9956c53f18f6f03e6a4ded91c25d90c5521a6f8d
[sfrench/cifs-2.6.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "ctree.h"
18 #include "extent_map.h"
19 #include "disk-io.h"
20 #include "transaction.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
27 #include "math.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30
31 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
32         [BTRFS_RAID_RAID10] = {
33                 .sub_stripes    = 2,
34                 .dev_stripes    = 1,
35                 .devs_max       = 0,    /* 0 == as many as possible */
36                 .devs_min       = 4,
37                 .tolerated_failures = 1,
38                 .devs_increment = 2,
39                 .ncopies        = 2,
40                 .nparity        = 0,
41                 .raid_name      = "raid10",
42                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
43                 .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
44         },
45         [BTRFS_RAID_RAID1] = {
46                 .sub_stripes    = 1,
47                 .dev_stripes    = 1,
48                 .devs_max       = 2,
49                 .devs_min       = 2,
50                 .tolerated_failures = 1,
51                 .devs_increment = 2,
52                 .ncopies        = 2,
53                 .nparity        = 0,
54                 .raid_name      = "raid1",
55                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
56                 .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
57         },
58         [BTRFS_RAID_DUP] = {
59                 .sub_stripes    = 1,
60                 .dev_stripes    = 2,
61                 .devs_max       = 1,
62                 .devs_min       = 1,
63                 .tolerated_failures = 0,
64                 .devs_increment = 1,
65                 .ncopies        = 2,
66                 .nparity        = 0,
67                 .raid_name      = "dup",
68                 .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
69                 .mindev_error   = 0,
70         },
71         [BTRFS_RAID_RAID0] = {
72                 .sub_stripes    = 1,
73                 .dev_stripes    = 1,
74                 .devs_max       = 0,
75                 .devs_min       = 2,
76                 .tolerated_failures = 0,
77                 .devs_increment = 1,
78                 .ncopies        = 1,
79                 .nparity        = 0,
80                 .raid_name      = "raid0",
81                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
82                 .mindev_error   = 0,
83         },
84         [BTRFS_RAID_SINGLE] = {
85                 .sub_stripes    = 1,
86                 .dev_stripes    = 1,
87                 .devs_max       = 1,
88                 .devs_min       = 1,
89                 .tolerated_failures = 0,
90                 .devs_increment = 1,
91                 .ncopies        = 1,
92                 .nparity        = 0,
93                 .raid_name      = "single",
94                 .bg_flag        = 0,
95                 .mindev_error   = 0,
96         },
97         [BTRFS_RAID_RAID5] = {
98                 .sub_stripes    = 1,
99                 .dev_stripes    = 1,
100                 .devs_max       = 0,
101                 .devs_min       = 2,
102                 .tolerated_failures = 1,
103                 .devs_increment = 1,
104                 .ncopies        = 1,
105                 .nparity        = 1,
106                 .raid_name      = "raid5",
107                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
108                 .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
109         },
110         [BTRFS_RAID_RAID6] = {
111                 .sub_stripes    = 1,
112                 .dev_stripes    = 1,
113                 .devs_max       = 0,
114                 .devs_min       = 3,
115                 .tolerated_failures = 2,
116                 .devs_increment = 1,
117                 .ncopies        = 1,
118                 .nparity        = 2,
119                 .raid_name      = "raid6",
120                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
121                 .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
122         },
123 };
124
125 const char *get_raid_name(enum btrfs_raid_types type)
126 {
127         if (type >= BTRFS_NR_RAID_TYPES)
128                 return NULL;
129
130         return btrfs_raid_array[type].raid_name;
131 }
132
133 /*
134  * Fill @buf with textual description of @bg_flags, no more than @size_buf
135  * bytes including terminating null byte.
136  */
137 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
138 {
139         int i;
140         int ret;
141         char *bp = buf;
142         u64 flags = bg_flags;
143         u32 size_bp = size_buf;
144
145         if (!flags) {
146                 strcpy(bp, "NONE");
147                 return;
148         }
149
150 #define DESCRIBE_FLAG(flag, desc)                                               \
151         do {                                                            \
152                 if (flags & (flag)) {                                   \
153                         ret = snprintf(bp, size_bp, "%s|", (desc));     \
154                         if (ret < 0 || ret >= size_bp)                  \
155                                 goto out_overflow;                      \
156                         size_bp -= ret;                                 \
157                         bp += ret;                                      \
158                         flags &= ~(flag);                               \
159                 }                                                       \
160         } while (0)
161
162         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
163         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
164         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
165
166         DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
167         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
168                 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
169                               btrfs_raid_array[i].raid_name);
170 #undef DESCRIBE_FLAG
171
172         if (flags) {
173                 ret = snprintf(bp, size_bp, "0x%llx|", flags);
174                 size_bp -= ret;
175         }
176
177         if (size_bp < size_buf)
178                 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
179
180         /*
181          * The text is trimmed, it's up to the caller to provide sufficiently
182          * large buffer
183          */
184 out_overflow:;
185 }
186
187 static int init_first_rw_device(struct btrfs_trans_handle *trans,
188                                 struct btrfs_fs_info *fs_info);
189 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
190 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
191 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
192 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
193 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
194                              enum btrfs_map_op op,
195                              u64 logical, u64 *length,
196                              struct btrfs_bio **bbio_ret,
197                              int mirror_num, int need_raid_map);
198
199 /*
200  * Device locking
201  * ==============
202  *
203  * There are several mutexes that protect manipulation of devices and low-level
204  * structures like chunks but not block groups, extents or files
205  *
206  * uuid_mutex (global lock)
207  * ------------------------
208  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
209  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
210  * device) or requested by the device= mount option
211  *
212  * the mutex can be very coarse and can cover long-running operations
213  *
214  * protects: updates to fs_devices counters like missing devices, rw devices,
215  * seeding, structure cloning, openning/closing devices at mount/umount time
216  *
217  * global::fs_devs - add, remove, updates to the global list
218  *
219  * does not protect: manipulation of the fs_devices::devices list!
220  *
221  * btrfs_device::name - renames (write side), read is RCU
222  *
223  * fs_devices::device_list_mutex (per-fs, with RCU)
224  * ------------------------------------------------
225  * protects updates to fs_devices::devices, ie. adding and deleting
226  *
227  * simple list traversal with read-only actions can be done with RCU protection
228  *
229  * may be used to exclude some operations from running concurrently without any
230  * modifications to the list (see write_all_supers)
231  *
232  * balance_mutex
233  * -------------
234  * protects balance structures (status, state) and context accessed from
235  * several places (internally, ioctl)
236  *
237  * chunk_mutex
238  * -----------
239  * protects chunks, adding or removing during allocation, trim or when a new
240  * device is added/removed
241  *
242  * cleaner_mutex
243  * -------------
244  * a big lock that is held by the cleaner thread and prevents running subvolume
245  * cleaning together with relocation or delayed iputs
246  *
247  *
248  * Lock nesting
249  * ============
250  *
251  * uuid_mutex
252  *   volume_mutex
253  *     device_list_mutex
254  *       chunk_mutex
255  *     balance_mutex
256  *
257  *
258  * Exclusive operations, BTRFS_FS_EXCL_OP
259  * ======================================
260  *
261  * Maintains the exclusivity of the following operations that apply to the
262  * whole filesystem and cannot run in parallel.
263  *
264  * - Balance (*)
265  * - Device add
266  * - Device remove
267  * - Device replace (*)
268  * - Resize
269  *
270  * The device operations (as above) can be in one of the following states:
271  *
272  * - Running state
273  * - Paused state
274  * - Completed state
275  *
276  * Only device operations marked with (*) can go into the Paused state for the
277  * following reasons:
278  *
279  * - ioctl (only Balance can be Paused through ioctl)
280  * - filesystem remounted as read-only
281  * - filesystem unmounted and mounted as read-only
282  * - system power-cycle and filesystem mounted as read-only
283  * - filesystem or device errors leading to forced read-only
284  *
285  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
286  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
287  * A device operation in Paused or Running state can be canceled or resumed
288  * either by ioctl (Balance only) or when remounted as read-write.
289  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
290  * completed.
291  */
292
293 DEFINE_MUTEX(uuid_mutex);
294 static LIST_HEAD(fs_uuids);
295 struct list_head *btrfs_get_fs_uuids(void)
296 {
297         return &fs_uuids;
298 }
299
300 /*
301  * alloc_fs_devices - allocate struct btrfs_fs_devices
302  * @fsid:               if not NULL, copy the UUID to fs_devices::fsid
303  * @metadata_fsid:      if not NULL, copy the UUID to fs_devices::metadata_fsid
304  *
305  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
306  * The returned struct is not linked onto any lists and can be destroyed with
307  * kfree() right away.
308  */
309 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
310                                                  const u8 *metadata_fsid)
311 {
312         struct btrfs_fs_devices *fs_devs;
313
314         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
315         if (!fs_devs)
316                 return ERR_PTR(-ENOMEM);
317
318         mutex_init(&fs_devs->device_list_mutex);
319
320         INIT_LIST_HEAD(&fs_devs->devices);
321         INIT_LIST_HEAD(&fs_devs->resized_devices);
322         INIT_LIST_HEAD(&fs_devs->alloc_list);
323         INIT_LIST_HEAD(&fs_devs->fs_list);
324         if (fsid)
325                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
326
327         if (metadata_fsid)
328                 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
329         else if (fsid)
330                 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
331
332         return fs_devs;
333 }
334
335 void btrfs_free_device(struct btrfs_device *device)
336 {
337         rcu_string_free(device->name);
338         bio_put(device->flush_bio);
339         kfree(device);
340 }
341
342 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
343 {
344         struct btrfs_device *device;
345         WARN_ON(fs_devices->opened);
346         while (!list_empty(&fs_devices->devices)) {
347                 device = list_entry(fs_devices->devices.next,
348                                     struct btrfs_device, dev_list);
349                 list_del(&device->dev_list);
350                 btrfs_free_device(device);
351         }
352         kfree(fs_devices);
353 }
354
355 static void btrfs_kobject_uevent(struct block_device *bdev,
356                                  enum kobject_action action)
357 {
358         int ret;
359
360         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
361         if (ret)
362                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
363                         action,
364                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
365                         &disk_to_dev(bdev->bd_disk)->kobj);
366 }
367
368 void __exit btrfs_cleanup_fs_uuids(void)
369 {
370         struct btrfs_fs_devices *fs_devices;
371
372         while (!list_empty(&fs_uuids)) {
373                 fs_devices = list_entry(fs_uuids.next,
374                                         struct btrfs_fs_devices, fs_list);
375                 list_del(&fs_devices->fs_list);
376                 free_fs_devices(fs_devices);
377         }
378 }
379
380 /*
381  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
382  * Returned struct is not linked onto any lists and must be destroyed using
383  * btrfs_free_device.
384  */
385 static struct btrfs_device *__alloc_device(void)
386 {
387         struct btrfs_device *dev;
388
389         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
390         if (!dev)
391                 return ERR_PTR(-ENOMEM);
392
393         /*
394          * Preallocate a bio that's always going to be used for flushing device
395          * barriers and matches the device lifespan
396          */
397         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
398         if (!dev->flush_bio) {
399                 kfree(dev);
400                 return ERR_PTR(-ENOMEM);
401         }
402
403         INIT_LIST_HEAD(&dev->dev_list);
404         INIT_LIST_HEAD(&dev->dev_alloc_list);
405         INIT_LIST_HEAD(&dev->resized_list);
406
407         spin_lock_init(&dev->io_lock);
408
409         atomic_set(&dev->reada_in_flight, 0);
410         atomic_set(&dev->dev_stats_ccnt, 0);
411         btrfs_device_data_ordered_init(dev);
412         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
413         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
414
415         return dev;
416 }
417
418 /*
419  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
420  * return NULL.
421  *
422  * If devid and uuid are both specified, the match must be exact, otherwise
423  * only devid is used.
424  */
425 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
426                 u64 devid, const u8 *uuid)
427 {
428         struct btrfs_device *dev;
429
430         list_for_each_entry(dev, &fs_devices->devices, dev_list) {
431                 if (dev->devid == devid &&
432                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
433                         return dev;
434                 }
435         }
436         return NULL;
437 }
438
439 static noinline struct btrfs_fs_devices *find_fsid(
440                 const u8 *fsid, const u8 *metadata_fsid)
441 {
442         struct btrfs_fs_devices *fs_devices;
443
444         ASSERT(fsid);
445
446         if (metadata_fsid) {
447                 /*
448                  * Handle scanned device having completed its fsid change but
449                  * belonging to a fs_devices that was created by first scanning
450                  * a device which didn't have its fsid/metadata_uuid changed
451                  * at all and the CHANGING_FSID_V2 flag set.
452                  */
453                 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
454                         if (fs_devices->fsid_change &&
455                             memcmp(metadata_fsid, fs_devices->fsid,
456                                    BTRFS_FSID_SIZE) == 0 &&
457                             memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
458                                    BTRFS_FSID_SIZE) == 0) {
459                                 return fs_devices;
460                         }
461                 }
462                 /*
463                  * Handle scanned device having completed its fsid change but
464                  * belonging to a fs_devices that was created by a device that
465                  * has an outdated pair of fsid/metadata_uuid and
466                  * CHANGING_FSID_V2 flag set.
467                  */
468                 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
469                         if (fs_devices->fsid_change &&
470                             memcmp(fs_devices->metadata_uuid,
471                                    fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
472                             memcmp(metadata_fsid, fs_devices->metadata_uuid,
473                                    BTRFS_FSID_SIZE) == 0) {
474                                 return fs_devices;
475                         }
476                 }
477         }
478
479         /* Handle non-split brain cases */
480         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
481                 if (metadata_fsid) {
482                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
483                             && memcmp(metadata_fsid, fs_devices->metadata_uuid,
484                                       BTRFS_FSID_SIZE) == 0)
485                                 return fs_devices;
486                 } else {
487                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
488                                 return fs_devices;
489                 }
490         }
491         return NULL;
492 }
493
494 static int
495 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
496                       int flush, struct block_device **bdev,
497                       struct buffer_head **bh)
498 {
499         int ret;
500
501         *bdev = blkdev_get_by_path(device_path, flags, holder);
502
503         if (IS_ERR(*bdev)) {
504                 ret = PTR_ERR(*bdev);
505                 goto error;
506         }
507
508         if (flush)
509                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
510         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
511         if (ret) {
512                 blkdev_put(*bdev, flags);
513                 goto error;
514         }
515         invalidate_bdev(*bdev);
516         *bh = btrfs_read_dev_super(*bdev);
517         if (IS_ERR(*bh)) {
518                 ret = PTR_ERR(*bh);
519                 blkdev_put(*bdev, flags);
520                 goto error;
521         }
522
523         return 0;
524
525 error:
526         *bdev = NULL;
527         *bh = NULL;
528         return ret;
529 }
530
531 static void requeue_list(struct btrfs_pending_bios *pending_bios,
532                         struct bio *head, struct bio *tail)
533 {
534
535         struct bio *old_head;
536
537         old_head = pending_bios->head;
538         pending_bios->head = head;
539         if (pending_bios->tail)
540                 tail->bi_next = old_head;
541         else
542                 pending_bios->tail = tail;
543 }
544
545 /*
546  * we try to collect pending bios for a device so we don't get a large
547  * number of procs sending bios down to the same device.  This greatly
548  * improves the schedulers ability to collect and merge the bios.
549  *
550  * But, it also turns into a long list of bios to process and that is sure
551  * to eventually make the worker thread block.  The solution here is to
552  * make some progress and then put this work struct back at the end of
553  * the list if the block device is congested.  This way, multiple devices
554  * can make progress from a single worker thread.
555  */
556 static noinline void run_scheduled_bios(struct btrfs_device *device)
557 {
558         struct btrfs_fs_info *fs_info = device->fs_info;
559         struct bio *pending;
560         struct backing_dev_info *bdi;
561         struct btrfs_pending_bios *pending_bios;
562         struct bio *tail;
563         struct bio *cur;
564         int again = 0;
565         unsigned long num_run;
566         unsigned long batch_run = 0;
567         unsigned long last_waited = 0;
568         int force_reg = 0;
569         int sync_pending = 0;
570         struct blk_plug plug;
571
572         /*
573          * this function runs all the bios we've collected for
574          * a particular device.  We don't want to wander off to
575          * another device without first sending all of these down.
576          * So, setup a plug here and finish it off before we return
577          */
578         blk_start_plug(&plug);
579
580         bdi = device->bdev->bd_bdi;
581
582 loop:
583         spin_lock(&device->io_lock);
584
585 loop_lock:
586         num_run = 0;
587
588         /* take all the bios off the list at once and process them
589          * later on (without the lock held).  But, remember the
590          * tail and other pointers so the bios can be properly reinserted
591          * into the list if we hit congestion
592          */
593         if (!force_reg && device->pending_sync_bios.head) {
594                 pending_bios = &device->pending_sync_bios;
595                 force_reg = 1;
596         } else {
597                 pending_bios = &device->pending_bios;
598                 force_reg = 0;
599         }
600
601         pending = pending_bios->head;
602         tail = pending_bios->tail;
603         WARN_ON(pending && !tail);
604
605         /*
606          * if pending was null this time around, no bios need processing
607          * at all and we can stop.  Otherwise it'll loop back up again
608          * and do an additional check so no bios are missed.
609          *
610          * device->running_pending is used to synchronize with the
611          * schedule_bio code.
612          */
613         if (device->pending_sync_bios.head == NULL &&
614             device->pending_bios.head == NULL) {
615                 again = 0;
616                 device->running_pending = 0;
617         } else {
618                 again = 1;
619                 device->running_pending = 1;
620         }
621
622         pending_bios->head = NULL;
623         pending_bios->tail = NULL;
624
625         spin_unlock(&device->io_lock);
626
627         while (pending) {
628
629                 rmb();
630                 /* we want to work on both lists, but do more bios on the
631                  * sync list than the regular list
632                  */
633                 if ((num_run > 32 &&
634                     pending_bios != &device->pending_sync_bios &&
635                     device->pending_sync_bios.head) ||
636                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
637                     device->pending_bios.head)) {
638                         spin_lock(&device->io_lock);
639                         requeue_list(pending_bios, pending, tail);
640                         goto loop_lock;
641                 }
642
643                 cur = pending;
644                 pending = pending->bi_next;
645                 cur->bi_next = NULL;
646
647                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
648
649                 /*
650                  * if we're doing the sync list, record that our
651                  * plug has some sync requests on it
652                  *
653                  * If we're doing the regular list and there are
654                  * sync requests sitting around, unplug before
655                  * we add more
656                  */
657                 if (pending_bios == &device->pending_sync_bios) {
658                         sync_pending = 1;
659                 } else if (sync_pending) {
660                         blk_finish_plug(&plug);
661                         blk_start_plug(&plug);
662                         sync_pending = 0;
663                 }
664
665                 btrfsic_submit_bio(cur);
666                 num_run++;
667                 batch_run++;
668
669                 cond_resched();
670
671                 /*
672                  * we made progress, there is more work to do and the bdi
673                  * is now congested.  Back off and let other work structs
674                  * run instead
675                  */
676                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
677                     fs_info->fs_devices->open_devices > 1) {
678                         struct io_context *ioc;
679
680                         ioc = current->io_context;
681
682                         /*
683                          * the main goal here is that we don't want to
684                          * block if we're going to be able to submit
685                          * more requests without blocking.
686                          *
687                          * This code does two great things, it pokes into
688                          * the elevator code from a filesystem _and_
689                          * it makes assumptions about how batching works.
690                          */
691                         if (ioc && ioc->nr_batch_requests > 0 &&
692                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
693                             (last_waited == 0 ||
694                              ioc->last_waited == last_waited)) {
695                                 /*
696                                  * we want to go through our batch of
697                                  * requests and stop.  So, we copy out
698                                  * the ioc->last_waited time and test
699                                  * against it before looping
700                                  */
701                                 last_waited = ioc->last_waited;
702                                 cond_resched();
703                                 continue;
704                         }
705                         spin_lock(&device->io_lock);
706                         requeue_list(pending_bios, pending, tail);
707                         device->running_pending = 1;
708
709                         spin_unlock(&device->io_lock);
710                         btrfs_queue_work(fs_info->submit_workers,
711                                          &device->work);
712                         goto done;
713                 }
714         }
715
716         cond_resched();
717         if (again)
718                 goto loop;
719
720         spin_lock(&device->io_lock);
721         if (device->pending_bios.head || device->pending_sync_bios.head)
722                 goto loop_lock;
723         spin_unlock(&device->io_lock);
724
725 done:
726         blk_finish_plug(&plug);
727 }
728
729 static void pending_bios_fn(struct btrfs_work *work)
730 {
731         struct btrfs_device *device;
732
733         device = container_of(work, struct btrfs_device, work);
734         run_scheduled_bios(device);
735 }
736
737 /*
738  *  Search and remove all stale (devices which are not mounted) devices.
739  *  When both inputs are NULL, it will search and release all stale devices.
740  *  path:       Optional. When provided will it release all unmounted devices
741  *              matching this path only.
742  *  skip_dev:   Optional. Will skip this device when searching for the stale
743  *              devices.
744  */
745 static void btrfs_free_stale_devices(const char *path,
746                                      struct btrfs_device *skip_device)
747 {
748         struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
749         struct btrfs_device *device, *tmp_device;
750
751         list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
752                 mutex_lock(&fs_devices->device_list_mutex);
753                 if (fs_devices->opened) {
754                         mutex_unlock(&fs_devices->device_list_mutex);
755                         continue;
756                 }
757
758                 list_for_each_entry_safe(device, tmp_device,
759                                          &fs_devices->devices, dev_list) {
760                         int not_found = 0;
761
762                         if (skip_device && skip_device == device)
763                                 continue;
764                         if (path && !device->name)
765                                 continue;
766
767                         rcu_read_lock();
768                         if (path)
769                                 not_found = strcmp(rcu_str_deref(device->name),
770                                                    path);
771                         rcu_read_unlock();
772                         if (not_found)
773                                 continue;
774
775                         /* delete the stale device */
776                         fs_devices->num_devices--;
777                         list_del(&device->dev_list);
778                         btrfs_free_device(device);
779
780                         if (fs_devices->num_devices == 0)
781                                 break;
782                 }
783                 mutex_unlock(&fs_devices->device_list_mutex);
784                 if (fs_devices->num_devices == 0) {
785                         btrfs_sysfs_remove_fsid(fs_devices);
786                         list_del(&fs_devices->fs_list);
787                         free_fs_devices(fs_devices);
788                 }
789         }
790 }
791
792 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
793                         struct btrfs_device *device, fmode_t flags,
794                         void *holder)
795 {
796         struct request_queue *q;
797         struct block_device *bdev;
798         struct buffer_head *bh;
799         struct btrfs_super_block *disk_super;
800         u64 devid;
801         int ret;
802
803         if (device->bdev)
804                 return -EINVAL;
805         if (!device->name)
806                 return -EINVAL;
807
808         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
809                                     &bdev, &bh);
810         if (ret)
811                 return ret;
812
813         disk_super = (struct btrfs_super_block *)bh->b_data;
814         devid = btrfs_stack_device_id(&disk_super->dev_item);
815         if (devid != device->devid)
816                 goto error_brelse;
817
818         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
819                 goto error_brelse;
820
821         device->generation = btrfs_super_generation(disk_super);
822
823         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
824                 if (btrfs_super_incompat_flags(disk_super) &
825                     BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
826                         pr_err(
827                 "BTRFS: Invalid seeding and uuid-changed device detected\n");
828                         goto error_brelse;
829                 }
830
831                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
832                 fs_devices->seeding = 1;
833         } else {
834                 if (bdev_read_only(bdev))
835                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
836                 else
837                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
838         }
839
840         q = bdev_get_queue(bdev);
841         if (!blk_queue_nonrot(q))
842                 fs_devices->rotating = 1;
843
844         device->bdev = bdev;
845         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
846         device->mode = flags;
847
848         fs_devices->open_devices++;
849         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
850             device->devid != BTRFS_DEV_REPLACE_DEVID) {
851                 fs_devices->rw_devices++;
852                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
853         }
854         brelse(bh);
855
856         return 0;
857
858 error_brelse:
859         brelse(bh);
860         blkdev_put(bdev, flags);
861
862         return -EINVAL;
863 }
864
865 /*
866  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
867  * being created with a disk that has already completed its fsid change.
868  */
869 static struct btrfs_fs_devices *find_fsid_inprogress(
870                                         struct btrfs_super_block *disk_super)
871 {
872         struct btrfs_fs_devices *fs_devices;
873
874         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
875                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
876                            BTRFS_FSID_SIZE) != 0 &&
877                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
878                            BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
879                         return fs_devices;
880                 }
881         }
882
883         return NULL;
884 }
885
886
887 static struct btrfs_fs_devices *find_fsid_changed(
888                                         struct btrfs_super_block *disk_super)
889 {
890         struct btrfs_fs_devices *fs_devices;
891
892         /*
893          * Handles the case where scanned device is part of an fs that had
894          * multiple successful changes of FSID but curently device didn't
895          * observe it. Meaning our fsid will be different than theirs.
896          */
897         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
898                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
899                            BTRFS_FSID_SIZE) != 0 &&
900                     memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
901                            BTRFS_FSID_SIZE) == 0 &&
902                     memcmp(fs_devices->fsid, disk_super->fsid,
903                            BTRFS_FSID_SIZE) != 0) {
904                         return fs_devices;
905                 }
906         }
907
908         return NULL;
909 }
910 /*
911  * Add new device to list of registered devices
912  *
913  * Returns:
914  * device pointer which was just added or updated when successful
915  * error pointer when failed
916  */
917 static noinline struct btrfs_device *device_list_add(const char *path,
918                            struct btrfs_super_block *disk_super,
919                            bool *new_device_added)
920 {
921         struct btrfs_device *device;
922         struct btrfs_fs_devices *fs_devices = NULL;
923         struct rcu_string *name;
924         u64 found_transid = btrfs_super_generation(disk_super);
925         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
926         bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
927                 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
928         bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
929                                         BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
930
931         if (fsid_change_in_progress) {
932                 if (!has_metadata_uuid) {
933                         /*
934                          * When we have an image which has CHANGING_FSID_V2 set
935                          * it might belong to either a filesystem which has
936                          * disks with completed fsid change or it might belong
937                          * to fs with no UUID changes in effect, handle both.
938                          */
939                         fs_devices = find_fsid_inprogress(disk_super);
940                         if (!fs_devices)
941                                 fs_devices = find_fsid(disk_super->fsid, NULL);
942                 } else {
943                         fs_devices = find_fsid_changed(disk_super);
944                 }
945         } else if (has_metadata_uuid) {
946                 fs_devices = find_fsid(disk_super->fsid,
947                                        disk_super->metadata_uuid);
948         } else {
949                 fs_devices = find_fsid(disk_super->fsid, NULL);
950         }
951
952
953         if (!fs_devices) {
954                 if (has_metadata_uuid)
955                         fs_devices = alloc_fs_devices(disk_super->fsid,
956                                                       disk_super->metadata_uuid);
957                 else
958                         fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
959
960                 fs_devices->fsid_change = fsid_change_in_progress;
961
962                 if (IS_ERR(fs_devices))
963                         return ERR_CAST(fs_devices);
964
965                 mutex_lock(&fs_devices->device_list_mutex);
966                 list_add(&fs_devices->fs_list, &fs_uuids);
967
968                 device = NULL;
969         } else {
970                 mutex_lock(&fs_devices->device_list_mutex);
971                 device = find_device(fs_devices, devid,
972                                 disk_super->dev_item.uuid);
973
974                 /*
975                  * If this disk has been pulled into an fs devices created by
976                  * a device which had the CHANGING_FSID_V2 flag then replace the
977                  * metadata_uuid/fsid values of the fs_devices.
978                  */
979                 if (has_metadata_uuid && fs_devices->fsid_change &&
980                     found_transid > fs_devices->latest_generation) {
981                         memcpy(fs_devices->fsid, disk_super->fsid,
982                                         BTRFS_FSID_SIZE);
983                         memcpy(fs_devices->metadata_uuid,
984                                         disk_super->metadata_uuid, BTRFS_FSID_SIZE);
985
986                         fs_devices->fsid_change = false;
987                 }
988         }
989
990         if (!device) {
991                 if (fs_devices->opened) {
992                         mutex_unlock(&fs_devices->device_list_mutex);
993                         return ERR_PTR(-EBUSY);
994                 }
995
996                 device = btrfs_alloc_device(NULL, &devid,
997                                             disk_super->dev_item.uuid);
998                 if (IS_ERR(device)) {
999                         mutex_unlock(&fs_devices->device_list_mutex);
1000                         /* we can safely leave the fs_devices entry around */
1001                         return device;
1002                 }
1003
1004                 name = rcu_string_strdup(path, GFP_NOFS);
1005                 if (!name) {
1006                         btrfs_free_device(device);
1007                         mutex_unlock(&fs_devices->device_list_mutex);
1008                         return ERR_PTR(-ENOMEM);
1009                 }
1010                 rcu_assign_pointer(device->name, name);
1011
1012                 list_add_rcu(&device->dev_list, &fs_devices->devices);
1013                 fs_devices->num_devices++;
1014
1015                 device->fs_devices = fs_devices;
1016                 *new_device_added = true;
1017
1018                 if (disk_super->label[0])
1019                         pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
1020                                 disk_super->label, devid, found_transid, path);
1021                 else
1022                         pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
1023                                 disk_super->fsid, devid, found_transid, path);
1024
1025         } else if (!device->name || strcmp(device->name->str, path)) {
1026                 /*
1027                  * When FS is already mounted.
1028                  * 1. If you are here and if the device->name is NULL that
1029                  *    means this device was missing at time of FS mount.
1030                  * 2. If you are here and if the device->name is different
1031                  *    from 'path' that means either
1032                  *      a. The same device disappeared and reappeared with
1033                  *         different name. or
1034                  *      b. The missing-disk-which-was-replaced, has
1035                  *         reappeared now.
1036                  *
1037                  * We must allow 1 and 2a above. But 2b would be a spurious
1038                  * and unintentional.
1039                  *
1040                  * Further in case of 1 and 2a above, the disk at 'path'
1041                  * would have missed some transaction when it was away and
1042                  * in case of 2a the stale bdev has to be updated as well.
1043                  * 2b must not be allowed at all time.
1044                  */
1045
1046                 /*
1047                  * For now, we do allow update to btrfs_fs_device through the
1048                  * btrfs dev scan cli after FS has been mounted.  We're still
1049                  * tracking a problem where systems fail mount by subvolume id
1050                  * when we reject replacement on a mounted FS.
1051                  */
1052                 if (!fs_devices->opened && found_transid < device->generation) {
1053                         /*
1054                          * That is if the FS is _not_ mounted and if you
1055                          * are here, that means there is more than one
1056                          * disk with same uuid and devid.We keep the one
1057                          * with larger generation number or the last-in if
1058                          * generation are equal.
1059                          */
1060                         mutex_unlock(&fs_devices->device_list_mutex);
1061                         return ERR_PTR(-EEXIST);
1062                 }
1063
1064                 /*
1065                  * We are going to replace the device path for a given devid,
1066                  * make sure it's the same device if the device is mounted
1067                  */
1068                 if (device->bdev) {
1069                         struct block_device *path_bdev;
1070
1071                         path_bdev = lookup_bdev(path);
1072                         if (IS_ERR(path_bdev)) {
1073                                 mutex_unlock(&fs_devices->device_list_mutex);
1074                                 return ERR_CAST(path_bdev);
1075                         }
1076
1077                         if (device->bdev != path_bdev) {
1078                                 bdput(path_bdev);
1079                                 mutex_unlock(&fs_devices->device_list_mutex);
1080                                 btrfs_warn_in_rcu(device->fs_info,
1081                         "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
1082                                         disk_super->fsid, devid,
1083                                         rcu_str_deref(device->name), path);
1084                                 return ERR_PTR(-EEXIST);
1085                         }
1086                         bdput(path_bdev);
1087                         btrfs_info_in_rcu(device->fs_info,
1088                                 "device fsid %pU devid %llu moved old:%s new:%s",
1089                                 disk_super->fsid, devid,
1090                                 rcu_str_deref(device->name), path);
1091                 }
1092
1093                 name = rcu_string_strdup(path, GFP_NOFS);
1094                 if (!name) {
1095                         mutex_unlock(&fs_devices->device_list_mutex);
1096                         return ERR_PTR(-ENOMEM);
1097                 }
1098                 rcu_string_free(device->name);
1099                 rcu_assign_pointer(device->name, name);
1100                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1101                         fs_devices->missing_devices--;
1102                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1103                 }
1104         }
1105
1106         /*
1107          * Unmount does not free the btrfs_device struct but would zero
1108          * generation along with most of the other members. So just update
1109          * it back. We need it to pick the disk with largest generation
1110          * (as above).
1111          */
1112         if (!fs_devices->opened) {
1113                 device->generation = found_transid;
1114                 fs_devices->latest_generation = max_t(u64, found_transid,
1115                                                 fs_devices->latest_generation);
1116         }
1117
1118         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1119
1120         mutex_unlock(&fs_devices->device_list_mutex);
1121         return device;
1122 }
1123
1124 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1125 {
1126         struct btrfs_fs_devices *fs_devices;
1127         struct btrfs_device *device;
1128         struct btrfs_device *orig_dev;
1129
1130         fs_devices = alloc_fs_devices(orig->fsid, NULL);
1131         if (IS_ERR(fs_devices))
1132                 return fs_devices;
1133
1134         mutex_lock(&orig->device_list_mutex);
1135         fs_devices->total_devices = orig->total_devices;
1136
1137         /* We have held the volume lock, it is safe to get the devices. */
1138         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1139                 struct rcu_string *name;
1140
1141                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1142                                             orig_dev->uuid);
1143                 if (IS_ERR(device))
1144                         goto error;
1145
1146                 /*
1147                  * This is ok to do without rcu read locked because we hold the
1148                  * uuid mutex so nothing we touch in here is going to disappear.
1149                  */
1150                 if (orig_dev->name) {
1151                         name = rcu_string_strdup(orig_dev->name->str,
1152                                         GFP_KERNEL);
1153                         if (!name) {
1154                                 btrfs_free_device(device);
1155                                 goto error;
1156                         }
1157                         rcu_assign_pointer(device->name, name);
1158                 }
1159
1160                 list_add(&device->dev_list, &fs_devices->devices);
1161                 device->fs_devices = fs_devices;
1162                 fs_devices->num_devices++;
1163         }
1164         mutex_unlock(&orig->device_list_mutex);
1165         return fs_devices;
1166 error:
1167         mutex_unlock(&orig->device_list_mutex);
1168         free_fs_devices(fs_devices);
1169         return ERR_PTR(-ENOMEM);
1170 }
1171
1172 /*
1173  * After we have read the system tree and know devids belonging to
1174  * this filesystem, remove the device which does not belong there.
1175  */
1176 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1177 {
1178         struct btrfs_device *device, *next;
1179         struct btrfs_device *latest_dev = NULL;
1180
1181         mutex_lock(&uuid_mutex);
1182 again:
1183         /* This is the initialized path, it is safe to release the devices. */
1184         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1185                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1186                                                         &device->dev_state)) {
1187                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1188                              &device->dev_state) &&
1189                              (!latest_dev ||
1190                               device->generation > latest_dev->generation)) {
1191                                 latest_dev = device;
1192                         }
1193                         continue;
1194                 }
1195
1196                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1197                         /*
1198                          * In the first step, keep the device which has
1199                          * the correct fsid and the devid that is used
1200                          * for the dev_replace procedure.
1201                          * In the second step, the dev_replace state is
1202                          * read from the device tree and it is known
1203                          * whether the procedure is really active or
1204                          * not, which means whether this device is
1205                          * used or whether it should be removed.
1206                          */
1207                         if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1208                                                   &device->dev_state)) {
1209                                 continue;
1210                         }
1211                 }
1212                 if (device->bdev) {
1213                         blkdev_put(device->bdev, device->mode);
1214                         device->bdev = NULL;
1215                         fs_devices->open_devices--;
1216                 }
1217                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1218                         list_del_init(&device->dev_alloc_list);
1219                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1220                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1221                                       &device->dev_state))
1222                                 fs_devices->rw_devices--;
1223                 }
1224                 list_del_init(&device->dev_list);
1225                 fs_devices->num_devices--;
1226                 btrfs_free_device(device);
1227         }
1228
1229         if (fs_devices->seed) {
1230                 fs_devices = fs_devices->seed;
1231                 goto again;
1232         }
1233
1234         fs_devices->latest_bdev = latest_dev->bdev;
1235
1236         mutex_unlock(&uuid_mutex);
1237 }
1238
1239 static void free_device_rcu(struct rcu_head *head)
1240 {
1241         struct btrfs_device *device;
1242
1243         device = container_of(head, struct btrfs_device, rcu);
1244         btrfs_free_device(device);
1245 }
1246
1247 static void btrfs_close_bdev(struct btrfs_device *device)
1248 {
1249         if (!device->bdev)
1250                 return;
1251
1252         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1253                 sync_blockdev(device->bdev);
1254                 invalidate_bdev(device->bdev);
1255         }
1256
1257         blkdev_put(device->bdev, device->mode);
1258 }
1259
1260 static void btrfs_close_one_device(struct btrfs_device *device)
1261 {
1262         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1263         struct btrfs_device *new_device;
1264         struct rcu_string *name;
1265
1266         if (device->bdev)
1267                 fs_devices->open_devices--;
1268
1269         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1270             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1271                 list_del_init(&device->dev_alloc_list);
1272                 fs_devices->rw_devices--;
1273         }
1274
1275         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1276                 fs_devices->missing_devices--;
1277
1278         btrfs_close_bdev(device);
1279
1280         new_device = btrfs_alloc_device(NULL, &device->devid,
1281                                         device->uuid);
1282         BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1283
1284         /* Safe because we are under uuid_mutex */
1285         if (device->name) {
1286                 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1287                 BUG_ON(!name); /* -ENOMEM */
1288                 rcu_assign_pointer(new_device->name, name);
1289         }
1290
1291         list_replace_rcu(&device->dev_list, &new_device->dev_list);
1292         new_device->fs_devices = device->fs_devices;
1293
1294         call_rcu(&device->rcu, free_device_rcu);
1295 }
1296
1297 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1298 {
1299         struct btrfs_device *device, *tmp;
1300
1301         if (--fs_devices->opened > 0)
1302                 return 0;
1303
1304         mutex_lock(&fs_devices->device_list_mutex);
1305         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1306                 btrfs_close_one_device(device);
1307         }
1308         mutex_unlock(&fs_devices->device_list_mutex);
1309
1310         WARN_ON(fs_devices->open_devices);
1311         WARN_ON(fs_devices->rw_devices);
1312         fs_devices->opened = 0;
1313         fs_devices->seeding = 0;
1314
1315         return 0;
1316 }
1317
1318 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1319 {
1320         struct btrfs_fs_devices *seed_devices = NULL;
1321         int ret;
1322
1323         mutex_lock(&uuid_mutex);
1324         ret = close_fs_devices(fs_devices);
1325         if (!fs_devices->opened) {
1326                 seed_devices = fs_devices->seed;
1327                 fs_devices->seed = NULL;
1328         }
1329         mutex_unlock(&uuid_mutex);
1330
1331         while (seed_devices) {
1332                 fs_devices = seed_devices;
1333                 seed_devices = fs_devices->seed;
1334                 close_fs_devices(fs_devices);
1335                 free_fs_devices(fs_devices);
1336         }
1337         return ret;
1338 }
1339
1340 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1341                                 fmode_t flags, void *holder)
1342 {
1343         struct btrfs_device *device;
1344         struct btrfs_device *latest_dev = NULL;
1345         int ret = 0;
1346
1347         flags |= FMODE_EXCL;
1348
1349         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1350                 /* Just open everything we can; ignore failures here */
1351                 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1352                         continue;
1353
1354                 if (!latest_dev ||
1355                     device->generation > latest_dev->generation)
1356                         latest_dev = device;
1357         }
1358         if (fs_devices->open_devices == 0) {
1359                 ret = -EINVAL;
1360                 goto out;
1361         }
1362         fs_devices->opened = 1;
1363         fs_devices->latest_bdev = latest_dev->bdev;
1364         fs_devices->total_rw_bytes = 0;
1365 out:
1366         return ret;
1367 }
1368
1369 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1370 {
1371         struct btrfs_device *dev1, *dev2;
1372
1373         dev1 = list_entry(a, struct btrfs_device, dev_list);
1374         dev2 = list_entry(b, struct btrfs_device, dev_list);
1375
1376         if (dev1->devid < dev2->devid)
1377                 return -1;
1378         else if (dev1->devid > dev2->devid)
1379                 return 1;
1380         return 0;
1381 }
1382
1383 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1384                        fmode_t flags, void *holder)
1385 {
1386         int ret;
1387
1388         lockdep_assert_held(&uuid_mutex);
1389
1390         mutex_lock(&fs_devices->device_list_mutex);
1391         if (fs_devices->opened) {
1392                 fs_devices->opened++;
1393                 ret = 0;
1394         } else {
1395                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1396                 ret = open_fs_devices(fs_devices, flags, holder);
1397         }
1398         mutex_unlock(&fs_devices->device_list_mutex);
1399
1400         return ret;
1401 }
1402
1403 static void btrfs_release_disk_super(struct page *page)
1404 {
1405         kunmap(page);
1406         put_page(page);
1407 }
1408
1409 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1410                                  struct page **page,
1411                                  struct btrfs_super_block **disk_super)
1412 {
1413         void *p;
1414         pgoff_t index;
1415
1416         /* make sure our super fits in the device */
1417         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1418                 return 1;
1419
1420         /* make sure our super fits in the page */
1421         if (sizeof(**disk_super) > PAGE_SIZE)
1422                 return 1;
1423
1424         /* make sure our super doesn't straddle pages on disk */
1425         index = bytenr >> PAGE_SHIFT;
1426         if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1427                 return 1;
1428
1429         /* pull in the page with our super */
1430         *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1431                                    index, GFP_KERNEL);
1432
1433         if (IS_ERR_OR_NULL(*page))
1434                 return 1;
1435
1436         p = kmap(*page);
1437
1438         /* align our pointer to the offset of the super block */
1439         *disk_super = p + offset_in_page(bytenr);
1440
1441         if (btrfs_super_bytenr(*disk_super) != bytenr ||
1442             btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1443                 btrfs_release_disk_super(*page);
1444                 return 1;
1445         }
1446
1447         if ((*disk_super)->label[0] &&
1448                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1449                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1450
1451         return 0;
1452 }
1453
1454 /*
1455  * Look for a btrfs signature on a device. This may be called out of the mount path
1456  * and we are not allowed to call set_blocksize during the scan. The superblock
1457  * is read via pagecache
1458  */
1459 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1460                                            void *holder)
1461 {
1462         struct btrfs_super_block *disk_super;
1463         bool new_device_added = false;
1464         struct btrfs_device *device = NULL;
1465         struct block_device *bdev;
1466         struct page *page;
1467         u64 bytenr;
1468
1469         lockdep_assert_held(&uuid_mutex);
1470
1471         /*
1472          * we would like to check all the supers, but that would make
1473          * a btrfs mount succeed after a mkfs from a different FS.
1474          * So, we need to add a special mount option to scan for
1475          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1476          */
1477         bytenr = btrfs_sb_offset(0);
1478         flags |= FMODE_EXCL;
1479
1480         bdev = blkdev_get_by_path(path, flags, holder);
1481         if (IS_ERR(bdev))
1482                 return ERR_CAST(bdev);
1483
1484         if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1485                 device = ERR_PTR(-EINVAL);
1486                 goto error_bdev_put;
1487         }
1488
1489         device = device_list_add(path, disk_super, &new_device_added);
1490         if (!IS_ERR(device)) {
1491                 if (new_device_added)
1492                         btrfs_free_stale_devices(path, device);
1493         }
1494
1495         btrfs_release_disk_super(page);
1496
1497 error_bdev_put:
1498         blkdev_put(bdev, flags);
1499
1500         return device;
1501 }
1502
1503 static int contains_pending_extent(struct btrfs_transaction *transaction,
1504                                    struct btrfs_device *device,
1505                                    u64 *start, u64 len)
1506 {
1507         struct btrfs_fs_info *fs_info = device->fs_info;
1508         struct extent_map *em;
1509         struct list_head *search_list = &fs_info->pinned_chunks;
1510         int ret = 0;
1511         u64 physical_start = *start;
1512
1513         if (transaction)
1514                 search_list = &transaction->pending_chunks;
1515 again:
1516         list_for_each_entry(em, search_list, list) {
1517                 struct map_lookup *map;
1518                 int i;
1519
1520                 map = em->map_lookup;
1521                 for (i = 0; i < map->num_stripes; i++) {
1522                         u64 end;
1523
1524                         if (map->stripes[i].dev != device)
1525                                 continue;
1526                         if (map->stripes[i].physical >= physical_start + len ||
1527                             map->stripes[i].physical + em->orig_block_len <=
1528                             physical_start)
1529                                 continue;
1530                         /*
1531                          * Make sure that while processing the pinned list we do
1532                          * not override our *start with a lower value, because
1533                          * we can have pinned chunks that fall within this
1534                          * device hole and that have lower physical addresses
1535                          * than the pending chunks we processed before. If we
1536                          * do not take this special care we can end up getting
1537                          * 2 pending chunks that start at the same physical
1538                          * device offsets because the end offset of a pinned
1539                          * chunk can be equal to the start offset of some
1540                          * pending chunk.
1541                          */
1542                         end = map->stripes[i].physical + em->orig_block_len;
1543                         if (end > *start) {
1544                                 *start = end;
1545                                 ret = 1;
1546                         }
1547                 }
1548         }
1549         if (search_list != &fs_info->pinned_chunks) {
1550                 search_list = &fs_info->pinned_chunks;
1551                 goto again;
1552         }
1553
1554         return ret;
1555 }
1556
1557
1558 /*
1559  * find_free_dev_extent_start - find free space in the specified device
1560  * @device:       the device which we search the free space in
1561  * @num_bytes:    the size of the free space that we need
1562  * @search_start: the position from which to begin the search
1563  * @start:        store the start of the free space.
1564  * @len:          the size of the free space. that we find, or the size
1565  *                of the max free space if we don't find suitable free space
1566  *
1567  * this uses a pretty simple search, the expectation is that it is
1568  * called very infrequently and that a given device has a small number
1569  * of extents
1570  *
1571  * @start is used to store the start of the free space if we find. But if we
1572  * don't find suitable free space, it will be used to store the start position
1573  * of the max free space.
1574  *
1575  * @len is used to store the size of the free space that we find.
1576  * But if we don't find suitable free space, it is used to store the size of
1577  * the max free space.
1578  */
1579 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1580                                struct btrfs_device *device, u64 num_bytes,
1581                                u64 search_start, u64 *start, u64 *len)
1582 {
1583         struct btrfs_fs_info *fs_info = device->fs_info;
1584         struct btrfs_root *root = fs_info->dev_root;
1585         struct btrfs_key key;
1586         struct btrfs_dev_extent *dev_extent;
1587         struct btrfs_path *path;
1588         u64 hole_size;
1589         u64 max_hole_start;
1590         u64 max_hole_size;
1591         u64 extent_end;
1592         u64 search_end = device->total_bytes;
1593         int ret;
1594         int slot;
1595         struct extent_buffer *l;
1596
1597         /*
1598          * We don't want to overwrite the superblock on the drive nor any area
1599          * used by the boot loader (grub for example), so we make sure to start
1600          * at an offset of at least 1MB.
1601          */
1602         search_start = max_t(u64, search_start, SZ_1M);
1603
1604         path = btrfs_alloc_path();
1605         if (!path)
1606                 return -ENOMEM;
1607
1608         max_hole_start = search_start;
1609         max_hole_size = 0;
1610
1611 again:
1612         if (search_start >= search_end ||
1613                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1614                 ret = -ENOSPC;
1615                 goto out;
1616         }
1617
1618         path->reada = READA_FORWARD;
1619         path->search_commit_root = 1;
1620         path->skip_locking = 1;
1621
1622         key.objectid = device->devid;
1623         key.offset = search_start;
1624         key.type = BTRFS_DEV_EXTENT_KEY;
1625
1626         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1627         if (ret < 0)
1628                 goto out;
1629         if (ret > 0) {
1630                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1631                 if (ret < 0)
1632                         goto out;
1633         }
1634
1635         while (1) {
1636                 l = path->nodes[0];
1637                 slot = path->slots[0];
1638                 if (slot >= btrfs_header_nritems(l)) {
1639                         ret = btrfs_next_leaf(root, path);
1640                         if (ret == 0)
1641                                 continue;
1642                         if (ret < 0)
1643                                 goto out;
1644
1645                         break;
1646                 }
1647                 btrfs_item_key_to_cpu(l, &key, slot);
1648
1649                 if (key.objectid < device->devid)
1650                         goto next;
1651
1652                 if (key.objectid > device->devid)
1653                         break;
1654
1655                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1656                         goto next;
1657
1658                 if (key.offset > search_start) {
1659                         hole_size = key.offset - search_start;
1660
1661                         /*
1662                          * Have to check before we set max_hole_start, otherwise
1663                          * we could end up sending back this offset anyway.
1664                          */
1665                         if (contains_pending_extent(transaction, device,
1666                                                     &search_start,
1667                                                     hole_size)) {
1668                                 if (key.offset >= search_start) {
1669                                         hole_size = key.offset - search_start;
1670                                 } else {
1671                                         WARN_ON_ONCE(1);
1672                                         hole_size = 0;
1673                                 }
1674                         }
1675
1676                         if (hole_size > max_hole_size) {
1677                                 max_hole_start = search_start;
1678                                 max_hole_size = hole_size;
1679                         }
1680
1681                         /*
1682                          * If this free space is greater than which we need,
1683                          * it must be the max free space that we have found
1684                          * until now, so max_hole_start must point to the start
1685                          * of this free space and the length of this free space
1686                          * is stored in max_hole_size. Thus, we return
1687                          * max_hole_start and max_hole_size and go back to the
1688                          * caller.
1689                          */
1690                         if (hole_size >= num_bytes) {
1691                                 ret = 0;
1692                                 goto out;
1693                         }
1694                 }
1695
1696                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1697                 extent_end = key.offset + btrfs_dev_extent_length(l,
1698                                                                   dev_extent);
1699                 if (extent_end > search_start)
1700                         search_start = extent_end;
1701 next:
1702                 path->slots[0]++;
1703                 cond_resched();
1704         }
1705
1706         /*
1707          * At this point, search_start should be the end of
1708          * allocated dev extents, and when shrinking the device,
1709          * search_end may be smaller than search_start.
1710          */
1711         if (search_end > search_start) {
1712                 hole_size = search_end - search_start;
1713
1714                 if (contains_pending_extent(transaction, device, &search_start,
1715                                             hole_size)) {
1716                         btrfs_release_path(path);
1717                         goto again;
1718                 }
1719
1720                 if (hole_size > max_hole_size) {
1721                         max_hole_start = search_start;
1722                         max_hole_size = hole_size;
1723                 }
1724         }
1725
1726         /* See above. */
1727         if (max_hole_size < num_bytes)
1728                 ret = -ENOSPC;
1729         else
1730                 ret = 0;
1731
1732 out:
1733         btrfs_free_path(path);
1734         *start = max_hole_start;
1735         if (len)
1736                 *len = max_hole_size;
1737         return ret;
1738 }
1739
1740 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1741                          struct btrfs_device *device, u64 num_bytes,
1742                          u64 *start, u64 *len)
1743 {
1744         /* FIXME use last free of some kind */
1745         return find_free_dev_extent_start(trans->transaction, device,
1746                                           num_bytes, 0, start, len);
1747 }
1748
1749 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1750                           struct btrfs_device *device,
1751                           u64 start, u64 *dev_extent_len)
1752 {
1753         struct btrfs_fs_info *fs_info = device->fs_info;
1754         struct btrfs_root *root = fs_info->dev_root;
1755         int ret;
1756         struct btrfs_path *path;
1757         struct btrfs_key key;
1758         struct btrfs_key found_key;
1759         struct extent_buffer *leaf = NULL;
1760         struct btrfs_dev_extent *extent = NULL;
1761
1762         path = btrfs_alloc_path();
1763         if (!path)
1764                 return -ENOMEM;
1765
1766         key.objectid = device->devid;
1767         key.offset = start;
1768         key.type = BTRFS_DEV_EXTENT_KEY;
1769 again:
1770         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1771         if (ret > 0) {
1772                 ret = btrfs_previous_item(root, path, key.objectid,
1773                                           BTRFS_DEV_EXTENT_KEY);
1774                 if (ret)
1775                         goto out;
1776                 leaf = path->nodes[0];
1777                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1778                 extent = btrfs_item_ptr(leaf, path->slots[0],
1779                                         struct btrfs_dev_extent);
1780                 BUG_ON(found_key.offset > start || found_key.offset +
1781                        btrfs_dev_extent_length(leaf, extent) < start);
1782                 key = found_key;
1783                 btrfs_release_path(path);
1784                 goto again;
1785         } else if (ret == 0) {
1786                 leaf = path->nodes[0];
1787                 extent = btrfs_item_ptr(leaf, path->slots[0],
1788                                         struct btrfs_dev_extent);
1789         } else {
1790                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1791                 goto out;
1792         }
1793
1794         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1795
1796         ret = btrfs_del_item(trans, root, path);
1797         if (ret) {
1798                 btrfs_handle_fs_error(fs_info, ret,
1799                                       "Failed to remove dev extent item");
1800         } else {
1801                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1802         }
1803 out:
1804         btrfs_free_path(path);
1805         return ret;
1806 }
1807
1808 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1809                                   struct btrfs_device *device,
1810                                   u64 chunk_offset, u64 start, u64 num_bytes)
1811 {
1812         int ret;
1813         struct btrfs_path *path;
1814         struct btrfs_fs_info *fs_info = device->fs_info;
1815         struct btrfs_root *root = fs_info->dev_root;
1816         struct btrfs_dev_extent *extent;
1817         struct extent_buffer *leaf;
1818         struct btrfs_key key;
1819
1820         WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1821         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1822         path = btrfs_alloc_path();
1823         if (!path)
1824                 return -ENOMEM;
1825
1826         key.objectid = device->devid;
1827         key.offset = start;
1828         key.type = BTRFS_DEV_EXTENT_KEY;
1829         ret = btrfs_insert_empty_item(trans, root, path, &key,
1830                                       sizeof(*extent));
1831         if (ret)
1832                 goto out;
1833
1834         leaf = path->nodes[0];
1835         extent = btrfs_item_ptr(leaf, path->slots[0],
1836                                 struct btrfs_dev_extent);
1837         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1838                                         BTRFS_CHUNK_TREE_OBJECTID);
1839         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1840                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1841         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1842
1843         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1844         btrfs_mark_buffer_dirty(leaf);
1845 out:
1846         btrfs_free_path(path);
1847         return ret;
1848 }
1849
1850 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1851 {
1852         struct extent_map_tree *em_tree;
1853         struct extent_map *em;
1854         struct rb_node *n;
1855         u64 ret = 0;
1856
1857         em_tree = &fs_info->mapping_tree.map_tree;
1858         read_lock(&em_tree->lock);
1859         n = rb_last(&em_tree->map.rb_root);
1860         if (n) {
1861                 em = rb_entry(n, struct extent_map, rb_node);
1862                 ret = em->start + em->len;
1863         }
1864         read_unlock(&em_tree->lock);
1865
1866         return ret;
1867 }
1868
1869 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1870                                     u64 *devid_ret)
1871 {
1872         int ret;
1873         struct btrfs_key key;
1874         struct btrfs_key found_key;
1875         struct btrfs_path *path;
1876
1877         path = btrfs_alloc_path();
1878         if (!path)
1879                 return -ENOMEM;
1880
1881         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1882         key.type = BTRFS_DEV_ITEM_KEY;
1883         key.offset = (u64)-1;
1884
1885         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1886         if (ret < 0)
1887                 goto error;
1888
1889         BUG_ON(ret == 0); /* Corruption */
1890
1891         ret = btrfs_previous_item(fs_info->chunk_root, path,
1892                                   BTRFS_DEV_ITEMS_OBJECTID,
1893                                   BTRFS_DEV_ITEM_KEY);
1894         if (ret) {
1895                 *devid_ret = 1;
1896         } else {
1897                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1898                                       path->slots[0]);
1899                 *devid_ret = found_key.offset + 1;
1900         }
1901         ret = 0;
1902 error:
1903         btrfs_free_path(path);
1904         return ret;
1905 }
1906
1907 /*
1908  * the device information is stored in the chunk root
1909  * the btrfs_device struct should be fully filled in
1910  */
1911 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1912                             struct btrfs_device *device)
1913 {
1914         int ret;
1915         struct btrfs_path *path;
1916         struct btrfs_dev_item *dev_item;
1917         struct extent_buffer *leaf;
1918         struct btrfs_key key;
1919         unsigned long ptr;
1920
1921         path = btrfs_alloc_path();
1922         if (!path)
1923                 return -ENOMEM;
1924
1925         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1926         key.type = BTRFS_DEV_ITEM_KEY;
1927         key.offset = device->devid;
1928
1929         ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1930                                       &key, sizeof(*dev_item));
1931         if (ret)
1932                 goto out;
1933
1934         leaf = path->nodes[0];
1935         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1936
1937         btrfs_set_device_id(leaf, dev_item, device->devid);
1938         btrfs_set_device_generation(leaf, dev_item, 0);
1939         btrfs_set_device_type(leaf, dev_item, device->type);
1940         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1941         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1942         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1943         btrfs_set_device_total_bytes(leaf, dev_item,
1944                                      btrfs_device_get_disk_total_bytes(device));
1945         btrfs_set_device_bytes_used(leaf, dev_item,
1946                                     btrfs_device_get_bytes_used(device));
1947         btrfs_set_device_group(leaf, dev_item, 0);
1948         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1949         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1950         btrfs_set_device_start_offset(leaf, dev_item, 0);
1951
1952         ptr = btrfs_device_uuid(dev_item);
1953         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1954         ptr = btrfs_device_fsid(dev_item);
1955         write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1956                             ptr, BTRFS_FSID_SIZE);
1957         btrfs_mark_buffer_dirty(leaf);
1958
1959         ret = 0;
1960 out:
1961         btrfs_free_path(path);
1962         return ret;
1963 }
1964
1965 /*
1966  * Function to update ctime/mtime for a given device path.
1967  * Mainly used for ctime/mtime based probe like libblkid.
1968  */
1969 static void update_dev_time(const char *path_name)
1970 {
1971         struct file *filp;
1972
1973         filp = filp_open(path_name, O_RDWR, 0);
1974         if (IS_ERR(filp))
1975                 return;
1976         file_update_time(filp);
1977         filp_close(filp, NULL);
1978 }
1979
1980 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1981                              struct btrfs_device *device)
1982 {
1983         struct btrfs_root *root = fs_info->chunk_root;
1984         int ret;
1985         struct btrfs_path *path;
1986         struct btrfs_key key;
1987         struct btrfs_trans_handle *trans;
1988
1989         path = btrfs_alloc_path();
1990         if (!path)
1991                 return -ENOMEM;
1992
1993         trans = btrfs_start_transaction(root, 0);
1994         if (IS_ERR(trans)) {
1995                 btrfs_free_path(path);
1996                 return PTR_ERR(trans);
1997         }
1998         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1999         key.type = BTRFS_DEV_ITEM_KEY;
2000         key.offset = device->devid;
2001
2002         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2003         if (ret) {
2004                 if (ret > 0)
2005                         ret = -ENOENT;
2006                 btrfs_abort_transaction(trans, ret);
2007                 btrfs_end_transaction(trans);
2008                 goto out;
2009         }
2010
2011         ret = btrfs_del_item(trans, root, path);
2012         if (ret) {
2013                 btrfs_abort_transaction(trans, ret);
2014                 btrfs_end_transaction(trans);
2015         }
2016
2017 out:
2018         btrfs_free_path(path);
2019         if (!ret)
2020                 ret = btrfs_commit_transaction(trans);
2021         return ret;
2022 }
2023
2024 /*
2025  * Verify that @num_devices satisfies the RAID profile constraints in the whole
2026  * filesystem. It's up to the caller to adjust that number regarding eg. device
2027  * replace.
2028  */
2029 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2030                 u64 num_devices)
2031 {
2032         u64 all_avail;
2033         unsigned seq;
2034         int i;
2035
2036         do {
2037                 seq = read_seqbegin(&fs_info->profiles_lock);
2038
2039                 all_avail = fs_info->avail_data_alloc_bits |
2040                             fs_info->avail_system_alloc_bits |
2041                             fs_info->avail_metadata_alloc_bits;
2042         } while (read_seqretry(&fs_info->profiles_lock, seq));
2043
2044         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2045                 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2046                         continue;
2047
2048                 if (num_devices < btrfs_raid_array[i].devs_min) {
2049                         int ret = btrfs_raid_array[i].mindev_error;
2050
2051                         if (ret)
2052                                 return ret;
2053                 }
2054         }
2055
2056         return 0;
2057 }
2058
2059 static struct btrfs_device * btrfs_find_next_active_device(
2060                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2061 {
2062         struct btrfs_device *next_device;
2063
2064         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2065                 if (next_device != device &&
2066                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2067                     && next_device->bdev)
2068                         return next_device;
2069         }
2070
2071         return NULL;
2072 }
2073
2074 /*
2075  * Helper function to check if the given device is part of s_bdev / latest_bdev
2076  * and replace it with the provided or the next active device, in the context
2077  * where this function called, there should be always be another device (or
2078  * this_dev) which is active.
2079  */
2080 void btrfs_assign_next_active_device(struct btrfs_device *device,
2081                                      struct btrfs_device *this_dev)
2082 {
2083         struct btrfs_fs_info *fs_info = device->fs_info;
2084         struct btrfs_device *next_device;
2085
2086         if (this_dev)
2087                 next_device = this_dev;
2088         else
2089                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2090                                                                 device);
2091         ASSERT(next_device);
2092
2093         if (fs_info->sb->s_bdev &&
2094                         (fs_info->sb->s_bdev == device->bdev))
2095                 fs_info->sb->s_bdev = next_device->bdev;
2096
2097         if (fs_info->fs_devices->latest_bdev == device->bdev)
2098                 fs_info->fs_devices->latest_bdev = next_device->bdev;
2099 }
2100
2101 /*
2102  * Return btrfs_fs_devices::num_devices excluding the device that's being
2103  * currently replaced.
2104  */
2105 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2106 {
2107         u64 num_devices = fs_info->fs_devices->num_devices;
2108
2109         down_read(&fs_info->dev_replace.rwsem);
2110         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2111                 ASSERT(num_devices > 1);
2112                 num_devices--;
2113         }
2114         up_read(&fs_info->dev_replace.rwsem);
2115
2116         return num_devices;
2117 }
2118
2119 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2120                 u64 devid)
2121 {
2122         struct btrfs_device *device;
2123         struct btrfs_fs_devices *cur_devices;
2124         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2125         u64 num_devices;
2126         int ret = 0;
2127
2128         mutex_lock(&uuid_mutex);
2129
2130         num_devices = btrfs_num_devices(fs_info);
2131
2132         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2133         if (ret)
2134                 goto out;
2135
2136         device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2137
2138         if (IS_ERR(device)) {
2139                 if (PTR_ERR(device) == -ENOENT &&
2140                     strcmp(device_path, "missing") == 0)
2141                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2142                 else
2143                         ret = PTR_ERR(device);
2144                 goto out;
2145         }
2146
2147         if (btrfs_pinned_by_swapfile(fs_info, device)) {
2148                 btrfs_warn_in_rcu(fs_info,
2149                   "cannot remove device %s (devid %llu) due to active swapfile",
2150                                   rcu_str_deref(device->name), device->devid);
2151                 ret = -ETXTBSY;
2152                 goto out;
2153         }
2154
2155         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2156                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2157                 goto out;
2158         }
2159
2160         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2161             fs_info->fs_devices->rw_devices == 1) {
2162                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2163                 goto out;
2164         }
2165
2166         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2167                 mutex_lock(&fs_info->chunk_mutex);
2168                 list_del_init(&device->dev_alloc_list);
2169                 device->fs_devices->rw_devices--;
2170                 mutex_unlock(&fs_info->chunk_mutex);
2171         }
2172
2173         mutex_unlock(&uuid_mutex);
2174         ret = btrfs_shrink_device(device, 0);
2175         mutex_lock(&uuid_mutex);
2176         if (ret)
2177                 goto error_undo;
2178
2179         /*
2180          * TODO: the superblock still includes this device in its num_devices
2181          * counter although write_all_supers() is not locked out. This
2182          * could give a filesystem state which requires a degraded mount.
2183          */
2184         ret = btrfs_rm_dev_item(fs_info, device);
2185         if (ret)
2186                 goto error_undo;
2187
2188         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2189         btrfs_scrub_cancel_dev(fs_info, device);
2190
2191         /*
2192          * the device list mutex makes sure that we don't change
2193          * the device list while someone else is writing out all
2194          * the device supers. Whoever is writing all supers, should
2195          * lock the device list mutex before getting the number of
2196          * devices in the super block (super_copy). Conversely,
2197          * whoever updates the number of devices in the super block
2198          * (super_copy) should hold the device list mutex.
2199          */
2200
2201         /*
2202          * In normal cases the cur_devices == fs_devices. But in case
2203          * of deleting a seed device, the cur_devices should point to
2204          * its own fs_devices listed under the fs_devices->seed.
2205          */
2206         cur_devices = device->fs_devices;
2207         mutex_lock(&fs_devices->device_list_mutex);
2208         list_del_rcu(&device->dev_list);
2209
2210         cur_devices->num_devices--;
2211         cur_devices->total_devices--;
2212         /* Update total_devices of the parent fs_devices if it's seed */
2213         if (cur_devices != fs_devices)
2214                 fs_devices->total_devices--;
2215
2216         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2217                 cur_devices->missing_devices--;
2218
2219         btrfs_assign_next_active_device(device, NULL);
2220
2221         if (device->bdev) {
2222                 cur_devices->open_devices--;
2223                 /* remove sysfs entry */
2224                 btrfs_sysfs_rm_device_link(fs_devices, device);
2225         }
2226
2227         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2228         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2229         mutex_unlock(&fs_devices->device_list_mutex);
2230
2231         /*
2232          * at this point, the device is zero sized and detached from
2233          * the devices list.  All that's left is to zero out the old
2234          * supers and free the device.
2235          */
2236         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2237                 btrfs_scratch_superblocks(device->bdev, device->name->str);
2238
2239         btrfs_close_bdev(device);
2240         call_rcu(&device->rcu, free_device_rcu);
2241
2242         if (cur_devices->open_devices == 0) {
2243                 while (fs_devices) {
2244                         if (fs_devices->seed == cur_devices) {
2245                                 fs_devices->seed = cur_devices->seed;
2246                                 break;
2247                         }
2248                         fs_devices = fs_devices->seed;
2249                 }
2250                 cur_devices->seed = NULL;
2251                 close_fs_devices(cur_devices);
2252                 free_fs_devices(cur_devices);
2253         }
2254
2255 out:
2256         mutex_unlock(&uuid_mutex);
2257         return ret;
2258
2259 error_undo:
2260         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2261                 mutex_lock(&fs_info->chunk_mutex);
2262                 list_add(&device->dev_alloc_list,
2263                          &fs_devices->alloc_list);
2264                 device->fs_devices->rw_devices++;
2265                 mutex_unlock(&fs_info->chunk_mutex);
2266         }
2267         goto out;
2268 }
2269
2270 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2271 {
2272         struct btrfs_fs_devices *fs_devices;
2273
2274         lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2275
2276         /*
2277          * in case of fs with no seed, srcdev->fs_devices will point
2278          * to fs_devices of fs_info. However when the dev being replaced is
2279          * a seed dev it will point to the seed's local fs_devices. In short
2280          * srcdev will have its correct fs_devices in both the cases.
2281          */
2282         fs_devices = srcdev->fs_devices;
2283
2284         list_del_rcu(&srcdev->dev_list);
2285         list_del(&srcdev->dev_alloc_list);
2286         fs_devices->num_devices--;
2287         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2288                 fs_devices->missing_devices--;
2289
2290         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2291                 fs_devices->rw_devices--;
2292
2293         if (srcdev->bdev)
2294                 fs_devices->open_devices--;
2295 }
2296
2297 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2298                                       struct btrfs_device *srcdev)
2299 {
2300         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2301
2302         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2303                 /* zero out the old super if it is writable */
2304                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2305         }
2306
2307         btrfs_close_bdev(srcdev);
2308         call_rcu(&srcdev->rcu, free_device_rcu);
2309
2310         /* if this is no devs we rather delete the fs_devices */
2311         if (!fs_devices->num_devices) {
2312                 struct btrfs_fs_devices *tmp_fs_devices;
2313
2314                 /*
2315                  * On a mounted FS, num_devices can't be zero unless it's a
2316                  * seed. In case of a seed device being replaced, the replace
2317                  * target added to the sprout FS, so there will be no more
2318                  * device left under the seed FS.
2319                  */
2320                 ASSERT(fs_devices->seeding);
2321
2322                 tmp_fs_devices = fs_info->fs_devices;
2323                 while (tmp_fs_devices) {
2324                         if (tmp_fs_devices->seed == fs_devices) {
2325                                 tmp_fs_devices->seed = fs_devices->seed;
2326                                 break;
2327                         }
2328                         tmp_fs_devices = tmp_fs_devices->seed;
2329                 }
2330                 fs_devices->seed = NULL;
2331                 close_fs_devices(fs_devices);
2332                 free_fs_devices(fs_devices);
2333         }
2334 }
2335
2336 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2337 {
2338         struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2339
2340         WARN_ON(!tgtdev);
2341         mutex_lock(&fs_devices->device_list_mutex);
2342
2343         btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2344
2345         if (tgtdev->bdev)
2346                 fs_devices->open_devices--;
2347
2348         fs_devices->num_devices--;
2349
2350         btrfs_assign_next_active_device(tgtdev, NULL);
2351
2352         list_del_rcu(&tgtdev->dev_list);
2353
2354         mutex_unlock(&fs_devices->device_list_mutex);
2355
2356         /*
2357          * The update_dev_time() with in btrfs_scratch_superblocks()
2358          * may lead to a call to btrfs_show_devname() which will try
2359          * to hold device_list_mutex. And here this device
2360          * is already out of device list, so we don't have to hold
2361          * the device_list_mutex lock.
2362          */
2363         btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2364
2365         btrfs_close_bdev(tgtdev);
2366         call_rcu(&tgtdev->rcu, free_device_rcu);
2367 }
2368
2369 static struct btrfs_device *btrfs_find_device_by_path(
2370                 struct btrfs_fs_info *fs_info, const char *device_path)
2371 {
2372         int ret = 0;
2373         struct btrfs_super_block *disk_super;
2374         u64 devid;
2375         u8 *dev_uuid;
2376         struct block_device *bdev;
2377         struct buffer_head *bh;
2378         struct btrfs_device *device;
2379
2380         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2381                                     fs_info->bdev_holder, 0, &bdev, &bh);
2382         if (ret)
2383                 return ERR_PTR(ret);
2384         disk_super = (struct btrfs_super_block *)bh->b_data;
2385         devid = btrfs_stack_device_id(&disk_super->dev_item);
2386         dev_uuid = disk_super->dev_item.uuid;
2387         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2388                 device = btrfs_find_device(fs_info, devid, dev_uuid,
2389                                 disk_super->metadata_uuid);
2390         else
2391                 device = btrfs_find_device(fs_info, devid,
2392                                 dev_uuid, disk_super->fsid);
2393
2394         brelse(bh);
2395         if (!device)
2396                 device = ERR_PTR(-ENOENT);
2397         blkdev_put(bdev, FMODE_READ);
2398         return device;
2399 }
2400
2401 static struct btrfs_device *btrfs_find_device_missing_or_by_path(
2402                 struct btrfs_fs_info *fs_info, const char *device_path)
2403 {
2404         struct btrfs_device *device = NULL;
2405         if (strcmp(device_path, "missing") == 0) {
2406                 struct list_head *devices;
2407                 struct btrfs_device *tmp;
2408
2409                 devices = &fs_info->fs_devices->devices;
2410                 list_for_each_entry(tmp, devices, dev_list) {
2411                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2412                                         &tmp->dev_state) && !tmp->bdev) {
2413                                 device = tmp;
2414                                 break;
2415                         }
2416                 }
2417
2418                 if (!device)
2419                         return ERR_PTR(-ENOENT);
2420         } else {
2421                 device = btrfs_find_device_by_path(fs_info, device_path);
2422         }
2423
2424         return device;
2425 }
2426
2427 /*
2428  * Lookup a device given by device id, or the path if the id is 0.
2429  */
2430 struct btrfs_device *btrfs_find_device_by_devspec(
2431                 struct btrfs_fs_info *fs_info, u64 devid, const char *devpath)
2432 {
2433         struct btrfs_device *device;
2434
2435         if (devid) {
2436                 device = btrfs_find_device(fs_info, devid, NULL, NULL);
2437                 if (!device)
2438                         return ERR_PTR(-ENOENT);
2439         } else {
2440                 if (!devpath || !devpath[0])
2441                         return ERR_PTR(-EINVAL);
2442                 device = btrfs_find_device_missing_or_by_path(fs_info, devpath);
2443         }
2444         return device;
2445 }
2446
2447 /*
2448  * does all the dirty work required for changing file system's UUID.
2449  */
2450 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2451 {
2452         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2453         struct btrfs_fs_devices *old_devices;
2454         struct btrfs_fs_devices *seed_devices;
2455         struct btrfs_super_block *disk_super = fs_info->super_copy;
2456         struct btrfs_device *device;
2457         u64 super_flags;
2458
2459         lockdep_assert_held(&uuid_mutex);
2460         if (!fs_devices->seeding)
2461                 return -EINVAL;
2462
2463         seed_devices = alloc_fs_devices(NULL, NULL);
2464         if (IS_ERR(seed_devices))
2465                 return PTR_ERR(seed_devices);
2466
2467         old_devices = clone_fs_devices(fs_devices);
2468         if (IS_ERR(old_devices)) {
2469                 kfree(seed_devices);
2470                 return PTR_ERR(old_devices);
2471         }
2472
2473         list_add(&old_devices->fs_list, &fs_uuids);
2474
2475         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2476         seed_devices->opened = 1;
2477         INIT_LIST_HEAD(&seed_devices->devices);
2478         INIT_LIST_HEAD(&seed_devices->alloc_list);
2479         mutex_init(&seed_devices->device_list_mutex);
2480
2481         mutex_lock(&fs_devices->device_list_mutex);
2482         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2483                               synchronize_rcu);
2484         list_for_each_entry(device, &seed_devices->devices, dev_list)
2485                 device->fs_devices = seed_devices;
2486
2487         mutex_lock(&fs_info->chunk_mutex);
2488         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2489         mutex_unlock(&fs_info->chunk_mutex);
2490
2491         fs_devices->seeding = 0;
2492         fs_devices->num_devices = 0;
2493         fs_devices->open_devices = 0;
2494         fs_devices->missing_devices = 0;
2495         fs_devices->rotating = 0;
2496         fs_devices->seed = seed_devices;
2497
2498         generate_random_uuid(fs_devices->fsid);
2499         memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2500         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2501         mutex_unlock(&fs_devices->device_list_mutex);
2502
2503         super_flags = btrfs_super_flags(disk_super) &
2504                       ~BTRFS_SUPER_FLAG_SEEDING;
2505         btrfs_set_super_flags(disk_super, super_flags);
2506
2507         return 0;
2508 }
2509
2510 /*
2511  * Store the expected generation for seed devices in device items.
2512  */
2513 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2514                                struct btrfs_fs_info *fs_info)
2515 {
2516         struct btrfs_root *root = fs_info->chunk_root;
2517         struct btrfs_path *path;
2518         struct extent_buffer *leaf;
2519         struct btrfs_dev_item *dev_item;
2520         struct btrfs_device *device;
2521         struct btrfs_key key;
2522         u8 fs_uuid[BTRFS_FSID_SIZE];
2523         u8 dev_uuid[BTRFS_UUID_SIZE];
2524         u64 devid;
2525         int ret;
2526
2527         path = btrfs_alloc_path();
2528         if (!path)
2529                 return -ENOMEM;
2530
2531         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2532         key.offset = 0;
2533         key.type = BTRFS_DEV_ITEM_KEY;
2534
2535         while (1) {
2536                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2537                 if (ret < 0)
2538                         goto error;
2539
2540                 leaf = path->nodes[0];
2541 next_slot:
2542                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2543                         ret = btrfs_next_leaf(root, path);
2544                         if (ret > 0)
2545                                 break;
2546                         if (ret < 0)
2547                                 goto error;
2548                         leaf = path->nodes[0];
2549                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2550                         btrfs_release_path(path);
2551                         continue;
2552                 }
2553
2554                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2555                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2556                     key.type != BTRFS_DEV_ITEM_KEY)
2557                         break;
2558
2559                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2560                                           struct btrfs_dev_item);
2561                 devid = btrfs_device_id(leaf, dev_item);
2562                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2563                                    BTRFS_UUID_SIZE);
2564                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2565                                    BTRFS_FSID_SIZE);
2566                 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2567                 BUG_ON(!device); /* Logic error */
2568
2569                 if (device->fs_devices->seeding) {
2570                         btrfs_set_device_generation(leaf, dev_item,
2571                                                     device->generation);
2572                         btrfs_mark_buffer_dirty(leaf);
2573                 }
2574
2575                 path->slots[0]++;
2576                 goto next_slot;
2577         }
2578         ret = 0;
2579 error:
2580         btrfs_free_path(path);
2581         return ret;
2582 }
2583
2584 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2585 {
2586         struct btrfs_root *root = fs_info->dev_root;
2587         struct request_queue *q;
2588         struct btrfs_trans_handle *trans;
2589         struct btrfs_device *device;
2590         struct block_device *bdev;
2591         struct super_block *sb = fs_info->sb;
2592         struct rcu_string *name;
2593         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2594         u64 orig_super_total_bytes;
2595         u64 orig_super_num_devices;
2596         int seeding_dev = 0;
2597         int ret = 0;
2598         bool unlocked = false;
2599
2600         if (sb_rdonly(sb) && !fs_devices->seeding)
2601                 return -EROFS;
2602
2603         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2604                                   fs_info->bdev_holder);
2605         if (IS_ERR(bdev))
2606                 return PTR_ERR(bdev);
2607
2608         if (fs_devices->seeding) {
2609                 seeding_dev = 1;
2610                 down_write(&sb->s_umount);
2611                 mutex_lock(&uuid_mutex);
2612         }
2613
2614         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2615
2616         mutex_lock(&fs_devices->device_list_mutex);
2617         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2618                 if (device->bdev == bdev) {
2619                         ret = -EEXIST;
2620                         mutex_unlock(
2621                                 &fs_devices->device_list_mutex);
2622                         goto error;
2623                 }
2624         }
2625         mutex_unlock(&fs_devices->device_list_mutex);
2626
2627         device = btrfs_alloc_device(fs_info, NULL, NULL);
2628         if (IS_ERR(device)) {
2629                 /* we can safely leave the fs_devices entry around */
2630                 ret = PTR_ERR(device);
2631                 goto error;
2632         }
2633
2634         name = rcu_string_strdup(device_path, GFP_KERNEL);
2635         if (!name) {
2636                 ret = -ENOMEM;
2637                 goto error_free_device;
2638         }
2639         rcu_assign_pointer(device->name, name);
2640
2641         trans = btrfs_start_transaction(root, 0);
2642         if (IS_ERR(trans)) {
2643                 ret = PTR_ERR(trans);
2644                 goto error_free_device;
2645         }
2646
2647         q = bdev_get_queue(bdev);
2648         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2649         device->generation = trans->transid;
2650         device->io_width = fs_info->sectorsize;
2651         device->io_align = fs_info->sectorsize;
2652         device->sector_size = fs_info->sectorsize;
2653         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2654                                          fs_info->sectorsize);
2655         device->disk_total_bytes = device->total_bytes;
2656         device->commit_total_bytes = device->total_bytes;
2657         device->fs_info = fs_info;
2658         device->bdev = bdev;
2659         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2660         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2661         device->mode = FMODE_EXCL;
2662         device->dev_stats_valid = 1;
2663         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2664
2665         if (seeding_dev) {
2666                 sb->s_flags &= ~SB_RDONLY;
2667                 ret = btrfs_prepare_sprout(fs_info);
2668                 if (ret) {
2669                         btrfs_abort_transaction(trans, ret);
2670                         goto error_trans;
2671                 }
2672         }
2673
2674         device->fs_devices = fs_devices;
2675
2676         mutex_lock(&fs_devices->device_list_mutex);
2677         mutex_lock(&fs_info->chunk_mutex);
2678         list_add_rcu(&device->dev_list, &fs_devices->devices);
2679         list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2680         fs_devices->num_devices++;
2681         fs_devices->open_devices++;
2682         fs_devices->rw_devices++;
2683         fs_devices->total_devices++;
2684         fs_devices->total_rw_bytes += device->total_bytes;
2685
2686         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2687
2688         if (!blk_queue_nonrot(q))
2689                 fs_devices->rotating = 1;
2690
2691         orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2692         btrfs_set_super_total_bytes(fs_info->super_copy,
2693                 round_down(orig_super_total_bytes + device->total_bytes,
2694                            fs_info->sectorsize));
2695
2696         orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2697         btrfs_set_super_num_devices(fs_info->super_copy,
2698                                     orig_super_num_devices + 1);
2699
2700         /* add sysfs device entry */
2701         btrfs_sysfs_add_device_link(fs_devices, device);
2702
2703         /*
2704          * we've got more storage, clear any full flags on the space
2705          * infos
2706          */
2707         btrfs_clear_space_info_full(fs_info);
2708
2709         mutex_unlock(&fs_info->chunk_mutex);
2710         mutex_unlock(&fs_devices->device_list_mutex);
2711
2712         if (seeding_dev) {
2713                 mutex_lock(&fs_info->chunk_mutex);
2714                 ret = init_first_rw_device(trans, fs_info);
2715                 mutex_unlock(&fs_info->chunk_mutex);
2716                 if (ret) {
2717                         btrfs_abort_transaction(trans, ret);
2718                         goto error_sysfs;
2719                 }
2720         }
2721
2722         ret = btrfs_add_dev_item(trans, device);
2723         if (ret) {
2724                 btrfs_abort_transaction(trans, ret);
2725                 goto error_sysfs;
2726         }
2727
2728         if (seeding_dev) {
2729                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2730
2731                 ret = btrfs_finish_sprout(trans, fs_info);
2732                 if (ret) {
2733                         btrfs_abort_transaction(trans, ret);
2734                         goto error_sysfs;
2735                 }
2736
2737                 /* Sprouting would change fsid of the mounted root,
2738                  * so rename the fsid on the sysfs
2739                  */
2740                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2741                                                 fs_info->fs_devices->fsid);
2742                 if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
2743                         btrfs_warn(fs_info,
2744                                    "sysfs: failed to create fsid for sprout");
2745         }
2746
2747         ret = btrfs_commit_transaction(trans);
2748
2749         if (seeding_dev) {
2750                 mutex_unlock(&uuid_mutex);
2751                 up_write(&sb->s_umount);
2752                 unlocked = true;
2753
2754                 if (ret) /* transaction commit */
2755                         return ret;
2756
2757                 ret = btrfs_relocate_sys_chunks(fs_info);
2758                 if (ret < 0)
2759                         btrfs_handle_fs_error(fs_info, ret,
2760                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2761                 trans = btrfs_attach_transaction(root);
2762                 if (IS_ERR(trans)) {
2763                         if (PTR_ERR(trans) == -ENOENT)
2764                                 return 0;
2765                         ret = PTR_ERR(trans);
2766                         trans = NULL;
2767                         goto error_sysfs;
2768                 }
2769                 ret = btrfs_commit_transaction(trans);
2770         }
2771
2772         /* Update ctime/mtime for libblkid */
2773         update_dev_time(device_path);
2774         return ret;
2775
2776 error_sysfs:
2777         btrfs_sysfs_rm_device_link(fs_devices, device);
2778         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2779         mutex_lock(&fs_info->chunk_mutex);
2780         list_del_rcu(&device->dev_list);
2781         list_del(&device->dev_alloc_list);
2782         fs_info->fs_devices->num_devices--;
2783         fs_info->fs_devices->open_devices--;
2784         fs_info->fs_devices->rw_devices--;
2785         fs_info->fs_devices->total_devices--;
2786         fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2787         atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2788         btrfs_set_super_total_bytes(fs_info->super_copy,
2789                                     orig_super_total_bytes);
2790         btrfs_set_super_num_devices(fs_info->super_copy,
2791                                     orig_super_num_devices);
2792         mutex_unlock(&fs_info->chunk_mutex);
2793         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2794 error_trans:
2795         if (seeding_dev)
2796                 sb->s_flags |= SB_RDONLY;
2797         if (trans)
2798                 btrfs_end_transaction(trans);
2799 error_free_device:
2800         btrfs_free_device(device);
2801 error:
2802         blkdev_put(bdev, FMODE_EXCL);
2803         if (seeding_dev && !unlocked) {
2804                 mutex_unlock(&uuid_mutex);
2805                 up_write(&sb->s_umount);
2806         }
2807         return ret;
2808 }
2809
2810 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2811                                         struct btrfs_device *device)
2812 {
2813         int ret;
2814         struct btrfs_path *path;
2815         struct btrfs_root *root = device->fs_info->chunk_root;
2816         struct btrfs_dev_item *dev_item;
2817         struct extent_buffer *leaf;
2818         struct btrfs_key key;
2819
2820         path = btrfs_alloc_path();
2821         if (!path)
2822                 return -ENOMEM;
2823
2824         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2825         key.type = BTRFS_DEV_ITEM_KEY;
2826         key.offset = device->devid;
2827
2828         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2829         if (ret < 0)
2830                 goto out;
2831
2832         if (ret > 0) {
2833                 ret = -ENOENT;
2834                 goto out;
2835         }
2836
2837         leaf = path->nodes[0];
2838         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2839
2840         btrfs_set_device_id(leaf, dev_item, device->devid);
2841         btrfs_set_device_type(leaf, dev_item, device->type);
2842         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2843         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2844         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2845         btrfs_set_device_total_bytes(leaf, dev_item,
2846                                      btrfs_device_get_disk_total_bytes(device));
2847         btrfs_set_device_bytes_used(leaf, dev_item,
2848                                     btrfs_device_get_bytes_used(device));
2849         btrfs_mark_buffer_dirty(leaf);
2850
2851 out:
2852         btrfs_free_path(path);
2853         return ret;
2854 }
2855
2856 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2857                       struct btrfs_device *device, u64 new_size)
2858 {
2859         struct btrfs_fs_info *fs_info = device->fs_info;
2860         struct btrfs_super_block *super_copy = fs_info->super_copy;
2861         struct btrfs_fs_devices *fs_devices;
2862         u64 old_total;
2863         u64 diff;
2864
2865         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2866                 return -EACCES;
2867
2868         new_size = round_down(new_size, fs_info->sectorsize);
2869
2870         mutex_lock(&fs_info->chunk_mutex);
2871         old_total = btrfs_super_total_bytes(super_copy);
2872         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2873
2874         if (new_size <= device->total_bytes ||
2875             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2876                 mutex_unlock(&fs_info->chunk_mutex);
2877                 return -EINVAL;
2878         }
2879
2880         fs_devices = fs_info->fs_devices;
2881
2882         btrfs_set_super_total_bytes(super_copy,
2883                         round_down(old_total + diff, fs_info->sectorsize));
2884         device->fs_devices->total_rw_bytes += diff;
2885
2886         btrfs_device_set_total_bytes(device, new_size);
2887         btrfs_device_set_disk_total_bytes(device, new_size);
2888         btrfs_clear_space_info_full(device->fs_info);
2889         if (list_empty(&device->resized_list))
2890                 list_add_tail(&device->resized_list,
2891                               &fs_devices->resized_devices);
2892         mutex_unlock(&fs_info->chunk_mutex);
2893
2894         return btrfs_update_device(trans, device);
2895 }
2896
2897 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2898 {
2899         struct btrfs_fs_info *fs_info = trans->fs_info;
2900         struct btrfs_root *root = fs_info->chunk_root;
2901         int ret;
2902         struct btrfs_path *path;
2903         struct btrfs_key key;
2904
2905         path = btrfs_alloc_path();
2906         if (!path)
2907                 return -ENOMEM;
2908
2909         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2910         key.offset = chunk_offset;
2911         key.type = BTRFS_CHUNK_ITEM_KEY;
2912
2913         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2914         if (ret < 0)
2915                 goto out;
2916         else if (ret > 0) { /* Logic error or corruption */
2917                 btrfs_handle_fs_error(fs_info, -ENOENT,
2918                                       "Failed lookup while freeing chunk.");
2919                 ret = -ENOENT;
2920                 goto out;
2921         }
2922
2923         ret = btrfs_del_item(trans, root, path);
2924         if (ret < 0)
2925                 btrfs_handle_fs_error(fs_info, ret,
2926                                       "Failed to delete chunk item.");
2927 out:
2928         btrfs_free_path(path);
2929         return ret;
2930 }
2931
2932 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2933 {
2934         struct btrfs_super_block *super_copy = fs_info->super_copy;
2935         struct btrfs_disk_key *disk_key;
2936         struct btrfs_chunk *chunk;
2937         u8 *ptr;
2938         int ret = 0;
2939         u32 num_stripes;
2940         u32 array_size;
2941         u32 len = 0;
2942         u32 cur;
2943         struct btrfs_key key;
2944
2945         mutex_lock(&fs_info->chunk_mutex);
2946         array_size = btrfs_super_sys_array_size(super_copy);
2947
2948         ptr = super_copy->sys_chunk_array;
2949         cur = 0;
2950
2951         while (cur < array_size) {
2952                 disk_key = (struct btrfs_disk_key *)ptr;
2953                 btrfs_disk_key_to_cpu(&key, disk_key);
2954
2955                 len = sizeof(*disk_key);
2956
2957                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2958                         chunk = (struct btrfs_chunk *)(ptr + len);
2959                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2960                         len += btrfs_chunk_item_size(num_stripes);
2961                 } else {
2962                         ret = -EIO;
2963                         break;
2964                 }
2965                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2966                     key.offset == chunk_offset) {
2967                         memmove(ptr, ptr + len, array_size - (cur + len));
2968                         array_size -= len;
2969                         btrfs_set_super_sys_array_size(super_copy, array_size);
2970                 } else {
2971                         ptr += len;
2972                         cur += len;
2973                 }
2974         }
2975         mutex_unlock(&fs_info->chunk_mutex);
2976         return ret;
2977 }
2978
2979 /*
2980  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2981  * @logical: Logical block offset in bytes.
2982  * @length: Length of extent in bytes.
2983  *
2984  * Return: Chunk mapping or ERR_PTR.
2985  */
2986 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2987                                        u64 logical, u64 length)
2988 {
2989         struct extent_map_tree *em_tree;
2990         struct extent_map *em;
2991
2992         em_tree = &fs_info->mapping_tree.map_tree;
2993         read_lock(&em_tree->lock);
2994         em = lookup_extent_mapping(em_tree, logical, length);
2995         read_unlock(&em_tree->lock);
2996
2997         if (!em) {
2998                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2999                            logical, length);
3000                 return ERR_PTR(-EINVAL);
3001         }
3002
3003         if (em->start > logical || em->start + em->len < logical) {
3004                 btrfs_crit(fs_info,
3005                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3006                            logical, length, em->start, em->start + em->len);
3007                 free_extent_map(em);
3008                 return ERR_PTR(-EINVAL);
3009         }
3010
3011         /* callers are responsible for dropping em's ref. */
3012         return em;
3013 }
3014
3015 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3016 {
3017         struct btrfs_fs_info *fs_info = trans->fs_info;
3018         struct extent_map *em;
3019         struct map_lookup *map;
3020         u64 dev_extent_len = 0;
3021         int i, ret = 0;
3022         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3023
3024         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3025         if (IS_ERR(em)) {
3026                 /*
3027                  * This is a logic error, but we don't want to just rely on the
3028                  * user having built with ASSERT enabled, so if ASSERT doesn't
3029                  * do anything we still error out.
3030                  */
3031                 ASSERT(0);
3032                 return PTR_ERR(em);
3033         }
3034         map = em->map_lookup;
3035         mutex_lock(&fs_info->chunk_mutex);
3036         check_system_chunk(trans, map->type);
3037         mutex_unlock(&fs_info->chunk_mutex);
3038
3039         /*
3040          * Take the device list mutex to prevent races with the final phase of
3041          * a device replace operation that replaces the device object associated
3042          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
3043          */
3044         mutex_lock(&fs_devices->device_list_mutex);
3045         for (i = 0; i < map->num_stripes; i++) {
3046                 struct btrfs_device *device = map->stripes[i].dev;
3047                 ret = btrfs_free_dev_extent(trans, device,
3048                                             map->stripes[i].physical,
3049                                             &dev_extent_len);
3050                 if (ret) {
3051                         mutex_unlock(&fs_devices->device_list_mutex);
3052                         btrfs_abort_transaction(trans, ret);
3053                         goto out;
3054                 }
3055
3056                 if (device->bytes_used > 0) {
3057                         mutex_lock(&fs_info->chunk_mutex);
3058                         btrfs_device_set_bytes_used(device,
3059                                         device->bytes_used - dev_extent_len);
3060                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3061                         btrfs_clear_space_info_full(fs_info);
3062                         mutex_unlock(&fs_info->chunk_mutex);
3063                 }
3064
3065                 ret = btrfs_update_device(trans, device);
3066                 if (ret) {
3067                         mutex_unlock(&fs_devices->device_list_mutex);
3068                         btrfs_abort_transaction(trans, ret);
3069                         goto out;
3070                 }
3071         }
3072         mutex_unlock(&fs_devices->device_list_mutex);
3073
3074         ret = btrfs_free_chunk(trans, chunk_offset);
3075         if (ret) {
3076                 btrfs_abort_transaction(trans, ret);
3077                 goto out;
3078         }
3079
3080         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3081
3082         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3083                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3084                 if (ret) {
3085                         btrfs_abort_transaction(trans, ret);
3086                         goto out;
3087                 }
3088         }
3089
3090         ret = btrfs_remove_block_group(trans, chunk_offset, em);
3091         if (ret) {
3092                 btrfs_abort_transaction(trans, ret);
3093                 goto out;
3094         }
3095
3096 out:
3097         /* once for us */
3098         free_extent_map(em);
3099         return ret;
3100 }
3101
3102 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3103 {
3104         struct btrfs_root *root = fs_info->chunk_root;
3105         struct btrfs_trans_handle *trans;
3106         int ret;
3107
3108         /*
3109          * Prevent races with automatic removal of unused block groups.
3110          * After we relocate and before we remove the chunk with offset
3111          * chunk_offset, automatic removal of the block group can kick in,
3112          * resulting in a failure when calling btrfs_remove_chunk() below.
3113          *
3114          * Make sure to acquire this mutex before doing a tree search (dev
3115          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3116          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3117          * we release the path used to search the chunk/dev tree and before
3118          * the current task acquires this mutex and calls us.
3119          */
3120         lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3121
3122         ret = btrfs_can_relocate(fs_info, chunk_offset);
3123         if (ret)
3124                 return -ENOSPC;
3125
3126         /* step one, relocate all the extents inside this chunk */
3127         btrfs_scrub_pause(fs_info);
3128         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3129         btrfs_scrub_continue(fs_info);
3130         if (ret)
3131                 return ret;
3132
3133         /*
3134          * We add the kobjects here (and after forcing data chunk creation)
3135          * since relocation is the only place we'll create chunks of a new
3136          * type at runtime.  The only place where we'll remove the last
3137          * chunk of a type is the call immediately below this one.  Even
3138          * so, we're protected against races with the cleaner thread since
3139          * we're covered by the delete_unused_bgs_mutex.
3140          */
3141         btrfs_add_raid_kobjects(fs_info);
3142
3143         trans = btrfs_start_trans_remove_block_group(root->fs_info,
3144                                                      chunk_offset);
3145         if (IS_ERR(trans)) {
3146                 ret = PTR_ERR(trans);
3147                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3148                 return ret;
3149         }
3150
3151         /*
3152          * step two, delete the device extents and the
3153          * chunk tree entries
3154          */
3155         ret = btrfs_remove_chunk(trans, chunk_offset);
3156         btrfs_end_transaction(trans);
3157         return ret;
3158 }
3159
3160 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3161 {
3162         struct btrfs_root *chunk_root = fs_info->chunk_root;
3163         struct btrfs_path *path;
3164         struct extent_buffer *leaf;
3165         struct btrfs_chunk *chunk;
3166         struct btrfs_key key;
3167         struct btrfs_key found_key;
3168         u64 chunk_type;
3169         bool retried = false;
3170         int failed = 0;
3171         int ret;
3172
3173         path = btrfs_alloc_path();
3174         if (!path)
3175                 return -ENOMEM;
3176
3177 again:
3178         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3179         key.offset = (u64)-1;
3180         key.type = BTRFS_CHUNK_ITEM_KEY;
3181
3182         while (1) {
3183                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3184                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3185                 if (ret < 0) {
3186                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3187                         goto error;
3188                 }
3189                 BUG_ON(ret == 0); /* Corruption */
3190
3191                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3192                                           key.type);
3193                 if (ret)
3194                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3195                 if (ret < 0)
3196                         goto error;
3197                 if (ret > 0)
3198                         break;
3199
3200                 leaf = path->nodes[0];
3201                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3202
3203                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3204                                        struct btrfs_chunk);
3205                 chunk_type = btrfs_chunk_type(leaf, chunk);
3206                 btrfs_release_path(path);
3207
3208                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3209                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3210                         if (ret == -ENOSPC)
3211                                 failed++;
3212                         else
3213                                 BUG_ON(ret);
3214                 }
3215                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3216
3217                 if (found_key.offset == 0)
3218                         break;
3219                 key.offset = found_key.offset - 1;
3220         }
3221         ret = 0;
3222         if (failed && !retried) {
3223                 failed = 0;
3224                 retried = true;
3225                 goto again;
3226         } else if (WARN_ON(failed && retried)) {
3227                 ret = -ENOSPC;
3228         }
3229 error:
3230         btrfs_free_path(path);
3231         return ret;
3232 }
3233
3234 /*
3235  * return 1 : allocate a data chunk successfully,
3236  * return <0: errors during allocating a data chunk,
3237  * return 0 : no need to allocate a data chunk.
3238  */
3239 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3240                                       u64 chunk_offset)
3241 {
3242         struct btrfs_block_group_cache *cache;
3243         u64 bytes_used;
3244         u64 chunk_type;
3245
3246         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3247         ASSERT(cache);
3248         chunk_type = cache->flags;
3249         btrfs_put_block_group(cache);
3250
3251         if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3252                 spin_lock(&fs_info->data_sinfo->lock);
3253                 bytes_used = fs_info->data_sinfo->bytes_used;
3254                 spin_unlock(&fs_info->data_sinfo->lock);
3255
3256                 if (!bytes_used) {
3257                         struct btrfs_trans_handle *trans;
3258                         int ret;
3259
3260                         trans = btrfs_join_transaction(fs_info->tree_root);
3261                         if (IS_ERR(trans))
3262                                 return PTR_ERR(trans);
3263
3264                         ret = btrfs_force_chunk_alloc(trans,
3265                                                       BTRFS_BLOCK_GROUP_DATA);
3266                         btrfs_end_transaction(trans);
3267                         if (ret < 0)
3268                                 return ret;
3269
3270                         btrfs_add_raid_kobjects(fs_info);
3271
3272                         return 1;
3273                 }
3274         }
3275         return 0;
3276 }
3277
3278 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3279                                struct btrfs_balance_control *bctl)
3280 {
3281         struct btrfs_root *root = fs_info->tree_root;
3282         struct btrfs_trans_handle *trans;
3283         struct btrfs_balance_item *item;
3284         struct btrfs_disk_balance_args disk_bargs;
3285         struct btrfs_path *path;
3286         struct extent_buffer *leaf;
3287         struct btrfs_key key;
3288         int ret, err;
3289
3290         path = btrfs_alloc_path();
3291         if (!path)
3292                 return -ENOMEM;
3293
3294         trans = btrfs_start_transaction(root, 0);
3295         if (IS_ERR(trans)) {
3296                 btrfs_free_path(path);
3297                 return PTR_ERR(trans);
3298         }
3299
3300         key.objectid = BTRFS_BALANCE_OBJECTID;
3301         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3302         key.offset = 0;
3303
3304         ret = btrfs_insert_empty_item(trans, root, path, &key,
3305                                       sizeof(*item));
3306         if (ret)
3307                 goto out;
3308
3309         leaf = path->nodes[0];
3310         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3311
3312         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3313
3314         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3315         btrfs_set_balance_data(leaf, item, &disk_bargs);
3316         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3317         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3318         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3319         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3320
3321         btrfs_set_balance_flags(leaf, item, bctl->flags);
3322
3323         btrfs_mark_buffer_dirty(leaf);
3324 out:
3325         btrfs_free_path(path);
3326         err = btrfs_commit_transaction(trans);
3327         if (err && !ret)
3328                 ret = err;
3329         return ret;
3330 }
3331
3332 static int del_balance_item(struct btrfs_fs_info *fs_info)
3333 {
3334         struct btrfs_root *root = fs_info->tree_root;
3335         struct btrfs_trans_handle *trans;
3336         struct btrfs_path *path;
3337         struct btrfs_key key;
3338         int ret, err;
3339
3340         path = btrfs_alloc_path();
3341         if (!path)
3342                 return -ENOMEM;
3343
3344         trans = btrfs_start_transaction(root, 0);
3345         if (IS_ERR(trans)) {
3346                 btrfs_free_path(path);
3347                 return PTR_ERR(trans);
3348         }
3349
3350         key.objectid = BTRFS_BALANCE_OBJECTID;
3351         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3352         key.offset = 0;
3353
3354         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3355         if (ret < 0)
3356                 goto out;
3357         if (ret > 0) {
3358                 ret = -ENOENT;
3359                 goto out;
3360         }
3361
3362         ret = btrfs_del_item(trans, root, path);
3363 out:
3364         btrfs_free_path(path);
3365         err = btrfs_commit_transaction(trans);
3366         if (err && !ret)
3367                 ret = err;
3368         return ret;
3369 }
3370
3371 /*
3372  * This is a heuristic used to reduce the number of chunks balanced on
3373  * resume after balance was interrupted.
3374  */
3375 static void update_balance_args(struct btrfs_balance_control *bctl)
3376 {
3377         /*
3378          * Turn on soft mode for chunk types that were being converted.
3379          */
3380         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3381                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3382         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3383                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3384         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3385                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3386
3387         /*
3388          * Turn on usage filter if is not already used.  The idea is
3389          * that chunks that we have already balanced should be
3390          * reasonably full.  Don't do it for chunks that are being
3391          * converted - that will keep us from relocating unconverted
3392          * (albeit full) chunks.
3393          */
3394         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3395             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3396             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3397                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3398                 bctl->data.usage = 90;
3399         }
3400         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3401             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3402             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3403                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3404                 bctl->sys.usage = 90;
3405         }
3406         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3407             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3408             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3409                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3410                 bctl->meta.usage = 90;
3411         }
3412 }
3413
3414 /*
3415  * Clear the balance status in fs_info and delete the balance item from disk.
3416  */
3417 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3418 {
3419         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3420         int ret;
3421
3422         BUG_ON(!fs_info->balance_ctl);
3423
3424         spin_lock(&fs_info->balance_lock);
3425         fs_info->balance_ctl = NULL;
3426         spin_unlock(&fs_info->balance_lock);
3427
3428         kfree(bctl);
3429         ret = del_balance_item(fs_info);
3430         if (ret)
3431                 btrfs_handle_fs_error(fs_info, ret, NULL);
3432 }
3433
3434 /*
3435  * Balance filters.  Return 1 if chunk should be filtered out
3436  * (should not be balanced).
3437  */
3438 static int chunk_profiles_filter(u64 chunk_type,
3439                                  struct btrfs_balance_args *bargs)
3440 {
3441         chunk_type = chunk_to_extended(chunk_type) &
3442                                 BTRFS_EXTENDED_PROFILE_MASK;
3443
3444         if (bargs->profiles & chunk_type)
3445                 return 0;
3446
3447         return 1;
3448 }
3449
3450 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3451                               struct btrfs_balance_args *bargs)
3452 {
3453         struct btrfs_block_group_cache *cache;
3454         u64 chunk_used;
3455         u64 user_thresh_min;
3456         u64 user_thresh_max;
3457         int ret = 1;
3458
3459         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3460         chunk_used = btrfs_block_group_used(&cache->item);
3461
3462         if (bargs->usage_min == 0)
3463                 user_thresh_min = 0;
3464         else
3465                 user_thresh_min = div_factor_fine(cache->key.offset,
3466                                         bargs->usage_min);
3467
3468         if (bargs->usage_max == 0)
3469                 user_thresh_max = 1;
3470         else if (bargs->usage_max > 100)
3471                 user_thresh_max = cache->key.offset;
3472         else
3473                 user_thresh_max = div_factor_fine(cache->key.offset,
3474                                         bargs->usage_max);
3475
3476         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3477                 ret = 0;
3478
3479         btrfs_put_block_group(cache);
3480         return ret;
3481 }
3482
3483 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3484                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3485 {
3486         struct btrfs_block_group_cache *cache;
3487         u64 chunk_used, user_thresh;
3488         int ret = 1;
3489
3490         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3491         chunk_used = btrfs_block_group_used(&cache->item);
3492
3493         if (bargs->usage_min == 0)
3494                 user_thresh = 1;
3495         else if (bargs->usage > 100)
3496                 user_thresh = cache->key.offset;
3497         else
3498                 user_thresh = div_factor_fine(cache->key.offset,
3499                                               bargs->usage);
3500
3501         if (chunk_used < user_thresh)
3502                 ret = 0;
3503
3504         btrfs_put_block_group(cache);
3505         return ret;
3506 }
3507
3508 static int chunk_devid_filter(struct extent_buffer *leaf,
3509                               struct btrfs_chunk *chunk,
3510                               struct btrfs_balance_args *bargs)
3511 {
3512         struct btrfs_stripe *stripe;
3513         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3514         int i;
3515
3516         for (i = 0; i < num_stripes; i++) {
3517                 stripe = btrfs_stripe_nr(chunk, i);
3518                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3519                         return 0;
3520         }
3521
3522         return 1;
3523 }
3524
3525 /* [pstart, pend) */
3526 static int chunk_drange_filter(struct extent_buffer *leaf,
3527                                struct btrfs_chunk *chunk,
3528                                struct btrfs_balance_args *bargs)
3529 {
3530         struct btrfs_stripe *stripe;
3531         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3532         u64 stripe_offset;
3533         u64 stripe_length;
3534         int factor;
3535         int i;
3536
3537         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3538                 return 0;
3539
3540         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3541              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3542                 factor = num_stripes / 2;
3543         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3544                 factor = num_stripes - 1;
3545         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3546                 factor = num_stripes - 2;
3547         } else {
3548                 factor = num_stripes;
3549         }
3550
3551         for (i = 0; i < num_stripes; i++) {
3552                 stripe = btrfs_stripe_nr(chunk, i);
3553                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3554                         continue;
3555
3556                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3557                 stripe_length = btrfs_chunk_length(leaf, chunk);
3558                 stripe_length = div_u64(stripe_length, factor);
3559
3560                 if (stripe_offset < bargs->pend &&
3561                     stripe_offset + stripe_length > bargs->pstart)
3562                         return 0;
3563         }
3564
3565         return 1;
3566 }
3567
3568 /* [vstart, vend) */
3569 static int chunk_vrange_filter(struct extent_buffer *leaf,
3570                                struct btrfs_chunk *chunk,
3571                                u64 chunk_offset,
3572                                struct btrfs_balance_args *bargs)
3573 {
3574         if (chunk_offset < bargs->vend &&
3575             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3576                 /* at least part of the chunk is inside this vrange */
3577                 return 0;
3578
3579         return 1;
3580 }
3581
3582 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3583                                struct btrfs_chunk *chunk,
3584                                struct btrfs_balance_args *bargs)
3585 {
3586         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3587
3588         if (bargs->stripes_min <= num_stripes
3589                         && num_stripes <= bargs->stripes_max)
3590                 return 0;
3591
3592         return 1;
3593 }
3594
3595 static int chunk_soft_convert_filter(u64 chunk_type,
3596                                      struct btrfs_balance_args *bargs)
3597 {
3598         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3599                 return 0;
3600
3601         chunk_type = chunk_to_extended(chunk_type) &
3602                                 BTRFS_EXTENDED_PROFILE_MASK;
3603
3604         if (bargs->target == chunk_type)
3605                 return 1;
3606
3607         return 0;
3608 }
3609
3610 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3611                                 struct extent_buffer *leaf,
3612                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3613 {
3614         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3615         struct btrfs_balance_args *bargs = NULL;
3616         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3617
3618         /* type filter */
3619         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3620               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3621                 return 0;
3622         }
3623
3624         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3625                 bargs = &bctl->data;
3626         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3627                 bargs = &bctl->sys;
3628         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3629                 bargs = &bctl->meta;
3630
3631         /* profiles filter */
3632         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3633             chunk_profiles_filter(chunk_type, bargs)) {
3634                 return 0;
3635         }
3636
3637         /* usage filter */
3638         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3639             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3640                 return 0;
3641         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3642             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3643                 return 0;
3644         }
3645
3646         /* devid filter */
3647         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3648             chunk_devid_filter(leaf, chunk, bargs)) {
3649                 return 0;
3650         }
3651
3652         /* drange filter, makes sense only with devid filter */
3653         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3654             chunk_drange_filter(leaf, chunk, bargs)) {
3655                 return 0;
3656         }
3657
3658         /* vrange filter */
3659         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3660             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3661                 return 0;
3662         }
3663
3664         /* stripes filter */
3665         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3666             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3667                 return 0;
3668         }
3669
3670         /* soft profile changing mode */
3671         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3672             chunk_soft_convert_filter(chunk_type, bargs)) {
3673                 return 0;
3674         }
3675
3676         /*
3677          * limited by count, must be the last filter
3678          */
3679         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3680                 if (bargs->limit == 0)
3681                         return 0;
3682                 else
3683                         bargs->limit--;
3684         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3685                 /*
3686                  * Same logic as the 'limit' filter; the minimum cannot be
3687                  * determined here because we do not have the global information
3688                  * about the count of all chunks that satisfy the filters.
3689                  */
3690                 if (bargs->limit_max == 0)
3691                         return 0;
3692                 else
3693                         bargs->limit_max--;
3694         }
3695
3696         return 1;
3697 }
3698
3699 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3700 {
3701         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3702         struct btrfs_root *chunk_root = fs_info->chunk_root;
3703         struct btrfs_root *dev_root = fs_info->dev_root;
3704         struct list_head *devices;
3705         struct btrfs_device *device;
3706         u64 old_size;
3707         u64 size_to_free;
3708         u64 chunk_type;
3709         struct btrfs_chunk *chunk;
3710         struct btrfs_path *path = NULL;
3711         struct btrfs_key key;
3712         struct btrfs_key found_key;
3713         struct btrfs_trans_handle *trans;
3714         struct extent_buffer *leaf;
3715         int slot;
3716         int ret;
3717         int enospc_errors = 0;
3718         bool counting = true;
3719         /* The single value limit and min/max limits use the same bytes in the */
3720         u64 limit_data = bctl->data.limit;
3721         u64 limit_meta = bctl->meta.limit;
3722         u64 limit_sys = bctl->sys.limit;
3723         u32 count_data = 0;
3724         u32 count_meta = 0;
3725         u32 count_sys = 0;
3726         int chunk_reserved = 0;
3727
3728         /* step one make some room on all the devices */
3729         devices = &fs_info->fs_devices->devices;
3730         list_for_each_entry(device, devices, dev_list) {
3731                 old_size = btrfs_device_get_total_bytes(device);
3732                 size_to_free = div_factor(old_size, 1);
3733                 size_to_free = min_t(u64, size_to_free, SZ_1M);
3734                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
3735                     btrfs_device_get_total_bytes(device) -
3736                     btrfs_device_get_bytes_used(device) > size_to_free ||
3737                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
3738                         continue;
3739
3740                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3741                 if (ret == -ENOSPC)
3742                         break;
3743                 if (ret) {
3744                         /* btrfs_shrink_device never returns ret > 0 */
3745                         WARN_ON(ret > 0);
3746                         goto error;
3747                 }
3748
3749                 trans = btrfs_start_transaction(dev_root, 0);
3750                 if (IS_ERR(trans)) {
3751                         ret = PTR_ERR(trans);
3752                         btrfs_info_in_rcu(fs_info,
3753                  "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3754                                           rcu_str_deref(device->name), ret,
3755                                           old_size, old_size - size_to_free);
3756                         goto error;
3757                 }
3758
3759                 ret = btrfs_grow_device(trans, device, old_size);
3760                 if (ret) {
3761                         btrfs_end_transaction(trans);
3762                         /* btrfs_grow_device never returns ret > 0 */
3763                         WARN_ON(ret > 0);
3764                         btrfs_info_in_rcu(fs_info,
3765                  "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3766                                           rcu_str_deref(device->name), ret,
3767                                           old_size, old_size - size_to_free);
3768                         goto error;
3769                 }
3770
3771                 btrfs_end_transaction(trans);
3772         }
3773
3774         /* step two, relocate all the chunks */
3775         path = btrfs_alloc_path();
3776         if (!path) {
3777                 ret = -ENOMEM;
3778                 goto error;
3779         }
3780
3781         /* zero out stat counters */
3782         spin_lock(&fs_info->balance_lock);
3783         memset(&bctl->stat, 0, sizeof(bctl->stat));
3784         spin_unlock(&fs_info->balance_lock);
3785 again:
3786         if (!counting) {
3787                 /*
3788                  * The single value limit and min/max limits use the same bytes
3789                  * in the
3790                  */
3791                 bctl->data.limit = limit_data;
3792                 bctl->meta.limit = limit_meta;
3793                 bctl->sys.limit = limit_sys;
3794         }
3795         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3796         key.offset = (u64)-1;
3797         key.type = BTRFS_CHUNK_ITEM_KEY;
3798
3799         while (1) {
3800                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3801                     atomic_read(&fs_info->balance_cancel_req)) {
3802                         ret = -ECANCELED;
3803                         goto error;
3804                 }
3805
3806                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3807                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3808                 if (ret < 0) {
3809                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3810                         goto error;
3811                 }
3812
3813                 /*
3814                  * this shouldn't happen, it means the last relocate
3815                  * failed
3816                  */
3817                 if (ret == 0)
3818                         BUG(); /* FIXME break ? */
3819
3820                 ret = btrfs_previous_item(chunk_root, path, 0,
3821                                           BTRFS_CHUNK_ITEM_KEY);
3822                 if (ret) {
3823                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3824                         ret = 0;
3825                         break;
3826                 }
3827
3828                 leaf = path->nodes[0];
3829                 slot = path->slots[0];
3830                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3831
3832                 if (found_key.objectid != key.objectid) {
3833                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3834                         break;
3835                 }
3836
3837                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3838                 chunk_type = btrfs_chunk_type(leaf, chunk);
3839
3840                 if (!counting) {
3841                         spin_lock(&fs_info->balance_lock);
3842                         bctl->stat.considered++;
3843                         spin_unlock(&fs_info->balance_lock);
3844                 }
3845
3846                 ret = should_balance_chunk(fs_info, leaf, chunk,
3847                                            found_key.offset);
3848
3849                 btrfs_release_path(path);
3850                 if (!ret) {
3851                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3852                         goto loop;
3853                 }
3854
3855                 if (counting) {
3856                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3857                         spin_lock(&fs_info->balance_lock);
3858                         bctl->stat.expected++;
3859                         spin_unlock(&fs_info->balance_lock);
3860
3861                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3862                                 count_data++;
3863                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3864                                 count_sys++;
3865                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3866                                 count_meta++;
3867
3868                         goto loop;
3869                 }
3870
3871                 /*
3872                  * Apply limit_min filter, no need to check if the LIMITS
3873                  * filter is used, limit_min is 0 by default
3874                  */
3875                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3876                                         count_data < bctl->data.limit_min)
3877                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3878                                         count_meta < bctl->meta.limit_min)
3879                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3880                                         count_sys < bctl->sys.limit_min)) {
3881                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3882                         goto loop;
3883                 }
3884
3885                 if (!chunk_reserved) {
3886                         /*
3887                          * We may be relocating the only data chunk we have,
3888                          * which could potentially end up with losing data's
3889                          * raid profile, so lets allocate an empty one in
3890                          * advance.
3891                          */
3892                         ret = btrfs_may_alloc_data_chunk(fs_info,
3893                                                          found_key.offset);
3894                         if (ret < 0) {
3895                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3896                                 goto error;
3897                         } else if (ret == 1) {
3898                                 chunk_reserved = 1;
3899                         }
3900                 }
3901
3902                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3903                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3904                 if (ret == -ENOSPC) {
3905                         enospc_errors++;
3906                 } else if (ret == -ETXTBSY) {
3907                         btrfs_info(fs_info,
3908            "skipping relocation of block group %llu due to active swapfile",
3909                                    found_key.offset);
3910                         ret = 0;
3911                 } else if (ret) {
3912                         goto error;
3913                 } else {
3914                         spin_lock(&fs_info->balance_lock);
3915                         bctl->stat.completed++;
3916                         spin_unlock(&fs_info->balance_lock);
3917                 }
3918 loop:
3919                 if (found_key.offset == 0)
3920                         break;
3921                 key.offset = found_key.offset - 1;
3922         }
3923
3924         if (counting) {
3925                 btrfs_release_path(path);
3926                 counting = false;
3927                 goto again;
3928         }
3929 error:
3930         btrfs_free_path(path);
3931         if (enospc_errors) {
3932                 btrfs_info(fs_info, "%d enospc errors during balance",
3933                            enospc_errors);
3934                 if (!ret)
3935                         ret = -ENOSPC;
3936         }
3937
3938         return ret;
3939 }
3940
3941 /**
3942  * alloc_profile_is_valid - see if a given profile is valid and reduced
3943  * @flags: profile to validate
3944  * @extended: if true @flags is treated as an extended profile
3945  */
3946 static int alloc_profile_is_valid(u64 flags, int extended)
3947 {
3948         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3949                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3950
3951         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3952
3953         /* 1) check that all other bits are zeroed */
3954         if (flags & ~mask)
3955                 return 0;
3956
3957         /* 2) see if profile is reduced */
3958         if (flags == 0)
3959                 return !extended; /* "0" is valid for usual profiles */
3960
3961         /* true if exactly one bit set */
3962         return is_power_of_2(flags);
3963 }
3964
3965 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3966 {
3967         /* cancel requested || normal exit path */
3968         return atomic_read(&fs_info->balance_cancel_req) ||
3969                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3970                  atomic_read(&fs_info->balance_cancel_req) == 0);
3971 }
3972
3973 /* Non-zero return value signifies invalidity */
3974 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3975                 u64 allowed)
3976 {
3977         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3978                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3979                  (bctl_arg->target & ~allowed)));
3980 }
3981
3982 /*
3983  * Fill @buf with textual description of balance filter flags @bargs, up to
3984  * @size_buf including the terminating null. The output may be trimmed if it
3985  * does not fit into the provided buffer.
3986  */
3987 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3988                                  u32 size_buf)
3989 {
3990         int ret;
3991         u32 size_bp = size_buf;
3992         char *bp = buf;
3993         u64 flags = bargs->flags;
3994         char tmp_buf[128] = {'\0'};
3995
3996         if (!flags)
3997                 return;
3998
3999 #define CHECK_APPEND_NOARG(a)                                           \
4000         do {                                                            \
4001                 ret = snprintf(bp, size_bp, (a));                       \
4002                 if (ret < 0 || ret >= size_bp)                          \
4003                         goto out_overflow;                              \
4004                 size_bp -= ret;                                         \
4005                 bp += ret;                                              \
4006         } while (0)
4007
4008 #define CHECK_APPEND_1ARG(a, v1)                                        \
4009         do {                                                            \
4010                 ret = snprintf(bp, size_bp, (a), (v1));                 \
4011                 if (ret < 0 || ret >= size_bp)                          \
4012                         goto out_overflow;                              \
4013                 size_bp -= ret;                                         \
4014                 bp += ret;                                              \
4015         } while (0)
4016
4017 #define CHECK_APPEND_2ARG(a, v1, v2)                                    \
4018         do {                                                            \
4019                 ret = snprintf(bp, size_bp, (a), (v1), (v2));           \
4020                 if (ret < 0 || ret >= size_bp)                          \
4021                         goto out_overflow;                              \
4022                 size_bp -= ret;                                         \
4023                 bp += ret;                                              \
4024         } while (0)
4025
4026         if (flags & BTRFS_BALANCE_ARGS_CONVERT) {
4027                 int index = btrfs_bg_flags_to_raid_index(bargs->target);
4028
4029                 CHECK_APPEND_1ARG("convert=%s,", get_raid_name(index));
4030         }
4031
4032         if (flags & BTRFS_BALANCE_ARGS_SOFT)
4033                 CHECK_APPEND_NOARG("soft,");
4034
4035         if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4036                 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4037                                             sizeof(tmp_buf));
4038                 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4039         }
4040
4041         if (flags & BTRFS_BALANCE_ARGS_USAGE)
4042                 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4043
4044         if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4045                 CHECK_APPEND_2ARG("usage=%u..%u,",
4046                                   bargs->usage_min, bargs->usage_max);
4047
4048         if (flags & BTRFS_BALANCE_ARGS_DEVID)
4049                 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4050
4051         if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4052                 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4053                                   bargs->pstart, bargs->pend);
4054
4055         if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4056                 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4057                                   bargs->vstart, bargs->vend);
4058
4059         if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4060                 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4061
4062         if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4063                 CHECK_APPEND_2ARG("limit=%u..%u,",
4064                                 bargs->limit_min, bargs->limit_max);
4065
4066         if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4067                 CHECK_APPEND_2ARG("stripes=%u..%u,",
4068                                   bargs->stripes_min, bargs->stripes_max);
4069
4070 #undef CHECK_APPEND_2ARG
4071 #undef CHECK_APPEND_1ARG
4072 #undef CHECK_APPEND_NOARG
4073
4074 out_overflow:
4075
4076         if (size_bp < size_buf)
4077                 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4078         else
4079                 buf[0] = '\0';
4080 }
4081
4082 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4083 {
4084         u32 size_buf = 1024;
4085         char tmp_buf[192] = {'\0'};
4086         char *buf;
4087         char *bp;
4088         u32 size_bp = size_buf;
4089         int ret;
4090         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4091
4092         buf = kzalloc(size_buf, GFP_KERNEL);
4093         if (!buf)
4094                 return;
4095
4096         bp = buf;
4097
4098 #define CHECK_APPEND_1ARG(a, v1)                                        \
4099         do {                                                            \
4100                 ret = snprintf(bp, size_bp, (a), (v1));                 \
4101                 if (ret < 0 || ret >= size_bp)                          \
4102                         goto out_overflow;                              \
4103                 size_bp -= ret;                                         \
4104                 bp += ret;                                              \
4105         } while (0)
4106
4107         if (bctl->flags & BTRFS_BALANCE_FORCE)
4108                 CHECK_APPEND_1ARG("%s", "-f ");
4109
4110         if (bctl->flags & BTRFS_BALANCE_DATA) {
4111                 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4112                 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4113         }
4114
4115         if (bctl->flags & BTRFS_BALANCE_METADATA) {
4116                 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4117                 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4118         }
4119
4120         if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4121                 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4122                 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4123         }
4124
4125 #undef CHECK_APPEND_1ARG
4126
4127 out_overflow:
4128
4129         if (size_bp < size_buf)
4130                 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4131         btrfs_info(fs_info, "balance: %s %s",
4132                    (bctl->flags & BTRFS_BALANCE_RESUME) ?
4133                    "resume" : "start", buf);
4134
4135         kfree(buf);
4136 }
4137
4138 /*
4139  * Should be called with balance mutexe held
4140  */
4141 int btrfs_balance(struct btrfs_fs_info *fs_info,
4142                   struct btrfs_balance_control *bctl,
4143                   struct btrfs_ioctl_balance_args *bargs)
4144 {
4145         u64 meta_target, data_target;
4146         u64 allowed;
4147         int mixed = 0;
4148         int ret;
4149         u64 num_devices;
4150         unsigned seq;
4151         bool reducing_integrity;
4152
4153         if (btrfs_fs_closing(fs_info) ||
4154             atomic_read(&fs_info->balance_pause_req) ||
4155             atomic_read(&fs_info->balance_cancel_req)) {
4156                 ret = -EINVAL;
4157                 goto out;
4158         }
4159
4160         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4161         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4162                 mixed = 1;
4163
4164         /*
4165          * In case of mixed groups both data and meta should be picked,
4166          * and identical options should be given for both of them.
4167          */
4168         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4169         if (mixed && (bctl->flags & allowed)) {
4170                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4171                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4172                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4173                         btrfs_err(fs_info,
4174           "balance: mixed groups data and metadata options must be the same");
4175                         ret = -EINVAL;
4176                         goto out;
4177                 }
4178         }
4179
4180         num_devices = btrfs_num_devices(fs_info);
4181
4182         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
4183         if (num_devices > 1)
4184                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
4185         if (num_devices > 2)
4186                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
4187         if (num_devices > 3)
4188                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
4189                             BTRFS_BLOCK_GROUP_RAID6);
4190         if (validate_convert_profile(&bctl->data, allowed)) {
4191                 int index = btrfs_bg_flags_to_raid_index(bctl->data.target);
4192
4193                 btrfs_err(fs_info,
4194                           "balance: invalid convert data profile %s",
4195                           get_raid_name(index));
4196                 ret = -EINVAL;
4197                 goto out;
4198         }
4199         if (validate_convert_profile(&bctl->meta, allowed)) {
4200                 int index = btrfs_bg_flags_to_raid_index(bctl->meta.target);
4201
4202                 btrfs_err(fs_info,
4203                           "balance: invalid convert metadata profile %s",
4204                           get_raid_name(index));
4205                 ret = -EINVAL;
4206                 goto out;
4207         }
4208         if (validate_convert_profile(&bctl->sys, allowed)) {
4209                 int index = btrfs_bg_flags_to_raid_index(bctl->sys.target);
4210
4211                 btrfs_err(fs_info,
4212                           "balance: invalid convert system profile %s",
4213                           get_raid_name(index));
4214                 ret = -EINVAL;
4215                 goto out;
4216         }
4217
4218         /* allow to reduce meta or sys integrity only if force set */
4219         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4220                         BTRFS_BLOCK_GROUP_RAID10 |
4221                         BTRFS_BLOCK_GROUP_RAID5 |
4222                         BTRFS_BLOCK_GROUP_RAID6;
4223         do {
4224                 seq = read_seqbegin(&fs_info->profiles_lock);
4225
4226                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4227                      (fs_info->avail_system_alloc_bits & allowed) &&
4228                      !(bctl->sys.target & allowed)) ||
4229                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4230                      (fs_info->avail_metadata_alloc_bits & allowed) &&
4231                      !(bctl->meta.target & allowed)))
4232                         reducing_integrity = true;
4233                 else
4234                         reducing_integrity = false;
4235
4236                 /* if we're not converting, the target field is uninitialized */
4237                 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4238                         bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4239                 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4240                         bctl->data.target : fs_info->avail_data_alloc_bits;
4241         } while (read_seqretry(&fs_info->profiles_lock, seq));
4242
4243         if (reducing_integrity) {
4244                 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4245                         btrfs_info(fs_info,
4246                                    "balance: force reducing metadata integrity");
4247                 } else {
4248                         btrfs_err(fs_info,
4249           "balance: reduces metadata integrity, use --force if you want this");
4250                         ret = -EINVAL;
4251                         goto out;
4252                 }
4253         }
4254
4255         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4256                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4257                 int meta_index = btrfs_bg_flags_to_raid_index(meta_target);
4258                 int data_index = btrfs_bg_flags_to_raid_index(data_target);
4259
4260                 btrfs_warn(fs_info,
4261         "balance: metadata profile %s has lower redundancy than data profile %s",
4262                            get_raid_name(meta_index), get_raid_name(data_index));
4263         }
4264
4265         ret = insert_balance_item(fs_info, bctl);
4266         if (ret && ret != -EEXIST)
4267                 goto out;
4268
4269         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4270                 BUG_ON(ret == -EEXIST);
4271                 BUG_ON(fs_info->balance_ctl);
4272                 spin_lock(&fs_info->balance_lock);
4273                 fs_info->balance_ctl = bctl;
4274                 spin_unlock(&fs_info->balance_lock);
4275         } else {
4276                 BUG_ON(ret != -EEXIST);
4277                 spin_lock(&fs_info->balance_lock);
4278                 update_balance_args(bctl);
4279                 spin_unlock(&fs_info->balance_lock);
4280         }
4281
4282         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4283         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4284         describe_balance_start_or_resume(fs_info);
4285         mutex_unlock(&fs_info->balance_mutex);
4286
4287         ret = __btrfs_balance(fs_info);
4288
4289         mutex_lock(&fs_info->balance_mutex);
4290         if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4291                 btrfs_info(fs_info, "balance: paused");
4292         else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
4293                 btrfs_info(fs_info, "balance: canceled");
4294         else
4295                 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4296
4297         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4298
4299         if (bargs) {
4300                 memset(bargs, 0, sizeof(*bargs));
4301                 btrfs_update_ioctl_balance_args(fs_info, bargs);
4302         }
4303
4304         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4305             balance_need_close(fs_info)) {
4306                 reset_balance_state(fs_info);
4307                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4308         }
4309
4310         wake_up(&fs_info->balance_wait_q);
4311
4312         return ret;
4313 out:
4314         if (bctl->flags & BTRFS_BALANCE_RESUME)
4315                 reset_balance_state(fs_info);
4316         else
4317                 kfree(bctl);
4318         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4319
4320         return ret;
4321 }
4322
4323 static int balance_kthread(void *data)
4324 {
4325         struct btrfs_fs_info *fs_info = data;
4326         int ret = 0;
4327
4328         mutex_lock(&fs_info->balance_mutex);
4329         if (fs_info->balance_ctl)
4330                 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4331         mutex_unlock(&fs_info->balance_mutex);
4332
4333         return ret;
4334 }
4335
4336 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4337 {
4338         struct task_struct *tsk;
4339
4340         mutex_lock(&fs_info->balance_mutex);
4341         if (!fs_info->balance_ctl) {
4342                 mutex_unlock(&fs_info->balance_mutex);
4343                 return 0;
4344         }
4345         mutex_unlock(&fs_info->balance_mutex);
4346
4347         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4348                 btrfs_info(fs_info, "balance: resume skipped");
4349                 return 0;
4350         }
4351
4352         /*
4353          * A ro->rw remount sequence should continue with the paused balance
4354          * regardless of who pauses it, system or the user as of now, so set
4355          * the resume flag.
4356          */
4357         spin_lock(&fs_info->balance_lock);
4358         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4359         spin_unlock(&fs_info->balance_lock);
4360
4361         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4362         return PTR_ERR_OR_ZERO(tsk);
4363 }
4364
4365 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4366 {
4367         struct btrfs_balance_control *bctl;
4368         struct btrfs_balance_item *item;
4369         struct btrfs_disk_balance_args disk_bargs;
4370         struct btrfs_path *path;
4371         struct extent_buffer *leaf;
4372         struct btrfs_key key;
4373         int ret;
4374
4375         path = btrfs_alloc_path();
4376         if (!path)
4377                 return -ENOMEM;
4378
4379         key.objectid = BTRFS_BALANCE_OBJECTID;
4380         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4381         key.offset = 0;
4382
4383         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4384         if (ret < 0)
4385                 goto out;
4386         if (ret > 0) { /* ret = -ENOENT; */
4387                 ret = 0;
4388                 goto out;
4389         }
4390
4391         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4392         if (!bctl) {
4393                 ret = -ENOMEM;
4394                 goto out;
4395         }
4396
4397         leaf = path->nodes[0];
4398         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4399
4400         bctl->flags = btrfs_balance_flags(leaf, item);
4401         bctl->flags |= BTRFS_BALANCE_RESUME;
4402
4403         btrfs_balance_data(leaf, item, &disk_bargs);
4404         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4405         btrfs_balance_meta(leaf, item, &disk_bargs);
4406         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4407         btrfs_balance_sys(leaf, item, &disk_bargs);
4408         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4409
4410         /*
4411          * This should never happen, as the paused balance state is recovered
4412          * during mount without any chance of other exclusive ops to collide.
4413          *
4414          * This gives the exclusive op status to balance and keeps in paused
4415          * state until user intervention (cancel or umount). If the ownership
4416          * cannot be assigned, show a message but do not fail. The balance
4417          * is in a paused state and must have fs_info::balance_ctl properly
4418          * set up.
4419          */
4420         if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4421                 btrfs_warn(fs_info,
4422         "balance: cannot set exclusive op status, resume manually");
4423
4424         mutex_lock(&fs_info->balance_mutex);
4425         BUG_ON(fs_info->balance_ctl);
4426         spin_lock(&fs_info->balance_lock);
4427         fs_info->balance_ctl = bctl;
4428         spin_unlock(&fs_info->balance_lock);
4429         mutex_unlock(&fs_info->balance_mutex);
4430 out:
4431         btrfs_free_path(path);
4432         return ret;
4433 }
4434
4435 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4436 {
4437         int ret = 0;
4438
4439         mutex_lock(&fs_info->balance_mutex);
4440         if (!fs_info->balance_ctl) {
4441                 mutex_unlock(&fs_info->balance_mutex);
4442                 return -ENOTCONN;
4443         }
4444
4445         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4446                 atomic_inc(&fs_info->balance_pause_req);
4447                 mutex_unlock(&fs_info->balance_mutex);
4448
4449                 wait_event(fs_info->balance_wait_q,
4450                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4451
4452                 mutex_lock(&fs_info->balance_mutex);
4453                 /* we are good with balance_ctl ripped off from under us */
4454                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4455                 atomic_dec(&fs_info->balance_pause_req);
4456         } else {
4457                 ret = -ENOTCONN;
4458         }
4459
4460         mutex_unlock(&fs_info->balance_mutex);
4461         return ret;
4462 }
4463
4464 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4465 {
4466         mutex_lock(&fs_info->balance_mutex);
4467         if (!fs_info->balance_ctl) {
4468                 mutex_unlock(&fs_info->balance_mutex);
4469                 return -ENOTCONN;
4470         }
4471
4472         /*
4473          * A paused balance with the item stored on disk can be resumed at
4474          * mount time if the mount is read-write. Otherwise it's still paused
4475          * and we must not allow cancelling as it deletes the item.
4476          */
4477         if (sb_rdonly(fs_info->sb)) {
4478                 mutex_unlock(&fs_info->balance_mutex);
4479                 return -EROFS;
4480         }
4481
4482         atomic_inc(&fs_info->balance_cancel_req);
4483         /*
4484          * if we are running just wait and return, balance item is
4485          * deleted in btrfs_balance in this case
4486          */
4487         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4488                 mutex_unlock(&fs_info->balance_mutex);
4489                 wait_event(fs_info->balance_wait_q,
4490                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4491                 mutex_lock(&fs_info->balance_mutex);
4492         } else {
4493                 mutex_unlock(&fs_info->balance_mutex);
4494                 /*
4495                  * Lock released to allow other waiters to continue, we'll
4496                  * reexamine the status again.
4497                  */
4498                 mutex_lock(&fs_info->balance_mutex);
4499
4500                 if (fs_info->balance_ctl) {
4501                         reset_balance_state(fs_info);
4502                         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4503                         btrfs_info(fs_info, "balance: canceled");
4504                 }
4505         }
4506
4507         BUG_ON(fs_info->balance_ctl ||
4508                 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4509         atomic_dec(&fs_info->balance_cancel_req);
4510         mutex_unlock(&fs_info->balance_mutex);
4511         return 0;
4512 }
4513
4514 static int btrfs_uuid_scan_kthread(void *data)
4515 {
4516         struct btrfs_fs_info *fs_info = data;
4517         struct btrfs_root *root = fs_info->tree_root;
4518         struct btrfs_key key;
4519         struct btrfs_path *path = NULL;
4520         int ret = 0;
4521         struct extent_buffer *eb;
4522         int slot;
4523         struct btrfs_root_item root_item;
4524         u32 item_size;
4525         struct btrfs_trans_handle *trans = NULL;
4526
4527         path = btrfs_alloc_path();
4528         if (!path) {
4529                 ret = -ENOMEM;
4530                 goto out;
4531         }
4532
4533         key.objectid = 0;
4534         key.type = BTRFS_ROOT_ITEM_KEY;
4535         key.offset = 0;
4536
4537         while (1) {
4538                 ret = btrfs_search_forward(root, &key, path,
4539                                 BTRFS_OLDEST_GENERATION);
4540                 if (ret) {
4541                         if (ret > 0)
4542                                 ret = 0;
4543                         break;
4544                 }
4545
4546                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4547                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4548                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4549                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4550                         goto skip;
4551
4552                 eb = path->nodes[0];
4553                 slot = path->slots[0];
4554                 item_size = btrfs_item_size_nr(eb, slot);
4555                 if (item_size < sizeof(root_item))
4556                         goto skip;
4557
4558                 read_extent_buffer(eb, &root_item,
4559                                    btrfs_item_ptr_offset(eb, slot),
4560                                    (int)sizeof(root_item));
4561                 if (btrfs_root_refs(&root_item) == 0)
4562                         goto skip;
4563
4564                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4565                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4566                         if (trans)
4567                                 goto update_tree;
4568
4569                         btrfs_release_path(path);
4570                         /*
4571                          * 1 - subvol uuid item
4572                          * 1 - received_subvol uuid item
4573                          */
4574                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4575                         if (IS_ERR(trans)) {
4576                                 ret = PTR_ERR(trans);
4577                                 break;
4578                         }
4579                         continue;
4580                 } else {
4581                         goto skip;
4582                 }
4583 update_tree:
4584                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4585                         ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4586                                                   BTRFS_UUID_KEY_SUBVOL,
4587                                                   key.objectid);
4588                         if (ret < 0) {
4589                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4590                                         ret);
4591                                 break;
4592                         }
4593                 }
4594
4595                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4596                         ret = btrfs_uuid_tree_add(trans,
4597                                                   root_item.received_uuid,
4598                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4599                                                   key.objectid);
4600                         if (ret < 0) {
4601                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4602                                         ret);
4603                                 break;
4604                         }
4605                 }
4606
4607 skip:
4608                 if (trans) {
4609                         ret = btrfs_end_transaction(trans);
4610                         trans = NULL;
4611                         if (ret)
4612                                 break;
4613                 }
4614
4615                 btrfs_release_path(path);
4616                 if (key.offset < (u64)-1) {
4617                         key.offset++;
4618                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4619                         key.offset = 0;
4620                         key.type = BTRFS_ROOT_ITEM_KEY;
4621                 } else if (key.objectid < (u64)-1) {
4622                         key.offset = 0;
4623                         key.type = BTRFS_ROOT_ITEM_KEY;
4624                         key.objectid++;
4625                 } else {
4626                         break;
4627                 }
4628                 cond_resched();
4629         }
4630
4631 out:
4632         btrfs_free_path(path);
4633         if (trans && !IS_ERR(trans))
4634                 btrfs_end_transaction(trans);
4635         if (ret)
4636                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4637         else
4638                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4639         up(&fs_info->uuid_tree_rescan_sem);
4640         return 0;
4641 }
4642
4643 /*
4644  * Callback for btrfs_uuid_tree_iterate().
4645  * returns:
4646  * 0    check succeeded, the entry is not outdated.
4647  * < 0  if an error occurred.
4648  * > 0  if the check failed, which means the caller shall remove the entry.
4649  */
4650 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4651                                        u8 *uuid, u8 type, u64 subid)
4652 {
4653         struct btrfs_key key;
4654         int ret = 0;
4655         struct btrfs_root *subvol_root;
4656
4657         if (type != BTRFS_UUID_KEY_SUBVOL &&
4658             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4659                 goto out;
4660
4661         key.objectid = subid;
4662         key.type = BTRFS_ROOT_ITEM_KEY;
4663         key.offset = (u64)-1;
4664         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4665         if (IS_ERR(subvol_root)) {
4666                 ret = PTR_ERR(subvol_root);
4667                 if (ret == -ENOENT)
4668                         ret = 1;
4669                 goto out;
4670         }
4671
4672         switch (type) {
4673         case BTRFS_UUID_KEY_SUBVOL:
4674                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4675                         ret = 1;
4676                 break;
4677         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4678                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4679                            BTRFS_UUID_SIZE))
4680                         ret = 1;
4681                 break;
4682         }
4683
4684 out:
4685         return ret;
4686 }
4687
4688 static int btrfs_uuid_rescan_kthread(void *data)
4689 {
4690         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4691         int ret;
4692
4693         /*
4694          * 1st step is to iterate through the existing UUID tree and
4695          * to delete all entries that contain outdated data.
4696          * 2nd step is to add all missing entries to the UUID tree.
4697          */
4698         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4699         if (ret < 0) {
4700                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4701                 up(&fs_info->uuid_tree_rescan_sem);
4702                 return ret;
4703         }
4704         return btrfs_uuid_scan_kthread(data);
4705 }
4706
4707 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4708 {
4709         struct btrfs_trans_handle *trans;
4710         struct btrfs_root *tree_root = fs_info->tree_root;
4711         struct btrfs_root *uuid_root;
4712         struct task_struct *task;
4713         int ret;
4714
4715         /*
4716          * 1 - root node
4717          * 1 - root item
4718          */
4719         trans = btrfs_start_transaction(tree_root, 2);
4720         if (IS_ERR(trans))
4721                 return PTR_ERR(trans);
4722
4723         uuid_root = btrfs_create_tree(trans, fs_info,
4724                                       BTRFS_UUID_TREE_OBJECTID);
4725         if (IS_ERR(uuid_root)) {
4726                 ret = PTR_ERR(uuid_root);
4727                 btrfs_abort_transaction(trans, ret);
4728                 btrfs_end_transaction(trans);
4729                 return ret;
4730         }
4731
4732         fs_info->uuid_root = uuid_root;
4733
4734         ret = btrfs_commit_transaction(trans);
4735         if (ret)
4736                 return ret;
4737
4738         down(&fs_info->uuid_tree_rescan_sem);
4739         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4740         if (IS_ERR(task)) {
4741                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4742                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4743                 up(&fs_info->uuid_tree_rescan_sem);
4744                 return PTR_ERR(task);
4745         }
4746
4747         return 0;
4748 }
4749
4750 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4751 {
4752         struct task_struct *task;
4753
4754         down(&fs_info->uuid_tree_rescan_sem);
4755         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4756         if (IS_ERR(task)) {
4757                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4758                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4759                 up(&fs_info->uuid_tree_rescan_sem);
4760                 return PTR_ERR(task);
4761         }
4762
4763         return 0;
4764 }
4765
4766 /*
4767  * shrinking a device means finding all of the device extents past
4768  * the new size, and then following the back refs to the chunks.
4769  * The chunk relocation code actually frees the device extent
4770  */
4771 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4772 {
4773         struct btrfs_fs_info *fs_info = device->fs_info;
4774         struct btrfs_root *root = fs_info->dev_root;
4775         struct btrfs_trans_handle *trans;
4776         struct btrfs_dev_extent *dev_extent = NULL;
4777         struct btrfs_path *path;
4778         u64 length;
4779         u64 chunk_offset;
4780         int ret;
4781         int slot;
4782         int failed = 0;
4783         bool retried = false;
4784         bool checked_pending_chunks = false;
4785         struct extent_buffer *l;
4786         struct btrfs_key key;
4787         struct btrfs_super_block *super_copy = fs_info->super_copy;
4788         u64 old_total = btrfs_super_total_bytes(super_copy);
4789         u64 old_size = btrfs_device_get_total_bytes(device);
4790         u64 diff;
4791
4792         new_size = round_down(new_size, fs_info->sectorsize);
4793         diff = round_down(old_size - new_size, fs_info->sectorsize);
4794
4795         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4796                 return -EINVAL;
4797
4798         path = btrfs_alloc_path();
4799         if (!path)
4800                 return -ENOMEM;
4801
4802         path->reada = READA_BACK;
4803
4804         mutex_lock(&fs_info->chunk_mutex);
4805
4806         btrfs_device_set_total_bytes(device, new_size);
4807         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4808                 device->fs_devices->total_rw_bytes -= diff;
4809                 atomic64_sub(diff, &fs_info->free_chunk_space);
4810         }
4811         mutex_unlock(&fs_info->chunk_mutex);
4812
4813 again:
4814         key.objectid = device->devid;
4815         key.offset = (u64)-1;
4816         key.type = BTRFS_DEV_EXTENT_KEY;
4817
4818         do {
4819                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4820                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4821                 if (ret < 0) {
4822                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4823                         goto done;
4824                 }
4825
4826                 ret = btrfs_previous_item(root, path, 0, key.type);
4827                 if (ret)
4828                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4829                 if (ret < 0)
4830                         goto done;
4831                 if (ret) {
4832                         ret = 0;
4833                         btrfs_release_path(path);
4834                         break;
4835                 }
4836
4837                 l = path->nodes[0];
4838                 slot = path->slots[0];
4839                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4840
4841                 if (key.objectid != device->devid) {
4842                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4843                         btrfs_release_path(path);
4844                         break;
4845                 }
4846
4847                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4848                 length = btrfs_dev_extent_length(l, dev_extent);
4849
4850                 if (key.offset + length <= new_size) {
4851                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4852                         btrfs_release_path(path);
4853                         break;
4854                 }
4855
4856                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4857                 btrfs_release_path(path);
4858
4859                 /*
4860                  * We may be relocating the only data chunk we have,
4861                  * which could potentially end up with losing data's
4862                  * raid profile, so lets allocate an empty one in
4863                  * advance.
4864                  */
4865                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4866                 if (ret < 0) {
4867                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4868                         goto done;
4869                 }
4870
4871                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4872                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4873                 if (ret == -ENOSPC) {
4874                         failed++;
4875                 } else if (ret) {
4876                         if (ret == -ETXTBSY) {
4877                                 btrfs_warn(fs_info,
4878                    "could not shrink block group %llu due to active swapfile",
4879                                            chunk_offset);
4880                         }
4881                         goto done;
4882                 }
4883         } while (key.offset-- > 0);
4884
4885         if (failed && !retried) {
4886                 failed = 0;
4887                 retried = true;
4888                 goto again;
4889         } else if (failed && retried) {
4890                 ret = -ENOSPC;
4891                 goto done;
4892         }
4893
4894         /* Shrinking succeeded, else we would be at "done". */
4895         trans = btrfs_start_transaction(root, 0);
4896         if (IS_ERR(trans)) {
4897                 ret = PTR_ERR(trans);
4898                 goto done;
4899         }
4900
4901         mutex_lock(&fs_info->chunk_mutex);
4902
4903         /*
4904          * We checked in the above loop all device extents that were already in
4905          * the device tree. However before we have updated the device's
4906          * total_bytes to the new size, we might have had chunk allocations that
4907          * have not complete yet (new block groups attached to transaction
4908          * handles), and therefore their device extents were not yet in the
4909          * device tree and we missed them in the loop above. So if we have any
4910          * pending chunk using a device extent that overlaps the device range
4911          * that we can not use anymore, commit the current transaction and
4912          * repeat the search on the device tree - this way we guarantee we will
4913          * not have chunks using device extents that end beyond 'new_size'.
4914          */
4915         if (!checked_pending_chunks) {
4916                 u64 start = new_size;
4917                 u64 len = old_size - new_size;
4918
4919                 if (contains_pending_extent(trans->transaction, device,
4920                                             &start, len)) {
4921                         mutex_unlock(&fs_info->chunk_mutex);
4922                         checked_pending_chunks = true;
4923                         failed = 0;
4924                         retried = false;
4925                         ret = btrfs_commit_transaction(trans);
4926                         if (ret)
4927                                 goto done;
4928                         goto again;
4929                 }
4930         }
4931
4932         btrfs_device_set_disk_total_bytes(device, new_size);
4933         if (list_empty(&device->resized_list))
4934                 list_add_tail(&device->resized_list,
4935                               &fs_info->fs_devices->resized_devices);
4936
4937         WARN_ON(diff > old_total);
4938         btrfs_set_super_total_bytes(super_copy,
4939                         round_down(old_total - diff, fs_info->sectorsize));
4940         mutex_unlock(&fs_info->chunk_mutex);
4941
4942         /* Now btrfs_update_device() will change the on-disk size. */
4943         ret = btrfs_update_device(trans, device);
4944         if (ret < 0) {
4945                 btrfs_abort_transaction(trans, ret);
4946                 btrfs_end_transaction(trans);
4947         } else {
4948                 ret = btrfs_commit_transaction(trans);
4949         }
4950 done:
4951         btrfs_free_path(path);
4952         if (ret) {
4953                 mutex_lock(&fs_info->chunk_mutex);
4954                 btrfs_device_set_total_bytes(device, old_size);
4955                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4956                         device->fs_devices->total_rw_bytes += diff;
4957                 atomic64_add(diff, &fs_info->free_chunk_space);
4958                 mutex_unlock(&fs_info->chunk_mutex);
4959         }
4960         return ret;
4961 }
4962
4963 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4964                            struct btrfs_key *key,
4965                            struct btrfs_chunk *chunk, int item_size)
4966 {
4967         struct btrfs_super_block *super_copy = fs_info->super_copy;
4968         struct btrfs_disk_key disk_key;
4969         u32 array_size;
4970         u8 *ptr;
4971
4972         mutex_lock(&fs_info->chunk_mutex);
4973         array_size = btrfs_super_sys_array_size(super_copy);
4974         if (array_size + item_size + sizeof(disk_key)
4975                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4976                 mutex_unlock(&fs_info->chunk_mutex);
4977                 return -EFBIG;
4978         }
4979
4980         ptr = super_copy->sys_chunk_array + array_size;
4981         btrfs_cpu_key_to_disk(&disk_key, key);
4982         memcpy(ptr, &disk_key, sizeof(disk_key));
4983         ptr += sizeof(disk_key);
4984         memcpy(ptr, chunk, item_size);
4985         item_size += sizeof(disk_key);
4986         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4987         mutex_unlock(&fs_info->chunk_mutex);
4988
4989         return 0;
4990 }
4991
4992 /*
4993  * sort the devices in descending order by max_avail, total_avail
4994  */
4995 static int btrfs_cmp_device_info(const void *a, const void *b)
4996 {
4997         const struct btrfs_device_info *di_a = a;
4998         const struct btrfs_device_info *di_b = b;
4999
5000         if (di_a->max_avail > di_b->max_avail)
5001                 return -1;
5002         if (di_a->max_avail < di_b->max_avail)
5003                 return 1;
5004         if (di_a->total_avail > di_b->total_avail)
5005                 return -1;
5006         if (di_a->total_avail < di_b->total_avail)
5007                 return 1;
5008         return 0;
5009 }
5010
5011 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5012 {
5013         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5014                 return;
5015
5016         btrfs_set_fs_incompat(info, RAID56);
5017 }
5018
5019 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info)        \
5020                         - sizeof(struct btrfs_chunk))           \
5021                         / sizeof(struct btrfs_stripe) + 1)
5022
5023 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
5024                                 - 2 * sizeof(struct btrfs_disk_key)     \
5025                                 - 2 * sizeof(struct btrfs_chunk))       \
5026                                 / sizeof(struct btrfs_stripe) + 1)
5027
5028 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5029                                u64 start, u64 type)
5030 {
5031         struct btrfs_fs_info *info = trans->fs_info;
5032         struct btrfs_fs_devices *fs_devices = info->fs_devices;
5033         struct btrfs_device *device;
5034         struct map_lookup *map = NULL;
5035         struct extent_map_tree *em_tree;
5036         struct extent_map *em;
5037         struct btrfs_device_info *devices_info = NULL;
5038         u64 total_avail;
5039         int num_stripes;        /* total number of stripes to allocate */
5040         int data_stripes;       /* number of stripes that count for
5041                                    block group size */
5042         int sub_stripes;        /* sub_stripes info for map */
5043         int dev_stripes;        /* stripes per dev */
5044         int devs_max;           /* max devs to use */
5045         int devs_min;           /* min devs needed */
5046         int devs_increment;     /* ndevs has to be a multiple of this */
5047         int ncopies;            /* how many copies to data has */
5048         int nparity;            /* number of stripes worth of bytes to
5049                                    store parity information */
5050         int ret;
5051         u64 max_stripe_size;
5052         u64 max_chunk_size;
5053         u64 stripe_size;
5054         u64 chunk_size;
5055         int ndevs;
5056         int i;
5057         int j;
5058         int index;
5059
5060         BUG_ON(!alloc_profile_is_valid(type, 0));
5061
5062         if (list_empty(&fs_devices->alloc_list)) {
5063                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5064                         btrfs_debug(info, "%s: no writable device", __func__);
5065                 return -ENOSPC;
5066         }
5067
5068         index = btrfs_bg_flags_to_raid_index(type);
5069
5070         sub_stripes = btrfs_raid_array[index].sub_stripes;
5071         dev_stripes = btrfs_raid_array[index].dev_stripes;
5072         devs_max = btrfs_raid_array[index].devs_max;
5073         devs_min = btrfs_raid_array[index].devs_min;
5074         devs_increment = btrfs_raid_array[index].devs_increment;
5075         ncopies = btrfs_raid_array[index].ncopies;
5076         nparity = btrfs_raid_array[index].nparity;
5077
5078         if (type & BTRFS_BLOCK_GROUP_DATA) {
5079                 max_stripe_size = SZ_1G;
5080                 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5081                 if (!devs_max)
5082                         devs_max = BTRFS_MAX_DEVS(info);
5083         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5084                 /* for larger filesystems, use larger metadata chunks */
5085                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5086                         max_stripe_size = SZ_1G;
5087                 else
5088                         max_stripe_size = SZ_256M;
5089                 max_chunk_size = max_stripe_size;
5090                 if (!devs_max)
5091                         devs_max = BTRFS_MAX_DEVS(info);
5092         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5093                 max_stripe_size = SZ_32M;
5094                 max_chunk_size = 2 * max_stripe_size;
5095                 if (!devs_max)
5096                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
5097         } else {
5098                 btrfs_err(info, "invalid chunk type 0x%llx requested",
5099                        type);
5100                 BUG_ON(1);
5101         }
5102
5103         /* we don't want a chunk larger than 10% of writeable space */
5104         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5105                              max_chunk_size);
5106
5107         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5108                                GFP_NOFS);
5109         if (!devices_info)
5110                 return -ENOMEM;
5111
5112         /*
5113          * in the first pass through the devices list, we gather information
5114          * about the available holes on each device.
5115          */
5116         ndevs = 0;
5117         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5118                 u64 max_avail;
5119                 u64 dev_offset;
5120
5121                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5122                         WARN(1, KERN_ERR
5123                                "BTRFS: read-only device in alloc_list\n");
5124                         continue;
5125                 }
5126
5127                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5128                                         &device->dev_state) ||
5129                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5130                         continue;
5131
5132                 if (device->total_bytes > device->bytes_used)
5133                         total_avail = device->total_bytes - device->bytes_used;
5134                 else
5135                         total_avail = 0;
5136
5137                 /* If there is no space on this device, skip it. */
5138                 if (total_avail == 0)
5139                         continue;
5140
5141                 ret = find_free_dev_extent(trans, device,
5142                                            max_stripe_size * dev_stripes,
5143                                            &dev_offset, &max_avail);
5144                 if (ret && ret != -ENOSPC)
5145                         goto error;
5146
5147                 if (ret == 0)
5148                         max_avail = max_stripe_size * dev_stripes;
5149
5150                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
5151                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
5152                                 btrfs_debug(info,
5153                         "%s: devid %llu has no free space, have=%llu want=%u",
5154                                             __func__, device->devid, max_avail,
5155                                             BTRFS_STRIPE_LEN * dev_stripes);
5156                         continue;
5157                 }
5158
5159                 if (ndevs == fs_devices->rw_devices) {
5160                         WARN(1, "%s: found more than %llu devices\n",
5161                              __func__, fs_devices->rw_devices);
5162                         break;
5163                 }
5164                 devices_info[ndevs].dev_offset = dev_offset;
5165                 devices_info[ndevs].max_avail = max_avail;
5166                 devices_info[ndevs].total_avail = total_avail;
5167                 devices_info[ndevs].dev = device;
5168                 ++ndevs;
5169         }
5170
5171         /*
5172          * now sort the devices by hole size / available space
5173          */
5174         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5175              btrfs_cmp_device_info, NULL);
5176
5177         /* round down to number of usable stripes */
5178         ndevs = round_down(ndevs, devs_increment);
5179
5180         if (ndevs < devs_min) {
5181                 ret = -ENOSPC;
5182                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5183                         btrfs_debug(info,
5184         "%s: not enough devices with free space: have=%d minimum required=%d",
5185                                     __func__, ndevs, devs_min);
5186                 }
5187                 goto error;
5188         }
5189
5190         ndevs = min(ndevs, devs_max);
5191
5192         /*
5193          * The primary goal is to maximize the number of stripes, so use as
5194          * many devices as possible, even if the stripes are not maximum sized.
5195          *
5196          * The DUP profile stores more than one stripe per device, the
5197          * max_avail is the total size so we have to adjust.
5198          */
5199         stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
5200         num_stripes = ndevs * dev_stripes;
5201
5202         /*
5203          * this will have to be fixed for RAID1 and RAID10 over
5204          * more drives
5205          */
5206         data_stripes = (num_stripes - nparity) / ncopies;
5207
5208         /*
5209          * Use the number of data stripes to figure out how big this chunk
5210          * is really going to be in terms of logical address space,
5211          * and compare that answer with the max chunk size. If it's higher,
5212          * we try to reduce stripe_size.
5213          */
5214         if (stripe_size * data_stripes > max_chunk_size) {
5215                 /*
5216                  * Reduce stripe_size, round it up to a 16MB boundary again and
5217                  * then use it, unless it ends up being even bigger than the
5218                  * previous value we had already.
5219                  */
5220                 stripe_size = min(round_up(div_u64(max_chunk_size,
5221                                                    data_stripes), SZ_16M),
5222                                   stripe_size);
5223         }
5224
5225         /* align to BTRFS_STRIPE_LEN */
5226         stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
5227
5228         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5229         if (!map) {
5230                 ret = -ENOMEM;
5231                 goto error;
5232         }
5233         map->num_stripes = num_stripes;
5234
5235         for (i = 0; i < ndevs; ++i) {
5236                 for (j = 0; j < dev_stripes; ++j) {
5237                         int s = i * dev_stripes + j;
5238                         map->stripes[s].dev = devices_info[i].dev;
5239                         map->stripes[s].physical = devices_info[i].dev_offset +
5240                                                    j * stripe_size;
5241                 }
5242         }
5243         map->stripe_len = BTRFS_STRIPE_LEN;
5244         map->io_align = BTRFS_STRIPE_LEN;
5245         map->io_width = BTRFS_STRIPE_LEN;
5246         map->type = type;
5247         map->sub_stripes = sub_stripes;
5248
5249         chunk_size = stripe_size * data_stripes;
5250
5251         trace_btrfs_chunk_alloc(info, map, start, chunk_size);
5252
5253         em = alloc_extent_map();
5254         if (!em) {
5255                 kfree(map);
5256                 ret = -ENOMEM;
5257                 goto error;
5258         }
5259         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5260         em->map_lookup = map;
5261         em->start = start;
5262         em->len = chunk_size;
5263         em->block_start = 0;
5264         em->block_len = em->len;
5265         em->orig_block_len = stripe_size;
5266
5267         em_tree = &info->mapping_tree.map_tree;
5268         write_lock(&em_tree->lock);
5269         ret = add_extent_mapping(em_tree, em, 0);
5270         if (ret) {
5271                 write_unlock(&em_tree->lock);
5272                 free_extent_map(em);
5273                 goto error;
5274         }
5275
5276         list_add_tail(&em->list, &trans->transaction->pending_chunks);
5277         refcount_inc(&em->refs);
5278         write_unlock(&em_tree->lock);
5279
5280         ret = btrfs_make_block_group(trans, 0, type, start, chunk_size);
5281         if (ret)
5282                 goto error_del_extent;
5283
5284         for (i = 0; i < map->num_stripes; i++)
5285                 btrfs_device_set_bytes_used(map->stripes[i].dev,
5286                                 map->stripes[i].dev->bytes_used + stripe_size);
5287
5288         atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
5289
5290         free_extent_map(em);
5291         check_raid56_incompat_flag(info, type);
5292
5293         kfree(devices_info);
5294         return 0;
5295
5296 error_del_extent:
5297         write_lock(&em_tree->lock);
5298         remove_extent_mapping(em_tree, em);
5299         write_unlock(&em_tree->lock);
5300
5301         /* One for our allocation */
5302         free_extent_map(em);
5303         /* One for the tree reference */
5304         free_extent_map(em);
5305         /* One for the pending_chunks list reference */
5306         free_extent_map(em);
5307 error:
5308         kfree(devices_info);
5309         return ret;
5310 }
5311
5312 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5313                              u64 chunk_offset, u64 chunk_size)
5314 {
5315         struct btrfs_fs_info *fs_info = trans->fs_info;
5316         struct btrfs_root *extent_root = fs_info->extent_root;
5317         struct btrfs_root *chunk_root = fs_info->chunk_root;
5318         struct btrfs_key key;
5319         struct btrfs_device *device;
5320         struct btrfs_chunk *chunk;
5321         struct btrfs_stripe *stripe;
5322         struct extent_map *em;
5323         struct map_lookup *map;
5324         size_t item_size;
5325         u64 dev_offset;
5326         u64 stripe_size;
5327         int i = 0;
5328         int ret = 0;
5329
5330         em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5331         if (IS_ERR(em))
5332                 return PTR_ERR(em);
5333
5334         map = em->map_lookup;
5335         item_size = btrfs_chunk_item_size(map->num_stripes);
5336         stripe_size = em->orig_block_len;
5337
5338         chunk = kzalloc(item_size, GFP_NOFS);
5339         if (!chunk) {
5340                 ret = -ENOMEM;
5341                 goto out;
5342         }
5343
5344         /*
5345          * Take the device list mutex to prevent races with the final phase of
5346          * a device replace operation that replaces the device object associated
5347          * with the map's stripes, because the device object's id can change
5348          * at any time during that final phase of the device replace operation
5349          * (dev-replace.c:btrfs_dev_replace_finishing()).
5350          */
5351         mutex_lock(&fs_info->fs_devices->device_list_mutex);
5352         for (i = 0; i < map->num_stripes; i++) {
5353                 device = map->stripes[i].dev;
5354                 dev_offset = map->stripes[i].physical;
5355
5356                 ret = btrfs_update_device(trans, device);
5357                 if (ret)
5358                         break;
5359                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5360                                              dev_offset, stripe_size);
5361                 if (ret)
5362                         break;
5363         }
5364         if (ret) {
5365                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5366                 goto out;
5367         }
5368
5369         stripe = &chunk->stripe;
5370         for (i = 0; i < map->num_stripes; i++) {
5371                 device = map->stripes[i].dev;
5372                 dev_offset = map->stripes[i].physical;
5373
5374                 btrfs_set_stack_stripe_devid(stripe, device->devid);
5375                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5376                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5377                 stripe++;
5378         }
5379         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5380
5381         btrfs_set_stack_chunk_length(chunk, chunk_size);
5382         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5383         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5384         btrfs_set_stack_chunk_type(chunk, map->type);
5385         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5386         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5387         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5388         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5389         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5390
5391         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5392         key.type = BTRFS_CHUNK_ITEM_KEY;
5393         key.offset = chunk_offset;
5394
5395         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5396         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5397                 /*
5398                  * TODO: Cleanup of inserted chunk root in case of
5399                  * failure.
5400                  */
5401                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5402         }
5403
5404 out:
5405         kfree(chunk);
5406         free_extent_map(em);
5407         return ret;
5408 }
5409
5410 /*
5411  * Chunk allocation falls into two parts. The first part does works
5412  * that make the new allocated chunk useable, but not do any operation
5413  * that modifies the chunk tree. The second part does the works that
5414  * require modifying the chunk tree. This division is important for the
5415  * bootstrap process of adding storage to a seed btrfs.
5416  */
5417 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5418 {
5419         u64 chunk_offset;
5420
5421         lockdep_assert_held(&trans->fs_info->chunk_mutex);
5422         chunk_offset = find_next_chunk(trans->fs_info);
5423         return __btrfs_alloc_chunk(trans, chunk_offset, type);
5424 }
5425
5426 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5427                                          struct btrfs_fs_info *fs_info)
5428 {
5429         u64 chunk_offset;
5430         u64 sys_chunk_offset;
5431         u64 alloc_profile;
5432         int ret;
5433
5434         chunk_offset = find_next_chunk(fs_info);
5435         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5436         ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5437         if (ret)
5438                 return ret;
5439
5440         sys_chunk_offset = find_next_chunk(fs_info);
5441         alloc_profile = btrfs_system_alloc_profile(fs_info);
5442         ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5443         return ret;
5444 }
5445
5446 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5447 {
5448         int max_errors;
5449
5450         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5451                          BTRFS_BLOCK_GROUP_RAID10 |
5452                          BTRFS_BLOCK_GROUP_RAID5 |
5453                          BTRFS_BLOCK_GROUP_DUP)) {
5454                 max_errors = 1;
5455         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5456                 max_errors = 2;
5457         } else {
5458                 max_errors = 0;
5459         }
5460
5461         return max_errors;
5462 }
5463
5464 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5465 {
5466         struct extent_map *em;
5467         struct map_lookup *map;
5468         int readonly = 0;
5469         int miss_ndevs = 0;
5470         int i;
5471
5472         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5473         if (IS_ERR(em))
5474                 return 1;
5475
5476         map = em->map_lookup;
5477         for (i = 0; i < map->num_stripes; i++) {
5478                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5479                                         &map->stripes[i].dev->dev_state)) {
5480                         miss_ndevs++;
5481                         continue;
5482                 }
5483                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5484                                         &map->stripes[i].dev->dev_state)) {
5485                         readonly = 1;
5486                         goto end;
5487                 }
5488         }
5489
5490         /*
5491          * If the number of missing devices is larger than max errors,
5492          * we can not write the data into that chunk successfully, so
5493          * set it readonly.
5494          */
5495         if (miss_ndevs > btrfs_chunk_max_errors(map))
5496                 readonly = 1;
5497 end:
5498         free_extent_map(em);
5499         return readonly;
5500 }
5501
5502 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5503 {
5504         extent_map_tree_init(&tree->map_tree);
5505 }
5506
5507 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5508 {
5509         struct extent_map *em;
5510
5511         while (1) {
5512                 write_lock(&tree->map_tree.lock);
5513                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5514                 if (em)
5515                         remove_extent_mapping(&tree->map_tree, em);
5516                 write_unlock(&tree->map_tree.lock);
5517                 if (!em)
5518                         break;
5519                 /* once for us */
5520                 free_extent_map(em);
5521                 /* once for the tree */
5522                 free_extent_map(em);
5523         }
5524 }
5525
5526 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5527 {
5528         struct extent_map *em;
5529         struct map_lookup *map;
5530         int ret;
5531
5532         em = btrfs_get_chunk_map(fs_info, logical, len);
5533         if (IS_ERR(em))
5534                 /*
5535                  * We could return errors for these cases, but that could get
5536                  * ugly and we'd probably do the same thing which is just not do
5537                  * anything else and exit, so return 1 so the callers don't try
5538                  * to use other copies.
5539                  */
5540                 return 1;
5541
5542         map = em->map_lookup;
5543         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5544                 ret = map->num_stripes;
5545         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5546                 ret = map->sub_stripes;
5547         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5548                 ret = 2;
5549         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5550                 /*
5551                  * There could be two corrupted data stripes, we need
5552                  * to loop retry in order to rebuild the correct data.
5553                  *
5554                  * Fail a stripe at a time on every retry except the
5555                  * stripe under reconstruction.
5556                  */
5557                 ret = map->num_stripes;
5558         else
5559                 ret = 1;
5560         free_extent_map(em);
5561
5562         down_read(&fs_info->dev_replace.rwsem);
5563         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5564             fs_info->dev_replace.tgtdev)
5565                 ret++;
5566         up_read(&fs_info->dev_replace.rwsem);
5567
5568         return ret;
5569 }
5570
5571 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5572                                     u64 logical)
5573 {
5574         struct extent_map *em;
5575         struct map_lookup *map;
5576         unsigned long len = fs_info->sectorsize;
5577
5578         em = btrfs_get_chunk_map(fs_info, logical, len);
5579
5580         if (!WARN_ON(IS_ERR(em))) {
5581                 map = em->map_lookup;
5582                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5583                         len = map->stripe_len * nr_data_stripes(map);
5584                 free_extent_map(em);
5585         }
5586         return len;
5587 }
5588
5589 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5590 {
5591         struct extent_map *em;
5592         struct map_lookup *map;
5593         int ret = 0;
5594
5595         em = btrfs_get_chunk_map(fs_info, logical, len);
5596
5597         if(!WARN_ON(IS_ERR(em))) {
5598                 map = em->map_lookup;
5599                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5600                         ret = 1;
5601                 free_extent_map(em);
5602         }
5603         return ret;
5604 }
5605
5606 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5607                             struct map_lookup *map, int first,
5608                             int dev_replace_is_ongoing)
5609 {
5610         int i;
5611         int num_stripes;
5612         int preferred_mirror;
5613         int tolerance;
5614         struct btrfs_device *srcdev;
5615
5616         ASSERT((map->type &
5617                  (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)));
5618
5619         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5620                 num_stripes = map->sub_stripes;
5621         else
5622                 num_stripes = map->num_stripes;
5623
5624         preferred_mirror = first + current->pid % num_stripes;
5625
5626         if (dev_replace_is_ongoing &&
5627             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5628              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5629                 srcdev = fs_info->dev_replace.srcdev;
5630         else
5631                 srcdev = NULL;
5632
5633         /*
5634          * try to avoid the drive that is the source drive for a
5635          * dev-replace procedure, only choose it if no other non-missing
5636          * mirror is available
5637          */
5638         for (tolerance = 0; tolerance < 2; tolerance++) {
5639                 if (map->stripes[preferred_mirror].dev->bdev &&
5640                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5641                         return preferred_mirror;
5642                 for (i = first; i < first + num_stripes; i++) {
5643                         if (map->stripes[i].dev->bdev &&
5644                             (tolerance || map->stripes[i].dev != srcdev))
5645                                 return i;
5646                 }
5647         }
5648
5649         /* we couldn't find one that doesn't fail.  Just return something
5650          * and the io error handling code will clean up eventually
5651          */
5652         return preferred_mirror;
5653 }
5654
5655 static inline int parity_smaller(u64 a, u64 b)
5656 {
5657         return a > b;
5658 }
5659
5660 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5661 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5662 {
5663         struct btrfs_bio_stripe s;
5664         int i;
5665         u64 l;
5666         int again = 1;
5667
5668         while (again) {
5669                 again = 0;
5670                 for (i = 0; i < num_stripes - 1; i++) {
5671                         if (parity_smaller(bbio->raid_map[i],
5672                                            bbio->raid_map[i+1])) {
5673                                 s = bbio->stripes[i];
5674                                 l = bbio->raid_map[i];
5675                                 bbio->stripes[i] = bbio->stripes[i+1];
5676                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5677                                 bbio->stripes[i+1] = s;
5678                                 bbio->raid_map[i+1] = l;
5679
5680                                 again = 1;
5681                         }
5682                 }
5683         }
5684 }
5685
5686 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5687 {
5688         struct btrfs_bio *bbio = kzalloc(
5689                  /* the size of the btrfs_bio */
5690                 sizeof(struct btrfs_bio) +
5691                 /* plus the variable array for the stripes */
5692                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5693                 /* plus the variable array for the tgt dev */
5694                 sizeof(int) * (real_stripes) +
5695                 /*
5696                  * plus the raid_map, which includes both the tgt dev
5697                  * and the stripes
5698                  */
5699                 sizeof(u64) * (total_stripes),
5700                 GFP_NOFS|__GFP_NOFAIL);
5701
5702         atomic_set(&bbio->error, 0);
5703         refcount_set(&bbio->refs, 1);
5704
5705         return bbio;
5706 }
5707
5708 void btrfs_get_bbio(struct btrfs_bio *bbio)
5709 {
5710         WARN_ON(!refcount_read(&bbio->refs));
5711         refcount_inc(&bbio->refs);
5712 }
5713
5714 void btrfs_put_bbio(struct btrfs_bio *bbio)
5715 {
5716         if (!bbio)
5717                 return;
5718         if (refcount_dec_and_test(&bbio->refs))
5719                 kfree(bbio);
5720 }
5721
5722 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5723 /*
5724  * Please note that, discard won't be sent to target device of device
5725  * replace.
5726  */
5727 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5728                                          u64 logical, u64 length,
5729                                          struct btrfs_bio **bbio_ret)
5730 {
5731         struct extent_map *em;
5732         struct map_lookup *map;
5733         struct btrfs_bio *bbio;
5734         u64 offset;
5735         u64 stripe_nr;
5736         u64 stripe_nr_end;
5737         u64 stripe_end_offset;
5738         u64 stripe_cnt;
5739         u64 stripe_len;
5740         u64 stripe_offset;
5741         u64 num_stripes;
5742         u32 stripe_index;
5743         u32 factor = 0;
5744         u32 sub_stripes = 0;
5745         u64 stripes_per_dev = 0;
5746         u32 remaining_stripes = 0;
5747         u32 last_stripe = 0;
5748         int ret = 0;
5749         int i;
5750
5751         /* discard always return a bbio */
5752         ASSERT(bbio_ret);
5753
5754         em = btrfs_get_chunk_map(fs_info, logical, length);
5755         if (IS_ERR(em))
5756                 return PTR_ERR(em);
5757
5758         map = em->map_lookup;
5759         /* we don't discard raid56 yet */
5760         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5761                 ret = -EOPNOTSUPP;
5762                 goto out;
5763         }
5764
5765         offset = logical - em->start;
5766         length = min_t(u64, em->len - offset, length);
5767
5768         stripe_len = map->stripe_len;
5769         /*
5770          * stripe_nr counts the total number of stripes we have to stride
5771          * to get to this block
5772          */
5773         stripe_nr = div64_u64(offset, stripe_len);
5774
5775         /* stripe_offset is the offset of this block in its stripe */
5776         stripe_offset = offset - stripe_nr * stripe_len;
5777
5778         stripe_nr_end = round_up(offset + length, map->stripe_len);
5779         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5780         stripe_cnt = stripe_nr_end - stripe_nr;
5781         stripe_end_offset = stripe_nr_end * map->stripe_len -
5782                             (offset + length);
5783         /*
5784          * after this, stripe_nr is the number of stripes on this
5785          * device we have to walk to find the data, and stripe_index is
5786          * the number of our device in the stripe array
5787          */
5788         num_stripes = 1;
5789         stripe_index = 0;
5790         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5791                          BTRFS_BLOCK_GROUP_RAID10)) {
5792                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5793                         sub_stripes = 1;
5794                 else
5795                         sub_stripes = map->sub_stripes;
5796
5797                 factor = map->num_stripes / sub_stripes;
5798                 num_stripes = min_t(u64, map->num_stripes,
5799                                     sub_stripes * stripe_cnt);
5800                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5801                 stripe_index *= sub_stripes;
5802                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5803                                               &remaining_stripes);
5804                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5805                 last_stripe *= sub_stripes;
5806         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5807                                 BTRFS_BLOCK_GROUP_DUP)) {
5808                 num_stripes = map->num_stripes;
5809         } else {
5810                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5811                                         &stripe_index);
5812         }
5813
5814         bbio = alloc_btrfs_bio(num_stripes, 0);
5815         if (!bbio) {
5816                 ret = -ENOMEM;
5817                 goto out;
5818         }
5819
5820         for (i = 0; i < num_stripes; i++) {
5821                 bbio->stripes[i].physical =
5822                         map->stripes[stripe_index].physical +
5823                         stripe_offset + stripe_nr * map->stripe_len;
5824                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5825
5826                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5827                                  BTRFS_BLOCK_GROUP_RAID10)) {
5828                         bbio->stripes[i].length = stripes_per_dev *
5829                                 map->stripe_len;
5830
5831                         if (i / sub_stripes < remaining_stripes)
5832                                 bbio->stripes[i].length +=
5833                                         map->stripe_len;
5834
5835                         /*
5836                          * Special for the first stripe and
5837                          * the last stripe:
5838                          *
5839                          * |-------|...|-------|
5840                          *     |----------|
5841                          *    off     end_off
5842                          */
5843                         if (i < sub_stripes)
5844                                 bbio->stripes[i].length -=
5845                                         stripe_offset;
5846
5847                         if (stripe_index >= last_stripe &&
5848                             stripe_index <= (last_stripe +
5849                                              sub_stripes - 1))
5850                                 bbio->stripes[i].length -=
5851                                         stripe_end_offset;
5852
5853                         if (i == sub_stripes - 1)
5854                                 stripe_offset = 0;
5855                 } else {
5856                         bbio->stripes[i].length = length;
5857                 }
5858
5859                 stripe_index++;
5860                 if (stripe_index == map->num_stripes) {
5861                         stripe_index = 0;
5862                         stripe_nr++;
5863                 }
5864         }
5865
5866         *bbio_ret = bbio;
5867         bbio->map_type = map->type;
5868         bbio->num_stripes = num_stripes;
5869 out:
5870         free_extent_map(em);
5871         return ret;
5872 }
5873
5874 /*
5875  * In dev-replace case, for repair case (that's the only case where the mirror
5876  * is selected explicitly when calling btrfs_map_block), blocks left of the
5877  * left cursor can also be read from the target drive.
5878  *
5879  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5880  * array of stripes.
5881  * For READ, it also needs to be supported using the same mirror number.
5882  *
5883  * If the requested block is not left of the left cursor, EIO is returned. This
5884  * can happen because btrfs_num_copies() returns one more in the dev-replace
5885  * case.
5886  */
5887 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5888                                          u64 logical, u64 length,
5889                                          u64 srcdev_devid, int *mirror_num,
5890                                          u64 *physical)
5891 {
5892         struct btrfs_bio *bbio = NULL;
5893         int num_stripes;
5894         int index_srcdev = 0;
5895         int found = 0;
5896         u64 physical_of_found = 0;
5897         int i;
5898         int ret = 0;
5899
5900         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5901                                 logical, &length, &bbio, 0, 0);
5902         if (ret) {
5903                 ASSERT(bbio == NULL);
5904                 return ret;
5905         }
5906
5907         num_stripes = bbio->num_stripes;
5908         if (*mirror_num > num_stripes) {
5909                 /*
5910                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5911                  * that means that the requested area is not left of the left
5912                  * cursor
5913                  */
5914                 btrfs_put_bbio(bbio);
5915                 return -EIO;
5916         }
5917
5918         /*
5919          * process the rest of the function using the mirror_num of the source
5920          * drive. Therefore look it up first.  At the end, patch the device
5921          * pointer to the one of the target drive.
5922          */
5923         for (i = 0; i < num_stripes; i++) {
5924                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5925                         continue;
5926
5927                 /*
5928                  * In case of DUP, in order to keep it simple, only add the
5929                  * mirror with the lowest physical address
5930                  */
5931                 if (found &&
5932                     physical_of_found <= bbio->stripes[i].physical)
5933                         continue;
5934
5935                 index_srcdev = i;
5936                 found = 1;
5937                 physical_of_found = bbio->stripes[i].physical;
5938         }
5939
5940         btrfs_put_bbio(bbio);
5941
5942         ASSERT(found);
5943         if (!found)
5944                 return -EIO;
5945
5946         *mirror_num = index_srcdev + 1;
5947         *physical = physical_of_found;
5948         return ret;
5949 }
5950
5951 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5952                                       struct btrfs_bio **bbio_ret,
5953                                       struct btrfs_dev_replace *dev_replace,
5954                                       int *num_stripes_ret, int *max_errors_ret)
5955 {
5956         struct btrfs_bio *bbio = *bbio_ret;
5957         u64 srcdev_devid = dev_replace->srcdev->devid;
5958         int tgtdev_indexes = 0;
5959         int num_stripes = *num_stripes_ret;
5960         int max_errors = *max_errors_ret;
5961         int i;
5962
5963         if (op == BTRFS_MAP_WRITE) {
5964                 int index_where_to_add;
5965
5966                 /*
5967                  * duplicate the write operations while the dev replace
5968                  * procedure is running. Since the copying of the old disk to
5969                  * the new disk takes place at run time while the filesystem is
5970                  * mounted writable, the regular write operations to the old
5971                  * disk have to be duplicated to go to the new disk as well.
5972                  *
5973                  * Note that device->missing is handled by the caller, and that
5974                  * the write to the old disk is already set up in the stripes
5975                  * array.
5976                  */
5977                 index_where_to_add = num_stripes;
5978                 for (i = 0; i < num_stripes; i++) {
5979                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5980                                 /* write to new disk, too */
5981                                 struct btrfs_bio_stripe *new =
5982                                         bbio->stripes + index_where_to_add;
5983                                 struct btrfs_bio_stripe *old =
5984                                         bbio->stripes + i;
5985
5986                                 new->physical = old->physical;
5987                                 new->length = old->length;
5988                                 new->dev = dev_replace->tgtdev;
5989                                 bbio->tgtdev_map[i] = index_where_to_add;
5990                                 index_where_to_add++;
5991                                 max_errors++;
5992                                 tgtdev_indexes++;
5993                         }
5994                 }
5995                 num_stripes = index_where_to_add;
5996         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5997                 int index_srcdev = 0;
5998                 int found = 0;
5999                 u64 physical_of_found = 0;
6000
6001                 /*
6002                  * During the dev-replace procedure, the target drive can also
6003                  * be used to read data in case it is needed to repair a corrupt
6004                  * block elsewhere. This is possible if the requested area is
6005                  * left of the left cursor. In this area, the target drive is a
6006                  * full copy of the source drive.
6007                  */
6008                 for (i = 0; i < num_stripes; i++) {
6009                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
6010                                 /*
6011                                  * In case of DUP, in order to keep it simple,
6012                                  * only add the mirror with the lowest physical
6013                                  * address
6014                                  */
6015                                 if (found &&
6016                                     physical_of_found <=
6017                                      bbio->stripes[i].physical)
6018                                         continue;
6019                                 index_srcdev = i;
6020                                 found = 1;
6021                                 physical_of_found = bbio->stripes[i].physical;
6022                         }
6023                 }
6024                 if (found) {
6025                         struct btrfs_bio_stripe *tgtdev_stripe =
6026                                 bbio->stripes + num_stripes;
6027
6028                         tgtdev_stripe->physical = physical_of_found;
6029                         tgtdev_stripe->length =
6030                                 bbio->stripes[index_srcdev].length;
6031                         tgtdev_stripe->dev = dev_replace->tgtdev;
6032                         bbio->tgtdev_map[index_srcdev] = num_stripes;
6033
6034                         tgtdev_indexes++;
6035                         num_stripes++;
6036                 }
6037         }
6038
6039         *num_stripes_ret = num_stripes;
6040         *max_errors_ret = max_errors;
6041         bbio->num_tgtdevs = tgtdev_indexes;
6042         *bbio_ret = bbio;
6043 }
6044
6045 static bool need_full_stripe(enum btrfs_map_op op)
6046 {
6047         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6048 }
6049
6050 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6051                              enum btrfs_map_op op,
6052                              u64 logical, u64 *length,
6053                              struct btrfs_bio **bbio_ret,
6054                              int mirror_num, int need_raid_map)
6055 {
6056         struct extent_map *em;
6057         struct map_lookup *map;
6058         u64 offset;
6059         u64 stripe_offset;
6060         u64 stripe_nr;
6061         u64 stripe_len;
6062         u32 stripe_index;
6063         int i;
6064         int ret = 0;
6065         int num_stripes;
6066         int max_errors = 0;
6067         int tgtdev_indexes = 0;
6068         struct btrfs_bio *bbio = NULL;
6069         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6070         int dev_replace_is_ongoing = 0;
6071         int num_alloc_stripes;
6072         int patch_the_first_stripe_for_dev_replace = 0;
6073         u64 physical_to_patch_in_first_stripe = 0;
6074         u64 raid56_full_stripe_start = (u64)-1;
6075
6076         if (op == BTRFS_MAP_DISCARD)
6077                 return __btrfs_map_block_for_discard(fs_info, logical,
6078                                                      *length, bbio_ret);
6079
6080         em = btrfs_get_chunk_map(fs_info, logical, *length);
6081         if (IS_ERR(em))
6082                 return PTR_ERR(em);
6083
6084         map = em->map_lookup;
6085         offset = logical - em->start;
6086
6087         stripe_len = map->stripe_len;
6088         stripe_nr = offset;
6089         /*
6090          * stripe_nr counts the total number of stripes we have to stride
6091          * to get to this block
6092          */
6093         stripe_nr = div64_u64(stripe_nr, stripe_len);
6094
6095         stripe_offset = stripe_nr * stripe_len;
6096         if (offset < stripe_offset) {
6097                 btrfs_crit(fs_info,
6098                            "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
6099                            stripe_offset, offset, em->start, logical,
6100                            stripe_len);
6101                 free_extent_map(em);
6102                 return -EINVAL;
6103         }
6104
6105         /* stripe_offset is the offset of this block in its stripe*/
6106         stripe_offset = offset - stripe_offset;
6107
6108         /* if we're here for raid56, we need to know the stripe aligned start */
6109         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6110                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
6111                 raid56_full_stripe_start = offset;
6112
6113                 /* allow a write of a full stripe, but make sure we don't
6114                  * allow straddling of stripes
6115                  */
6116                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6117                                 full_stripe_len);
6118                 raid56_full_stripe_start *= full_stripe_len;
6119         }
6120
6121         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6122                 u64 max_len;
6123                 /* For writes to RAID[56], allow a full stripeset across all disks.
6124                    For other RAID types and for RAID[56] reads, just allow a single
6125                    stripe (on a single disk). */
6126                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6127                     (op == BTRFS_MAP_WRITE)) {
6128                         max_len = stripe_len * nr_data_stripes(map) -
6129                                 (offset - raid56_full_stripe_start);
6130                 } else {
6131                         /* we limit the length of each bio to what fits in a stripe */
6132                         max_len = stripe_len - stripe_offset;
6133                 }
6134                 *length = min_t(u64, em->len - offset, max_len);
6135         } else {
6136                 *length = em->len - offset;
6137         }
6138
6139         /*
6140          * This is for when we're called from btrfs_bio_fits_in_stripe and all
6141          * it cares about is the length
6142          */
6143         if (!bbio_ret)
6144                 goto out;
6145
6146         down_read(&dev_replace->rwsem);
6147         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6148         /*
6149          * Hold the semaphore for read during the whole operation, write is
6150          * requested at commit time but must wait.
6151          */
6152         if (!dev_replace_is_ongoing)
6153                 up_read(&dev_replace->rwsem);
6154
6155         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6156             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6157                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6158                                                     dev_replace->srcdev->devid,
6159                                                     &mirror_num,
6160                                             &physical_to_patch_in_first_stripe);
6161                 if (ret)
6162                         goto out;
6163                 else
6164                         patch_the_first_stripe_for_dev_replace = 1;
6165         } else if (mirror_num > map->num_stripes) {
6166                 mirror_num = 0;
6167         }
6168
6169         num_stripes = 1;
6170         stripe_index = 0;
6171         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6172                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6173                                 &stripe_index);
6174                 if (!need_full_stripe(op))
6175                         mirror_num = 1;
6176         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
6177                 if (need_full_stripe(op))
6178                         num_stripes = map->num_stripes;
6179                 else if (mirror_num)
6180                         stripe_index = mirror_num - 1;
6181                 else {
6182                         stripe_index = find_live_mirror(fs_info, map, 0,
6183                                             dev_replace_is_ongoing);
6184                         mirror_num = stripe_index + 1;
6185                 }
6186
6187         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6188                 if (need_full_stripe(op)) {
6189                         num_stripes = map->num_stripes;
6190                 } else if (mirror_num) {
6191                         stripe_index = mirror_num - 1;
6192                 } else {
6193                         mirror_num = 1;
6194                 }
6195
6196         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6197                 u32 factor = map->num_stripes / map->sub_stripes;
6198
6199                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6200                 stripe_index *= map->sub_stripes;
6201
6202                 if (need_full_stripe(op))
6203                         num_stripes = map->sub_stripes;
6204                 else if (mirror_num)
6205                         stripe_index += mirror_num - 1;
6206                 else {
6207                         int old_stripe_index = stripe_index;
6208                         stripe_index = find_live_mirror(fs_info, map,
6209                                               stripe_index,
6210                                               dev_replace_is_ongoing);
6211                         mirror_num = stripe_index - old_stripe_index + 1;
6212                 }
6213
6214         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6215                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6216                         /* push stripe_nr back to the start of the full stripe */
6217                         stripe_nr = div64_u64(raid56_full_stripe_start,
6218                                         stripe_len * nr_data_stripes(map));
6219
6220                         /* RAID[56] write or recovery. Return all stripes */
6221                         num_stripes = map->num_stripes;
6222                         max_errors = nr_parity_stripes(map);
6223
6224                         *length = map->stripe_len;
6225                         stripe_index = 0;
6226                         stripe_offset = 0;
6227                 } else {
6228                         /*
6229                          * Mirror #0 or #1 means the original data block.
6230                          * Mirror #2 is RAID5 parity block.
6231                          * Mirror #3 is RAID6 Q block.
6232                          */
6233                         stripe_nr = div_u64_rem(stripe_nr,
6234                                         nr_data_stripes(map), &stripe_index);
6235                         if (mirror_num > 1)
6236                                 stripe_index = nr_data_stripes(map) +
6237                                                 mirror_num - 2;
6238
6239                         /* We distribute the parity blocks across stripes */
6240                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6241                                         &stripe_index);
6242                         if (!need_full_stripe(op) && mirror_num <= 1)
6243                                 mirror_num = 1;
6244                 }
6245         } else {
6246                 /*
6247                  * after this, stripe_nr is the number of stripes on this
6248                  * device we have to walk to find the data, and stripe_index is
6249                  * the number of our device in the stripe array
6250                  */
6251                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6252                                 &stripe_index);
6253                 mirror_num = stripe_index + 1;
6254         }
6255         if (stripe_index >= map->num_stripes) {
6256                 btrfs_crit(fs_info,
6257                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6258                            stripe_index, map->num_stripes);
6259                 ret = -EINVAL;
6260                 goto out;
6261         }
6262
6263         num_alloc_stripes = num_stripes;
6264         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6265                 if (op == BTRFS_MAP_WRITE)
6266                         num_alloc_stripes <<= 1;
6267                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6268                         num_alloc_stripes++;
6269                 tgtdev_indexes = num_stripes;
6270         }
6271
6272         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6273         if (!bbio) {
6274                 ret = -ENOMEM;
6275                 goto out;
6276         }
6277         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
6278                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
6279
6280         /* build raid_map */
6281         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6282             (need_full_stripe(op) || mirror_num > 1)) {
6283                 u64 tmp;
6284                 unsigned rot;
6285
6286                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
6287                                  sizeof(struct btrfs_bio_stripe) *
6288                                  num_alloc_stripes +
6289                                  sizeof(int) * tgtdev_indexes);
6290
6291                 /* Work out the disk rotation on this stripe-set */
6292                 div_u64_rem(stripe_nr, num_stripes, &rot);
6293
6294                 /* Fill in the logical address of each stripe */
6295                 tmp = stripe_nr * nr_data_stripes(map);
6296                 for (i = 0; i < nr_data_stripes(map); i++)
6297                         bbio->raid_map[(i+rot) % num_stripes] =
6298                                 em->start + (tmp + i) * map->stripe_len;
6299
6300                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6301                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6302                         bbio->raid_map[(i+rot+1) % num_stripes] =
6303                                 RAID6_Q_STRIPE;
6304         }
6305
6306
6307         for (i = 0; i < num_stripes; i++) {
6308                 bbio->stripes[i].physical =
6309                         map->stripes[stripe_index].physical +
6310                         stripe_offset +
6311                         stripe_nr * map->stripe_len;
6312                 bbio->stripes[i].dev =
6313                         map->stripes[stripe_index].dev;
6314                 stripe_index++;
6315         }
6316
6317         if (need_full_stripe(op))
6318                 max_errors = btrfs_chunk_max_errors(map);
6319
6320         if (bbio->raid_map)
6321                 sort_parity_stripes(bbio, num_stripes);
6322
6323         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6324             need_full_stripe(op)) {
6325                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6326                                           &max_errors);
6327         }
6328
6329         *bbio_ret = bbio;
6330         bbio->map_type = map->type;
6331         bbio->num_stripes = num_stripes;
6332         bbio->max_errors = max_errors;
6333         bbio->mirror_num = mirror_num;
6334
6335         /*
6336          * this is the case that REQ_READ && dev_replace_is_ongoing &&
6337          * mirror_num == num_stripes + 1 && dev_replace target drive is
6338          * available as a mirror
6339          */
6340         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6341                 WARN_ON(num_stripes > 1);
6342                 bbio->stripes[0].dev = dev_replace->tgtdev;
6343                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6344                 bbio->mirror_num = map->num_stripes + 1;
6345         }
6346 out:
6347         if (dev_replace_is_ongoing) {
6348                 lockdep_assert_held(&dev_replace->rwsem);
6349                 /* Unlock and let waiting writers proceed */
6350                 up_read(&dev_replace->rwsem);
6351         }
6352         free_extent_map(em);
6353         return ret;
6354 }
6355
6356 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6357                       u64 logical, u64 *length,
6358                       struct btrfs_bio **bbio_ret, int mirror_num)
6359 {
6360         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6361                                  mirror_num, 0);
6362 }
6363
6364 /* For Scrub/replace */
6365 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6366                      u64 logical, u64 *length,
6367                      struct btrfs_bio **bbio_ret)
6368 {
6369         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6370 }
6371
6372 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
6373                      u64 physical, u64 **logical, int *naddrs, int *stripe_len)
6374 {
6375         struct extent_map *em;
6376         struct map_lookup *map;
6377         u64 *buf;
6378         u64 bytenr;
6379         u64 length;
6380         u64 stripe_nr;
6381         u64 rmap_len;
6382         int i, j, nr = 0;
6383
6384         em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
6385         if (IS_ERR(em))
6386                 return -EIO;
6387
6388         map = em->map_lookup;
6389         length = em->len;
6390         rmap_len = map->stripe_len;
6391
6392         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6393                 length = div_u64(length, map->num_stripes / map->sub_stripes);
6394         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6395                 length = div_u64(length, map->num_stripes);
6396         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6397                 length = div_u64(length, nr_data_stripes(map));
6398                 rmap_len = map->stripe_len * nr_data_stripes(map);
6399         }
6400
6401         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6402         BUG_ON(!buf); /* -ENOMEM */
6403
6404         for (i = 0; i < map->num_stripes; i++) {
6405                 if (map->stripes[i].physical > physical ||
6406                     map->stripes[i].physical + length <= physical)
6407                         continue;
6408
6409                 stripe_nr = physical - map->stripes[i].physical;
6410                 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6411
6412                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6413                         stripe_nr = stripe_nr * map->num_stripes + i;
6414                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6415                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6416                         stripe_nr = stripe_nr * map->num_stripes + i;
6417                 } /* else if RAID[56], multiply by nr_data_stripes().
6418                    * Alternatively, just use rmap_len below instead of
6419                    * map->stripe_len */
6420
6421                 bytenr = chunk_start + stripe_nr * rmap_len;
6422                 WARN_ON(nr >= map->num_stripes);
6423                 for (j = 0; j < nr; j++) {
6424                         if (buf[j] == bytenr)
6425                                 break;
6426                 }
6427                 if (j == nr) {
6428                         WARN_ON(nr >= map->num_stripes);
6429                         buf[nr++] = bytenr;
6430                 }
6431         }
6432
6433         *logical = buf;
6434         *naddrs = nr;
6435         *stripe_len = rmap_len;
6436
6437         free_extent_map(em);
6438         return 0;
6439 }
6440
6441 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6442 {
6443         bio->bi_private = bbio->private;
6444         bio->bi_end_io = bbio->end_io;
6445         bio_endio(bio);
6446
6447         btrfs_put_bbio(bbio);
6448 }
6449
6450 static void btrfs_end_bio(struct bio *bio)
6451 {
6452         struct btrfs_bio *bbio = bio->bi_private;
6453         int is_orig_bio = 0;
6454
6455         if (bio->bi_status) {
6456                 atomic_inc(&bbio->error);
6457                 if (bio->bi_status == BLK_STS_IOERR ||
6458                     bio->bi_status == BLK_STS_TARGET) {
6459                         unsigned int stripe_index =
6460                                 btrfs_io_bio(bio)->stripe_index;
6461                         struct btrfs_device *dev;
6462
6463                         BUG_ON(stripe_index >= bbio->num_stripes);
6464                         dev = bbio->stripes[stripe_index].dev;
6465                         if (dev->bdev) {
6466                                 if (bio_op(bio) == REQ_OP_WRITE)
6467                                         btrfs_dev_stat_inc_and_print(dev,
6468                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6469                                 else
6470                                         btrfs_dev_stat_inc_and_print(dev,
6471                                                 BTRFS_DEV_STAT_READ_ERRS);
6472                                 if (bio->bi_opf & REQ_PREFLUSH)
6473                                         btrfs_dev_stat_inc_and_print(dev,
6474                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6475                         }
6476                 }
6477         }
6478
6479         if (bio == bbio->orig_bio)
6480                 is_orig_bio = 1;
6481
6482         btrfs_bio_counter_dec(bbio->fs_info);
6483
6484         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6485                 if (!is_orig_bio) {
6486                         bio_put(bio);
6487                         bio = bbio->orig_bio;
6488                 }
6489
6490                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6491                 /* only send an error to the higher layers if it is
6492                  * beyond the tolerance of the btrfs bio
6493                  */
6494                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6495                         bio->bi_status = BLK_STS_IOERR;
6496                 } else {
6497                         /*
6498                          * this bio is actually up to date, we didn't
6499                          * go over the max number of errors
6500                          */
6501                         bio->bi_status = BLK_STS_OK;
6502                 }
6503
6504                 btrfs_end_bbio(bbio, bio);
6505         } else if (!is_orig_bio) {
6506                 bio_put(bio);
6507         }
6508 }
6509
6510 /*
6511  * see run_scheduled_bios for a description of why bios are collected for
6512  * async submit.
6513  *
6514  * This will add one bio to the pending list for a device and make sure
6515  * the work struct is scheduled.
6516  */
6517 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6518                                         struct bio *bio)
6519 {
6520         struct btrfs_fs_info *fs_info = device->fs_info;
6521         int should_queue = 1;
6522         struct btrfs_pending_bios *pending_bios;
6523
6524         /* don't bother with additional async steps for reads, right now */
6525         if (bio_op(bio) == REQ_OP_READ) {
6526                 btrfsic_submit_bio(bio);
6527                 return;
6528         }
6529
6530         WARN_ON(bio->bi_next);
6531         bio->bi_next = NULL;
6532
6533         spin_lock(&device->io_lock);
6534         if (op_is_sync(bio->bi_opf))
6535                 pending_bios = &device->pending_sync_bios;
6536         else
6537                 pending_bios = &device->pending_bios;
6538
6539         if (pending_bios->tail)
6540                 pending_bios->tail->bi_next = bio;
6541
6542         pending_bios->tail = bio;
6543         if (!pending_bios->head)
6544                 pending_bios->head = bio;
6545         if (device->running_pending)
6546                 should_queue = 0;
6547
6548         spin_unlock(&device->io_lock);
6549
6550         if (should_queue)
6551                 btrfs_queue_work(fs_info->submit_workers, &device->work);
6552 }
6553
6554 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6555                               u64 physical, int dev_nr, int async)
6556 {
6557         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6558         struct btrfs_fs_info *fs_info = bbio->fs_info;
6559
6560         bio->bi_private = bbio;
6561         btrfs_io_bio(bio)->stripe_index = dev_nr;
6562         bio->bi_end_io = btrfs_end_bio;
6563         bio->bi_iter.bi_sector = physical >> 9;
6564         btrfs_debug_in_rcu(fs_info,
6565         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6566                 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6567                 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6568                 bio->bi_iter.bi_size);
6569         bio_set_dev(bio, dev->bdev);
6570
6571         btrfs_bio_counter_inc_noblocked(fs_info);
6572
6573         if (async)
6574                 btrfs_schedule_bio(dev, bio);
6575         else
6576                 btrfsic_submit_bio(bio);
6577 }
6578
6579 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6580 {
6581         atomic_inc(&bbio->error);
6582         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6583                 /* Should be the original bio. */
6584                 WARN_ON(bio != bbio->orig_bio);
6585
6586                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6587                 bio->bi_iter.bi_sector = logical >> 9;
6588                 if (atomic_read(&bbio->error) > bbio->max_errors)
6589                         bio->bi_status = BLK_STS_IOERR;
6590                 else
6591                         bio->bi_status = BLK_STS_OK;
6592                 btrfs_end_bbio(bbio, bio);
6593         }
6594 }
6595
6596 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6597                            int mirror_num, int async_submit)
6598 {
6599         struct btrfs_device *dev;
6600         struct bio *first_bio = bio;
6601         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6602         u64 length = 0;
6603         u64 map_length;
6604         int ret;
6605         int dev_nr;
6606         int total_devs;
6607         struct btrfs_bio *bbio = NULL;
6608
6609         length = bio->bi_iter.bi_size;
6610         map_length = length;
6611
6612         btrfs_bio_counter_inc_blocked(fs_info);
6613         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6614                                 &map_length, &bbio, mirror_num, 1);
6615         if (ret) {
6616                 btrfs_bio_counter_dec(fs_info);
6617                 return errno_to_blk_status(ret);
6618         }
6619
6620         total_devs = bbio->num_stripes;
6621         bbio->orig_bio = first_bio;
6622         bbio->private = first_bio->bi_private;
6623         bbio->end_io = first_bio->bi_end_io;
6624         bbio->fs_info = fs_info;
6625         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6626
6627         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6628             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6629                 /* In this case, map_length has been set to the length of
6630                    a single stripe; not the whole write */
6631                 if (bio_op(bio) == REQ_OP_WRITE) {
6632                         ret = raid56_parity_write(fs_info, bio, bbio,
6633                                                   map_length);
6634                 } else {
6635                         ret = raid56_parity_recover(fs_info, bio, bbio,
6636                                                     map_length, mirror_num, 1);
6637                 }
6638
6639                 btrfs_bio_counter_dec(fs_info);
6640                 return errno_to_blk_status(ret);
6641         }
6642
6643         if (map_length < length) {
6644                 btrfs_crit(fs_info,
6645                            "mapping failed logical %llu bio len %llu len %llu",
6646                            logical, length, map_length);
6647                 BUG();
6648         }
6649
6650         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6651                 dev = bbio->stripes[dev_nr].dev;
6652                 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6653                                                    &dev->dev_state) ||
6654                     (bio_op(first_bio) == REQ_OP_WRITE &&
6655                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6656                         bbio_error(bbio, first_bio, logical);
6657                         continue;
6658                 }
6659
6660                 if (dev_nr < total_devs - 1)
6661                         bio = btrfs_bio_clone(first_bio);
6662                 else
6663                         bio = first_bio;
6664
6665                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6666                                   dev_nr, async_submit);
6667         }
6668         btrfs_bio_counter_dec(fs_info);
6669         return BLK_STS_OK;
6670 }
6671
6672 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6673                                        u8 *uuid, u8 *fsid)
6674 {
6675         struct btrfs_device *device;
6676         struct btrfs_fs_devices *cur_devices;
6677
6678         cur_devices = fs_info->fs_devices;
6679         while (cur_devices) {
6680                 if (!fsid ||
6681                     !memcmp(cur_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6682                         device = find_device(cur_devices, devid, uuid);
6683                         if (device)
6684                                 return device;
6685                 }
6686                 cur_devices = cur_devices->seed;
6687         }
6688         return NULL;
6689 }
6690
6691 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6692                                             u64 devid, u8 *dev_uuid)
6693 {
6694         struct btrfs_device *device;
6695
6696         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6697         if (IS_ERR(device))
6698                 return device;
6699
6700         list_add(&device->dev_list, &fs_devices->devices);
6701         device->fs_devices = fs_devices;
6702         fs_devices->num_devices++;
6703
6704         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6705         fs_devices->missing_devices++;
6706
6707         return device;
6708 }
6709
6710 /**
6711  * btrfs_alloc_device - allocate struct btrfs_device
6712  * @fs_info:    used only for generating a new devid, can be NULL if
6713  *              devid is provided (i.e. @devid != NULL).
6714  * @devid:      a pointer to devid for this device.  If NULL a new devid
6715  *              is generated.
6716  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6717  *              is generated.
6718  *
6719  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6720  * on error.  Returned struct is not linked onto any lists and must be
6721  * destroyed with btrfs_free_device.
6722  */
6723 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6724                                         const u64 *devid,
6725                                         const u8 *uuid)
6726 {
6727         struct btrfs_device *dev;
6728         u64 tmp;
6729
6730         if (WARN_ON(!devid && !fs_info))
6731                 return ERR_PTR(-EINVAL);
6732
6733         dev = __alloc_device();
6734         if (IS_ERR(dev))
6735                 return dev;
6736
6737         if (devid)
6738                 tmp = *devid;
6739         else {
6740                 int ret;
6741
6742                 ret = find_next_devid(fs_info, &tmp);
6743                 if (ret) {
6744                         btrfs_free_device(dev);
6745                         return ERR_PTR(ret);
6746                 }
6747         }
6748         dev->devid = tmp;
6749
6750         if (uuid)
6751                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6752         else
6753                 generate_random_uuid(dev->uuid);
6754
6755         btrfs_init_work(&dev->work, btrfs_submit_helper,
6756                         pending_bios_fn, NULL, NULL);
6757
6758         return dev;
6759 }
6760
6761 /* Return -EIO if any error, otherwise return 0. */
6762 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6763                                    struct extent_buffer *leaf,
6764                                    struct btrfs_chunk *chunk, u64 logical)
6765 {
6766         u64 length;
6767         u64 stripe_len;
6768         u16 num_stripes;
6769         u16 sub_stripes;
6770         u64 type;
6771         u64 features;
6772         bool mixed = false;
6773
6774         length = btrfs_chunk_length(leaf, chunk);
6775         stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6776         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6777         sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6778         type = btrfs_chunk_type(leaf, chunk);
6779
6780         if (!num_stripes) {
6781                 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6782                           num_stripes);
6783                 return -EIO;
6784         }
6785         if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6786                 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6787                 return -EIO;
6788         }
6789         if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6790                 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6791                           btrfs_chunk_sector_size(leaf, chunk));
6792                 return -EIO;
6793         }
6794         if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6795                 btrfs_err(fs_info, "invalid chunk length %llu", length);
6796                 return -EIO;
6797         }
6798         if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6799                 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6800                           stripe_len);
6801                 return -EIO;
6802         }
6803         if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6804             type) {
6805                 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6806                           ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6807                             BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6808                           btrfs_chunk_type(leaf, chunk));
6809                 return -EIO;
6810         }
6811
6812         if ((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0) {
6813                 btrfs_err(fs_info, "missing chunk type flag: 0x%llx", type);
6814                 return -EIO;
6815         }
6816
6817         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
6818             (type & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA))) {
6819                 btrfs_err(fs_info,
6820                         "system chunk with data or metadata type: 0x%llx", type);
6821                 return -EIO;
6822         }
6823
6824         features = btrfs_super_incompat_flags(fs_info->super_copy);
6825         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
6826                 mixed = true;
6827
6828         if (!mixed) {
6829                 if ((type & BTRFS_BLOCK_GROUP_METADATA) &&
6830                     (type & BTRFS_BLOCK_GROUP_DATA)) {
6831                         btrfs_err(fs_info,
6832                         "mixed chunk type in non-mixed mode: 0x%llx", type);
6833                         return -EIO;
6834                 }
6835         }
6836
6837         if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6838             (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6839             (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6840             (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6841             (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6842             ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6843              num_stripes != 1)) {
6844                 btrfs_err(fs_info,
6845                         "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6846                         num_stripes, sub_stripes,
6847                         type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6848                 return -EIO;
6849         }
6850
6851         return 0;
6852 }
6853
6854 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6855                                         u64 devid, u8 *uuid, bool error)
6856 {
6857         if (error)
6858                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6859                               devid, uuid);
6860         else
6861                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6862                               devid, uuid);
6863 }
6864
6865 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6866                           struct extent_buffer *leaf,
6867                           struct btrfs_chunk *chunk)
6868 {
6869         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6870         struct map_lookup *map;
6871         struct extent_map *em;
6872         u64 logical;
6873         u64 length;
6874         u64 devid;
6875         u8 uuid[BTRFS_UUID_SIZE];
6876         int num_stripes;
6877         int ret;
6878         int i;
6879
6880         logical = key->offset;
6881         length = btrfs_chunk_length(leaf, chunk);
6882         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6883
6884         ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6885         if (ret)
6886                 return ret;
6887
6888         read_lock(&map_tree->map_tree.lock);
6889         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6890         read_unlock(&map_tree->map_tree.lock);
6891
6892         /* already mapped? */
6893         if (em && em->start <= logical && em->start + em->len > logical) {
6894                 free_extent_map(em);
6895                 return 0;
6896         } else if (em) {
6897                 free_extent_map(em);
6898         }
6899
6900         em = alloc_extent_map();
6901         if (!em)
6902                 return -ENOMEM;
6903         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6904         if (!map) {
6905                 free_extent_map(em);
6906                 return -ENOMEM;
6907         }
6908
6909         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6910         em->map_lookup = map;
6911         em->start = logical;
6912         em->len = length;
6913         em->orig_start = 0;
6914         em->block_start = 0;
6915         em->block_len = em->len;
6916
6917         map->num_stripes = num_stripes;
6918         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6919         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6920         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6921         map->type = btrfs_chunk_type(leaf, chunk);
6922         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6923         map->verified_stripes = 0;
6924         for (i = 0; i < num_stripes; i++) {
6925                 map->stripes[i].physical =
6926                         btrfs_stripe_offset_nr(leaf, chunk, i);
6927                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6928                 read_extent_buffer(leaf, uuid, (unsigned long)
6929                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6930                                    BTRFS_UUID_SIZE);
6931                 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6932                                                         uuid, NULL);
6933                 if (!map->stripes[i].dev &&
6934                     !btrfs_test_opt(fs_info, DEGRADED)) {
6935                         free_extent_map(em);
6936                         btrfs_report_missing_device(fs_info, devid, uuid, true);
6937                         return -ENOENT;
6938                 }
6939                 if (!map->stripes[i].dev) {
6940                         map->stripes[i].dev =
6941                                 add_missing_dev(fs_info->fs_devices, devid,
6942                                                 uuid);
6943                         if (IS_ERR(map->stripes[i].dev)) {
6944                                 free_extent_map(em);
6945                                 btrfs_err(fs_info,
6946                                         "failed to init missing dev %llu: %ld",
6947                                         devid, PTR_ERR(map->stripes[i].dev));
6948                                 return PTR_ERR(map->stripes[i].dev);
6949                         }
6950                         btrfs_report_missing_device(fs_info, devid, uuid, false);
6951                 }
6952                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6953                                 &(map->stripes[i].dev->dev_state));
6954
6955         }
6956
6957         write_lock(&map_tree->map_tree.lock);
6958         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6959         write_unlock(&map_tree->map_tree.lock);
6960         if (ret < 0) {
6961                 btrfs_err(fs_info,
6962                           "failed to add chunk map, start=%llu len=%llu: %d",
6963                           em->start, em->len, ret);
6964         }
6965         free_extent_map(em);
6966
6967         return ret;
6968 }
6969
6970 static void fill_device_from_item(struct extent_buffer *leaf,
6971                                  struct btrfs_dev_item *dev_item,
6972                                  struct btrfs_device *device)
6973 {
6974         unsigned long ptr;
6975
6976         device->devid = btrfs_device_id(leaf, dev_item);
6977         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6978         device->total_bytes = device->disk_total_bytes;
6979         device->commit_total_bytes = device->disk_total_bytes;
6980         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6981         device->commit_bytes_used = device->bytes_used;
6982         device->type = btrfs_device_type(leaf, dev_item);
6983         device->io_align = btrfs_device_io_align(leaf, dev_item);
6984         device->io_width = btrfs_device_io_width(leaf, dev_item);
6985         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6986         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6987         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6988
6989         ptr = btrfs_device_uuid(dev_item);
6990         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6991 }
6992
6993 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6994                                                   u8 *fsid)
6995 {
6996         struct btrfs_fs_devices *fs_devices;
6997         int ret;
6998
6999         lockdep_assert_held(&uuid_mutex);
7000         ASSERT(fsid);
7001
7002         fs_devices = fs_info->fs_devices->seed;
7003         while (fs_devices) {
7004                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7005                         return fs_devices;
7006
7007                 fs_devices = fs_devices->seed;
7008         }
7009
7010         fs_devices = find_fsid(fsid, NULL);
7011         if (!fs_devices) {
7012                 if (!btrfs_test_opt(fs_info, DEGRADED))
7013                         return ERR_PTR(-ENOENT);
7014
7015                 fs_devices = alloc_fs_devices(fsid, NULL);
7016                 if (IS_ERR(fs_devices))
7017                         return fs_devices;
7018
7019                 fs_devices->seeding = 1;
7020                 fs_devices->opened = 1;
7021                 return fs_devices;
7022         }
7023
7024         fs_devices = clone_fs_devices(fs_devices);
7025         if (IS_ERR(fs_devices))
7026                 return fs_devices;
7027
7028         ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7029         if (ret) {
7030                 free_fs_devices(fs_devices);
7031                 fs_devices = ERR_PTR(ret);
7032                 goto out;
7033         }
7034
7035         if (!fs_devices->seeding) {
7036                 close_fs_devices(fs_devices);
7037                 free_fs_devices(fs_devices);
7038                 fs_devices = ERR_PTR(-EINVAL);
7039                 goto out;
7040         }
7041
7042         fs_devices->seed = fs_info->fs_devices->seed;
7043         fs_info->fs_devices->seed = fs_devices;
7044 out:
7045         return fs_devices;
7046 }
7047
7048 static int read_one_dev(struct btrfs_fs_info *fs_info,
7049                         struct extent_buffer *leaf,
7050                         struct btrfs_dev_item *dev_item)
7051 {
7052         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7053         struct btrfs_device *device;
7054         u64 devid;
7055         int ret;
7056         u8 fs_uuid[BTRFS_FSID_SIZE];
7057         u8 dev_uuid[BTRFS_UUID_SIZE];
7058
7059         devid = btrfs_device_id(leaf, dev_item);
7060         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7061                            BTRFS_UUID_SIZE);
7062         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7063                            BTRFS_FSID_SIZE);
7064
7065         if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7066                 fs_devices = open_seed_devices(fs_info, fs_uuid);
7067                 if (IS_ERR(fs_devices))
7068                         return PTR_ERR(fs_devices);
7069         }
7070
7071         device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
7072         if (!device) {
7073                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7074                         btrfs_report_missing_device(fs_info, devid,
7075                                                         dev_uuid, true);
7076                         return -ENOENT;
7077                 }
7078
7079                 device = add_missing_dev(fs_devices, devid, dev_uuid);
7080                 if (IS_ERR(device)) {
7081                         btrfs_err(fs_info,
7082                                 "failed to add missing dev %llu: %ld",
7083                                 devid, PTR_ERR(device));
7084                         return PTR_ERR(device);
7085                 }
7086                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7087         } else {
7088                 if (!device->bdev) {
7089                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
7090                                 btrfs_report_missing_device(fs_info,
7091                                                 devid, dev_uuid, true);
7092                                 return -ENOENT;
7093                         }
7094                         btrfs_report_missing_device(fs_info, devid,
7095                                                         dev_uuid, false);
7096                 }
7097
7098                 if (!device->bdev &&
7099                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7100                         /*
7101                          * this happens when a device that was properly setup
7102                          * in the device info lists suddenly goes bad.
7103                          * device->bdev is NULL, and so we have to set
7104                          * device->missing to one here
7105                          */
7106                         device->fs_devices->missing_devices++;
7107                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7108                 }
7109
7110                 /* Move the device to its own fs_devices */
7111                 if (device->fs_devices != fs_devices) {
7112                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7113                                                         &device->dev_state));
7114
7115                         list_move(&device->dev_list, &fs_devices->devices);
7116                         device->fs_devices->num_devices--;
7117                         fs_devices->num_devices++;
7118
7119                         device->fs_devices->missing_devices--;
7120                         fs_devices->missing_devices++;
7121
7122                         device->fs_devices = fs_devices;
7123                 }
7124         }
7125
7126         if (device->fs_devices != fs_info->fs_devices) {
7127                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7128                 if (device->generation !=
7129                     btrfs_device_generation(leaf, dev_item))
7130                         return -EINVAL;
7131         }
7132
7133         fill_device_from_item(leaf, dev_item, device);
7134         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7135         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7136            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7137                 device->fs_devices->total_rw_bytes += device->total_bytes;
7138                 atomic64_add(device->total_bytes - device->bytes_used,
7139                                 &fs_info->free_chunk_space);
7140         }
7141         ret = 0;
7142         return ret;
7143 }
7144
7145 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7146 {
7147         struct btrfs_root *root = fs_info->tree_root;
7148         struct btrfs_super_block *super_copy = fs_info->super_copy;
7149         struct extent_buffer *sb;
7150         struct btrfs_disk_key *disk_key;
7151         struct btrfs_chunk *chunk;
7152         u8 *array_ptr;
7153         unsigned long sb_array_offset;
7154         int ret = 0;
7155         u32 num_stripes;
7156         u32 array_size;
7157         u32 len = 0;
7158         u32 cur_offset;
7159         u64 type;
7160         struct btrfs_key key;
7161
7162         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7163         /*
7164          * This will create extent buffer of nodesize, superblock size is
7165          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7166          * overallocate but we can keep it as-is, only the first page is used.
7167          */
7168         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
7169         if (IS_ERR(sb))
7170                 return PTR_ERR(sb);
7171         set_extent_buffer_uptodate(sb);
7172         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
7173         /*
7174          * The sb extent buffer is artificial and just used to read the system array.
7175          * set_extent_buffer_uptodate() call does not properly mark all it's
7176          * pages up-to-date when the page is larger: extent does not cover the
7177          * whole page and consequently check_page_uptodate does not find all
7178          * the page's extents up-to-date (the hole beyond sb),
7179          * write_extent_buffer then triggers a WARN_ON.
7180          *
7181          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7182          * but sb spans only this function. Add an explicit SetPageUptodate call
7183          * to silence the warning eg. on PowerPC 64.
7184          */
7185         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7186                 SetPageUptodate(sb->pages[0]);
7187
7188         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7189         array_size = btrfs_super_sys_array_size(super_copy);
7190
7191         array_ptr = super_copy->sys_chunk_array;
7192         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7193         cur_offset = 0;
7194
7195         while (cur_offset < array_size) {
7196                 disk_key = (struct btrfs_disk_key *)array_ptr;
7197                 len = sizeof(*disk_key);
7198                 if (cur_offset + len > array_size)
7199                         goto out_short_read;
7200
7201                 btrfs_disk_key_to_cpu(&key, disk_key);
7202
7203                 array_ptr += len;
7204                 sb_array_offset += len;
7205                 cur_offset += len;
7206
7207                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
7208                         chunk = (struct btrfs_chunk *)sb_array_offset;
7209                         /*
7210                          * At least one btrfs_chunk with one stripe must be
7211                          * present, exact stripe count check comes afterwards
7212                          */
7213                         len = btrfs_chunk_item_size(1);
7214                         if (cur_offset + len > array_size)
7215                                 goto out_short_read;
7216
7217                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7218                         if (!num_stripes) {
7219                                 btrfs_err(fs_info,
7220                                         "invalid number of stripes %u in sys_array at offset %u",
7221                                         num_stripes, cur_offset);
7222                                 ret = -EIO;
7223                                 break;
7224                         }
7225
7226                         type = btrfs_chunk_type(sb, chunk);
7227                         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7228                                 btrfs_err(fs_info,
7229                             "invalid chunk type %llu in sys_array at offset %u",
7230                                         type, cur_offset);
7231                                 ret = -EIO;
7232                                 break;
7233                         }
7234
7235                         len = btrfs_chunk_item_size(num_stripes);
7236                         if (cur_offset + len > array_size)
7237                                 goto out_short_read;
7238
7239                         ret = read_one_chunk(fs_info, &key, sb, chunk);
7240                         if (ret)
7241                                 break;
7242                 } else {
7243                         btrfs_err(fs_info,
7244                             "unexpected item type %u in sys_array at offset %u",
7245                                   (u32)key.type, cur_offset);
7246                         ret = -EIO;
7247                         break;
7248                 }
7249                 array_ptr += len;
7250                 sb_array_offset += len;
7251                 cur_offset += len;
7252         }
7253         clear_extent_buffer_uptodate(sb);
7254         free_extent_buffer_stale(sb);
7255         return ret;
7256
7257 out_short_read:
7258         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7259                         len, cur_offset);
7260         clear_extent_buffer_uptodate(sb);
7261         free_extent_buffer_stale(sb);
7262         return -EIO;
7263 }
7264
7265 /*
7266  * Check if all chunks in the fs are OK for read-write degraded mount
7267  *
7268  * If the @failing_dev is specified, it's accounted as missing.
7269  *
7270  * Return true if all chunks meet the minimal RW mount requirements.
7271  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7272  */
7273 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7274                                         struct btrfs_device *failing_dev)
7275 {
7276         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
7277         struct extent_map *em;
7278         u64 next_start = 0;
7279         bool ret = true;
7280
7281         read_lock(&map_tree->map_tree.lock);
7282         em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
7283         read_unlock(&map_tree->map_tree.lock);
7284         /* No chunk at all? Return false anyway */
7285         if (!em) {
7286                 ret = false;
7287                 goto out;
7288         }
7289         while (em) {
7290                 struct map_lookup *map;
7291                 int missing = 0;
7292                 int max_tolerated;
7293                 int i;
7294
7295                 map = em->map_lookup;
7296                 max_tolerated =
7297                         btrfs_get_num_tolerated_disk_barrier_failures(
7298                                         map->type);
7299                 for (i = 0; i < map->num_stripes; i++) {
7300                         struct btrfs_device *dev = map->stripes[i].dev;
7301
7302                         if (!dev || !dev->bdev ||
7303                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7304                             dev->last_flush_error)
7305                                 missing++;
7306                         else if (failing_dev && failing_dev == dev)
7307                                 missing++;
7308                 }
7309                 if (missing > max_tolerated) {
7310                         if (!failing_dev)
7311                                 btrfs_warn(fs_info,
7312         "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
7313                                    em->start, missing, max_tolerated);
7314                         free_extent_map(em);
7315                         ret = false;
7316                         goto out;
7317                 }
7318                 next_start = extent_map_end(em);
7319                 free_extent_map(em);
7320
7321                 read_lock(&map_tree->map_tree.lock);
7322                 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
7323                                            (u64)(-1) - next_start);
7324                 read_unlock(&map_tree->map_tree.lock);
7325         }
7326 out:
7327         return ret;
7328 }
7329
7330 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7331 {
7332         struct btrfs_root *root = fs_info->chunk_root;
7333         struct btrfs_path *path;
7334         struct extent_buffer *leaf;
7335         struct btrfs_key key;
7336         struct btrfs_key found_key;
7337         int ret;
7338         int slot;
7339         u64 total_dev = 0;
7340
7341         path = btrfs_alloc_path();
7342         if (!path)
7343                 return -ENOMEM;
7344
7345         /*
7346          * uuid_mutex is needed only if we are mounting a sprout FS
7347          * otherwise we don't need it.
7348          */
7349         mutex_lock(&uuid_mutex);
7350         mutex_lock(&fs_info->chunk_mutex);
7351
7352         /*
7353          * Read all device items, and then all the chunk items. All
7354          * device items are found before any chunk item (their object id
7355          * is smaller than the lowest possible object id for a chunk
7356          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7357          */
7358         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7359         key.offset = 0;
7360         key.type = 0;
7361         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7362         if (ret < 0)
7363                 goto error;
7364         while (1) {
7365                 leaf = path->nodes[0];
7366                 slot = path->slots[0];
7367                 if (slot >= btrfs_header_nritems(leaf)) {
7368                         ret = btrfs_next_leaf(root, path);
7369                         if (ret == 0)
7370                                 continue;
7371                         if (ret < 0)
7372                                 goto error;
7373                         break;
7374                 }
7375                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7376                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7377                         struct btrfs_dev_item *dev_item;
7378                         dev_item = btrfs_item_ptr(leaf, slot,
7379                                                   struct btrfs_dev_item);
7380                         ret = read_one_dev(fs_info, leaf, dev_item);
7381                         if (ret)
7382                                 goto error;
7383                         total_dev++;
7384                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7385                         struct btrfs_chunk *chunk;
7386                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7387                         ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
7388                         if (ret)
7389                                 goto error;
7390                 }
7391                 path->slots[0]++;
7392         }
7393
7394         /*
7395          * After loading chunk tree, we've got all device information,
7396          * do another round of validation checks.
7397          */
7398         if (total_dev != fs_info->fs_devices->total_devices) {
7399                 btrfs_err(fs_info,
7400            "super_num_devices %llu mismatch with num_devices %llu found here",
7401                           btrfs_super_num_devices(fs_info->super_copy),
7402                           total_dev);
7403                 ret = -EINVAL;
7404                 goto error;
7405         }
7406         if (btrfs_super_total_bytes(fs_info->super_copy) <
7407             fs_info->fs_devices->total_rw_bytes) {
7408                 btrfs_err(fs_info,
7409         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7410                           btrfs_super_total_bytes(fs_info->super_copy),
7411                           fs_info->fs_devices->total_rw_bytes);
7412                 ret = -EINVAL;
7413                 goto error;
7414         }
7415         ret = 0;
7416 error:
7417         mutex_unlock(&fs_info->chunk_mutex);
7418         mutex_unlock(&uuid_mutex);
7419
7420         btrfs_free_path(path);
7421         return ret;
7422 }
7423
7424 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7425 {
7426         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7427         struct btrfs_device *device;
7428
7429         while (fs_devices) {
7430                 mutex_lock(&fs_devices->device_list_mutex);
7431                 list_for_each_entry(device, &fs_devices->devices, dev_list)
7432                         device->fs_info = fs_info;
7433                 mutex_unlock(&fs_devices->device_list_mutex);
7434
7435                 fs_devices = fs_devices->seed;
7436         }
7437 }
7438
7439 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7440 {
7441         int i;
7442
7443         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7444                 btrfs_dev_stat_reset(dev, i);
7445 }
7446
7447 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7448 {
7449         struct btrfs_key key;
7450         struct btrfs_key found_key;
7451         struct btrfs_root *dev_root = fs_info->dev_root;
7452         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7453         struct extent_buffer *eb;
7454         int slot;
7455         int ret = 0;
7456         struct btrfs_device *device;
7457         struct btrfs_path *path = NULL;
7458         int i;
7459
7460         path = btrfs_alloc_path();
7461         if (!path) {
7462                 ret = -ENOMEM;
7463                 goto out;
7464         }
7465
7466         mutex_lock(&fs_devices->device_list_mutex);
7467         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7468                 int item_size;
7469                 struct btrfs_dev_stats_item *ptr;
7470
7471                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7472                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7473                 key.offset = device->devid;
7474                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7475                 if (ret) {
7476                         __btrfs_reset_dev_stats(device);
7477                         device->dev_stats_valid = 1;
7478                         btrfs_release_path(path);
7479                         continue;
7480                 }
7481                 slot = path->slots[0];
7482                 eb = path->nodes[0];
7483                 btrfs_item_key_to_cpu(eb, &found_key, slot);
7484                 item_size = btrfs_item_size_nr(eb, slot);
7485
7486                 ptr = btrfs_item_ptr(eb, slot,
7487                                      struct btrfs_dev_stats_item);
7488
7489                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7490                         if (item_size >= (1 + i) * sizeof(__le64))
7491                                 btrfs_dev_stat_set(device, i,
7492                                         btrfs_dev_stats_value(eb, ptr, i));
7493                         else
7494                                 btrfs_dev_stat_reset(device, i);
7495                 }
7496
7497                 device->dev_stats_valid = 1;
7498                 btrfs_dev_stat_print_on_load(device);
7499                 btrfs_release_path(path);
7500         }
7501         mutex_unlock(&fs_devices->device_list_mutex);
7502
7503 out:
7504         btrfs_free_path(path);
7505         return ret < 0 ? ret : 0;
7506 }
7507
7508 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7509                                 struct btrfs_device *device)
7510 {
7511         struct btrfs_fs_info *fs_info = trans->fs_info;
7512         struct btrfs_root *dev_root = fs_info->dev_root;
7513         struct btrfs_path *path;
7514         struct btrfs_key key;
7515         struct extent_buffer *eb;
7516         struct btrfs_dev_stats_item *ptr;
7517         int ret;
7518         int i;
7519
7520         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7521         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7522         key.offset = device->devid;
7523
7524         path = btrfs_alloc_path();
7525         if (!path)
7526                 return -ENOMEM;
7527         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7528         if (ret < 0) {
7529                 btrfs_warn_in_rcu(fs_info,
7530                         "error %d while searching for dev_stats item for device %s",
7531                               ret, rcu_str_deref(device->name));
7532                 goto out;
7533         }
7534
7535         if (ret == 0 &&
7536             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7537                 /* need to delete old one and insert a new one */
7538                 ret = btrfs_del_item(trans, dev_root, path);
7539                 if (ret != 0) {
7540                         btrfs_warn_in_rcu(fs_info,
7541                                 "delete too small dev_stats item for device %s failed %d",
7542                                       rcu_str_deref(device->name), ret);
7543                         goto out;
7544                 }
7545                 ret = 1;
7546         }
7547
7548         if (ret == 1) {
7549                 /* need to insert a new item */
7550                 btrfs_release_path(path);
7551                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7552                                               &key, sizeof(*ptr));
7553                 if (ret < 0) {
7554                         btrfs_warn_in_rcu(fs_info,
7555                                 "insert dev_stats item for device %s failed %d",
7556                                 rcu_str_deref(device->name), ret);
7557                         goto out;
7558                 }
7559         }
7560
7561         eb = path->nodes[0];
7562         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7563         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7564                 btrfs_set_dev_stats_value(eb, ptr, i,
7565                                           btrfs_dev_stat_read(device, i));
7566         btrfs_mark_buffer_dirty(eb);
7567
7568 out:
7569         btrfs_free_path(path);
7570         return ret;
7571 }
7572
7573 /*
7574  * called from commit_transaction. Writes all changed device stats to disk.
7575  */
7576 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7577                         struct btrfs_fs_info *fs_info)
7578 {
7579         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7580         struct btrfs_device *device;
7581         int stats_cnt;
7582         int ret = 0;
7583
7584         mutex_lock(&fs_devices->device_list_mutex);
7585         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7586                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7587                 if (!device->dev_stats_valid || stats_cnt == 0)
7588                         continue;
7589
7590
7591                 /*
7592                  * There is a LOAD-LOAD control dependency between the value of
7593                  * dev_stats_ccnt and updating the on-disk values which requires
7594                  * reading the in-memory counters. Such control dependencies
7595                  * require explicit read memory barriers.
7596                  *
7597                  * This memory barriers pairs with smp_mb__before_atomic in
7598                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7599                  * barrier implied by atomic_xchg in
7600                  * btrfs_dev_stats_read_and_reset
7601                  */
7602                 smp_rmb();
7603
7604                 ret = update_dev_stat_item(trans, device);
7605                 if (!ret)
7606                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7607         }
7608         mutex_unlock(&fs_devices->device_list_mutex);
7609
7610         return ret;
7611 }
7612
7613 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7614 {
7615         btrfs_dev_stat_inc(dev, index);
7616         btrfs_dev_stat_print_on_error(dev);
7617 }
7618
7619 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7620 {
7621         if (!dev->dev_stats_valid)
7622                 return;
7623         btrfs_err_rl_in_rcu(dev->fs_info,
7624                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7625                            rcu_str_deref(dev->name),
7626                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7627                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7628                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7629                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7630                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7631 }
7632
7633 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7634 {
7635         int i;
7636
7637         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7638                 if (btrfs_dev_stat_read(dev, i) != 0)
7639                         break;
7640         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7641                 return; /* all values == 0, suppress message */
7642
7643         btrfs_info_in_rcu(dev->fs_info,
7644                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7645                rcu_str_deref(dev->name),
7646                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7647                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7648                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7649                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7650                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7651 }
7652
7653 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7654                         struct btrfs_ioctl_get_dev_stats *stats)
7655 {
7656         struct btrfs_device *dev;
7657         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7658         int i;
7659
7660         mutex_lock(&fs_devices->device_list_mutex);
7661         dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7662         mutex_unlock(&fs_devices->device_list_mutex);
7663
7664         if (!dev) {
7665                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7666                 return -ENODEV;
7667         } else if (!dev->dev_stats_valid) {
7668                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7669                 return -ENODEV;
7670         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7671                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7672                         if (stats->nr_items > i)
7673                                 stats->values[i] =
7674                                         btrfs_dev_stat_read_and_reset(dev, i);
7675                         else
7676                                 btrfs_dev_stat_reset(dev, i);
7677                 }
7678         } else {
7679                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7680                         if (stats->nr_items > i)
7681                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7682         }
7683         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7684                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7685         return 0;
7686 }
7687
7688 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7689 {
7690         struct buffer_head *bh;
7691         struct btrfs_super_block *disk_super;
7692         int copy_num;
7693
7694         if (!bdev)
7695                 return;
7696
7697         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7698                 copy_num++) {
7699
7700                 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7701                         continue;
7702
7703                 disk_super = (struct btrfs_super_block *)bh->b_data;
7704
7705                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7706                 set_buffer_dirty(bh);
7707                 sync_dirty_buffer(bh);
7708                 brelse(bh);
7709         }
7710
7711         /* Notify udev that device has changed */
7712         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7713
7714         /* Update ctime/mtime for device path for libblkid */
7715         update_dev_time(device_path);
7716 }
7717
7718 /*
7719  * Update the size of all devices, which is used for writing out the
7720  * super blocks.
7721  */
7722 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7723 {
7724         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7725         struct btrfs_device *curr, *next;
7726
7727         if (list_empty(&fs_devices->resized_devices))
7728                 return;
7729
7730         mutex_lock(&fs_devices->device_list_mutex);
7731         mutex_lock(&fs_info->chunk_mutex);
7732         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7733                                  resized_list) {
7734                 list_del_init(&curr->resized_list);
7735                 curr->commit_total_bytes = curr->disk_total_bytes;
7736         }
7737         mutex_unlock(&fs_info->chunk_mutex);
7738         mutex_unlock(&fs_devices->device_list_mutex);
7739 }
7740
7741 /* Must be invoked during the transaction commit */
7742 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans)
7743 {
7744         struct btrfs_fs_info *fs_info = trans->fs_info;
7745         struct extent_map *em;
7746         struct map_lookup *map;
7747         struct btrfs_device *dev;
7748         int i;
7749
7750         if (list_empty(&trans->pending_chunks))
7751                 return;
7752
7753         /* In order to kick the device replace finish process */
7754         mutex_lock(&fs_info->chunk_mutex);
7755         list_for_each_entry(em, &trans->pending_chunks, list) {
7756                 map = em->map_lookup;
7757
7758                 for (i = 0; i < map->num_stripes; i++) {
7759                         dev = map->stripes[i].dev;
7760                         dev->commit_bytes_used = dev->bytes_used;
7761                 }
7762         }
7763         mutex_unlock(&fs_info->chunk_mutex);
7764 }
7765
7766 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7767 {
7768         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7769         while (fs_devices) {
7770                 fs_devices->fs_info = fs_info;
7771                 fs_devices = fs_devices->seed;
7772         }
7773 }
7774
7775 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7776 {
7777         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7778         while (fs_devices) {
7779                 fs_devices->fs_info = NULL;
7780                 fs_devices = fs_devices->seed;
7781         }
7782 }
7783
7784 /*
7785  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7786  */
7787 int btrfs_bg_type_to_factor(u64 flags)
7788 {
7789         if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
7790                      BTRFS_BLOCK_GROUP_RAID10))
7791                 return 2;
7792         return 1;
7793 }
7794
7795
7796 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
7797 {
7798         int index = btrfs_bg_flags_to_raid_index(type);
7799         int ncopies = btrfs_raid_array[index].ncopies;
7800         int data_stripes;
7801
7802         switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
7803         case BTRFS_BLOCK_GROUP_RAID5:
7804                 data_stripes = num_stripes - 1;
7805                 break;
7806         case BTRFS_BLOCK_GROUP_RAID6:
7807                 data_stripes = num_stripes - 2;
7808                 break;
7809         default:
7810                 data_stripes = num_stripes / ncopies;
7811                 break;
7812         }
7813         return div_u64(chunk_len, data_stripes);
7814 }
7815
7816 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7817                                  u64 chunk_offset, u64 devid,
7818                                  u64 physical_offset, u64 physical_len)
7819 {
7820         struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7821         struct extent_map *em;
7822         struct map_lookup *map;
7823         struct btrfs_device *dev;
7824         u64 stripe_len;
7825         bool found = false;
7826         int ret = 0;
7827         int i;
7828
7829         read_lock(&em_tree->lock);
7830         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7831         read_unlock(&em_tree->lock);
7832
7833         if (!em) {
7834                 btrfs_err(fs_info,
7835 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7836                           physical_offset, devid);
7837                 ret = -EUCLEAN;
7838                 goto out;
7839         }
7840
7841         map = em->map_lookup;
7842         stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7843         if (physical_len != stripe_len) {
7844                 btrfs_err(fs_info,
7845 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7846                           physical_offset, devid, em->start, physical_len,
7847                           stripe_len);
7848                 ret = -EUCLEAN;
7849                 goto out;
7850         }
7851
7852         for (i = 0; i < map->num_stripes; i++) {
7853                 if (map->stripes[i].dev->devid == devid &&
7854                     map->stripes[i].physical == physical_offset) {
7855                         found = true;
7856                         if (map->verified_stripes >= map->num_stripes) {
7857                                 btrfs_err(fs_info,
7858                                 "too many dev extents for chunk %llu found",
7859                                           em->start);
7860                                 ret = -EUCLEAN;
7861                                 goto out;
7862                         }
7863                         map->verified_stripes++;
7864                         break;
7865                 }
7866         }
7867         if (!found) {
7868                 btrfs_err(fs_info,
7869         "dev extent physical offset %llu devid %llu has no corresponding chunk",
7870                         physical_offset, devid);
7871                 ret = -EUCLEAN;
7872         }
7873
7874         /* Make sure no dev extent is beyond device bondary */
7875         dev = btrfs_find_device(fs_info, devid, NULL, NULL);
7876         if (!dev) {
7877                 btrfs_err(fs_info, "failed to find devid %llu", devid);
7878                 ret = -EUCLEAN;
7879                 goto out;
7880         }
7881         if (physical_offset + physical_len > dev->disk_total_bytes) {
7882                 btrfs_err(fs_info,
7883 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7884                           devid, physical_offset, physical_len,
7885                           dev->disk_total_bytes);
7886                 ret = -EUCLEAN;
7887                 goto out;
7888         }
7889 out:
7890         free_extent_map(em);
7891         return ret;
7892 }
7893
7894 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7895 {
7896         struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7897         struct extent_map *em;
7898         struct rb_node *node;
7899         int ret = 0;
7900
7901         read_lock(&em_tree->lock);
7902         for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7903                 em = rb_entry(node, struct extent_map, rb_node);
7904                 if (em->map_lookup->num_stripes !=
7905                     em->map_lookup->verified_stripes) {
7906                         btrfs_err(fs_info,
7907                         "chunk %llu has missing dev extent, have %d expect %d",
7908                                   em->start, em->map_lookup->verified_stripes,
7909                                   em->map_lookup->num_stripes);
7910                         ret = -EUCLEAN;
7911                         goto out;
7912                 }
7913         }
7914 out:
7915         read_unlock(&em_tree->lock);
7916         return ret;
7917 }
7918
7919 /*
7920  * Ensure that all dev extents are mapped to correct chunk, otherwise
7921  * later chunk allocation/free would cause unexpected behavior.
7922  *
7923  * NOTE: This will iterate through the whole device tree, which should be of
7924  * the same size level as the chunk tree.  This slightly increases mount time.
7925  */
7926 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7927 {
7928         struct btrfs_path *path;
7929         struct btrfs_root *root = fs_info->dev_root;
7930         struct btrfs_key key;
7931         u64 prev_devid = 0;
7932         u64 prev_dev_ext_end = 0;
7933         int ret = 0;
7934
7935         key.objectid = 1;
7936         key.type = BTRFS_DEV_EXTENT_KEY;
7937         key.offset = 0;
7938
7939         path = btrfs_alloc_path();
7940         if (!path)
7941                 return -ENOMEM;
7942
7943         path->reada = READA_FORWARD;
7944         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7945         if (ret < 0)
7946                 goto out;
7947
7948         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7949                 ret = btrfs_next_item(root, path);
7950                 if (ret < 0)
7951                         goto out;
7952                 /* No dev extents at all? Not good */
7953                 if (ret > 0) {
7954                         ret = -EUCLEAN;
7955                         goto out;
7956                 }
7957         }
7958         while (1) {
7959                 struct extent_buffer *leaf = path->nodes[0];
7960                 struct btrfs_dev_extent *dext;
7961                 int slot = path->slots[0];
7962                 u64 chunk_offset;
7963                 u64 physical_offset;
7964                 u64 physical_len;
7965                 u64 devid;
7966
7967                 btrfs_item_key_to_cpu(leaf, &key, slot);
7968                 if (key.type != BTRFS_DEV_EXTENT_KEY)
7969                         break;
7970                 devid = key.objectid;
7971                 physical_offset = key.offset;
7972
7973                 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7974                 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7975                 physical_len = btrfs_dev_extent_length(leaf, dext);
7976
7977                 /* Check if this dev extent overlaps with the previous one */
7978                 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7979                         btrfs_err(fs_info,
7980 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7981                                   devid, physical_offset, prev_dev_ext_end);
7982                         ret = -EUCLEAN;
7983                         goto out;
7984                 }
7985
7986                 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7987                                             physical_offset, physical_len);
7988                 if (ret < 0)
7989                         goto out;
7990                 prev_devid = devid;
7991                 prev_dev_ext_end = physical_offset + physical_len;
7992
7993                 ret = btrfs_next_item(root, path);
7994                 if (ret < 0)
7995                         goto out;
7996                 if (ret > 0) {
7997                         ret = 0;
7998                         break;
7999                 }
8000         }
8001
8002         /* Ensure all chunks have corresponding dev extents */
8003         ret = verify_chunk_dev_extent_mapping(fs_info);
8004 out:
8005         btrfs_free_path(path);
8006         return ret;
8007 }
8008
8009 /*
8010  * Check whether the given block group or device is pinned by any inode being
8011  * used as a swapfile.
8012  */
8013 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8014 {
8015         struct btrfs_swapfile_pin *sp;
8016         struct rb_node *node;
8017
8018         spin_lock(&fs_info->swapfile_pins_lock);
8019         node = fs_info->swapfile_pins.rb_node;
8020         while (node) {
8021                 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8022                 if (ptr < sp->ptr)
8023                         node = node->rb_left;
8024                 else if (ptr > sp->ptr)
8025                         node = node->rb_right;
8026                 else
8027                         break;
8028         }
8029         spin_unlock(&fs_info->swapfile_pins_lock);
8030         return node != NULL;
8031 }