btrfs: use mutex in btrfs_resume_balance_async
[sfrench/cifs-2.6.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/iocontext.h>
12 #include <linux/capability.h>
13 #include <linux/ratelimit.h>
14 #include <linux/kthread.h>
15 #include <linux/raid/pq.h>
16 #include <linux/semaphore.h>
17 #include <linux/uuid.h>
18 #include <linux/list_sort.h>
19 #include <asm/div64.h>
20 #include "ctree.h"
21 #include "extent_map.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "print-tree.h"
25 #include "volumes.h"
26 #include "raid56.h"
27 #include "async-thread.h"
28 #include "check-integrity.h"
29 #include "rcu-string.h"
30 #include "math.h"
31 #include "dev-replace.h"
32 #include "sysfs.h"
33
34 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
35         [BTRFS_RAID_RAID10] = {
36                 .sub_stripes    = 2,
37                 .dev_stripes    = 1,
38                 .devs_max       = 0,    /* 0 == as many as possible */
39                 .devs_min       = 4,
40                 .tolerated_failures = 1,
41                 .devs_increment = 2,
42                 .ncopies        = 2,
43         },
44         [BTRFS_RAID_RAID1] = {
45                 .sub_stripes    = 1,
46                 .dev_stripes    = 1,
47                 .devs_max       = 2,
48                 .devs_min       = 2,
49                 .tolerated_failures = 1,
50                 .devs_increment = 2,
51                 .ncopies        = 2,
52         },
53         [BTRFS_RAID_DUP] = {
54                 .sub_stripes    = 1,
55                 .dev_stripes    = 2,
56                 .devs_max       = 1,
57                 .devs_min       = 1,
58                 .tolerated_failures = 0,
59                 .devs_increment = 1,
60                 .ncopies        = 2,
61         },
62         [BTRFS_RAID_RAID0] = {
63                 .sub_stripes    = 1,
64                 .dev_stripes    = 1,
65                 .devs_max       = 0,
66                 .devs_min       = 2,
67                 .tolerated_failures = 0,
68                 .devs_increment = 1,
69                 .ncopies        = 1,
70         },
71         [BTRFS_RAID_SINGLE] = {
72                 .sub_stripes    = 1,
73                 .dev_stripes    = 1,
74                 .devs_max       = 1,
75                 .devs_min       = 1,
76                 .tolerated_failures = 0,
77                 .devs_increment = 1,
78                 .ncopies        = 1,
79         },
80         [BTRFS_RAID_RAID5] = {
81                 .sub_stripes    = 1,
82                 .dev_stripes    = 1,
83                 .devs_max       = 0,
84                 .devs_min       = 2,
85                 .tolerated_failures = 1,
86                 .devs_increment = 1,
87                 .ncopies        = 2,
88         },
89         [BTRFS_RAID_RAID6] = {
90                 .sub_stripes    = 1,
91                 .dev_stripes    = 1,
92                 .devs_max       = 0,
93                 .devs_min       = 3,
94                 .tolerated_failures = 2,
95                 .devs_increment = 1,
96                 .ncopies        = 3,
97         },
98 };
99
100 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
101         [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
102         [BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
103         [BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
104         [BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
105         [BTRFS_RAID_SINGLE] = 0,
106         [BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
107         [BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
108 };
109
110 /*
111  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
112  * condition is not met. Zero means there's no corresponding
113  * BTRFS_ERROR_DEV_*_NOT_MET value.
114  */
115 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
116         [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
117         [BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
118         [BTRFS_RAID_DUP]    = 0,
119         [BTRFS_RAID_RAID0]  = 0,
120         [BTRFS_RAID_SINGLE] = 0,
121         [BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
122         [BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
123 };
124
125 static int init_first_rw_device(struct btrfs_trans_handle *trans,
126                                 struct btrfs_fs_info *fs_info);
127 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
128 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
129 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
130 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
131 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
132                              enum btrfs_map_op op,
133                              u64 logical, u64 *length,
134                              struct btrfs_bio **bbio_ret,
135                              int mirror_num, int need_raid_map);
136
137 /*
138  * Device locking
139  * ==============
140  *
141  * There are several mutexes that protect manipulation of devices and low-level
142  * structures like chunks but not block groups, extents or files
143  *
144  * uuid_mutex (global lock)
145  * ------------------------
146  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
147  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
148  * device) or requested by the device= mount option
149  *
150  * the mutex can be very coarse and can cover long-running operations
151  *
152  * protects: updates to fs_devices counters like missing devices, rw devices,
153  * seeding, structure cloning, openning/closing devices at mount/umount time
154  *
155  * global::fs_devs - add, remove, updates to the global list
156  *
157  * does not protect: manipulation of the fs_devices::devices list!
158  *
159  * btrfs_device::name - renames (write side), read is RCU
160  *
161  * fs_devices::device_list_mutex (per-fs, with RCU)
162  * ------------------------------------------------
163  * protects updates to fs_devices::devices, ie. adding and deleting
164  *
165  * simple list traversal with read-only actions can be done with RCU protection
166  *
167  * may be used to exclude some operations from running concurrently without any
168  * modifications to the list (see write_all_supers)
169  *
170  * balance_mutex
171  * -------------
172  * protects balance structures (status, state) and context accessed from
173  * several places (internally, ioctl)
174  *
175  * chunk_mutex
176  * -----------
177  * protects chunks, adding or removing during allocation, trim or when a new
178  * device is added/removed
179  *
180  * cleaner_mutex
181  * -------------
182  * a big lock that is held by the cleaner thread and prevents running subvolume
183  * cleaning together with relocation or delayed iputs
184  *
185  *
186  * Lock nesting
187  * ============
188  *
189  * uuid_mutex
190  *   volume_mutex
191  *     device_list_mutex
192  *       chunk_mutex
193  *     balance_mutex
194  *
195  *
196  * Exclusive operations, BTRFS_FS_EXCL_OP
197  * ======================================
198  *
199  * Maintains the exclusivity of the following operations that apply to the
200  * whole filesystem and cannot run in parallel.
201  *
202  * - Balance (*)
203  * - Device add
204  * - Device remove
205  * - Device replace (*)
206  * - Resize
207  *
208  * The device operations (as above) can be in one of the following states:
209  *
210  * - Running state
211  * - Paused state
212  * - Completed state
213  *
214  * Only device operations marked with (*) can go into the Paused state for the
215  * following reasons:
216  *
217  * - ioctl (only Balance can be Paused through ioctl)
218  * - filesystem remounted as read-only
219  * - filesystem unmounted and mounted as read-only
220  * - system power-cycle and filesystem mounted as read-only
221  * - filesystem or device errors leading to forced read-only
222  *
223  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
224  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
225  * A device operation in Paused or Running state can be canceled or resumed
226  * either by ioctl (Balance only) or when remounted as read-write.
227  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
228  * completed.
229  */
230
231 DEFINE_MUTEX(uuid_mutex);
232 static LIST_HEAD(fs_uuids);
233 struct list_head *btrfs_get_fs_uuids(void)
234 {
235         return &fs_uuids;
236 }
237
238 /*
239  * alloc_fs_devices - allocate struct btrfs_fs_devices
240  * @fsid:       if not NULL, copy the uuid to fs_devices::fsid
241  *
242  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
243  * The returned struct is not linked onto any lists and can be destroyed with
244  * kfree() right away.
245  */
246 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
247 {
248         struct btrfs_fs_devices *fs_devs;
249
250         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
251         if (!fs_devs)
252                 return ERR_PTR(-ENOMEM);
253
254         mutex_init(&fs_devs->device_list_mutex);
255
256         INIT_LIST_HEAD(&fs_devs->devices);
257         INIT_LIST_HEAD(&fs_devs->resized_devices);
258         INIT_LIST_HEAD(&fs_devs->alloc_list);
259         INIT_LIST_HEAD(&fs_devs->fs_list);
260         if (fsid)
261                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
262
263         return fs_devs;
264 }
265
266 void btrfs_free_device(struct btrfs_device *device)
267 {
268         rcu_string_free(device->name);
269         bio_put(device->flush_bio);
270         kfree(device);
271 }
272
273 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
274 {
275         struct btrfs_device *device;
276         WARN_ON(fs_devices->opened);
277         while (!list_empty(&fs_devices->devices)) {
278                 device = list_entry(fs_devices->devices.next,
279                                     struct btrfs_device, dev_list);
280                 list_del(&device->dev_list);
281                 btrfs_free_device(device);
282         }
283         kfree(fs_devices);
284 }
285
286 static void btrfs_kobject_uevent(struct block_device *bdev,
287                                  enum kobject_action action)
288 {
289         int ret;
290
291         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
292         if (ret)
293                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
294                         action,
295                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
296                         &disk_to_dev(bdev->bd_disk)->kobj);
297 }
298
299 void __exit btrfs_cleanup_fs_uuids(void)
300 {
301         struct btrfs_fs_devices *fs_devices;
302
303         while (!list_empty(&fs_uuids)) {
304                 fs_devices = list_entry(fs_uuids.next,
305                                         struct btrfs_fs_devices, fs_list);
306                 list_del(&fs_devices->fs_list);
307                 free_fs_devices(fs_devices);
308         }
309 }
310
311 /*
312  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
313  * Returned struct is not linked onto any lists and must be destroyed using
314  * btrfs_free_device.
315  */
316 static struct btrfs_device *__alloc_device(void)
317 {
318         struct btrfs_device *dev;
319
320         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
321         if (!dev)
322                 return ERR_PTR(-ENOMEM);
323
324         /*
325          * Preallocate a bio that's always going to be used for flushing device
326          * barriers and matches the device lifespan
327          */
328         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
329         if (!dev->flush_bio) {
330                 kfree(dev);
331                 return ERR_PTR(-ENOMEM);
332         }
333
334         INIT_LIST_HEAD(&dev->dev_list);
335         INIT_LIST_HEAD(&dev->dev_alloc_list);
336         INIT_LIST_HEAD(&dev->resized_list);
337
338         spin_lock_init(&dev->io_lock);
339
340         atomic_set(&dev->reada_in_flight, 0);
341         atomic_set(&dev->dev_stats_ccnt, 0);
342         btrfs_device_data_ordered_init(dev);
343         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
344         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
345
346         return dev;
347 }
348
349 /*
350  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
351  * return NULL.
352  *
353  * If devid and uuid are both specified, the match must be exact, otherwise
354  * only devid is used.
355  */
356 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
357                 u64 devid, const u8 *uuid)
358 {
359         struct btrfs_device *dev;
360
361         list_for_each_entry(dev, &fs_devices->devices, dev_list) {
362                 if (dev->devid == devid &&
363                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
364                         return dev;
365                 }
366         }
367         return NULL;
368 }
369
370 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
371 {
372         struct btrfs_fs_devices *fs_devices;
373
374         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
375                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
376                         return fs_devices;
377         }
378         return NULL;
379 }
380
381 static int
382 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
383                       int flush, struct block_device **bdev,
384                       struct buffer_head **bh)
385 {
386         int ret;
387
388         *bdev = blkdev_get_by_path(device_path, flags, holder);
389
390         if (IS_ERR(*bdev)) {
391                 ret = PTR_ERR(*bdev);
392                 goto error;
393         }
394
395         if (flush)
396                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
397         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
398         if (ret) {
399                 blkdev_put(*bdev, flags);
400                 goto error;
401         }
402         invalidate_bdev(*bdev);
403         *bh = btrfs_read_dev_super(*bdev);
404         if (IS_ERR(*bh)) {
405                 ret = PTR_ERR(*bh);
406                 blkdev_put(*bdev, flags);
407                 goto error;
408         }
409
410         return 0;
411
412 error:
413         *bdev = NULL;
414         *bh = NULL;
415         return ret;
416 }
417
418 static void requeue_list(struct btrfs_pending_bios *pending_bios,
419                         struct bio *head, struct bio *tail)
420 {
421
422         struct bio *old_head;
423
424         old_head = pending_bios->head;
425         pending_bios->head = head;
426         if (pending_bios->tail)
427                 tail->bi_next = old_head;
428         else
429                 pending_bios->tail = tail;
430 }
431
432 /*
433  * we try to collect pending bios for a device so we don't get a large
434  * number of procs sending bios down to the same device.  This greatly
435  * improves the schedulers ability to collect and merge the bios.
436  *
437  * But, it also turns into a long list of bios to process and that is sure
438  * to eventually make the worker thread block.  The solution here is to
439  * make some progress and then put this work struct back at the end of
440  * the list if the block device is congested.  This way, multiple devices
441  * can make progress from a single worker thread.
442  */
443 static noinline void run_scheduled_bios(struct btrfs_device *device)
444 {
445         struct btrfs_fs_info *fs_info = device->fs_info;
446         struct bio *pending;
447         struct backing_dev_info *bdi;
448         struct btrfs_pending_bios *pending_bios;
449         struct bio *tail;
450         struct bio *cur;
451         int again = 0;
452         unsigned long num_run;
453         unsigned long batch_run = 0;
454         unsigned long last_waited = 0;
455         int force_reg = 0;
456         int sync_pending = 0;
457         struct blk_plug plug;
458
459         /*
460          * this function runs all the bios we've collected for
461          * a particular device.  We don't want to wander off to
462          * another device without first sending all of these down.
463          * So, setup a plug here and finish it off before we return
464          */
465         blk_start_plug(&plug);
466
467         bdi = device->bdev->bd_bdi;
468
469 loop:
470         spin_lock(&device->io_lock);
471
472 loop_lock:
473         num_run = 0;
474
475         /* take all the bios off the list at once and process them
476          * later on (without the lock held).  But, remember the
477          * tail and other pointers so the bios can be properly reinserted
478          * into the list if we hit congestion
479          */
480         if (!force_reg && device->pending_sync_bios.head) {
481                 pending_bios = &device->pending_sync_bios;
482                 force_reg = 1;
483         } else {
484                 pending_bios = &device->pending_bios;
485                 force_reg = 0;
486         }
487
488         pending = pending_bios->head;
489         tail = pending_bios->tail;
490         WARN_ON(pending && !tail);
491
492         /*
493          * if pending was null this time around, no bios need processing
494          * at all and we can stop.  Otherwise it'll loop back up again
495          * and do an additional check so no bios are missed.
496          *
497          * device->running_pending is used to synchronize with the
498          * schedule_bio code.
499          */
500         if (device->pending_sync_bios.head == NULL &&
501             device->pending_bios.head == NULL) {
502                 again = 0;
503                 device->running_pending = 0;
504         } else {
505                 again = 1;
506                 device->running_pending = 1;
507         }
508
509         pending_bios->head = NULL;
510         pending_bios->tail = NULL;
511
512         spin_unlock(&device->io_lock);
513
514         while (pending) {
515
516                 rmb();
517                 /* we want to work on both lists, but do more bios on the
518                  * sync list than the regular list
519                  */
520                 if ((num_run > 32 &&
521                     pending_bios != &device->pending_sync_bios &&
522                     device->pending_sync_bios.head) ||
523                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
524                     device->pending_bios.head)) {
525                         spin_lock(&device->io_lock);
526                         requeue_list(pending_bios, pending, tail);
527                         goto loop_lock;
528                 }
529
530                 cur = pending;
531                 pending = pending->bi_next;
532                 cur->bi_next = NULL;
533
534                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
535
536                 /*
537                  * if we're doing the sync list, record that our
538                  * plug has some sync requests on it
539                  *
540                  * If we're doing the regular list and there are
541                  * sync requests sitting around, unplug before
542                  * we add more
543                  */
544                 if (pending_bios == &device->pending_sync_bios) {
545                         sync_pending = 1;
546                 } else if (sync_pending) {
547                         blk_finish_plug(&plug);
548                         blk_start_plug(&plug);
549                         sync_pending = 0;
550                 }
551
552                 btrfsic_submit_bio(cur);
553                 num_run++;
554                 batch_run++;
555
556                 cond_resched();
557
558                 /*
559                  * we made progress, there is more work to do and the bdi
560                  * is now congested.  Back off and let other work structs
561                  * run instead
562                  */
563                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
564                     fs_info->fs_devices->open_devices > 1) {
565                         struct io_context *ioc;
566
567                         ioc = current->io_context;
568
569                         /*
570                          * the main goal here is that we don't want to
571                          * block if we're going to be able to submit
572                          * more requests without blocking.
573                          *
574                          * This code does two great things, it pokes into
575                          * the elevator code from a filesystem _and_
576                          * it makes assumptions about how batching works.
577                          */
578                         if (ioc && ioc->nr_batch_requests > 0 &&
579                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
580                             (last_waited == 0 ||
581                              ioc->last_waited == last_waited)) {
582                                 /*
583                                  * we want to go through our batch of
584                                  * requests and stop.  So, we copy out
585                                  * the ioc->last_waited time and test
586                                  * against it before looping
587                                  */
588                                 last_waited = ioc->last_waited;
589                                 cond_resched();
590                                 continue;
591                         }
592                         spin_lock(&device->io_lock);
593                         requeue_list(pending_bios, pending, tail);
594                         device->running_pending = 1;
595
596                         spin_unlock(&device->io_lock);
597                         btrfs_queue_work(fs_info->submit_workers,
598                                          &device->work);
599                         goto done;
600                 }
601         }
602
603         cond_resched();
604         if (again)
605                 goto loop;
606
607         spin_lock(&device->io_lock);
608         if (device->pending_bios.head || device->pending_sync_bios.head)
609                 goto loop_lock;
610         spin_unlock(&device->io_lock);
611
612 done:
613         blk_finish_plug(&plug);
614 }
615
616 static void pending_bios_fn(struct btrfs_work *work)
617 {
618         struct btrfs_device *device;
619
620         device = container_of(work, struct btrfs_device, work);
621         run_scheduled_bios(device);
622 }
623
624 /*
625  *  Search and remove all stale (devices which are not mounted) devices.
626  *  When both inputs are NULL, it will search and release all stale devices.
627  *  path:       Optional. When provided will it release all unmounted devices
628  *              matching this path only.
629  *  skip_dev:   Optional. Will skip this device when searching for the stale
630  *              devices.
631  */
632 static void btrfs_free_stale_devices(const char *path,
633                                      struct btrfs_device *skip_dev)
634 {
635         struct btrfs_fs_devices *fs_devs, *tmp_fs_devs;
636         struct btrfs_device *dev, *tmp_dev;
637
638         list_for_each_entry_safe(fs_devs, tmp_fs_devs, &fs_uuids, fs_list) {
639
640                 if (fs_devs->opened)
641                         continue;
642
643                 list_for_each_entry_safe(dev, tmp_dev,
644                                          &fs_devs->devices, dev_list) {
645                         int not_found = 0;
646
647                         if (skip_dev && skip_dev == dev)
648                                 continue;
649                         if (path && !dev->name)
650                                 continue;
651
652                         rcu_read_lock();
653                         if (path)
654                                 not_found = strcmp(rcu_str_deref(dev->name),
655                                                    path);
656                         rcu_read_unlock();
657                         if (not_found)
658                                 continue;
659
660                         /* delete the stale device */
661                         if (fs_devs->num_devices == 1) {
662                                 btrfs_sysfs_remove_fsid(fs_devs);
663                                 list_del(&fs_devs->fs_list);
664                                 free_fs_devices(fs_devs);
665                                 break;
666                         } else {
667                                 fs_devs->num_devices--;
668                                 list_del(&dev->dev_list);
669                                 btrfs_free_device(dev);
670                         }
671                 }
672         }
673 }
674
675 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
676                         struct btrfs_device *device, fmode_t flags,
677                         void *holder)
678 {
679         struct request_queue *q;
680         struct block_device *bdev;
681         struct buffer_head *bh;
682         struct btrfs_super_block *disk_super;
683         u64 devid;
684         int ret;
685
686         if (device->bdev)
687                 return -EINVAL;
688         if (!device->name)
689                 return -EINVAL;
690
691         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
692                                     &bdev, &bh);
693         if (ret)
694                 return ret;
695
696         disk_super = (struct btrfs_super_block *)bh->b_data;
697         devid = btrfs_stack_device_id(&disk_super->dev_item);
698         if (devid != device->devid)
699                 goto error_brelse;
700
701         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
702                 goto error_brelse;
703
704         device->generation = btrfs_super_generation(disk_super);
705
706         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
707                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
708                 fs_devices->seeding = 1;
709         } else {
710                 if (bdev_read_only(bdev))
711                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
712                 else
713                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
714         }
715
716         q = bdev_get_queue(bdev);
717         if (!blk_queue_nonrot(q))
718                 fs_devices->rotating = 1;
719
720         device->bdev = bdev;
721         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
722         device->mode = flags;
723
724         fs_devices->open_devices++;
725         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
726             device->devid != BTRFS_DEV_REPLACE_DEVID) {
727                 fs_devices->rw_devices++;
728                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
729         }
730         brelse(bh);
731
732         return 0;
733
734 error_brelse:
735         brelse(bh);
736         blkdev_put(bdev, flags);
737
738         return -EINVAL;
739 }
740
741 /*
742  * Add new device to list of registered devices
743  *
744  * Returns:
745  * device pointer which was just added or updated when successful
746  * error pointer when failed
747  */
748 static noinline struct btrfs_device *device_list_add(const char *path,
749                            struct btrfs_super_block *disk_super)
750 {
751         struct btrfs_device *device;
752         struct btrfs_fs_devices *fs_devices;
753         struct rcu_string *name;
754         u64 found_transid = btrfs_super_generation(disk_super);
755         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
756
757         fs_devices = find_fsid(disk_super->fsid);
758         if (!fs_devices) {
759                 fs_devices = alloc_fs_devices(disk_super->fsid);
760                 if (IS_ERR(fs_devices))
761                         return ERR_CAST(fs_devices);
762
763                 list_add(&fs_devices->fs_list, &fs_uuids);
764
765                 device = NULL;
766         } else {
767                 device = find_device(fs_devices, devid,
768                                 disk_super->dev_item.uuid);
769         }
770
771         if (!device) {
772                 if (fs_devices->opened)
773                         return ERR_PTR(-EBUSY);
774
775                 device = btrfs_alloc_device(NULL, &devid,
776                                             disk_super->dev_item.uuid);
777                 if (IS_ERR(device)) {
778                         /* we can safely leave the fs_devices entry around */
779                         return device;
780                 }
781
782                 name = rcu_string_strdup(path, GFP_NOFS);
783                 if (!name) {
784                         btrfs_free_device(device);
785                         return ERR_PTR(-ENOMEM);
786                 }
787                 rcu_assign_pointer(device->name, name);
788
789                 mutex_lock(&fs_devices->device_list_mutex);
790                 list_add_rcu(&device->dev_list, &fs_devices->devices);
791                 fs_devices->num_devices++;
792                 mutex_unlock(&fs_devices->device_list_mutex);
793
794                 device->fs_devices = fs_devices;
795                 btrfs_free_stale_devices(path, device);
796
797                 if (disk_super->label[0])
798                         pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
799                                 disk_super->label, devid, found_transid, path);
800                 else
801                         pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
802                                 disk_super->fsid, devid, found_transid, path);
803
804         } else if (!device->name || strcmp(device->name->str, path)) {
805                 /*
806                  * When FS is already mounted.
807                  * 1. If you are here and if the device->name is NULL that
808                  *    means this device was missing at time of FS mount.
809                  * 2. If you are here and if the device->name is different
810                  *    from 'path' that means either
811                  *      a. The same device disappeared and reappeared with
812                  *         different name. or
813                  *      b. The missing-disk-which-was-replaced, has
814                  *         reappeared now.
815                  *
816                  * We must allow 1 and 2a above. But 2b would be a spurious
817                  * and unintentional.
818                  *
819                  * Further in case of 1 and 2a above, the disk at 'path'
820                  * would have missed some transaction when it was away and
821                  * in case of 2a the stale bdev has to be updated as well.
822                  * 2b must not be allowed at all time.
823                  */
824
825                 /*
826                  * For now, we do allow update to btrfs_fs_device through the
827                  * btrfs dev scan cli after FS has been mounted.  We're still
828                  * tracking a problem where systems fail mount by subvolume id
829                  * when we reject replacement on a mounted FS.
830                  */
831                 if (!fs_devices->opened && found_transid < device->generation) {
832                         /*
833                          * That is if the FS is _not_ mounted and if you
834                          * are here, that means there is more than one
835                          * disk with same uuid and devid.We keep the one
836                          * with larger generation number or the last-in if
837                          * generation are equal.
838                          */
839                         return ERR_PTR(-EEXIST);
840                 }
841
842                 name = rcu_string_strdup(path, GFP_NOFS);
843                 if (!name)
844                         return ERR_PTR(-ENOMEM);
845                 rcu_string_free(device->name);
846                 rcu_assign_pointer(device->name, name);
847                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
848                         fs_devices->missing_devices--;
849                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
850                 }
851         }
852
853         /*
854          * Unmount does not free the btrfs_device struct but would zero
855          * generation along with most of the other members. So just update
856          * it back. We need it to pick the disk with largest generation
857          * (as above).
858          */
859         if (!fs_devices->opened)
860                 device->generation = found_transid;
861
862         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
863
864         return device;
865 }
866
867 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
868 {
869         struct btrfs_fs_devices *fs_devices;
870         struct btrfs_device *device;
871         struct btrfs_device *orig_dev;
872
873         fs_devices = alloc_fs_devices(orig->fsid);
874         if (IS_ERR(fs_devices))
875                 return fs_devices;
876
877         mutex_lock(&orig->device_list_mutex);
878         fs_devices->total_devices = orig->total_devices;
879
880         /* We have held the volume lock, it is safe to get the devices. */
881         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
882                 struct rcu_string *name;
883
884                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
885                                             orig_dev->uuid);
886                 if (IS_ERR(device))
887                         goto error;
888
889                 /*
890                  * This is ok to do without rcu read locked because we hold the
891                  * uuid mutex so nothing we touch in here is going to disappear.
892                  */
893                 if (orig_dev->name) {
894                         name = rcu_string_strdup(orig_dev->name->str,
895                                         GFP_KERNEL);
896                         if (!name) {
897                                 btrfs_free_device(device);
898                                 goto error;
899                         }
900                         rcu_assign_pointer(device->name, name);
901                 }
902
903                 list_add(&device->dev_list, &fs_devices->devices);
904                 device->fs_devices = fs_devices;
905                 fs_devices->num_devices++;
906         }
907         mutex_unlock(&orig->device_list_mutex);
908         return fs_devices;
909 error:
910         mutex_unlock(&orig->device_list_mutex);
911         free_fs_devices(fs_devices);
912         return ERR_PTR(-ENOMEM);
913 }
914
915 /*
916  * After we have read the system tree and know devids belonging to
917  * this filesystem, remove the device which does not belong there.
918  */
919 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
920 {
921         struct btrfs_device *device, *next;
922         struct btrfs_device *latest_dev = NULL;
923
924         mutex_lock(&uuid_mutex);
925 again:
926         /* This is the initialized path, it is safe to release the devices. */
927         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
928                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
929                                                         &device->dev_state)) {
930                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
931                              &device->dev_state) &&
932                              (!latest_dev ||
933                               device->generation > latest_dev->generation)) {
934                                 latest_dev = device;
935                         }
936                         continue;
937                 }
938
939                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
940                         /*
941                          * In the first step, keep the device which has
942                          * the correct fsid and the devid that is used
943                          * for the dev_replace procedure.
944                          * In the second step, the dev_replace state is
945                          * read from the device tree and it is known
946                          * whether the procedure is really active or
947                          * not, which means whether this device is
948                          * used or whether it should be removed.
949                          */
950                         if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
951                                                   &device->dev_state)) {
952                                 continue;
953                         }
954                 }
955                 if (device->bdev) {
956                         blkdev_put(device->bdev, device->mode);
957                         device->bdev = NULL;
958                         fs_devices->open_devices--;
959                 }
960                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
961                         list_del_init(&device->dev_alloc_list);
962                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
963                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
964                                       &device->dev_state))
965                                 fs_devices->rw_devices--;
966                 }
967                 list_del_init(&device->dev_list);
968                 fs_devices->num_devices--;
969                 btrfs_free_device(device);
970         }
971
972         if (fs_devices->seed) {
973                 fs_devices = fs_devices->seed;
974                 goto again;
975         }
976
977         fs_devices->latest_bdev = latest_dev->bdev;
978
979         mutex_unlock(&uuid_mutex);
980 }
981
982 static void free_device_rcu(struct rcu_head *head)
983 {
984         struct btrfs_device *device;
985
986         device = container_of(head, struct btrfs_device, rcu);
987         btrfs_free_device(device);
988 }
989
990 static void btrfs_close_bdev(struct btrfs_device *device)
991 {
992         if (!device->bdev)
993                 return;
994
995         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
996                 sync_blockdev(device->bdev);
997                 invalidate_bdev(device->bdev);
998         }
999
1000         blkdev_put(device->bdev, device->mode);
1001 }
1002
1003 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
1004 {
1005         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1006         struct btrfs_device *new_device;
1007         struct rcu_string *name;
1008
1009         if (device->bdev)
1010                 fs_devices->open_devices--;
1011
1012         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1013             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1014                 list_del_init(&device->dev_alloc_list);
1015                 fs_devices->rw_devices--;
1016         }
1017
1018         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1019                 fs_devices->missing_devices--;
1020
1021         new_device = btrfs_alloc_device(NULL, &device->devid,
1022                                         device->uuid);
1023         BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1024
1025         /* Safe because we are under uuid_mutex */
1026         if (device->name) {
1027                 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1028                 BUG_ON(!name); /* -ENOMEM */
1029                 rcu_assign_pointer(new_device->name, name);
1030         }
1031
1032         list_replace_rcu(&device->dev_list, &new_device->dev_list);
1033         new_device->fs_devices = device->fs_devices;
1034 }
1035
1036 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1037 {
1038         struct btrfs_device *device, *tmp;
1039         struct list_head pending_put;
1040
1041         INIT_LIST_HEAD(&pending_put);
1042
1043         if (--fs_devices->opened > 0)
1044                 return 0;
1045
1046         mutex_lock(&fs_devices->device_list_mutex);
1047         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1048                 btrfs_prepare_close_one_device(device);
1049                 list_add(&device->dev_list, &pending_put);
1050         }
1051         mutex_unlock(&fs_devices->device_list_mutex);
1052
1053         /*
1054          * btrfs_show_devname() is using the device_list_mutex,
1055          * sometimes call to blkdev_put() leads vfs calling
1056          * into this func. So do put outside of device_list_mutex,
1057          * as of now.
1058          */
1059         while (!list_empty(&pending_put)) {
1060                 device = list_first_entry(&pending_put,
1061                                 struct btrfs_device, dev_list);
1062                 list_del(&device->dev_list);
1063                 btrfs_close_bdev(device);
1064                 call_rcu(&device->rcu, free_device_rcu);
1065         }
1066
1067         WARN_ON(fs_devices->open_devices);
1068         WARN_ON(fs_devices->rw_devices);
1069         fs_devices->opened = 0;
1070         fs_devices->seeding = 0;
1071
1072         return 0;
1073 }
1074
1075 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1076 {
1077         struct btrfs_fs_devices *seed_devices = NULL;
1078         int ret;
1079
1080         mutex_lock(&uuid_mutex);
1081         ret = close_fs_devices(fs_devices);
1082         if (!fs_devices->opened) {
1083                 seed_devices = fs_devices->seed;
1084                 fs_devices->seed = NULL;
1085         }
1086         mutex_unlock(&uuid_mutex);
1087
1088         while (seed_devices) {
1089                 fs_devices = seed_devices;
1090                 seed_devices = fs_devices->seed;
1091                 close_fs_devices(fs_devices);
1092                 free_fs_devices(fs_devices);
1093         }
1094         return ret;
1095 }
1096
1097 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1098                                 fmode_t flags, void *holder)
1099 {
1100         struct btrfs_device *device;
1101         struct btrfs_device *latest_dev = NULL;
1102         int ret = 0;
1103
1104         flags |= FMODE_EXCL;
1105
1106         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1107                 /* Just open everything we can; ignore failures here */
1108                 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1109                         continue;
1110
1111                 if (!latest_dev ||
1112                     device->generation > latest_dev->generation)
1113                         latest_dev = device;
1114         }
1115         if (fs_devices->open_devices == 0) {
1116                 ret = -EINVAL;
1117                 goto out;
1118         }
1119         fs_devices->opened = 1;
1120         fs_devices->latest_bdev = latest_dev->bdev;
1121         fs_devices->total_rw_bytes = 0;
1122 out:
1123         return ret;
1124 }
1125
1126 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1127 {
1128         struct btrfs_device *dev1, *dev2;
1129
1130         dev1 = list_entry(a, struct btrfs_device, dev_list);
1131         dev2 = list_entry(b, struct btrfs_device, dev_list);
1132
1133         if (dev1->devid < dev2->devid)
1134                 return -1;
1135         else if (dev1->devid > dev2->devid)
1136                 return 1;
1137         return 0;
1138 }
1139
1140 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1141                        fmode_t flags, void *holder)
1142 {
1143         int ret;
1144
1145         mutex_lock(&uuid_mutex);
1146         if (fs_devices->opened) {
1147                 fs_devices->opened++;
1148                 ret = 0;
1149         } else {
1150                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1151                 ret = open_fs_devices(fs_devices, flags, holder);
1152         }
1153         mutex_unlock(&uuid_mutex);
1154         return ret;
1155 }
1156
1157 static void btrfs_release_disk_super(struct page *page)
1158 {
1159         kunmap(page);
1160         put_page(page);
1161 }
1162
1163 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1164                                  struct page **page,
1165                                  struct btrfs_super_block **disk_super)
1166 {
1167         void *p;
1168         pgoff_t index;
1169
1170         /* make sure our super fits in the device */
1171         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1172                 return 1;
1173
1174         /* make sure our super fits in the page */
1175         if (sizeof(**disk_super) > PAGE_SIZE)
1176                 return 1;
1177
1178         /* make sure our super doesn't straddle pages on disk */
1179         index = bytenr >> PAGE_SHIFT;
1180         if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1181                 return 1;
1182
1183         /* pull in the page with our super */
1184         *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1185                                    index, GFP_KERNEL);
1186
1187         if (IS_ERR_OR_NULL(*page))
1188                 return 1;
1189
1190         p = kmap(*page);
1191
1192         /* align our pointer to the offset of the super block */
1193         *disk_super = p + (bytenr & ~PAGE_MASK);
1194
1195         if (btrfs_super_bytenr(*disk_super) != bytenr ||
1196             btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1197                 btrfs_release_disk_super(*page);
1198                 return 1;
1199         }
1200
1201         if ((*disk_super)->label[0] &&
1202                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1203                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1204
1205         return 0;
1206 }
1207
1208 /*
1209  * Look for a btrfs signature on a device. This may be called out of the mount path
1210  * and we are not allowed to call set_blocksize during the scan. The superblock
1211  * is read via pagecache
1212  */
1213 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1214                           struct btrfs_fs_devices **fs_devices_ret)
1215 {
1216         struct btrfs_super_block *disk_super;
1217         struct btrfs_device *device;
1218         struct block_device *bdev;
1219         struct page *page;
1220         int ret = 0;
1221         u64 bytenr;
1222
1223         /*
1224          * we would like to check all the supers, but that would make
1225          * a btrfs mount succeed after a mkfs from a different FS.
1226          * So, we need to add a special mount option to scan for
1227          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1228          */
1229         bytenr = btrfs_sb_offset(0);
1230         flags |= FMODE_EXCL;
1231         mutex_lock(&uuid_mutex);
1232
1233         bdev = blkdev_get_by_path(path, flags, holder);
1234         if (IS_ERR(bdev)) {
1235                 ret = PTR_ERR(bdev);
1236                 goto error;
1237         }
1238
1239         if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1240                 ret = -EINVAL;
1241                 goto error_bdev_put;
1242         }
1243
1244         device = device_list_add(path, disk_super);
1245         if (IS_ERR(device))
1246                 ret = PTR_ERR(device);
1247         else
1248                 *fs_devices_ret = device->fs_devices;
1249
1250         btrfs_release_disk_super(page);
1251
1252 error_bdev_put:
1253         blkdev_put(bdev, flags);
1254 error:
1255         mutex_unlock(&uuid_mutex);
1256         return ret;
1257 }
1258
1259 /* helper to account the used device space in the range */
1260 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1261                                    u64 end, u64 *length)
1262 {
1263         struct btrfs_key key;
1264         struct btrfs_root *root = device->fs_info->dev_root;
1265         struct btrfs_dev_extent *dev_extent;
1266         struct btrfs_path *path;
1267         u64 extent_end;
1268         int ret;
1269         int slot;
1270         struct extent_buffer *l;
1271
1272         *length = 0;
1273
1274         if (start >= device->total_bytes ||
1275                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1276                 return 0;
1277
1278         path = btrfs_alloc_path();
1279         if (!path)
1280                 return -ENOMEM;
1281         path->reada = READA_FORWARD;
1282
1283         key.objectid = device->devid;
1284         key.offset = start;
1285         key.type = BTRFS_DEV_EXTENT_KEY;
1286
1287         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1288         if (ret < 0)
1289                 goto out;
1290         if (ret > 0) {
1291                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1292                 if (ret < 0)
1293                         goto out;
1294         }
1295
1296         while (1) {
1297                 l = path->nodes[0];
1298                 slot = path->slots[0];
1299                 if (slot >= btrfs_header_nritems(l)) {
1300                         ret = btrfs_next_leaf(root, path);
1301                         if (ret == 0)
1302                                 continue;
1303                         if (ret < 0)
1304                                 goto out;
1305
1306                         break;
1307                 }
1308                 btrfs_item_key_to_cpu(l, &key, slot);
1309
1310                 if (key.objectid < device->devid)
1311                         goto next;
1312
1313                 if (key.objectid > device->devid)
1314                         break;
1315
1316                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1317                         goto next;
1318
1319                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1320                 extent_end = key.offset + btrfs_dev_extent_length(l,
1321                                                                   dev_extent);
1322                 if (key.offset <= start && extent_end > end) {
1323                         *length = end - start + 1;
1324                         break;
1325                 } else if (key.offset <= start && extent_end > start)
1326                         *length += extent_end - start;
1327                 else if (key.offset > start && extent_end <= end)
1328                         *length += extent_end - key.offset;
1329                 else if (key.offset > start && key.offset <= end) {
1330                         *length += end - key.offset + 1;
1331                         break;
1332                 } else if (key.offset > end)
1333                         break;
1334
1335 next:
1336                 path->slots[0]++;
1337         }
1338         ret = 0;
1339 out:
1340         btrfs_free_path(path);
1341         return ret;
1342 }
1343
1344 static int contains_pending_extent(struct btrfs_transaction *transaction,
1345                                    struct btrfs_device *device,
1346                                    u64 *start, u64 len)
1347 {
1348         struct btrfs_fs_info *fs_info = device->fs_info;
1349         struct extent_map *em;
1350         struct list_head *search_list = &fs_info->pinned_chunks;
1351         int ret = 0;
1352         u64 physical_start = *start;
1353
1354         if (transaction)
1355                 search_list = &transaction->pending_chunks;
1356 again:
1357         list_for_each_entry(em, search_list, list) {
1358                 struct map_lookup *map;
1359                 int i;
1360
1361                 map = em->map_lookup;
1362                 for (i = 0; i < map->num_stripes; i++) {
1363                         u64 end;
1364
1365                         if (map->stripes[i].dev != device)
1366                                 continue;
1367                         if (map->stripes[i].physical >= physical_start + len ||
1368                             map->stripes[i].physical + em->orig_block_len <=
1369                             physical_start)
1370                                 continue;
1371                         /*
1372                          * Make sure that while processing the pinned list we do
1373                          * not override our *start with a lower value, because
1374                          * we can have pinned chunks that fall within this
1375                          * device hole and that have lower physical addresses
1376                          * than the pending chunks we processed before. If we
1377                          * do not take this special care we can end up getting
1378                          * 2 pending chunks that start at the same physical
1379                          * device offsets because the end offset of a pinned
1380                          * chunk can be equal to the start offset of some
1381                          * pending chunk.
1382                          */
1383                         end = map->stripes[i].physical + em->orig_block_len;
1384                         if (end > *start) {
1385                                 *start = end;
1386                                 ret = 1;
1387                         }
1388                 }
1389         }
1390         if (search_list != &fs_info->pinned_chunks) {
1391                 search_list = &fs_info->pinned_chunks;
1392                 goto again;
1393         }
1394
1395         return ret;
1396 }
1397
1398
1399 /*
1400  * find_free_dev_extent_start - find free space in the specified device
1401  * @device:       the device which we search the free space in
1402  * @num_bytes:    the size of the free space that we need
1403  * @search_start: the position from which to begin the search
1404  * @start:        store the start of the free space.
1405  * @len:          the size of the free space. that we find, or the size
1406  *                of the max free space if we don't find suitable free space
1407  *
1408  * this uses a pretty simple search, the expectation is that it is
1409  * called very infrequently and that a given device has a small number
1410  * of extents
1411  *
1412  * @start is used to store the start of the free space if we find. But if we
1413  * don't find suitable free space, it will be used to store the start position
1414  * of the max free space.
1415  *
1416  * @len is used to store the size of the free space that we find.
1417  * But if we don't find suitable free space, it is used to store the size of
1418  * the max free space.
1419  */
1420 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1421                                struct btrfs_device *device, u64 num_bytes,
1422                                u64 search_start, u64 *start, u64 *len)
1423 {
1424         struct btrfs_fs_info *fs_info = device->fs_info;
1425         struct btrfs_root *root = fs_info->dev_root;
1426         struct btrfs_key key;
1427         struct btrfs_dev_extent *dev_extent;
1428         struct btrfs_path *path;
1429         u64 hole_size;
1430         u64 max_hole_start;
1431         u64 max_hole_size;
1432         u64 extent_end;
1433         u64 search_end = device->total_bytes;
1434         int ret;
1435         int slot;
1436         struct extent_buffer *l;
1437
1438         /*
1439          * We don't want to overwrite the superblock on the drive nor any area
1440          * used by the boot loader (grub for example), so we make sure to start
1441          * at an offset of at least 1MB.
1442          */
1443         search_start = max_t(u64, search_start, SZ_1M);
1444
1445         path = btrfs_alloc_path();
1446         if (!path)
1447                 return -ENOMEM;
1448
1449         max_hole_start = search_start;
1450         max_hole_size = 0;
1451
1452 again:
1453         if (search_start >= search_end ||
1454                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1455                 ret = -ENOSPC;
1456                 goto out;
1457         }
1458
1459         path->reada = READA_FORWARD;
1460         path->search_commit_root = 1;
1461         path->skip_locking = 1;
1462
1463         key.objectid = device->devid;
1464         key.offset = search_start;
1465         key.type = BTRFS_DEV_EXTENT_KEY;
1466
1467         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1468         if (ret < 0)
1469                 goto out;
1470         if (ret > 0) {
1471                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1472                 if (ret < 0)
1473                         goto out;
1474         }
1475
1476         while (1) {
1477                 l = path->nodes[0];
1478                 slot = path->slots[0];
1479                 if (slot >= btrfs_header_nritems(l)) {
1480                         ret = btrfs_next_leaf(root, path);
1481                         if (ret == 0)
1482                                 continue;
1483                         if (ret < 0)
1484                                 goto out;
1485
1486                         break;
1487                 }
1488                 btrfs_item_key_to_cpu(l, &key, slot);
1489
1490                 if (key.objectid < device->devid)
1491                         goto next;
1492
1493                 if (key.objectid > device->devid)
1494                         break;
1495
1496                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1497                         goto next;
1498
1499                 if (key.offset > search_start) {
1500                         hole_size = key.offset - search_start;
1501
1502                         /*
1503                          * Have to check before we set max_hole_start, otherwise
1504                          * we could end up sending back this offset anyway.
1505                          */
1506                         if (contains_pending_extent(transaction, device,
1507                                                     &search_start,
1508                                                     hole_size)) {
1509                                 if (key.offset >= search_start) {
1510                                         hole_size = key.offset - search_start;
1511                                 } else {
1512                                         WARN_ON_ONCE(1);
1513                                         hole_size = 0;
1514                                 }
1515                         }
1516
1517                         if (hole_size > max_hole_size) {
1518                                 max_hole_start = search_start;
1519                                 max_hole_size = hole_size;
1520                         }
1521
1522                         /*
1523                          * If this free space is greater than which we need,
1524                          * it must be the max free space that we have found
1525                          * until now, so max_hole_start must point to the start
1526                          * of this free space and the length of this free space
1527                          * is stored in max_hole_size. Thus, we return
1528                          * max_hole_start and max_hole_size and go back to the
1529                          * caller.
1530                          */
1531                         if (hole_size >= num_bytes) {
1532                                 ret = 0;
1533                                 goto out;
1534                         }
1535                 }
1536
1537                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1538                 extent_end = key.offset + btrfs_dev_extent_length(l,
1539                                                                   dev_extent);
1540                 if (extent_end > search_start)
1541                         search_start = extent_end;
1542 next:
1543                 path->slots[0]++;
1544                 cond_resched();
1545         }
1546
1547         /*
1548          * At this point, search_start should be the end of
1549          * allocated dev extents, and when shrinking the device,
1550          * search_end may be smaller than search_start.
1551          */
1552         if (search_end > search_start) {
1553                 hole_size = search_end - search_start;
1554
1555                 if (contains_pending_extent(transaction, device, &search_start,
1556                                             hole_size)) {
1557                         btrfs_release_path(path);
1558                         goto again;
1559                 }
1560
1561                 if (hole_size > max_hole_size) {
1562                         max_hole_start = search_start;
1563                         max_hole_size = hole_size;
1564                 }
1565         }
1566
1567         /* See above. */
1568         if (max_hole_size < num_bytes)
1569                 ret = -ENOSPC;
1570         else
1571                 ret = 0;
1572
1573 out:
1574         btrfs_free_path(path);
1575         *start = max_hole_start;
1576         if (len)
1577                 *len = max_hole_size;
1578         return ret;
1579 }
1580
1581 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1582                          struct btrfs_device *device, u64 num_bytes,
1583                          u64 *start, u64 *len)
1584 {
1585         /* FIXME use last free of some kind */
1586         return find_free_dev_extent_start(trans->transaction, device,
1587                                           num_bytes, 0, start, len);
1588 }
1589
1590 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1591                           struct btrfs_device *device,
1592                           u64 start, u64 *dev_extent_len)
1593 {
1594         struct btrfs_fs_info *fs_info = device->fs_info;
1595         struct btrfs_root *root = fs_info->dev_root;
1596         int ret;
1597         struct btrfs_path *path;
1598         struct btrfs_key key;
1599         struct btrfs_key found_key;
1600         struct extent_buffer *leaf = NULL;
1601         struct btrfs_dev_extent *extent = NULL;
1602
1603         path = btrfs_alloc_path();
1604         if (!path)
1605                 return -ENOMEM;
1606
1607         key.objectid = device->devid;
1608         key.offset = start;
1609         key.type = BTRFS_DEV_EXTENT_KEY;
1610 again:
1611         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1612         if (ret > 0) {
1613                 ret = btrfs_previous_item(root, path, key.objectid,
1614                                           BTRFS_DEV_EXTENT_KEY);
1615                 if (ret)
1616                         goto out;
1617                 leaf = path->nodes[0];
1618                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1619                 extent = btrfs_item_ptr(leaf, path->slots[0],
1620                                         struct btrfs_dev_extent);
1621                 BUG_ON(found_key.offset > start || found_key.offset +
1622                        btrfs_dev_extent_length(leaf, extent) < start);
1623                 key = found_key;
1624                 btrfs_release_path(path);
1625                 goto again;
1626         } else if (ret == 0) {
1627                 leaf = path->nodes[0];
1628                 extent = btrfs_item_ptr(leaf, path->slots[0],
1629                                         struct btrfs_dev_extent);
1630         } else {
1631                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1632                 goto out;
1633         }
1634
1635         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1636
1637         ret = btrfs_del_item(trans, root, path);
1638         if (ret) {
1639                 btrfs_handle_fs_error(fs_info, ret,
1640                                       "Failed to remove dev extent item");
1641         } else {
1642                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1643         }
1644 out:
1645         btrfs_free_path(path);
1646         return ret;
1647 }
1648
1649 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1650                                   struct btrfs_device *device,
1651                                   u64 chunk_offset, u64 start, u64 num_bytes)
1652 {
1653         int ret;
1654         struct btrfs_path *path;
1655         struct btrfs_fs_info *fs_info = device->fs_info;
1656         struct btrfs_root *root = fs_info->dev_root;
1657         struct btrfs_dev_extent *extent;
1658         struct extent_buffer *leaf;
1659         struct btrfs_key key;
1660
1661         WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1662         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1663         path = btrfs_alloc_path();
1664         if (!path)
1665                 return -ENOMEM;
1666
1667         key.objectid = device->devid;
1668         key.offset = start;
1669         key.type = BTRFS_DEV_EXTENT_KEY;
1670         ret = btrfs_insert_empty_item(trans, root, path, &key,
1671                                       sizeof(*extent));
1672         if (ret)
1673                 goto out;
1674
1675         leaf = path->nodes[0];
1676         extent = btrfs_item_ptr(leaf, path->slots[0],
1677                                 struct btrfs_dev_extent);
1678         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1679                                         BTRFS_CHUNK_TREE_OBJECTID);
1680         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1681                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1682         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1683
1684         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1685         btrfs_mark_buffer_dirty(leaf);
1686 out:
1687         btrfs_free_path(path);
1688         return ret;
1689 }
1690
1691 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1692 {
1693         struct extent_map_tree *em_tree;
1694         struct extent_map *em;
1695         struct rb_node *n;
1696         u64 ret = 0;
1697
1698         em_tree = &fs_info->mapping_tree.map_tree;
1699         read_lock(&em_tree->lock);
1700         n = rb_last(&em_tree->map);
1701         if (n) {
1702                 em = rb_entry(n, struct extent_map, rb_node);
1703                 ret = em->start + em->len;
1704         }
1705         read_unlock(&em_tree->lock);
1706
1707         return ret;
1708 }
1709
1710 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1711                                     u64 *devid_ret)
1712 {
1713         int ret;
1714         struct btrfs_key key;
1715         struct btrfs_key found_key;
1716         struct btrfs_path *path;
1717
1718         path = btrfs_alloc_path();
1719         if (!path)
1720                 return -ENOMEM;
1721
1722         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1723         key.type = BTRFS_DEV_ITEM_KEY;
1724         key.offset = (u64)-1;
1725
1726         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1727         if (ret < 0)
1728                 goto error;
1729
1730         BUG_ON(ret == 0); /* Corruption */
1731
1732         ret = btrfs_previous_item(fs_info->chunk_root, path,
1733                                   BTRFS_DEV_ITEMS_OBJECTID,
1734                                   BTRFS_DEV_ITEM_KEY);
1735         if (ret) {
1736                 *devid_ret = 1;
1737         } else {
1738                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1739                                       path->slots[0]);
1740                 *devid_ret = found_key.offset + 1;
1741         }
1742         ret = 0;
1743 error:
1744         btrfs_free_path(path);
1745         return ret;
1746 }
1747
1748 /*
1749  * the device information is stored in the chunk root
1750  * the btrfs_device struct should be fully filled in
1751  */
1752 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1753                             struct btrfs_fs_info *fs_info,
1754                             struct btrfs_device *device)
1755 {
1756         struct btrfs_root *root = fs_info->chunk_root;
1757         int ret;
1758         struct btrfs_path *path;
1759         struct btrfs_dev_item *dev_item;
1760         struct extent_buffer *leaf;
1761         struct btrfs_key key;
1762         unsigned long ptr;
1763
1764         path = btrfs_alloc_path();
1765         if (!path)
1766                 return -ENOMEM;
1767
1768         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1769         key.type = BTRFS_DEV_ITEM_KEY;
1770         key.offset = device->devid;
1771
1772         ret = btrfs_insert_empty_item(trans, root, path, &key,
1773                                       sizeof(*dev_item));
1774         if (ret)
1775                 goto out;
1776
1777         leaf = path->nodes[0];
1778         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1779
1780         btrfs_set_device_id(leaf, dev_item, device->devid);
1781         btrfs_set_device_generation(leaf, dev_item, 0);
1782         btrfs_set_device_type(leaf, dev_item, device->type);
1783         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1784         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1785         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1786         btrfs_set_device_total_bytes(leaf, dev_item,
1787                                      btrfs_device_get_disk_total_bytes(device));
1788         btrfs_set_device_bytes_used(leaf, dev_item,
1789                                     btrfs_device_get_bytes_used(device));
1790         btrfs_set_device_group(leaf, dev_item, 0);
1791         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1792         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1793         btrfs_set_device_start_offset(leaf, dev_item, 0);
1794
1795         ptr = btrfs_device_uuid(dev_item);
1796         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1797         ptr = btrfs_device_fsid(dev_item);
1798         write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1799         btrfs_mark_buffer_dirty(leaf);
1800
1801         ret = 0;
1802 out:
1803         btrfs_free_path(path);
1804         return ret;
1805 }
1806
1807 /*
1808  * Function to update ctime/mtime for a given device path.
1809  * Mainly used for ctime/mtime based probe like libblkid.
1810  */
1811 static void update_dev_time(const char *path_name)
1812 {
1813         struct file *filp;
1814
1815         filp = filp_open(path_name, O_RDWR, 0);
1816         if (IS_ERR(filp))
1817                 return;
1818         file_update_time(filp);
1819         filp_close(filp, NULL);
1820 }
1821
1822 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1823                              struct btrfs_device *device)
1824 {
1825         struct btrfs_root *root = fs_info->chunk_root;
1826         int ret;
1827         struct btrfs_path *path;
1828         struct btrfs_key key;
1829         struct btrfs_trans_handle *trans;
1830
1831         path = btrfs_alloc_path();
1832         if (!path)
1833                 return -ENOMEM;
1834
1835         trans = btrfs_start_transaction(root, 0);
1836         if (IS_ERR(trans)) {
1837                 btrfs_free_path(path);
1838                 return PTR_ERR(trans);
1839         }
1840         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1841         key.type = BTRFS_DEV_ITEM_KEY;
1842         key.offset = device->devid;
1843
1844         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1845         if (ret) {
1846                 if (ret > 0)
1847                         ret = -ENOENT;
1848                 btrfs_abort_transaction(trans, ret);
1849                 btrfs_end_transaction(trans);
1850                 goto out;
1851         }
1852
1853         ret = btrfs_del_item(trans, root, path);
1854         if (ret) {
1855                 btrfs_abort_transaction(trans, ret);
1856                 btrfs_end_transaction(trans);
1857         }
1858
1859 out:
1860         btrfs_free_path(path);
1861         if (!ret)
1862                 ret = btrfs_commit_transaction(trans);
1863         return ret;
1864 }
1865
1866 /*
1867  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1868  * filesystem. It's up to the caller to adjust that number regarding eg. device
1869  * replace.
1870  */
1871 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1872                 u64 num_devices)
1873 {
1874         u64 all_avail;
1875         unsigned seq;
1876         int i;
1877
1878         do {
1879                 seq = read_seqbegin(&fs_info->profiles_lock);
1880
1881                 all_avail = fs_info->avail_data_alloc_bits |
1882                             fs_info->avail_system_alloc_bits |
1883                             fs_info->avail_metadata_alloc_bits;
1884         } while (read_seqretry(&fs_info->profiles_lock, seq));
1885
1886         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1887                 if (!(all_avail & btrfs_raid_group[i]))
1888                         continue;
1889
1890                 if (num_devices < btrfs_raid_array[i].devs_min) {
1891                         int ret = btrfs_raid_mindev_error[i];
1892
1893                         if (ret)
1894                                 return ret;
1895                 }
1896         }
1897
1898         return 0;
1899 }
1900
1901 static struct btrfs_device * btrfs_find_next_active_device(
1902                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1903 {
1904         struct btrfs_device *next_device;
1905
1906         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1907                 if (next_device != device &&
1908                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1909                     && next_device->bdev)
1910                         return next_device;
1911         }
1912
1913         return NULL;
1914 }
1915
1916 /*
1917  * Helper function to check if the given device is part of s_bdev / latest_bdev
1918  * and replace it with the provided or the next active device, in the context
1919  * where this function called, there should be always be another device (or
1920  * this_dev) which is active.
1921  */
1922 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1923                 struct btrfs_device *device, struct btrfs_device *this_dev)
1924 {
1925         struct btrfs_device *next_device;
1926
1927         if (this_dev)
1928                 next_device = this_dev;
1929         else
1930                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1931                                                                 device);
1932         ASSERT(next_device);
1933
1934         if (fs_info->sb->s_bdev &&
1935                         (fs_info->sb->s_bdev == device->bdev))
1936                 fs_info->sb->s_bdev = next_device->bdev;
1937
1938         if (fs_info->fs_devices->latest_bdev == device->bdev)
1939                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1940 }
1941
1942 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1943                 u64 devid)
1944 {
1945         struct btrfs_device *device;
1946         struct btrfs_fs_devices *cur_devices;
1947         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1948         u64 num_devices;
1949         int ret = 0;
1950
1951         mutex_lock(&uuid_mutex);
1952
1953         num_devices = fs_devices->num_devices;
1954         btrfs_dev_replace_read_lock(&fs_info->dev_replace);
1955         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1956                 WARN_ON(num_devices < 1);
1957                 num_devices--;
1958         }
1959         btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
1960
1961         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1962         if (ret)
1963                 goto out;
1964
1965         ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1966                                            &device);
1967         if (ret)
1968                 goto out;
1969
1970         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1971                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1972                 goto out;
1973         }
1974
1975         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1976             fs_info->fs_devices->rw_devices == 1) {
1977                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1978                 goto out;
1979         }
1980
1981         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1982                 mutex_lock(&fs_info->chunk_mutex);
1983                 list_del_init(&device->dev_alloc_list);
1984                 device->fs_devices->rw_devices--;
1985                 mutex_unlock(&fs_info->chunk_mutex);
1986         }
1987
1988         mutex_unlock(&uuid_mutex);
1989         ret = btrfs_shrink_device(device, 0);
1990         mutex_lock(&uuid_mutex);
1991         if (ret)
1992                 goto error_undo;
1993
1994         /*
1995          * TODO: the superblock still includes this device in its num_devices
1996          * counter although write_all_supers() is not locked out. This
1997          * could give a filesystem state which requires a degraded mount.
1998          */
1999         ret = btrfs_rm_dev_item(fs_info, device);
2000         if (ret)
2001                 goto error_undo;
2002
2003         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2004         btrfs_scrub_cancel_dev(fs_info, device);
2005
2006         /*
2007          * the device list mutex makes sure that we don't change
2008          * the device list while someone else is writing out all
2009          * the device supers. Whoever is writing all supers, should
2010          * lock the device list mutex before getting the number of
2011          * devices in the super block (super_copy). Conversely,
2012          * whoever updates the number of devices in the super block
2013          * (super_copy) should hold the device list mutex.
2014          */
2015
2016         cur_devices = device->fs_devices;
2017         mutex_lock(&fs_devices->device_list_mutex);
2018         list_del_rcu(&device->dev_list);
2019
2020         device->fs_devices->num_devices--;
2021         device->fs_devices->total_devices--;
2022
2023         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2024                 device->fs_devices->missing_devices--;
2025
2026         btrfs_assign_next_active_device(fs_info, device, NULL);
2027
2028         if (device->bdev) {
2029                 device->fs_devices->open_devices--;
2030                 /* remove sysfs entry */
2031                 btrfs_sysfs_rm_device_link(fs_devices, device);
2032         }
2033
2034         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2035         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2036         mutex_unlock(&fs_devices->device_list_mutex);
2037
2038         /*
2039          * at this point, the device is zero sized and detached from
2040          * the devices list.  All that's left is to zero out the old
2041          * supers and free the device.
2042          */
2043         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2044                 btrfs_scratch_superblocks(device->bdev, device->name->str);
2045
2046         btrfs_close_bdev(device);
2047         call_rcu(&device->rcu, free_device_rcu);
2048
2049         if (cur_devices->open_devices == 0) {
2050                 while (fs_devices) {
2051                         if (fs_devices->seed == cur_devices) {
2052                                 fs_devices->seed = cur_devices->seed;
2053                                 break;
2054                         }
2055                         fs_devices = fs_devices->seed;
2056                 }
2057                 cur_devices->seed = NULL;
2058                 close_fs_devices(cur_devices);
2059                 free_fs_devices(cur_devices);
2060         }
2061
2062 out:
2063         mutex_unlock(&uuid_mutex);
2064         return ret;
2065
2066 error_undo:
2067         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2068                 mutex_lock(&fs_info->chunk_mutex);
2069                 list_add(&device->dev_alloc_list,
2070                          &fs_devices->alloc_list);
2071                 device->fs_devices->rw_devices++;
2072                 mutex_unlock(&fs_info->chunk_mutex);
2073         }
2074         goto out;
2075 }
2076
2077 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
2078                                         struct btrfs_device *srcdev)
2079 {
2080         struct btrfs_fs_devices *fs_devices;
2081
2082         lockdep_assert_held(&fs_info->fs_devices->device_list_mutex);
2083
2084         /*
2085          * in case of fs with no seed, srcdev->fs_devices will point
2086          * to fs_devices of fs_info. However when the dev being replaced is
2087          * a seed dev it will point to the seed's local fs_devices. In short
2088          * srcdev will have its correct fs_devices in both the cases.
2089          */
2090         fs_devices = srcdev->fs_devices;
2091
2092         list_del_rcu(&srcdev->dev_list);
2093         list_del(&srcdev->dev_alloc_list);
2094         fs_devices->num_devices--;
2095         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2096                 fs_devices->missing_devices--;
2097
2098         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2099                 fs_devices->rw_devices--;
2100
2101         if (srcdev->bdev)
2102                 fs_devices->open_devices--;
2103 }
2104
2105 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2106                                       struct btrfs_device *srcdev)
2107 {
2108         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2109
2110         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2111                 /* zero out the old super if it is writable */
2112                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2113         }
2114
2115         btrfs_close_bdev(srcdev);
2116         call_rcu(&srcdev->rcu, free_device_rcu);
2117
2118         /* if this is no devs we rather delete the fs_devices */
2119         if (!fs_devices->num_devices) {
2120                 struct btrfs_fs_devices *tmp_fs_devices;
2121
2122                 /*
2123                  * On a mounted FS, num_devices can't be zero unless it's a
2124                  * seed. In case of a seed device being replaced, the replace
2125                  * target added to the sprout FS, so there will be no more
2126                  * device left under the seed FS.
2127                  */
2128                 ASSERT(fs_devices->seeding);
2129
2130                 tmp_fs_devices = fs_info->fs_devices;
2131                 while (tmp_fs_devices) {
2132                         if (tmp_fs_devices->seed == fs_devices) {
2133                                 tmp_fs_devices->seed = fs_devices->seed;
2134                                 break;
2135                         }
2136                         tmp_fs_devices = tmp_fs_devices->seed;
2137                 }
2138                 fs_devices->seed = NULL;
2139                 close_fs_devices(fs_devices);
2140                 free_fs_devices(fs_devices);
2141         }
2142 }
2143
2144 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2145                                       struct btrfs_device *tgtdev)
2146 {
2147         mutex_lock(&uuid_mutex);
2148         WARN_ON(!tgtdev);
2149         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2150
2151         btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2152
2153         if (tgtdev->bdev)
2154                 fs_info->fs_devices->open_devices--;
2155
2156         fs_info->fs_devices->num_devices--;
2157
2158         btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2159
2160         list_del_rcu(&tgtdev->dev_list);
2161
2162         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2163         mutex_unlock(&uuid_mutex);
2164
2165         /*
2166          * The update_dev_time() with in btrfs_scratch_superblocks()
2167          * may lead to a call to btrfs_show_devname() which will try
2168          * to hold device_list_mutex. And here this device
2169          * is already out of device list, so we don't have to hold
2170          * the device_list_mutex lock.
2171          */
2172         btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2173
2174         btrfs_close_bdev(tgtdev);
2175         call_rcu(&tgtdev->rcu, free_device_rcu);
2176 }
2177
2178 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2179                                      const char *device_path,
2180                                      struct btrfs_device **device)
2181 {
2182         int ret = 0;
2183         struct btrfs_super_block *disk_super;
2184         u64 devid;
2185         u8 *dev_uuid;
2186         struct block_device *bdev;
2187         struct buffer_head *bh;
2188
2189         *device = NULL;
2190         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2191                                     fs_info->bdev_holder, 0, &bdev, &bh);
2192         if (ret)
2193                 return ret;
2194         disk_super = (struct btrfs_super_block *)bh->b_data;
2195         devid = btrfs_stack_device_id(&disk_super->dev_item);
2196         dev_uuid = disk_super->dev_item.uuid;
2197         *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2198         brelse(bh);
2199         if (!*device)
2200                 ret = -ENOENT;
2201         blkdev_put(bdev, FMODE_READ);
2202         return ret;
2203 }
2204
2205 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2206                                          const char *device_path,
2207                                          struct btrfs_device **device)
2208 {
2209         *device = NULL;
2210         if (strcmp(device_path, "missing") == 0) {
2211                 struct list_head *devices;
2212                 struct btrfs_device *tmp;
2213
2214                 devices = &fs_info->fs_devices->devices;
2215                 list_for_each_entry(tmp, devices, dev_list) {
2216                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2217                                         &tmp->dev_state) && !tmp->bdev) {
2218                                 *device = tmp;
2219                                 break;
2220                         }
2221                 }
2222
2223                 if (!*device)
2224                         return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2225
2226                 return 0;
2227         } else {
2228                 return btrfs_find_device_by_path(fs_info, device_path, device);
2229         }
2230 }
2231
2232 /*
2233  * Lookup a device given by device id, or the path if the id is 0.
2234  */
2235 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2236                                  const char *devpath,
2237                                  struct btrfs_device **device)
2238 {
2239         int ret;
2240
2241         if (devid) {
2242                 ret = 0;
2243                 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2244                 if (!*device)
2245                         ret = -ENOENT;
2246         } else {
2247                 if (!devpath || !devpath[0])
2248                         return -EINVAL;
2249
2250                 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2251                                                            device);
2252         }
2253         return ret;
2254 }
2255
2256 /*
2257  * does all the dirty work required for changing file system's UUID.
2258  */
2259 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2260 {
2261         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2262         struct btrfs_fs_devices *old_devices;
2263         struct btrfs_fs_devices *seed_devices;
2264         struct btrfs_super_block *disk_super = fs_info->super_copy;
2265         struct btrfs_device *device;
2266         u64 super_flags;
2267
2268         lockdep_assert_held(&uuid_mutex);
2269         if (!fs_devices->seeding)
2270                 return -EINVAL;
2271
2272         seed_devices = alloc_fs_devices(NULL);
2273         if (IS_ERR(seed_devices))
2274                 return PTR_ERR(seed_devices);
2275
2276         old_devices = clone_fs_devices(fs_devices);
2277         if (IS_ERR(old_devices)) {
2278                 kfree(seed_devices);
2279                 return PTR_ERR(old_devices);
2280         }
2281
2282         list_add(&old_devices->fs_list, &fs_uuids);
2283
2284         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2285         seed_devices->opened = 1;
2286         INIT_LIST_HEAD(&seed_devices->devices);
2287         INIT_LIST_HEAD(&seed_devices->alloc_list);
2288         mutex_init(&seed_devices->device_list_mutex);
2289
2290         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2291         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2292                               synchronize_rcu);
2293         list_for_each_entry(device, &seed_devices->devices, dev_list)
2294                 device->fs_devices = seed_devices;
2295
2296         mutex_lock(&fs_info->chunk_mutex);
2297         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2298         mutex_unlock(&fs_info->chunk_mutex);
2299
2300         fs_devices->seeding = 0;
2301         fs_devices->num_devices = 0;
2302         fs_devices->open_devices = 0;
2303         fs_devices->missing_devices = 0;
2304         fs_devices->rotating = 0;
2305         fs_devices->seed = seed_devices;
2306
2307         generate_random_uuid(fs_devices->fsid);
2308         memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2309         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2310         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2311
2312         super_flags = btrfs_super_flags(disk_super) &
2313                       ~BTRFS_SUPER_FLAG_SEEDING;
2314         btrfs_set_super_flags(disk_super, super_flags);
2315
2316         return 0;
2317 }
2318
2319 /*
2320  * Store the expected generation for seed devices in device items.
2321  */
2322 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2323                                struct btrfs_fs_info *fs_info)
2324 {
2325         struct btrfs_root *root = fs_info->chunk_root;
2326         struct btrfs_path *path;
2327         struct extent_buffer *leaf;
2328         struct btrfs_dev_item *dev_item;
2329         struct btrfs_device *device;
2330         struct btrfs_key key;
2331         u8 fs_uuid[BTRFS_FSID_SIZE];
2332         u8 dev_uuid[BTRFS_UUID_SIZE];
2333         u64 devid;
2334         int ret;
2335
2336         path = btrfs_alloc_path();
2337         if (!path)
2338                 return -ENOMEM;
2339
2340         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2341         key.offset = 0;
2342         key.type = BTRFS_DEV_ITEM_KEY;
2343
2344         while (1) {
2345                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2346                 if (ret < 0)
2347                         goto error;
2348
2349                 leaf = path->nodes[0];
2350 next_slot:
2351                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2352                         ret = btrfs_next_leaf(root, path);
2353                         if (ret > 0)
2354                                 break;
2355                         if (ret < 0)
2356                                 goto error;
2357                         leaf = path->nodes[0];
2358                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2359                         btrfs_release_path(path);
2360                         continue;
2361                 }
2362
2363                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2364                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2365                     key.type != BTRFS_DEV_ITEM_KEY)
2366                         break;
2367
2368                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2369                                           struct btrfs_dev_item);
2370                 devid = btrfs_device_id(leaf, dev_item);
2371                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2372                                    BTRFS_UUID_SIZE);
2373                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2374                                    BTRFS_FSID_SIZE);
2375                 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2376                 BUG_ON(!device); /* Logic error */
2377
2378                 if (device->fs_devices->seeding) {
2379                         btrfs_set_device_generation(leaf, dev_item,
2380                                                     device->generation);
2381                         btrfs_mark_buffer_dirty(leaf);
2382                 }
2383
2384                 path->slots[0]++;
2385                 goto next_slot;
2386         }
2387         ret = 0;
2388 error:
2389         btrfs_free_path(path);
2390         return ret;
2391 }
2392
2393 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2394 {
2395         struct btrfs_root *root = fs_info->dev_root;
2396         struct request_queue *q;
2397         struct btrfs_trans_handle *trans;
2398         struct btrfs_device *device;
2399         struct block_device *bdev;
2400         struct list_head *devices;
2401         struct super_block *sb = fs_info->sb;
2402         struct rcu_string *name;
2403         u64 tmp;
2404         int seeding_dev = 0;
2405         int ret = 0;
2406         bool unlocked = false;
2407
2408         if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2409                 return -EROFS;
2410
2411         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2412                                   fs_info->bdev_holder);
2413         if (IS_ERR(bdev))
2414                 return PTR_ERR(bdev);
2415
2416         if (fs_info->fs_devices->seeding) {
2417                 seeding_dev = 1;
2418                 down_write(&sb->s_umount);
2419                 mutex_lock(&uuid_mutex);
2420         }
2421
2422         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2423
2424         devices = &fs_info->fs_devices->devices;
2425
2426         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2427         list_for_each_entry(device, devices, dev_list) {
2428                 if (device->bdev == bdev) {
2429                         ret = -EEXIST;
2430                         mutex_unlock(
2431                                 &fs_info->fs_devices->device_list_mutex);
2432                         goto error;
2433                 }
2434         }
2435         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2436
2437         device = btrfs_alloc_device(fs_info, NULL, NULL);
2438         if (IS_ERR(device)) {
2439                 /* we can safely leave the fs_devices entry around */
2440                 ret = PTR_ERR(device);
2441                 goto error;
2442         }
2443
2444         name = rcu_string_strdup(device_path, GFP_KERNEL);
2445         if (!name) {
2446                 ret = -ENOMEM;
2447                 goto error_free_device;
2448         }
2449         rcu_assign_pointer(device->name, name);
2450
2451         trans = btrfs_start_transaction(root, 0);
2452         if (IS_ERR(trans)) {
2453                 ret = PTR_ERR(trans);
2454                 goto error_free_device;
2455         }
2456
2457         q = bdev_get_queue(bdev);
2458         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2459         device->generation = trans->transid;
2460         device->io_width = fs_info->sectorsize;
2461         device->io_align = fs_info->sectorsize;
2462         device->sector_size = fs_info->sectorsize;
2463         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2464                                          fs_info->sectorsize);
2465         device->disk_total_bytes = device->total_bytes;
2466         device->commit_total_bytes = device->total_bytes;
2467         device->fs_info = fs_info;
2468         device->bdev = bdev;
2469         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2470         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2471         device->mode = FMODE_EXCL;
2472         device->dev_stats_valid = 1;
2473         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2474
2475         if (seeding_dev) {
2476                 sb->s_flags &= ~SB_RDONLY;
2477                 ret = btrfs_prepare_sprout(fs_info);
2478                 if (ret) {
2479                         btrfs_abort_transaction(trans, ret);
2480                         goto error_trans;
2481                 }
2482         }
2483
2484         device->fs_devices = fs_info->fs_devices;
2485
2486         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2487         mutex_lock(&fs_info->chunk_mutex);
2488         list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2489         list_add(&device->dev_alloc_list,
2490                  &fs_info->fs_devices->alloc_list);
2491         fs_info->fs_devices->num_devices++;
2492         fs_info->fs_devices->open_devices++;
2493         fs_info->fs_devices->rw_devices++;
2494         fs_info->fs_devices->total_devices++;
2495         fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2496
2497         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2498
2499         if (!blk_queue_nonrot(q))
2500                 fs_info->fs_devices->rotating = 1;
2501
2502         tmp = btrfs_super_total_bytes(fs_info->super_copy);
2503         btrfs_set_super_total_bytes(fs_info->super_copy,
2504                 round_down(tmp + device->total_bytes, fs_info->sectorsize));
2505
2506         tmp = btrfs_super_num_devices(fs_info->super_copy);
2507         btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2508
2509         /* add sysfs device entry */
2510         btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2511
2512         /*
2513          * we've got more storage, clear any full flags on the space
2514          * infos
2515          */
2516         btrfs_clear_space_info_full(fs_info);
2517
2518         mutex_unlock(&fs_info->chunk_mutex);
2519         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2520
2521         if (seeding_dev) {
2522                 mutex_lock(&fs_info->chunk_mutex);
2523                 ret = init_first_rw_device(trans, fs_info);
2524                 mutex_unlock(&fs_info->chunk_mutex);
2525                 if (ret) {
2526                         btrfs_abort_transaction(trans, ret);
2527                         goto error_sysfs;
2528                 }
2529         }
2530
2531         ret = btrfs_add_dev_item(trans, fs_info, device);
2532         if (ret) {
2533                 btrfs_abort_transaction(trans, ret);
2534                 goto error_sysfs;
2535         }
2536
2537         if (seeding_dev) {
2538                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2539
2540                 ret = btrfs_finish_sprout(trans, fs_info);
2541                 if (ret) {
2542                         btrfs_abort_transaction(trans, ret);
2543                         goto error_sysfs;
2544                 }
2545
2546                 /* Sprouting would change fsid of the mounted root,
2547                  * so rename the fsid on the sysfs
2548                  */
2549                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2550                                                 fs_info->fsid);
2551                 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2552                         btrfs_warn(fs_info,
2553                                    "sysfs: failed to create fsid for sprout");
2554         }
2555
2556         ret = btrfs_commit_transaction(trans);
2557
2558         if (seeding_dev) {
2559                 mutex_unlock(&uuid_mutex);
2560                 up_write(&sb->s_umount);
2561                 unlocked = true;
2562
2563                 if (ret) /* transaction commit */
2564                         return ret;
2565
2566                 ret = btrfs_relocate_sys_chunks(fs_info);
2567                 if (ret < 0)
2568                         btrfs_handle_fs_error(fs_info, ret,
2569                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2570                 trans = btrfs_attach_transaction(root);
2571                 if (IS_ERR(trans)) {
2572                         if (PTR_ERR(trans) == -ENOENT)
2573                                 return 0;
2574                         ret = PTR_ERR(trans);
2575                         trans = NULL;
2576                         goto error_sysfs;
2577                 }
2578                 ret = btrfs_commit_transaction(trans);
2579         }
2580
2581         /* Update ctime/mtime for libblkid */
2582         update_dev_time(device_path);
2583         return ret;
2584
2585 error_sysfs:
2586         btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2587 error_trans:
2588         if (seeding_dev)
2589                 sb->s_flags |= SB_RDONLY;
2590         if (trans)
2591                 btrfs_end_transaction(trans);
2592 error_free_device:
2593         btrfs_free_device(device);
2594 error:
2595         blkdev_put(bdev, FMODE_EXCL);
2596         if (seeding_dev && !unlocked) {
2597                 mutex_unlock(&uuid_mutex);
2598                 up_write(&sb->s_umount);
2599         }
2600         return ret;
2601 }
2602
2603 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2604                                         struct btrfs_device *device)
2605 {
2606         int ret;
2607         struct btrfs_path *path;
2608         struct btrfs_root *root = device->fs_info->chunk_root;
2609         struct btrfs_dev_item *dev_item;
2610         struct extent_buffer *leaf;
2611         struct btrfs_key key;
2612
2613         path = btrfs_alloc_path();
2614         if (!path)
2615                 return -ENOMEM;
2616
2617         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2618         key.type = BTRFS_DEV_ITEM_KEY;
2619         key.offset = device->devid;
2620
2621         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2622         if (ret < 0)
2623                 goto out;
2624
2625         if (ret > 0) {
2626                 ret = -ENOENT;
2627                 goto out;
2628         }
2629
2630         leaf = path->nodes[0];
2631         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2632
2633         btrfs_set_device_id(leaf, dev_item, device->devid);
2634         btrfs_set_device_type(leaf, dev_item, device->type);
2635         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2636         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2637         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2638         btrfs_set_device_total_bytes(leaf, dev_item,
2639                                      btrfs_device_get_disk_total_bytes(device));
2640         btrfs_set_device_bytes_used(leaf, dev_item,
2641                                     btrfs_device_get_bytes_used(device));
2642         btrfs_mark_buffer_dirty(leaf);
2643
2644 out:
2645         btrfs_free_path(path);
2646         return ret;
2647 }
2648
2649 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2650                       struct btrfs_device *device, u64 new_size)
2651 {
2652         struct btrfs_fs_info *fs_info = device->fs_info;
2653         struct btrfs_super_block *super_copy = fs_info->super_copy;
2654         struct btrfs_fs_devices *fs_devices;
2655         u64 old_total;
2656         u64 diff;
2657
2658         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2659                 return -EACCES;
2660
2661         new_size = round_down(new_size, fs_info->sectorsize);
2662
2663         mutex_lock(&fs_info->chunk_mutex);
2664         old_total = btrfs_super_total_bytes(super_copy);
2665         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2666
2667         if (new_size <= device->total_bytes ||
2668             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2669                 mutex_unlock(&fs_info->chunk_mutex);
2670                 return -EINVAL;
2671         }
2672
2673         fs_devices = fs_info->fs_devices;
2674
2675         btrfs_set_super_total_bytes(super_copy,
2676                         round_down(old_total + diff, fs_info->sectorsize));
2677         device->fs_devices->total_rw_bytes += diff;
2678
2679         btrfs_device_set_total_bytes(device, new_size);
2680         btrfs_device_set_disk_total_bytes(device, new_size);
2681         btrfs_clear_space_info_full(device->fs_info);
2682         if (list_empty(&device->resized_list))
2683                 list_add_tail(&device->resized_list,
2684                               &fs_devices->resized_devices);
2685         mutex_unlock(&fs_info->chunk_mutex);
2686
2687         return btrfs_update_device(trans, device);
2688 }
2689
2690 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2691                             struct btrfs_fs_info *fs_info, u64 chunk_offset)
2692 {
2693         struct btrfs_root *root = fs_info->chunk_root;
2694         int ret;
2695         struct btrfs_path *path;
2696         struct btrfs_key key;
2697
2698         path = btrfs_alloc_path();
2699         if (!path)
2700                 return -ENOMEM;
2701
2702         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2703         key.offset = chunk_offset;
2704         key.type = BTRFS_CHUNK_ITEM_KEY;
2705
2706         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2707         if (ret < 0)
2708                 goto out;
2709         else if (ret > 0) { /* Logic error or corruption */
2710                 btrfs_handle_fs_error(fs_info, -ENOENT,
2711                                       "Failed lookup while freeing chunk.");
2712                 ret = -ENOENT;
2713                 goto out;
2714         }
2715
2716         ret = btrfs_del_item(trans, root, path);
2717         if (ret < 0)
2718                 btrfs_handle_fs_error(fs_info, ret,
2719                                       "Failed to delete chunk item.");
2720 out:
2721         btrfs_free_path(path);
2722         return ret;
2723 }
2724
2725 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2726 {
2727         struct btrfs_super_block *super_copy = fs_info->super_copy;
2728         struct btrfs_disk_key *disk_key;
2729         struct btrfs_chunk *chunk;
2730         u8 *ptr;
2731         int ret = 0;
2732         u32 num_stripes;
2733         u32 array_size;
2734         u32 len = 0;
2735         u32 cur;
2736         struct btrfs_key key;
2737
2738         mutex_lock(&fs_info->chunk_mutex);
2739         array_size = btrfs_super_sys_array_size(super_copy);
2740
2741         ptr = super_copy->sys_chunk_array;
2742         cur = 0;
2743
2744         while (cur < array_size) {
2745                 disk_key = (struct btrfs_disk_key *)ptr;
2746                 btrfs_disk_key_to_cpu(&key, disk_key);
2747
2748                 len = sizeof(*disk_key);
2749
2750                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2751                         chunk = (struct btrfs_chunk *)(ptr + len);
2752                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2753                         len += btrfs_chunk_item_size(num_stripes);
2754                 } else {
2755                         ret = -EIO;
2756                         break;
2757                 }
2758                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2759                     key.offset == chunk_offset) {
2760                         memmove(ptr, ptr + len, array_size - (cur + len));
2761                         array_size -= len;
2762                         btrfs_set_super_sys_array_size(super_copy, array_size);
2763                 } else {
2764                         ptr += len;
2765                         cur += len;
2766                 }
2767         }
2768         mutex_unlock(&fs_info->chunk_mutex);
2769         return ret;
2770 }
2771
2772 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2773                                         u64 logical, u64 length)
2774 {
2775         struct extent_map_tree *em_tree;
2776         struct extent_map *em;
2777
2778         em_tree = &fs_info->mapping_tree.map_tree;
2779         read_lock(&em_tree->lock);
2780         em = lookup_extent_mapping(em_tree, logical, length);
2781         read_unlock(&em_tree->lock);
2782
2783         if (!em) {
2784                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2785                            logical, length);
2786                 return ERR_PTR(-EINVAL);
2787         }
2788
2789         if (em->start > logical || em->start + em->len < logical) {
2790                 btrfs_crit(fs_info,
2791                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2792                            logical, length, em->start, em->start + em->len);
2793                 free_extent_map(em);
2794                 return ERR_PTR(-EINVAL);
2795         }
2796
2797         /* callers are responsible for dropping em's ref. */
2798         return em;
2799 }
2800
2801 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2802                        struct btrfs_fs_info *fs_info, u64 chunk_offset)
2803 {
2804         struct extent_map *em;
2805         struct map_lookup *map;
2806         u64 dev_extent_len = 0;
2807         int i, ret = 0;
2808         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2809
2810         em = get_chunk_map(fs_info, chunk_offset, 1);
2811         if (IS_ERR(em)) {
2812                 /*
2813                  * This is a logic error, but we don't want to just rely on the
2814                  * user having built with ASSERT enabled, so if ASSERT doesn't
2815                  * do anything we still error out.
2816                  */
2817                 ASSERT(0);
2818                 return PTR_ERR(em);
2819         }
2820         map = em->map_lookup;
2821         mutex_lock(&fs_info->chunk_mutex);
2822         check_system_chunk(trans, fs_info, map->type);
2823         mutex_unlock(&fs_info->chunk_mutex);
2824
2825         /*
2826          * Take the device list mutex to prevent races with the final phase of
2827          * a device replace operation that replaces the device object associated
2828          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2829          */
2830         mutex_lock(&fs_devices->device_list_mutex);
2831         for (i = 0; i < map->num_stripes; i++) {
2832                 struct btrfs_device *device = map->stripes[i].dev;
2833                 ret = btrfs_free_dev_extent(trans, device,
2834                                             map->stripes[i].physical,
2835                                             &dev_extent_len);
2836                 if (ret) {
2837                         mutex_unlock(&fs_devices->device_list_mutex);
2838                         btrfs_abort_transaction(trans, ret);
2839                         goto out;
2840                 }
2841
2842                 if (device->bytes_used > 0) {
2843                         mutex_lock(&fs_info->chunk_mutex);
2844                         btrfs_device_set_bytes_used(device,
2845                                         device->bytes_used - dev_extent_len);
2846                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2847                         btrfs_clear_space_info_full(fs_info);
2848                         mutex_unlock(&fs_info->chunk_mutex);
2849                 }
2850
2851                 if (map->stripes[i].dev) {
2852                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2853                         if (ret) {
2854                                 mutex_unlock(&fs_devices->device_list_mutex);
2855                                 btrfs_abort_transaction(trans, ret);
2856                                 goto out;
2857                         }
2858                 }
2859         }
2860         mutex_unlock(&fs_devices->device_list_mutex);
2861
2862         ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2863         if (ret) {
2864                 btrfs_abort_transaction(trans, ret);
2865                 goto out;
2866         }
2867
2868         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2869
2870         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2871                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2872                 if (ret) {
2873                         btrfs_abort_transaction(trans, ret);
2874                         goto out;
2875                 }
2876         }
2877
2878         ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2879         if (ret) {
2880                 btrfs_abort_transaction(trans, ret);
2881                 goto out;
2882         }
2883
2884 out:
2885         /* once for us */
2886         free_extent_map(em);
2887         return ret;
2888 }
2889
2890 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2891 {
2892         struct btrfs_root *root = fs_info->chunk_root;
2893         struct btrfs_trans_handle *trans;
2894         int ret;
2895
2896         /*
2897          * Prevent races with automatic removal of unused block groups.
2898          * After we relocate and before we remove the chunk with offset
2899          * chunk_offset, automatic removal of the block group can kick in,
2900          * resulting in a failure when calling btrfs_remove_chunk() below.
2901          *
2902          * Make sure to acquire this mutex before doing a tree search (dev
2903          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2904          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2905          * we release the path used to search the chunk/dev tree and before
2906          * the current task acquires this mutex and calls us.
2907          */
2908         lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
2909
2910         ret = btrfs_can_relocate(fs_info, chunk_offset);
2911         if (ret)
2912                 return -ENOSPC;
2913
2914         /* step one, relocate all the extents inside this chunk */
2915         btrfs_scrub_pause(fs_info);
2916         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2917         btrfs_scrub_continue(fs_info);
2918         if (ret)
2919                 return ret;
2920
2921         /*
2922          * We add the kobjects here (and after forcing data chunk creation)
2923          * since relocation is the only place we'll create chunks of a new
2924          * type at runtime.  The only place where we'll remove the last
2925          * chunk of a type is the call immediately below this one.  Even
2926          * so, we're protected against races with the cleaner thread since
2927          * we're covered by the delete_unused_bgs_mutex.
2928          */
2929         btrfs_add_raid_kobjects(fs_info);
2930
2931         trans = btrfs_start_trans_remove_block_group(root->fs_info,
2932                                                      chunk_offset);
2933         if (IS_ERR(trans)) {
2934                 ret = PTR_ERR(trans);
2935                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2936                 return ret;
2937         }
2938
2939         /*
2940          * step two, delete the device extents and the
2941          * chunk tree entries
2942          */
2943         ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2944         btrfs_end_transaction(trans);
2945         return ret;
2946 }
2947
2948 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2949 {
2950         struct btrfs_root *chunk_root = fs_info->chunk_root;
2951         struct btrfs_path *path;
2952         struct extent_buffer *leaf;
2953         struct btrfs_chunk *chunk;
2954         struct btrfs_key key;
2955         struct btrfs_key found_key;
2956         u64 chunk_type;
2957         bool retried = false;
2958         int failed = 0;
2959         int ret;
2960
2961         path = btrfs_alloc_path();
2962         if (!path)
2963                 return -ENOMEM;
2964
2965 again:
2966         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2967         key.offset = (u64)-1;
2968         key.type = BTRFS_CHUNK_ITEM_KEY;
2969
2970         while (1) {
2971                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2972                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2973                 if (ret < 0) {
2974                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2975                         goto error;
2976                 }
2977                 BUG_ON(ret == 0); /* Corruption */
2978
2979                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2980                                           key.type);
2981                 if (ret)
2982                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2983                 if (ret < 0)
2984                         goto error;
2985                 if (ret > 0)
2986                         break;
2987
2988                 leaf = path->nodes[0];
2989                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2990
2991                 chunk = btrfs_item_ptr(leaf, path->slots[0],
2992                                        struct btrfs_chunk);
2993                 chunk_type = btrfs_chunk_type(leaf, chunk);
2994                 btrfs_release_path(path);
2995
2996                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2997                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
2998                         if (ret == -ENOSPC)
2999                                 failed++;
3000                         else
3001                                 BUG_ON(ret);
3002                 }
3003                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3004
3005                 if (found_key.offset == 0)
3006                         break;
3007                 key.offset = found_key.offset - 1;
3008         }
3009         ret = 0;
3010         if (failed && !retried) {
3011                 failed = 0;
3012                 retried = true;
3013                 goto again;
3014         } else if (WARN_ON(failed && retried)) {
3015                 ret = -ENOSPC;
3016         }
3017 error:
3018         btrfs_free_path(path);
3019         return ret;
3020 }
3021
3022 /*
3023  * return 1 : allocate a data chunk successfully,
3024  * return <0: errors during allocating a data chunk,
3025  * return 0 : no need to allocate a data chunk.
3026  */
3027 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3028                                       u64 chunk_offset)
3029 {
3030         struct btrfs_block_group_cache *cache;
3031         u64 bytes_used;
3032         u64 chunk_type;
3033
3034         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3035         ASSERT(cache);
3036         chunk_type = cache->flags;
3037         btrfs_put_block_group(cache);
3038
3039         if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3040                 spin_lock(&fs_info->data_sinfo->lock);
3041                 bytes_used = fs_info->data_sinfo->bytes_used;
3042                 spin_unlock(&fs_info->data_sinfo->lock);
3043
3044                 if (!bytes_used) {
3045                         struct btrfs_trans_handle *trans;
3046                         int ret;
3047
3048                         trans = btrfs_join_transaction(fs_info->tree_root);
3049                         if (IS_ERR(trans))
3050                                 return PTR_ERR(trans);
3051
3052                         ret = btrfs_force_chunk_alloc(trans, fs_info,
3053                                                       BTRFS_BLOCK_GROUP_DATA);
3054                         btrfs_end_transaction(trans);
3055                         if (ret < 0)
3056                                 return ret;
3057
3058                         btrfs_add_raid_kobjects(fs_info);
3059
3060                         return 1;
3061                 }
3062         }
3063         return 0;
3064 }
3065
3066 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3067                                struct btrfs_balance_control *bctl)
3068 {
3069         struct btrfs_root *root = fs_info->tree_root;
3070         struct btrfs_trans_handle *trans;
3071         struct btrfs_balance_item *item;
3072         struct btrfs_disk_balance_args disk_bargs;
3073         struct btrfs_path *path;
3074         struct extent_buffer *leaf;
3075         struct btrfs_key key;
3076         int ret, err;
3077
3078         path = btrfs_alloc_path();
3079         if (!path)
3080                 return -ENOMEM;
3081
3082         trans = btrfs_start_transaction(root, 0);
3083         if (IS_ERR(trans)) {
3084                 btrfs_free_path(path);
3085                 return PTR_ERR(trans);
3086         }
3087
3088         key.objectid = BTRFS_BALANCE_OBJECTID;
3089         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3090         key.offset = 0;
3091
3092         ret = btrfs_insert_empty_item(trans, root, path, &key,
3093                                       sizeof(*item));
3094         if (ret)
3095                 goto out;
3096
3097         leaf = path->nodes[0];
3098         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3099
3100         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3101
3102         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3103         btrfs_set_balance_data(leaf, item, &disk_bargs);
3104         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3105         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3106         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3107         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3108
3109         btrfs_set_balance_flags(leaf, item, bctl->flags);
3110
3111         btrfs_mark_buffer_dirty(leaf);
3112 out:
3113         btrfs_free_path(path);
3114         err = btrfs_commit_transaction(trans);
3115         if (err && !ret)
3116                 ret = err;
3117         return ret;
3118 }
3119
3120 static int del_balance_item(struct btrfs_fs_info *fs_info)
3121 {
3122         struct btrfs_root *root = fs_info->tree_root;
3123         struct btrfs_trans_handle *trans;
3124         struct btrfs_path *path;
3125         struct btrfs_key key;
3126         int ret, err;
3127
3128         path = btrfs_alloc_path();
3129         if (!path)
3130                 return -ENOMEM;
3131
3132         trans = btrfs_start_transaction(root, 0);
3133         if (IS_ERR(trans)) {
3134                 btrfs_free_path(path);
3135                 return PTR_ERR(trans);
3136         }
3137
3138         key.objectid = BTRFS_BALANCE_OBJECTID;
3139         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3140         key.offset = 0;
3141
3142         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3143         if (ret < 0)
3144                 goto out;
3145         if (ret > 0) {
3146                 ret = -ENOENT;
3147                 goto out;
3148         }
3149
3150         ret = btrfs_del_item(trans, root, path);
3151 out:
3152         btrfs_free_path(path);
3153         err = btrfs_commit_transaction(trans);
3154         if (err && !ret)
3155                 ret = err;
3156         return ret;
3157 }
3158
3159 /*
3160  * This is a heuristic used to reduce the number of chunks balanced on
3161  * resume after balance was interrupted.
3162  */
3163 static void update_balance_args(struct btrfs_balance_control *bctl)
3164 {
3165         /*
3166          * Turn on soft mode for chunk types that were being converted.
3167          */
3168         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3169                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3170         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3171                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3172         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3173                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3174
3175         /*
3176          * Turn on usage filter if is not already used.  The idea is
3177          * that chunks that we have already balanced should be
3178          * reasonably full.  Don't do it for chunks that are being
3179          * converted - that will keep us from relocating unconverted
3180          * (albeit full) chunks.
3181          */
3182         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3183             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3184             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3185                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3186                 bctl->data.usage = 90;
3187         }
3188         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3189             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3190             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3191                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3192                 bctl->sys.usage = 90;
3193         }
3194         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3195             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3196             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3197                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3198                 bctl->meta.usage = 90;
3199         }
3200 }
3201
3202 /*
3203  * Should be called with balance mutex held to protect against checking the
3204  * balance status or progress. Same goes for reset_balance_state.
3205  */
3206 static void set_balance_control(struct btrfs_balance_control *bctl)
3207 {
3208         struct btrfs_fs_info *fs_info = bctl->fs_info;
3209
3210         BUG_ON(fs_info->balance_ctl);
3211
3212         spin_lock(&fs_info->balance_lock);
3213         fs_info->balance_ctl = bctl;
3214         spin_unlock(&fs_info->balance_lock);
3215 }
3216
3217 /*
3218  * Clear the balance status in fs_info and delete the balance item from disk.
3219  */
3220 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3221 {
3222         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3223         int ret;
3224
3225         BUG_ON(!fs_info->balance_ctl);
3226
3227         spin_lock(&fs_info->balance_lock);
3228         fs_info->balance_ctl = NULL;
3229         spin_unlock(&fs_info->balance_lock);
3230
3231         kfree(bctl);
3232         ret = del_balance_item(fs_info);
3233         if (ret)
3234                 btrfs_handle_fs_error(fs_info, ret, NULL);
3235 }
3236
3237 /*
3238  * Balance filters.  Return 1 if chunk should be filtered out
3239  * (should not be balanced).
3240  */
3241 static int chunk_profiles_filter(u64 chunk_type,
3242                                  struct btrfs_balance_args *bargs)
3243 {
3244         chunk_type = chunk_to_extended(chunk_type) &
3245                                 BTRFS_EXTENDED_PROFILE_MASK;
3246
3247         if (bargs->profiles & chunk_type)
3248                 return 0;
3249
3250         return 1;
3251 }
3252
3253 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3254                               struct btrfs_balance_args *bargs)
3255 {
3256         struct btrfs_block_group_cache *cache;
3257         u64 chunk_used;
3258         u64 user_thresh_min;
3259         u64 user_thresh_max;
3260         int ret = 1;
3261
3262         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3263         chunk_used = btrfs_block_group_used(&cache->item);
3264
3265         if (bargs->usage_min == 0)
3266                 user_thresh_min = 0;
3267         else
3268                 user_thresh_min = div_factor_fine(cache->key.offset,
3269                                         bargs->usage_min);
3270
3271         if (bargs->usage_max == 0)
3272                 user_thresh_max = 1;
3273         else if (bargs->usage_max > 100)
3274                 user_thresh_max = cache->key.offset;
3275         else
3276                 user_thresh_max = div_factor_fine(cache->key.offset,
3277                                         bargs->usage_max);
3278
3279         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3280                 ret = 0;
3281
3282         btrfs_put_block_group(cache);
3283         return ret;
3284 }
3285
3286 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3287                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3288 {
3289         struct btrfs_block_group_cache *cache;
3290         u64 chunk_used, user_thresh;
3291         int ret = 1;
3292
3293         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3294         chunk_used = btrfs_block_group_used(&cache->item);
3295
3296         if (bargs->usage_min == 0)
3297                 user_thresh = 1;
3298         else if (bargs->usage > 100)
3299                 user_thresh = cache->key.offset;
3300         else
3301                 user_thresh = div_factor_fine(cache->key.offset,
3302                                               bargs->usage);
3303
3304         if (chunk_used < user_thresh)
3305                 ret = 0;
3306
3307         btrfs_put_block_group(cache);
3308         return ret;
3309 }
3310
3311 static int chunk_devid_filter(struct extent_buffer *leaf,
3312                               struct btrfs_chunk *chunk,
3313                               struct btrfs_balance_args *bargs)
3314 {
3315         struct btrfs_stripe *stripe;
3316         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3317         int i;
3318
3319         for (i = 0; i < num_stripes; i++) {
3320                 stripe = btrfs_stripe_nr(chunk, i);
3321                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3322                         return 0;
3323         }
3324
3325         return 1;
3326 }
3327
3328 /* [pstart, pend) */
3329 static int chunk_drange_filter(struct extent_buffer *leaf,
3330                                struct btrfs_chunk *chunk,
3331                                struct btrfs_balance_args *bargs)
3332 {
3333         struct btrfs_stripe *stripe;
3334         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3335         u64 stripe_offset;
3336         u64 stripe_length;
3337         int factor;
3338         int i;
3339
3340         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3341                 return 0;
3342
3343         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3344              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3345                 factor = num_stripes / 2;
3346         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3347                 factor = num_stripes - 1;
3348         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3349                 factor = num_stripes - 2;
3350         } else {
3351                 factor = num_stripes;
3352         }
3353
3354         for (i = 0; i < num_stripes; i++) {
3355                 stripe = btrfs_stripe_nr(chunk, i);
3356                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3357                         continue;
3358
3359                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3360                 stripe_length = btrfs_chunk_length(leaf, chunk);
3361                 stripe_length = div_u64(stripe_length, factor);
3362
3363                 if (stripe_offset < bargs->pend &&
3364                     stripe_offset + stripe_length > bargs->pstart)
3365                         return 0;
3366         }
3367
3368         return 1;
3369 }
3370
3371 /* [vstart, vend) */
3372 static int chunk_vrange_filter(struct extent_buffer *leaf,
3373                                struct btrfs_chunk *chunk,
3374                                u64 chunk_offset,
3375                                struct btrfs_balance_args *bargs)
3376 {
3377         if (chunk_offset < bargs->vend &&
3378             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3379                 /* at least part of the chunk is inside this vrange */
3380                 return 0;
3381
3382         return 1;
3383 }
3384
3385 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3386                                struct btrfs_chunk *chunk,
3387                                struct btrfs_balance_args *bargs)
3388 {
3389         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3390
3391         if (bargs->stripes_min <= num_stripes
3392                         && num_stripes <= bargs->stripes_max)
3393                 return 0;
3394
3395         return 1;
3396 }
3397
3398 static int chunk_soft_convert_filter(u64 chunk_type,
3399                                      struct btrfs_balance_args *bargs)
3400 {
3401         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3402                 return 0;
3403
3404         chunk_type = chunk_to_extended(chunk_type) &
3405                                 BTRFS_EXTENDED_PROFILE_MASK;
3406
3407         if (bargs->target == chunk_type)
3408                 return 1;
3409
3410         return 0;
3411 }
3412
3413 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3414                                 struct extent_buffer *leaf,
3415                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3416 {
3417         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3418         struct btrfs_balance_args *bargs = NULL;
3419         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3420
3421         /* type filter */
3422         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3423               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3424                 return 0;
3425         }
3426
3427         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3428                 bargs = &bctl->data;
3429         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3430                 bargs = &bctl->sys;
3431         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3432                 bargs = &bctl->meta;
3433
3434         /* profiles filter */
3435         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3436             chunk_profiles_filter(chunk_type, bargs)) {
3437                 return 0;
3438         }
3439
3440         /* usage filter */
3441         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3442             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3443                 return 0;
3444         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3445             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3446                 return 0;
3447         }
3448
3449         /* devid filter */
3450         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3451             chunk_devid_filter(leaf, chunk, bargs)) {
3452                 return 0;
3453         }
3454
3455         /* drange filter, makes sense only with devid filter */
3456         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3457             chunk_drange_filter(leaf, chunk, bargs)) {
3458                 return 0;
3459         }
3460
3461         /* vrange filter */
3462         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3463             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3464                 return 0;
3465         }
3466
3467         /* stripes filter */
3468         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3469             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3470                 return 0;
3471         }
3472
3473         /* soft profile changing mode */
3474         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3475             chunk_soft_convert_filter(chunk_type, bargs)) {
3476                 return 0;
3477         }
3478
3479         /*
3480          * limited by count, must be the last filter
3481          */
3482         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3483                 if (bargs->limit == 0)
3484                         return 0;
3485                 else
3486                         bargs->limit--;
3487         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3488                 /*
3489                  * Same logic as the 'limit' filter; the minimum cannot be
3490                  * determined here because we do not have the global information
3491                  * about the count of all chunks that satisfy the filters.
3492                  */
3493                 if (bargs->limit_max == 0)
3494                         return 0;
3495                 else
3496                         bargs->limit_max--;
3497         }
3498
3499         return 1;
3500 }
3501
3502 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3503 {
3504         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3505         struct btrfs_root *chunk_root = fs_info->chunk_root;
3506         struct btrfs_root *dev_root = fs_info->dev_root;
3507         struct list_head *devices;
3508         struct btrfs_device *device;
3509         u64 old_size;
3510         u64 size_to_free;
3511         u64 chunk_type;
3512         struct btrfs_chunk *chunk;
3513         struct btrfs_path *path = NULL;
3514         struct btrfs_key key;
3515         struct btrfs_key found_key;
3516         struct btrfs_trans_handle *trans;
3517         struct extent_buffer *leaf;
3518         int slot;
3519         int ret;
3520         int enospc_errors = 0;
3521         bool counting = true;
3522         /* The single value limit and min/max limits use the same bytes in the */
3523         u64 limit_data = bctl->data.limit;
3524         u64 limit_meta = bctl->meta.limit;
3525         u64 limit_sys = bctl->sys.limit;
3526         u32 count_data = 0;
3527         u32 count_meta = 0;
3528         u32 count_sys = 0;
3529         int chunk_reserved = 0;
3530
3531         /* step one make some room on all the devices */
3532         devices = &fs_info->fs_devices->devices;
3533         list_for_each_entry(device, devices, dev_list) {
3534                 old_size = btrfs_device_get_total_bytes(device);
3535                 size_to_free = div_factor(old_size, 1);
3536                 size_to_free = min_t(u64, size_to_free, SZ_1M);
3537                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
3538                     btrfs_device_get_total_bytes(device) -
3539                     btrfs_device_get_bytes_used(device) > size_to_free ||
3540                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
3541                         continue;
3542
3543                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3544                 if (ret == -ENOSPC)
3545                         break;
3546                 if (ret) {
3547                         /* btrfs_shrink_device never returns ret > 0 */
3548                         WARN_ON(ret > 0);
3549                         goto error;
3550                 }
3551
3552                 trans = btrfs_start_transaction(dev_root, 0);
3553                 if (IS_ERR(trans)) {
3554                         ret = PTR_ERR(trans);
3555                         btrfs_info_in_rcu(fs_info,
3556                  "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3557                                           rcu_str_deref(device->name), ret,
3558                                           old_size, old_size - size_to_free);
3559                         goto error;
3560                 }
3561
3562                 ret = btrfs_grow_device(trans, device, old_size);
3563                 if (ret) {
3564                         btrfs_end_transaction(trans);
3565                         /* btrfs_grow_device never returns ret > 0 */
3566                         WARN_ON(ret > 0);
3567                         btrfs_info_in_rcu(fs_info,
3568                  "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3569                                           rcu_str_deref(device->name), ret,
3570                                           old_size, old_size - size_to_free);
3571                         goto error;
3572                 }
3573
3574                 btrfs_end_transaction(trans);
3575         }
3576
3577         /* step two, relocate all the chunks */
3578         path = btrfs_alloc_path();
3579         if (!path) {
3580                 ret = -ENOMEM;
3581                 goto error;
3582         }
3583
3584         /* zero out stat counters */
3585         spin_lock(&fs_info->balance_lock);
3586         memset(&bctl->stat, 0, sizeof(bctl->stat));
3587         spin_unlock(&fs_info->balance_lock);
3588 again:
3589         if (!counting) {
3590                 /*
3591                  * The single value limit and min/max limits use the same bytes
3592                  * in the
3593                  */
3594                 bctl->data.limit = limit_data;
3595                 bctl->meta.limit = limit_meta;
3596                 bctl->sys.limit = limit_sys;
3597         }
3598         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3599         key.offset = (u64)-1;
3600         key.type = BTRFS_CHUNK_ITEM_KEY;
3601
3602         while (1) {
3603                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3604                     atomic_read(&fs_info->balance_cancel_req)) {
3605                         ret = -ECANCELED;
3606                         goto error;
3607                 }
3608
3609                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3610                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3611                 if (ret < 0) {
3612                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3613                         goto error;
3614                 }
3615
3616                 /*
3617                  * this shouldn't happen, it means the last relocate
3618                  * failed
3619                  */
3620                 if (ret == 0)
3621                         BUG(); /* FIXME break ? */
3622
3623                 ret = btrfs_previous_item(chunk_root, path, 0,
3624                                           BTRFS_CHUNK_ITEM_KEY);
3625                 if (ret) {
3626                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3627                         ret = 0;
3628                         break;
3629                 }
3630
3631                 leaf = path->nodes[0];
3632                 slot = path->slots[0];
3633                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3634
3635                 if (found_key.objectid != key.objectid) {
3636                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3637                         break;
3638                 }
3639
3640                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3641                 chunk_type = btrfs_chunk_type(leaf, chunk);
3642
3643                 if (!counting) {
3644                         spin_lock(&fs_info->balance_lock);
3645                         bctl->stat.considered++;
3646                         spin_unlock(&fs_info->balance_lock);
3647                 }
3648
3649                 ret = should_balance_chunk(fs_info, leaf, chunk,
3650                                            found_key.offset);
3651
3652                 btrfs_release_path(path);
3653                 if (!ret) {
3654                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3655                         goto loop;
3656                 }
3657
3658                 if (counting) {
3659                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3660                         spin_lock(&fs_info->balance_lock);
3661                         bctl->stat.expected++;
3662                         spin_unlock(&fs_info->balance_lock);
3663
3664                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3665                                 count_data++;
3666                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3667                                 count_sys++;
3668                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3669                                 count_meta++;
3670
3671                         goto loop;
3672                 }
3673
3674                 /*
3675                  * Apply limit_min filter, no need to check if the LIMITS
3676                  * filter is used, limit_min is 0 by default
3677                  */
3678                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3679                                         count_data < bctl->data.limit_min)
3680                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3681                                         count_meta < bctl->meta.limit_min)
3682                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3683                                         count_sys < bctl->sys.limit_min)) {
3684                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3685                         goto loop;
3686                 }
3687
3688                 if (!chunk_reserved) {
3689                         /*
3690                          * We may be relocating the only data chunk we have,
3691                          * which could potentially end up with losing data's
3692                          * raid profile, so lets allocate an empty one in
3693                          * advance.
3694                          */
3695                         ret = btrfs_may_alloc_data_chunk(fs_info,
3696                                                          found_key.offset);
3697                         if (ret < 0) {
3698                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3699                                 goto error;
3700                         } else if (ret == 1) {
3701                                 chunk_reserved = 1;
3702                         }
3703                 }
3704
3705                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3706                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3707                 if (ret && ret != -ENOSPC)
3708                         goto error;
3709                 if (ret == -ENOSPC) {
3710                         enospc_errors++;
3711                 } else {
3712                         spin_lock(&fs_info->balance_lock);
3713                         bctl->stat.completed++;
3714                         spin_unlock(&fs_info->balance_lock);
3715                 }
3716 loop:
3717                 if (found_key.offset == 0)
3718                         break;
3719                 key.offset = found_key.offset - 1;
3720         }
3721
3722         if (counting) {
3723                 btrfs_release_path(path);
3724                 counting = false;
3725                 goto again;
3726         }
3727 error:
3728         btrfs_free_path(path);
3729         if (enospc_errors) {
3730                 btrfs_info(fs_info, "%d enospc errors during balance",
3731                            enospc_errors);
3732                 if (!ret)
3733                         ret = -ENOSPC;
3734         }
3735
3736         return ret;
3737 }
3738
3739 /**
3740  * alloc_profile_is_valid - see if a given profile is valid and reduced
3741  * @flags: profile to validate
3742  * @extended: if true @flags is treated as an extended profile
3743  */
3744 static int alloc_profile_is_valid(u64 flags, int extended)
3745 {
3746         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3747                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3748
3749         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3750
3751         /* 1) check that all other bits are zeroed */
3752         if (flags & ~mask)
3753                 return 0;
3754
3755         /* 2) see if profile is reduced */
3756         if (flags == 0)
3757                 return !extended; /* "0" is valid for usual profiles */
3758
3759         /* true if exactly one bit set */
3760         return (flags & (flags - 1)) == 0;
3761 }
3762
3763 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3764 {
3765         /* cancel requested || normal exit path */
3766         return atomic_read(&fs_info->balance_cancel_req) ||
3767                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3768                  atomic_read(&fs_info->balance_cancel_req) == 0);
3769 }
3770
3771 /* Non-zero return value signifies invalidity */
3772 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3773                 u64 allowed)
3774 {
3775         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3776                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3777                  (bctl_arg->target & ~allowed)));
3778 }
3779
3780 /*
3781  * Should be called with balance mutexe held
3782  */
3783 int btrfs_balance(struct btrfs_balance_control *bctl,
3784                   struct btrfs_ioctl_balance_args *bargs)
3785 {
3786         struct btrfs_fs_info *fs_info = bctl->fs_info;
3787         u64 meta_target, data_target;
3788         u64 allowed;
3789         int mixed = 0;
3790         int ret;
3791         u64 num_devices;
3792         unsigned seq;
3793
3794         if (btrfs_fs_closing(fs_info) ||
3795             atomic_read(&fs_info->balance_pause_req) ||
3796             atomic_read(&fs_info->balance_cancel_req)) {
3797                 ret = -EINVAL;
3798                 goto out;
3799         }
3800
3801         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3802         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3803                 mixed = 1;
3804
3805         /*
3806          * In case of mixed groups both data and meta should be picked,
3807          * and identical options should be given for both of them.
3808          */
3809         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3810         if (mixed && (bctl->flags & allowed)) {
3811                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3812                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3813                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3814                         btrfs_err(fs_info,
3815                                   "with mixed groups data and metadata balance options must be the same");
3816                         ret = -EINVAL;
3817                         goto out;
3818                 }
3819         }
3820
3821         num_devices = fs_info->fs_devices->num_devices;
3822         btrfs_dev_replace_read_lock(&fs_info->dev_replace);
3823         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3824                 BUG_ON(num_devices < 1);
3825                 num_devices--;
3826         }
3827         btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
3828         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3829         if (num_devices > 1)
3830                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3831         if (num_devices > 2)
3832                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3833         if (num_devices > 3)
3834                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3835                             BTRFS_BLOCK_GROUP_RAID6);
3836         if (validate_convert_profile(&bctl->data, allowed)) {
3837                 btrfs_err(fs_info,
3838                           "unable to start balance with target data profile %llu",
3839                           bctl->data.target);
3840                 ret = -EINVAL;
3841                 goto out;
3842         }
3843         if (validate_convert_profile(&bctl->meta, allowed)) {
3844                 btrfs_err(fs_info,
3845                           "unable to start balance with target metadata profile %llu",
3846                           bctl->meta.target);
3847                 ret = -EINVAL;
3848                 goto out;
3849         }
3850         if (validate_convert_profile(&bctl->sys, allowed)) {
3851                 btrfs_err(fs_info,
3852                           "unable to start balance with target system profile %llu",
3853                           bctl->sys.target);
3854                 ret = -EINVAL;
3855                 goto out;
3856         }
3857
3858         /* allow to reduce meta or sys integrity only if force set */
3859         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3860                         BTRFS_BLOCK_GROUP_RAID10 |
3861                         BTRFS_BLOCK_GROUP_RAID5 |
3862                         BTRFS_BLOCK_GROUP_RAID6;
3863         do {
3864                 seq = read_seqbegin(&fs_info->profiles_lock);
3865
3866                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3867                      (fs_info->avail_system_alloc_bits & allowed) &&
3868                      !(bctl->sys.target & allowed)) ||
3869                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3870                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3871                      !(bctl->meta.target & allowed))) {
3872                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3873                                 btrfs_info(fs_info,
3874                                            "force reducing metadata integrity");
3875                         } else {
3876                                 btrfs_err(fs_info,
3877                                           "balance will reduce metadata integrity, use force if you want this");
3878                                 ret = -EINVAL;
3879                                 goto out;
3880                         }
3881                 }
3882         } while (read_seqretry(&fs_info->profiles_lock, seq));
3883
3884         /* if we're not converting, the target field is uninitialized */
3885         meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3886                 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3887         data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3888                 bctl->data.target : fs_info->avail_data_alloc_bits;
3889         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3890                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3891                 btrfs_warn(fs_info,
3892                            "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3893                            meta_target, data_target);
3894         }
3895
3896         ret = insert_balance_item(fs_info, bctl);
3897         if (ret && ret != -EEXIST)
3898                 goto out;
3899
3900         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3901                 BUG_ON(ret == -EEXIST);
3902                 set_balance_control(bctl);
3903         } else {
3904                 BUG_ON(ret != -EEXIST);
3905                 spin_lock(&fs_info->balance_lock);
3906                 update_balance_args(bctl);
3907                 spin_unlock(&fs_info->balance_lock);
3908         }
3909
3910         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
3911         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3912         mutex_unlock(&fs_info->balance_mutex);
3913
3914         ret = __btrfs_balance(fs_info);
3915
3916         mutex_lock(&fs_info->balance_mutex);
3917         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3918
3919         if (bargs) {
3920                 memset(bargs, 0, sizeof(*bargs));
3921                 btrfs_update_ioctl_balance_args(fs_info, bargs);
3922         }
3923
3924         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3925             balance_need_close(fs_info)) {
3926                 reset_balance_state(fs_info);
3927                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3928         }
3929
3930         wake_up(&fs_info->balance_wait_q);
3931
3932         return ret;
3933 out:
3934         if (bctl->flags & BTRFS_BALANCE_RESUME)
3935                 reset_balance_state(fs_info);
3936         else
3937                 kfree(bctl);
3938         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3939
3940         return ret;
3941 }
3942
3943 static int balance_kthread(void *data)
3944 {
3945         struct btrfs_fs_info *fs_info = data;
3946         int ret = 0;
3947
3948         mutex_lock(&fs_info->balance_mutex);
3949         if (fs_info->balance_ctl) {
3950                 btrfs_info(fs_info, "continuing balance");
3951                 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3952         }
3953         mutex_unlock(&fs_info->balance_mutex);
3954
3955         return ret;
3956 }
3957
3958 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3959 {
3960         struct task_struct *tsk;
3961
3962         mutex_lock(&fs_info->balance_mutex);
3963         if (!fs_info->balance_ctl) {
3964                 mutex_unlock(&fs_info->balance_mutex);
3965                 return 0;
3966         }
3967         mutex_unlock(&fs_info->balance_mutex);
3968
3969         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3970                 btrfs_info(fs_info, "force skipping balance");
3971                 return 0;
3972         }
3973
3974         /*
3975          * A ro->rw remount sequence should continue with the paused balance
3976          * regardless of who pauses it, system or the user as of now, so set
3977          * the resume flag.
3978          */
3979         spin_lock(&fs_info->balance_lock);
3980         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
3981         spin_unlock(&fs_info->balance_lock);
3982
3983         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3984         return PTR_ERR_OR_ZERO(tsk);
3985 }
3986
3987 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3988 {
3989         struct btrfs_balance_control *bctl;
3990         struct btrfs_balance_item *item;
3991         struct btrfs_disk_balance_args disk_bargs;
3992         struct btrfs_path *path;
3993         struct extent_buffer *leaf;
3994         struct btrfs_key key;
3995         int ret;
3996
3997         path = btrfs_alloc_path();
3998         if (!path)
3999                 return -ENOMEM;
4000
4001         key.objectid = BTRFS_BALANCE_OBJECTID;
4002         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4003         key.offset = 0;
4004
4005         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4006         if (ret < 0)
4007                 goto out;
4008         if (ret > 0) { /* ret = -ENOENT; */
4009                 ret = 0;
4010                 goto out;
4011         }
4012
4013         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4014         if (!bctl) {
4015                 ret = -ENOMEM;
4016                 goto out;
4017         }
4018
4019         leaf = path->nodes[0];
4020         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4021
4022         bctl->fs_info = fs_info;
4023         bctl->flags = btrfs_balance_flags(leaf, item);
4024         bctl->flags |= BTRFS_BALANCE_RESUME;
4025
4026         btrfs_balance_data(leaf, item, &disk_bargs);
4027         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4028         btrfs_balance_meta(leaf, item, &disk_bargs);
4029         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4030         btrfs_balance_sys(leaf, item, &disk_bargs);
4031         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4032
4033         /*
4034          * This should never happen, as the paused balance state is recovered
4035          * during mount without any chance of other exclusive ops to collide.
4036          *
4037          * This gives the exclusive op status to balance and keeps in paused
4038          * state until user intervention (cancel or umount). If the ownership
4039          * cannot be assigned, show a message but do not fail. The balance
4040          * is in a paused state and must have fs_info::balance_ctl properly
4041          * set up.
4042          */
4043         if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4044                 btrfs_warn(fs_info,
4045         "cannot set exclusive op status to balance, resume manually");
4046
4047         mutex_lock(&fs_info->balance_mutex);
4048         set_balance_control(bctl);
4049         mutex_unlock(&fs_info->balance_mutex);
4050 out:
4051         btrfs_free_path(path);
4052         return ret;
4053 }
4054
4055 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4056 {
4057         int ret = 0;
4058
4059         mutex_lock(&fs_info->balance_mutex);
4060         if (!fs_info->balance_ctl) {
4061                 mutex_unlock(&fs_info->balance_mutex);
4062                 return -ENOTCONN;
4063         }
4064
4065         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4066                 atomic_inc(&fs_info->balance_pause_req);
4067                 mutex_unlock(&fs_info->balance_mutex);
4068
4069                 wait_event(fs_info->balance_wait_q,
4070                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4071
4072                 mutex_lock(&fs_info->balance_mutex);
4073                 /* we are good with balance_ctl ripped off from under us */
4074                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4075                 atomic_dec(&fs_info->balance_pause_req);
4076         } else {
4077                 ret = -ENOTCONN;
4078         }
4079
4080         mutex_unlock(&fs_info->balance_mutex);
4081         return ret;
4082 }
4083
4084 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4085 {
4086         mutex_lock(&fs_info->balance_mutex);
4087         if (!fs_info->balance_ctl) {
4088                 mutex_unlock(&fs_info->balance_mutex);
4089                 return -ENOTCONN;
4090         }
4091
4092         /*
4093          * A paused balance with the item stored on disk can be resumed at
4094          * mount time if the mount is read-write. Otherwise it's still paused
4095          * and we must not allow cancelling as it deletes the item.
4096          */
4097         if (sb_rdonly(fs_info->sb)) {
4098                 mutex_unlock(&fs_info->balance_mutex);
4099                 return -EROFS;
4100         }
4101
4102         atomic_inc(&fs_info->balance_cancel_req);
4103         /*
4104          * if we are running just wait and return, balance item is
4105          * deleted in btrfs_balance in this case
4106          */
4107         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4108                 mutex_unlock(&fs_info->balance_mutex);
4109                 wait_event(fs_info->balance_wait_q,
4110                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4111                 mutex_lock(&fs_info->balance_mutex);
4112         } else {
4113                 mutex_unlock(&fs_info->balance_mutex);
4114                 /*
4115                  * Lock released to allow other waiters to continue, we'll
4116                  * reexamine the status again.
4117                  */
4118                 mutex_lock(&fs_info->balance_mutex);
4119
4120                 if (fs_info->balance_ctl) {
4121                         reset_balance_state(fs_info);
4122                         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4123                 }
4124         }
4125
4126         BUG_ON(fs_info->balance_ctl ||
4127                 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4128         atomic_dec(&fs_info->balance_cancel_req);
4129         mutex_unlock(&fs_info->balance_mutex);
4130         return 0;
4131 }
4132
4133 static int btrfs_uuid_scan_kthread(void *data)
4134 {
4135         struct btrfs_fs_info *fs_info = data;
4136         struct btrfs_root *root = fs_info->tree_root;
4137         struct btrfs_key key;
4138         struct btrfs_path *path = NULL;
4139         int ret = 0;
4140         struct extent_buffer *eb;
4141         int slot;
4142         struct btrfs_root_item root_item;
4143         u32 item_size;
4144         struct btrfs_trans_handle *trans = NULL;
4145
4146         path = btrfs_alloc_path();
4147         if (!path) {
4148                 ret = -ENOMEM;
4149                 goto out;
4150         }
4151
4152         key.objectid = 0;
4153         key.type = BTRFS_ROOT_ITEM_KEY;
4154         key.offset = 0;
4155
4156         while (1) {
4157                 ret = btrfs_search_forward(root, &key, path,
4158                                 BTRFS_OLDEST_GENERATION);
4159                 if (ret) {
4160                         if (ret > 0)
4161                                 ret = 0;
4162                         break;
4163                 }
4164
4165                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4166                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4167                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4168                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4169                         goto skip;
4170
4171                 eb = path->nodes[0];
4172                 slot = path->slots[0];
4173                 item_size = btrfs_item_size_nr(eb, slot);
4174                 if (item_size < sizeof(root_item))
4175                         goto skip;
4176
4177                 read_extent_buffer(eb, &root_item,
4178                                    btrfs_item_ptr_offset(eb, slot),
4179                                    (int)sizeof(root_item));
4180                 if (btrfs_root_refs(&root_item) == 0)
4181                         goto skip;
4182
4183                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4184                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4185                         if (trans)
4186                                 goto update_tree;
4187
4188                         btrfs_release_path(path);
4189                         /*
4190                          * 1 - subvol uuid item
4191                          * 1 - received_subvol uuid item
4192                          */
4193                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4194                         if (IS_ERR(trans)) {
4195                                 ret = PTR_ERR(trans);
4196                                 break;
4197                         }
4198                         continue;
4199                 } else {
4200                         goto skip;
4201                 }
4202 update_tree:
4203                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4204                         ret = btrfs_uuid_tree_add(trans, fs_info,
4205                                                   root_item.uuid,
4206                                                   BTRFS_UUID_KEY_SUBVOL,
4207                                                   key.objectid);
4208                         if (ret < 0) {
4209                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4210                                         ret);
4211                                 break;
4212                         }
4213                 }
4214
4215                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4216                         ret = btrfs_uuid_tree_add(trans, fs_info,
4217                                                   root_item.received_uuid,
4218                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4219                                                   key.objectid);
4220                         if (ret < 0) {
4221                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4222                                         ret);
4223                                 break;
4224                         }
4225                 }
4226
4227 skip:
4228                 if (trans) {
4229                         ret = btrfs_end_transaction(trans);
4230                         trans = NULL;
4231                         if (ret)
4232                                 break;
4233                 }
4234
4235                 btrfs_release_path(path);
4236                 if (key.offset < (u64)-1) {
4237                         key.offset++;
4238                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4239                         key.offset = 0;
4240                         key.type = BTRFS_ROOT_ITEM_KEY;
4241                 } else if (key.objectid < (u64)-1) {
4242                         key.offset = 0;
4243                         key.type = BTRFS_ROOT_ITEM_KEY;
4244                         key.objectid++;
4245                 } else {
4246                         break;
4247                 }
4248                 cond_resched();
4249         }
4250
4251 out:
4252         btrfs_free_path(path);
4253         if (trans && !IS_ERR(trans))
4254                 btrfs_end_transaction(trans);
4255         if (ret)
4256                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4257         else
4258                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4259         up(&fs_info->uuid_tree_rescan_sem);
4260         return 0;
4261 }
4262
4263 /*
4264  * Callback for btrfs_uuid_tree_iterate().
4265  * returns:
4266  * 0    check succeeded, the entry is not outdated.
4267  * < 0  if an error occurred.
4268  * > 0  if the check failed, which means the caller shall remove the entry.
4269  */
4270 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4271                                        u8 *uuid, u8 type, u64 subid)
4272 {
4273         struct btrfs_key key;
4274         int ret = 0;
4275         struct btrfs_root *subvol_root;
4276
4277         if (type != BTRFS_UUID_KEY_SUBVOL &&
4278             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4279                 goto out;
4280
4281         key.objectid = subid;
4282         key.type = BTRFS_ROOT_ITEM_KEY;
4283         key.offset = (u64)-1;
4284         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4285         if (IS_ERR(subvol_root)) {
4286                 ret = PTR_ERR(subvol_root);
4287                 if (ret == -ENOENT)
4288                         ret = 1;
4289                 goto out;
4290         }
4291
4292         switch (type) {
4293         case BTRFS_UUID_KEY_SUBVOL:
4294                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4295                         ret = 1;
4296                 break;
4297         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4298                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4299                            BTRFS_UUID_SIZE))
4300                         ret = 1;
4301                 break;
4302         }
4303
4304 out:
4305         return ret;
4306 }
4307
4308 static int btrfs_uuid_rescan_kthread(void *data)
4309 {
4310         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4311         int ret;
4312
4313         /*
4314          * 1st step is to iterate through the existing UUID tree and
4315          * to delete all entries that contain outdated data.
4316          * 2nd step is to add all missing entries to the UUID tree.
4317          */
4318         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4319         if (ret < 0) {
4320                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4321                 up(&fs_info->uuid_tree_rescan_sem);
4322                 return ret;
4323         }
4324         return btrfs_uuid_scan_kthread(data);
4325 }
4326
4327 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4328 {
4329         struct btrfs_trans_handle *trans;
4330         struct btrfs_root *tree_root = fs_info->tree_root;
4331         struct btrfs_root *uuid_root;
4332         struct task_struct *task;
4333         int ret;
4334
4335         /*
4336          * 1 - root node
4337          * 1 - root item
4338          */
4339         trans = btrfs_start_transaction(tree_root, 2);
4340         if (IS_ERR(trans))
4341                 return PTR_ERR(trans);
4342
4343         uuid_root = btrfs_create_tree(trans, fs_info,
4344                                       BTRFS_UUID_TREE_OBJECTID);
4345         if (IS_ERR(uuid_root)) {
4346                 ret = PTR_ERR(uuid_root);
4347                 btrfs_abort_transaction(trans, ret);
4348                 btrfs_end_transaction(trans);
4349                 return ret;
4350         }
4351
4352         fs_info->uuid_root = uuid_root;
4353
4354         ret = btrfs_commit_transaction(trans);
4355         if (ret)
4356                 return ret;
4357
4358         down(&fs_info->uuid_tree_rescan_sem);
4359         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4360         if (IS_ERR(task)) {
4361                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4362                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4363                 up(&fs_info->uuid_tree_rescan_sem);
4364                 return PTR_ERR(task);
4365         }
4366
4367         return 0;
4368 }
4369
4370 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4371 {
4372         struct task_struct *task;
4373
4374         down(&fs_info->uuid_tree_rescan_sem);
4375         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4376         if (IS_ERR(task)) {
4377                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4378                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4379                 up(&fs_info->uuid_tree_rescan_sem);
4380                 return PTR_ERR(task);
4381         }
4382
4383         return 0;
4384 }
4385
4386 /*
4387  * shrinking a device means finding all of the device extents past
4388  * the new size, and then following the back refs to the chunks.
4389  * The chunk relocation code actually frees the device extent
4390  */
4391 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4392 {
4393         struct btrfs_fs_info *fs_info = device->fs_info;
4394         struct btrfs_root *root = fs_info->dev_root;
4395         struct btrfs_trans_handle *trans;
4396         struct btrfs_dev_extent *dev_extent = NULL;
4397         struct btrfs_path *path;
4398         u64 length;
4399         u64 chunk_offset;
4400         int ret;
4401         int slot;
4402         int failed = 0;
4403         bool retried = false;
4404         bool checked_pending_chunks = false;
4405         struct extent_buffer *l;
4406         struct btrfs_key key;
4407         struct btrfs_super_block *super_copy = fs_info->super_copy;
4408         u64 old_total = btrfs_super_total_bytes(super_copy);
4409         u64 old_size = btrfs_device_get_total_bytes(device);
4410         u64 diff;
4411
4412         new_size = round_down(new_size, fs_info->sectorsize);
4413         diff = round_down(old_size - new_size, fs_info->sectorsize);
4414
4415         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4416                 return -EINVAL;
4417
4418         path = btrfs_alloc_path();
4419         if (!path)
4420                 return -ENOMEM;
4421
4422         path->reada = READA_FORWARD;
4423
4424         mutex_lock(&fs_info->chunk_mutex);
4425
4426         btrfs_device_set_total_bytes(device, new_size);
4427         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4428                 device->fs_devices->total_rw_bytes -= diff;
4429                 atomic64_sub(diff, &fs_info->free_chunk_space);
4430         }
4431         mutex_unlock(&fs_info->chunk_mutex);
4432
4433 again:
4434         key.objectid = device->devid;
4435         key.offset = (u64)-1;
4436         key.type = BTRFS_DEV_EXTENT_KEY;
4437
4438         do {
4439                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4440                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4441                 if (ret < 0) {
4442                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4443                         goto done;
4444                 }
4445
4446                 ret = btrfs_previous_item(root, path, 0, key.type);
4447                 if (ret)
4448                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4449                 if (ret < 0)
4450                         goto done;
4451                 if (ret) {
4452                         ret = 0;
4453                         btrfs_release_path(path);
4454                         break;
4455                 }
4456
4457                 l = path->nodes[0];
4458                 slot = path->slots[0];
4459                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4460
4461                 if (key.objectid != device->devid) {
4462                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4463                         btrfs_release_path(path);
4464                         break;
4465                 }
4466
4467                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4468                 length = btrfs_dev_extent_length(l, dev_extent);
4469
4470                 if (key.offset + length <= new_size) {
4471                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4472                         btrfs_release_path(path);
4473                         break;
4474                 }
4475
4476                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4477                 btrfs_release_path(path);
4478
4479                 /*
4480                  * We may be relocating the only data chunk we have,
4481                  * which could potentially end up with losing data's
4482                  * raid profile, so lets allocate an empty one in
4483                  * advance.
4484                  */
4485                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4486                 if (ret < 0) {
4487                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4488                         goto done;
4489                 }
4490
4491                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4492                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4493                 if (ret && ret != -ENOSPC)
4494                         goto done;
4495                 if (ret == -ENOSPC)
4496                         failed++;
4497         } while (key.offset-- > 0);
4498
4499         if (failed && !retried) {
4500                 failed = 0;
4501                 retried = true;
4502                 goto again;
4503         } else if (failed && retried) {
4504                 ret = -ENOSPC;
4505                 goto done;
4506         }
4507
4508         /* Shrinking succeeded, else we would be at "done". */
4509         trans = btrfs_start_transaction(root, 0);
4510         if (IS_ERR(trans)) {
4511                 ret = PTR_ERR(trans);
4512                 goto done;
4513         }
4514
4515         mutex_lock(&fs_info->chunk_mutex);
4516
4517         /*
4518          * We checked in the above loop all device extents that were already in
4519          * the device tree. However before we have updated the device's
4520          * total_bytes to the new size, we might have had chunk allocations that
4521          * have not complete yet (new block groups attached to transaction
4522          * handles), and therefore their device extents were not yet in the
4523          * device tree and we missed them in the loop above. So if we have any
4524          * pending chunk using a device extent that overlaps the device range
4525          * that we can not use anymore, commit the current transaction and
4526          * repeat the search on the device tree - this way we guarantee we will
4527          * not have chunks using device extents that end beyond 'new_size'.
4528          */
4529         if (!checked_pending_chunks) {
4530                 u64 start = new_size;
4531                 u64 len = old_size - new_size;
4532
4533                 if (contains_pending_extent(trans->transaction, device,
4534                                             &start, len)) {
4535                         mutex_unlock(&fs_info->chunk_mutex);
4536                         checked_pending_chunks = true;
4537                         failed = 0;
4538                         retried = false;
4539                         ret = btrfs_commit_transaction(trans);
4540                         if (ret)
4541                                 goto done;
4542                         goto again;
4543                 }
4544         }
4545
4546         btrfs_device_set_disk_total_bytes(device, new_size);
4547         if (list_empty(&device->resized_list))
4548                 list_add_tail(&device->resized_list,
4549                               &fs_info->fs_devices->resized_devices);
4550
4551         WARN_ON(diff > old_total);
4552         btrfs_set_super_total_bytes(super_copy,
4553                         round_down(old_total - diff, fs_info->sectorsize));
4554         mutex_unlock(&fs_info->chunk_mutex);
4555
4556         /* Now btrfs_update_device() will change the on-disk size. */
4557         ret = btrfs_update_device(trans, device);
4558         btrfs_end_transaction(trans);
4559 done:
4560         btrfs_free_path(path);
4561         if (ret) {
4562                 mutex_lock(&fs_info->chunk_mutex);
4563                 btrfs_device_set_total_bytes(device, old_size);
4564                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4565                         device->fs_devices->total_rw_bytes += diff;
4566                 atomic64_add(diff, &fs_info->free_chunk_space);
4567                 mutex_unlock(&fs_info->chunk_mutex);
4568         }
4569         return ret;
4570 }
4571
4572 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4573                            struct btrfs_key *key,
4574                            struct btrfs_chunk *chunk, int item_size)
4575 {
4576         struct btrfs_super_block *super_copy = fs_info->super_copy;
4577         struct btrfs_disk_key disk_key;
4578         u32 array_size;
4579         u8 *ptr;
4580
4581         mutex_lock(&fs_info->chunk_mutex);
4582         array_size = btrfs_super_sys_array_size(super_copy);
4583         if (array_size + item_size + sizeof(disk_key)
4584                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4585                 mutex_unlock(&fs_info->chunk_mutex);
4586                 return -EFBIG;
4587         }
4588
4589         ptr = super_copy->sys_chunk_array + array_size;
4590         btrfs_cpu_key_to_disk(&disk_key, key);
4591         memcpy(ptr, &disk_key, sizeof(disk_key));
4592         ptr += sizeof(disk_key);
4593         memcpy(ptr, chunk, item_size);
4594         item_size += sizeof(disk_key);
4595         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4596         mutex_unlock(&fs_info->chunk_mutex);
4597
4598         return 0;
4599 }
4600
4601 /*
4602  * sort the devices in descending order by max_avail, total_avail
4603  */
4604 static int btrfs_cmp_device_info(const void *a, const void *b)
4605 {
4606         const struct btrfs_device_info *di_a = a;
4607         const struct btrfs_device_info *di_b = b;
4608
4609         if (di_a->max_avail > di_b->max_avail)
4610                 return -1;
4611         if (di_a->max_avail < di_b->max_avail)
4612                 return 1;
4613         if (di_a->total_avail > di_b->total_avail)
4614                 return -1;
4615         if (di_a->total_avail < di_b->total_avail)
4616                 return 1;
4617         return 0;
4618 }
4619
4620 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4621 {
4622         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4623                 return;
4624
4625         btrfs_set_fs_incompat(info, RAID56);
4626 }
4627
4628 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info)        \
4629                         - sizeof(struct btrfs_chunk))           \
4630                         / sizeof(struct btrfs_stripe) + 1)
4631
4632 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4633                                 - 2 * sizeof(struct btrfs_disk_key)     \
4634                                 - 2 * sizeof(struct btrfs_chunk))       \
4635                                 / sizeof(struct btrfs_stripe) + 1)
4636
4637 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4638                                u64 start, u64 type)
4639 {
4640         struct btrfs_fs_info *info = trans->fs_info;
4641         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4642         struct btrfs_device *device;
4643         struct map_lookup *map = NULL;
4644         struct extent_map_tree *em_tree;
4645         struct extent_map *em;
4646         struct btrfs_device_info *devices_info = NULL;
4647         u64 total_avail;
4648         int num_stripes;        /* total number of stripes to allocate */
4649         int data_stripes;       /* number of stripes that count for
4650                                    block group size */
4651         int sub_stripes;        /* sub_stripes info for map */
4652         int dev_stripes;        /* stripes per dev */
4653         int devs_max;           /* max devs to use */
4654         int devs_min;           /* min devs needed */
4655         int devs_increment;     /* ndevs has to be a multiple of this */
4656         int ncopies;            /* how many copies to data has */
4657         int ret;
4658         u64 max_stripe_size;
4659         u64 max_chunk_size;
4660         u64 stripe_size;
4661         u64 num_bytes;
4662         int ndevs;
4663         int i;
4664         int j;
4665         int index;
4666
4667         BUG_ON(!alloc_profile_is_valid(type, 0));
4668
4669         if (list_empty(&fs_devices->alloc_list)) {
4670                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4671                         btrfs_debug(info, "%s: no writable device", __func__);
4672                 return -ENOSPC;
4673         }
4674
4675         index = btrfs_bg_flags_to_raid_index(type);
4676
4677         sub_stripes = btrfs_raid_array[index].sub_stripes;
4678         dev_stripes = btrfs_raid_array[index].dev_stripes;
4679         devs_max = btrfs_raid_array[index].devs_max;
4680         devs_min = btrfs_raid_array[index].devs_min;
4681         devs_increment = btrfs_raid_array[index].devs_increment;
4682         ncopies = btrfs_raid_array[index].ncopies;
4683
4684         if (type & BTRFS_BLOCK_GROUP_DATA) {
4685                 max_stripe_size = SZ_1G;
4686                 max_chunk_size = 10 * max_stripe_size;
4687                 if (!devs_max)
4688                         devs_max = BTRFS_MAX_DEVS(info);
4689         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4690                 /* for larger filesystems, use larger metadata chunks */
4691                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4692                         max_stripe_size = SZ_1G;
4693                 else
4694                         max_stripe_size = SZ_256M;
4695                 max_chunk_size = max_stripe_size;
4696                 if (!devs_max)
4697                         devs_max = BTRFS_MAX_DEVS(info);
4698         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4699                 max_stripe_size = SZ_32M;
4700                 max_chunk_size = 2 * max_stripe_size;
4701                 if (!devs_max)
4702                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4703         } else {
4704                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4705                        type);
4706                 BUG_ON(1);
4707         }
4708
4709         /* we don't want a chunk larger than 10% of writeable space */
4710         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4711                              max_chunk_size);
4712
4713         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4714                                GFP_NOFS);
4715         if (!devices_info)
4716                 return -ENOMEM;
4717
4718         /*
4719          * in the first pass through the devices list, we gather information
4720          * about the available holes on each device.
4721          */
4722         ndevs = 0;
4723         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4724                 u64 max_avail;
4725                 u64 dev_offset;
4726
4727                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4728                         WARN(1, KERN_ERR
4729                                "BTRFS: read-only device in alloc_list\n");
4730                         continue;
4731                 }
4732
4733                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4734                                         &device->dev_state) ||
4735                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4736                         continue;
4737
4738                 if (device->total_bytes > device->bytes_used)
4739                         total_avail = device->total_bytes - device->bytes_used;
4740                 else
4741                         total_avail = 0;
4742
4743                 /* If there is no space on this device, skip it. */
4744                 if (total_avail == 0)
4745                         continue;
4746
4747                 ret = find_free_dev_extent(trans, device,
4748                                            max_stripe_size * dev_stripes,
4749                                            &dev_offset, &max_avail);
4750                 if (ret && ret != -ENOSPC)
4751                         goto error;
4752
4753                 if (ret == 0)
4754                         max_avail = max_stripe_size * dev_stripes;
4755
4756                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4757                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
4758                                 btrfs_debug(info,
4759                         "%s: devid %llu has no free space, have=%llu want=%u",
4760                                             __func__, device->devid, max_avail,
4761                                             BTRFS_STRIPE_LEN * dev_stripes);
4762                         continue;
4763                 }
4764
4765                 if (ndevs == fs_devices->rw_devices) {
4766                         WARN(1, "%s: found more than %llu devices\n",
4767                              __func__, fs_devices->rw_devices);
4768                         break;
4769                 }
4770                 devices_info[ndevs].dev_offset = dev_offset;
4771                 devices_info[ndevs].max_avail = max_avail;
4772                 devices_info[ndevs].total_avail = total_avail;
4773                 devices_info[ndevs].dev = device;
4774                 ++ndevs;
4775         }
4776
4777         /*
4778          * now sort the devices by hole size / available space
4779          */
4780         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4781              btrfs_cmp_device_info, NULL);
4782
4783         /* round down to number of usable stripes */
4784         ndevs = round_down(ndevs, devs_increment);
4785
4786         if (ndevs < devs_min) {
4787                 ret = -ENOSPC;
4788                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4789                         btrfs_debug(info,
4790         "%s: not enough devices with free space: have=%d minimum required=%d",
4791                                     __func__, ndevs, devs_min);
4792                 }
4793                 goto error;
4794         }
4795
4796         ndevs = min(ndevs, devs_max);
4797
4798         /*
4799          * The primary goal is to maximize the number of stripes, so use as
4800          * many devices as possible, even if the stripes are not maximum sized.
4801          *
4802          * The DUP profile stores more than one stripe per device, the
4803          * max_avail is the total size so we have to adjust.
4804          */
4805         stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4806         num_stripes = ndevs * dev_stripes;
4807
4808         /*
4809          * this will have to be fixed for RAID1 and RAID10 over
4810          * more drives
4811          */
4812         data_stripes = num_stripes / ncopies;
4813
4814         if (type & BTRFS_BLOCK_GROUP_RAID5)
4815                 data_stripes = num_stripes - 1;
4816
4817         if (type & BTRFS_BLOCK_GROUP_RAID6)
4818                 data_stripes = num_stripes - 2;
4819
4820         /*
4821          * Use the number of data stripes to figure out how big this chunk
4822          * is really going to be in terms of logical address space,
4823          * and compare that answer with the max chunk size
4824          */
4825         if (stripe_size * data_stripes > max_chunk_size) {
4826                 stripe_size = div_u64(max_chunk_size, data_stripes);
4827
4828                 /* bump the answer up to a 16MB boundary */
4829                 stripe_size = round_up(stripe_size, SZ_16M);
4830
4831                 /*
4832                  * But don't go higher than the limits we found while searching
4833                  * for free extents
4834                  */
4835                 stripe_size = min(devices_info[ndevs - 1].max_avail,
4836                                   stripe_size);
4837         }
4838
4839         /* align to BTRFS_STRIPE_LEN */
4840         stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4841
4842         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4843         if (!map) {
4844                 ret = -ENOMEM;
4845                 goto error;
4846         }
4847         map->num_stripes = num_stripes;
4848
4849         for (i = 0; i < ndevs; ++i) {
4850                 for (j = 0; j < dev_stripes; ++j) {
4851                         int s = i * dev_stripes + j;
4852                         map->stripes[s].dev = devices_info[i].dev;
4853                         map->stripes[s].physical = devices_info[i].dev_offset +
4854                                                    j * stripe_size;
4855                 }
4856         }
4857         map->stripe_len = BTRFS_STRIPE_LEN;
4858         map->io_align = BTRFS_STRIPE_LEN;
4859         map->io_width = BTRFS_STRIPE_LEN;
4860         map->type = type;
4861         map->sub_stripes = sub_stripes;
4862
4863         num_bytes = stripe_size * data_stripes;
4864
4865         trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4866
4867         em = alloc_extent_map();
4868         if (!em) {
4869                 kfree(map);
4870                 ret = -ENOMEM;
4871                 goto error;
4872         }
4873         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4874         em->map_lookup = map;
4875         em->start = start;
4876         em->len = num_bytes;
4877         em->block_start = 0;
4878         em->block_len = em->len;
4879         em->orig_block_len = stripe_size;
4880
4881         em_tree = &info->mapping_tree.map_tree;
4882         write_lock(&em_tree->lock);
4883         ret = add_extent_mapping(em_tree, em, 0);
4884         if (ret) {
4885                 write_unlock(&em_tree->lock);
4886                 free_extent_map(em);
4887                 goto error;
4888         }
4889
4890         list_add_tail(&em->list, &trans->transaction->pending_chunks);
4891         refcount_inc(&em->refs);
4892         write_unlock(&em_tree->lock);
4893
4894         ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
4895         if (ret)
4896                 goto error_del_extent;
4897
4898         for (i = 0; i < map->num_stripes; i++) {
4899                 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4900                 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4901         }
4902
4903         atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4904
4905         free_extent_map(em);
4906         check_raid56_incompat_flag(info, type);
4907
4908         kfree(devices_info);
4909         return 0;
4910
4911 error_del_extent:
4912         write_lock(&em_tree->lock);
4913         remove_extent_mapping(em_tree, em);
4914         write_unlock(&em_tree->lock);
4915
4916         /* One for our allocation */
4917         free_extent_map(em);
4918         /* One for the tree reference */
4919         free_extent_map(em);
4920         /* One for the pending_chunks list reference */
4921         free_extent_map(em);
4922 error:
4923         kfree(devices_info);
4924         return ret;
4925 }
4926
4927 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4928                                 struct btrfs_fs_info *fs_info,
4929                                 u64 chunk_offset, u64 chunk_size)
4930 {
4931         struct btrfs_root *extent_root = fs_info->extent_root;
4932         struct btrfs_root *chunk_root = fs_info->chunk_root;
4933         struct btrfs_key key;
4934         struct btrfs_device *device;
4935         struct btrfs_chunk *chunk;
4936         struct btrfs_stripe *stripe;
4937         struct extent_map *em;
4938         struct map_lookup *map;
4939         size_t item_size;
4940         u64 dev_offset;
4941         u64 stripe_size;
4942         int i = 0;
4943         int ret = 0;
4944
4945         em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4946         if (IS_ERR(em))
4947                 return PTR_ERR(em);
4948
4949         map = em->map_lookup;
4950         item_size = btrfs_chunk_item_size(map->num_stripes);
4951         stripe_size = em->orig_block_len;
4952
4953         chunk = kzalloc(item_size, GFP_NOFS);
4954         if (!chunk) {
4955                 ret = -ENOMEM;
4956                 goto out;
4957         }
4958
4959         /*
4960          * Take the device list mutex to prevent races with the final phase of
4961          * a device replace operation that replaces the device object associated
4962          * with the map's stripes, because the device object's id can change
4963          * at any time during that final phase of the device replace operation
4964          * (dev-replace.c:btrfs_dev_replace_finishing()).
4965          */
4966         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4967         for (i = 0; i < map->num_stripes; i++) {
4968                 device = map->stripes[i].dev;
4969                 dev_offset = map->stripes[i].physical;
4970
4971                 ret = btrfs_update_device(trans, device);
4972                 if (ret)
4973                         break;
4974                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4975                                              dev_offset, stripe_size);
4976                 if (ret)
4977                         break;
4978         }
4979         if (ret) {
4980                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4981                 goto out;
4982         }
4983
4984         stripe = &chunk->stripe;
4985         for (i = 0; i < map->num_stripes; i++) {
4986                 device = map->stripes[i].dev;
4987                 dev_offset = map->stripes[i].physical;
4988
4989                 btrfs_set_stack_stripe_devid(stripe, device->devid);
4990                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4991                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4992                 stripe++;
4993         }
4994         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4995
4996         btrfs_set_stack_chunk_length(chunk, chunk_size);
4997         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4998         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4999         btrfs_set_stack_chunk_type(chunk, map->type);
5000         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5001         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5002         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5003         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5004         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5005
5006         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5007         key.type = BTRFS_CHUNK_ITEM_KEY;
5008         key.offset = chunk_offset;
5009
5010         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5011         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5012                 /*
5013                  * TODO: Cleanup of inserted chunk root in case of
5014                  * failure.
5015                  */
5016                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5017         }
5018
5019 out:
5020         kfree(chunk);
5021         free_extent_map(em);
5022         return ret;
5023 }
5024
5025 /*
5026  * Chunk allocation falls into two parts. The first part does works
5027  * that make the new allocated chunk useable, but not do any operation
5028  * that modifies the chunk tree. The second part does the works that
5029  * require modifying the chunk tree. This division is important for the
5030  * bootstrap process of adding storage to a seed btrfs.
5031  */
5032 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5033                       struct btrfs_fs_info *fs_info, u64 type)
5034 {
5035         u64 chunk_offset;
5036
5037         lockdep_assert_held(&fs_info->chunk_mutex);
5038         chunk_offset = find_next_chunk(fs_info);
5039         return __btrfs_alloc_chunk(trans, chunk_offset, type);
5040 }
5041
5042 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5043                                          struct btrfs_fs_info *fs_info)
5044 {
5045         u64 chunk_offset;
5046         u64 sys_chunk_offset;
5047         u64 alloc_profile;
5048         int ret;
5049
5050         chunk_offset = find_next_chunk(fs_info);
5051         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5052         ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5053         if (ret)
5054                 return ret;
5055
5056         sys_chunk_offset = find_next_chunk(fs_info);
5057         alloc_profile = btrfs_system_alloc_profile(fs_info);
5058         ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5059         return ret;
5060 }
5061
5062 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5063 {
5064         int max_errors;
5065
5066         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5067                          BTRFS_BLOCK_GROUP_RAID10 |
5068                          BTRFS_BLOCK_GROUP_RAID5 |
5069                          BTRFS_BLOCK_GROUP_DUP)) {
5070                 max_errors = 1;
5071         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5072                 max_errors = 2;
5073         } else {
5074                 max_errors = 0;
5075         }
5076
5077         return max_errors;
5078 }
5079
5080 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5081 {
5082         struct extent_map *em;
5083         struct map_lookup *map;
5084         int readonly = 0;
5085         int miss_ndevs = 0;
5086         int i;
5087
5088         em = get_chunk_map(fs_info, chunk_offset, 1);
5089         if (IS_ERR(em))
5090                 return 1;
5091
5092         map = em->map_lookup;
5093         for (i = 0; i < map->num_stripes; i++) {
5094                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5095                                         &map->stripes[i].dev->dev_state)) {
5096                         miss_ndevs++;
5097                         continue;
5098                 }
5099                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5100                                         &map->stripes[i].dev->dev_state)) {
5101                         readonly = 1;
5102                         goto end;
5103                 }
5104         }
5105
5106         /*
5107          * If the number of missing devices is larger than max errors,
5108          * we can not write the data into that chunk successfully, so
5109          * set it readonly.
5110          */
5111         if (miss_ndevs > btrfs_chunk_max_errors(map))
5112                 readonly = 1;
5113 end:
5114         free_extent_map(em);
5115         return readonly;
5116 }
5117
5118 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5119 {
5120         extent_map_tree_init(&tree->map_tree);
5121 }
5122
5123 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5124 {
5125         struct extent_map *em;
5126
5127         while (1) {
5128                 write_lock(&tree->map_tree.lock);
5129                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5130                 if (em)
5131                         remove_extent_mapping(&tree->map_tree, em);
5132                 write_unlock(&tree->map_tree.lock);
5133                 if (!em)
5134                         break;
5135                 /* once for us */
5136                 free_extent_map(em);
5137                 /* once for the tree */
5138                 free_extent_map(em);
5139         }
5140 }
5141
5142 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5143 {
5144         struct extent_map *em;
5145         struct map_lookup *map;
5146         int ret;
5147
5148         em = get_chunk_map(fs_info, logical, len);
5149         if (IS_ERR(em))
5150                 /*
5151                  * We could return errors for these cases, but that could get
5152                  * ugly and we'd probably do the same thing which is just not do
5153                  * anything else and exit, so return 1 so the callers don't try
5154                  * to use other copies.
5155                  */
5156                 return 1;
5157
5158         map = em->map_lookup;
5159         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5160                 ret = map->num_stripes;
5161         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5162                 ret = map->sub_stripes;
5163         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5164                 ret = 2;
5165         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5166                 /*
5167                  * There could be two corrupted data stripes, we need
5168                  * to loop retry in order to rebuild the correct data.
5169                  * 
5170                  * Fail a stripe at a time on every retry except the
5171                  * stripe under reconstruction.
5172                  */
5173                 ret = map->num_stripes;
5174         else
5175                 ret = 1;
5176         free_extent_map(em);
5177
5178         btrfs_dev_replace_read_lock(&fs_info->dev_replace);
5179         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5180             fs_info->dev_replace.tgtdev)
5181                 ret++;
5182         btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
5183
5184         return ret;
5185 }
5186
5187 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5188                                     u64 logical)
5189 {
5190         struct extent_map *em;
5191         struct map_lookup *map;
5192         unsigned long len = fs_info->sectorsize;
5193
5194         em = get_chunk_map(fs_info, logical, len);
5195
5196         if (!WARN_ON(IS_ERR(em))) {
5197                 map = em->map_lookup;
5198                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5199                         len = map->stripe_len * nr_data_stripes(map);
5200                 free_extent_map(em);
5201         }
5202         return len;
5203 }
5204
5205 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5206 {
5207         struct extent_map *em;
5208         struct map_lookup *map;
5209         int ret = 0;
5210
5211         em = get_chunk_map(fs_info, logical, len);
5212
5213         if(!WARN_ON(IS_ERR(em))) {
5214                 map = em->map_lookup;
5215                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5216                         ret = 1;
5217                 free_extent_map(em);
5218         }
5219         return ret;
5220 }
5221
5222 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5223                             struct map_lookup *map, int first,
5224                             int dev_replace_is_ongoing)
5225 {
5226         int i;
5227         int num_stripes;
5228         int preferred_mirror;
5229         int tolerance;
5230         struct btrfs_device *srcdev;
5231
5232         ASSERT((map->type &
5233                  (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)));
5234
5235         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5236                 num_stripes = map->sub_stripes;
5237         else
5238                 num_stripes = map->num_stripes;
5239
5240         preferred_mirror = first + current->pid % num_stripes;
5241
5242         if (dev_replace_is_ongoing &&
5243             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5244              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5245                 srcdev = fs_info->dev_replace.srcdev;
5246         else
5247                 srcdev = NULL;
5248
5249         /*
5250          * try to avoid the drive that is the source drive for a
5251          * dev-replace procedure, only choose it if no other non-missing
5252          * mirror is available
5253          */
5254         for (tolerance = 0; tolerance < 2; tolerance++) {
5255                 if (map->stripes[preferred_mirror].dev->bdev &&
5256                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5257                         return preferred_mirror;
5258                 for (i = first; i < first + num_stripes; i++) {
5259                         if (map->stripes[i].dev->bdev &&
5260                             (tolerance || map->stripes[i].dev != srcdev))
5261                                 return i;
5262                 }
5263         }
5264
5265         /* we couldn't find one that doesn't fail.  Just return something
5266          * and the io error handling code will clean up eventually
5267          */
5268         return preferred_mirror;
5269 }
5270
5271 static inline int parity_smaller(u64 a, u64 b)
5272 {
5273         return a > b;
5274 }
5275
5276 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5277 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5278 {
5279         struct btrfs_bio_stripe s;
5280         int i;
5281         u64 l;
5282         int again = 1;
5283
5284         while (again) {
5285                 again = 0;
5286                 for (i = 0; i < num_stripes - 1; i++) {
5287                         if (parity_smaller(bbio->raid_map[i],
5288                                            bbio->raid_map[i+1])) {
5289                                 s = bbio->stripes[i];
5290                                 l = bbio->raid_map[i];
5291                                 bbio->stripes[i] = bbio->stripes[i+1];
5292                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5293                                 bbio->stripes[i+1] = s;
5294                                 bbio->raid_map[i+1] = l;
5295
5296                                 again = 1;
5297                         }
5298                 }
5299         }
5300 }
5301
5302 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5303 {
5304         struct btrfs_bio *bbio = kzalloc(
5305                  /* the size of the btrfs_bio */
5306                 sizeof(struct btrfs_bio) +
5307                 /* plus the variable array for the stripes */
5308                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5309                 /* plus the variable array for the tgt dev */
5310                 sizeof(int) * (real_stripes) +
5311                 /*
5312                  * plus the raid_map, which includes both the tgt dev
5313                  * and the stripes
5314                  */
5315                 sizeof(u64) * (total_stripes),
5316                 GFP_NOFS|__GFP_NOFAIL);
5317
5318         atomic_set(&bbio->error, 0);
5319         refcount_set(&bbio->refs, 1);
5320
5321         return bbio;
5322 }
5323
5324 void btrfs_get_bbio(struct btrfs_bio *bbio)
5325 {
5326         WARN_ON(!refcount_read(&bbio->refs));
5327         refcount_inc(&bbio->refs);
5328 }
5329
5330 void btrfs_put_bbio(struct btrfs_bio *bbio)
5331 {
5332         if (!bbio)
5333                 return;
5334         if (refcount_dec_and_test(&bbio->refs))
5335                 kfree(bbio);
5336 }
5337
5338 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5339 /*
5340  * Please note that, discard won't be sent to target device of device
5341  * replace.
5342  */
5343 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5344                                          u64 logical, u64 length,
5345                                          struct btrfs_bio **bbio_ret)
5346 {
5347         struct extent_map *em;
5348         struct map_lookup *map;
5349         struct btrfs_bio *bbio;
5350         u64 offset;
5351         u64 stripe_nr;
5352         u64 stripe_nr_end;
5353         u64 stripe_end_offset;
5354         u64 stripe_cnt;
5355         u64 stripe_len;
5356         u64 stripe_offset;
5357         u64 num_stripes;
5358         u32 stripe_index;
5359         u32 factor = 0;
5360         u32 sub_stripes = 0;
5361         u64 stripes_per_dev = 0;
5362         u32 remaining_stripes = 0;
5363         u32 last_stripe = 0;
5364         int ret = 0;
5365         int i;
5366
5367         /* discard always return a bbio */
5368         ASSERT(bbio_ret);
5369
5370         em = get_chunk_map(fs_info, logical, length);
5371         if (IS_ERR(em))
5372                 return PTR_ERR(em);
5373
5374         map = em->map_lookup;
5375         /* we don't discard raid56 yet */
5376         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5377                 ret = -EOPNOTSUPP;
5378                 goto out;
5379         }
5380
5381         offset = logical - em->start;
5382         length = min_t(u64, em->len - offset, length);
5383
5384         stripe_len = map->stripe_len;
5385         /*
5386          * stripe_nr counts the total number of stripes we have to stride
5387          * to get to this block
5388          */
5389         stripe_nr = div64_u64(offset, stripe_len);
5390
5391         /* stripe_offset is the offset of this block in its stripe */
5392         stripe_offset = offset - stripe_nr * stripe_len;
5393
5394         stripe_nr_end = round_up(offset + length, map->stripe_len);
5395         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5396         stripe_cnt = stripe_nr_end - stripe_nr;
5397         stripe_end_offset = stripe_nr_end * map->stripe_len -
5398                             (offset + length);
5399         /*
5400          * after this, stripe_nr is the number of stripes on this
5401          * device we have to walk to find the data, and stripe_index is
5402          * the number of our device in the stripe array
5403          */
5404         num_stripes = 1;
5405         stripe_index = 0;
5406         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5407                          BTRFS_BLOCK_GROUP_RAID10)) {
5408                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5409                         sub_stripes = 1;
5410                 else
5411                         sub_stripes = map->sub_stripes;
5412
5413                 factor = map->num_stripes / sub_stripes;
5414                 num_stripes = min_t(u64, map->num_stripes,
5415                                     sub_stripes * stripe_cnt);
5416                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5417                 stripe_index *= sub_stripes;
5418                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5419                                               &remaining_stripes);
5420                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5421                 last_stripe *= sub_stripes;
5422         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5423                                 BTRFS_BLOCK_GROUP_DUP)) {
5424                 num_stripes = map->num_stripes;
5425         } else {
5426                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5427                                         &stripe_index);
5428         }
5429
5430         bbio = alloc_btrfs_bio(num_stripes, 0);
5431         if (!bbio) {
5432                 ret = -ENOMEM;
5433                 goto out;
5434         }
5435
5436         for (i = 0; i < num_stripes; i++) {
5437                 bbio->stripes[i].physical =
5438                         map->stripes[stripe_index].physical +
5439                         stripe_offset + stripe_nr * map->stripe_len;
5440                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5441
5442                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5443                                  BTRFS_BLOCK_GROUP_RAID10)) {
5444                         bbio->stripes[i].length = stripes_per_dev *
5445                                 map->stripe_len;
5446
5447                         if (i / sub_stripes < remaining_stripes)
5448                                 bbio->stripes[i].length +=
5449                                         map->stripe_len;
5450
5451                         /*
5452                          * Special for the first stripe and
5453                          * the last stripe:
5454                          *
5455                          * |-------|...|-------|
5456                          *     |----------|
5457                          *    off     end_off
5458                          */
5459                         if (i < sub_stripes)
5460                                 bbio->stripes[i].length -=
5461                                         stripe_offset;
5462
5463                         if (stripe_index >= last_stripe &&
5464                             stripe_index <= (last_stripe +
5465                                              sub_stripes - 1))
5466                                 bbio->stripes[i].length -=
5467                                         stripe_end_offset;
5468
5469                         if (i == sub_stripes - 1)
5470                                 stripe_offset = 0;
5471                 } else {
5472                         bbio->stripes[i].length = length;
5473                 }
5474
5475                 stripe_index++;
5476                 if (stripe_index == map->num_stripes) {
5477                         stripe_index = 0;
5478                         stripe_nr++;
5479                 }
5480         }
5481
5482         *bbio_ret = bbio;
5483         bbio->map_type = map->type;
5484         bbio->num_stripes = num_stripes;
5485 out:
5486         free_extent_map(em);
5487         return ret;
5488 }
5489
5490 /*
5491  * In dev-replace case, for repair case (that's the only case where the mirror
5492  * is selected explicitly when calling btrfs_map_block), blocks left of the
5493  * left cursor can also be read from the target drive.
5494  *
5495  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5496  * array of stripes.
5497  * For READ, it also needs to be supported using the same mirror number.
5498  *
5499  * If the requested block is not left of the left cursor, EIO is returned. This
5500  * can happen because btrfs_num_copies() returns one more in the dev-replace
5501  * case.
5502  */
5503 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5504                                          u64 logical, u64 length,
5505                                          u64 srcdev_devid, int *mirror_num,
5506                                          u64 *physical)
5507 {
5508         struct btrfs_bio *bbio = NULL;
5509         int num_stripes;
5510         int index_srcdev = 0;
5511         int found = 0;
5512         u64 physical_of_found = 0;
5513         int i;
5514         int ret = 0;
5515
5516         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5517                                 logical, &length, &bbio, 0, 0);
5518         if (ret) {
5519                 ASSERT(bbio == NULL);
5520                 return ret;
5521         }
5522
5523         num_stripes = bbio->num_stripes;
5524         if (*mirror_num > num_stripes) {
5525                 /*
5526                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5527                  * that means that the requested area is not left of the left
5528                  * cursor
5529                  */
5530                 btrfs_put_bbio(bbio);
5531                 return -EIO;
5532         }
5533
5534         /*
5535          * process the rest of the function using the mirror_num of the source
5536          * drive. Therefore look it up first.  At the end, patch the device
5537          * pointer to the one of the target drive.
5538          */
5539         for (i = 0; i < num_stripes; i++) {
5540                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5541                         continue;
5542
5543                 /*
5544                  * In case of DUP, in order to keep it simple, only add the
5545                  * mirror with the lowest physical address
5546                  */
5547                 if (found &&
5548                     physical_of_found <= bbio->stripes[i].physical)
5549                         continue;
5550
5551                 index_srcdev = i;
5552                 found = 1;
5553                 physical_of_found = bbio->stripes[i].physical;
5554         }
5555
5556         btrfs_put_bbio(bbio);
5557
5558         ASSERT(found);
5559         if (!found)
5560                 return -EIO;
5561
5562         *mirror_num = index_srcdev + 1;
5563         *physical = physical_of_found;
5564         return ret;
5565 }
5566
5567 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5568                                       struct btrfs_bio **bbio_ret,
5569                                       struct btrfs_dev_replace *dev_replace,
5570                                       int *num_stripes_ret, int *max_errors_ret)
5571 {
5572         struct btrfs_bio *bbio = *bbio_ret;
5573         u64 srcdev_devid = dev_replace->srcdev->devid;
5574         int tgtdev_indexes = 0;
5575         int num_stripes = *num_stripes_ret;
5576         int max_errors = *max_errors_ret;
5577         int i;
5578
5579         if (op == BTRFS_MAP_WRITE) {
5580                 int index_where_to_add;
5581
5582                 /*
5583                  * duplicate the write operations while the dev replace
5584                  * procedure is running. Since the copying of the old disk to
5585                  * the new disk takes place at run time while the filesystem is
5586                  * mounted writable, the regular write operations to the old
5587                  * disk have to be duplicated to go to the new disk as well.
5588                  *
5589                  * Note that device->missing is handled by the caller, and that
5590                  * the write to the old disk is already set up in the stripes
5591                  * array.
5592                  */
5593                 index_where_to_add = num_stripes;
5594                 for (i = 0; i < num_stripes; i++) {
5595                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5596                                 /* write to new disk, too */
5597                                 struct btrfs_bio_stripe *new =
5598                                         bbio->stripes + index_where_to_add;
5599                                 struct btrfs_bio_stripe *old =
5600                                         bbio->stripes + i;
5601
5602                                 new->physical = old->physical;
5603                                 new->length = old->length;
5604                                 new->dev = dev_replace->tgtdev;
5605                                 bbio->tgtdev_map[i] = index_where_to_add;
5606                                 index_where_to_add++;
5607                                 max_errors++;
5608                                 tgtdev_indexes++;
5609                         }
5610                 }
5611                 num_stripes = index_where_to_add;
5612         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5613                 int index_srcdev = 0;
5614                 int found = 0;
5615                 u64 physical_of_found = 0;
5616
5617                 /*
5618                  * During the dev-replace procedure, the target drive can also
5619                  * be used to read data in case it is needed to repair a corrupt
5620                  * block elsewhere. This is possible if the requested area is
5621                  * left of the left cursor. In this area, the target drive is a
5622                  * full copy of the source drive.
5623                  */
5624                 for (i = 0; i < num_stripes; i++) {
5625                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5626                                 /*
5627                                  * In case of DUP, in order to keep it simple,
5628                                  * only add the mirror with the lowest physical
5629                                  * address
5630                                  */
5631                                 if (found &&
5632                                     physical_of_found <=
5633                                      bbio->stripes[i].physical)
5634                                         continue;
5635                                 index_srcdev = i;
5636                                 found = 1;
5637                                 physical_of_found = bbio->stripes[i].physical;
5638                         }
5639                 }
5640                 if (found) {
5641                         struct btrfs_bio_stripe *tgtdev_stripe =
5642                                 bbio->stripes + num_stripes;
5643
5644                         tgtdev_stripe->physical = physical_of_found;
5645                         tgtdev_stripe->length =
5646                                 bbio->stripes[index_srcdev].length;
5647                         tgtdev_stripe->dev = dev_replace->tgtdev;
5648                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5649
5650                         tgtdev_indexes++;
5651                         num_stripes++;
5652                 }
5653         }
5654
5655         *num_stripes_ret = num_stripes;
5656         *max_errors_ret = max_errors;
5657         bbio->num_tgtdevs = tgtdev_indexes;
5658         *bbio_ret = bbio;
5659 }
5660
5661 static bool need_full_stripe(enum btrfs_map_op op)
5662 {
5663         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5664 }
5665
5666 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5667                              enum btrfs_map_op op,
5668                              u64 logical, u64 *length,
5669                              struct btrfs_bio **bbio_ret,
5670                              int mirror_num, int need_raid_map)
5671 {
5672         struct extent_map *em;
5673         struct map_lookup *map;
5674         u64 offset;
5675         u64 stripe_offset;
5676         u64 stripe_nr;
5677         u64 stripe_len;
5678         u32 stripe_index;
5679         int i;
5680         int ret = 0;
5681         int num_stripes;
5682         int max_errors = 0;
5683         int tgtdev_indexes = 0;
5684         struct btrfs_bio *bbio = NULL;
5685         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5686         int dev_replace_is_ongoing = 0;
5687         int num_alloc_stripes;
5688         int patch_the_first_stripe_for_dev_replace = 0;
5689         u64 physical_to_patch_in_first_stripe = 0;
5690         u64 raid56_full_stripe_start = (u64)-1;
5691
5692         if (op == BTRFS_MAP_DISCARD)
5693                 return __btrfs_map_block_for_discard(fs_info, logical,
5694                                                      *length, bbio_ret);
5695
5696         em = get_chunk_map(fs_info, logical, *length);
5697         if (IS_ERR(em))
5698                 return PTR_ERR(em);
5699
5700         map = em->map_lookup;
5701         offset = logical - em->start;
5702
5703         stripe_len = map->stripe_len;
5704         stripe_nr = offset;
5705         /*
5706          * stripe_nr counts the total number of stripes we have to stride
5707          * to get to this block
5708          */
5709         stripe_nr = div64_u64(stripe_nr, stripe_len);
5710
5711         stripe_offset = stripe_nr * stripe_len;
5712         if (offset < stripe_offset) {
5713                 btrfs_crit(fs_info,
5714                            "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5715                            stripe_offset, offset, em->start, logical,
5716                            stripe_len);
5717                 free_extent_map(em);
5718                 return -EINVAL;
5719         }
5720
5721         /* stripe_offset is the offset of this block in its stripe*/
5722         stripe_offset = offset - stripe_offset;
5723
5724         /* if we're here for raid56, we need to know the stripe aligned start */
5725         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5726                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5727                 raid56_full_stripe_start = offset;
5728
5729                 /* allow a write of a full stripe, but make sure we don't
5730                  * allow straddling of stripes
5731                  */
5732                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5733                                 full_stripe_len);
5734                 raid56_full_stripe_start *= full_stripe_len;
5735         }
5736
5737         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5738                 u64 max_len;
5739                 /* For writes to RAID[56], allow a full stripeset across all disks.
5740                    For other RAID types and for RAID[56] reads, just allow a single
5741                    stripe (on a single disk). */
5742                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5743                     (op == BTRFS_MAP_WRITE)) {
5744                         max_len = stripe_len * nr_data_stripes(map) -
5745                                 (offset - raid56_full_stripe_start);
5746                 } else {
5747                         /* we limit the length of each bio to what fits in a stripe */
5748                         max_len = stripe_len - stripe_offset;
5749                 }
5750                 *length = min_t(u64, em->len - offset, max_len);
5751         } else {
5752                 *length = em->len - offset;
5753         }
5754
5755         /* This is for when we're called from btrfs_merge_bio_hook() and all
5756            it cares about is the length */
5757         if (!bbio_ret)
5758                 goto out;
5759
5760         btrfs_dev_replace_read_lock(dev_replace);
5761         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5762         if (!dev_replace_is_ongoing)
5763                 btrfs_dev_replace_read_unlock(dev_replace);
5764         else
5765                 btrfs_dev_replace_set_lock_blocking(dev_replace);
5766
5767         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5768             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5769                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5770                                                     dev_replace->srcdev->devid,
5771                                                     &mirror_num,
5772                                             &physical_to_patch_in_first_stripe);
5773                 if (ret)
5774                         goto out;
5775                 else
5776                         patch_the_first_stripe_for_dev_replace = 1;
5777         } else if (mirror_num > map->num_stripes) {
5778                 mirror_num = 0;
5779         }
5780
5781         num_stripes = 1;
5782         stripe_index = 0;
5783         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5784                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5785                                 &stripe_index);
5786                 if (!need_full_stripe(op))
5787                         mirror_num = 1;
5788         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5789                 if (need_full_stripe(op))
5790                         num_stripes = map->num_stripes;
5791                 else if (mirror_num)
5792                         stripe_index = mirror_num - 1;
5793                 else {
5794                         stripe_index = find_live_mirror(fs_info, map, 0,
5795                                             dev_replace_is_ongoing);
5796                         mirror_num = stripe_index + 1;
5797                 }
5798
5799         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5800                 if (need_full_stripe(op)) {
5801                         num_stripes = map->num_stripes;
5802                 } else if (mirror_num) {
5803                         stripe_index = mirror_num - 1;
5804                 } else {
5805                         mirror_num = 1;
5806                 }
5807
5808         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5809                 u32 factor = map->num_stripes / map->sub_stripes;
5810
5811                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5812                 stripe_index *= map->sub_stripes;
5813
5814                 if (need_full_stripe(op))
5815                         num_stripes = map->sub_stripes;
5816                 else if (mirror_num)
5817                         stripe_index += mirror_num - 1;
5818                 else {
5819                         int old_stripe_index = stripe_index;
5820                         stripe_index = find_live_mirror(fs_info, map,
5821                                               stripe_index,
5822                                               dev_replace_is_ongoing);
5823                         mirror_num = stripe_index - old_stripe_index + 1;
5824                 }
5825
5826         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5827                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5828                         /* push stripe_nr back to the start of the full stripe */
5829                         stripe_nr = div64_u64(raid56_full_stripe_start,
5830                                         stripe_len * nr_data_stripes(map));
5831
5832                         /* RAID[56] write or recovery. Return all stripes */
5833                         num_stripes = map->num_stripes;
5834                         max_errors = nr_parity_stripes(map);
5835
5836                         *length = map->stripe_len;
5837                         stripe_index = 0;
5838                         stripe_offset = 0;
5839                 } else {
5840                         /*
5841                          * Mirror #0 or #1 means the original data block.
5842                          * Mirror #2 is RAID5 parity block.
5843                          * Mirror #3 is RAID6 Q block.
5844                          */
5845                         stripe_nr = div_u64_rem(stripe_nr,
5846                                         nr_data_stripes(map), &stripe_index);
5847                         if (mirror_num > 1)
5848                                 stripe_index = nr_data_stripes(map) +
5849                                                 mirror_num - 2;
5850
5851                         /* We distribute the parity blocks across stripes */
5852                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5853                                         &stripe_index);
5854                         if (!need_full_stripe(op) && mirror_num <= 1)
5855                                 mirror_num = 1;
5856                 }
5857         } else {
5858                 /*
5859                  * after this, stripe_nr is the number of stripes on this
5860                  * device we have to walk to find the data, and stripe_index is
5861                  * the number of our device in the stripe array
5862                  */
5863                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5864                                 &stripe_index);
5865                 mirror_num = stripe_index + 1;
5866         }
5867         if (stripe_index >= map->num_stripes) {
5868                 btrfs_crit(fs_info,
5869                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5870                            stripe_index, map->num_stripes);
5871                 ret = -EINVAL;
5872                 goto out;
5873         }
5874
5875         num_alloc_stripes = num_stripes;
5876         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5877                 if (op == BTRFS_MAP_WRITE)
5878                         num_alloc_stripes <<= 1;
5879                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5880                         num_alloc_stripes++;
5881                 tgtdev_indexes = num_stripes;
5882         }
5883
5884         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5885         if (!bbio) {
5886                 ret = -ENOMEM;
5887                 goto out;
5888         }
5889         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5890                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5891
5892         /* build raid_map */
5893         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5894             (need_full_stripe(op) || mirror_num > 1)) {
5895                 u64 tmp;
5896                 unsigned rot;
5897
5898                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5899                                  sizeof(struct btrfs_bio_stripe) *
5900                                  num_alloc_stripes +
5901                                  sizeof(int) * tgtdev_indexes);
5902
5903                 /* Work out the disk rotation on this stripe-set */
5904                 div_u64_rem(stripe_nr, num_stripes, &rot);
5905
5906                 /* Fill in the logical address of each stripe */
5907                 tmp = stripe_nr * nr_data_stripes(map);
5908                 for (i = 0; i < nr_data_stripes(map); i++)
5909                         bbio->raid_map[(i+rot) % num_stripes] =
5910                                 em->start + (tmp + i) * map->stripe_len;
5911
5912                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5913                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5914                         bbio->raid_map[(i+rot+1) % num_stripes] =
5915                                 RAID6_Q_STRIPE;
5916         }
5917
5918
5919         for (i = 0; i < num_stripes; i++) {
5920                 bbio->stripes[i].physical =
5921                         map->stripes[stripe_index].physical +
5922                         stripe_offset +
5923                         stripe_nr * map->stripe_len;
5924                 bbio->stripes[i].dev =
5925                         map->stripes[stripe_index].dev;
5926                 stripe_index++;
5927         }
5928
5929         if (need_full_stripe(op))
5930                 max_errors = btrfs_chunk_max_errors(map);
5931
5932         if (bbio->raid_map)
5933                 sort_parity_stripes(bbio, num_stripes);
5934
5935         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5936             need_full_stripe(op)) {
5937                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5938                                           &max_errors);
5939         }
5940
5941         *bbio_ret = bbio;
5942         bbio->map_type = map->type;
5943         bbio->num_stripes = num_stripes;
5944         bbio->max_errors = max_errors;
5945         bbio->mirror_num = mirror_num;
5946
5947         /*
5948          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5949          * mirror_num == num_stripes + 1 && dev_replace target drive is
5950          * available as a mirror
5951          */
5952         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5953                 WARN_ON(num_stripes > 1);
5954                 bbio->stripes[0].dev = dev_replace->tgtdev;
5955                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5956                 bbio->mirror_num = map->num_stripes + 1;
5957         }
5958 out:
5959         if (dev_replace_is_ongoing) {
5960                 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5961                 btrfs_dev_replace_read_unlock(dev_replace);
5962         }
5963         free_extent_map(em);
5964         return ret;
5965 }
5966
5967 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5968                       u64 logical, u64 *length,
5969                       struct btrfs_bio **bbio_ret, int mirror_num)
5970 {
5971         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5972                                  mirror_num, 0);
5973 }
5974
5975 /* For Scrub/replace */
5976 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5977                      u64 logical, u64 *length,
5978                      struct btrfs_bio **bbio_ret)
5979 {
5980         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5981 }
5982
5983 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5984                      u64 chunk_start, u64 physical, u64 devid,
5985                      u64 **logical, int *naddrs, int *stripe_len)
5986 {
5987         struct extent_map *em;
5988         struct map_lookup *map;
5989         u64 *buf;
5990         u64 bytenr;
5991         u64 length;
5992         u64 stripe_nr;
5993         u64 rmap_len;
5994         int i, j, nr = 0;
5995
5996         em = get_chunk_map(fs_info, chunk_start, 1);
5997         if (IS_ERR(em))
5998                 return -EIO;
5999
6000         map = em->map_lookup;
6001         length = em->len;
6002         rmap_len = map->stripe_len;
6003
6004         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6005                 length = div_u64(length, map->num_stripes / map->sub_stripes);
6006         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6007                 length = div_u64(length, map->num_stripes);
6008         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6009                 length = div_u64(length, nr_data_stripes(map));
6010                 rmap_len = map->stripe_len * nr_data_stripes(map);
6011         }
6012
6013         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6014         BUG_ON(!buf); /* -ENOMEM */
6015
6016         for (i = 0; i < map->num_stripes; i++) {
6017                 if (devid && map->stripes[i].dev->devid != devid)
6018                         continue;
6019                 if (map->stripes[i].physical > physical ||
6020                     map->stripes[i].physical + length <= physical)
6021                         continue;
6022
6023                 stripe_nr = physical - map->stripes[i].physical;
6024                 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6025
6026                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6027                         stripe_nr = stripe_nr * map->num_stripes + i;
6028                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6029                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6030                         stripe_nr = stripe_nr * map->num_stripes + i;
6031                 } /* else if RAID[56], multiply by nr_data_stripes().
6032                    * Alternatively, just use rmap_len below instead of
6033                    * map->stripe_len */
6034
6035                 bytenr = chunk_start + stripe_nr * rmap_len;
6036                 WARN_ON(nr >= map->num_stripes);
6037                 for (j = 0; j < nr; j++) {
6038                         if (buf[j] == bytenr)
6039                                 break;
6040                 }
6041                 if (j == nr) {
6042                         WARN_ON(nr >= map->num_stripes);
6043                         buf[nr++] = bytenr;
6044                 }
6045         }
6046
6047         *logical = buf;
6048         *naddrs = nr;
6049         *stripe_len = rmap_len;
6050
6051         free_extent_map(em);
6052         return 0;
6053 }
6054
6055 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6056 {
6057         bio->bi_private = bbio->private;
6058         bio->bi_end_io = bbio->end_io;
6059         bio_endio(bio);
6060
6061         btrfs_put_bbio(bbio);
6062 }
6063
6064 static void btrfs_end_bio(struct bio *bio)
6065 {
6066         struct btrfs_bio *bbio = bio->bi_private;
6067         int is_orig_bio = 0;
6068
6069         if (bio->bi_status) {
6070                 atomic_inc(&bbio->error);
6071                 if (bio->bi_status == BLK_STS_IOERR ||
6072                     bio->bi_status == BLK_STS_TARGET) {
6073                         unsigned int stripe_index =
6074                                 btrfs_io_bio(bio)->stripe_index;
6075                         struct btrfs_device *dev;
6076
6077                         BUG_ON(stripe_index >= bbio->num_stripes);
6078                         dev = bbio->stripes[stripe_index].dev;
6079                         if (dev->bdev) {
6080                                 if (bio_op(bio) == REQ_OP_WRITE)
6081                                         btrfs_dev_stat_inc_and_print(dev,
6082                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6083                                 else
6084                                         btrfs_dev_stat_inc_and_print(dev,
6085                                                 BTRFS_DEV_STAT_READ_ERRS);
6086                                 if (bio->bi_opf & REQ_PREFLUSH)
6087                                         btrfs_dev_stat_inc_and_print(dev,
6088                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6089                         }
6090                 }
6091         }
6092
6093         if (bio == bbio->orig_bio)
6094                 is_orig_bio = 1;
6095
6096         btrfs_bio_counter_dec(bbio->fs_info);
6097
6098         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6099                 if (!is_orig_bio) {
6100                         bio_put(bio);
6101                         bio = bbio->orig_bio;
6102                 }
6103
6104                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6105                 /* only send an error to the higher layers if it is
6106                  * beyond the tolerance of the btrfs bio
6107                  */
6108                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6109                         bio->bi_status = BLK_STS_IOERR;
6110                 } else {
6111                         /*
6112                          * this bio is actually up to date, we didn't
6113                          * go over the max number of errors
6114                          */
6115                         bio->bi_status = BLK_STS_OK;
6116                 }
6117
6118                 btrfs_end_bbio(bbio, bio);
6119         } else if (!is_orig_bio) {
6120                 bio_put(bio);
6121         }
6122 }
6123
6124 /*
6125  * see run_scheduled_bios for a description of why bios are collected for
6126  * async submit.
6127  *
6128  * This will add one bio to the pending list for a device and make sure
6129  * the work struct is scheduled.
6130  */
6131 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6132                                         struct bio *bio)
6133 {
6134         struct btrfs_fs_info *fs_info = device->fs_info;
6135         int should_queue = 1;
6136         struct btrfs_pending_bios *pending_bios;
6137
6138         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
6139             !device->bdev) {
6140                 bio_io_error(bio);
6141                 return;
6142         }
6143
6144         /* don't bother with additional async steps for reads, right now */
6145         if (bio_op(bio) == REQ_OP_READ) {
6146                 btrfsic_submit_bio(bio);
6147                 return;
6148         }
6149
6150         WARN_ON(bio->bi_next);
6151         bio->bi_next = NULL;
6152
6153         spin_lock(&device->io_lock);
6154         if (op_is_sync(bio->bi_opf))
6155                 pending_bios = &device->pending_sync_bios;
6156         else
6157                 pending_bios = &device->pending_bios;
6158
6159         if (pending_bios->tail)
6160                 pending_bios->tail->bi_next = bio;
6161
6162         pending_bios->tail = bio;
6163         if (!pending_bios->head)
6164                 pending_bios->head = bio;
6165         if (device->running_pending)
6166                 should_queue = 0;
6167
6168         spin_unlock(&device->io_lock);
6169
6170         if (should_queue)
6171                 btrfs_queue_work(fs_info->submit_workers, &device->work);
6172 }
6173
6174 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6175                               u64 physical, int dev_nr, int async)
6176 {
6177         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6178         struct btrfs_fs_info *fs_info = bbio->fs_info;
6179
6180         bio->bi_private = bbio;
6181         btrfs_io_bio(bio)->stripe_index = dev_nr;
6182         bio->bi_end_io = btrfs_end_bio;
6183         bio->bi_iter.bi_sector = physical >> 9;
6184 #ifdef DEBUG
6185         {
6186                 struct rcu_string *name;
6187
6188                 rcu_read_lock();
6189                 name = rcu_dereference(dev->name);
6190                 btrfs_debug(fs_info,
6191                         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6192                         bio_op(bio), bio->bi_opf,
6193                         (u64)bio->bi_iter.bi_sector,
6194                         (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6195                         bio->bi_iter.bi_size);
6196                 rcu_read_unlock();
6197         }
6198 #endif
6199         bio_set_dev(bio, dev->bdev);
6200
6201         btrfs_bio_counter_inc_noblocked(fs_info);
6202
6203         if (async)
6204                 btrfs_schedule_bio(dev, bio);
6205         else
6206                 btrfsic_submit_bio(bio);
6207 }
6208
6209 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6210 {
6211         atomic_inc(&bbio->error);
6212         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6213                 /* Should be the original bio. */
6214                 WARN_ON(bio != bbio->orig_bio);
6215
6216                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6217                 bio->bi_iter.bi_sector = logical >> 9;
6218                 if (atomic_read(&bbio->error) > bbio->max_errors)
6219                         bio->bi_status = BLK_STS_IOERR;
6220                 else
6221                         bio->bi_status = BLK_STS_OK;
6222                 btrfs_end_bbio(bbio, bio);
6223         }
6224 }
6225
6226 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6227                            int mirror_num, int async_submit)
6228 {
6229         struct btrfs_device *dev;
6230         struct bio *first_bio = bio;
6231         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6232         u64 length = 0;
6233         u64 map_length;
6234         int ret;
6235         int dev_nr;
6236         int total_devs;
6237         struct btrfs_bio *bbio = NULL;
6238
6239         length = bio->bi_iter.bi_size;
6240         map_length = length;
6241
6242         btrfs_bio_counter_inc_blocked(fs_info);
6243         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6244                                 &map_length, &bbio, mirror_num, 1);
6245         if (ret) {
6246                 btrfs_bio_counter_dec(fs_info);
6247                 return errno_to_blk_status(ret);
6248         }
6249
6250         total_devs = bbio->num_stripes;
6251         bbio->orig_bio = first_bio;
6252         bbio->private = first_bio->bi_private;
6253         bbio->end_io = first_bio->bi_end_io;
6254         bbio->fs_info = fs_info;
6255         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6256
6257         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6258             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6259                 /* In this case, map_length has been set to the length of
6260                    a single stripe; not the whole write */
6261                 if (bio_op(bio) == REQ_OP_WRITE) {
6262                         ret = raid56_parity_write(fs_info, bio, bbio,
6263                                                   map_length);
6264                 } else {
6265                         ret = raid56_parity_recover(fs_info, bio, bbio,
6266                                                     map_length, mirror_num, 1);
6267                 }
6268
6269                 btrfs_bio_counter_dec(fs_info);
6270                 return errno_to_blk_status(ret);
6271         }
6272
6273         if (map_length < length) {
6274                 btrfs_crit(fs_info,
6275                            "mapping failed logical %llu bio len %llu len %llu",
6276                            logical, length, map_length);
6277                 BUG();
6278         }
6279
6280         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6281                 dev = bbio->stripes[dev_nr].dev;
6282                 if (!dev || !dev->bdev ||
6283                     (bio_op(first_bio) == REQ_OP_WRITE &&
6284                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6285                         bbio_error(bbio, first_bio, logical);
6286                         continue;
6287                 }
6288
6289                 if (dev_nr < total_devs - 1)
6290                         bio = btrfs_bio_clone(first_bio);
6291                 else
6292                         bio = first_bio;
6293
6294                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6295                                   dev_nr, async_submit);
6296         }
6297         btrfs_bio_counter_dec(fs_info);
6298         return BLK_STS_OK;
6299 }
6300
6301 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6302                                        u8 *uuid, u8 *fsid)
6303 {
6304         struct btrfs_device *device;
6305         struct btrfs_fs_devices *cur_devices;
6306
6307         cur_devices = fs_info->fs_devices;
6308         while (cur_devices) {
6309                 if (!fsid ||
6310                     !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6311                         device = find_device(cur_devices, devid, uuid);
6312                         if (device)
6313                                 return device;
6314                 }
6315                 cur_devices = cur_devices->seed;
6316         }
6317         return NULL;
6318 }
6319
6320 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6321                                             u64 devid, u8 *dev_uuid)
6322 {
6323         struct btrfs_device *device;
6324
6325         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6326         if (IS_ERR(device))
6327                 return device;
6328
6329         list_add(&device->dev_list, &fs_devices->devices);
6330         device->fs_devices = fs_devices;
6331         fs_devices->num_devices++;
6332
6333         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6334         fs_devices->missing_devices++;
6335
6336         return device;
6337 }
6338
6339 /**
6340  * btrfs_alloc_device - allocate struct btrfs_device
6341  * @fs_info:    used only for generating a new devid, can be NULL if
6342  *              devid is provided (i.e. @devid != NULL).
6343  * @devid:      a pointer to devid for this device.  If NULL a new devid
6344  *              is generated.
6345  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6346  *              is generated.
6347  *
6348  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6349  * on error.  Returned struct is not linked onto any lists and must be
6350  * destroyed with btrfs_free_device.
6351  */
6352 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6353                                         const u64 *devid,
6354                                         const u8 *uuid)
6355 {
6356         struct btrfs_device *dev;
6357         u64 tmp;
6358
6359         if (WARN_ON(!devid && !fs_info))
6360                 return ERR_PTR(-EINVAL);
6361
6362         dev = __alloc_device();
6363         if (IS_ERR(dev))
6364                 return dev;
6365
6366         if (devid)
6367                 tmp = *devid;
6368         else {
6369                 int ret;
6370
6371                 ret = find_next_devid(fs_info, &tmp);
6372                 if (ret) {
6373                         btrfs_free_device(dev);
6374                         return ERR_PTR(ret);
6375                 }
6376         }
6377         dev->devid = tmp;
6378
6379         if (uuid)
6380                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6381         else
6382                 generate_random_uuid(dev->uuid);
6383
6384         btrfs_init_work(&dev->work, btrfs_submit_helper,
6385                         pending_bios_fn, NULL, NULL);
6386
6387         return dev;
6388 }
6389
6390 /* Return -EIO if any error, otherwise return 0. */
6391 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6392                                    struct extent_buffer *leaf,
6393                                    struct btrfs_chunk *chunk, u64 logical)
6394 {
6395         u64 length;
6396         u64 stripe_len;
6397         u16 num_stripes;
6398         u16 sub_stripes;
6399         u64 type;
6400
6401         length = btrfs_chunk_length(leaf, chunk);
6402         stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6403         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6404         sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6405         type = btrfs_chunk_type(leaf, chunk);
6406
6407         if (!num_stripes) {
6408                 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6409                           num_stripes);
6410                 return -EIO;
6411         }
6412         if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6413                 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6414                 return -EIO;
6415         }
6416         if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6417                 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6418                           btrfs_chunk_sector_size(leaf, chunk));
6419                 return -EIO;
6420         }
6421         if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6422                 btrfs_err(fs_info, "invalid chunk length %llu", length);
6423                 return -EIO;
6424         }
6425         if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6426                 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6427                           stripe_len);
6428                 return -EIO;
6429         }
6430         if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6431             type) {
6432                 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6433                           ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6434                             BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6435                           btrfs_chunk_type(leaf, chunk));
6436                 return -EIO;
6437         }
6438         if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6439             (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6440             (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6441             (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6442             (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6443             ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6444              num_stripes != 1)) {
6445                 btrfs_err(fs_info,
6446                         "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6447                         num_stripes, sub_stripes,
6448                         type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6449                 return -EIO;
6450         }
6451
6452         return 0;
6453 }
6454
6455 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6456                                         u64 devid, u8 *uuid, bool error)
6457 {
6458         if (error)
6459                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6460                               devid, uuid);
6461         else
6462                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6463                               devid, uuid);
6464 }
6465
6466 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6467                           struct extent_buffer *leaf,
6468                           struct btrfs_chunk *chunk)
6469 {
6470         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6471         struct map_lookup *map;
6472         struct extent_map *em;
6473         u64 logical;
6474         u64 length;
6475         u64 devid;
6476         u8 uuid[BTRFS_UUID_SIZE];
6477         int num_stripes;
6478         int ret;
6479         int i;
6480
6481         logical = key->offset;
6482         length = btrfs_chunk_length(leaf, chunk);
6483         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6484
6485         ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6486         if (ret)
6487                 return ret;
6488
6489         read_lock(&map_tree->map_tree.lock);
6490         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6491         read_unlock(&map_tree->map_tree.lock);
6492
6493         /* already mapped? */
6494         if (em && em->start <= logical && em->start + em->len > logical) {
6495                 free_extent_map(em);
6496                 return 0;
6497         } else if (em) {
6498                 free_extent_map(em);
6499         }
6500
6501         em = alloc_extent_map();
6502         if (!em)
6503                 return -ENOMEM;
6504         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6505         if (!map) {
6506                 free_extent_map(em);
6507                 return -ENOMEM;
6508         }
6509
6510         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6511         em->map_lookup = map;
6512         em->start = logical;
6513         em->len = length;
6514         em->orig_start = 0;
6515         em->block_start = 0;
6516         em->block_len = em->len;
6517
6518         map->num_stripes = num_stripes;
6519         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6520         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6521         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6522         map->type = btrfs_chunk_type(leaf, chunk);
6523         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6524         for (i = 0; i < num_stripes; i++) {
6525                 map->stripes[i].physical =
6526                         btrfs_stripe_offset_nr(leaf, chunk, i);
6527                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6528                 read_extent_buffer(leaf, uuid, (unsigned long)
6529                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6530                                    BTRFS_UUID_SIZE);
6531                 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6532                                                         uuid, NULL);
6533                 if (!map->stripes[i].dev &&
6534                     !btrfs_test_opt(fs_info, DEGRADED)) {
6535                         free_extent_map(em);
6536                         btrfs_report_missing_device(fs_info, devid, uuid, true);
6537                         return -ENOENT;
6538                 }
6539                 if (!map->stripes[i].dev) {
6540                         map->stripes[i].dev =
6541                                 add_missing_dev(fs_info->fs_devices, devid,
6542                                                 uuid);
6543                         if (IS_ERR(map->stripes[i].dev)) {
6544                                 free_extent_map(em);
6545                                 btrfs_err(fs_info,
6546                                         "failed to init missing dev %llu: %ld",
6547                                         devid, PTR_ERR(map->stripes[i].dev));
6548                                 return PTR_ERR(map->stripes[i].dev);
6549                         }
6550                         btrfs_report_missing_device(fs_info, devid, uuid, false);
6551                 }
6552                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6553                                 &(map->stripes[i].dev->dev_state));
6554
6555         }
6556
6557         write_lock(&map_tree->map_tree.lock);
6558         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6559         write_unlock(&map_tree->map_tree.lock);
6560         BUG_ON(ret); /* Tree corruption */
6561         free_extent_map(em);
6562
6563         return 0;
6564 }
6565
6566 static void fill_device_from_item(struct extent_buffer *leaf,
6567                                  struct btrfs_dev_item *dev_item,
6568                                  struct btrfs_device *device)
6569 {
6570         unsigned long ptr;
6571
6572         device->devid = btrfs_device_id(leaf, dev_item);
6573         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6574         device->total_bytes = device->disk_total_bytes;
6575         device->commit_total_bytes = device->disk_total_bytes;
6576         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6577         device->commit_bytes_used = device->bytes_used;
6578         device->type = btrfs_device_type(leaf, dev_item);
6579         device->io_align = btrfs_device_io_align(leaf, dev_item);
6580         device->io_width = btrfs_device_io_width(leaf, dev_item);
6581         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6582         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6583         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6584
6585         ptr = btrfs_device_uuid(dev_item);
6586         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6587 }
6588
6589 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6590                                                   u8 *fsid)
6591 {
6592         struct btrfs_fs_devices *fs_devices;
6593         int ret;
6594
6595         lockdep_assert_held(&uuid_mutex);
6596         ASSERT(fsid);
6597
6598         fs_devices = fs_info->fs_devices->seed;
6599         while (fs_devices) {
6600                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6601                         return fs_devices;
6602
6603                 fs_devices = fs_devices->seed;
6604         }
6605
6606         fs_devices = find_fsid(fsid);
6607         if (!fs_devices) {
6608                 if (!btrfs_test_opt(fs_info, DEGRADED))
6609                         return ERR_PTR(-ENOENT);
6610
6611                 fs_devices = alloc_fs_devices(fsid);
6612                 if (IS_ERR(fs_devices))
6613                         return fs_devices;
6614
6615                 fs_devices->seeding = 1;
6616                 fs_devices->opened = 1;
6617                 return fs_devices;
6618         }
6619
6620         fs_devices = clone_fs_devices(fs_devices);
6621         if (IS_ERR(fs_devices))
6622                 return fs_devices;
6623
6624         ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6625         if (ret) {
6626                 free_fs_devices(fs_devices);
6627                 fs_devices = ERR_PTR(ret);
6628                 goto out;
6629         }
6630
6631         if (!fs_devices->seeding) {
6632                 close_fs_devices(fs_devices);
6633                 free_fs_devices(fs_devices);
6634                 fs_devices = ERR_PTR(-EINVAL);
6635                 goto out;
6636         }
6637
6638         fs_devices->seed = fs_info->fs_devices->seed;
6639         fs_info->fs_devices->seed = fs_devices;
6640 out:
6641         return fs_devices;
6642 }
6643
6644 static int read_one_dev(struct btrfs_fs_info *fs_info,
6645                         struct extent_buffer *leaf,
6646                         struct btrfs_dev_item *dev_item)
6647 {
6648         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6649         struct btrfs_device *device;
6650         u64 devid;
6651         int ret;
6652         u8 fs_uuid[BTRFS_FSID_SIZE];
6653         u8 dev_uuid[BTRFS_UUID_SIZE];
6654
6655         devid = btrfs_device_id(leaf, dev_item);
6656         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6657                            BTRFS_UUID_SIZE);
6658         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6659                            BTRFS_FSID_SIZE);
6660
6661         if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6662                 fs_devices = open_seed_devices(fs_info, fs_uuid);
6663                 if (IS_ERR(fs_devices))
6664                         return PTR_ERR(fs_devices);
6665         }
6666
6667         device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6668         if (!device) {
6669                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6670                         btrfs_report_missing_device(fs_info, devid,
6671                                                         dev_uuid, true);
6672                         return -ENOENT;
6673                 }
6674
6675                 device = add_missing_dev(fs_devices, devid, dev_uuid);
6676                 if (IS_ERR(device)) {
6677                         btrfs_err(fs_info,
6678                                 "failed to add missing dev %llu: %ld",
6679                                 devid, PTR_ERR(device));
6680                         return PTR_ERR(device);
6681                 }
6682                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6683         } else {
6684                 if (!device->bdev) {
6685                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
6686                                 btrfs_report_missing_device(fs_info,
6687                                                 devid, dev_uuid, true);
6688                                 return -ENOENT;
6689                         }
6690                         btrfs_report_missing_device(fs_info, devid,
6691                                                         dev_uuid, false);
6692                 }
6693
6694                 if (!device->bdev &&
6695                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6696                         /*
6697                          * this happens when a device that was properly setup
6698                          * in the device info lists suddenly goes bad.
6699                          * device->bdev is NULL, and so we have to set
6700                          * device->missing to one here
6701                          */
6702                         device->fs_devices->missing_devices++;
6703                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6704                 }
6705
6706                 /* Move the device to its own fs_devices */
6707                 if (device->fs_devices != fs_devices) {
6708                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6709                                                         &device->dev_state));
6710
6711                         list_move(&device->dev_list, &fs_devices->devices);
6712                         device->fs_devices->num_devices--;
6713                         fs_devices->num_devices++;
6714
6715                         device->fs_devices->missing_devices--;
6716                         fs_devices->missing_devices++;
6717
6718                         device->fs_devices = fs_devices;
6719                 }
6720         }
6721
6722         if (device->fs_devices != fs_info->fs_devices) {
6723                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6724                 if (device->generation !=
6725                     btrfs_device_generation(leaf, dev_item))
6726                         return -EINVAL;
6727         }
6728
6729         fill_device_from_item(leaf, dev_item, device);
6730         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6731         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6732            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6733                 device->fs_devices->total_rw_bytes += device->total_bytes;
6734                 atomic64_add(device->total_bytes - device->bytes_used,
6735                                 &fs_info->free_chunk_space);
6736         }
6737         ret = 0;
6738         return ret;
6739 }
6740
6741 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6742 {
6743         struct btrfs_root *root = fs_info->tree_root;
6744         struct btrfs_super_block *super_copy = fs_info->super_copy;
6745         struct extent_buffer *sb;
6746         struct btrfs_disk_key *disk_key;
6747         struct btrfs_chunk *chunk;
6748         u8 *array_ptr;
6749         unsigned long sb_array_offset;
6750         int ret = 0;
6751         u32 num_stripes;
6752         u32 array_size;
6753         u32 len = 0;
6754         u32 cur_offset;
6755         u64 type;
6756         struct btrfs_key key;
6757
6758         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6759         /*
6760          * This will create extent buffer of nodesize, superblock size is
6761          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6762          * overallocate but we can keep it as-is, only the first page is used.
6763          */
6764         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6765         if (IS_ERR(sb))
6766                 return PTR_ERR(sb);
6767         set_extent_buffer_uptodate(sb);
6768         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6769         /*
6770          * The sb extent buffer is artificial and just used to read the system array.
6771          * set_extent_buffer_uptodate() call does not properly mark all it's
6772          * pages up-to-date when the page is larger: extent does not cover the
6773          * whole page and consequently check_page_uptodate does not find all
6774          * the page's extents up-to-date (the hole beyond sb),
6775          * write_extent_buffer then triggers a WARN_ON.
6776          *
6777          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6778          * but sb spans only this function. Add an explicit SetPageUptodate call
6779          * to silence the warning eg. on PowerPC 64.
6780          */
6781         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6782                 SetPageUptodate(sb->pages[0]);
6783
6784         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6785         array_size = btrfs_super_sys_array_size(super_copy);
6786
6787         array_ptr = super_copy->sys_chunk_array;
6788         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6789         cur_offset = 0;
6790
6791         while (cur_offset < array_size) {
6792                 disk_key = (struct btrfs_disk_key *)array_ptr;
6793                 len = sizeof(*disk_key);
6794                 if (cur_offset + len > array_size)
6795                         goto out_short_read;
6796
6797                 btrfs_disk_key_to_cpu(&key, disk_key);
6798
6799                 array_ptr += len;
6800                 sb_array_offset += len;
6801                 cur_offset += len;
6802
6803                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6804                         chunk = (struct btrfs_chunk *)sb_array_offset;
6805                         /*
6806                          * At least one btrfs_chunk with one stripe must be
6807                          * present, exact stripe count check comes afterwards
6808                          */
6809                         len = btrfs_chunk_item_size(1);
6810                         if (cur_offset + len > array_size)
6811                                 goto out_short_read;
6812
6813                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6814                         if (!num_stripes) {
6815                                 btrfs_err(fs_info,
6816                                         "invalid number of stripes %u in sys_array at offset %u",
6817                                         num_stripes, cur_offset);
6818                                 ret = -EIO;
6819                                 break;
6820                         }
6821
6822                         type = btrfs_chunk_type(sb, chunk);
6823                         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6824                                 btrfs_err(fs_info,
6825                             "invalid chunk type %llu in sys_array at offset %u",
6826                                         type, cur_offset);
6827                                 ret = -EIO;
6828                                 break;
6829                         }
6830
6831                         len = btrfs_chunk_item_size(num_stripes);
6832                         if (cur_offset + len > array_size)
6833                                 goto out_short_read;
6834
6835                         ret = read_one_chunk(fs_info, &key, sb, chunk);
6836                         if (ret)
6837                                 break;
6838                 } else {
6839                         btrfs_err(fs_info,
6840                             "unexpected item type %u in sys_array at offset %u",
6841                                   (u32)key.type, cur_offset);
6842                         ret = -EIO;
6843                         break;
6844                 }
6845                 array_ptr += len;
6846                 sb_array_offset += len;
6847                 cur_offset += len;
6848         }
6849         clear_extent_buffer_uptodate(sb);
6850         free_extent_buffer_stale(sb);
6851         return ret;
6852
6853 out_short_read:
6854         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6855                         len, cur_offset);
6856         clear_extent_buffer_uptodate(sb);
6857         free_extent_buffer_stale(sb);
6858         return -EIO;
6859 }
6860
6861 /*
6862  * Check if all chunks in the fs are OK for read-write degraded mount
6863  *
6864  * If the @failing_dev is specified, it's accounted as missing.
6865  *
6866  * Return true if all chunks meet the minimal RW mount requirements.
6867  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6868  */
6869 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6870                                         struct btrfs_device *failing_dev)
6871 {
6872         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6873         struct extent_map *em;
6874         u64 next_start = 0;
6875         bool ret = true;
6876
6877         read_lock(&map_tree->map_tree.lock);
6878         em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6879         read_unlock(&map_tree->map_tree.lock);
6880         /* No chunk at all? Return false anyway */
6881         if (!em) {
6882                 ret = false;
6883                 goto out;
6884         }
6885         while (em) {
6886                 struct map_lookup *map;
6887                 int missing = 0;
6888                 int max_tolerated;
6889                 int i;
6890
6891                 map = em->map_lookup;
6892                 max_tolerated =
6893                         btrfs_get_num_tolerated_disk_barrier_failures(
6894                                         map->type);
6895                 for (i = 0; i < map->num_stripes; i++) {
6896                         struct btrfs_device *dev = map->stripes[i].dev;
6897
6898                         if (!dev || !dev->bdev ||
6899                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6900                             dev->last_flush_error)
6901                                 missing++;
6902                         else if (failing_dev && failing_dev == dev)
6903                                 missing++;
6904                 }
6905                 if (missing > max_tolerated) {
6906                         if (!failing_dev)
6907                                 btrfs_warn(fs_info,
6908         "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6909                                    em->start, missing, max_tolerated);
6910                         free_extent_map(em);
6911                         ret = false;
6912                         goto out;
6913                 }
6914                 next_start = extent_map_end(em);
6915                 free_extent_map(em);
6916
6917                 read_lock(&map_tree->map_tree.lock);
6918                 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6919                                            (u64)(-1) - next_start);
6920                 read_unlock(&map_tree->map_tree.lock);
6921         }
6922 out:
6923         return ret;
6924 }
6925
6926 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6927 {
6928         struct btrfs_root *root = fs_info->chunk_root;
6929         struct btrfs_path *path;
6930         struct extent_buffer *leaf;
6931         struct btrfs_key key;
6932         struct btrfs_key found_key;
6933         int ret;
6934         int slot;
6935         u64 total_dev = 0;
6936
6937         path = btrfs_alloc_path();
6938         if (!path)
6939                 return -ENOMEM;
6940
6941         mutex_lock(&uuid_mutex);
6942         mutex_lock(&fs_info->chunk_mutex);
6943
6944         /*
6945          * Read all device items, and then all the chunk items. All
6946          * device items are found before any chunk item (their object id
6947          * is smaller than the lowest possible object id for a chunk
6948          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6949          */
6950         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6951         key.offset = 0;
6952         key.type = 0;
6953         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6954         if (ret < 0)
6955                 goto error;
6956         while (1) {
6957                 leaf = path->nodes[0];
6958                 slot = path->slots[0];
6959                 if (slot >= btrfs_header_nritems(leaf)) {
6960                         ret = btrfs_next_leaf(root, path);
6961                         if (ret == 0)
6962                                 continue;
6963                         if (ret < 0)
6964                                 goto error;
6965                         break;
6966                 }
6967                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6968                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6969                         struct btrfs_dev_item *dev_item;
6970                         dev_item = btrfs_item_ptr(leaf, slot,
6971                                                   struct btrfs_dev_item);
6972                         ret = read_one_dev(fs_info, leaf, dev_item);
6973                         if (ret)
6974                                 goto error;
6975                         total_dev++;
6976                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6977                         struct btrfs_chunk *chunk;
6978                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6979                         ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6980                         if (ret)
6981                                 goto error;
6982                 }
6983                 path->slots[0]++;
6984         }
6985
6986         /*
6987          * After loading chunk tree, we've got all device information,
6988          * do another round of validation checks.
6989          */
6990         if (total_dev != fs_info->fs_devices->total_devices) {
6991                 btrfs_err(fs_info,
6992            "super_num_devices %llu mismatch with num_devices %llu found here",
6993                           btrfs_super_num_devices(fs_info->super_copy),
6994                           total_dev);
6995                 ret = -EINVAL;
6996                 goto error;
6997         }
6998         if (btrfs_super_total_bytes(fs_info->super_copy) <
6999             fs_info->fs_devices->total_rw_bytes) {
7000                 btrfs_err(fs_info,
7001         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7002                           btrfs_super_total_bytes(fs_info->super_copy),
7003                           fs_info->fs_devices->total_rw_bytes);
7004                 ret = -EINVAL;
7005                 goto error;
7006         }
7007         ret = 0;
7008 error:
7009         mutex_unlock(&fs_info->chunk_mutex);
7010         mutex_unlock(&uuid_mutex);
7011
7012         btrfs_free_path(path);
7013         return ret;
7014 }
7015
7016 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7017 {
7018         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7019         struct btrfs_device *device;
7020
7021         while (fs_devices) {
7022                 mutex_lock(&fs_devices->device_list_mutex);
7023                 list_for_each_entry(device, &fs_devices->devices, dev_list)
7024                         device->fs_info = fs_info;
7025                 mutex_unlock(&fs_devices->device_list_mutex);
7026
7027                 fs_devices = fs_devices->seed;
7028         }
7029 }
7030
7031 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7032 {
7033         int i;
7034
7035         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7036                 btrfs_dev_stat_reset(dev, i);
7037 }
7038
7039 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7040 {
7041         struct btrfs_key key;
7042         struct btrfs_key found_key;
7043         struct btrfs_root *dev_root = fs_info->dev_root;
7044         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7045         struct extent_buffer *eb;
7046         int slot;
7047         int ret = 0;
7048         struct btrfs_device *device;
7049         struct btrfs_path *path = NULL;
7050         int i;
7051
7052         path = btrfs_alloc_path();
7053         if (!path) {
7054                 ret = -ENOMEM;
7055                 goto out;
7056         }
7057
7058         mutex_lock(&fs_devices->device_list_mutex);
7059         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7060                 int item_size;
7061                 struct btrfs_dev_stats_item *ptr;
7062
7063                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7064                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7065                 key.offset = device->devid;
7066                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7067                 if (ret) {
7068                         __btrfs_reset_dev_stats(device);
7069                         device->dev_stats_valid = 1;
7070                         btrfs_release_path(path);
7071                         continue;
7072                 }
7073                 slot = path->slots[0];
7074                 eb = path->nodes[0];
7075                 btrfs_item_key_to_cpu(eb, &found_key, slot);
7076                 item_size = btrfs_item_size_nr(eb, slot);
7077
7078                 ptr = btrfs_item_ptr(eb, slot,
7079                                      struct btrfs_dev_stats_item);
7080
7081                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7082                         if (item_size >= (1 + i) * sizeof(__le64))
7083                                 btrfs_dev_stat_set(device, i,
7084                                         btrfs_dev_stats_value(eb, ptr, i));
7085                         else
7086                                 btrfs_dev_stat_reset(device, i);
7087                 }
7088
7089                 device->dev_stats_valid = 1;
7090                 btrfs_dev_stat_print_on_load(device);
7091                 btrfs_release_path(path);
7092         }
7093         mutex_unlock(&fs_devices->device_list_mutex);
7094
7095 out:
7096         btrfs_free_path(path);
7097         return ret < 0 ? ret : 0;
7098 }
7099
7100 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7101                                 struct btrfs_fs_info *fs_info,
7102                                 struct btrfs_device *device)
7103 {
7104         struct btrfs_root *dev_root = fs_info->dev_root;
7105         struct btrfs_path *path;
7106         struct btrfs_key key;
7107         struct extent_buffer *eb;
7108         struct btrfs_dev_stats_item *ptr;
7109         int ret;
7110         int i;
7111
7112         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7113         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7114         key.offset = device->devid;
7115
7116         path = btrfs_alloc_path();
7117         if (!path)
7118                 return -ENOMEM;
7119         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7120         if (ret < 0) {
7121                 btrfs_warn_in_rcu(fs_info,
7122                         "error %d while searching for dev_stats item for device %s",
7123                               ret, rcu_str_deref(device->name));
7124                 goto out;
7125         }
7126
7127         if (ret == 0 &&
7128             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7129                 /* need to delete old one and insert a new one */
7130                 ret = btrfs_del_item(trans, dev_root, path);
7131                 if (ret != 0) {
7132                         btrfs_warn_in_rcu(fs_info,
7133                                 "delete too small dev_stats item for device %s failed %d",
7134                                       rcu_str_deref(device->name), ret);
7135                         goto out;
7136                 }
7137                 ret = 1;
7138         }
7139
7140         if (ret == 1) {
7141                 /* need to insert a new item */
7142                 btrfs_release_path(path);
7143                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7144                                               &key, sizeof(*ptr));
7145                 if (ret < 0) {
7146                         btrfs_warn_in_rcu(fs_info,
7147                                 "insert dev_stats item for device %s failed %d",
7148                                 rcu_str_deref(device->name), ret);
7149                         goto out;
7150                 }
7151         }
7152
7153         eb = path->nodes[0];
7154         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7155         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7156                 btrfs_set_dev_stats_value(eb, ptr, i,
7157                                           btrfs_dev_stat_read(device, i));
7158         btrfs_mark_buffer_dirty(eb);
7159
7160 out:
7161         btrfs_free_path(path);
7162         return ret;
7163 }
7164
7165 /*
7166  * called from commit_transaction. Writes all changed device stats to disk.
7167  */
7168 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7169                         struct btrfs_fs_info *fs_info)
7170 {
7171         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7172         struct btrfs_device *device;
7173         int stats_cnt;
7174         int ret = 0;
7175
7176         mutex_lock(&fs_devices->device_list_mutex);
7177         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7178                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7179                 if (!device->dev_stats_valid || stats_cnt == 0)
7180                         continue;
7181
7182
7183                 /*
7184                  * There is a LOAD-LOAD control dependency between the value of
7185                  * dev_stats_ccnt and updating the on-disk values which requires
7186                  * reading the in-memory counters. Such control dependencies
7187                  * require explicit read memory barriers.
7188                  *
7189                  * This memory barriers pairs with smp_mb__before_atomic in
7190                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7191                  * barrier implied by atomic_xchg in
7192                  * btrfs_dev_stats_read_and_reset
7193                  */
7194                 smp_rmb();
7195
7196                 ret = update_dev_stat_item(trans, fs_info, device);
7197                 if (!ret)
7198                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7199         }
7200         mutex_unlock(&fs_devices->device_list_mutex);
7201
7202         return ret;
7203 }
7204
7205 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7206 {
7207         btrfs_dev_stat_inc(dev, index);
7208         btrfs_dev_stat_print_on_error(dev);
7209 }
7210
7211 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7212 {
7213         if (!dev->dev_stats_valid)
7214                 return;
7215         btrfs_err_rl_in_rcu(dev->fs_info,
7216                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7217                            rcu_str_deref(dev->name),
7218                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7219                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7220                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7221                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7222                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7223 }
7224
7225 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7226 {
7227         int i;
7228
7229         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7230                 if (btrfs_dev_stat_read(dev, i) != 0)
7231                         break;
7232         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7233                 return; /* all values == 0, suppress message */
7234
7235         btrfs_info_in_rcu(dev->fs_info,
7236                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7237                rcu_str_deref(dev->name),
7238                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7239                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7240                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7241                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7242                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7243 }
7244
7245 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7246                         struct btrfs_ioctl_get_dev_stats *stats)
7247 {
7248         struct btrfs_device *dev;
7249         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7250         int i;
7251
7252         mutex_lock(&fs_devices->device_list_mutex);
7253         dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7254         mutex_unlock(&fs_devices->device_list_mutex);
7255
7256         if (!dev) {
7257                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7258                 return -ENODEV;
7259         } else if (!dev->dev_stats_valid) {
7260                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7261                 return -ENODEV;
7262         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7263                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7264                         if (stats->nr_items > i)
7265                                 stats->values[i] =
7266                                         btrfs_dev_stat_read_and_reset(dev, i);
7267                         else
7268                                 btrfs_dev_stat_reset(dev, i);
7269                 }
7270         } else {
7271                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7272                         if (stats->nr_items > i)
7273                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7274         }
7275         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7276                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7277         return 0;
7278 }
7279
7280 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7281 {
7282         struct buffer_head *bh;
7283         struct btrfs_super_block *disk_super;
7284         int copy_num;
7285
7286         if (!bdev)
7287                 return;
7288
7289         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7290                 copy_num++) {
7291
7292                 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7293                         continue;
7294
7295                 disk_super = (struct btrfs_super_block *)bh->b_data;
7296
7297                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7298                 set_buffer_dirty(bh);
7299                 sync_dirty_buffer(bh);
7300                 brelse(bh);
7301         }
7302
7303         /* Notify udev that device has changed */
7304         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7305
7306         /* Update ctime/mtime for device path for libblkid */
7307         update_dev_time(device_path);
7308 }
7309
7310 /*
7311  * Update the size of all devices, which is used for writing out the
7312  * super blocks.
7313  */
7314 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7315 {
7316         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7317         struct btrfs_device *curr, *next;
7318
7319         if (list_empty(&fs_devices->resized_devices))
7320                 return;
7321
7322         mutex_lock(&fs_devices->device_list_mutex);
7323         mutex_lock(&fs_info->chunk_mutex);
7324         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7325                                  resized_list) {
7326                 list_del_init(&curr->resized_list);
7327                 curr->commit_total_bytes = curr->disk_total_bytes;
7328         }
7329         mutex_unlock(&fs_info->chunk_mutex);
7330         mutex_unlock(&fs_devices->device_list_mutex);
7331 }
7332
7333 /* Must be invoked during the transaction commit */
7334 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans)
7335 {
7336         struct btrfs_fs_info *fs_info = trans->fs_info;
7337         struct extent_map *em;
7338         struct map_lookup *map;
7339         struct btrfs_device *dev;
7340         int i;
7341
7342         if (list_empty(&trans->pending_chunks))
7343                 return;
7344
7345         /* In order to kick the device replace finish process */
7346         mutex_lock(&fs_info->chunk_mutex);
7347         list_for_each_entry(em, &trans->pending_chunks, list) {
7348                 map = em->map_lookup;
7349
7350                 for (i = 0; i < map->num_stripes; i++) {
7351                         dev = map->stripes[i].dev;
7352                         dev->commit_bytes_used = dev->bytes_used;
7353                 }
7354         }
7355         mutex_unlock(&fs_info->chunk_mutex);
7356 }
7357
7358 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7359 {
7360         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7361         while (fs_devices) {
7362                 fs_devices->fs_info = fs_info;
7363                 fs_devices = fs_devices->seed;
7364         }
7365 }
7366
7367 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7368 {
7369         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7370         while (fs_devices) {
7371                 fs_devices->fs_info = NULL;
7372                 fs_devices = fs_devices->seed;
7373         }
7374 }