         }
1245
1246         device = device_list_add(path, disk_super, &new_device_added);
1247         if (!IS_ERR(device)) {
1248                 if (new_device_added)
1249                         btrfs_free_stale_devices(path, device);
1250         }
1251
1252         btrfs_release_disk_super(page);
1253
1254 error_bdev_put:
1255         blkdev_put(bdev, flags);
1256
1257         return device;
1258 }
1259
1260 static int contains_pending_extent(struct btrfs_transaction *transaction,
1261                                    struct btrfs_device *device,
1262                                    u64 *start, u64 len)
1263 {
1264         struct btrfs_fs_info *fs_info = device->fs_info;
1265         struct extent_map *em;
1266         struct list_head *search_list = &fs_info->pinned_chunks;
1267         int ret = 0;
1268         u64 physical_start = *start;
1269
1270         if (transaction)
1271                 search_list = &transaction->pending_chunks;
1272 again:
1273         list_for_each_entry(em, search_list, list) {
1274                 struct map_lookup *map;
1275                 int i;
1276
1277                 map = em->map_lookup;
1278                 for (i = 0; i < map->num_stripes; i++) {
1279                         u64 end;
1280
1281                         if (map->stripes[i].dev != device)
1282                                 continue;
1283                         if (map->stripes[i].physical >= physical_start + len ||
1284                             map->stripes[i].physical + em->orig_block_len <=
1285                             physical_start)
1286                                 continue;
1287                         /*
1288                          * Make sure that while processing the pinned list we do
1289                          * not override our *start with a lower value, because
1290                          * we can have pinned chunks that fall within this
1291                          * device hole and that have lower physical addresses
1292                          * than the pending chunks we processed before. If we
1293                          * do not take this special care we can end up getting
1294                          * 2 pending chunks that start at the same physical
1295                          * device offsets because the end offset of a pinned
1296                          * chunk can be equal to the start offset of some
1297                          * pending chunk.
1298                          */
1299                         end = map->stripes[i].physical + em->orig_block_len;
1300                         if (end > *start) {
1301                                 *start = end;
1302                                 ret = 1;
1303                         }
1304                 }
1305         }
1306         if (search_list != &fs_info->pinned_chunks) {
1307                 search_list = &fs_info->pinned_chunks;
1308                 goto again;
1309         }
1310
1311         return ret;
1312 }
1313
1314
1315 /*
1316  * find_free_dev_extent_start - find free space in the specified device
1317  * @device:       the device which we search the free space in
1318  * @num_bytes:    the size of the free space that we need
1319  * @search_start: the position from which to begin the search
1320  * @start:        store the start of the free space.
1321  * @len:          the size of the free space. that we find, or the size
1322  *                of the max free space if we don't find suitable free space
1323  *
1324  * this uses a pretty simple search, the expectation is that it is
1325  * called very infrequently and that a given device has a small number
1326  * of extents
1327  *
1328  * @start is used to store the start of the free space if we find. But if we
1329  * don't find suitable free space, it will be used to store the start position
1330  * of the max free space.
1331  *
1332  * @len is used to store the size of the free space that we find.
1333  * But if we don't find suitable free space, it is used to store the size of
1334  * the max free space.
1335  */
1336 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1337                                struct btrfs_device *device, u64 num_bytes,
1338                                u64 search_start, u64 *start, u64 *len)
1339 {
1340         struct btrfs_fs_info *fs_info = device->fs_info;
1341         struct btrfs_root *root = fs_info->dev_root;
1342         struct btrfs_key key;
1343         struct btrfs_dev_extent *dev_extent;
1344         struct btrfs_path *path;
1345         u64 hole_size;
1346         u64 max_hole_start;
1347         u64 max_hole_size;
1348         u64 extent_end;
1349         u64 search_end = device->total_bytes;
1350         int ret;
1351         int slot;
1352         struct extent_buffer *l;
1353
1354         /*
1355          * We don't want to overwrite the superblock on the drive nor any area
1356          * used by the boot loader (grub for example), so we make sure to start
1357          * at an offset of at least 1MB.
1358          */
1359         search_start = max_t(u64, search_start, SZ_1M);
1360
1361         path = btrfs_alloc_path();
1362         if (!path)
1363                 return -ENOMEM;
1364
1365         max_hole_start = search_start;
1366         max_hole_size = 0;
1367
1368 again:
1369         if (search_start >= search_end ||
1370                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1371                 ret = -ENOSPC;
1372                 goto out;
1373         }
1374
1375         path->reada = READA_FORWARD;
1376         path->search_commit_root = 1;
1377         path->skip_locking = 1;
1378
1379         key.objectid = device->devid;
1380         key.offset = search_start;
1381         key.type = BTRFS_DEV_EXTENT_KEY;
1382
1383         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1384         if (ret < 0)
1385                 goto out;
1386         if (ret > 0) {
1387                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1388                 if (ret < 0)
1389                         goto out;
1390         }
1391
1392         while (1) {
1393                 l = path->nodes[0];
1394                 slot = path->slots[0];
1395                 if (slot >= btrfs_header_nritems(l)) {
1396                         ret = btrfs_next_leaf(root, path);
1397                         if (ret == 0)
1398                                 continue;
1399                         if (ret < 0)
1400                                 goto out;
1401
1402                         break;
1403                 }
1404                 btrfs_item_key_to_cpu(l, &key, slot);
1405
1406                 if (key.objectid < device->devid)
1407                         goto next;
1408
1409                 if (key.objectid > device->devid)
1410                         break;
1411
1412                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1413                         goto next;
1414
1415                 if (key.offset > search_start) {
1416                         hole_size = key.offset - search_start;
1417
1418                         /*
1419                          * Have to check before we set max_hole_start, otherwise
1420                          * we could end up sending back this offset anyway.
1421                          */
1422                         if (contains_pending_extent(transaction, device,
1423                                                     &search_start,
1424                                                     hole_size)) {
1425                                 if (key.offset >= search_start) {
1426                                         hole_size = key.offset - search_start;
1427                                 } else {
1428                                         WARN_ON_ONCE(1);
1429                                         hole_size = 0;
1430                                 }
1431                         }
1432
1433                         if (hole_size > max_hole_size) {
1434                                 max_hole_start = search_start;
1435                                 max_hole_size = hole_size;
1436                         }
1437
1438                         /*
1439                          * If this free space is greater than which we need,
1440                          * it must be the max free space that we have found
1441                          * until now, so max_hole_start must point to the start
1442                          * of this free space and the length of this free space
1443                          * is stored in max_hole_size. Thus, we return
1444                          * max_hole_start and max_hole_size and go back to the
1445                          * caller.
1446                          */
1447                         if (hole_size >= num_bytes) {
1448                                 ret = 0;
1449                                 goto out;
1450                         }
1451                 }
1452
1453                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1454                 extent_end = key.offset + btrfs_dev_extent_length(l,
1455                                                                   dev_extent);
1456                 if (extent_end > search_start)
1457                         search_start = extent_end;
1458 next:
1459                 path->slots[0]++;
1460                 cond_resched();
1461         }
1462
1463         /*
1464          * At this point, search_start should be the end of
1465          * allocated dev extents, and when shrinking the device,
1466          * search_end may be smaller than search_start.
1467          */
1468         if (search_end > search_start) {
1469                 hole_size = search_end - search_start;
1470
1471                 if (contains_pending_extent(transaction, device, &search_start,
1472                                             hole_size)) {
1473                         btrfs_release_path(path);
1474                         goto again;
1475                 }
1476
1477                 if (hole_size > max_hole_size) {
1478                         max_hole_start = search_start;
1479                         max_hole_size = hole_size;
1480                 }
1481         }
1482
1483         /* See above. */
1484         if (max_hole_size < num_bytes)
1485                 ret = -ENOSPC;
1486         else
1487                 ret = 0;
1488
1489 out:
1490         btrfs_free_path(path);
1491         *start = max_hole_start;
1492         if (len)
1493                 *len = max_hole_size;
1494         return ret;
1495 }
1496
1497 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1498                          struct btrfs_device *device, u64 num_bytes,
1499                          u64 *start, u64 *len)
1500 {
1501         /* FIXME use last free of some kind */
1502         return find_free_dev_extent_start(trans->transaction, device,
1503                                           num_bytes, 0, start, len);
1504 }
1505
1506 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1507                           struct btrfs_device *device,
1508                           u64 start, u64 *dev_extent_len)
1509 {
1510         struct btrfs_fs_info *fs_info = device->fs_info;
1511         struct btrfs_root *root = fs_info->dev_root;
1512         int ret;
1513         struct btrfs_path *path;
1514         struct btrfs_key key;
1515         struct btrfs_key found_key;
1516         struct extent_buffer *leaf = NULL;
1517         struct btrfs_dev_extent *extent = NULL;
1518
1519         path = btrfs_alloc_path();
1520         if (!path)
1521                 return -ENOMEM;
1522
1523         key.objectid = device->devid;
1524         key.offset = start;
1525         key.type = BTRFS_DEV_EXTENT_KEY;
1526 again:
1527         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1528         if (ret > 0) {
1529                 ret = btrfs_previous_item(root, path, key.objectid,
1530                                           BTRFS_DEV_EXTENT_KEY);
1531                 if (ret)
1532                         goto out;
1533                 leaf = path->nodes[0];
1534                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1535                 extent = btrfs_item_ptr(leaf, path->slots[0],
1536                                         struct btrfs_dev_extent);
1537                 BUG_ON(found_key.offset > start || found_key.offset +
1538                        btrfs_dev_extent_length(leaf, extent) < start);
1539                 key = found_key;
1540                 btrfs_release_path(path);
1541                 goto again;
1542         } else if (ret == 0) {
1543                 leaf = path->nodes[0];
1544                 extent = btrfs_item_ptr(leaf, path->slots[0],
1545                                         struct btrfs_dev_extent);
1546         } else {
1547                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1548                 goto out;
1549         }
1550
1551         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1552
1553         ret = btrfs_del_item(trans, root, path);
1554         if (ret) {
1555                 btrfs_handle_fs_error(fs_info, ret,
1556                                       "Failed to remove dev extent item");
1557         } else {
1558                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1559         }
1560 out:
1561         btrfs_free_path(path);
1562         return ret;
1563 }
1564
1565 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1566                                   struct btrfs_device *device,
1567                                   u64 chunk_offset, u64 start, u64 num_bytes)
1568 {
1569         int ret;
1570         struct btrfs_path *path;
1571         struct btrfs_fs_info *fs_info = device->fs_info;
1572         struct btrfs_root *root = fs_info->dev_root;
1573         struct btrfs_dev_extent *extent;
1574         struct extent_buffer *leaf;
1575         struct btrfs_key key;
1576
1577         WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1578         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1579         path = btrfs_alloc_path();
1580         if (!path)
1581                 return -ENOMEM;
1582
1583         key.objectid = device->devid;
1584         key.offset = start;
1585         key.type = BTRFS_DEV_EXTENT_KEY;
1586         ret = btrfs_insert_empty_item(trans, root, path, &key,
1587                                       sizeof(*extent));
1588         if (ret)
1589                 goto out;
1590
1591         leaf = path->nodes[0];
1592         extent = btrfs_item_ptr(leaf, path->slots[0],
1593                                 struct btrfs_dev_extent);
1594         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1595                                         BTRFS_CHUNK_TREE_OBJECTID);
1596         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1597                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1598         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1599
1600         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1601         btrfs_mark_buffer_dirty(leaf);
1602 out:
1603         btrfs_free_path(path);
1604         return ret;
1605 }
1606
1607 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1608 {
1609         struct extent_map_tree *em_tree;
1610         struct extent_map *em;
1611         struct rb_node *n;
1612         u64 ret = 0;
1613
1614         em_tree = &fs_info->mapping_tree.map_tree;
1615         read_lock(&em_tree->lock);
1616         n = rb_last(&em_tree->map);
1617         if (n) {
1618                 em = rb_entry(n, struct extent_map, rb_node);
1619                 ret = em->start + em->len;
1620         }
1621         read_unlock(&em_tree->lock);
1622
1623         return ret;
1624 }
1625
1626 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1627                                     u64 *devid_ret)
1628 {
1629         int ret;
1630         struct btrfs_key key;
1631         struct btrfs_key found_key;
1632         struct btrfs_path *path;
1633
1634         path = btrfs_alloc_path();
1635         if (!path)
1636                 return -ENOMEM;
1637
1638         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1639         key.type = BTRFS_DEV_ITEM_KEY;
1640         key.offset = (u64)-1;
1641
1642         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1643         if (ret < 0)
1644                 goto error;
1645
1646         BUG_ON(ret == 0); /* Corruption */
1647
1648         ret = btrfs_previous_item(fs_info->chunk_root, path,
1649                                   BTRFS_DEV_ITEMS_OBJECTID,
1650                                   BTRFS_DEV_ITEM_KEY);
1651         if (ret) {
1652                 *devid_ret = 1;
1653         } else {
1654                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1655                                       path->slots[0]);
1656                 *devid_ret = found_key.offset + 1;
1657         }
1658         ret = 0;
1659 error:
1660         btrfs_free_path(path);
1661         return ret;
1662 }
1663
1664 /*
1665  * the device information is stored in the chunk root
1666  * the btrfs_device struct should be fully filled in
1667  */
1668 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1669                             struct btrfs_device *device)
1670 {
1671         int ret;
1672         struct btrfs_path *path;
1673         struct btrfs_dev_item *dev_item;
1674         struct extent_buffer *leaf;
1675         struct btrfs_key key;
1676         unsigned long ptr;
1677
1678         path = btrfs_alloc_path();
1679         if (!path)
1680                 return -ENOMEM;
1681
1682         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1683         key.type = BTRFS_DEV_ITEM_KEY;
1684         key.offset = device->devid;
1685
1686         ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1687                                       &key, sizeof(*dev_item));
1688         if (ret)
1689                 goto out;
1690
1691         leaf = path->nodes[0];
1692         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1693
1694         btrfs_set_device_id(leaf, dev_item, device->devid);
1695         btrfs_set_device_generation(leaf, dev_item, 0);
1696         btrfs_set_device_type(leaf, dev_item, device->type);
1697         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1698         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1699         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1700         btrfs_set_device_total_bytes(leaf, dev_item,
1701                                      btrfs_device_get_disk_total_bytes(device));
1702         btrfs_set_device_bytes_used(leaf, dev_item,
1703                                     btrfs_device_get_bytes_used(device));
1704         btrfs_set_device_group(leaf, dev_item, 0);
1705         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1706         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1707         btrfs_set_device_start_offset(leaf, dev_item, 0);
1708
1709         ptr = btrfs_device_uuid(dev_item);
1710         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1711         ptr = btrfs_device_fsid(dev_item);
1712         write_extent_buffer(leaf, trans->fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1713         btrfs_mark_buffer_dirty(leaf);
1714
1715         ret = 0;
1716 out:
1717         btrfs_free_path(path);
1718         return ret;
1719 }
1720
1721 /*
1722  * Function to update ctime/mtime for a given device path.
1723  * Mainly used for ctime/mtime based probe like libblkid.
1724  */
1725 static void update_dev_time(const char *path_name)
1726 {
1727         struct file *filp;
1728
1729         filp = filp_open(path_name, O_RDWR, 0);
1730         if (IS_ERR(filp))
1731                 return;
1732         file_update_time(filp);
1733         filp_close(filp, NULL);
1734 }
1735
1736 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1737                              struct btrfs_device *device)
1738 {
1739         struct btrfs_root *root = fs_info->chunk_root;
1740         int ret;
1741         struct btrfs_path *path;
1742         struct btrfs_key key;
1743         struct btrfs_trans_handle *trans;
1744
1745         path = btrfs_alloc_path();
1746         if (!path)
1747                 return -ENOMEM;
1748
1749         trans = btrfs_start_transaction(root, 0);
1750         if (IS_ERR(trans)) {
1751                 btrfs_free_path(path);
1752                 return PTR_ERR(trans);
1753         }
1754         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1755         key.type = BTRFS_DEV_ITEM_KEY;
1756         key.offset = device->devid;
1757
1758         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1759         if (ret) {
1760                 if (ret > 0)
1761                         ret = -ENOENT;
1762                 btrfs_abort_transaction(trans, ret);
1763                 btrfs_end_transaction(trans);
1764                 goto out;
1765         }
1766
1767         ret = btrfs_del_item(trans, root, path);
1768         if (ret) {
1769                 btrfs_abort_transaction(trans, ret);
1770                 btrfs_end_transaction(trans);
1771         }
1772
1773 out:
1774         btrfs_free_path(path);
1775         if (!ret)
1776                 ret = btrfs_commit_transaction(trans);
1777         return ret;
1778 }
1779
1780 /*
1781  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1782  * filesystem. It's up to the caller to adjust that number regarding eg. device
1783  * replace.
1784  */
1785 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1786                 u64 num_devices)
1787 {
1788         u64 all_avail;
1789         unsigned seq;
1790         int i;
1791
1792         do {
1793                 seq = read_seqbegin(&fs_info->profiles_lock);
1794
1795                 all_avail = fs_info->avail_data_alloc_bits |
1796                             fs_info->avail_system_alloc_bits |
1797                             fs_info->avail_metadata_alloc_bits;
1798         } while (read_seqretry(&fs_info->profiles_lock, seq));
1799
1800         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1801                 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1802                         continue;
1803
1804                 if (num_devices < btrfs_raid_array[i].devs_min) {
1805                         int ret = btrfs_raid_array[i].mindev_error;
1806
1807                         if (ret)
1808                                 return ret;
1809                 }
1810         }
1811
1812         return 0;
1813 }
1814
1815 static struct btrfs_device * btrfs_find_next_active_device(
1816                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1817 {
1818         struct btrfs_device *next_device;
1819
1820         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1821                 if (next_device != device &&
1822                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1823                     && next_device->bdev)
1824                         return next_device;
1825         }
1826
1827         return NULL;
1828 }
1829
1830 /*
1831  * Helper function to check if the given device is part of s_bdev / latest_bdev
1832  * and replace it with the provided or the next active device, in the context
1833  * where this function called, there should be always be another device (or
1834  * this_dev) which is active.
1835  */
1836 void btrfs_assign_next_active_device(struct btrfs_device *device,
1837                                      struct btrfs_device *this_dev)
1838 {
1839         struct btrfs_fs_info *fs_info = device->fs_info;
1840         struct btrfs_device *next_device;
1841
1842         if (this_dev)
1843                 next_device = this_dev;
1844         else
1845                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1846                                                                 device);
1847         ASSERT(next_device);
1848
1849         if (fs_info->sb->s_bdev &&
1850                         (fs_info->sb->s_bdev == device->bdev))
1851                 fs_info->sb->s_bdev = next_device->bdev;
1852
1853         if (fs_info->fs_devices->latest_bdev == device->bdev)
1854                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1855 }
1856
1857 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1858                 u64 devid)
1859 {
1860         struct btrfs_device *device;
1861         struct btrfs_fs_devices *cur_devices;
1862         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1863         u64 num_devices;
1864         int ret = 0;
1865
1866         mutex_lock(&uuid_mutex);
1867
1868         num_devices = fs_devices->num_devices;
1869         btrfs_dev_replace_read_lock(&fs_info->dev_replace);
1870         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1871                 WARN_ON(num_devices < 1);
1872                 num_devices--;
1873         }
1874         btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
1875
1876         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1877         if (ret)
1878                 goto out;
1879
1880         ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1881                                            &device);
1882         if (ret)
1883                 goto out;
1884
1885         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1886                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1887                 goto out;
1888         }
1889
1890         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1891             fs_info->fs_devices->rw_devices == 1) {
1892                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1893                 goto out;
1894         }
1895
1896         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1897                 mutex_lock(&fs_info->chunk_mutex);
1898                 list_del_init(&device->dev_alloc_list);
1899                 device->fs_devices->rw_devices--;
1900                 mutex_unlock(&fs_info->chunk_mutex);
1901         }
1902
1903         mutex_unlock(&uuid_mutex);
1904         ret = btrfs_shrink_device(device, 0);
1905         mutex_lock(&uuid_mutex);
1906         if (ret)
1907                 goto error_undo;
1908
1909         /*
1910          * TODO: the superblock still includes this device in its num_devices
1911          * counter although write_all_supers() is not locked out. This
1912          * could give a filesystem state which requires a degraded mount.
1913          */
1914         ret = btrfs_rm_dev_item(fs_info, device);
1915         if (ret)
1916                 goto error_undo;
1917
1918         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
1919         btrfs_scrub_cancel_dev(fs_info, device);
1920
1921         /*
1922          * the device list mutex makes sure that we don't change
1923          * the device list while someone else is writing out all
1924          * the device supers. Whoever is writing all supers, should
1925          * lock the device list mutex before getting the number of
1926          * devices in the super block (super_copy). Conversely,
1927          * whoever updates the number of devices in the super block
1928          * (super_copy) should hold the device list mutex.
1929          */
1930
1931         /*
1932          * In normal cases the cur_devices == fs_devices. But in case
1933          * of deleting a seed device, the cur_devices should point to
1934          * its own fs_devices listed under the fs_devices->seed.
1935          */
1936         cur_devices = device->fs_devices;
1937         mutex_lock(&fs_devices->device_list_mutex);
1938         list_del_rcu(&device->dev_list);
1939
1940         cur_devices->num_devices--;
1941         cur_devices->total_devices--;
1942         /* Update total_devices of the parent fs_devices if it's seed */
1943         if (cur_devices != fs_devices)
1944                 fs_devices->total_devices--;
1945
1946         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1947                 cur_devices->missing_devices--;
1948
1949         btrfs_assign_next_active_device(device, NULL);
1950
1951         if (device->bdev) {
1952                 cur_devices->open_devices--;
1953                 /* remove sysfs entry */
1954                 btrfs_sysfs_rm_device_link(fs_devices, device);
1955         }
1956
1957         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1958         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1959         mutex_unlock(&fs_devices->device_list_mutex);
1960
1961         /*
1962          * at this point, the device is zero sized and detached from
1963          * the devices list.  All that's left is to zero out the old
1964          * supers and free the device.
1965          */
1966         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
1967                 btrfs_scratch_superblocks(device->bdev, device->name->str);
1968
1969         btrfs_close_bdev(device);
1970         call_rcu(&device->rcu, free_device_rcu);
1971
1972         if (cur_devices->open_devices == 0) {
1973                 while (fs_devices) {
1974                         if (fs_devices->seed == cur_devices) {
1975                                 fs_devices->seed = cur_devices->seed;
1976                                 break;
1977                         }
1978                         fs_devices = fs_devices->seed;
1979                 }
1980                 cur_devices->seed = NULL;
1981                 close_fs_devices(cur_devices);
1982                 free_fs_devices(cur_devices);
1983         }
1984
1985 out:
1986         mutex_unlock(&uuid_mutex);
1987         return ret;
1988
1989 error_undo:
1990         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1991                 mutex_lock(&fs_info->chunk_mutex);
1992                 list_add(&device->dev_alloc_list,
1993                          &fs_devices->alloc_list);
1994                 device->fs_devices->rw_devices++;
1995                 mutex_unlock(&fs_info->chunk_mutex);
1996         }
1997         goto out;
1998 }
1999
2000 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2001 {
2002         struct btrfs_fs_devices *fs_devices;
2003
2004         lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2005
2006         /*
2007          * in case of fs with no seed, srcdev->fs_devices will point
2008          * to fs_devices of fs_info. However when the dev being replaced is
2009          * a seed dev it will point to the seed's local fs_devices. In short
2010          * srcdev will have its correct fs_devices in both the cases.
2011          */
2012         fs_devices = srcdev->fs_devices;
2013
2014         list_del_rcu(&srcdev->dev_list);
2015         list_del(&srcdev->dev_alloc_list);
2016         fs_devices->num_devices--;
2017         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2018                 fs_devices->missing_devices--;
2019
2020         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2021                 fs_devices->rw_devices--;
2022
2023         if (srcdev->bdev)
2024                 fs_devices->open_devices--;
2025 }
2026
2027 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2028                                       struct btrfs_device *srcdev)
2029 {
2030         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2031
2032         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2033                 /* zero out the old super if it is writable */
2034                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2035         }
2036
2037         btrfs_close_bdev(srcdev);
2038         call_rcu(&srcdev->rcu, free_device_rcu);
2039
2040         /* if this is no devs we rather delete the fs_devices */
2041         if (!fs_devices->num_devices) {
2042                 struct btrfs_fs_devices *tmp_fs_devices;
2043
2044                 /*
2045                  * On a mounted FS, num_devices can't be zero unless it's a
2046                  * seed. In case of a seed device being replaced, the replace
2047                  * target added to the sprout FS, so there will be no more
2048                  * device left under the seed FS.
2049                  */
2050                 ASSERT(fs_devices->seeding);
2051
2052                 tmp_fs_devices = fs_info->fs_devices;
2053                 while (tmp_fs_devices) {
2054                         if (tmp_fs_devices->seed == fs_devices) {
2055                                 tmp_fs_devices->seed = fs_devices->seed;
2056                                 break;
2057                         }
2058                         tmp_fs_devices = tmp_fs_devices->seed;
2059                 }
2060                 fs_devices->seed = NULL;
2061                 close_fs_devices(fs_devices);
2062                 free_fs_devices(fs_devices);
2063         }
2064 }
2065
2066 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2067 {
2068         struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2069
2070         WARN_ON(!tgtdev);
2071         mutex_lock(&fs_devices->device_list_mutex);
2072
2073         btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2074
2075         if (tgtdev->bdev)
2076                 fs_devices->open_devices--;
2077
2078         fs_devices->num_devices--;
2079
2080         btrfs_assign_next_active_device(tgtdev, NULL);
2081
2082         list_del_rcu(&tgtdev->dev_list);
2083
2084         mutex_unlock(&fs_devices->device_list_mutex);
2085
2086         /*
2087          * The update_dev_time() with in btrfs_scratch_superblocks()
2088          * may lead to a call to btrfs_show_devname() which will try
2089          * to hold device_list_mutex. And here this device
2090          * is already out of device list, so we don't have to hold
2091          * the device_list_mutex lock.
2092          */
2093         btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2094
2095         btrfs_close_bdev(tgtdev);
2096         call_rcu(&tgtdev->rcu, free_device_rcu);
2097 }
2098
2099 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2100                                      const char *device_path,
2101                                      struct btrfs_device **device)
2102 {
2103         int ret = 0;
2104         struct btrfs_super_block *disk_super;
2105         u64 devid;
2106         u8 *dev_uuid;
2107         struct block_device *bdev;
2108         struct buffer_head *bh;
2109
2110         *device = NULL;
2111         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2112                                     fs_info->bdev_holder, 0, &bdev, &bh);
2113         if (ret)
2114                 return ret;
2115         disk_super = (struct btrfs_super_block *)bh->b_data;
2116         devid = btrfs_stack_device_id(&disk_super->dev_item);
2117         dev_uuid = disk_super->dev_item.uuid;
2118         *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2119         brelse(bh);
2120         if (!*device)
2121                 ret = -ENOENT;
2122         blkdev_put(bdev, FMODE_READ);
2123         return ret;
2124 }
2125
2126 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2127                                          const char *device_path,
2128                                          struct btrfs_device **device)
2129 {
2130         *device = NULL;
2131         if (strcmp(device_path, "missing") == 0) {
2132                 struct list_head *devices;
2133                 struct btrfs_device *tmp;
2134
2135                 devices = &fs_info->fs_devices->devices;
2136                 list_for_each_entry(tmp, devices, dev_list) {
2137                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2138                                         &tmp->dev_state) && !tmp->bdev) {
2139                                 *device = tmp;
2140                                 break;
2141                         }
2142                 }
2143
2144                 if (!*device)
2145                         return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2146
2147                 return 0;
2148         } else {
2149                 return btrfs_find_device_by_path(fs_info, device_path, device);
2150         }
2151 }
2152
2153 /*
2154  * Lookup a device given by device id, or the path if the id is 0.
2155  */
2156 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2157                                  const char *devpath,
2158                                  struct btrfs_device **device)
2159 {
2160         int ret;
2161
2162         if (devid) {
2163                 ret = 0;
2164                 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2165                 if (!*device)
2166                         ret = -ENOENT;
2167         } else {
2168                 if (!devpath || !devpath[0])
2169                         return -EINVAL;
2170
2171                 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2172                                                            device);
2173         }
2174         return ret;
2175 }
2176
2177 /*
2178  * does all the dirty work required for changing file system's UUID.
2179  */
2180 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2181 {
2182         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2183         struct btrfs_fs_devices *old_devices;
2184         struct btrfs_fs_devices *seed_devices;
2185         struct btrfs_super_block *disk_super = fs_info->super_copy;
2186         struct btrfs_device *device;
2187         u64 super_flags;
2188
2189         lockdep_assert_held(&uuid_mutex);
2190         if (!fs_devices->seeding)
2191                 return -EINVAL;
2192
2193         seed_devices = alloc_fs_devices(NULL);
2194         if (IS_ERR(seed_devices))
2195                 return PTR_ERR(seed_devices);
2196
2197         old_devices = clone_fs_devices(fs_devices);
2198         if (IS_ERR(old_devices)) {
2199                 kfree(seed_devices);
2200                 return PTR_ERR(old_devices);
2201         }
2202
2203         list_add(&old_devices->fs_list, &fs_uuids);
2204
2205         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2206         seed_devices->opened = 1;
2207         INIT_LIST_HEAD(&seed_devices->devices);
2208         INIT_LIST_HEAD(&seed_devices->alloc_list);
2209         mutex_init(&seed_devices->device_list_mutex);
2210
2211         mutex_lock(&fs_devices->device_list_mutex);
2212         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2213                               synchronize_rcu);
2214         list_for_each_entry(device, &seed_devices->devices, dev_list)
2215                 device->fs_devices = seed_devices;
2216
2217         mutex_lock(&fs_info->chunk_mutex);
2218         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2219         mutex_unlock(&fs_info->chunk_mutex);
2220
2221         fs_devices->seeding = 0;
2222         fs_devices->num_devices = 0;
2223         fs_devices->open_devices = 0;
2224         fs_devices->missing_devices = 0;
2225         fs_devices->rotating = 0;
2226         fs_devices->seed = seed_devices;
2227
2228         generate_random_uuid(fs_devices->fsid);
2229         memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2230         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2231         mutex_unlock(&fs_devices->device_list_mutex);
2232
2233         super_flags = btrfs_super_flags(disk_super) &
2234                       ~BTRFS_SUPER_FLAG_SEEDING;
2235         btrfs_set_super_flags(disk_super, super_flags);
2236
2237         return 0;
2238 }
2239
2240 /*
2241  * Store the expected generation for seed devices in device items.
2242  */
2243 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2244                                struct btrfs_fs_info *fs_info)
2245 {
2246         struct btrfs_root *root = fs_info->chunk_root;
2247         struct btrfs_path *path;
2248         struct extent_buffer *leaf;
2249         struct btrfs_dev_item *dev_item;
2250         struct btrfs_device *device;
2251         struct btrfs_key key;
2252         u8 fs_uuid[BTRFS_FSID_SIZE];
2253         u8 dev_uuid[BTRFS_UUID_SIZE];
2254         u64 devid;
2255         int ret;
2256
2257         path = btrfs_alloc_path();
2258         if (!path)
2259                 return -ENOMEM;
2260
2261         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2262         key.offset = 0;
2263         key.type = BTRFS_DEV_ITEM_KEY;
2264
2265         while (1) {
2266                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2267                 if (ret < 0)
2268                         goto error;
2269
2270                 leaf = path->nodes[0];
2271 next_slot:
2272                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2273                         ret = btrfs_next_leaf(root, path);
2274                         if (ret > 0)
2275                                 break;
2276                         if (ret < 0)
2277                                 goto error;
2278                         leaf = path->nodes[0];
2279                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2280                         btrfs_release_path(path);
2281                         continue;
2282                 }
2283
2284                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2285                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2286                     key.type != BTRFS_DEV_ITEM_KEY)
2287                         break;
2288
2289                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2290                                           struct btrfs_dev_item);
2291                 devid = btrfs_device_id(leaf, dev_item);
2292                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2293                                    BTRFS_UUID_SIZE);
2294                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2295                                    BTRFS_FSID_SIZE);
2296                 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2297                 BUG_ON(!device); /* Logic error */
2298
2299                 if (device->fs_devices->seeding) {
2300                         btrfs_set_device_generation(leaf, dev_item,
2301                                                     device->generation);
2302                         btrfs_mark_buffer_dirty(leaf);
2303                 }
2304
2305                 path->slots[0]++;
2306                 goto next_slot;
2307         }
2308         ret = 0;
2309 error:
2310         btrfs_free_path(path);
2311         return ret;
2312 }
2313
2314 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2315 {
2316         struct btrfs_root *root = fs_info->dev_root;
2317         struct request_queue *q;
2318         struct btrfs_trans_handle *trans;
2319         struct btrfs_device *device;
2320         struct block_device *bdev;
2321         struct super_block *sb = fs_info->sb;
2322         struct rcu_string *name;
2323         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2324         u64 orig_super_total_bytes;
2325         u64 orig_super_num_devices;
2326         int seeding_dev = 0;
2327         int ret = 0;
2328         bool unlocked = false;
2329
2330         if (sb_rdonly(sb) && !fs_devices->seeding)
2331                 return -EROFS;
2332
2333         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2334                                   fs_info->bdev_holder);
2335         if (IS_ERR(bdev))
2336                 return PTR_ERR(bdev);
2337
2338         if (fs_devices->seeding) {
2339                 seeding_dev = 1;
2340                 down_write(&sb->s_umount);
2341                 mutex_lock(&uuid_mutex);
2342         }
2343
2344         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2345
2346         mutex_lock(&fs_devices->device_list_mutex);
2347         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2348                 if (device->bdev == bdev) {
2349                         ret = -EEXIST;
2350                         mutex_unlock(
2351                                 &fs_devices->device_list_mutex);
2352                         goto error;
2353                 }
2354         }
2355         mutex_unlock(&fs_devices->device_list_mutex);
2356
2357         device = btrfs_alloc_device(fs_info, NULL, NULL);
2358         if (IS_ERR(device)) {
2359                 /* we can safely leave the fs_devices entry around */
2360                 ret = PTR_ERR(device);
2361                 goto error;
2362         }
2363
2364         name = rcu_string_strdup(device_path, GFP_KERNEL);
2365         if (!name) {
2366                 ret = -ENOMEM;
2367                 goto error_free_device;
2368         }
2369         rcu_assign_pointer(device->name, name);
2370
2371         trans = btrfs_start_transaction(root, 0);
2372         if (IS_ERR(trans)) {
2373                 ret = PTR_ERR(trans);
2374                 goto error_free_device;
2375         }
2376
2377         q = bdev_get_queue(bdev);
2378         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2379         device->generation = trans->transid;
2380         device->io_width = fs_info->sectorsize;
2381         device->io_align = fs_info->sectorsize;
2382         device->sector_size = fs_info->sectorsize;
2383         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2384                                          fs_info->sectorsize);
2385         device->disk_total_bytes = device->total_bytes;
2386         device->commit_total_bytes = device->total_bytes;
2387         device->fs_info = fs_info;
2388         device->bdev = bdev;
2389         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2390         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2391         device->mode = FMODE_EXCL;
2392         device->dev_stats_valid = 1;
2393         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2394
2395         if (seeding_dev) {
2396                 sb->s_flags &= ~SB_RDONLY;
2397                 ret = btrfs_prepare_sprout(fs_info);
2398                 if (ret) {
2399                         btrfs_abort_transaction(trans, ret);
2400                         goto error_trans;
2401                 }
2402         }
2403
2404         device->fs_devices = fs_devices;
2405
2406         mutex_lock(&fs_devices->device_list_mutex);
2407         mutex_lock(&fs_info->chunk_mutex);
2408         list_add_rcu(&device->dev_list, &fs_devices->devices);
2409         list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2410         fs_devices->num_devices++;
2411         fs_devices->open_devices++;
2412         fs_devices->rw_devices++;
2413         fs_devices->total_devices++;
2414         fs_devices->total_rw_bytes += device->total_bytes;
2415
2416         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2417
2418         if (!blk_queue_nonrot(q))
2419                 fs_devices->rotating = 1;
2420
2421         orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2422         btrfs_set_super_total_bytes(fs_info->super_copy,
2423                 round_down(orig_super_total_bytes + device->total_bytes,
2424                            fs_info->sectorsize));
2425
2426         orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2427         btrfs_set_super_num_devices(fs_info->super_copy,
2428                                     orig_super_num_devices + 1);
2429
2430         /* add sysfs device entry */
2431         btrfs_sysfs_add_device_link(fs_devices, device);
2432
2433         /*
2434          * we've got more storage, clear any full flags on the space
2435          * infos
2436          */
2437         btrfs_clear_space_info_full(fs_info);
2438
2439         mutex_unlock(&fs_info->chunk_mutex);
2440         mutex_unlock(&fs_devices->device_list_mutex);
2441
2442         if (seeding_dev) {
2443                 mutex_lock(&fs_info->chunk_mutex);
2444                 ret = init_first_rw_device(trans, fs_info);
2445                 mutex_unlock(&fs_info->chunk_mutex);
2446                 if (ret) {
2447                         btrfs_abort_transaction(trans, ret);
2448                         goto error_sysfs;
2449                 }
2450         }
2451
2452         ret = btrfs_add_dev_item(trans, device);
2453         if (ret) {
2454                 btrfs_abort_transaction(trans, ret);
2455                 goto error_sysfs;
2456         }
2457
2458         if (seeding_dev) {
2459                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2460
2461                 ret = btrfs_finish_sprout(trans, fs_info);
2462                 if (ret) {
2463                         btrfs_abort_transaction(trans, ret);
2464                         goto error_sysfs;
2465                 }
2466
2467                 /* Sprouting would change fsid of the mounted root,
2468                  * so rename the fsid on the sysfs
2469                  */
2470                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2471                                                 fs_info->fsid);
2472                 if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
2473                         btrfs_warn(fs_info,
2474                                    "sysfs: failed to create fsid for sprout");
2475         }
2476
2477         ret = btrfs_commit_transaction(trans);
2478
2479         if (seeding_dev) {
2480                 mutex_unlock(&uuid_mutex);
2481                 up_write(&sb->s_umount);
2482                 unlocked = true;
2483
2484                 if (ret) /* transaction commit */
2485                         return ret;
2486
2487                 ret = btrfs_relocate_sys_chunks(fs_info);
2488                 if (ret < 0)
2489                         btrfs_handle_fs_error(fs_info, ret,
2490                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2491                 trans = btrfs_attach_transaction(root);
2492                 if (IS_ERR(trans)) {
2493                         if (PTR_ERR(trans) == -ENOENT)
2494                                 return 0;
2495                         ret = PTR_ERR(trans);
2496                         trans = NULL;
2497                         goto error_sysfs;
2498                 }
2499                 ret = btrfs_commit_transaction(trans);
2500         }
2501
2502         /* Update ctime/mtime for libblkid */
2503         update_dev_time(device_path);
2504         return ret;
2505
2506 error_sysfs:
2507         btrfs_sysfs_rm_device_link(fs_devices, device);
2508         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2509         mutex_lock(&fs_info->chunk_mutex);
2510         list_del_rcu(&device->dev_list);
2511         list_del(&device->dev_alloc_list);
2512         fs_info->fs_devices->num_devices--;
2513         fs_info->fs_devices->open_devices--;
2514         fs_info->fs_devices->rw_devices--;
2515         fs_info->fs_devices->total_devices--;
2516         fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2517         atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2518         btrfs_set_super_total_bytes(fs_info->super_copy,
2519                                     orig_super_total_bytes);
2520         btrfs_set_super_num_devices(fs_info->super_copy,
2521                                     orig_super_num_devices);
2522         mutex_unlock(&fs_info->chunk_mutex);
2523         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2524 error_trans:
2525         if (seeding_dev)
2526                 sb->s_flags |= SB_RDONLY;
2527         if (trans)
2528                 btrfs_end_transaction(trans);
2529 error_free_device:
2530         btrfs_free_device(device);
2531 error:
2532         blkdev_put(bdev, FMODE_EXCL);
2533         if (seeding_dev && !unlocked) {
2534                 mutex_unlock(&uuid_mutex);
2535                 up_write(&sb->s_umount);
2536         }
2537         return ret;
2538 }
2539
2540 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2541                                         struct btrfs_device *device)
2542 {
2543         int ret;
2544         struct btrfs_path *path;
2545         struct btrfs_root *root = device->fs_info->chunk_root;
2546         struct btrfs_dev_item *dev_item;
2547         struct extent_buffer *leaf;
2548         struct btrfs_key key;
2549
2550         path = btrfs_alloc_path();
2551         if (!path)
2552                 return -ENOMEM;
2553
2554         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2555         key.type = BTRFS_DEV_ITEM_KEY;
2556         key.offset = device->devid;
2557
2558         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2559         if (ret < 0)
2560                 goto out;
2561
2562         if (ret > 0) {
2563                 ret = -ENOENT;
2564                 goto out;
2565         }
2566
2567         leaf = path->nodes[0];
2568         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2569
2570         btrfs_set_device_id(leaf, dev_item, device->devid);
2571         btrfs_set_device_type(leaf, dev_item, device->type);
2572         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2573         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2574         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2575         btrfs_set_device_total_bytes(leaf, dev_item,
2576                                      btrfs_device_get_disk_total_bytes(device));
2577         btrfs_set_device_bytes_used(leaf, dev_item,
2578                                     btrfs_device_get_bytes_used(device));
2579         btrfs_mark_buffer_dirty(leaf);
2580
2581 out:
2582         btrfs_free_path(path);
2583         return ret;
2584 }
2585
2586 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2587                       struct btrfs_device *device, u64 new_size)
2588 {
2589         struct btrfs_fs_info *fs_info = device->fs_info;
2590         struct btrfs_super_block *super_copy = fs_info->super_copy;
2591         struct btrfs_fs_devices *fs_devices;
2592         u64 old_total;
2593         u64 diff;
2594
2595         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2596                 return -EACCES;
2597
2598         new_size = round_down(new_size, fs_info->sectorsize);
2599
2600         mutex_lock(&fs_info->chunk_mutex);
2601         old_total = btrfs_super_total_bytes(super_copy);
2602         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2603
2604         if (new_size <= device->total_bytes ||
2605             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2606                 mutex_unlock(&fs_info->chunk_mutex);
2607                 return -EINVAL;
2608         }
2609
2610         fs_devices = fs_info->fs_devices;
2611
2612         btrfs_set_super_total_bytes(super_copy,
2613                         round_down(old_total + diff, fs_info->sectorsize));
2614         device->fs_devices->total_rw_bytes += diff;
2615
2616         btrfs_device_set_total_bytes(device, new_size);
2617         btrfs_device_set_disk_total_bytes(device, new_size);
2618         btrfs_clear_space_info_full(device->fs_info);
2619         if (list_empty(&device->resized_list))
2620                 list_add_tail(&device->resized_list,
2621                               &fs_devices->resized_devices);
2622         mutex_unlock(&fs_info->chunk_mutex);
2623
2624         return btrfs_update_device(trans, device);
2625 }
2626
2627 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2628 {
2629         struct btrfs_fs_info *fs_info = trans->fs_info;
2630         struct btrfs_root *root = fs_info->chunk_root;
2631         int ret;
2632         struct btrfs_path *path;
2633         struct btrfs_key key;
2634
2635         path = btrfs_alloc_path();
2636         if (!path)
2637                 return -ENOMEM;
2638
2639         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2640         key.offset = chunk_offset;
2641         key.type = BTRFS_CHUNK_ITEM_KEY;
2642
2643         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2644         if (ret < 0)
2645                 goto out;
2646         else if (ret > 0) { /* Logic error or corruption */
2647                 btrfs_handle_fs_error(fs_info, -ENOENT,
2648                                       "Failed lookup while freeing chunk.");
2649                 ret = -ENOENT;
2650                 goto out;
2651         }
2652
2653         ret = btrfs_del_item(trans, root, path);
2654         if (ret < 0)
2655                 btrfs_handle_fs_error(fs_info, ret,
2656                                       "Failed to delete chunk item.");
2657 out:
2658         btrfs_free_path(path);
2659         return ret;
2660 }
2661
2662 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2663 {
2664         struct btrfs_super_block *super_copy = fs_info->super_copy;
2665         struct btrfs_disk_key *disk_key;
2666         struct btrfs_chunk *chunk;
2667         u8 *ptr;
2668         int ret = 0;
2669         u32 num_stripes;
2670         u32 array_size;
2671         u32 len = 0;
2672         u32 cur;
2673         struct btrfs_key key;
2674
2675         mutex_lock(&fs_info->chunk_mutex);
2676         array_size = btrfs_super_sys_array_size(super_copy);
2677
2678         ptr = super_copy->sys_chunk_array;
2679         cur = 0;
2680
2681         while (cur < array_size) {
2682                 disk_key = (struct btrfs_disk_key *)ptr;
2683                 btrfs_disk_key_to_cpu(&key, disk_key);
2684
2685                 len = sizeof(*disk_key);
2686
2687                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2688                         chunk = (struct btrfs_chunk *)(ptr + len);
2689                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2690                         len += btrfs_chunk_item_size(num_stripes);
2691                 } else {
2692                         ret = -EIO;
2693                         break;
2694                 }
2695                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2696                     key.offset == chunk_offset) {
2697                         memmove(ptr, ptr + len, array_size - (cur + len));
2698                         array_size -= len;
2699                         btrfs_set_super_sys_array_size(super_copy, array_size);
2700                 } else {
2701                         ptr += len;
2702                         cur += len;
2703                 }
2704         }
2705         mutex_unlock(&fs_info->chunk_mutex);
2706         return ret;
2707 }
2708
2709 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2710                                         u64 logical, u64 length)
2711 {
2712         struct extent_map_tree *em_tree;
2713         struct extent_map *em;
2714
2715         em_tree = &fs_info->mapping_tree.map_tree;
2716         read_lock(&em_tree->lock);
2717         em = lookup_extent_mapping(em_tree, logical, length);
2718         read_unlock(&em_tree->lock);
2719
2720         if (!em) {
2721                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2722                            logical, length);
2723                 return ERR_PTR(-EINVAL);
2724         }
2725
2726         if (em->start > logical || em->start + em->len < logical) {
2727                 btrfs_crit(fs_info,
2728                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2729                            logical, length, em->start, em->start + em->len);
2730                 free_extent_map(em);
2731                 return ERR_PTR(-EINVAL);
2732         }
2733
2734         /* callers are responsible for dropping em's ref. */
2735         return em;
2736 }
2737
2738 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2739 {
2740         struct btrfs_fs_info *fs_info = trans->fs_info;
2741         struct extent_map *em;
2742         struct map_lookup *map;
2743         u64 dev_extent_len = 0;
2744         int i, ret = 0;
2745         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2746
2747         em = get_chunk_map(fs_info, chunk_offset, 1);
2748         if (IS_ERR(em)) {
2749                 /*
2750                  * This is a logic error, but we don't want to just rely on the
2751                  * user having built with ASSERT enabled, so if ASSERT doesn't
2752                  * do anything we still error out.
2753                  */
2754                 ASSERT(0);
2755                 return PTR_ERR(em);
2756         }
2757         map = em->map_lookup;
2758         mutex_lock(&fs_info->chunk_mutex);
2759         check_system_chunk(trans, map->type);
2760         mutex_unlock(&fs_info->chunk_mutex);
2761
2762         /*
2763          * Take the device list mutex to prevent races with the final phase of
2764          * a device replace operation that replaces the device object associated
2765          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2766          */
2767         mutex_lock(&fs_devices->device_list_mutex);
2768         for (i = 0; i < map->num_stripes; i++) {
2769                 struct btrfs_device *device = map->stripes[i].dev;
2770                 ret = btrfs_free_dev_extent(trans, device,
2771                                             map->stripes[i].physical,
2772                                             &dev_extent_len);
2773                 if (ret) {
2774                         mutex_unlock(&fs_devices->device_list_mutex);
2775                         btrfs_abort_transaction(trans, ret);
2776                         goto out;
2777                 }
2778
2779                 if (device->bytes_used > 0) {
2780                         mutex_lock(&fs_info->chunk_mutex);
2781                         btrfs_device_set_bytes_used(device,
2782                                         device->bytes_used - dev_extent_len);
2783                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2784                         btrfs_clear_space_info_full(fs_info);
2785                         mutex_unlock(&fs_info->chunk_mutex);
2786                 }
2787
2788                 if (map->stripes[i].dev) {
2789                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2790                         if (ret) {
2791                                 mutex_unlock(&fs_devices->device_list_mutex);
2792                                 btrfs_abort_transaction(trans, ret);
2793                                 goto out;
2794                         }
2795                 }
2796         }
2797         mutex_unlock(&fs_devices->device_list_mutex);
2798
2799         ret = btrfs_free_chunk(trans, chunk_offset);
2800         if (ret) {
2801                 btrfs_abort_transaction(trans, ret);
2802                 goto out;
2803         }
2804
2805         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2806
2807         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2808                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2809                 if (ret) {
2810                         btrfs_abort_transaction(trans, ret);
2811                         goto out;
2812                 }
2813         }
2814
2815         ret = btrfs_remove_block_group(trans, chunk_offset, em);
2816         if (ret) {
2817                 btrfs_abort_transaction(trans, ret);
2818                 goto out;
2819         }
2820
2821 out:
2822         /* once for us */
2823         free_extent_map(em);
2824         return ret;
2825 }
2826
2827 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2828 {
2829         struct btrfs_root *root = fs_info->chunk_root;
2830         struct btrfs_trans_handle *trans;
2831         int ret;
2832
2833         /*
2834          * Prevent races with automatic removal of unused block groups.
2835          * After we relocate and before we remove the chunk with offset
2836          * chunk_offset, automatic removal of the block group can kick in,
2837          * resulting in a failure when calling btrfs_remove_chunk() below.
2838          *
2839          * Make sure to acquire this mutex before doing a tree search (dev
2840          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2841          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2842          * we release the path used to search the chunk/dev tree and before
2843          * the current task acquires this mutex and calls us.
2844          */
2845         lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
2846
2847         ret = btrfs_can_relocate(fs_info, chunk_offset);
2848         if (ret)
2849                 return -ENOSPC;
2850
2851         /* step one, relocate all the extents inside this chunk */
2852         btrfs_scrub_pause(fs_info);
2853         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2854         btrfs_scrub_continue(fs_info);
2855         if (ret)
2856                 return ret;
2857
2858         /*
2859          * We add the kobjects here (and after forcing data chunk creation)
2860          * since relocation is the only place we'll create chunks of a new
2861          * type at runtime.  The only place where we'll remove the last
2862          * chunk of a type is the call immediately below this one.  Even
2863          * so, we're protected against races with the cleaner thread since
2864          * we're covered by the delete_unused_bgs_mutex.
2865          */
2866         btrfs_add_raid_kobjects(fs_info);
2867
2868         trans = btrfs_start_trans_remove_block_group(root->fs_info,
2869                                                      chunk_offset);
2870         if (IS_ERR(trans)) {
2871                 ret = PTR_ERR(trans);
2872                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2873                 return ret;
2874         }
2875
2876         /*
2877          * step two, delete the device extents and the
2878          * chunk tree entries
2879          */
2880         ret = btrfs_remove_chunk(trans, chunk_offset);
2881         btrfs_end_transaction(trans);
2882         return ret;
2883 }
2884
2885 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2886 {
2887         struct btrfs_root *chunk_root = fs_info->chunk_root;
2888         struct btrfs_path *path;
2889         struct extent_buffer *leaf;
2890         struct btrfs_chunk *chunk;
2891         struct btrfs_key key;
2892         struct btrfs_key found_key;
2893         u64 chunk_type;
2894         bool retried = false;
2895         int failed = 0;
2896         int ret;
2897
2898         path = btrfs_alloc_path();
2899         if (!path)
2900                 return -ENOMEM;
2901
2902 again:
2903         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2904         key.offset = (u64)-1;
2905         key.type = BTRFS_CHUNK_ITEM_KEY;
2906
2907         while (1) {
2908                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2909                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2910                 if (ret < 0) {
2911                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2912                         goto error;
2913                 }
2914                 BUG_ON(ret == 0); /* Corruption */
2915
2916                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2917                                           key.type);
2918                 if (ret)
2919                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2920                 if (ret < 0)
2921                         goto error;
2922                 if (ret > 0)
2923                         break;
2924
2925                 leaf = path->nodes[0];
2926                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2927
2928                 chunk = btrfs_item_ptr(leaf, path->slots[0],
2929                                        struct btrfs_chunk);
2930                 chunk_type = btrfs_chunk_type(leaf, chunk);
2931                 btrfs_release_path(path);
2932
2933                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2934                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
2935                         if (ret == -ENOSPC)
2936                                 failed++;
2937                         else
2938                                 BUG_ON(ret);
2939                 }
2940                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2941
2942                 if (found_key.offset == 0)
2943                         break;
2944                 key.offset = found_key.offset - 1;
2945         }
2946         ret = 0;
2947         if (failed && !retried) {
2948                 failed = 0;
2949                 retried = true;
2950                 goto again;
2951         } else if (WARN_ON(failed && retried)) {
2952                 ret = -ENOSPC;
2953         }
2954 error:
2955         btrfs_free_path(path);
2956         return ret;
2957 }
2958
2959 /*
2960  * return 1 : allocate a data chunk successfully,
2961  * return <0: errors during allocating a data chunk,
2962  * return 0 : no need to allocate a data chunk.
2963  */
2964 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
2965                                       u64 chunk_offset)
2966 {
2967         struct btrfs_block_group_cache *cache;
2968         u64 bytes_used;
2969         u64 chunk_type;
2970
2971         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2972         ASSERT(cache);
2973         chunk_type = cache->flags;
2974         btrfs_put_block_group(cache);
2975
2976         if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
2977                 spin_lock(&fs_info->data_sinfo->lock);
2978                 bytes_used = fs_info->data_sinfo->bytes_used;
2979                 spin_unlock(&fs_info->data_sinfo->lock);
2980
2981                 if (!bytes_used) {
2982                         struct btrfs_trans_handle *trans;
2983                         int ret;
2984
2985                         trans = btrfs_join_transaction(fs_info->tree_root);
2986                         if (IS_ERR(trans))
2987                                 return PTR_ERR(trans);
2988
2989                         ret = btrfs_force_chunk_alloc(trans,
2990                                                       BTRFS_BLOCK_GROUP_DATA);
2991                         btrfs_end_transaction(trans);
2992                         if (ret < 0)
2993                                 return ret;
2994
2995                         btrfs_add_raid_kobjects(fs_info);
2996
2997                         return 1;
2998                 }
2999         }
3000         return 0;
3001 }
3002
3003 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3004                                struct btrfs_balance_control *bctl)
3005 {
3006         struct btrfs_root *root = fs_info->tree_root;
3007         struct btrfs_trans_handle *trans;
3008         struct btrfs_balance_item *item;
3009         struct btrfs_disk_balance_args disk_bargs;
3010         struct btrfs_path *path;
3011         struct extent_buffer *leaf;
3012         struct btrfs_key key;
3013         int ret, err;
3014
3015         path = btrfs_alloc_path();
3016         if (!path)
3017                 return -ENOMEM;
3018
3019         trans = btrfs_start_transaction(root, 0);
3020         if (IS_ERR(trans)) {
3021                 btrfs_free_path(path);
3022                 return PTR_ERR(trans);
3023         }
3024
3025         key.objectid = BTRFS_BALANCE_OBJECTID;
3026         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3027         key.offset = 0;
3028
3029         ret = btrfs_insert_empty_item(trans, root, path, &key,
3030                                       sizeof(*item));
3031         if (ret)
3032                 goto out;
3033
3034         leaf = path->nodes[0];
3035         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3036
3037         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3038
3039         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3040         btrfs_set_balance_data(leaf, item, &disk_bargs);
3041         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3042         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3043         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3044         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3045
3046         btrfs_set_balance_flags(leaf, item, bctl->flags);
3047
3048         btrfs_mark_buffer_dirty(leaf);
3049 out:
3050         btrfs_free_path(path);
3051         err = btrfs_commit_transaction(trans);
3052         if (err && !ret)
3053                 ret = err;
3054         return ret;
3055 }
3056
3057 static int del_balance_item(struct btrfs_fs_info *fs_info)
3058 {
3059         struct btrfs_root *root = fs_info->tree_root;
3060         struct btrfs_trans_handle *trans;
3061         struct btrfs_path *path;
3062         struct btrfs_key key;
3063         int ret, err;
3064
3065         path = btrfs_alloc_path();
3066         if (!path)
3067                 return -ENOMEM;
3068
3069         trans = btrfs_start_transaction(root, 0);
3070         if (IS_ERR(trans)) {
3071                 btrfs_free_path(path);
3072                 return PTR_ERR(trans);
3073         }
3074
3075         key.objectid = BTRFS_BALANCE_OBJECTID;
3076         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3077         key.offset = 0;
3078
3079         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3080         if (ret < 0)
3081                 goto out;
3082         if (ret > 0) {
3083                 ret = -ENOENT;
3084                 goto out;
3085         }
3086
3087         ret = btrfs_del_item(trans, root, path);
3088 out:
3089         btrfs_free_path(path);
3090         err = btrfs_commit_transaction(trans);
3091         if (err && !ret)
3092                 ret = err;
3093         return ret;
3094 }
3095
3096 /*
3097  * This is a heuristic used to reduce the number of chunks balanced on
3098  * resume after balance was interrupted.
3099  */
3100 static void update_balance_args(struct btrfs_balance_control *bctl)
3101 {
3102         /*
3103          * Turn on soft mode for chunk types that were being converted.
3104          */
3105         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3106                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3107         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3108                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3109         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3110                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3111
3112         /*
3113          * Turn on usage filter if is not already used.  The idea is
3114          * that chunks that we have already balanced should be
3115          * reasonably full.  Don't do it for chunks that are being
3116          * converted - that will keep us from relocating unconverted
3117          * (albeit full) chunks.
3118          */
3119         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3120             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3121             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3122                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3123                 bctl->data.usage = 90;
3124         }
3125         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3126             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3127             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3128                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3129                 bctl->sys.usage = 90;
3130         }
3131         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3132             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3133             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3134                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3135                 bctl->meta.usage = 90;
3136         }
3137 }
3138
3139 /*
3140  * Clear the balance status in fs_info and delete the balance item from disk.
3141  */
3142 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3143 {
3144         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3145         int ret;
3146
3147         BUG_ON(!fs_info->balance_ctl);
3148
3149         spin_lock(&fs_info->balance_lock);
3150         fs_info->balance_ctl = NULL;
3151         spin_unlock(&fs_info->balance_lock);
3152
3153         kfree(bctl);
3154         ret = del_balance_item(fs_info);
3155         if (ret)
3156                 btrfs_handle_fs_error(fs_info, ret, NULL);
3157 }
3158
3159 /*
3160  * Balance filters.  Return 1 if chunk should be filtered out
3161  * (should not be balanced).
3162  */
3163 static int chunk_profiles_filter(u64 chunk_type,
3164                                  struct btrfs_balance_args *bargs)
3165 {
3166         chunk_type = chunk_to_extended(chunk_type) &
3167                                 BTRFS_EXTENDED_PROFILE_MASK;
3168
3169         if (bargs->profiles & chunk_type)
3170                 return 0;
3171
3172         return 1;
3173 }
3174
3175 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3176                               struct btrfs_balance_args *bargs)
3177 {
3178         struct btrfs_block_group_cache *cache;
3179         u64 chunk_used;
3180         u64 user_thresh_min;
3181         u64 user_thresh_max;
3182         int ret = 1;
3183
3184         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3185         chunk_used = btrfs_block_group_used(&cache->item);
3186
3187         if (bargs->usage_min == 0)
3188                 user_thresh_min = 0;
3189         else
3190                 user_thresh_min = div_factor_fine(cache->key.offset,
3191                                         bargs->usage_min);
3192
3193         if (bargs->usage_max == 0)
3194                 user_thresh_max = 1;
3195         else if (bargs->usage_max > 100)
3196                 user_thresh_max = cache->key.offset;
3197         else
3198                 user_thresh_max = div_factor_fine(cache->key.offset,
3199                                         bargs->usage_max);
3200
3201         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3202                 ret = 0;
3203
3204         btrfs_put_block_group(cache);
3205         return ret;
3206 }
3207
3208 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3209                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3210 {
3211         struct btrfs_block_group_cache *cache;
3212         u64 chunk_used, user_thresh;
3213         int ret = 1;
3214
3215         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3216         chunk_used = btrfs_block_group_used(&cache->item);
3217
3218         if (bargs->usage_min == 0)
3219                 user_thresh = 1;
3220         else if (bargs->usage > 100)
3221                 user_thresh = cache->key.offset;
3222         else
3223                 user_thresh = div_factor_fine(cache->key.offset,
3224                                               bargs->usage);
3225
3226         if (chunk_used < user_thresh)
3227                 ret = 0;
3228
3229         btrfs_put_block_group(cache);
3230         return ret;
3231 }
3232
3233 static int chunk_devid_filter(struct extent_buffer *leaf,
3234                               struct btrfs_chunk *chunk,
3235                               struct btrfs_balance_args *bargs)
3236 {
3237         struct btrfs_stripe *stripe;
3238         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3239         int i;
3240
3241         for (i = 0; i < num_stripes; i++) {
3242                 stripe = btrfs_stripe_nr(chunk, i);
3243                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3244                         return 0;
3245         }
3246
3247         return 1;
3248 }
3249
3250 /* [pstart, pend) */
3251 static int chunk_drange_filter(struct extent_buffer *leaf,
3252                                struct btrfs_chunk *chunk,
3253                                struct btrfs_balance_args *bargs)
3254 {
3255         struct btrfs_stripe *stripe;
3256         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3257         u64 stripe_offset;
3258         u64 stripe_length;
3259         int factor;
3260         int i;
3261
3262         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3263                 return 0;
3264
3265         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3266              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3267                 factor = num_stripes / 2;
3268         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3269                 factor = num_stripes - 1;
3270         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3271                 factor = num_stripes - 2;
3272         } else {
3273                 factor = num_stripes;
3274         }
3275
3276         for (i = 0; i < num_stripes; i++) {
3277                 stripe = btrfs_stripe_nr(chunk, i);
3278                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3279                         continue;
3280
3281                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3282                 stripe_length = btrfs_chunk_length(leaf, chunk);
3283                 stripe_length = div_u64(stripe_length, factor);
3284
3285                 if (stripe_offset < bargs->pend &&
3286                     stripe_offset + stripe_length > bargs->pstart)
3287                         return 0;
3288         }
3289
3290         return 1;
3291 }
3292
3293 /* [vstart, vend) */
3294 static int chunk_vrange_filter(struct extent_buffer *leaf,
3295                                struct btrfs_chunk *chunk,
3296                                u64 chunk_offset,
3297                                struct btrfs_balance_args *bargs)
3298 {
3299         if (chunk_offset < bargs->vend &&
3300             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3301                 /* at least part of the chunk is inside this vrange */
3302                 return 0;
3303
3304         return 1;
3305 }
3306
3307 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3308                                struct btrfs_chunk *chunk,
3309                                struct btrfs_balance_args *bargs)
3310 {
3311         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3312
3313         if (bargs->stripes_min <= num_stripes
3314                         && num_stripes <= bargs->stripes_max)
3315                 return 0;
3316
3317         return 1;
3318 }
3319
3320 static int chunk_soft_convert_filter(u64 chunk_type,
3321                                      struct btrfs_balance_args *bargs)
3322 {
3323         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3324                 return 0;
3325
3326         chunk_type = chunk_to_extended(chunk_type) &
3327                                 BTRFS_EXTENDED_PROFILE_MASK;
3328
3329         if (bargs->target == chunk_type)
3330                 return 1;
3331
3332         return 0;
3333 }
3334
3335 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3336                                 struct extent_buffer *leaf,
3337                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3338 {
3339         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3340         struct btrfs_balance_args *bargs = NULL;
3341         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3342
3343         /* type filter */
3344         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3345               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3346                 return 0;
3347         }
3348
3349         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3350                 bargs = &bctl->data;
3351         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3352                 bargs = &bctl->sys;
3353         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3354                 bargs = &bctl->meta;
3355
3356         /* profiles filter */
3357         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3358             chunk_profiles_filter(chunk_type, bargs)) {
3359                 return 0;
3360         }
3361
3362         /* usage filter */
3363         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3364             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3365                 return 0;
3366         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3367             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3368                 return 0;
3369         }
3370
3371         /* devid filter */
3372         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3373             chunk_devid_filter(leaf, chunk, bargs)) {
3374                 return 0;
3375         }
3376
3377         /* drange filter, makes sense only with devid filter */
3378         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3379             chunk_drange_filter(leaf, chunk, bargs)) {
3380                 return 0;
3381         }
3382
3383         /* vrange filter */
3384         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3385             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3386                 return 0;
3387         }
3388
3389         /* stripes filter */
3390         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3391             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3392                 return 0;
3393         }
3394
3395         /* soft profile changing mode */
3396         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3397             chunk_soft_convert_filter(chunk_type, bargs)) {
3398                 return 0;
3399         }
3400
3401         /*
3402          * limited by count, must be the last filter
3403          */
3404         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3405                 if (bargs->limit == 0)
3406                         return 0;
3407                 else
3408                         bargs->limit--;
3409         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3410                 /*
3411                  * Same logic as the 'limit' filter; the minimum cannot be
3412                  * determined here because we do not have the global information
3413                  * about the count of all chunks that satisfy the filters.
3414                  */
3415                 if (bargs->limit_max == 0)
3416                         return 0;
3417                 else
3418                         bargs->limit_max--;
3419         }
3420
3421         return 1;
3422 }
3423
3424 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3425 {
3426         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3427         struct btrfs_root *chunk_root = fs_info->chunk_root;
3428         struct btrfs_root *dev_root = fs_info->dev_root;
3429         struct list_head *devices;
3430         struct btrfs_device *device;
3431         u64 old_size;
3432         u64 size_to_free;
3433         u64 chunk_type;
3434         struct btrfs_chunk *chunk;
3435         struct btrfs_path *path = NULL;
3436         struct btrfs_key key;
3437         struct btrfs_key found_key;
3438         struct btrfs_trans_handle *trans;
3439         struct extent_buffer *leaf;
3440         int slot;
3441         int ret;
3442         int enospc_errors = 0;
3443         bool counting = true;
3444         /* The single value limit and min/max limits use the same bytes in the */
3445         u64 limit_data = bctl->data.limit;
3446         u64 limit_meta = bctl->meta.limit;
3447         u64 limit_sys = bctl->sys.limit;
3448         u32 count_data = 0;
3449         u32 count_meta = 0;
3450         u32 count_sys = 0;
3451         int chunk_reserved = 0;
3452
3453         /* step one make some room on all the devices */
3454         devices = &fs_info->fs_devices->devices;
3455         list_for_each_entry(device, devices, dev_list) {
3456                 old_size = btrfs_device_get_total_bytes(device);
3457                 size_to_free = div_factor(old_size, 1);
3458                 size_to_free = min_t(u64, size_to_free, SZ_1M);
3459                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
3460                     btrfs_device_get_total_bytes(device) -
3461                     btrfs_device_get_bytes_used(device) > size_to_free ||
3462                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
3463                         continue;
3464
3465                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3466                 if (ret == -ENOSPC)
3467                         break;
3468                 if (ret) {
3469                         /* btrfs_shrink_device never returns ret > 0 */
3470                         WARN_ON(ret > 0);
3471                         goto error;
3472                 }
3473
3474                 trans = btrfs_start_transaction(dev_root, 0);
3475                 if (IS_ERR(trans)) {
3476                         ret = PTR_ERR(trans);
3477                         btrfs_info_in_rcu(fs_info,
3478                  "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3479                                           rcu_str_deref(device->name), ret,
3480                                           old_size, old_size - size_to_free);
3481                         goto error;
3482                 }
3483
3484                 ret = btrfs_grow_device(trans, device, old_size);
3485                 if (ret) {
3486                         btrfs_end_transaction(trans);
3487                         /* btrfs_grow_device never returns ret > 0 */
3488                         WARN_ON(ret > 0);
3489                         btrfs_info_in_rcu(fs_info,
3490                  "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3491                                           rcu_str_deref(device->name), ret,
3492                                           old_size, old_size - size_to_free);
3493                         goto error;
3494                 }
3495
3496                 btrfs_end_transaction(trans);
3497         }
3498
3499         /* step two, relocate all the chunks */
3500         path = btrfs_alloc_path();
3501         if (!path) {
3502                 ret = -ENOMEM;
3503                 goto error;
3504         }
3505
3506         /* zero out stat counters */
3507         spin_lock(&fs_info->balance_lock);
3508         memset(&bctl->stat, 0, sizeof(bctl->stat));
3509         spin_unlock(&fs_info->balance_lock);
3510 again:
3511         if (!counting) {
3512                 /*
3513                  * The single value limit and min/max limits use the same bytes
3514                  * in the
3515                  */
3516                 bctl->data.limit = limit_data;
3517                 bctl->meta.limit = limit_meta;
3518                 bctl->sys.limit = limit_sys;
3519         }
3520         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3521         key.offset = (u64)-1;
3522         key.type = BTRFS_CHUNK_ITEM_KEY;
3523
3524         while (1) {
3525                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3526                     atomic_read(&fs_info->balance_cancel_req)) {
3527                         ret = -ECANCELED;
3528                         goto error;
3529                 }
3530
3531                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3532                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3533                 if (ret < 0) {
3534                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3535                         goto error;
3536                 }
3537
3538                 /*
3539                  * this shouldn't happen, it means the last relocate
3540                  * failed
3541                  */
3542                 if (ret == 0)
3543                         BUG(); /* FIXME break ? */
3544
3545                 ret = btrfs_previous_item(chunk_root, path, 0,
3546                                           BTRFS_CHUNK_ITEM_KEY);
3547                 if (ret) {
3548                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3549                         ret = 0;
3550                         break;
3551                 }
3552
3553                 leaf = path->nodes[0];
3554                 slot = path->slots[0];
3555                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3556
3557                 if (found_key.objectid != key.objectid) {
3558                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3559                         break;
3560                 }
3561
3562                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3563                 chunk_type = btrfs_chunk_type(leaf, chunk);
3564
3565                 if (!counting) {
3566                         spin_lock(&fs_info->balance_lock);
3567                         bctl->stat.considered++;
3568                         spin_unlock(&fs_info->balance_lock);
3569                 }
3570
3571                 ret = should_balance_chunk(fs_info, leaf, chunk,
3572                                            found_key.offset);
3573
3574                 btrfs_release_path(path);
3575                 if (!ret) {
3576                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3577                         goto loop;
3578                 }
3579
3580                 if (counting) {
3581                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3582                         spin_lock(&fs_info->balance_lock);
3583                         bctl->stat.expected++;
3584                         spin_unlock(&fs_info->balance_lock);
3585
3586                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3587                                 count_data++;
3588                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3589                                 count_sys++;
3590                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3591                                 count_meta++;
3592
3593                         goto loop;
3594                 }
3595
3596                 /*
3597                  * Apply limit_min filter, no need to check if the LIMITS
3598                  * filter is used, limit_min is 0 by default
3599                  */
3600                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3601                                         count_data < bctl->data.limit_min)
3602                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3603                                         count_meta < bctl->meta.limit_min)
3604                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3605                                         count_sys < bctl->sys.limit_min)) {
3606                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3607                         goto loop;
3608                 }
3609
3610                 if (!chunk_reserved) {
3611                         /*
3612                          * We may be relocating the only data chunk we have,
3613                          * which could potentially end up with losing data's
3614                          * raid profile, so lets allocate an empty one in
3615                          * advance.
3616                          */
3617                         ret = btrfs_may_alloc_data_chunk(fs_info,
3618                                                          found_key.offset);
3619                         if (ret < 0) {
3620                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3621                                 goto error;
3622                         } else if (ret == 1) {
3623                                 chunk_reserved = 1;
3624                         }
3625                 }
3626
3627                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3628                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3629                 if (ret && ret != -ENOSPC)
3630                         goto error;
3631                 if (ret == -ENOSPC) {
3632                         enospc_errors++;
3633                 } else {
3634                         spin_lock(&fs_info->balance_lock);
3635                         bctl->stat.completed++;
3636                         spin_unlock(&fs_info->balance_lock);
3637                 }
3638 loop:
3639                 if (found_key.offset == 0)
3640                         break;
3641                 key.offset = found_key.offset - 1;
3642         }
3643
3644         if (counting) {
3645                 btrfs_release_path(path);
3646                 counting = false;
3647                 goto again;
3648         }
3649 error:
3650         btrfs_free_path(path);
3651         if (enospc_errors) {
3652                 btrfs_info(fs_info, "%d enospc errors during balance",
3653                            enospc_errors);
3654                 if (!ret)
3655                         ret = -ENOSPC;
3656         }
3657
3658         return ret;
3659 }
3660
3661 /**
3662  * alloc_profile_is_valid - see if a given profile is valid and reduced
3663  * @flags: profile to validate
3664  * @extended: if true @flags is treated as an extended profile
3665  */
3666 static int alloc_profile_is_valid(u64 flags, int extended)
3667 {
3668         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3669                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3670
3671         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3672
3673         /* 1) check that all other bits are zeroed */
3674         if (flags & ~mask)
3675                 return 0;
3676
3677         /* 2) see if profile is reduced */
3678         if (flags == 0)
3679                 return !extended; /* "0" is valid for usual profiles */
3680
3681         /* true if exactly one bit set */
3682         return (flags & (flags - 1)) == 0;
3683 }
3684
3685 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3686 {
3687         /* cancel requested || normal exit path */
3688         return atomic_read(&fs_info->balance_cancel_req) ||
3689                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3690                  atomic_read(&fs_info->balance_cancel_req) == 0);
3691 }
3692
3693 /* Non-zero return value signifies invalidity */
3694 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3695                 u64 allowed)
3696 {
3697         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3698                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3699                  (bctl_arg->target & ~allowed)));
3700 }
3701
3702 /*
3703  * Should be called with balance mutexe held
3704  */
3705 int btrfs_balance(struct btrfs_fs_info *fs_info,
3706                   struct btrfs_balance_control *bctl,
3707                   struct btrfs_ioctl_balance_args *bargs)
3708 {
3709         u64 meta_target, data_target;
3710         u64 allowed;
3711         int mixed = 0;
3712         int ret;
3713         u64 num_devices;
3714         unsigned seq;
3715
3716         if (btrfs_fs_closing(fs_info) ||
3717             atomic_read(&fs_info->balance_pause_req) ||
3718             atomic_read(&fs_info->balance_cancel_req)) {
3719                 ret = -EINVAL;
3720                 goto out;
3721         }
3722
3723         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3724         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3725                 mixed = 1;
3726
3727         /*
3728          * In case of mixed groups both data and meta should be picked,
3729          * and identical options should be given for both of them.
3730          */
3731         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3732         if (mixed && (bctl->flags & allowed)) {
3733                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3734                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3735                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3736                         btrfs_err(fs_info,
3737           "balance: mixed groups data and metadata options must be the same");
3738                         ret = -EINVAL;
3739                         goto out;
3740                 }
3741         }
3742
3743         num_devices = fs_info->fs_devices->num_devices;
3744         btrfs_dev_replace_read_lock(&fs_info->dev_replace);
3745         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3746                 BUG_ON(num_devices < 1);
3747                 num_devices--;
3748         }
3749         btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
3750         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3751         if (num_devices > 1)
3752                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3753         if (num_devices > 2)
3754                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3755         if (num_devices > 3)
3756                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3757                             BTRFS_BLOCK_GROUP_RAID6);
3758         if (validate_convert_profile(&bctl->data, allowed)) {
3759                 int index = btrfs_bg_flags_to_raid_index(bctl->data.target);
3760
3761                 btrfs_err(fs_info,
3762                           "balance: invalid convert data profile %s",
3763                           get_raid_name(index));
3764                 ret = -EINVAL;
3765                 goto out;
3766         }
3767         if (validate_convert_profile(&bctl->meta, allowed)) {
3768                 int index = btrfs_bg_flags_to_raid_index(bctl->meta.target);
3769
3770                 btrfs_err(fs_info,
3771                           "balance: invalid convert metadata profile %s",
3772                           get_raid_name(index));
3773                 ret = -EINVAL;
3774                 goto out;
3775         }
3776         if (validate_convert_profile(&bctl->sys, allowed)) {
3777                 int index = btrfs_bg_flags_to_raid_index(bctl->sys.target);
3778
3779                 btrfs_err(fs_info,
3780                           "balance: invalid convert system profile %s",
3781                           get_raid_name(index));
3782                 ret = -EINVAL;
3783                 goto out;
3784         }
3785
3786         /* allow to reduce meta or sys integrity only if force set */
3787         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3788                         BTRFS_BLOCK_GROUP_RAID10 |
3789                         BTRFS_BLOCK_GROUP_RAID5 |
3790                         BTRFS_BLOCK_GROUP_RAID6;
3791         do {
3792                 seq = read_seqbegin(&fs_info->profiles_lock);
3793
3794                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3795                      (fs_info->avail_system_alloc_bits & allowed) &&
3796                      !(bctl->sys.target & allowed)) ||
3797                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3798                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3799                      !(bctl->meta.target & allowed))) {
3800                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3801                                 btrfs_info(fs_info,
3802                                 "balance: force reducing metadata integrity");
3803                         } else {
3804                                 btrfs_err(fs_info,
3805         "balance: reduces metadata integrity, use --force if you want this");
3806                                 ret = -EINVAL;
3807                                 goto out;
3808                         }
3809                 }
3810         } while (read_seqretry(&fs_info->profiles_lock, seq));
3811
3812         /* if we're not converting, the target field is uninitialized */
3813         meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3814                 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3815         data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3816                 bctl->data.target : fs_info->avail_data_alloc_bits;
3817         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3818                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3819                 int meta_index = btrfs_bg_flags_to_raid_index(meta_target);
3820                 int data_index = btrfs_bg_flags_to_raid_index(data_target);
3821
3822                 btrfs_warn(fs_info,
3823         "balance: metadata profile %s has lower redundancy than data profile %s",
3824                            get_raid_name(meta_index), get_raid_name(data_index));
3825         }
3826
3827         ret = insert_balance_item(fs_info, bctl);
3828         if (ret && ret != -EEXIST)
3829                 goto out;
3830
3831         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3832                 BUG_ON(ret == -EEXIST);
3833                 BUG_ON(fs_info->balance_ctl);
3834                 spin_lock(&fs_info->balance_lock);
3835                 fs_info->balance_ctl = bctl;
3836                 spin_unlock(&fs_info->balance_lock);
3837         } else {
3838                 BUG_ON(ret != -EEXIST);
3839                 spin_lock(&fs_info->balance_lock);
3840                 update_balance_args(bctl);
3841                 spin_unlock(&fs_info->balance_lock);
3842         }
3843
3844         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
3845         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3846         mutex_unlock(&fs_info->balance_mutex);
3847
3848         ret = __btrfs_balance(fs_info);
3849
3850         mutex_lock(&fs_info->balance_mutex);
3851         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3852
3853         if (bargs) {
3854                 memset(bargs, 0, sizeof(*bargs));
3855                 btrfs_update_ioctl_balance_args(fs_info, bargs);
3856         }
3857
3858         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3859             balance_need_close(fs_info)) {
3860                 reset_balance_state(fs_info);
3861                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3862         }
3863
3864         wake_up(&fs_info->balance_wait_q);
3865
3866         return ret;
3867 out:
3868         if (bctl->flags & BTRFS_BALANCE_RESUME)
3869                 reset_balance_state(fs_info);
3870         else
3871                 kfree(bctl);
3872         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3873
3874         return ret;
3875 }
3876
3877 static int balance_kthread(void *data)
3878 {
3879         struct btrfs_fs_info *fs_info = data;
3880         int ret = 0;
3881
3882         mutex_lock(&fs_info->balance_mutex);
3883         if (fs_info->balance_ctl) {
3884                 btrfs_info(fs_info, "balance: resuming");
3885                 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
3886         }
3887         mutex_unlock(&fs_info->balance_mutex);
3888
3889         return ret;
3890 }
3891
3892 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3893 {
3894         struct task_struct *tsk;
3895
3896         mutex_lock(&fs_info->balance_mutex);
3897         if (!fs_info->balance_ctl) {
3898                 mutex_unlock(&fs_info->balance_mutex);
3899                 return 0;
3900         }
3901         mutex_unlock(&fs_info->balance_mutex);
3902
3903         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3904                 btrfs_info(fs_info, "balance: resume skipped");
3905                 return 0;
3906         }
3907
3908         /*
3909          * A ro->rw remount sequence should continue with the paused balance
3910          * regardless of who pauses it, system or the user as of now, so set
3911          * the resume flag.
3912          */
3913         spin_lock(&fs_info->balance_lock);
3914         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
3915         spin_unlock(&fs_info->balance_lock);
3916
3917         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3918         return PTR_ERR_OR_ZERO(tsk);
3919 }
3920
3921 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3922 {
3923         struct btrfs_balance_control *bctl;
3924         struct btrfs_balance_item *item;
3925         struct btrfs_disk_balance_args disk_bargs;
3926         struct btrfs_path *path;
3927         struct extent_buffer *leaf;
3928         struct btrfs_key key;
3929         int ret;
3930
3931         path = btrfs_alloc_path();
3932         if (!path)
3933                 return -ENOMEM;
3934
3935         key.objectid = BTRFS_BALANCE_OBJECTID;
3936         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3937         key.offset = 0;
3938
3939         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3940         if (ret < 0)
3941                 goto out;
3942         if (ret > 0) { /* ret = -ENOENT; */
3943                 ret = 0;
3944                 goto out;
3945         }
3946
3947         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3948         if (!bctl) {
3949                 ret = -ENOMEM;
3950                 goto out;
3951         }
3952
3953         leaf = path->nodes[0];
3954         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3955
3956         bctl->flags = btrfs_balance_flags(leaf, item);
3957         bctl->flags |= BTRFS_BALANCE_RESUME;
3958
3959         btrfs_balance_data(leaf, item, &disk_bargs);
3960         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3961         btrfs_balance_meta(leaf, item, &disk_bargs);
3962         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3963         btrfs_balance_sys(leaf, item, &disk_bargs);
3964         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3965
3966         /*
3967          * This should never happen, as the paused balance state is recovered
3968          * during mount without any chance of other exclusive ops to collide.
3969          *
3970          * This gives the exclusive op status to balance and keeps in paused
3971          * state until user intervention (cancel or umount). If the ownership
3972          * cannot be assigned, show a message but do not fail. The balance
3973          * is in a paused state and must have fs_info::balance_ctl properly
3974          * set up.
3975          */
3976         if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
3977                 btrfs_warn(fs_info,
3978         "balance: cannot set exclusive op status, resume manually");
3979
3980         mutex_lock(&fs_info->balance_mutex);
3981         BUG_ON(fs_info->balance_ctl);
3982         spin_lock(&fs_info->balance_lock);
3983         fs_info->balance_ctl = bctl;
3984         spin_unlock(&fs_info->balance_lock);
3985         mutex_unlock(&fs_info->balance_mutex);
3986 out:
3987         btrfs_free_path(path);
3988         return ret;
3989 }
3990
3991 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3992 {
3993         int ret = 0;
3994
3995         mutex_lock(&fs_info->balance_mutex);
3996         if (!fs_info->balance_ctl) {
3997                 mutex_unlock(&fs_info->balance_mutex);
3998                 return -ENOTCONN;
3999         }
4000
4001         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4002                 atomic_inc(&fs_info->balance_pause_req);
4003                 mutex_unlock(&fs_info->balance_mutex);
4004
4005                 wait_event(fs_info->balance_wait_q,
4006                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4007
4008                 mutex_lock(&fs_info->balance_mutex);
4009                 /* we are good with balance_ctl ripped off from under us */
4010                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4011                 atomic_dec(&fs_info->balance_pause_req);
4012         } else {
4013                 ret = -ENOTCONN;
4014         }
4015
4016         mutex_unlock(&fs_info->balance_mutex);
4017         return ret;
4018 }
4019
4020 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4021 {
4022         mutex_lock(&fs_info->balance_mutex);
4023         if (!fs_info->balance_ctl) {
4024                 mutex_unlock(&fs_info->balance_mutex);
4025                 return -ENOTCONN;
4026         }
4027
4028         /*
4029          * A paused balance with the item stored on disk can be resumed at
4030          * mount time if the mount is read-write. Otherwise it's still paused
4031          * and we must not allow cancelling as it deletes the item.
4032          */
4033         if (sb_rdonly(fs_info->sb)) {
4034                 mutex_unlock(&fs_info->balance_mutex);
4035                 return -EROFS;
4036         }
4037
4038         atomic_inc(&fs_info->balance_cancel_req);
4039         /*
4040          * if we are running just wait and return, balance item is
4041          * deleted in btrfs_balance in this case
4042          */
4043         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4044                 mutex_unlock(&fs_info->balance_mutex);
4045                 wait_event(fs_info->balance_wait_q,
4046                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4047                 mutex_lock(&fs_info->balance_mutex);
4048         } else {
4049                 mutex_unlock(&fs_info->balance_mutex);
4050                 /*
4051                  * Lock released to allow other waiters to continue, we'll
4052                  * reexamine the status again.
4053                  */
4054                 mutex_lock(&fs_info->balance_mutex);
4055
4056                 if (fs_info->balance_ctl) {
4057                         reset_balance_state(fs_info);
4058                         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4059                         btrfs_info(fs_info, "balance: canceled");
4060                 }
4061         }
4062
4063         BUG_ON(fs_info->balance_ctl ||
4064                 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4065         atomic_dec(&fs_info->balance_cancel_req);
4066         mutex_unlock(&fs_info->balance_mutex);
4067         return 0;
4068 }
4069
4070 static int btrfs_uuid_scan_kthread(void *data)
4071 {
4072         struct btrfs_fs_info *fs_info = data;
4073         struct btrfs_root *root = fs_info->tree_root;
4074         struct btrfs_key key;
4075         struct btrfs_path *path = NULL;
4076         int ret = 0;
4077         struct extent_buffer *eb;
4078         int slot;
4079         struct btrfs_root_item root_item;
4080         u32 item_size;
4081         struct btrfs_trans_handle *trans = NULL;
4082
4083         path = btrfs_alloc_path();
4084         if (!path) {
4085                 ret = -ENOMEM;
4086                 goto out;
4087         }
4088
4089         key.objectid = 0;
4090         key.type = BTRFS_ROOT_ITEM_KEY;
4091         key.offset = 0;
4092
4093         while (1) {
4094                 ret = btrfs_search_forward(root, &key, path,
4095                                 BTRFS_OLDEST_GENERATION);
4096                 if (ret) {
4097                         if (ret > 0)
4098                                 ret = 0;
4099                         break;
4100                 }
4101
4102                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4103                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4104                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4105                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4106                         goto skip;
4107
4108                 eb = path->nodes[0];
4109                 slot = path->slots[0];
4110                 item_size = btrfs_item_size_nr(eb, slot);
4111                 if (item_size < sizeof(root_item))
4112                         goto skip;
4113
4114                 read_extent_buffer(eb, &root_item,
4115                                    btrfs_item_ptr_offset(eb, slot),
4116                                    (int)sizeof(root_item));
4117                 if (btrfs_root_refs(&root_item) == 0)
4118                         goto skip;
4119
4120                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4121                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4122                         if (trans)
4123                                 goto update_tree;
4124
4125                         btrfs_release_path(path);
4126                         /*
4127                          * 1 - subvol uuid item
4128                          * 1 - received_subvol uuid item
4129                          */
4130                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4131                         if (IS_ERR(trans)) {
4132                                 ret = PTR_ERR(trans);
4133                                 break;
4134                         }
4135                         continue;
4136                 } else {
4137                         goto skip;
4138                 }
4139 update_tree:
4140                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4141                         ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4142                                                   BTRFS_UUID_KEY_SUBVOL,
4143                                                   key.objectid);
4144                         if (ret < 0) {
4145                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4146                                         ret);
4147                                 break;
4148                         }
4149                 }
4150
4151                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4152                         ret = btrfs_uuid_tree_add(trans,
4153                                                   root_item.received_uuid,
4154                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4155                                                   key.objectid);
4156                         if (ret < 0) {
4157                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4158                                         ret);
4159                                 break;
4160                         }
4161                 }
4162
4163 skip:
4164                 if (trans) {
4165                         ret = btrfs_end_transaction(trans);
4166                         trans = NULL;
4167                         if (ret)
4168                                 break;
4169                 }
4170
4171                 btrfs_release_path(path);
4172                 if (key.offset < (u64)-1) {
4173                         key.offset++;
4174                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4175                         key.offset = 0;
4176                         key.type = BTRFS_ROOT_ITEM_KEY;
4177                 } else if (key.objectid < (u64)-1) {
4178                         key.offset = 0;
4179                         key.type = BTRFS_ROOT_ITEM_KEY;
4180                         key.objectid++;
4181                 } else {
4182                         break;
4183                 }
4184                 cond_resched();
4185         }
4186
4187 out:
4188         btrfs_free_path(path);
4189         if (trans && !IS_ERR(trans))
4190                 btrfs_end_transaction(trans);
4191         if (ret)
4192                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4193         else
4194                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4195         up(&fs_info->uuid_tree_rescan_sem);
4196         return 0;
4197 }
4198
4199 /*
4200  * Callback for btrfs_uuid_tree_iterate().
4201  * returns:
4202  * 0    check succeeded, the entry is not outdated.
4203  * < 0  if an error occurred.
4204  * > 0  if the check failed, which means the caller shall remove the entry.
4205  */
4206 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4207                                        u8 *uuid, u8 type, u64 subid)
4208 {
4209         struct btrfs_key key;
4210         int ret = 0;
4211         struct btrfs_root *subvol_root;
4212
4213         if (type != BTRFS_UUID_KEY_SUBVOL &&
4214             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4215                 goto out;
4216
4217         key.objectid = subid;
4218         key.type = BTRFS_ROOT_ITEM_KEY;
4219         key.offset = (u64)-1;
4220         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4221         if (IS_ERR(subvol_root)) {
4222                 ret = PTR_ERR(subvol_root);
4223                 if (ret == -ENOENT)
4224                         ret = 1;
4225                 goto out;
4226         }
4227
4228         switch (type) {
4229         case BTRFS_UUID_KEY_SUBVOL:
4230                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4231                         ret = 1;
4232                 break;
4233         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4234                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4235                            BTRFS_UUID_SIZE))
4236                         ret = 1;
4237                 break;
4238         }
4239
4240 out:
4241         return ret;
4242 }
4243
4244 static int btrfs_uuid_rescan_kthread(void *data)
4245 {
4246         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4247         int ret;
4248
4249         /*
4250          * 1st step is to iterate through the existing UUID tree and
4251          * to delete all entries that contain outdated data.
4252          * 2nd step is to add all missing entries to the UUID tree.
4253          */
4254         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4255         if (ret < 0) {
4256                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4257                 up(&fs_info->uuid_tree_rescan_sem);
4258                 return ret;
4259         }
4260         return btrfs_uuid_scan_kthread(data);
4261 }
4262
4263 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4264 {
4265         struct btrfs_trans_handle *trans;
4266         struct btrfs_root *tree_root = fs_info->tree_root;
4267         struct btrfs_root *uuid_root;
4268         struct task_struct *task;
4269         int ret;
4270
4271         /*
4272          * 1 - root node
4273          * 1 - root item
4274          */
4275         trans = btrfs_start_transaction(tree_root, 2);
4276         if (IS_ERR(trans))
4277                 return PTR_ERR(trans);
4278
4279         uuid_root = btrfs_create_tree(trans, fs_info,
4280                                       BTRFS_UUID_TREE_OBJECTID);
4281         if (IS_ERR(uuid_root)) {
4282                 ret = PTR_ERR(uuid_root);
4283                 btrfs_abort_transaction(trans, ret);
4284                 btrfs_end_transaction(trans);
4285                 return ret;
4286         }
4287
4288         fs_info->uuid_root = uuid_root;
4289
4290         ret = btrfs_commit_transaction(trans);
4291         if (ret)
4292                 return ret;
4293
4294         down(&fs_info->uuid_tree_rescan_sem);
4295         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4296         if (IS_ERR(task)) {
4297                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4298                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4299                 up(&fs_info->uuid_tree_rescan_sem);
4300                 return PTR_ERR(task);
4301         }
4302
4303         return 0;
4304 }
4305
4306 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4307 {
4308         struct task_struct *task;
4309
4310         down(&fs_info->uuid_tree_rescan_sem);
4311         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4312         if (IS_ERR(task)) {
4313                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4314                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4315                 up(&fs_info->uuid_tree_rescan_sem);
4316                 return PTR_ERR(task);
4317         }
4318
4319         return 0;
4320 }
4321
4322 /*
4323  * shrinking a device means finding all of the device extents past
4324  * the new size, and then following the back refs to the chunks.
4325  * The chunk relocation code actually frees the device extent
4326  */
4327 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4328 {
4329         struct btrfs_fs_info *fs_info = device->fs_info;
4330         struct btrfs_root *root = fs_info->dev_root;
4331         struct btrfs_trans_handle *trans;
4332         struct btrfs_dev_extent *dev_extent = NULL;
4333         struct btrfs_path *path;
4334         u64 length;
4335         u64 chunk_offset;
4336         int ret;
4337         int slot;
4338         int failed = 0;
4339         bool retried = false;
4340         bool checked_pending_chunks = false;
4341         struct extent_buffer *l;
4342         struct btrfs_key key;
4343         struct btrfs_super_block *super_copy = fs_info->super_copy;
4344         u64 old_total = btrfs_super_total_bytes(super_copy);
4345         u64 old_size = btrfs_device_get_total_bytes(device);
4346         u64 diff;
4347
4348         new_size = round_down(new_size, fs_info->sectorsize);
4349         diff = round_down(old_size - new_size, fs_info->sectorsize);
4350
4351         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4352                 return -EINVAL;
4353
4354         path = btrfs_alloc_path();
4355         if (!path)
4356                 return -ENOMEM;
4357
4358         path->reada = READA_BACK;
4359
4360         mutex_lock(&fs_info->chunk_mutex);
4361
4362         btrfs_device_set_total_bytes(device, new_size);
4363         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4364                 device->fs_devices->total_rw_bytes -= diff;
4365                 atomic64_sub(diff, &fs_info->free_chunk_space);
4366         }
4367         mutex_unlock(&fs_info->chunk_mutex);
4368
4369 again:
4370         key.objectid = device->devid;
4371         key.offset = (u64)-1;
4372         key.type = BTRFS_DEV_EXTENT_KEY;
4373
4374         do {
4375                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4376                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4377                 if (ret < 0) {
4378                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4379                         goto done;
4380                 }
4381
4382                 ret = btrfs_previous_item(root, path, 0, key.type);
4383                 if (ret)
4384                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4385                 if (ret < 0)
4386                         goto done;
4387                 if (ret) {
4388                         ret = 0;
4389                         btrfs_release_path(path);
4390                         break;
4391                 }
4392
4393                 l = path->nodes[0];
4394                 slot = path->slots[0];
4395                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4396
4397                 if (key.objectid != device->devid) {
4398                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4399                         btrfs_release_path(path);
4400                         break;
4401                 }
4402
4403                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4404                 length = btrfs_dev_extent_length(l, dev_extent);
4405
4406                 if (key.offset + length <= new_size) {
4407                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4408                         btrfs_release_path(path);
4409                         break;
4410                 }
4411
4412                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4413                 btrfs_release_path(path);
4414
4415                 /*
4416                  * We may be relocating the only data chunk we have,
4417                  * which could potentially end up with losing data's
4418                  * raid profile, so lets allocate an empty one in
4419                  * advance.
4420                  */
4421                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4422                 if (ret < 0) {
4423                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4424                         goto done;
4425                 }
4426
4427                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4428                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4429                 if (ret && ret != -ENOSPC)
4430                         goto done;
4431                 if (ret == -ENOSPC)
4432                         failed++;
4433         } while (key.offset-- > 0);
4434
4435         if (failed && !retried) {
4436                 failed = 0;
4437                 retried = true;
4438                 goto again;
4439         } else if (failed && retried) {
4440                 ret = -ENOSPC;
4441                 goto done;
4442         }
4443
4444         /* Shrinking succeeded, else we would be at "done". */
4445         trans = btrfs_start_transaction(root, 0);
4446         if (IS_ERR(trans)) {
4447                 ret = PTR_ERR(trans);
4448                 goto done;
4449         }
4450
4451         mutex_lock(&fs_info->chunk_mutex);
4452
4453         /*
4454          * We checked in the above loop all device extents that were already in
4455          * the device tree. However before we have updated the device's
4456          * total_bytes to the new size, we might have had chunk allocations that
4457          * have not complete yet (new block groups attached to transaction
4458          * handles), and therefore their device extents were not yet in the
4459          * device tree and we missed them in the loop above. So if we have any
4460          * pending chunk using a device extent that overlaps the device range
4461          * that we can not use anymore, commit the current transaction and
4462          * repeat the search on the device tree - this way we guarantee we will
4463          * not have chunks using device extents that end beyond 'new_size'.
4464          */
4465         if (!checked_pending_chunks) {
4466                 u64 start = new_size;
4467                 u64 len = old_size - new_size;
4468
4469                 if (contains_pending_extent(trans->transaction, device,
4470                                             &start, len)) {
4471                         mutex_unlock(&fs_info->chunk_mutex);
4472                         checked_pending_chunks = true;
4473                         failed = 0;
4474                         retried = false;
4475                         ret = btrfs_commit_transaction(trans);
4476                         if (ret)
4477                                 goto done;
4478                         goto again;
4479                 }
4480         }
4481
4482         btrfs_device_set_disk_total_bytes(device, new_size);
4483         if (list_empty(&device->resized_list))
4484                 list_add_tail(&device->resized_list,
4485                               &fs_info->fs_devices->resized_devices);
4486
4487         WARN_ON(diff > old_total);
4488         btrfs_set_super_total_bytes(super_copy,
4489                         round_down(old_total - diff, fs_info->sectorsize));
4490         mutex_unlock(&fs_info->chunk_mutex);
4491
4492         /* Now btrfs_update_device() will change the on-disk size. */
4493         ret = btrfs_update_device(trans, device);
4494         btrfs_end_transaction(trans);
4495 done:
4496         btrfs_free_path(path);
4497         if (ret) {
4498                 mutex_lock(&fs_info->chunk_mutex);
4499                 btrfs_device_set_total_bytes(device, old_size);
4500                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4501                         device->fs_devices->total_rw_bytes += diff;
4502                 atomic64_add(diff, &fs_info->free_chunk_space);
4503                 mutex_unlock(&fs_info->chunk_mutex);
4504         }
4505         return ret;
4506 }
4507
4508 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4509                            struct btrfs_key *key,
4510                            struct btrfs_chunk *chunk, int item_size)
4511 {
4512         struct btrfs_super_block *super_copy = fs_info->super_copy;
4513         struct btrfs_disk_key disk_key;
4514         u32 array_size;
4515         u8 *ptr;
4516
4517         mutex_lock(&fs_info->chunk_mutex);
4518         array_size = btrfs_super_sys_array_size(super_copy);
4519         if (array_size + item_size + sizeof(disk_key)
4520                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4521                 mutex_unlock(&fs_info->chunk_mutex);
4522                 return -EFBIG;
4523         }
4524
4525         ptr = super_copy->sys_chunk_array + array_size;
4526         btrfs_cpu_key_to_disk(&disk_key, key);
4527         memcpy(ptr, &disk_key, sizeof(disk_key));
4528         ptr += sizeof(disk_key);
4529         memcpy(ptr, chunk, item_size);
4530         item_size += sizeof(disk_key);
4531         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4532         mutex_unlock(&fs_info->chunk_mutex);
4533
4534         return 0;
4535 }
4536
4537 /*
4538  * sort the devices in descending order by max_avail, total_avail
4539  */
4540 static int btrfs_cmp_device_info(const void *a, const void *b)
4541 {
4542         const struct btrfs_device_info *di_a = a;
4543         const struct btrfs_device_info *di_b = b;
4544
4545         if (di_a->max_avail > di_b->max_avail)
4546                 return -1;
4547         if (di_a->max_avail < di_b->max_avail)
4548                 return 1;
4549         if (di_a->total_avail > di_b->total_avail)
4550                 return -1;
4551         if (di_a->total_avail < di_b->total_avail)
4552                 return 1;
4553         return 0;
4554 }
4555
4556 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4557 {
4558         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4559                 return;
4560
4561         btrfs_set_fs_incompat(info, RAID56);
4562 }
4563
4564 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info)        \
4565                         - sizeof(struct btrfs_chunk))           \
4566                         / sizeof(struct btrfs_stripe) + 1)
4567
4568 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4569                                 - 2 * sizeof(struct btrfs_disk_key)     \
4570                                 - 2 * sizeof(struct btrfs_chunk))       \
4571                                 / sizeof(struct btrfs_stripe) + 1)
4572
4573 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4574                                u64 start, u64 type)
4575 {
4576         struct btrfs_fs_info *info = trans->fs_info;
4577         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4578         struct btrfs_device *device;
4579         struct map_lookup *map = NULL;
4580         struct extent_map_tree *em_tree;
4581         struct extent_map *em;
4582         struct btrfs_device_info *devices_info = NULL;
4583         u64 total_avail;
4584         int num_stripes;        /* total number of stripes to allocate */
4585         int data_stripes;       /* number of stripes that count for
4586                                    block group size */
4587         int sub_stripes;        /* sub_stripes info for map */
4588         int dev_stripes;        /* stripes per dev */
4589         int devs_max;           /* max devs to use */
4590         int devs_min;           /* min devs needed */
4591         int devs_increment;     /* ndevs has to be a multiple of this */
4592         int ncopies;            /* how many copies to data has */
4593         int ret;
4594         u64 max_stripe_size;
4595         u64 max_chunk_size;
4596         u64 stripe_size;
4597         u64 num_bytes;
4598         int ndevs;
4599         int i;
4600         int j;
4601         int index;
4602
4603         BUG_ON(!alloc_profile_is_valid(type, 0));
4604
4605         if (list_empty(&fs_devices->alloc_list)) {
4606                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4607                         btrfs_debug(info, "%s: no writable device", __func__);
4608                 return -ENOSPC;
4609         }
4610
4611         index = btrfs_bg_flags_to_raid_index(type);
4612
4613         sub_stripes = btrfs_raid_array[index].sub_stripes;
4614         dev_stripes = btrfs_raid_array[index].dev_stripes;
4615         devs_max = btrfs_raid_array[index].devs_max;
4616         devs_min = btrfs_raid_array[index].devs_min;
4617         devs_increment = btrfs_raid_array[index].devs_increment;
4618         ncopies = btrfs_raid_array[index].ncopies;
4619
4620         if (type & BTRFS_BLOCK_GROUP_DATA) {
4621                 max_stripe_size = SZ_1G;
4622                 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4623                 if (!devs_max)
4624                         devs_max = BTRFS_MAX_DEVS(info);
4625         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4626                 /* for larger filesystems, use larger metadata chunks */
4627                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4628                         max_stripe_size = SZ_1G;
4629                 else
4630                         max_stripe_size = SZ_256M;
4631                 max_chunk_size = max_stripe_size;
4632                 if (!devs_max)
4633                         devs_max = BTRFS_MAX_DEVS(info);
4634         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4635                 max_stripe_size = SZ_32M;
4636                 max_chunk_size = 2 * max_stripe_size;
4637                 if (!devs_max)
4638                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4639         } else {
4640                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4641                        type);
4642                 BUG_ON(1);
4643         }
4644
4645         /* we don't want a chunk larger than 10% of writeable space */
4646         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4647                              max_chunk_size);
4648
4649         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4650                                GFP_NOFS);
4651         if (!devices_info)
4652                 return -ENOMEM;
4653
4654         /*
4655          * in the first pass through the devices list, we gather information
4656          * about the available holes on each device.
4657          */
4658         ndevs = 0;
4659         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4660                 u64 max_avail;
4661                 u64 dev_offset;
4662
4663                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4664                         WARN(1, KERN_ERR
4665                                "BTRFS: read-only device in alloc_list\n");
4666                         continue;
4667                 }
4668
4669                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4670                                         &device->dev_state) ||
4671                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4672                         continue;
4673
4674                 if (device->total_bytes > device->bytes_used)
4675                         total_avail = device->total_bytes - device->bytes_used;
4676                 else
4677                         total_avail = 0;
4678
4679                 /* If there is no space on this device, skip it. */
4680                 if (total_avail == 0)
4681                         continue;
4682
4683                 ret = find_free_dev_extent(trans, device,
4684                                            max_stripe_size * dev_stripes,
4685                                            &dev_offset, &max_avail);
4686                 if (ret && ret != -ENOSPC)
4687                         goto error;
4688
4689                 if (ret == 0)
4690                         max_avail = max_stripe_size * dev_stripes;
4691
4692                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4693                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
4694                                 btrfs_debug(info,
4695                         "%s: devid %llu has no free space, have=%llu want=%u",
4696                                             __func__, device->devid, max_avail,
4697                                             BTRFS_STRIPE_LEN * dev_stripes);
4698                         continue;
4699                 }
4700
4701                 if (ndevs == fs_devices->rw_devices) {
4702                         WARN(1, "%s: found more than %llu devices\n",
4703                              __func__, fs_devices->rw_devices);
4704                         break;
4705                 }
4706                 devices_info[ndevs].dev_offset = dev_offset;
4707                 devices_info[ndevs].max_avail = max_avail;
4708                 devices_info[ndevs].total_avail = total_avail;
4709                 devices_info[ndevs].dev = device;
4710                 ++ndevs;
4711         }
4712
4713         /*
4714          * now sort the devices by hole size / available space
4715          */
4716         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4717              btrfs_cmp_device_info, NULL);
4718
4719         /* round down to number of usable stripes */
4720         ndevs = round_down(ndevs, devs_increment);
4721
4722         if (ndevs < devs_min) {
4723                 ret = -ENOSPC;
4724                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4725                         btrfs_debug(info,
4726         "%s: not enough devices with free space: have=%d minimum required=%d",
4727                                     __func__, ndevs, devs_min);
4728                 }
4729                 goto error;
4730         }
4731
4732         ndevs = min(ndevs, devs_max);
4733
4734         /*
4735          * The primary goal is to maximize the number of stripes, so use as
4736          * many devices as possible, even if the stripes are not maximum sized.
4737          *
4738          * The DUP profile stores more than one stripe per device, the
4739          * max_avail is the total size so we have to adjust.
4740          */
4741         stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4742         num_stripes = ndevs * dev_stripes;
4743
4744         /*
4745          * this will have to be fixed for RAID1 and RAID10 over
4746          * more drives
4747          */
4748         data_stripes = num_stripes / ncopies;
4749
4750         if (type & BTRFS_BLOCK_GROUP_RAID5)
4751                 data_stripes = num_stripes - 1;
4752
4753         if (type & BTRFS_BLOCK_GROUP_RAID6)
4754                 data_stripes = num_stripes - 2;
4755
4756         /*
4757          * Use the number of data stripes to figure out how big this chunk
4758          * is really going to be in terms of logical address space,
4759          * and compare that answer with the max chunk size
4760          */
4761         if (stripe_size * data_stripes > max_chunk_size) {
4762                 stripe_size = div_u64(max_chunk_size, data_stripes);
4763
4764                 /* bump the answer up to a 16MB boundary */
4765                 stripe_size = round_up(stripe_size, SZ_16M);
4766
4767                 /*
4768                  * But don't go higher than the limits we found while searching
4769                  * for free extents
4770                  */
4771                 stripe_size = min(devices_info[ndevs - 1].max_avail,
4772                                   stripe_size);
4773         }
4774
4775         /* align to BTRFS_STRIPE_LEN */
4776         stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4777
4778         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4779         if (!map) {
4780                 ret = -ENOMEM;
4781                 goto error;
4782         }
4783         map->num_stripes = num_stripes;
4784
4785         for (i = 0; i < ndevs; ++i) {
4786                 for (j = 0; j < dev_stripes; ++j) {
4787                         int s = i * dev_stripes + j;
4788                         map->stripes[s].dev = devices_info[i].dev;
4789                         map->stripes[s].physical = devices_info[i].dev_offset +
4790                                                    j * stripe_size;
4791                 }
4792         }
4793         map->stripe_len = BTRFS_STRIPE_LEN;
4794         map->io_align = BTRFS_STRIPE_LEN;
4795         map->io_width = BTRFS_STRIPE_LEN;
4796         map->type = type;
4797         map->sub_stripes = sub_stripes;
4798
4799         num_bytes = stripe_size * data_stripes;
4800
4801         trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4802
4803         em = alloc_extent_map();
4804         if (!em) {
4805                 kfree(map);
4806                 ret = -ENOMEM;
4807                 goto error;
4808         }
4809         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4810         em->map_lookup = map;
4811         em->start = start;
4812         em->len = num_bytes;
4813         em->block_start = 0;
4814         em->block_len = em->len;
4815         em->orig_block_len = stripe_size;
4816
4817         em_tree = &info->mapping_tree.map_tree;
4818         write_lock(&em_tree->lock);
4819         ret = add_extent_mapping(em_tree, em, 0);
4820         if (ret) {
4821                 write_unlock(&em_tree->lock);
4822                 free_extent_map(em);
4823                 goto error;
4824         }
4825
4826         list_add_tail(&em->list, &trans->transaction->pending_chunks);
4827         refcount_inc(&em->refs);
4828         write_unlock(&em_tree->lock);
4829
4830         ret = btrfs_make_block_group(trans, 0, type, start, num_bytes);
4831         if (ret)
4832                 goto error_del_extent;
4833
4834         for (i = 0; i < map->num_stripes; i++) {
4835                 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4836                 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4837         }
4838
4839         atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4840
4841         free_extent_map(em);
4842         check_raid56_incompat_flag(info, type);
4843
4844         kfree(devices_info);
4845         return 0;
4846
4847 error_del_extent:
4848         write_lock(&em_tree->lock);
4849         remove_extent_mapping(em_tree, em);
4850         write_unlock(&em_tree->lock);
4851
4852         /* One for our allocation */
4853         free_extent_map(em);
4854         /* One for the tree reference */
4855         free_extent_map(em);
4856         /* One for the pending_chunks list reference */
4857         free_extent_map(em);
4858 error:
4859         kfree(devices_info);
4860         return ret;
4861 }
4862
4863 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4864                              u64 chunk_offset, u64 chunk_size)
4865 {
4866         struct btrfs_fs_info *fs_info = trans->fs_info;
4867         struct btrfs_root *extent_root = fs_info->extent_root;
4868         struct btrfs_root *chunk_root = fs_info->chunk_root;
4869         struct btrfs_key key;
4870         struct btrfs_device *device;
4871         struct btrfs_chunk *chunk;
4872         struct btrfs_stripe *stripe;
4873         struct extent_map *em;
4874         struct map_lookup *map;
4875         size_t item_size;
4876         u64 dev_offset;
4877         u64 stripe_size;
4878         int i = 0;
4879         int ret = 0;
4880
4881         em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4882         if (IS_ERR(em))
4883                 return PTR_ERR(em);
4884
4885         map = em->map_lookup;
4886         item_size = btrfs_chunk_item_size(map->num_stripes);
4887         stripe_size = em->orig_block_len;
4888
4889         chunk = kzalloc(item_size, GFP_NOFS);
4890         if (!chunk) {
4891                 ret = -ENOMEM;
4892                 goto out;
4893         }
4894
4895         /*
4896          * Take the device list mutex to prevent races with the final phase of
4897          * a device replace operation that replaces the device object associated
4898          * with the map's stripes, because the device object's id can change
4899          * at any time during that final phase of the device replace operation
4900          * (dev-replace.c:btrfs_dev_replace_finishing()).
4901          */
4902         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4903         for (i = 0; i < map->num_stripes; i++) {
4904                 device = map->stripes[i].dev;
4905                 dev_offset = map->stripes[i].physical;
4906
4907                 ret = btrfs_update_device(trans, device);
4908                 if (ret)
4909                         break;
4910                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4911                                              dev_offset, stripe_size);
4912                 if (ret)
4913                         break;
4914         }
4915         if (ret) {
4916                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4917                 goto out;
4918         }
4919
4920         stripe = &chunk->stripe;
4921         for (i = 0; i < map->num_stripes; i++) {
4922                 device = map->stripes[i].dev;
4923                 dev_offset = map->stripes[i].physical;
4924
4925                 btrfs_set_stack_stripe_devid(stripe, device->devid);
4926                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4927                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4928                 stripe++;
4929         }
4930         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4931
4932         btrfs_set_stack_chunk_length(chunk, chunk_size);
4933         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4934         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4935         btrfs_set_stack_chunk_type(chunk, map->type);
4936         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4937         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4938         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4939         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4940         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4941
4942         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4943         key.type = BTRFS_CHUNK_ITEM_KEY;
4944         key.offset = chunk_offset;
4945
4946         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4947         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4948                 /*
4949                  * TODO: Cleanup of inserted chunk root in case of
4950                  * failure.
4951                  */
4952                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4953         }
4954
4955 out:
4956         kfree(chunk);
4957         free_extent_map(em);
4958         return ret;
4959 }
4960
4961 /*
4962  * Chunk allocation falls into two parts. The first part does works
4963  * that make the new allocated chunk useable, but not do any operation
4964  * that modifies the chunk tree. The second part does the works that
4965  * require modifying the chunk tree. This division is important for the
4966  * bootstrap process of adding storage to a seed btrfs.
4967  */
4968 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
4969 {
4970         u64 chunk_offset;
4971
4972         lockdep_assert_held(&trans->fs_info->chunk_mutex);
4973         chunk_offset = find_next_chunk(trans->fs_info);
4974         return __btrfs_alloc_chunk(trans, chunk_offset, type);
4975 }
4976
4977 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4978                                          struct btrfs_fs_info *fs_info)
4979 {
4980         u64 chunk_offset;
4981         u64 sys_chunk_offset;
4982         u64 alloc_profile;
4983         int ret;
4984
4985         chunk_offset = find_next_chunk(fs_info);
4986         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
4987         ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
4988         if (ret)
4989                 return ret;
4990
4991         sys_chunk_offset = find_next_chunk(fs_info);
4992         alloc_profile = btrfs_system_alloc_profile(fs_info);
4993         ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
4994         return ret;
4995 }
4996
4997 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4998 {
4999         int max_errors;
5000
5001         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5002                          BTRFS_BLOCK_GROUP_RAID10 |
5003                          BTRFS_BLOCK_GROUP_RAID5 |
5004                          BTRFS_BLOCK_GROUP_DUP)) {
5005                 max_errors = 1;
5006         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5007                 max_errors = 2;
5008         } else {
5009                 max_errors = 0;
5010         }
5011
5012         return max_errors;
5013 }
5014
5015 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5016 {
5017         struct extent_map *em;
5018         struct map_lookup *map;
5019         int readonly = 0;
5020         int miss_ndevs = 0;
5021         int i;
5022
5023         em = get_chunk_map(fs_info, chunk_offset, 1);
5024         if (IS_ERR(em))
5025                 return 1;
5026
5027         map = em->map_lookup;
5028         for (i = 0; i < map->num_stripes; i++) {
5029                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5030                                         &map->stripes[i].dev->dev_state)) {
5031                         miss_ndevs++;
5032                         continue;
5033                 }
5034                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5035                                         &map->stripes[i].dev->dev_state)) {
5036                         readonly = 1;
5037                         goto end;
5038                 }
5039         }
5040
5041         /*
5042          * If the number of missing devices is larger than max errors,
5043          * we can not write the data into that chunk successfully, so
5044          * set it readonly.
5045          */
5046         if (miss_ndevs > btrfs_chunk_max_errors(map))
5047                 readonly = 1;
5048 end:
5049         free_extent_map(em);
5050         return readonly;
5051 }
5052
5053 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5054 {
5055         extent_map_tree_init(&tree->map_tree);
5056 }
5057
5058 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5059 {
5060         struct extent_map *em;
5061
5062         while (1) {
5063                 write_lock(&tree->map_tree.lock);
5064                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5065                 if (em)
5066                         remove_extent_mapping(&tree->map_tree, em);
5067                 write_unlock(&tree->map_tree.lock);
5068                 if (!em)
5069                         break;
5070                 /* once for us */
5071                 free_extent_map(em);
5072                 /* once for the tree */
5073                 free_extent_map(em);
5074         }
5075 }
5076
5077 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5078 {
5079         struct extent_map *em;
5080         struct map_lookup *map;
5081         int ret;
5082
5083         em = get_chunk_map(fs_info, logical, len);
5084         if (IS_ERR(em))
5085                 /*
5086                  * We could return errors for these cases, but that could get
5087                  * ugly and we'd probably do the same thing which is just not do
5088                  * anything else and exit, so return 1 so the callers don't try
5089                  * to use other copies.
5090                  */
5091                 return 1;
5092
5093         map = em->map_lookup;
5094         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5095                 ret = map->num_stripes;
5096         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5097                 ret = map->sub_stripes;
5098         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5099                 ret = 2;
5100         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5101                 /*
5102                  * There could be two corrupted data stripes, we need
5103                  * to loop retry in order to rebuild the correct data.
5104                  *
5105                  * Fail a stripe at a time on every retry except the
5106                  * stripe under reconstruction.
5107                  */
5108                 ret = map->num_stripes;
5109         else
5110                 ret = 1;
5111         free_extent_map(em);
5112
5113         btrfs_dev_replace_read_lock(&fs_info->dev_replace);
5114         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5115             fs_info->dev_replace.tgtdev)
5116                 ret++;
5117         btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
5118
5119         return ret;
5120 }
5121
5122 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5123                                     u64 logical)
5124 {
5125         struct extent_map *em;
5126         struct map_lookup *map;
5127         unsigned long len = fs_info->sectorsize;
5128
5129         em = get_chunk_map(fs_info, logical, len);
5130
5131         if (!WARN_ON(IS_ERR(em))) {
5132                 map = em->map_lookup;
5133                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5134                         len = map->stripe_len * nr_data_stripes(map);
5135                 free_extent_map(em);
5136         }
5137         return len;
5138 }
5139
5140 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5141 {
5142         struct extent_map *em;
5143         struct map_lookup *map;
5144         int ret = 0;
5145
5146         em = get_chunk_map(fs_info, logical, len);
5147
5148         if(!WARN_ON(IS_ERR(em))) {
5149                 map = em->map_lookup;
5150                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5151                         ret = 1;
5152                 free_extent_map(em);
5153         }
5154         return ret;
5155 }
5156
5157 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5158                             struct map_lookup *map, int first,
5159                             int dev_replace_is_ongoing)
5160 {
5161         int i;
5162         int num_stripes;
5163         int preferred_mirror;
5164         int tolerance;
5165         struct btrfs_device *srcdev;
5166
5167         ASSERT((map->type &
5168                  (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)));
5169
5170         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5171                 num_stripes = map->sub_stripes;
5172         else
5173                 num_stripes = map->num_stripes;
5174
5175         preferred_mirror = first + current->pid % num_stripes;
5176
5177         if (dev_replace_is_ongoing &&
5178             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5179              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5180                 srcdev = fs_info->dev_replace.srcdev;
5181         else
5182                 srcdev = NULL;
5183
5184         /*
5185          * try to avoid the drive that is the source drive for a
5186          * dev-replace procedure, only choose it if no other non-missing
5187          * mirror is available
5188          */
5189         for (tolerance = 0; tolerance < 2; tolerance++) {
5190                 if (map->stripes[preferred_mirror].dev->bdev &&
5191                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5192                         return preferred_mirror;
5193                 for (i = first; i < first + num_stripes; i++) {
5194                         if (map->stripes[i].dev->bdev &&
5195                             (tolerance || map->stripes[i].dev != srcdev))
5196                                 return i;
5197                 }
5198         }
5199
5200         /* we couldn't find one that doesn't fail.  Just return something
5201          * and the io error handling code will clean up eventually
5202          */
5203         return preferred_mirror;
5204 }
5205
5206 static inline int parity_smaller(u64 a, u64 b)
5207 {
5208         return a > b;
5209 }
5210
5211 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5212 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5213 {
5214         struct btrfs_bio_stripe s;
5215         int i;
5216         u64 l;
5217         int again = 1;
5218
5219         while (again) {
5220                 again = 0;
5221                 for (i = 0; i < num_stripes - 1; i++) {
5222                         if (parity_smaller(bbio->raid_map[i],
5223                                            bbio->raid_map[i+1])) {
5224                                 s = bbio->stripes[i];
5225                                 l = bbio->raid_map[i];
5226                                 bbio->stripes[i] = bbio->stripes[i+1];
5227                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5228                                 bbio->stripes[i+1] = s;
5229                                 bbio->raid_map[i+1] = l;
5230
5231                                 again = 1;
5232                         }
5233                 }
5234         }
5235 }
5236
5237 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5238 {
5239         struct btrfs_bio *bbio = kzalloc(
5240                  /* the size of the btrfs_bio */
5241                 sizeof(struct btrfs_bio) +
5242                 /* plus the variable array for the stripes */
5243                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5244                 /* plus the variable array for the tgt dev */
5245                 sizeof(int) * (real_stripes) +
5246                 /*
5247                  * plus the raid_map, which includes both the tgt dev
5248                  * and the stripes
5249                  */
5250                 sizeof(u64) * (total_stripes),
5251                 GFP_NOFS|__GFP_NOFAIL);
5252
5253         atomic_set(&bbio->error, 0);
5254         refcount_set(&bbio->refs, 1);
5255
5256         return bbio;
5257 }
5258
5259 void btrfs_get_bbio(struct btrfs_bio *bbio)
5260 {
5261         WARN_ON(!refcount_read(&bbio->refs));
5262         refcount_inc(&bbio->refs);
5263 }
5264
5265 void btrfs_put_bbio(struct btrfs_bio *bbio)
5266 {
5267         if (!bbio)
5268                 return;
5269         if (refcount_dec_and_test(&bbio->refs))
5270                 kfree(bbio);
5271 }
5272
5273 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5274 /*
5275  * Please note that, discard won't be sent to target device of device
5276  * replace.
5277  */
5278 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5279                                          u64 logical, u64 length,
5280                                          struct btrfs_bio **bbio_ret)
5281 {
5282         struct extent_map *em;
5283         struct map_lookup *map;
5284         struct btrfs_bio *bbio;
5285         u64 offset;
5286         u64 stripe_nr;
5287         u64 stripe_nr_end;
5288         u64 stripe_end_offset;
5289         u64 stripe_cnt;
5290         u64 stripe_len;
5291         u64 stripe_offset;
5292         u64 num_stripes;
5293         u32 stripe_index;
5294         u32 factor = 0;
5295         u32 sub_stripes = 0;
5296         u64 stripes_per_dev = 0;
5297         u32 remaining_stripes = 0;
5298         u32 last_stripe = 0;
5299         int ret = 0;
5300         int i;
5301
5302         /* discard always return a bbio */
5303         ASSERT(bbio_ret);
5304
5305         em = get_chunk_map(fs_info, logical, length);
5306         if (IS_ERR(em))
5307                 return PTR_ERR(em);
5308
5309         map = em->map_lookup;
5310         /* we don't discard raid56 yet */
5311         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5312                 ret = -EOPNOTSUPP;
5313                 goto out;
5314         }
5315
5316         offset = logical - em->start;
5317         length = min_t(u64, em->len - offset, length);
5318
5319         stripe_len = map->stripe_len;
5320         /*
5321          * stripe_nr counts the total number of stripes we have to stride
5322          * to get to this block
5323          */
5324         stripe_nr = div64_u64(offset, stripe_len);
5325
5326         /* stripe_offset is the offset of this block in its stripe */
5327         stripe_offset = offset - stripe_nr * stripe_len;
5328
5329         stripe_nr_end = round_up(offset + length, map->stripe_len);
5330         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5331         stripe_cnt = stripe_nr_end - stripe_nr;
5332         stripe_end_offset = stripe_nr_end * map->stripe_len -
5333                             (offset + length);
5334         /*
5335          * after this, stripe_nr is the number of stripes on this
5336          * device we have to walk to find the data, and stripe_index is
5337          * the number of our device in the stripe array
5338          */
5339         num_stripes = 1;
5340         stripe_index = 0;
5341         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5342                          BTRFS_BLOCK_GROUP_RAID10)) {
5343                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5344                         sub_stripes = 1;
5345                 else
5346                         sub_stripes = map->sub_stripes;
5347
5348                 factor = map->num_stripes / sub_stripes;
5349                 num_stripes = min_t(u64, map->num_stripes,
5350                                     sub_stripes * stripe_cnt);
5351                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5352                 stripe_index *= sub_stripes;
5353                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5354                                               &remaining_stripes);
5355                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5356                 last_stripe *= sub_stripes;
5357         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5358                                 BTRFS_BLOCK_GROUP_DUP)) {
5359                 num_stripes = map->num_stripes;
5360         } else {
5361                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5362                                         &stripe_index);
5363         }
5364
5365         bbio = alloc_btrfs_bio(num_stripes, 0);
5366         if (!bbio) {
5367                 ret = -ENOMEM;
5368                 goto out;
5369         }
5370
5371         for (i = 0; i < num_stripes; i++) {
5372                 bbio->stripes[i].physical =
5373                         map->stripes[stripe_index].physical +
5374                         stripe_offset + stripe_nr * map->stripe_len;
5375                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5376
5377                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5378                                  BTRFS_BLOCK_GROUP_RAID10)) {
5379                         bbio->stripes[i].length = stripes_per_dev *
5380                                 map->stripe_len;
5381
5382                         if (i / sub_stripes < remaining_stripes)
5383                                 bbio->stripes[i].length +=
5384                                         map->stripe_len;
5385
5386                         /*
5387                          * Special for the first stripe and
5388                          * the last stripe:
5389                          *
5390                          * |-------|...|-------|
5391                          *     |----------|
5392                          *    off     end_off
5393                          */
5394                         if (i < sub_stripes)
5395                                 bbio->stripes[i].length -=
5396                                         stripe_offset;
5397
5398                         if (stripe_index >= last_stripe &&
5399                             stripe_index <= (last_stripe +
5400                                              sub_stripes - 1))
5401                                 bbio->stripes[i].length -=
5402                                         stripe_end_offset;
5403
5404                         if (i == sub_stripes - 1)
5405                                 stripe_offset = 0;
5406                 } else {
5407                         bbio->stripes[i].length = length;
5408                 }
5409
5410                 stripe_index++;
5411                 if (stripe_index == map->num_stripes) {
5412                         stripe_index = 0;
5413                         stripe_nr++;
5414                 }
5415         }
5416
5417         *bbio_ret = bbio;
5418         bbio->map_type = map->type;
5419         bbio->num_stripes = num_stripes;
5420 out:
5421         free_extent_map(em);
5422         return ret;
5423 }
5424
5425 /*
5426  * In dev-replace case, for repair case (that's the only case where the mirror
5427  * is selected explicitly when calling btrfs_map_block), blocks left of the
5428  * left cursor can also be read from the target drive.
5429  *
5430  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5431  * array of stripes.
5432  * For READ, it also needs to be supported using the same mirror number.
5433  *
5434  * If the requested block is not left of the left cursor, EIO is returned. This
5435  * can happen because btrfs_num_copies() returns one more in the dev-replace
5436  * case.
5437  */
5438 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5439                                          u64 logical, u64 length,
5440                                          u64 srcdev_devid, int *mirror_num,
5441                                          u64 *physical)
5442 {
5443         struct btrfs_bio *bbio = NULL;
5444         int num_stripes;
5445         int index_srcdev = 0;
5446         int found = 0;
5447         u64 physical_of_found = 0;
5448         int i;
5449         int ret = 0;
5450
5451         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5452                                 logical, &length, &bbio, 0, 0);
5453         if (ret) {
5454                 ASSERT(bbio == NULL);
5455                 return ret;
5456         }
5457
5458         num_stripes = bbio->num_stripes;
5459         if (*mirror_num > num_stripes) {
5460                 /*
5461                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5462                  * that means that the requested area is not left of the left
5463                  * cursor
5464                  */
5465                 btrfs_put_bbio(bbio);
5466                 return -EIO;
5467         }
5468
5469         /*
5470          * process the rest of the function using the mirror_num of the source
5471          * drive. Therefore look it up first.  At the end, patch the device
5472          * pointer to the one of the target drive.
5473          */
5474         for (i = 0; i < num_stripes; i++) {
5475                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5476                         continue;
5477
5478                 /*
5479                  * In case of DUP, in order to keep it simple, only add the
5480                  * mirror with the lowest physical address
5481                  */
5482                 if (found &&
5483                     physical_of_found <= bbio->stripes[i].physical)
5484                         continue;
5485
5486                 index_srcdev = i;
5487                 found = 1;
5488                 physical_of_found = bbio->stripes[i].physical;
5489         }
5490
5491         btrfs_put_bbio(bbio);
5492
5493         ASSERT(found);
5494         if (!found)
5495                 return -EIO;
5496
5497         *mirror_num = index_srcdev + 1;
5498         *physical = physical_of_found;
5499         return ret;
5500 }
5501
5502 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5503                                       struct btrfs_bio **bbio_ret,
5504                                       struct btrfs_dev_replace *dev_replace,
5505                                       int *num_stripes_ret, int *max_errors_ret)
5506 {
5507         struct btrfs_bio *bbio = *bbio_ret;
5508         u64 srcdev_devid = dev_replace->srcdev->devid;
5509         int tgtdev_indexes = 0;
5510         int num_stripes = *num_stripes_ret;
5511         int max_errors = *max_errors_ret;
5512         int i;
5513
5514         if (op == BTRFS_MAP_WRITE) {
5515                 int index_where_to_add;
5516
5517                 /*
5518                  * duplicate the write operations while the dev replace
5519                  * procedure is running. Since the copying of the old disk to
5520                  * the new disk takes place at run time while the filesystem is
5521                  * mounted writable, the regular write operations to the old
5522                  * disk have to be duplicated to go to the new disk as well.
5523                  *
5524                  * Note that device->missing is handled by the caller, and that
5525                  * the write to the old disk is already set up in the stripes
5526                  * array.
5527                  */
5528                 index_where_to_add = num_stripes;
5529                 for (i = 0; i < num_stripes; i++) {
5530                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5531                                 /* write to new disk, too */
5532                                 struct btrfs_bio_stripe *new =
5533                                         bbio->stripes + index_where_to_add;
5534                                 struct btrfs_bio_stripe *old =
5535                                         bbio->stripes + i;
5536
5537                                 new->physical = old->physical;
5538                                 new->length = old->length;
5539                                 new->dev = dev_replace->tgtdev;
5540                                 bbio->tgtdev_map[i] = index_where_to_add;
5541                                 index_where_to_add++;
5542                                 max_errors++;
5543                                 tgtdev_indexes++;
5544                         }
5545                 }
5546                 num_stripes = index_where_to_add;
5547         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5548                 int index_srcdev = 0;
5549                 int found = 0;
5550                 u64 physical_of_found = 0;
5551
5552                 /*
5553                  * During the dev-replace procedure, the target drive can also
5554                  * be used to read data in case it is needed to repair a corrupt
5555                  * block elsewhere. This is possible if the requested area is
5556                  * left of the left cursor. In this area, the target drive is a
5557                  * full copy of the source drive.
5558                  */
5559                 for (i = 0; i < num_stripes; i++) {
5560                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5561                                 /*
5562                                  * In case of DUP, in order to keep it simple,
5563                                  * only add the mirror with the lowest physical
5564                                  * address
5565                                  */
5566                                 if (found &&
5567                                     physical_of_found <=
5568                                      bbio->stripes[i].physical)
5569                                         continue;
5570                                 index_srcdev = i;
5571                                 found = 1;
5572                                 physical_of_found = bbio->stripes[i].physical;
5573                         }
5574                 }
5575                 if (found) {
5576                         struct btrfs_bio_stripe *tgtdev_stripe =
5577                                 bbio->stripes + num_stripes;
5578
5579                         tgtdev_stripe->physical = physical_of_found;
5580                         tgtdev_stripe->length =
5581                                 bbio->stripes[index_srcdev].length;
5582                         tgtdev_stripe->dev = dev_replace->tgtdev;
5583                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5584
5585                         tgtdev_indexes++;
5586                         num_stripes++;
5587                 }
5588         }
5589
5590         *num_stripes_ret = num_stripes;
5591         *max_errors_ret = max_errors;
5592         bbio->num_tgtdevs = tgtdev_indexes;
5593         *bbio_ret = bbio;
5594 }
5595
5596 static bool need_full_stripe(enum btrfs_map_op op)
5597 {
5598         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5599 }
5600
5601 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5602                              enum btrfs_map_op op,
5603                              u64 logical, u64 *length,
5604                              struct btrfs_bio **bbio_ret,
5605                              int mirror_num, int need_raid_map)
5606 {
5607         struct extent_map *em;
5608         struct map_lookup *map;
5609         u64 offset;
5610         u64 stripe_offset;
5611         u64 stripe_nr;
5612         u64 stripe_len;
5613         u32 stripe_index;
5614         int i;
5615         int ret = 0;
5616         int num_stripes;
5617         int max_errors = 0;
5618         int tgtdev_indexes = 0;
5619         struct btrfs_bio *bbio = NULL;
5620         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5621         int dev_replace_is_ongoing = 0;
5622         int num_alloc_stripes;
5623         int patch_the_first_stripe_for_dev_replace = 0;
5624         u64 physical_to_patch_in_first_stripe = 0;
5625         u64 raid56_full_stripe_start = (u64)-1;
5626
5627         if (op == BTRFS_MAP_DISCARD)
5628                 return __btrfs_map_block_for_discard(fs_info, logical,
5629                                                      *length, bbio_ret);
5630
5631         em = get_chunk_map(fs_info, logical, *length);
5632         if (IS_ERR(em))
5633                 return PTR_ERR(em);
5634
5635         map = em->map_lookup;
5636         offset = logical - em->start;
5637
5638         stripe_len = map->stripe_len;
5639         stripe_nr = offset;
5640         /*
5641          * stripe_nr counts the total number of stripes we have to stride
5642          * to get to this block
5643          */
5644         stripe_nr = div64_u64(stripe_nr, stripe_len);
5645
5646         stripe_offset = stripe_nr * stripe_len;
5647         if (offset < stripe_offset) {
5648                 btrfs_crit(fs_info,
5649                            "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5650                            stripe_offset, offset, em->start, logical,
5651                            stripe_len);
5652                 free_extent_map(em);
5653                 return -EINVAL;
5654         }
5655
5656         /* stripe_offset is the offset of this block in its stripe*/
5657         stripe_offset = offset - stripe_offset;
5658
5659         /* if we're here for raid56, we need to know the stripe aligned start */
5660         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5661                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5662                 raid56_full_stripe_start = offset;
5663
5664                 /* allow a write of a full stripe, but make sure we don't
5665                  * allow straddling of stripes
5666                  */
5667                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5668                                 full_stripe_len);
5669                 raid56_full_stripe_start *= full_stripe_len;
5670         }
5671
5672         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5673                 u64 max_len;
5674                 /* For writes to RAID[56], allow a full stripeset across all disks.
5675                    For other RAID types and for RAID[56] reads, just allow a single
5676                    stripe (on a single disk). */
5677                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5678                     (op == BTRFS_MAP_WRITE)) {
5679                         max_len = stripe_len * nr_data_stripes(map) -
5680                                 (offset - raid56_full_stripe_start);
5681                 } else {
5682                         /* we limit the length of each bio to what fits in a stripe */
5683                         max_len = stripe_len - stripe_offset;
5684                 }
5685                 *length = min_t(u64, em->len - offset, max_len);
5686         } else {
5687                 *length = em->len - offset;
5688         }
5689
5690         /* This is for when we're called from btrfs_merge_bio_hook() and all
5691            it cares about is the length */
5692         if (!bbio_ret)
5693                 goto out;
5694
5695         btrfs_dev_replace_read_lock(dev_replace);
5696         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5697         if (!dev_replace_is_ongoing)
5698                 btrfs_dev_replace_read_unlock(dev_replace);
5699         else
5700                 btrfs_dev_replace_set_lock_blocking(dev_replace);
5701
5702         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5703             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5704                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5705                                                     dev_replace->srcdev->devid,
5706                                                     &mirror_num,
5707                                             &physical_to_patch_in_first_stripe);
5708                 if (ret)
5709                         goto out;
5710                 else
5711                         patch_the_first_stripe_for_dev_replace = 1;
5712         } else if (mirror_num > map->num_stripes) {
5713                 mirror_num = 0;
5714         }
5715
5716         num_stripes = 1;
5717         stripe_index = 0;
5718         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5719                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5720                                 &stripe_index);
5721                 if (!need_full_stripe(op))
5722                         mirror_num = 1;
5723         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5724                 if (need_full_stripe(op))
5725                         num_stripes = map->num_stripes;
5726                 else if (mirror_num)
5727                         stripe_index = mirror_num - 1;
5728                 else {
5729                         stripe_index = find_live_mirror(fs_info, map, 0,
5730                                             dev_replace_is_ongoing);
5731                         mirror_num = stripe_index + 1;
5732                 }
5733
5734         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5735                 if (need_full_stripe(op)) {
5736                         num_stripes = map->num_stripes;
5737                 } else if (mirror_num) {
5738                         stripe_index = mirror_num - 1;
5739                 } else {
5740                         mirror_num = 1;
5741                 }
5742
5743         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5744                 u32 factor = map->num_stripes / map->sub_stripes;
5745
5746                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5747                 stripe_index *= map->sub_stripes;
5748
5749                 if (need_full_stripe(op))
5750                         num_stripes = map->sub_stripes;
5751                 else if (mirror_num)
5752                         stripe_index += mirror_num - 1;
5753                 else {
5754                         int old_stripe_index = stripe_index;
5755                         stripe_index = find_live_mirror(fs_info, map,
5756                                               stripe_index,
5757                                               dev_replace_is_ongoing);
5758                         mirror_num = stripe_index - old_stripe_index + 1;
5759                 }
5760
5761         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5762                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5763                         /* push stripe_nr back to the start of the full stripe */
5764                         stripe_nr = div64_u64(raid56_full_stripe_start,
5765                                         stripe_len * nr_data_stripes(map));
5766
5767                         /* RAID[56] write or recovery. Return all stripes */
5768                         num_stripes = map->num_stripes;
5769                         max_errors = nr_parity_stripes(map);
5770
5771                         *length = map->stripe_len;
5772                         stripe_index = 0;
5773                         stripe_offset = 0;
5774                 } else {
5775                         /*
5776                          * Mirror #0 or #1 means the original data block.
5777                          * Mirror #2 is RAID5 parity block.
5778                          * Mirror #3 is RAID6 Q block.
5779                          */
5780                         stripe_nr = div_u64_rem(stripe_nr,
5781                                         nr_data_stripes(map), &stripe_index);
5782                         if (mirror_num > 1)
5783                                 stripe_index = nr_data_stripes(map) +
5784                                                 mirror_num - 2;
5785
5786                         /* We distribute the parity blocks across stripes */
5787                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5788                                         &stripe_index);
5789                         if (!need_full_stripe(op) && mirror_num <= 1)
5790                                 mirror_num = 1;
5791                 }
5792         } else {
5793                 /*
5794                  * after this, stripe_nr is the number of stripes on this
5795                  * device we have to walk to find the data, and stripe_index is
5796                  * the number of our device in the stripe array
5797                  */
5798                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5799                                 &stripe_index);
5800                 mirror_num = stripe_index + 1;
5801         }
5802         if (stripe_index >= map->num_stripes) {
5803                 btrfs_crit(fs_info,
5804                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5805                            stripe_index, map->num_stripes);
5806                 ret = -EINVAL;
5807                 goto out;
5808         }
5809
5810         num_alloc_stripes = num_stripes;
5811         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5812                 if (op == BTRFS_MAP_WRITE)
5813                         num_alloc_stripes <<= 1;
5814                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5815                         num_alloc_stripes++;
5816                 tgtdev_indexes = num_stripes;
5817         }
5818
5819         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5820         if (!bbio) {
5821                 ret = -ENOMEM;
5822                 goto out;
5823         }
5824         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5825                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5826
5827         /* build raid_map */
5828         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5829             (need_full_stripe(op) || mirror_num > 1)) {
5830                 u64 tmp;
5831                 unsigned rot;
5832
5833                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5834                                  sizeof(struct btrfs_bio_stripe) *
5835                                  num_alloc_stripes +
5836                                  sizeof(int) * tgtdev_indexes);
5837
5838                 /* Work out the disk rotation on this stripe-set */
5839                 div_u64_rem(stripe_nr, num_stripes, &rot);
5840
5841                 /* Fill in the logical address of each stripe */
5842                 tmp = stripe_nr * nr_data_stripes(map);
5843                 for (i = 0; i < nr_data_stripes(map); i++)
5844                         bbio->raid_map[(i+rot) % num_stripes] =
5845                                 em->start + (tmp + i) * map->stripe_len;
5846
5847                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5848                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5849                         bbio->raid_map[(i+rot+1) % num_stripes] =
5850                                 RAID6_Q_STRIPE;
5851         }
5852
5853
5854         for (i = 0; i < num_stripes; i++) {
5855                 bbio->stripes[i].physical =
5856                         map->stripes[stripe_index].physical +
5857                         stripe_offset +
5858                         stripe_nr * map->stripe_len;
5859                 bbio->stripes[i].dev =
5860                         map->stripes[stripe_index].dev;
5861                 stripe_index++;
5862         }
5863
5864         if (need_full_stripe(op))
5865                 max_errors = btrfs_chunk_max_errors(map);
5866
5867         if (bbio->raid_map)
5868                 sort_parity_stripes(bbio, num_stripes);
5869
5870         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5871             need_full_stripe(op)) {
5872                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5873                                           &max_errors);
5874         }
5875
5876         *bbio_ret = bbio;
5877         bbio->map_type = map->type;
5878         bbio->num_stripes = num_stripes;
5879         bbio->max_errors = max_errors;
5880         bbio->mirror_num = mirror_num;
5881
5882         /*
5883          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5884          * mirror_num == num_stripes + 1 && dev_replace target drive is
5885          * available as a mirror
5886          */
5887         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5888                 WARN_ON(num_stripes > 1);
5889                 bbio->stripes[0].dev = dev_replace->tgtdev;
5890                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5891                 bbio->mirror_num = map->num_stripes + 1;
5892         }
5893 out:
5894         if (dev_replace_is_ongoing) {
5895                 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5896                 btrfs_dev_replace_read_unlock(dev_replace);
5897         }
5898         free_extent_map(em);
5899         return ret;
5900 }
5901
5902 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5903                       u64 logical, u64 *length,
5904                       struct btrfs_bio **bbio_ret, int mirror_num)
5905 {
5906         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5907                                  mirror_num, 0);
5908 }
5909
5910 /* For Scrub/replace */
5911 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5912                      u64 logical, u64 *length,
5913                      struct btrfs_bio **bbio_ret)
5914 {
5915         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5916 }
5917
5918 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
5919                      u64 physical, u64 **logical, int *naddrs, int *stripe_len)
5920 {
5921         struct extent_map *em;
5922         struct map_lookup *map;
5923         u64 *buf;
5924         u64 bytenr;
5925         u64 length;
5926         u64 stripe_nr;
5927         u64 rmap_len;
5928         int i, j, nr = 0;
5929
5930         em = get_chunk_map(fs_info, chunk_start, 1);
5931         if (IS_ERR(em))
5932                 return -EIO;
5933
5934         map = em->map_lookup;
5935         length = em->len;
5936         rmap_len = map->stripe_len;
5937
5938         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5939                 length = div_u64(length, map->num_stripes / map->sub_stripes);
5940         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5941                 length = div_u64(length, map->num_stripes);
5942         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5943                 length = div_u64(length, nr_data_stripes(map));
5944                 rmap_len = map->stripe_len * nr_data_stripes(map);
5945         }
5946
5947         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5948         BUG_ON(!buf); /* -ENOMEM */
5949
5950         for (i = 0; i < map->num_stripes; i++) {
5951                 if (map->stripes[i].physical > physical ||
5952                     map->stripes[i].physical + length <= physical)
5953                         continue;
5954
5955                 stripe_nr = physical - map->stripes[i].physical;
5956                 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
5957
5958                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5959                         stripe_nr = stripe_nr * map->num_stripes + i;
5960                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5961                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5962                         stripe_nr = stripe_nr * map->num_stripes + i;
5963                 } /* else if RAID[56], multiply by nr_data_stripes().
5964                    * Alternatively, just use rmap_len below instead of
5965                    * map->stripe_len */
5966
5967                 bytenr = chunk_start + stripe_nr * rmap_len;
5968                 WARN_ON(nr >= map->num_stripes);
5969                 for (j = 0; j < nr; j++) {
5970                         if (buf[j] == bytenr)
5971                                 break;
5972                 }
5973                 if (j == nr) {
5974                         WARN_ON(nr >= map->num_stripes);
5975                         buf[nr++] = bytenr;
5976                 }
5977         }
5978
5979         *logical = buf;
5980         *naddrs = nr;
5981         *stripe_len = rmap_len;
5982
5983         free_extent_map(em);
5984         return 0;
5985 }
5986
5987 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5988 {
5989         bio->bi_private = bbio->private;
5990         bio->bi_end_io = bbio->end_io;
5991         bio_endio(bio);
5992
5993         btrfs_put_bbio(bbio);
5994 }
5995
5996 static void btrfs_end_bio(struct bio *bio)
5997 {
5998         struct btrfs_bio *bbio = bio->bi_private;
5999         int is_orig_bio = 0;
6000
6001         if (bio->bi_status) {
6002                 atomic_inc(&bbio->error);
6003                 if (bio->bi_status == BLK_STS_IOERR ||
6004                     bio->bi_status == BLK_STS_TARGET) {
6005                         unsigned int stripe_index =
6006                                 btrfs_io_bio(bio)->stripe_index;
6007                         struct btrfs_device *dev;
6008
6009                         BUG_ON(stripe_index >= bbio->num_stripes);
6010                         dev = bbio->stripes[stripe_index].dev;
6011                         if (dev->bdev) {
6012                                 if (bio_op(bio) == REQ_OP_WRITE)
6013                                         btrfs_dev_stat_inc_and_print(dev,
6014                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6015                                 else
6016                                         btrfs_dev_stat_inc_and_print(dev,
6017                                                 BTRFS_DEV_STAT_READ_ERRS);
6018                                 if (bio->bi_opf & REQ_PREFLUSH)
6019                                         btrfs_dev_stat_inc_and_print(dev,
6020                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6021                         }
6022                 }
6023         }
6024
6025         if (bio == bbio->orig_bio)
6026                 is_orig_bio = 1;
6027
6028         btrfs_bio_counter_dec(bbio->fs_info);
6029
6030         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6031                 if (!is_orig_bio) {
6032                         bio_put(bio);
6033                         bio = bbio->orig_bio;
6034                 }
6035
6036                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6037                 /* only send an error to the higher layers if it is
6038                  * beyond the tolerance of the btrfs bio
6039                  */
6040                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6041                         bio->bi_status = BLK_STS_IOERR;
6042                 } else {
6043                         /*
6044                          * this bio is actually up to date, we didn't
6045                          * go over the max number of errors
6046                          */
6047                         bio->bi_status = BLK_STS_OK;
6048                 }
6049
6050                 btrfs_end_bbio(bbio, bio);
6051         } else if (!is_orig_bio) {
6052                 bio_put(bio);
6053         }
6054 }
6055
6056 /*
6057  * see run_scheduled_bios for a description of why bios are collected for
6058  * async submit.
6059  *
6060  * This will add one bio to the pending list for a device and make sure
6061  * the work struct is scheduled.
6062  */
6063 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6064                                         struct bio *bio)
6065 {
6066         struct btrfs_fs_info *fs_info = device->fs_info;
6067         int should_queue = 1;
6068         struct btrfs_pending_bios *pending_bios;
6069
6070         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
6071             !device->bdev) {
6072                 bio_io_error(bio);
6073                 return;
6074         }
6075
6076         /* don't bother with additional async steps for reads, right now */
6077         if (bio_op(bio) == REQ_OP_READ) {
6078                 btrfsic_submit_bio(bio);
6079                 return;
6080         }
6081
6082         WARN_ON(bio->bi_next);
6083         bio->bi_next = NULL;
6084
6085         spin_lock(&device->io_lock);
6086         if (op_is_sync(bio->bi_opf))
6087                 pending_bios = &device->pending_sync_bios;
6088         else
6089                 pending_bios = &device->pending_bios;
6090
6091         if (pending_bios->tail)
6092                 pending_bios->tail->bi_next = bio;
6093
6094         pending_bios->tail = bio;
6095         if (!pending_bios->head)
6096                 pending_bios->head = bio;
6097         if (device->running_pending)
6098                 should_queue = 0;
6099
6100         spin_unlock(&device->io_lock);
6101
6102         if (should_queue)
6103                 btrfs_queue_work(fs_info->submit_workers, &device->work);
6104 }
6105
6106 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6107                               u64 physical, int dev_nr, int async)
6108 {
6109         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6110         struct btrfs_fs_info *fs_info = bbio->fs_info;
6111
6112         bio->bi_private = bbio;
6113         btrfs_io_bio(bio)->stripe_index = dev_nr;
6114         bio->bi_end_io = btrfs_end_bio;
6115         bio->bi_iter.bi_sector = physical >> 9;
6116         btrfs_debug_in_rcu(fs_info,
6117         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6118                 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6119                 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6120                 bio->bi_iter.bi_size);
6121         bio_set_dev(bio, dev->bdev);
6122
6123         btrfs_bio_counter_inc_noblocked(fs_info);
6124
6125         if (async)
6126                 btrfs_schedule_bio(dev, bio);
6127         else
6128                 btrfsic_submit_bio(bio);
6129 }
6130
6131 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6132 {
6133         atomic_inc(&bbio->error);
6134         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6135                 /* Should be the original bio. */
6136                 WARN_ON(bio != bbio->orig_bio);
6137
6138                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6139                 bio->bi_iter.bi_sector = logical >> 9;
6140                 if (atomic_read(&bbio->error) > bbio->max_errors)
6141                         bio->bi_status = BLK_STS_IOERR;
6142                 else
6143                         bio->bi_status = BLK_STS_OK;
6144                 btrfs_end_bbio(bbio, bio);
6145         }
6146 }
6147
6148 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6149                            int mirror_num, int async_submit)
6150 {
6151         struct btrfs_device *dev;
6152         struct bio *first_bio = bio;
6153         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6154         u64 length = 0;
6155         u64 map_length;
6156         int ret;
6157         int dev_nr;
6158         int total_devs;
6159         struct btrfs_bio *bbio = NULL;
6160
6161         length = bio->bi_iter.bi_size;
6162         map_length = length;
6163
6164         btrfs_bio_counter_inc_blocked(fs_info);
6165         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6166                                 &map_length, &bbio, mirror_num, 1);
6167         if (ret) {
6168                 btrfs_bio_counter_dec(fs_info);
6169                 return errno_to_blk_status(ret);
6170         }
6171
6172         total_devs = bbio->num_stripes;
6173         bbio->orig_bio = first_bio;
6174         bbio->private = first_bio->bi_private;
6175         bbio->end_io = first_bio->bi_end_io;
6176         bbio->fs_info = fs_info;
6177         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6178
6179         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6180             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6181                 /* In this case, map_length has been set to the length of
6182                    a single stripe; not the whole write */
6183                 if (bio_op(bio) == REQ_OP_WRITE) {
6184                         ret = raid56_parity_write(fs_info, bio, bbio,
6185                                                   map_length);
6186                 } else {
6187                         ret = raid56_parity_recover(fs_info, bio, bbio,
6188                                                     map_length, mirror_num, 1);
6189                 }
6190
6191                 btrfs_bio_counter_dec(fs_info);
6192                 return errno_to_blk_status(ret);
6193         }
6194
6195         if (map_length < length) {
6196                 btrfs_crit(fs_info,
6197                            "mapping failed logical %llu bio len %llu len %llu",
6198                            logical, length, map_length);
6199                 BUG();
6200         }
6201
6202         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6203                 dev = bbio->stripes[dev_nr].dev;
6204                 if (!dev || !dev->bdev ||
6205                     (bio_op(first_bio) == REQ_OP_WRITE &&
6206                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6207                         bbio_error(bbio, first_bio, logical);
6208                         continue;
6209                 }
6210
6211                 if (dev_nr < total_devs - 1)
6212                         bio = btrfs_bio_clone(first_bio);
6213                 else
6214                         bio = first_bio;
6215
6216                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6217                                   dev_nr, async_submit);
6218         }
6219         btrfs_bio_counter_dec(fs_info);
6220         return BLK_STS_OK;
6221 }
6222
6223 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6224                                        u8 *uuid, u8 *fsid)
6225 {
6226         struct btrfs_device *device;
6227         struct btrfs_fs_devices *cur_devices;
6228
6229         cur_devices = fs_info->fs_devices;
6230         while (cur_devices) {
6231                 if (!fsid ||
6232                     !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6233                         device = find_device(cur_devices, devid, uuid);
6234                         if (device)
6235                                 return device;
6236                 }
6237                 cur_devices = cur_devices->seed;
6238         }
6239         return NULL;
6240 }
6241
6242 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6243                                             u64 devid, u8 *dev_uuid)
6244 {
6245         struct btrfs_device *device;
6246
6247         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6248         if (IS_ERR(device))
6249                 return device;
6250
6251         list_add(&device->dev_list, &fs_devices->devices);
6252         device->fs_devices = fs_devices;
6253         fs_devices->num_devices++;
6254
6255         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6256         fs_devices->missing_devices++;
6257
6258         return device;
6259 }
6260
6261 /**
6262  * btrfs_alloc_device - allocate struct btrfs_device
6263  * @fs_info:    used only for generating a new devid, can be NULL if
6264  *              devid is provided (i.e. @devid != NULL).
6265  * @devid:      a pointer to devid for this device.  If NULL a new devid
6266  *              is generated.
6267  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6268  *              is generated.
6269  *
6270  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6271  * on error.  Returned struct is not linked onto any lists and must be
6272  * destroyed with btrfs_free_device.
6273  */
6274 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6275                                         const u64 *devid,
6276                                         const u8 *uuid)
6277 {
6278         struct btrfs_device *dev;
6279         u64 tmp;
6280
6281         if (WARN_ON(!devid && !fs_info))
6282                 return ERR_PTR(-EINVAL);
6283
6284         dev = __alloc_device();
6285         if (IS_ERR(dev))
6286                 return dev;
6287
6288         if (devid)
6289                 tmp = *devid;
6290         else {
6291                 int ret;
6292
6293                 ret = find_next_devid(fs_info, &tmp);
6294                 if (ret) {
6295                         btrfs_free_device(dev);
6296                         return ERR_PTR(ret);
6297                 }
6298         }
6299         dev->devid = tmp;
6300
6301         if (uuid)
6302                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6303         else
6304                 generate_random_uuid(dev->uuid);
6305
6306         btrfs_init_work(&dev->work, btrfs_submit_helper,
6307                         pending_bios_fn, NULL, NULL);
6308
6309         return dev;
6310 }
6311
6312 /* Return -EIO if any error, otherwise return 0. */
6313 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6314                                    struct extent_buffer *leaf,
6315                                    struct btrfs_chunk *chunk, u64 logical)
6316 {
6317         u64 length;
6318         u64 stripe_len;
6319         u16 num_stripes;
6320         u16 sub_stripes;
6321         u64 type;
6322         u64 features;
6323         bool mixed = false;
6324
6325         length = btrfs_chunk_length(leaf, chunk);
6326         stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6327         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6328         sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6329         type = btrfs_chunk_type(leaf, chunk);
6330
6331         if (!num_stripes) {
6332                 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6333                           num_stripes);
6334                 return -EIO;
6335         }
6336         if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6337                 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6338                 return -EIO;
6339         }
6340         if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6341                 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6342                           btrfs_chunk_sector_size(leaf, chunk));
6343                 return -EIO;
6344         }
6345         if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6346                 btrfs_err(fs_info, "invalid chunk length %llu", length);
6347                 return -EIO;
6348         }
6349         if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6350                 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6351                           stripe_len);
6352                 return -EIO;
6353         }
6354         if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6355             type) {
6356                 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6357                           ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6358                             BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6359                           btrfs_chunk_type(leaf, chunk));
6360                 return -EIO;
6361         }
6362
6363         if ((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0) {
6364                 btrfs_err(fs_info, "missing chunk type flag: 0x%llx", type);
6365                 return -EIO;
6366         }
6367
6368         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
6369             (type & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA))) {
6370                 btrfs_err(fs_info,
6371                         "system chunk with data or metadata type: 0x%llx", type);
6372                 return -EIO;
6373         }
6374
6375         features = btrfs_super_incompat_flags(fs_info->super_copy);
6376         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
6377                 mixed = true;
6378
6379         if (!mixed) {
6380                 if ((type & BTRFS_BLOCK_GROUP_METADATA) &&
6381                     (type & BTRFS_BLOCK_GROUP_DATA)) {
6382                         btrfs_err(fs_info,
6383                         "mixed chunk type in non-mixed mode: 0x%llx", type);
6384                         return -EIO;
6385                 }
6386         }
6387
6388         if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6389             (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6390             (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6391             (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6392             (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6393             ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6394              num_stripes != 1)) {
6395                 btrfs_err(fs_info,
6396                         "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6397                         num_stripes, sub_stripes,
6398                         type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6399                 return -EIO;
6400         }
6401
6402         return 0;
6403 }
6404
6405 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6406                                         u64 devid, u8 *uuid, bool error)
6407 {
6408         if (error)
6409                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6410                               devid, uuid);
6411         else
6412                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6413                               devid, uuid);
6414 }
6415
6416 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6417                           struct extent_buffer *leaf,
6418                           struct btrfs_chunk *chunk)
6419 {
6420         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6421         struct map_lookup *map;
6422         struct extent_map *em;
6423         u64 logical;
6424         u64 length;
6425         u64 devid;
6426         u8 uuid[BTRFS_UUID_SIZE];
6427         int num_stripes;
6428         int ret;
6429         int i;
6430
6431         logical = key->offset;
6432         length = btrfs_chunk_length(leaf, chunk);
6433         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6434
6435         ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6436         if (ret)
6437                 return ret;
6438
6439         read_lock(&map_tree->map_tree.lock);
6440         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6441         read_unlock(&map_tree->map_tree.lock);
6442
6443         /* already mapped? */
6444         if (em && em->start <= logical && em->start + em->len > logical) {
6445                 free_extent_map(em);
6446                 return 0;
6447         } else if (em) {
6448                 free_extent_map(em);
6449         }
6450
6451         em = alloc_extent_map();
6452         if (!em)
6453                 return -ENOMEM;
6454         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6455         if (!map) {
6456                 free_extent_map(em);
6457                 return -ENOMEM;
6458         }
6459
6460         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6461         em->map_lookup = map;
6462         em->start = logical;
6463         em->len = length;
6464         em->orig_start = 0;
6465         em->block_start = 0;
6466         em->block_len = em->len;
6467
6468         map->num_stripes = num_stripes;
6469         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6470         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6471         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6472         map->type = btrfs_chunk_type(leaf, chunk);
6473         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6474         map->verified_stripes = 0;
6475         for (i = 0; i < num_stripes; i++) {
6476                 map->stripes[i].physical =
6477                         btrfs_stripe_offset_nr(leaf, chunk, i);
6478                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6479                 read_extent_buffer(leaf, uuid, (unsigned long)
6480                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6481                                    BTRFS_UUID_SIZE);
6482                 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6483                                                         uuid, NULL);
6484                 if (!map->stripes[i].dev &&
6485                     !btrfs_test_opt(fs_info, DEGRADED)) {
6486                         free_extent_map(em);
6487                         btrfs_report_missing_device(fs_info, devid, uuid, true);
6488                         return -ENOENT;
6489                 }
6490                 if (!map->stripes[i].dev) {
6491                         map->stripes[i].dev =
6492                                 add_missing_dev(fs_info->fs_devices, devid,
6493                                                 uuid);
6494                         if (IS_ERR(map->stripes[i].dev)) {
6495                                 free_extent_map(em);
6496                                 btrfs_err(fs_info,
6497                                         "failed to init missing dev %llu: %ld",
6498                                         devid, PTR_ERR(map->stripes[i].dev));
6499                                 return PTR_ERR(map->stripes[i].dev);
6500                         }
6501                         btrfs_report_missing_device(fs_info, devid, uuid, false);
6502                 }
6503                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6504                                 &(map->stripes[i].dev->dev_state));
6505
6506         }
6507
6508         write_lock(&map_tree->map_tree.lock);
6509         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6510         write_unlock(&map_tree->map_tree.lock);
6511         if (ret < 0) {
6512                 btrfs_err(fs_info,
6513                           "failed to add chunk map, start=%llu len=%llu: %d",
6514                           em->start, em->len, ret);
6515         }
6516         free_extent_map(em);
6517
6518         return ret;
6519 }
6520
6521 static void fill_device_from_item(struct extent_buffer *leaf,
6522                                  struct btrfs_dev_item *dev_item,
6523                                  struct btrfs_device *device)
6524 {
6525         unsigned long ptr;
6526
6527         device->devid = btrfs_device_id(leaf, dev_item);
6528         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6529         device->total_bytes = device->disk_total_bytes;
6530         device->commit_total_bytes = device->disk_total_bytes;
6531         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6532         device->commit_bytes_used = device->bytes_used;
6533         device->type = btrfs_device_type(leaf, dev_item);
6534         device->io_align = btrfs_device_io_align(leaf, dev_item);
6535         device->io_width = btrfs_device_io_width(leaf, dev_item);
6536         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6537         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6538         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6539
6540         ptr = btrfs_device_uuid(dev_item);
6541         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6542 }
6543
6544 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6545                                                   u8 *fsid)
6546 {
6547         struct btrfs_fs_devices *fs_devices;
6548         int ret;
6549
6550         lockdep_assert_held(&uuid_mutex);
6551         ASSERT(fsid);
6552
6553         fs_devices = fs_info->fs_devices->seed;
6554         while (fs_devices) {
6555                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6556                         return fs_devices;
6557
6558                 fs_devices = fs_devices->seed;
6559         }
6560
6561         fs_devices = find_fsid(fsid);
6562         if (!fs_devices) {
6563                 if (!btrfs_test_opt(fs_info, DEGRADED))
6564                         return ERR_PTR(-ENOENT);
6565
6566                 fs_devices = alloc_fs_devices(fsid);
6567                 if (IS_ERR(fs_devices))
6568                         return fs_devices;
6569
6570                 fs_devices->seeding = 1;
6571                 fs_devices->opened = 1;
6572                 return fs_devices;
6573         }
6574
6575         fs_devices = clone_fs_devices(fs_devices);
6576         if (IS_ERR(fs_devices))
6577                 return fs_devices;
6578
6579         ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6580         if (ret) {
6581                 free_fs_devices(fs_devices);
6582                 fs_devices = ERR_PTR(ret);
6583                 goto out;
6584         }
6585
6586         if (!fs_devices->seeding) {
6587                 close_fs_devices(fs_devices);
6588                 free_fs_devices(fs_devices);
6589                 fs_devices = ERR_PTR(-EINVAL);
6590                 goto out;
6591         }
6592
6593         fs_devices->seed = fs_info->fs_devices->seed;
6594         fs_info->fs_devices->seed = fs_devices;
6595 out:
6596         return fs_devices;
6597 }
6598
6599 static int read_one_dev(struct btrfs_fs_info *fs_info,
6600                         struct extent_buffer *leaf,
6601                         struct btrfs_dev_item *dev_item)
6602 {
6603         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6604         struct btrfs_device *device;
6605         u64 devid;
6606         int ret;
6607         u8 fs_uuid[BTRFS_FSID_SIZE];
6608         u8 dev_uuid[BTRFS_UUID_SIZE];
6609
6610         devid = btrfs_device_id(leaf, dev_item);
6611         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6612                            BTRFS_UUID_SIZE);
6613         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6614                            BTRFS_FSID_SIZE);
6615
6616         if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6617                 fs_devices = open_seed_devices(fs_info, fs_uuid);
6618                 if (IS_ERR(fs_devices))
6619                         return PTR_ERR(fs_devices);
6620         }
6621
6622         device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6623         if (!device) {
6624                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6625                         btrfs_report_missing_device(fs_info, devid,
6626                                                         dev_uuid, true);
6627                         return -ENOENT;
6628                 }
6629
6630                 device = add_missing_dev(fs_devices, devid, dev_uuid);
6631                 if (IS_ERR(device)) {
6632                         btrfs_err(fs_info,
6633                                 "failed to add missing dev %llu: %ld",
6634                                 devid, PTR_ERR(device));
6635                         return PTR_ERR(device);
6636                 }
6637                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6638         } else {
6639                 if (!device->bdev) {
6640                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
6641                                 btrfs_report_missing_device(fs_info,
6642                                                 devid, dev_uuid, true);
6643                                 return -ENOENT;
6644                         }
6645                         btrfs_report_missing_device(fs_info, devid,
6646                                                         dev_uuid, false);
6647                 }
6648
6649                 if (!device->bdev &&
6650                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6651                         /*
6652                          * this happens when a device that was properly setup
6653                          * in the device info lists suddenly goes bad.
6654                          * device->bdev is NULL, and so we have to set
6655                          * device->missing to one here
6656                          */
6657                         device->fs_devices->missing_devices++;
6658                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6659                 }
6660
6661                 /* Move the device to its own fs_devices */
6662                 if (device->fs_devices != fs_devices) {
6663                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6664                                                         &device->dev_state));
6665
6666                         list_move(&device->dev_list, &fs_devices->devices);
6667                         device->fs_devices->num_devices--;
6668                         fs_devices->num_devices++;
6669
6670                         device->fs_devices->missing_devices--;
6671                         fs_devices->missing_devices++;
6672
6673                         device->fs_devices = fs_devices;
6674                 }
6675         }
6676
6677         if (device->fs_devices != fs_info->fs_devices) {
6678                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6679                 if (device->generation !=
6680                     btrfs_device_generation(leaf, dev_item))
6681                         return -EINVAL;
6682         }
6683
6684         fill_device_from_item(leaf, dev_item, device);
6685         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6686         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6687            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6688                 device->fs_devices->total_rw_bytes += device->total_bytes;
6689                 atomic64_add(device->total_bytes - device->bytes_used,
6690                                 &fs_info->free_chunk_space);
6691         }
6692         ret = 0;
6693         return ret;
6694 }
6695
6696 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6697 {
6698         struct btrfs_root *root = fs_info->tree_root;
6699         struct btrfs_super_block *super_copy = fs_info->super_copy;
6700         struct extent_buffer *sb;
6701         struct btrfs_disk_key *disk_key;
6702         struct btrfs_chunk *chunk;
6703         u8 *array_ptr;
6704         unsigned long sb_array_offset;
6705         int ret = 0;
6706         u32 num_stripes;
6707         u32 array_size;
6708         u32 len = 0;
6709         u32 cur_offset;
6710         u64 type;
6711         struct btrfs_key key;
6712
6713         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6714         /*
6715          * This will create extent buffer of nodesize, superblock size is
6716          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6717          * overallocate but we can keep it as-is, only the first page is used.
6718          */
6719         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6720         if (IS_ERR(sb))
6721                 return PTR_ERR(sb);
6722         set_extent_buffer_uptodate(sb);
6723         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6724         /*
6725          * The sb extent buffer is artificial and just used to read the system array.
6726          * set_extent_buffer_uptodate() call does not properly mark all it's
6727          * pages up-to-date when the page is larger: extent does not cover the
6728          * whole page and consequently check_page_uptodate does not find all
6729          * the page's extents up-to-date (the hole beyond sb),
6730          * write_extent_buffer then triggers a WARN_ON.
6731          *
6732          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6733          * but sb spans only this function. Add an explicit SetPageUptodate call
6734          * to silence the warning eg. on PowerPC 64.
6735          */
6736         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6737                 SetPageUptodate(sb->pages[0]);
6738
6739         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6740         array_size = btrfs_super_sys_array_size(super_copy);
6741
6742         array_ptr = super_copy->sys_chunk_array;
6743         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6744         cur_offset = 0;
6745
6746         while (cur_offset < array_size) {
6747                 disk_key = (struct btrfs_disk_key *)array_ptr;
6748                 len = sizeof(*disk_key);
6749                 if (cur_offset + len > array_size)
6750                         goto out_short_read;
6751
6752                 btrfs_disk_key_to_cpu(&key, disk_key);
6753
6754                 array_ptr += len;
6755                 sb_array_offset += len;
6756                 cur_offset += len;
6757
6758                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6759                         chunk = (struct btrfs_chunk *)sb_array_offset;
6760                         /*
6761                          * At least one btrfs_chunk with one stripe must be
6762                          * present, exact stripe count check comes afterwards
6763                          */
6764                         len = btrfs_chunk_item_size(1);
6765                         if (cur_offset + len > array_size)
6766                                 goto out_short_read;
6767
6768                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6769                         if (!num_stripes) {
6770                                 btrfs_err(fs_info,
6771                                         "invalid number of stripes %u in sys_array at offset %u",
6772                                         num_stripes, cur_offset);
6773                                 ret = -EIO;
6774                                 break;
6775                         }
6776
6777                         type = btrfs_chunk_type(sb, chunk);
6778                         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6779                                 btrfs_err(fs_info,
6780                             "invalid chunk type %llu in sys_array at offset %u",
6781                                         type, cur_offset);
6782                                 ret = -EIO;
6783                                 break;
6784                         }
6785
6786                         len = btrfs_chunk_item_size(num_stripes);
6787                         if (cur_offset + len > array_size)
6788                                 goto out_short_read;
6789
6790                         ret = read_one_chunk(fs_info, &key, sb, chunk);
6791                         if (ret)
6792                                 break;
6793                 } else {
6794                         btrfs_err(fs_info,
6795                             "unexpected item type %u in sys_array at offset %u",
6796                                   (u32)key.type, cur_offset);
6797                         ret = -EIO;
6798                         break;
6799                 }
6800                 array_ptr += len;
6801                 sb_array_offset += len;
6802                 cur_offset += len;
6803         }
6804         clear_extent_buffer_uptodate(sb);
6805         free_extent_buffer_stale(sb);
6806         return ret;
6807
6808 out_short_read:
6809         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6810                         len, cur_offset);
6811         clear_extent_buffer_uptodate(sb);
6812         free_extent_buffer_stale(sb);
6813         return -EIO;
6814 }
6815
6816 /*
6817  * Check if all chunks in the fs are OK for read-write degraded mount
6818  *
6819  * If the @failing_dev is specified, it's accounted as missing.
6820  *
6821  * Return true if all chunks meet the minimal RW mount requirements.
6822  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6823  */
6824 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6825                                         struct btrfs_device *failing_dev)
6826 {
6827         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6828         struct extent_map *em;
6829         u64 next_start = 0;
6830         bool ret = true;
6831
6832         read_lock(&map_tree->map_tree.lock);
6833         em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6834         read_unlock(&map_tree->map_tree.lock);
6835         /* No chunk at all? Return false anyway */
6836         if (!em) {
6837                 ret = false;
6838                 goto out;
6839         }
6840         while (em) {
6841                 struct map_lookup *map;
6842                 int missing = 0;
6843                 int max_tolerated;
6844                 int i;
6845
6846                 map = em->map_lookup;
6847                 max_tolerated =
6848                         btrfs_get_num_tolerated_disk_barrier_failures(
6849                                         map->type);
6850                 for (i = 0; i < map->num_stripes; i++) {
6851                         struct btrfs_device *dev = map->stripes[i].dev;
6852
6853                         if (!dev || !dev->bdev ||
6854                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6855                             dev->last_flush_error)
6856                                 missing++;
6857                         else if (failing_dev && failing_dev == dev)
6858                                 missing++;
6859                 }
6860                 if (missing > max_tolerated) {
6861                         if (!failing_dev)
6862                                 btrfs_warn(fs_info,
6863         "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6864                                    em->start, missing, max_tolerated);
6865                         free_extent_map(em);
6866                         ret = false;
6867                         goto out;
6868                 }
6869                 next_start = extent_map_end(em);
6870                 free_extent_map(em);
6871
6872                 read_lock(&map_tree->map_tree.lock);
6873                 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6874                                            (u64)(-1) - next_start);
6875                 read_unlock(&map_tree->map_tree.lock);
6876         }
6877 out:
6878         return ret;
6879 }
6880
6881 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6882 {
6883         struct btrfs_root *root = fs_info->chunk_root;
6884         struct btrfs_path *path;
6885         struct extent_buffer *leaf;
6886         struct btrfs_key key;
6887         struct btrfs_key found_key;
6888         int ret;
6889         int slot;
6890         u64 total_dev = 0;
6891
6892         path = btrfs_alloc_path();
6893         if (!path)
6894                 return -ENOMEM;
6895
6896         /*
6897          * uuid_mutex is needed only if we are mounting a sprout FS
6898          * otherwise we don't need it.
6899          */
6900         mutex_lock(&uuid_mutex);
6901         mutex_lock(&fs_info->chunk_mutex);
6902
6903         /*
6904          * Read all device items, and then all the chunk items. All
6905          * device items are found before any chunk item (their object id
6906          * is smaller than the lowest possible object id for a chunk
6907          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6908          */
6909         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6910         key.offset = 0;
6911         key.type = 0;
6912         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6913         if (ret < 0)
6914                 goto error;
6915         while (1) {
6916                 leaf = path->nodes[0];
6917                 slot = path->slots[0];
6918                 if (slot >= btrfs_header_nritems(leaf)) {
6919                         ret = btrfs_next_leaf(root, path);
6920                         if (ret == 0)
6921                                 continue;
6922                         if (ret < 0)
6923                                 goto error;
6924                         break;
6925                 }
6926                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6927                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6928                         struct btrfs_dev_item *dev_item;
6929                         dev_item = btrfs_item_ptr(leaf, slot,
6930                                                   struct btrfs_dev_item);
6931                         ret = read_one_dev(fs_info, leaf, dev_item);
6932                         if (ret)
6933                                 goto error;
6934                         total_dev++;
6935                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6936                         struct btrfs_chunk *chunk;
6937                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6938                         ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6939                         if (ret)
6940                                 goto error;
6941                 }
6942                 path->slots[0]++;
6943         }
6944
6945         /*
6946          * After loading chunk tree, we've got all device information,
6947          * do another round of validation checks.
6948          */
6949         if (total_dev != fs_info->fs_devices->total_devices) {
6950                 btrfs_err(fs_info,
6951            "super_num_devices %llu mismatch with num_devices %llu found here",
6952                           btrfs_super_num_devices(fs_info->super_copy),
6953                           total_dev);
6954                 ret = -EINVAL;
6955                 goto error;
6956         }
6957         if (btrfs_super_total_bytes(fs_info->super_copy) <
6958             fs_info->fs_devices->total_rw_bytes) {
6959                 btrfs_err(fs_info,
6960         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6961                           btrfs_super_total_bytes(fs_info->super_copy),
6962                           fs_info->fs_devices->total_rw_bytes);
6963                 ret = -EINVAL;
6964                 goto error;
6965         }
6966         ret = 0;
6967 error:
6968         mutex_unlock(&fs_info->chunk_mutex);
6969         mutex_unlock(&uuid_mutex);
6970
6971         btrfs_free_path(path);
6972         return ret;
6973 }
6974
6975 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6976 {
6977         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6978         struct btrfs_device *device;
6979
6980         while (fs_devices) {
6981                 mutex_lock(&fs_devices->device_list_mutex);
6982                 list_for_each_entry(device, &fs_devices->devices, dev_list)
6983                         device->fs_info = fs_info;
6984                 mutex_unlock(&fs_devices->device_list_mutex);
6985
6986                 fs_devices = fs_devices->seed;
6987         }
6988 }
6989
6990 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6991 {
6992         int i;
6993
6994         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6995                 btrfs_dev_stat_reset(dev, i);
6996 }
6997
6998 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6999 {
7000         struct btrfs_key key;
7001         struct btrfs_key found_key;
7002         struct btrfs_root *dev_root = fs_info->dev_root;
7003         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7004         struct extent_buffer *eb;
7005         int slot;
7006         int ret = 0;
7007         struct btrfs_device *device;
7008         struct btrfs_path *path = NULL;
7009         int i;
7010
7011         path = btrfs_alloc_path();
7012         if (!path) {
7013                 ret = -ENOMEM;
7014                 goto out;
7015         }
7016
7017         mutex_lock(&fs_devices->device_list_mutex);
7018         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7019                 int item_size;
7020                 struct btrfs_dev_stats_item *ptr;
7021
7022                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7023                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7024                 key.offset = device->devid;
7025                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7026                 if (ret) {
7027                         __btrfs_reset_dev_stats(device);
7028                         device->dev_stats_valid = 1;
7029                         btrfs_release_path(path);
7030                         continue;
7031                 }
7032                 slot = path->slots[0];
7033                 eb = path->nodes[0];
7034                 btrfs_item_key_to_cpu(eb, &found_key, slot);
7035                 item_size = btrfs_item_size_nr(eb, slot);
7036
7037                 ptr = btrfs_item_ptr(eb, slot,
7038                                      struct btrfs_dev_stats_item);
7039
7040                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7041                         if (item_size >= (1 + i) * sizeof(__le64))
7042                                 btrfs_dev_stat_set(device, i,
7043                                         btrfs_dev_stats_value(eb, ptr, i));
7044                         else
7045                                 btrfs_dev_stat_reset(device, i);
7046                 }
7047
7048                 device->dev_stats_valid = 1;
7049                 btrfs_dev_stat_print_on_load(device);
7050                 btrfs_release_path(path);
7051         }
7052         mutex_unlock(&fs_devices->device_list_mutex);
7053
7054 out:
7055         btrfs_free_path(path);
7056         return ret < 0 ? ret : 0;
7057 }
7058
7059 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7060                                 struct btrfs_device *device)
7061 {
7062         struct btrfs_fs_info *fs_info = trans->fs_info;
7063         struct btrfs_root *dev_root = fs_info->dev_root;
7064         struct btrfs_path *path;
7065         struct btrfs_key key;
7066         struct extent_buffer *eb;
7067         struct btrfs_dev_stats_item *ptr;
7068         int ret;
7069         int i;
7070
7071         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7072         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7073         key.offset = device->devid;
7074
7075         path = btrfs_alloc_path();
7076         if (!path)
7077                 return -ENOMEM;
7078         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7079         if (ret < 0) {
7080                 btrfs_warn_in_rcu(fs_info,
7081                         "error %d while searching for dev_stats item for device %s",
7082                               ret, rcu_str_deref(device->name));
7083                 goto out;
7084         }
7085
7086         if (ret == 0 &&
7087             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7088                 /* need to delete old one and insert a new one */
7089                 ret = btrfs_del_item(trans, dev_root, path);
7090                 if (ret != 0) {
7091                         btrfs_warn_in_rcu(fs_info,
7092                                 "delete too small dev_stats item for device %s failed %d",
7093                                       rcu_str_deref(device->name), ret);
7094                         goto out;
7095                 }
7096                 ret = 1;
7097         }
7098
7099         if (ret == 1) {
7100                 /* need to insert a new item */
7101                 btrfs_release_path(path);
7102                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7103                                               &key, sizeof(*ptr));
7104                 if (ret < 0) {
7105                         btrfs_warn_in_rcu(fs_info,
7106                                 "insert dev_stats item for device %s failed %d",
7107                                 rcu_str_deref(device->name), ret);
7108                         goto out;
7109                 }
7110         }
7111
7112         eb = path->nodes[0];
7113         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7114         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7115                 btrfs_set_dev_stats_value(eb, ptr, i,
7116                                           btrfs_dev_stat_read(device, i));
7117         btrfs_mark_buffer_dirty(eb);
7118
7119 out:
7120         btrfs_free_path(path);
7121         return ret;
7122 }
7123
7124 /*
7125  * called from commit_transaction. Writes all changed device stats to disk.
7126  */
7127 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7128                         struct btrfs_fs_info *fs_info)
7129 {
7130         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7131         struct btrfs_device *device;
7132         int stats_cnt;
7133         int ret = 0;
7134
7135         mutex_lock(&fs_devices->device_list_mutex);
7136         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7137                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7138                 if (!device->dev_stats_valid || stats_cnt == 0)
7139                         continue;
7140
7141
7142                 /*
7143                  * There is a LOAD-LOAD control dependency between the value of
7144                  * dev_stats_ccnt and updating the on-disk values which requires
7145                  * reading the in-memory counters. Such control dependencies
7146                  * require explicit read memory barriers.
7147                  *
7148                  * This memory barriers pairs with smp_mb__before_atomic in
7149                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7150                  * barrier implied by atomic_xchg in
7151                  * btrfs_dev_stats_read_and_reset
7152                  */
7153                 smp_rmb();
7154
7155                 ret = update_dev_stat_item(trans, device);
7156                 if (!ret)
7157                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7158         }
7159         mutex_unlock(&fs_devices->device_list_mutex);
7160
7161         return ret;
7162 }
7163
7164 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7165 {
7166         btrfs_dev_stat_inc(dev, index);
7167         btrfs_dev_stat_print_on_error(dev);
7168 }
7169
7170 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7171 {
7172         if (!dev->dev_stats_valid)
7173                 return;
7174         btrfs_err_rl_in_rcu(dev->fs_info,
7175                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7176                            rcu_str_deref(dev->name),
7177                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7178                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7179                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7180                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7181                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7182 }
7183
7184 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7185 {
7186         int i;
7187
7188         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7189                 if (btrfs_dev_stat_read(dev, i) != 0)
7190                         break;
7191         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7192                 return; /* all values == 0, suppress message */
7193
7194         btrfs_info_in_rcu(dev->fs_info,
7195                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7196                rcu_str_deref(dev->name),
7197                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7198                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7199                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7200                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7201                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7202 }
7203
7204 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7205                         struct btrfs_ioctl_get_dev_stats *stats)
7206 {
7207         struct btrfs_device *dev;
7208         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7209         int i;
7210
7211         mutex_lock(&fs_devices->device_list_mutex);
7212         dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7213         mutex_unlock(&fs_devices->device_list_mutex);
7214
7215         if (!dev) {
7216                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7217                 return -ENODEV;
7218         } else if (!dev->dev_stats_valid) {
7219                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7220                 return -ENODEV;
7221         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7222                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7223                         if (stats->nr_items > i)
7224                                 stats->values[i] =
7225                                         btrfs_dev_stat_read_and_reset(dev, i);
7226                         else
7227                                 btrfs_dev_stat_reset(dev, i);
7228                 }
7229         } else {
7230                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7231                         if (stats->nr_items > i)
7232                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7233         }
7234         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7235                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7236         return 0;
7237 }
7238
7239 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7240 {
7241         struct buffer_head *bh;
7242         struct btrfs_super_block *disk_super;
7243         int copy_num;
7244
7245         if (!bdev)
7246                 return;
7247
7248         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7249                 copy_num++) {
7250
7251                 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7252                         continue;
7253
7254                 disk_super = (struct btrfs_super_block *)bh->b_data;
7255
7256                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7257                 set_buffer_dirty(bh);
7258                 sync_dirty_buffer(bh);
7259                 brelse(bh);
7260         }
7261
7262         /* Notify udev that device has changed */
7263         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7264
7265         /* Update ctime/mtime for device path for libblkid */
7266         update_dev_time(device_path);
7267 }
7268
7269 /*
7270  * Update the size of all devices, which is used for writing out the
7271  * super blocks.
7272  */
7273 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7274 {
7275         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7276         struct btrfs_device *curr, *next;
7277
7278         if (list_empty(&fs_devices->resized_devices))
7279                 return;
7280
7281         mutex_lock(&fs_devices->device_list_mutex);
7282         mutex_lock(&fs_info->chunk_mutex);
7283         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7284                                  resized_list) {
7285                 list_del_init(&curr->resized_list);
7286                 curr->commit_total_bytes = curr->disk_total_bytes;
7287         }
7288         mutex_unlock(&fs_info->chunk_mutex);
7289         mutex_unlock(&fs_devices->device_list_mutex);
7290 }
7291
7292 /* Must be invoked during the transaction commit */
7293 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans)
7294 {
7295         struct btrfs_fs_info *fs_info = trans->fs_info;
7296         struct extent_map *em;
7297         struct map_lookup *map;
7298         struct btrfs_device *dev;
7299         int i;
7300
7301         if (list_empty(&trans->pending_chunks))
7302                 return;
7303
7304         /* In order to kick the device replace finish process */
7305         mutex_lock(&fs_info->chunk_mutex);
7306         list_for_each_entry(em, &trans->pending_chunks, list) {
7307                 map = em->map_lookup;
7308
7309                 for (i = 0; i < map->num_stripes; i++) {
7310                         dev = map->stripes[i].dev;
7311                         dev->commit_bytes_used = dev->bytes_used;
7312                 }
7313         }
7314         mutex_unlock(&fs_info->chunk_mutex);
7315 }
7316
7317 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7318 {
7319         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7320         while (fs_devices) {
7321                 fs_devices->fs_info = fs_info;
7322                 fs_devices = fs_devices->seed;
7323         }
7324 }
7325
7326 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7327 {
7328         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7329         while (fs_devices) {
7330                 fs_devices->fs_info = NULL;
7331                 fs_devices = fs_devices->seed;
7332         }
7333 }
7334
7335 /*
7336  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7337  */
7338 int btrfs_bg_type_to_factor(u64 flags)
7339 {
7340         if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
7341                      BTRFS_BLOCK_GROUP_RAID10))
7342                 return 2;
7343         return 1;
7344 }
7345
7346
7347 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
7348 {
7349         int index = btrfs_bg_flags_to_raid_index(type);
7350         int ncopies = btrfs_raid_array[index].ncopies;
7351         int data_stripes;
7352
7353         switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
7354         case BTRFS_BLOCK_GROUP_RAID5:
7355                 data_stripes = num_stripes - 1;
7356                 break;
7357         case BTRFS_BLOCK_GROUP_RAID6:
7358                 data_stripes = num_stripes - 2;
7359                 break;
7360         default:
7361                 data_stripes = num_stripes / ncopies;
7362                 break;
7363         }
7364         return div_u64(chunk_len, data_stripes);
7365 }
7366
7367 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7368                                  u64 chunk_offset, u64 devid,
7369                                  u64 physical_offset, u64 physical_len)
7370 {
7371         struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7372         struct extent_map *em;
7373         struct map_lookup *map;
7374         u64 stripe_len;
7375         bool found = false;
7376         int ret = 0;
7377         int i;
7378
7379         read_lock(&em_tree->lock);
7380         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7381         read_unlock(&em_tree->lock);
7382
7383         if (!em) {
7384                 btrfs_err(fs_info,
7385 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7386                           physical_offset, devid);
7387                 ret = -EUCLEAN;
7388                 goto out;
7389         }
7390
7391         map = em->map_lookup;
7392         stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7393         if (physical_len != stripe_len) {
7394                 btrfs_err(fs_info,
7395 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7396                           physical_offset, devid, em->start, physical_len,
7397                           stripe_len);
7398                 ret = -EUCLEAN;
7399                 goto out;
7400         }
7401
7402         for (i = 0; i < map->num_stripes; i++) {
7403                 if (map->stripes[i].dev->devid == devid &&
7404                     map->stripes[i].physical == physical_offset) {
7405                         found = true;
7406                         if (map->verified_stripes >= map->num_stripes) {
7407                                 btrfs_err(fs_info,
7408                                 "too many dev extents for chunk %llu found",
7409                                           em->start);
7410                                 ret = -EUCLEAN;
7411                                 goto out;
7412                         }
7413                         map->verified_stripes++;
7414                         break;
7415                 }
7416         }
7417         if (!found) {
7418                 btrfs_err(fs_info,
7419         "dev extent physical offset %llu devid %llu has no corresponding chunk",
7420                         physical_offset, devid);
7421                 ret = -EUCLEAN;
7422         }
7423 out:
7424         free_extent_map(em);
7425         return ret;
7426 }
7427
7428 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7429 {
7430         struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7431         struct extent_map *em;
7432         struct rb_node *node;
7433         int ret = 0;
7434
7435         read_lock(&em_tree->lock);
7436         for (node = rb_first(&em_tree->map); node; node = rb_next(node)) {
7437                 em = rb_entry(node, struct extent_map, rb_node);
7438                 if (em->map_lookup->num_stripes !=
7439                     em->map_lookup->verified_stripes) {
7440                         btrfs_err(fs_info,
7441                         "chunk %llu has missing dev extent, have %d expect %d",
7442                                   em->start, em->map_lookup->verified_stripes,
7443                                   em->map_lookup->num_stripes);
7444                         ret = -EUCLEAN;
7445                         goto out;
7446                 }
7447         }
7448 out:
7449         read_unlock(&em_tree->lock);
7450         return ret;
7451 }
7452
7453 /*
7454  * Ensure that all dev extents are mapped to correct chunk, otherwise
7455  * later chunk allocation/free would cause unexpected behavior.
7456  *
7457  * NOTE: This will iterate through the whole device tree, which should be of
7458  * the same size level as the chunk tree.  This slightly increases mount time.
7459  */
7460 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7461 {
7462         struct btrfs_path *path;
7463         struct btrfs_root *root = fs_info->dev_root;
7464         struct btrfs_key key;
7465         int ret = 0;
7466
7467         key.objectid = 1;
7468         key.type = BTRFS_DEV_EXTENT_KEY;
7469         key.offset = 0;
7470
7471         path = btrfs_alloc_path();
7472         if (!path)
7473                 return -ENOMEM;
7474
7475         path->reada = READA_FORWARD;
7476         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7477         if (ret < 0)
7478                 goto out;
7479
7480         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7481                 ret = btrfs_next_item(root, path);
7482                 if (ret < 0)
7483                         goto out;
7484                 /* No dev extents at all? Not good */
7485                 if (ret > 0) {
7486                         ret = -EUCLEAN;
7487                         goto out;
7488                 }
7489         }
7490         while (1) {
7491                 struct extent_buffer *leaf = path->nodes[0];
7492                 struct btrfs_dev_extent *dext;
7493                 int slot = path->slots[0];
7494                 u64 chunk_offset;
7495                 u64 physical_offset;
7496                 u64 physical_len;
7497                 u64 devid;
7498
7499                 btrfs_item_key_to_cpu(leaf, &key, slot);
7500                 if (key.type != BTRFS_DEV_EXTENT_KEY)
7501                         break;
7502                 devid = key.objectid;
7503                 physical_offset = key.offset;
7504
7505                 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7506                 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7507                 physical_len = btrfs_dev_extent_length(leaf, dext);
7508
7509                 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7510                                             physical_offset, physical_len);
7511                 if (ret < 0)
7512                         goto out;
7513                 ret = btrfs_next_item(root, path);
7514                 if (ret < 0)
7515                         goto out;
7516                 if (ret > 0) {
7517                         ret = 0;
7518                         break;
7519                 }
7520         }
7521
7522         /* Ensure all chunks have corresponding dev extents */
7523         ret = verify_chunk_dev_extent_mapping(fs_info);
7524 out:
7525         btrfs_free_path(path);
7526         return ret;
7527 }