btrfs: fix ncopies raid_attr for RAID56
[sfrench/cifs-2.6.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "ctree.h"
18 #include "extent_map.h"
19 #include "disk-io.h"
20 #include "transaction.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
27 #include "math.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30
31 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
32         [BTRFS_RAID_RAID10] = {
33                 .sub_stripes    = 2,
34                 .dev_stripes    = 1,
35                 .devs_max       = 0,    /* 0 == as many as possible */
36                 .devs_min       = 4,
37                 .tolerated_failures = 1,
38                 .devs_increment = 2,
39                 .ncopies        = 2,
40                 .raid_name      = "raid10",
41                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
42                 .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
43         },
44         [BTRFS_RAID_RAID1] = {
45                 .sub_stripes    = 1,
46                 .dev_stripes    = 1,
47                 .devs_max       = 2,
48                 .devs_min       = 2,
49                 .tolerated_failures = 1,
50                 .devs_increment = 2,
51                 .ncopies        = 2,
52                 .raid_name      = "raid1",
53                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
54                 .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
55         },
56         [BTRFS_RAID_DUP] = {
57                 .sub_stripes    = 1,
58                 .dev_stripes    = 2,
59                 .devs_max       = 1,
60                 .devs_min       = 1,
61                 .tolerated_failures = 0,
62                 .devs_increment = 1,
63                 .ncopies        = 2,
64                 .raid_name      = "dup",
65                 .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
66                 .mindev_error   = 0,
67         },
68         [BTRFS_RAID_RAID0] = {
69                 .sub_stripes    = 1,
70                 .dev_stripes    = 1,
71                 .devs_max       = 0,
72                 .devs_min       = 2,
73                 .tolerated_failures = 0,
74                 .devs_increment = 1,
75                 .ncopies        = 1,
76                 .raid_name      = "raid0",
77                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
78                 .mindev_error   = 0,
79         },
80         [BTRFS_RAID_SINGLE] = {
81                 .sub_stripes    = 1,
82                 .dev_stripes    = 1,
83                 .devs_max       = 1,
84                 .devs_min       = 1,
85                 .tolerated_failures = 0,
86                 .devs_increment = 1,
87                 .ncopies        = 1,
88                 .raid_name      = "single",
89                 .bg_flag        = 0,
90                 .mindev_error   = 0,
91         },
92         [BTRFS_RAID_RAID5] = {
93                 .sub_stripes    = 1,
94                 .dev_stripes    = 1,
95                 .devs_max       = 0,
96                 .devs_min       = 2,
97                 .tolerated_failures = 1,
98                 .devs_increment = 1,
99                 .ncopies        = 1,
100                 .raid_name      = "raid5",
101                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
102                 .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
103         },
104         [BTRFS_RAID_RAID6] = {
105                 .sub_stripes    = 1,
106                 .dev_stripes    = 1,
107                 .devs_max       = 0,
108                 .devs_min       = 3,
109                 .tolerated_failures = 2,
110                 .devs_increment = 1,
111                 .ncopies        = 1,
112                 .raid_name      = "raid6",
113                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
114                 .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
115         },
116 };
117
118 const char *get_raid_name(enum btrfs_raid_types type)
119 {
120         if (type >= BTRFS_NR_RAID_TYPES)
121                 return NULL;
122
123         return btrfs_raid_array[type].raid_name;
124 }
125
126 static int init_first_rw_device(struct btrfs_trans_handle *trans,
127                                 struct btrfs_fs_info *fs_info);
128 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
129 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
130 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
131 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
132 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
133                              enum btrfs_map_op op,
134                              u64 logical, u64 *length,
135                              struct btrfs_bio **bbio_ret,
136                              int mirror_num, int need_raid_map);
137
138 /*
139  * Device locking
140  * ==============
141  *
142  * There are several mutexes that protect manipulation of devices and low-level
143  * structures like chunks but not block groups, extents or files
144  *
145  * uuid_mutex (global lock)
146  * ------------------------
147  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
148  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
149  * device) or requested by the device= mount option
150  *
151  * the mutex can be very coarse and can cover long-running operations
152  *
153  * protects: updates to fs_devices counters like missing devices, rw devices,
154  * seeding, structure cloning, openning/closing devices at mount/umount time
155  *
156  * global::fs_devs - add, remove, updates to the global list
157  *
158  * does not protect: manipulation of the fs_devices::devices list!
159  *
160  * btrfs_device::name - renames (write side), read is RCU
161  *
162  * fs_devices::device_list_mutex (per-fs, with RCU)
163  * ------------------------------------------------
164  * protects updates to fs_devices::devices, ie. adding and deleting
165  *
166  * simple list traversal with read-only actions can be done with RCU protection
167  *
168  * may be used to exclude some operations from running concurrently without any
169  * modifications to the list (see write_all_supers)
170  *
171  * balance_mutex
172  * -------------
173  * protects balance structures (status, state) and context accessed from
174  * several places (internally, ioctl)
175  *
176  * chunk_mutex
177  * -----------
178  * protects chunks, adding or removing during allocation, trim or when a new
179  * device is added/removed
180  *
181  * cleaner_mutex
182  * -------------
183  * a big lock that is held by the cleaner thread and prevents running subvolume
184  * cleaning together with relocation or delayed iputs
185  *
186  *
187  * Lock nesting
188  * ============
189  *
190  * uuid_mutex
191  *   volume_mutex
192  *     device_list_mutex
193  *       chunk_mutex
194  *     balance_mutex
195  *
196  *
197  * Exclusive operations, BTRFS_FS_EXCL_OP
198  * ======================================
199  *
200  * Maintains the exclusivity of the following operations that apply to the
201  * whole filesystem and cannot run in parallel.
202  *
203  * - Balance (*)
204  * - Device add
205  * - Device remove
206  * - Device replace (*)
207  * - Resize
208  *
209  * The device operations (as above) can be in one of the following states:
210  *
211  * - Running state
212  * - Paused state
213  * - Completed state
214  *
215  * Only device operations marked with (*) can go into the Paused state for the
216  * following reasons:
217  *
218  * - ioctl (only Balance can be Paused through ioctl)
219  * - filesystem remounted as read-only
220  * - filesystem unmounted and mounted as read-only
221  * - system power-cycle and filesystem mounted as read-only
222  * - filesystem or device errors leading to forced read-only
223  *
224  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
225  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
226  * A device operation in Paused or Running state can be canceled or resumed
227  * either by ioctl (Balance only) or when remounted as read-write.
228  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
229  * completed.
230  */
231
232 DEFINE_MUTEX(uuid_mutex);
233 static LIST_HEAD(fs_uuids);
234 struct list_head *btrfs_get_fs_uuids(void)
235 {
236         return &fs_uuids;
237 }
238
239 /*
240  * alloc_fs_devices - allocate struct btrfs_fs_devices
241  * @fsid:       if not NULL, copy the uuid to fs_devices::fsid
242  *
243  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
244  * The returned struct is not linked onto any lists and can be destroyed with
245  * kfree() right away.
246  */
247 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
248 {
249         struct btrfs_fs_devices *fs_devs;
250
251         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
252         if (!fs_devs)
253                 return ERR_PTR(-ENOMEM);
254
255         mutex_init(&fs_devs->device_list_mutex);
256
257         INIT_LIST_HEAD(&fs_devs->devices);
258         INIT_LIST_HEAD(&fs_devs->resized_devices);
259         INIT_LIST_HEAD(&fs_devs->alloc_list);
260         INIT_LIST_HEAD(&fs_devs->fs_list);
261         if (fsid)
262                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
263
264         return fs_devs;
265 }
266
267 void btrfs_free_device(struct btrfs_device *device)
268 {
269         rcu_string_free(device->name);
270         bio_put(device->flush_bio);
271         kfree(device);
272 }
273
274 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
275 {
276         struct btrfs_device *device;
277         WARN_ON(fs_devices->opened);
278         while (!list_empty(&fs_devices->devices)) {
279                 device = list_entry(fs_devices->devices.next,
280                                     struct btrfs_device, dev_list);
281                 list_del(&device->dev_list);
282                 btrfs_free_device(device);
283         }
284         kfree(fs_devices);
285 }
286
287 static void btrfs_kobject_uevent(struct block_device *bdev,
288                                  enum kobject_action action)
289 {
290         int ret;
291
292         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
293         if (ret)
294                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
295                         action,
296                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
297                         &disk_to_dev(bdev->bd_disk)->kobj);
298 }
299
300 void __exit btrfs_cleanup_fs_uuids(void)
301 {
302         struct btrfs_fs_devices *fs_devices;
303
304         while (!list_empty(&fs_uuids)) {
305                 fs_devices = list_entry(fs_uuids.next,
306                                         struct btrfs_fs_devices, fs_list);
307                 list_del(&fs_devices->fs_list);
308                 free_fs_devices(fs_devices);
309         }
310 }
311
312 /*
313  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
314  * Returned struct is not linked onto any lists and must be destroyed using
315  * btrfs_free_device.
316  */
317 static struct btrfs_device *__alloc_device(void)
318 {
319         struct btrfs_device *dev;
320
321         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
322         if (!dev)
323                 return ERR_PTR(-ENOMEM);
324
325         /*
326          * Preallocate a bio that's always going to be used for flushing device
327          * barriers and matches the device lifespan
328          */
329         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
330         if (!dev->flush_bio) {
331                 kfree(dev);
332                 return ERR_PTR(-ENOMEM);
333         }
334
335         INIT_LIST_HEAD(&dev->dev_list);
336         INIT_LIST_HEAD(&dev->dev_alloc_list);
337         INIT_LIST_HEAD(&dev->resized_list);
338
339         spin_lock_init(&dev->io_lock);
340
341         atomic_set(&dev->reada_in_flight, 0);
342         atomic_set(&dev->dev_stats_ccnt, 0);
343         btrfs_device_data_ordered_init(dev);
344         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
345         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
346
347         return dev;
348 }
349
350 /*
351  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
352  * return NULL.
353  *
354  * If devid and uuid are both specified, the match must be exact, otherwise
355  * only devid is used.
356  */
357 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
358                 u64 devid, const u8 *uuid)
359 {
360         struct btrfs_device *dev;
361
362         list_for_each_entry(dev, &fs_devices->devices, dev_list) {
363                 if (dev->devid == devid &&
364                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
365                         return dev;
366                 }
367         }
368         return NULL;
369 }
370
371 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
372 {
373         struct btrfs_fs_devices *fs_devices;
374
375         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
376                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
377                         return fs_devices;
378         }
379         return NULL;
380 }
381
382 static int
383 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
384                       int flush, struct block_device **bdev,
385                       struct buffer_head **bh)
386 {
387         int ret;
388
389         *bdev = blkdev_get_by_path(device_path, flags, holder);
390
391         if (IS_ERR(*bdev)) {
392                 ret = PTR_ERR(*bdev);
393                 goto error;
394         }
395
396         if (flush)
397                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
398         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
399         if (ret) {
400                 blkdev_put(*bdev, flags);
401                 goto error;
402         }
403         invalidate_bdev(*bdev);
404         *bh = btrfs_read_dev_super(*bdev);
405         if (IS_ERR(*bh)) {
406                 ret = PTR_ERR(*bh);
407                 blkdev_put(*bdev, flags);
408                 goto error;
409         }
410
411         return 0;
412
413 error:
414         *bdev = NULL;
415         *bh = NULL;
416         return ret;
417 }
418
419 static void requeue_list(struct btrfs_pending_bios *pending_bios,
420                         struct bio *head, struct bio *tail)
421 {
422
423         struct bio *old_head;
424
425         old_head = pending_bios->head;
426         pending_bios->head = head;
427         if (pending_bios->tail)
428                 tail->bi_next = old_head;
429         else
430                 pending_bios->tail = tail;
431 }
432
433 /*
434  * we try to collect pending bios for a device so we don't get a large
435  * number of procs sending bios down to the same device.  This greatly
436  * improves the schedulers ability to collect and merge the bios.
437  *
438  * But, it also turns into a long list of bios to process and that is sure
439  * to eventually make the worker thread block.  The solution here is to
440  * make some progress and then put this work struct back at the end of
441  * the list if the block device is congested.  This way, multiple devices
442  * can make progress from a single worker thread.
443  */
444 static noinline void run_scheduled_bios(struct btrfs_device *device)
445 {
446         struct btrfs_fs_info *fs_info = device->fs_info;
447         struct bio *pending;
448         struct backing_dev_info *bdi;
449         struct btrfs_pending_bios *pending_bios;
450         struct bio *tail;
451         struct bio *cur;
452         int again = 0;
453         unsigned long num_run;
454         unsigned long batch_run = 0;
455         unsigned long last_waited = 0;
456         int force_reg = 0;
457         int sync_pending = 0;
458         struct blk_plug plug;
459
460         /*
461          * this function runs all the bios we've collected for
462          * a particular device.  We don't want to wander off to
463          * another device without first sending all of these down.
464          * So, setup a plug here and finish it off before we return
465          */
466         blk_start_plug(&plug);
467
468         bdi = device->bdev->bd_bdi;
469
470 loop:
471         spin_lock(&device->io_lock);
472
473 loop_lock:
474         num_run = 0;
475
476         /* take all the bios off the list at once and process them
477          * later on (without the lock held).  But, remember the
478          * tail and other pointers so the bios can be properly reinserted
479          * into the list if we hit congestion
480          */
481         if (!force_reg && device->pending_sync_bios.head) {
482                 pending_bios = &device->pending_sync_bios;
483                 force_reg = 1;
484         } else {
485                 pending_bios = &device->pending_bios;
486                 force_reg = 0;
487         }
488
489         pending = pending_bios->head;
490         tail = pending_bios->tail;
491         WARN_ON(pending && !tail);
492
493         /*
494          * if pending was null this time around, no bios need processing
495          * at all and we can stop.  Otherwise it'll loop back up again
496          * and do an additional check so no bios are missed.
497          *
498          * device->running_pending is used to synchronize with the
499          * schedule_bio code.
500          */
501         if (device->pending_sync_bios.head == NULL &&
502             device->pending_bios.head == NULL) {
503                 again = 0;
504                 device->running_pending = 0;
505         } else {
506                 again = 1;
507                 device->running_pending = 1;
508         }
509
510         pending_bios->head = NULL;
511         pending_bios->tail = NULL;
512
513         spin_unlock(&device->io_lock);
514
515         while (pending) {
516
517                 rmb();
518                 /* we want to work on both lists, but do more bios on the
519                  * sync list than the regular list
520                  */
521                 if ((num_run > 32 &&
522                     pending_bios != &device->pending_sync_bios &&
523                     device->pending_sync_bios.head) ||
524                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
525                     device->pending_bios.head)) {
526                         spin_lock(&device->io_lock);
527                         requeue_list(pending_bios, pending, tail);
528                         goto loop_lock;
529                 }
530
531                 cur = pending;
532                 pending = pending->bi_next;
533                 cur->bi_next = NULL;
534
535                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
536
537                 /*
538                  * if we're doing the sync list, record that our
539                  * plug has some sync requests on it
540                  *
541                  * If we're doing the regular list and there are
542                  * sync requests sitting around, unplug before
543                  * we add more
544                  */
545                 if (pending_bios == &device->pending_sync_bios) {
546                         sync_pending = 1;
547                 } else if (sync_pending) {
548                         blk_finish_plug(&plug);
549                         blk_start_plug(&plug);
550                         sync_pending = 0;
551                 }
552
553                 btrfsic_submit_bio(cur);
554                 num_run++;
555                 batch_run++;
556
557                 cond_resched();
558
559                 /*
560                  * we made progress, there is more work to do and the bdi
561                  * is now congested.  Back off and let other work structs
562                  * run instead
563                  */
564                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
565                     fs_info->fs_devices->open_devices > 1) {
566                         struct io_context *ioc;
567
568                         ioc = current->io_context;
569
570                         /*
571                          * the main goal here is that we don't want to
572                          * block if we're going to be able to submit
573                          * more requests without blocking.
574                          *
575                          * This code does two great things, it pokes into
576                          * the elevator code from a filesystem _and_
577                          * it makes assumptions about how batching works.
578                          */
579                         if (ioc && ioc->nr_batch_requests > 0 &&
580                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
581                             (last_waited == 0 ||
582                              ioc->last_waited == last_waited)) {
583                                 /*
584                                  * we want to go through our batch of
585                                  * requests and stop.  So, we copy out
586                                  * the ioc->last_waited time and test
587                                  * against it before looping
588                                  */
589                                 last_waited = ioc->last_waited;
590                                 cond_resched();
591                                 continue;
592                         }
593                         spin_lock(&device->io_lock);
594                         requeue_list(pending_bios, pending, tail);
595                         device->running_pending = 1;
596
597                         spin_unlock(&device->io_lock);
598                         btrfs_queue_work(fs_info->submit_workers,
599                                          &device->work);
600                         goto done;
601                 }
602         }
603
604         cond_resched();
605         if (again)
606                 goto loop;
607
608         spin_lock(&device->io_lock);
609         if (device->pending_bios.head || device->pending_sync_bios.head)
610                 goto loop_lock;
611         spin_unlock(&device->io_lock);
612
613 done:
614         blk_finish_plug(&plug);
615 }
616
617 static void pending_bios_fn(struct btrfs_work *work)
618 {
619         struct btrfs_device *device;
620
621         device = container_of(work, struct btrfs_device, work);
622         run_scheduled_bios(device);
623 }
624
625 /*
626  *  Search and remove all stale (devices which are not mounted) devices.
627  *  When both inputs are NULL, it will search and release all stale devices.
628  *  path:       Optional. When provided will it release all unmounted devices
629  *              matching this path only.
630  *  skip_dev:   Optional. Will skip this device when searching for the stale
631  *              devices.
632  */
633 static void btrfs_free_stale_devices(const char *path,
634                                      struct btrfs_device *skip_device)
635 {
636         struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
637         struct btrfs_device *device, *tmp_device;
638
639         list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
640                 mutex_lock(&fs_devices->device_list_mutex);
641                 if (fs_devices->opened) {
642                         mutex_unlock(&fs_devices->device_list_mutex);
643                         continue;
644                 }
645
646                 list_for_each_entry_safe(device, tmp_device,
647                                          &fs_devices->devices, dev_list) {
648                         int not_found = 0;
649
650                         if (skip_device && skip_device == device)
651                                 continue;
652                         if (path && !device->name)
653                                 continue;
654
655                         rcu_read_lock();
656                         if (path)
657                                 not_found = strcmp(rcu_str_deref(device->name),
658                                                    path);
659                         rcu_read_unlock();
660                         if (not_found)
661                                 continue;
662
663                         /* delete the stale device */
664                         fs_devices->num_devices--;
665                         list_del(&device->dev_list);
666                         btrfs_free_device(device);
667
668                         if (fs_devices->num_devices == 0)
669                                 break;
670                 }
671                 mutex_unlock(&fs_devices->device_list_mutex);
672                 if (fs_devices->num_devices == 0) {
673                         btrfs_sysfs_remove_fsid(fs_devices);
674                         list_del(&fs_devices->fs_list);
675                         free_fs_devices(fs_devices);
676                 }
677         }
678 }
679
680 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
681                         struct btrfs_device *device, fmode_t flags,
682                         void *holder)
683 {
684         struct request_queue *q;
685         struct block_device *bdev;
686         struct buffer_head *bh;
687         struct btrfs_super_block *disk_super;
688         u64 devid;
689         int ret;
690
691         if (device->bdev)
692                 return -EINVAL;
693         if (!device->name)
694                 return -EINVAL;
695
696         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
697                                     &bdev, &bh);
698         if (ret)
699                 return ret;
700
701         disk_super = (struct btrfs_super_block *)bh->b_data;
702         devid = btrfs_stack_device_id(&disk_super->dev_item);
703         if (devid != device->devid)
704                 goto error_brelse;
705
706         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
707                 goto error_brelse;
708
709         device->generation = btrfs_super_generation(disk_super);
710
711         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
712                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
713                 fs_devices->seeding = 1;
714         } else {
715                 if (bdev_read_only(bdev))
716                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
717                 else
718                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
719         }
720
721         q = bdev_get_queue(bdev);
722         if (!blk_queue_nonrot(q))
723                 fs_devices->rotating = 1;
724
725         device->bdev = bdev;
726         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
727         device->mode = flags;
728
729         fs_devices->open_devices++;
730         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
731             device->devid != BTRFS_DEV_REPLACE_DEVID) {
732                 fs_devices->rw_devices++;
733                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
734         }
735         brelse(bh);
736
737         return 0;
738
739 error_brelse:
740         brelse(bh);
741         blkdev_put(bdev, flags);
742
743         return -EINVAL;
744 }
745
746 /*
747  * Add new device to list of registered devices
748  *
749  * Returns:
750  * device pointer which was just added or updated when successful
751  * error pointer when failed
752  */
753 static noinline struct btrfs_device *device_list_add(const char *path,
754                            struct btrfs_super_block *disk_super,
755                            bool *new_device_added)
756 {
757         struct btrfs_device *device;
758         struct btrfs_fs_devices *fs_devices;
759         struct rcu_string *name;
760         u64 found_transid = btrfs_super_generation(disk_super);
761         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
762
763         fs_devices = find_fsid(disk_super->fsid);
764         if (!fs_devices) {
765                 fs_devices = alloc_fs_devices(disk_super->fsid);
766                 if (IS_ERR(fs_devices))
767                         return ERR_CAST(fs_devices);
768
769                 mutex_lock(&fs_devices->device_list_mutex);
770                 list_add(&fs_devices->fs_list, &fs_uuids);
771
772                 device = NULL;
773         } else {
774                 mutex_lock(&fs_devices->device_list_mutex);
775                 device = find_device(fs_devices, devid,
776                                 disk_super->dev_item.uuid);
777         }
778
779         if (!device) {
780                 if (fs_devices->opened) {
781                         mutex_unlock(&fs_devices->device_list_mutex);
782                         return ERR_PTR(-EBUSY);
783                 }
784
785                 device = btrfs_alloc_device(NULL, &devid,
786                                             disk_super->dev_item.uuid);
787                 if (IS_ERR(device)) {
788                         mutex_unlock(&fs_devices->device_list_mutex);
789                         /* we can safely leave the fs_devices entry around */
790                         return device;
791                 }
792
793                 name = rcu_string_strdup(path, GFP_NOFS);
794                 if (!name) {
795                         btrfs_free_device(device);
796                         mutex_unlock(&fs_devices->device_list_mutex);
797                         return ERR_PTR(-ENOMEM);
798                 }
799                 rcu_assign_pointer(device->name, name);
800
801                 list_add_rcu(&device->dev_list, &fs_devices->devices);
802                 fs_devices->num_devices++;
803
804                 device->fs_devices = fs_devices;
805                 *new_device_added = true;
806
807                 if (disk_super->label[0])
808                         pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
809                                 disk_super->label, devid, found_transid, path);
810                 else
811                         pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
812                                 disk_super->fsid, devid, found_transid, path);
813
814         } else if (!device->name || strcmp(device->name->str, path)) {
815                 /*
816                  * When FS is already mounted.
817                  * 1. If you are here and if the device->name is NULL that
818                  *    means this device was missing at time of FS mount.
819                  * 2. If you are here and if the device->name is different
820                  *    from 'path' that means either
821                  *      a. The same device disappeared and reappeared with
822                  *         different name. or
823                  *      b. The missing-disk-which-was-replaced, has
824                  *         reappeared now.
825                  *
826                  * We must allow 1 and 2a above. But 2b would be a spurious
827                  * and unintentional.
828                  *
829                  * Further in case of 1 and 2a above, the disk at 'path'
830                  * would have missed some transaction when it was away and
831                  * in case of 2a the stale bdev has to be updated as well.
832                  * 2b must not be allowed at all time.
833                  */
834
835                 /*
836                  * For now, we do allow update to btrfs_fs_device through the
837                  * btrfs dev scan cli after FS has been mounted.  We're still
838                  * tracking a problem where systems fail mount by subvolume id
839                  * when we reject replacement on a mounted FS.
840                  */
841                 if (!fs_devices->opened && found_transid < device->generation) {
842                         /*
843                          * That is if the FS is _not_ mounted and if you
844                          * are here, that means there is more than one
845                          * disk with same uuid and devid.We keep the one
846                          * with larger generation number or the last-in if
847                          * generation are equal.
848                          */
849                         mutex_unlock(&fs_devices->device_list_mutex);
850                         return ERR_PTR(-EEXIST);
851                 }
852
853                 name = rcu_string_strdup(path, GFP_NOFS);
854                 if (!name) {
855                         mutex_unlock(&fs_devices->device_list_mutex);
856                         return ERR_PTR(-ENOMEM);
857                 }
858                 rcu_string_free(device->name);
859                 rcu_assign_pointer(device->name, name);
860                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
861                         fs_devices->missing_devices--;
862                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
863                 }
864         }
865
866         /*
867          * Unmount does not free the btrfs_device struct but would zero
868          * generation along with most of the other members. So just update
869          * it back. We need it to pick the disk with largest generation
870          * (as above).
871          */
872         if (!fs_devices->opened)
873                 device->generation = found_transid;
874
875         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
876
877         mutex_unlock(&fs_devices->device_list_mutex);
878         return device;
879 }
880
881 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
882 {
883         struct btrfs_fs_devices *fs_devices;
884         struct btrfs_device *device;
885         struct btrfs_device *orig_dev;
886
887         fs_devices = alloc_fs_devices(orig->fsid);
888         if (IS_ERR(fs_devices))
889                 return fs_devices;
890
891         mutex_lock(&orig->device_list_mutex);
892         fs_devices->total_devices = orig->total_devices;
893
894         /* We have held the volume lock, it is safe to get the devices. */
895         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
896                 struct rcu_string *name;
897
898                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
899                                             orig_dev->uuid);
900                 if (IS_ERR(device))
901                         goto error;
902
903                 /*
904                  * This is ok to do without rcu read locked because we hold the
905                  * uuid mutex so nothing we touch in here is going to disappear.
906                  */
907                 if (orig_dev->name) {
908                         name = rcu_string_strdup(orig_dev->name->str,
909                                         GFP_KERNEL);
910                         if (!name) {
911                                 btrfs_free_device(device);
912                                 goto error;
913                         }
914                         rcu_assign_pointer(device->name, name);
915                 }
916
917                 list_add(&device->dev_list, &fs_devices->devices);
918                 device->fs_devices = fs_devices;
919                 fs_devices->num_devices++;
920         }
921         mutex_unlock(&orig->device_list_mutex);
922         return fs_devices;
923 error:
924         mutex_unlock(&orig->device_list_mutex);
925         free_fs_devices(fs_devices);
926         return ERR_PTR(-ENOMEM);
927 }
928
929 /*
930  * After we have read the system tree and know devids belonging to
931  * this filesystem, remove the device which does not belong there.
932  */
933 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
934 {
935         struct btrfs_device *device, *next;
936         struct btrfs_device *latest_dev = NULL;
937
938         mutex_lock(&uuid_mutex);
939 again:
940         /* This is the initialized path, it is safe to release the devices. */
941         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
942                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
943                                                         &device->dev_state)) {
944                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
945                              &device->dev_state) &&
946                              (!latest_dev ||
947                               device->generation > latest_dev->generation)) {
948                                 latest_dev = device;
949                         }
950                         continue;
951                 }
952
953                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
954                         /*
955                          * In the first step, keep the device which has
956                          * the correct fsid and the devid that is used
957                          * for the dev_replace procedure.
958                          * In the second step, the dev_replace state is
959                          * read from the device tree and it is known
960                          * whether the procedure is really active or
961                          * not, which means whether this device is
962                          * used or whether it should be removed.
963                          */
964                         if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
965                                                   &device->dev_state)) {
966                                 continue;
967                         }
968                 }
969                 if (device->bdev) {
970                         blkdev_put(device->bdev, device->mode);
971                         device->bdev = NULL;
972                         fs_devices->open_devices--;
973                 }
974                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
975                         list_del_init(&device->dev_alloc_list);
976                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
977                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
978                                       &device->dev_state))
979                                 fs_devices->rw_devices--;
980                 }
981                 list_del_init(&device->dev_list);
982                 fs_devices->num_devices--;
983                 btrfs_free_device(device);
984         }
985
986         if (fs_devices->seed) {
987                 fs_devices = fs_devices->seed;
988                 goto again;
989         }
990
991         fs_devices->latest_bdev = latest_dev->bdev;
992
993         mutex_unlock(&uuid_mutex);
994 }
995
996 static void free_device_rcu(struct rcu_head *head)
997 {
998         struct btrfs_device *device;
999
1000         device = container_of(head, struct btrfs_device, rcu);
1001         btrfs_free_device(device);
1002 }
1003
1004 static void btrfs_close_bdev(struct btrfs_device *device)
1005 {
1006         if (!device->bdev)
1007                 return;
1008
1009         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1010                 sync_blockdev(device->bdev);
1011                 invalidate_bdev(device->bdev);
1012         }
1013
1014         blkdev_put(device->bdev, device->mode);
1015 }
1016
1017 static void btrfs_close_one_device(struct btrfs_device *device)
1018 {
1019         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1020         struct btrfs_device *new_device;
1021         struct rcu_string *name;
1022
1023         if (device->bdev)
1024                 fs_devices->open_devices--;
1025
1026         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1027             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1028                 list_del_init(&device->dev_alloc_list);
1029                 fs_devices->rw_devices--;
1030         }
1031
1032         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1033                 fs_devices->missing_devices--;
1034
1035         btrfs_close_bdev(device);
1036
1037         new_device = btrfs_alloc_device(NULL, &device->devid,
1038                                         device->uuid);
1039         BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1040
1041         /* Safe because we are under uuid_mutex */
1042         if (device->name) {
1043                 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1044                 BUG_ON(!name); /* -ENOMEM */
1045                 rcu_assign_pointer(new_device->name, name);
1046         }
1047
1048         list_replace_rcu(&device->dev_list, &new_device->dev_list);
1049         new_device->fs_devices = device->fs_devices;
1050
1051         call_rcu(&device->rcu, free_device_rcu);
1052 }
1053
1054 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1055 {
1056         struct btrfs_device *device, *tmp;
1057
1058         if (--fs_devices->opened > 0)
1059                 return 0;
1060
1061         mutex_lock(&fs_devices->device_list_mutex);
1062         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1063                 btrfs_close_one_device(device);
1064         }
1065         mutex_unlock(&fs_devices->device_list_mutex);
1066
1067         WARN_ON(fs_devices->open_devices);
1068         WARN_ON(fs_devices->rw_devices);
1069         fs_devices->opened = 0;
1070         fs_devices->seeding = 0;
1071
1072         return 0;
1073 }
1074
1075 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1076 {
1077         struct btrfs_fs_devices *seed_devices = NULL;
1078         int ret;
1079
1080         mutex_lock(&uuid_mutex);
1081         ret = close_fs_devices(fs_devices);
1082         if (!fs_devices->opened) {
1083                 seed_devices = fs_devices->seed;
1084                 fs_devices->seed = NULL;
1085         }
1086         mutex_unlock(&uuid_mutex);
1087
1088         while (seed_devices) {
1089                 fs_devices = seed_devices;
1090                 seed_devices = fs_devices->seed;
1091                 close_fs_devices(fs_devices);
1092                 free_fs_devices(fs_devices);
1093         }
1094         return ret;
1095 }
1096
1097 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1098                                 fmode_t flags, void *holder)
1099 {
1100         struct btrfs_device *device;
1101         struct btrfs_device *latest_dev = NULL;
1102         int ret = 0;
1103
1104         flags |= FMODE_EXCL;
1105
1106         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1107                 /* Just open everything we can; ignore failures here */
1108                 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1109                         continue;
1110
1111                 if (!latest_dev ||
1112                     device->generation > latest_dev->generation)
1113                         latest_dev = device;
1114         }
1115         if (fs_devices->open_devices == 0) {
1116                 ret = -EINVAL;
1117                 goto out;
1118         }
1119         fs_devices->opened = 1;
1120         fs_devices->latest_bdev = latest_dev->bdev;
1121         fs_devices->total_rw_bytes = 0;
1122 out:
1123         return ret;
1124 }
1125
1126 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1127 {
1128         struct btrfs_device *dev1, *dev2;
1129
1130         dev1 = list_entry(a, struct btrfs_device, dev_list);
1131         dev2 = list_entry(b, struct btrfs_device, dev_list);
1132
1133         if (dev1->devid < dev2->devid)
1134                 return -1;
1135         else if (dev1->devid > dev2->devid)
1136                 return 1;
1137         return 0;
1138 }
1139
1140 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1141                        fmode_t flags, void *holder)
1142 {
1143         int ret;
1144
1145         lockdep_assert_held(&uuid_mutex);
1146
1147         mutex_lock(&fs_devices->device_list_mutex);
1148         if (fs_devices->opened) {
1149                 fs_devices->opened++;
1150                 ret = 0;
1151         } else {
1152                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1153                 ret = open_fs_devices(fs_devices, flags, holder);
1154         }
1155         mutex_unlock(&fs_devices->device_list_mutex);
1156
1157         return ret;
1158 }
1159
1160 static void btrfs_release_disk_super(struct page *page)
1161 {
1162         kunmap(page);
1163         put_page(page);
1164 }
1165
1166 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1167                                  struct page **page,
1168                                  struct btrfs_super_block **disk_super)
1169 {
1170         void *p;
1171         pgoff_t index;
1172
1173         /* make sure our super fits in the device */
1174         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1175                 return 1;
1176
1177         /* make sure our super fits in the page */
1178         if (sizeof(**disk_super) > PAGE_SIZE)
1179                 return 1;
1180
1181         /* make sure our super doesn't straddle pages on disk */
1182         index = bytenr >> PAGE_SHIFT;
1183         if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1184                 return 1;
1185
1186         /* pull in the page with our super */
1187         *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1188                                    index, GFP_KERNEL);
1189
1190         if (IS_ERR_OR_NULL(*page))
1191                 return 1;
1192
1193         p = kmap(*page);
1194
1195         /* align our pointer to the offset of the super block */
1196         *disk_super = p + (bytenr & ~PAGE_MASK);
1197
1198         if (btrfs_super_bytenr(*disk_super) != bytenr ||
1199             btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1200                 btrfs_release_disk_super(*page);
1201                 return 1;
1202         }
1203
1204         if ((*disk_super)->label[0] &&
1205                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1206                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1207
1208         return 0;
1209 }
1210
1211 /*
1212  * Look for a btrfs signature on a device. This may be called out of the mount path
1213  * and we are not allowed to call set_blocksize during the scan. The superblock
1214  * is read via pagecache
1215  */
1216 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1217                                            void *holder)
1218 {
1219         struct btrfs_super_block *disk_super;
1220         bool new_device_added = false;
1221         struct btrfs_device *device = NULL;
1222         struct block_device *bdev;
1223         struct page *page;
1224         u64 bytenr;
1225
1226         lockdep_assert_held(&uuid_mutex);
1227
1228         /*
1229          * we would like to check all the supers, but that would make
1230          * a btrfs mount succeed after a mkfs from a different FS.
1231          * So, we need to add a special mount option to scan for
1232          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1233          */
1234         bytenr = btrfs_sb_offset(0);
1235         flags |= FMODE_EXCL;
1236
1237         bdev = blkdev_get_by_path(path, flags, holder);
1238         if (IS_ERR(bdev))
1239                 return ERR_CAST(bdev);
1240
1241         if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1242                 device = ERR_PTR(-EINVAL);
1243                 goto error_bdev_put;
1244         }
1245
1246         device = device_list_add(path, disk_super, &new_device_added);
1247         if (!IS_ERR(device)) {
1248                 if (new_device_added)
1249                         btrfs_free_stale_devices(path, device);
1250         }
1251
1252         btrfs_release_disk_super(page);
1253
1254 error_bdev_put:
1255         blkdev_put(bdev, flags);
1256
1257         return device;
1258 }
1259
1260 static int contains_pending_extent(struct btrfs_transaction *transaction,
1261                                    struct btrfs_device *device,
1262                                    u64 *start, u64 len)
1263 {
1264         struct btrfs_fs_info *fs_info = device->fs_info;
1265         struct extent_map *em;
1266         struct list_head *search_list = &fs_info->pinned_chunks;
1267         int ret = 0;
1268         u64 physical_start = *start;
1269
1270         if (transaction)
1271                 search_list = &transaction->pending_chunks;
1272 again:
1273         list_for_each_entry(em, search_list, list) {
1274                 struct map_lookup *map;
1275                 int i;
1276
1277                 map = em->map_lookup;
1278                 for (i = 0; i < map->num_stripes; i++) {
1279                         u64 end;
1280
1281                         if (map->stripes[i].dev != device)
1282                                 continue;
1283                         if (map->stripes[i].physical >= physical_start + len ||
1284                             map->stripes[i].physical + em->orig_block_len <=
1285                             physical_start)
1286                                 continue;
1287                         /*
1288                          * Make sure that while processing the pinned list we do
1289                          * not override our *start with a lower value, because
1290                          * we can have pinned chunks that fall within this
1291                          * device hole and that have lower physical addresses
1292                          * than the pending chunks we processed before. If we
1293                          * do not take this special care we can end up getting
1294                          * 2 pending chunks that start at the same physical
1295                          * device offsets because the end offset of a pinned
1296                          * chunk can be equal to the start offset of some
1297                          * pending chunk.
1298                          */
1299                         end = map->stripes[i].physical + em->orig_block_len;
1300                         if (end > *start) {
1301                                 *start = end;
1302                                 ret = 1;
1303                         }
1304                 }
1305         }
1306         if (search_list != &fs_info->pinned_chunks) {
1307                 search_list = &fs_info->pinned_chunks;
1308                 goto again;
1309         }
1310
1311         return ret;
1312 }
1313
1314
1315 /*
1316  * find_free_dev_extent_start - find free space in the specified device
1317  * @device:       the device which we search the free space in
1318  * @num_bytes:    the size of the free space that we need
1319  * @search_start: the position from which to begin the search
1320  * @start:        store the start of the free space.
1321  * @len:          the size of the free space. that we find, or the size
1322  *                of the max free space if we don't find suitable free space
1323  *
1324  * this uses a pretty simple search, the expectation is that it is
1325  * called very infrequently and that a given device has a small number
1326  * of extents
1327  *
1328  * @start is used to store the start of the free space if we find. But if we
1329  * don't find suitable free space, it will be used to store the start position
1330  * of the max free space.
1331  *
1332  * @len is used to store the size of the free space that we find.
1333  * But if we don't find suitable free space, it is used to store the size of
1334  * the max free space.
1335  */
1336 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1337                                struct btrfs_device *device, u64 num_bytes,
1338                                u64 search_start, u64 *start, u64 *len)
1339 {
1340         struct btrfs_fs_info *fs_info = device->fs_info;
1341         struct btrfs_root *root = fs_info->dev_root;
1342         struct btrfs_key key;
1343         struct btrfs_dev_extent *dev_extent;
1344         struct btrfs_path *path;
1345         u64 hole_size;
1346         u64 max_hole_start;
1347         u64 max_hole_size;
1348         u64 extent_end;
1349         u64 search_end = device->total_bytes;
1350         int ret;
1351         int slot;
1352         struct extent_buffer *l;
1353
1354         /*
1355          * We don't want to overwrite the superblock on the drive nor any area
1356          * used by the boot loader (grub for example), so we make sure to start
1357          * at an offset of at least 1MB.
1358          */
1359         search_start = max_t(u64, search_start, SZ_1M);
1360
1361         path = btrfs_alloc_path();
1362         if (!path)
1363                 return -ENOMEM;
1364
1365         max_hole_start = search_start;
1366         max_hole_size = 0;
1367
1368 again:
1369         if (search_start >= search_end ||
1370                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1371                 ret = -ENOSPC;
1372                 goto out;
1373         }
1374
1375         path->reada = READA_FORWARD;
1376         path->search_commit_root = 1;
1377         path->skip_locking = 1;
1378
1379         key.objectid = device->devid;
1380         key.offset = search_start;
1381         key.type = BTRFS_DEV_EXTENT_KEY;
1382
1383         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1384         if (ret < 0)
1385                 goto out;
1386         if (ret > 0) {
1387                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1388                 if (ret < 0)
1389                         goto out;
1390         }
1391
1392         while (1) {
1393                 l = path->nodes[0];
1394                 slot = path->slots[0];
1395                 if (slot >= btrfs_header_nritems(l)) {
1396                         ret = btrfs_next_leaf(root, path);
1397                         if (ret == 0)
1398                                 continue;
1399                         if (ret < 0)
1400                                 goto out;
1401
1402                         break;
1403                 }
1404                 btrfs_item_key_to_cpu(l, &key, slot);
1405
1406                 if (key.objectid < device->devid)
1407                         goto next;
1408
1409                 if (key.objectid > device->devid)
1410                         break;
1411
1412                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1413                         goto next;
1414
1415                 if (key.offset > search_start) {
1416                         hole_size = key.offset - search_start;
1417
1418                         /*
1419                          * Have to check before we set max_hole_start, otherwise
1420                          * we could end up sending back this offset anyway.
1421                          */
1422                         if (contains_pending_extent(transaction, device,
1423                                                     &search_start,
1424                                                     hole_size)) {
1425                                 if (key.offset >= search_start) {
1426                                         hole_size = key.offset - search_start;
1427                                 } else {
1428                                         WARN_ON_ONCE(1);
1429                                         hole_size = 0;
1430                                 }
1431                         }
1432
1433                         if (hole_size > max_hole_size) {
1434                                 max_hole_start = search_start;
1435                                 max_hole_size = hole_size;
1436                         }
1437
1438                         /*
1439                          * If this free space is greater than which we need,
1440                          * it must be the max free space that we have found
1441                          * until now, so max_hole_start must point to the start
1442                          * of this free space and the length of this free space
1443                          * is stored in max_hole_size. Thus, we return
1444                          * max_hole_start and max_hole_size and go back to the
1445                          * caller.
1446                          */
1447                         if (hole_size >= num_bytes) {
1448                                 ret = 0;
1449                                 goto out;
1450                         }
1451                 }
1452
1453                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1454                 extent_end = key.offset + btrfs_dev_extent_length(l,
1455                                                                   dev_extent);
1456                 if (extent_end > search_start)
1457                         search_start = extent_end;
1458 next:
1459                 path->slots[0]++;
1460                 cond_resched();
1461         }
1462
1463         /*
1464          * At this point, search_start should be the end of
1465          * allocated dev extents, and when shrinking the device,
1466          * search_end may be smaller than search_start.
1467          */
1468         if (search_end > search_start) {
1469                 hole_size = search_end - search_start;
1470
1471                 if (contains_pending_extent(transaction, device, &search_start,
1472                                             hole_size)) {
1473                         btrfs_release_path(path);
1474                         goto again;
1475                 }
1476
1477                 if (hole_size > max_hole_size) {
1478                         max_hole_start = search_start;
1479                         max_hole_size = hole_size;
1480                 }
1481         }
1482
1483         /* See above. */
1484         if (max_hole_size < num_bytes)
1485                 ret = -ENOSPC;
1486         else
1487                 ret = 0;
1488
1489 out:
1490         btrfs_free_path(path);
1491         *start = max_hole_start;
1492         if (len)
1493                 *len = max_hole_size;
1494         return ret;
1495 }
1496
1497 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1498                          struct btrfs_device *device, u64 num_bytes,
1499                          u64 *start, u64 *len)
1500 {
1501         /* FIXME use last free of some kind */
1502         return find_free_dev_extent_start(trans->transaction, device,
1503                                           num_bytes, 0, start, len);
1504 }
1505
1506 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1507                           struct btrfs_device *device,
1508                           u64 start, u64 *dev_extent_len)
1509 {
1510         struct btrfs_fs_info *fs_info = device->fs_info;
1511         struct btrfs_root *root = fs_info->dev_root;
1512         int ret;
1513         struct btrfs_path *path;
1514         struct btrfs_key key;
1515         struct btrfs_key found_key;
1516         struct extent_buffer *leaf = NULL;
1517         struct btrfs_dev_extent *extent = NULL;
1518
1519         path = btrfs_alloc_path();
1520         if (!path)
1521                 return -ENOMEM;
1522
1523         key.objectid = device->devid;
1524         key.offset = start;
1525         key.type = BTRFS_DEV_EXTENT_KEY;
1526 again:
1527         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1528         if (ret > 0) {
1529                 ret = btrfs_previous_item(root, path, key.objectid,
1530                                           BTRFS_DEV_EXTENT_KEY);
1531                 if (ret)
1532                         goto out;
1533                 leaf = path->nodes[0];
1534                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1535                 extent = btrfs_item_ptr(leaf, path->slots[0],
1536                                         struct btrfs_dev_extent);
1537                 BUG_ON(found_key.offset > start || found_key.offset +
1538                        btrfs_dev_extent_length(leaf, extent) < start);
1539                 key = found_key;
1540                 btrfs_release_path(path);
1541                 goto again;
1542         } else if (ret == 0) {
1543                 leaf = path->nodes[0];
1544                 extent = btrfs_item_ptr(leaf, path->slots[0],
1545                                         struct btrfs_dev_extent);
1546         } else {
1547                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1548                 goto out;
1549         }
1550
1551         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1552
1553         ret = btrfs_del_item(trans, root, path);
1554         if (ret) {
1555                 btrfs_handle_fs_error(fs_info, ret,
1556                                       "Failed to remove dev extent item");
1557         } else {
1558                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1559         }
1560 out:
1561         btrfs_free_path(path);
1562         return ret;
1563 }
1564
1565 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1566                                   struct btrfs_device *device,
1567                                   u64 chunk_offset, u64 start, u64 num_bytes)
1568 {
1569         int ret;
1570         struct btrfs_path *path;
1571         struct btrfs_fs_info *fs_info = device->fs_info;
1572         struct btrfs_root *root = fs_info->dev_root;
1573         struct btrfs_dev_extent *extent;
1574         struct extent_buffer *leaf;
1575         struct btrfs_key key;
1576
1577         WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1578         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1579         path = btrfs_alloc_path();
1580         if (!path)
1581                 return -ENOMEM;
1582
1583         key.objectid = device->devid;
1584         key.offset = start;
1585         key.type = BTRFS_DEV_EXTENT_KEY;
1586         ret = btrfs_insert_empty_item(trans, root, path, &key,
1587                                       sizeof(*extent));
1588         if (ret)
1589                 goto out;
1590
1591         leaf = path->nodes[0];
1592         extent = btrfs_item_ptr(leaf, path->slots[0],
1593                                 struct btrfs_dev_extent);
1594         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1595                                         BTRFS_CHUNK_TREE_OBJECTID);
1596         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1597                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1598         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1599
1600         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1601         btrfs_mark_buffer_dirty(leaf);
1602 out:
1603         btrfs_free_path(path);
1604         return ret;
1605 }
1606
1607 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1608 {
1609         struct extent_map_tree *em_tree;
1610         struct extent_map *em;
1611         struct rb_node *n;
1612         u64 ret = 0;
1613
1614         em_tree = &fs_info->mapping_tree.map_tree;
1615         read_lock(&em_tree->lock);
1616         n = rb_last(&em_tree->map.rb_root);
1617         if (n) {
1618                 em = rb_entry(n, struct extent_map, rb_node);
1619                 ret = em->start + em->len;
1620         }
1621         read_unlock(&em_tree->lock);
1622
1623         return ret;
1624 }
1625
1626 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1627                                     u64 *devid_ret)
1628 {
1629         int ret;
1630         struct btrfs_key key;
1631         struct btrfs_key found_key;
1632         struct btrfs_path *path;
1633
1634         path = btrfs_alloc_path();
1635         if (!path)
1636                 return -ENOMEM;
1637
1638         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1639         key.type = BTRFS_DEV_ITEM_KEY;
1640         key.offset = (u64)-1;
1641
1642         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1643         if (ret < 0)
1644                 goto error;
1645
1646         BUG_ON(ret == 0); /* Corruption */
1647
1648         ret = btrfs_previous_item(fs_info->chunk_root, path,
1649                                   BTRFS_DEV_ITEMS_OBJECTID,
1650                                   BTRFS_DEV_ITEM_KEY);
1651         if (ret) {
1652                 *devid_ret = 1;
1653         } else {
1654                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1655                                       path->slots[0]);
1656                 *devid_ret = found_key.offset + 1;
1657         }
1658         ret = 0;
1659 error:
1660         btrfs_free_path(path);
1661         return ret;
1662 }
1663
1664 /*
1665  * the device information is stored in the chunk root
1666  * the btrfs_device struct should be fully filled in
1667  */
1668 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1669                             struct btrfs_device *device)
1670 {
1671         int ret;
1672         struct btrfs_path *path;
1673         struct btrfs_dev_item *dev_item;
1674         struct extent_buffer *leaf;
1675         struct btrfs_key key;
1676         unsigned long ptr;
1677
1678         path = btrfs_alloc_path();
1679         if (!path)
1680                 return -ENOMEM;
1681
1682         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1683         key.type = BTRFS_DEV_ITEM_KEY;
1684         key.offset = device->devid;
1685
1686         ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1687                                       &key, sizeof(*dev_item));
1688         if (ret)
1689                 goto out;
1690
1691         leaf = path->nodes[0];
1692         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1693
1694         btrfs_set_device_id(leaf, dev_item, device->devid);
1695         btrfs_set_device_generation(leaf, dev_item, 0);
1696         btrfs_set_device_type(leaf, dev_item, device->type);
1697         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1698         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1699         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1700         btrfs_set_device_total_bytes(leaf, dev_item,
1701                                      btrfs_device_get_disk_total_bytes(device));
1702         btrfs_set_device_bytes_used(leaf, dev_item,
1703                                     btrfs_device_get_bytes_used(device));
1704         btrfs_set_device_group(leaf, dev_item, 0);
1705         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1706         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1707         btrfs_set_device_start_offset(leaf, dev_item, 0);
1708
1709         ptr = btrfs_device_uuid(dev_item);
1710         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1711         ptr = btrfs_device_fsid(dev_item);
1712         write_extent_buffer(leaf, trans->fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1713         btrfs_mark_buffer_dirty(leaf);
1714
1715         ret = 0;
1716 out:
1717         btrfs_free_path(path);
1718         return ret;
1719 }
1720
1721 /*
1722  * Function to update ctime/mtime for a given device path.
1723  * Mainly used for ctime/mtime based probe like libblkid.
1724  */
1725 static void update_dev_time(const char *path_name)
1726 {
1727         struct file *filp;
1728
1729         filp = filp_open(path_name, O_RDWR, 0);
1730         if (IS_ERR(filp))
1731                 return;
1732         file_update_time(filp);
1733         filp_close(filp, NULL);
1734 }
1735
1736 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1737                              struct btrfs_device *device)
1738 {
1739         struct btrfs_root *root = fs_info->chunk_root;
1740         int ret;
1741         struct btrfs_path *path;
1742         struct btrfs_key key;
1743         struct btrfs_trans_handle *trans;
1744
1745         path = btrfs_alloc_path();
1746         if (!path)
1747                 return -ENOMEM;
1748
1749         trans = btrfs_start_transaction(root, 0);
1750         if (IS_ERR(trans)) {
1751                 btrfs_free_path(path);
1752                 return PTR_ERR(trans);
1753         }
1754         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1755         key.type = BTRFS_DEV_ITEM_KEY;
1756         key.offset = device->devid;
1757
1758         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1759         if (ret) {
1760                 if (ret > 0)
1761                         ret = -ENOENT;
1762                 btrfs_abort_transaction(trans, ret);
1763                 btrfs_end_transaction(trans);
1764                 goto out;
1765         }
1766
1767         ret = btrfs_del_item(trans, root, path);
1768         if (ret) {
1769                 btrfs_abort_transaction(trans, ret);
1770                 btrfs_end_transaction(trans);
1771         }
1772
1773 out:
1774         btrfs_free_path(path);
1775         if (!ret)
1776                 ret = btrfs_commit_transaction(trans);
1777         return ret;
1778 }
1779
1780 /*
1781  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1782  * filesystem. It's up to the caller to adjust that number regarding eg. device
1783  * replace.
1784  */
1785 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1786                 u64 num_devices)
1787 {
1788         u64 all_avail;
1789         unsigned seq;
1790         int i;
1791
1792         do {
1793                 seq = read_seqbegin(&fs_info->profiles_lock);
1794
1795                 all_avail = fs_info->avail_data_alloc_bits |
1796                             fs_info->avail_system_alloc_bits |
1797                             fs_info->avail_metadata_alloc_bits;
1798         } while (read_seqretry(&fs_info->profiles_lock, seq));
1799
1800         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1801                 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1802                         continue;
1803
1804                 if (num_devices < btrfs_raid_array[i].devs_min) {
1805                         int ret = btrfs_raid_array[i].mindev_error;
1806
1807                         if (ret)
1808                                 return ret;
1809                 }
1810         }
1811
1812         return 0;
1813 }
1814
1815 static struct btrfs_device * btrfs_find_next_active_device(
1816                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1817 {
1818         struct btrfs_device *next_device;
1819
1820         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1821                 if (next_device != device &&
1822                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1823                     && next_device->bdev)
1824                         return next_device;
1825         }
1826
1827         return NULL;
1828 }
1829
1830 /*
1831  * Helper function to check if the given device is part of s_bdev / latest_bdev
1832  * and replace it with the provided or the next active device, in the context
1833  * where this function called, there should be always be another device (or
1834  * this_dev) which is active.
1835  */
1836 void btrfs_assign_next_active_device(struct btrfs_device *device,
1837                                      struct btrfs_device *this_dev)
1838 {
1839         struct btrfs_fs_info *fs_info = device->fs_info;
1840         struct btrfs_device *next_device;
1841
1842         if (this_dev)
1843                 next_device = this_dev;
1844         else
1845                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1846                                                                 device);
1847         ASSERT(next_device);
1848
1849         if (fs_info->sb->s_bdev &&
1850                         (fs_info->sb->s_bdev == device->bdev))
1851                 fs_info->sb->s_bdev = next_device->bdev;
1852
1853         if (fs_info->fs_devices->latest_bdev == device->bdev)
1854                 fs_info->fs_devices->latest_bdev = next_device->bdev;
1855 }
1856
1857 /*
1858  * Return btrfs_fs_devices::num_devices excluding the device that's being
1859  * currently replaced.
1860  */
1861 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1862 {
1863         u64 num_devices = fs_info->fs_devices->num_devices;
1864
1865         btrfs_dev_replace_read_lock(&fs_info->dev_replace);
1866         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1867                 ASSERT(num_devices > 1);
1868                 num_devices--;
1869         }
1870         btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
1871
1872         return num_devices;
1873 }
1874
1875 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1876                 u64 devid)
1877 {
1878         struct btrfs_device *device;
1879         struct btrfs_fs_devices *cur_devices;
1880         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1881         u64 num_devices;
1882         int ret = 0;
1883
1884         mutex_lock(&uuid_mutex);
1885
1886         num_devices = btrfs_num_devices(fs_info);
1887
1888         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1889         if (ret)
1890                 goto out;
1891
1892         device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
1893
1894         if (IS_ERR(device)) {
1895                 if (PTR_ERR(device) == -ENOENT &&
1896                     strcmp(device_path, "missing") == 0)
1897                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1898                 else
1899                         ret = PTR_ERR(device);
1900                 goto out;
1901         }
1902
1903         if (btrfs_pinned_by_swapfile(fs_info, device)) {
1904                 btrfs_warn_in_rcu(fs_info,
1905                   "cannot remove device %s (devid %llu) due to active swapfile",
1906                                   rcu_str_deref(device->name), device->devid);
1907                 ret = -ETXTBSY;
1908                 goto out;
1909         }
1910
1911         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1912                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1913                 goto out;
1914         }
1915
1916         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1917             fs_info->fs_devices->rw_devices == 1) {
1918                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1919                 goto out;
1920         }
1921
1922         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1923                 mutex_lock(&fs_info->chunk_mutex);
1924                 list_del_init(&device->dev_alloc_list);
1925                 device->fs_devices->rw_devices--;
1926                 mutex_unlock(&fs_info->chunk_mutex);
1927         }
1928
1929         mutex_unlock(&uuid_mutex);
1930         ret = btrfs_shrink_device(device, 0);
1931         mutex_lock(&uuid_mutex);
1932         if (ret)
1933                 goto error_undo;
1934
1935         /*
1936          * TODO: the superblock still includes this device in its num_devices
1937          * counter although write_all_supers() is not locked out. This
1938          * could give a filesystem state which requires a degraded mount.
1939          */
1940         ret = btrfs_rm_dev_item(fs_info, device);
1941         if (ret)
1942                 goto error_undo;
1943
1944         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
1945         btrfs_scrub_cancel_dev(fs_info, device);
1946
1947         /*
1948          * the device list mutex makes sure that we don't change
1949          * the device list while someone else is writing out all
1950          * the device supers. Whoever is writing all supers, should
1951          * lock the device list mutex before getting the number of
1952          * devices in the super block (super_copy). Conversely,
1953          * whoever updates the number of devices in the super block
1954          * (super_copy) should hold the device list mutex.
1955          */
1956
1957         /*
1958          * In normal cases the cur_devices == fs_devices. But in case
1959          * of deleting a seed device, the cur_devices should point to
1960          * its own fs_devices listed under the fs_devices->seed.
1961          */
1962         cur_devices = device->fs_devices;
1963         mutex_lock(&fs_devices->device_list_mutex);
1964         list_del_rcu(&device->dev_list);
1965
1966         cur_devices->num_devices--;
1967         cur_devices->total_devices--;
1968         /* Update total_devices of the parent fs_devices if it's seed */
1969         if (cur_devices != fs_devices)
1970                 fs_devices->total_devices--;
1971
1972         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1973                 cur_devices->missing_devices--;
1974
1975         btrfs_assign_next_active_device(device, NULL);
1976
1977         if (device->bdev) {
1978                 cur_devices->open_devices--;
1979                 /* remove sysfs entry */
1980                 btrfs_sysfs_rm_device_link(fs_devices, device);
1981         }
1982
1983         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1984         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1985         mutex_unlock(&fs_devices->device_list_mutex);
1986
1987         /*
1988          * at this point, the device is zero sized and detached from
1989          * the devices list.  All that's left is to zero out the old
1990          * supers and free the device.
1991          */
1992         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
1993                 btrfs_scratch_superblocks(device->bdev, device->name->str);
1994
1995         btrfs_close_bdev(device);
1996         call_rcu(&device->rcu, free_device_rcu);
1997
1998         if (cur_devices->open_devices == 0) {
1999                 while (fs_devices) {
2000                         if (fs_devices->seed == cur_devices) {
2001                                 fs_devices->seed = cur_devices->seed;
2002                                 break;
2003                         }
2004                         fs_devices = fs_devices->seed;
2005                 }
2006                 cur_devices->seed = NULL;
2007                 close_fs_devices(cur_devices);
2008                 free_fs_devices(cur_devices);
2009         }
2010
2011 out:
2012         mutex_unlock(&uuid_mutex);
2013         return ret;
2014
2015 error_undo:
2016         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2017                 mutex_lock(&fs_info->chunk_mutex);
2018                 list_add(&device->dev_alloc_list,
2019                          &fs_devices->alloc_list);
2020                 device->fs_devices->rw_devices++;
2021                 mutex_unlock(&fs_info->chunk_mutex);
2022         }
2023         goto out;
2024 }
2025
2026 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2027 {
2028         struct btrfs_fs_devices *fs_devices;
2029
2030         lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2031
2032         /*
2033          * in case of fs with no seed, srcdev->fs_devices will point
2034          * to fs_devices of fs_info. However when the dev being replaced is
2035          * a seed dev it will point to the seed's local fs_devices. In short
2036          * srcdev will have its correct fs_devices in both the cases.
2037          */
2038         fs_devices = srcdev->fs_devices;
2039
2040         list_del_rcu(&srcdev->dev_list);
2041         list_del(&srcdev->dev_alloc_list);
2042         fs_devices->num_devices--;
2043         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2044                 fs_devices->missing_devices--;
2045
2046         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2047                 fs_devices->rw_devices--;
2048
2049         if (srcdev->bdev)
2050                 fs_devices->open_devices--;
2051 }
2052
2053 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2054                                       struct btrfs_device *srcdev)
2055 {
2056         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2057
2058         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2059                 /* zero out the old super if it is writable */
2060                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2061         }
2062
2063         btrfs_close_bdev(srcdev);
2064         call_rcu(&srcdev->rcu, free_device_rcu);
2065
2066         /* if this is no devs we rather delete the fs_devices */
2067         if (!fs_devices->num_devices) {
2068                 struct btrfs_fs_devices *tmp_fs_devices;
2069
2070                 /*
2071                  * On a mounted FS, num_devices can't be zero unless it's a
2072                  * seed. In case of a seed device being replaced, the replace
2073                  * target added to the sprout FS, so there will be no more
2074                  * device left under the seed FS.
2075                  */
2076                 ASSERT(fs_devices->seeding);
2077
2078                 tmp_fs_devices = fs_info->fs_devices;
2079                 while (tmp_fs_devices) {
2080                         if (tmp_fs_devices->seed == fs_devices) {
2081                                 tmp_fs_devices->seed = fs_devices->seed;
2082                                 break;
2083                         }
2084                         tmp_fs_devices = tmp_fs_devices->seed;
2085                 }
2086                 fs_devices->seed = NULL;
2087                 close_fs_devices(fs_devices);
2088                 free_fs_devices(fs_devices);
2089         }
2090 }
2091
2092 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2093 {
2094         struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2095
2096         WARN_ON(!tgtdev);
2097         mutex_lock(&fs_devices->device_list_mutex);
2098
2099         btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2100
2101         if (tgtdev->bdev)
2102                 fs_devices->open_devices--;
2103
2104         fs_devices->num_devices--;
2105
2106         btrfs_assign_next_active_device(tgtdev, NULL);
2107
2108         list_del_rcu(&tgtdev->dev_list);
2109
2110         mutex_unlock(&fs_devices->device_list_mutex);
2111
2112         /*
2113          * The update_dev_time() with in btrfs_scratch_superblocks()
2114          * may lead to a call to btrfs_show_devname() which will try
2115          * to hold device_list_mutex. And here this device
2116          * is already out of device list, so we don't have to hold
2117          * the device_list_mutex lock.
2118          */
2119         btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2120
2121         btrfs_close_bdev(tgtdev);
2122         call_rcu(&tgtdev->rcu, free_device_rcu);
2123 }
2124
2125 static struct btrfs_device *btrfs_find_device_by_path(
2126                 struct btrfs_fs_info *fs_info, const char *device_path)
2127 {
2128         int ret = 0;
2129         struct btrfs_super_block *disk_super;
2130         u64 devid;
2131         u8 *dev_uuid;
2132         struct block_device *bdev;
2133         struct buffer_head *bh;
2134         struct btrfs_device *device;
2135
2136         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2137                                     fs_info->bdev_holder, 0, &bdev, &bh);
2138         if (ret)
2139                 return ERR_PTR(ret);
2140         disk_super = (struct btrfs_super_block *)bh->b_data;
2141         devid = btrfs_stack_device_id(&disk_super->dev_item);
2142         dev_uuid = disk_super->dev_item.uuid;
2143         device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2144         brelse(bh);
2145         if (!device)
2146                 device = ERR_PTR(-ENOENT);
2147         blkdev_put(bdev, FMODE_READ);
2148         return device;
2149 }
2150
2151 static struct btrfs_device *btrfs_find_device_missing_or_by_path(
2152                 struct btrfs_fs_info *fs_info, const char *device_path)
2153 {
2154         struct btrfs_device *device = NULL;
2155         if (strcmp(device_path, "missing") == 0) {
2156                 struct list_head *devices;
2157                 struct btrfs_device *tmp;
2158
2159                 devices = &fs_info->fs_devices->devices;
2160                 list_for_each_entry(tmp, devices, dev_list) {
2161                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2162                                         &tmp->dev_state) && !tmp->bdev) {
2163                                 device = tmp;
2164                                 break;
2165                         }
2166                 }
2167
2168                 if (!device)
2169                         return ERR_PTR(-ENOENT);
2170         } else {
2171                 device = btrfs_find_device_by_path(fs_info, device_path);
2172         }
2173
2174         return device;
2175 }
2176
2177 /*
2178  * Lookup a device given by device id, or the path if the id is 0.
2179  */
2180 struct btrfs_device *btrfs_find_device_by_devspec(
2181                 struct btrfs_fs_info *fs_info, u64 devid, const char *devpath)
2182 {
2183         struct btrfs_device *device;
2184
2185         if (devid) {
2186                 device = btrfs_find_device(fs_info, devid, NULL, NULL);
2187                 if (!device)
2188                         return ERR_PTR(-ENOENT);
2189         } else {
2190                 if (!devpath || !devpath[0])
2191                         return ERR_PTR(-EINVAL);
2192                 device = btrfs_find_device_missing_or_by_path(fs_info, devpath);
2193         }
2194         return device;
2195 }
2196
2197 /*
2198  * does all the dirty work required for changing file system's UUID.
2199  */
2200 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2201 {
2202         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2203         struct btrfs_fs_devices *old_devices;
2204         struct btrfs_fs_devices *seed_devices;
2205         struct btrfs_super_block *disk_super = fs_info->super_copy;
2206         struct btrfs_device *device;
2207         u64 super_flags;
2208
2209         lockdep_assert_held(&uuid_mutex);
2210         if (!fs_devices->seeding)
2211                 return -EINVAL;
2212
2213         seed_devices = alloc_fs_devices(NULL);
2214         if (IS_ERR(seed_devices))
2215                 return PTR_ERR(seed_devices);
2216
2217         old_devices = clone_fs_devices(fs_devices);
2218         if (IS_ERR(old_devices)) {
2219                 kfree(seed_devices);
2220                 return PTR_ERR(old_devices);
2221         }
2222
2223         list_add(&old_devices->fs_list, &fs_uuids);
2224
2225         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2226         seed_devices->opened = 1;
2227         INIT_LIST_HEAD(&seed_devices->devices);
2228         INIT_LIST_HEAD(&seed_devices->alloc_list);
2229         mutex_init(&seed_devices->device_list_mutex);
2230
2231         mutex_lock(&fs_devices->device_list_mutex);
2232         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2233                               synchronize_rcu);
2234         list_for_each_entry(device, &seed_devices->devices, dev_list)
2235                 device->fs_devices = seed_devices;
2236
2237         mutex_lock(&fs_info->chunk_mutex);
2238         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2239         mutex_unlock(&fs_info->chunk_mutex);
2240
2241         fs_devices->seeding = 0;
2242         fs_devices->num_devices = 0;
2243         fs_devices->open_devices = 0;
2244         fs_devices->missing_devices = 0;
2245         fs_devices->rotating = 0;
2246         fs_devices->seed = seed_devices;
2247
2248         generate_random_uuid(fs_devices->fsid);
2249         memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2250         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2251         mutex_unlock(&fs_devices->device_list_mutex);
2252
2253         super_flags = btrfs_super_flags(disk_super) &
2254                       ~BTRFS_SUPER_FLAG_SEEDING;
2255         btrfs_set_super_flags(disk_super, super_flags);
2256
2257         return 0;
2258 }
2259
2260 /*
2261  * Store the expected generation for seed devices in device items.
2262  */
2263 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2264                                struct btrfs_fs_info *fs_info)
2265 {
2266         struct btrfs_root *root = fs_info->chunk_root;
2267         struct btrfs_path *path;
2268         struct extent_buffer *leaf;
2269         struct btrfs_dev_item *dev_item;
2270         struct btrfs_device *device;
2271         struct btrfs_key key;
2272         u8 fs_uuid[BTRFS_FSID_SIZE];
2273         u8 dev_uuid[BTRFS_UUID_SIZE];
2274         u64 devid;
2275         int ret;
2276
2277         path = btrfs_alloc_path();
2278         if (!path)
2279                 return -ENOMEM;
2280
2281         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2282         key.offset = 0;
2283         key.type = BTRFS_DEV_ITEM_KEY;
2284
2285         while (1) {
2286                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2287                 if (ret < 0)
2288                         goto error;
2289
2290                 leaf = path->nodes[0];
2291 next_slot:
2292                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2293                         ret = btrfs_next_leaf(root, path);
2294                         if (ret > 0)
2295                                 break;
2296                         if (ret < 0)
2297                                 goto error;
2298                         leaf = path->nodes[0];
2299                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2300                         btrfs_release_path(path);
2301                         continue;
2302                 }
2303
2304                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2305                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2306                     key.type != BTRFS_DEV_ITEM_KEY)
2307                         break;
2308
2309                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2310                                           struct btrfs_dev_item);
2311                 devid = btrfs_device_id(leaf, dev_item);
2312                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2313                                    BTRFS_UUID_SIZE);
2314                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2315                                    BTRFS_FSID_SIZE);
2316                 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2317                 BUG_ON(!device); /* Logic error */
2318
2319                 if (device->fs_devices->seeding) {
2320                         btrfs_set_device_generation(leaf, dev_item,
2321                                                     device->generation);
2322                         btrfs_mark_buffer_dirty(leaf);
2323                 }
2324
2325                 path->slots[0]++;
2326                 goto next_slot;
2327         }
2328         ret = 0;
2329 error:
2330         btrfs_free_path(path);
2331         return ret;
2332 }
2333
2334 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2335 {
2336         struct btrfs_root *root = fs_info->dev_root;
2337         struct request_queue *q;
2338         struct btrfs_trans_handle *trans;
2339         struct btrfs_device *device;
2340         struct block_device *bdev;
2341         struct super_block *sb = fs_info->sb;
2342         struct rcu_string *name;
2343         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2344         u64 orig_super_total_bytes;
2345         u64 orig_super_num_devices;
2346         int seeding_dev = 0;
2347         int ret = 0;
2348         bool unlocked = false;
2349
2350         if (sb_rdonly(sb) && !fs_devices->seeding)
2351                 return -EROFS;
2352
2353         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2354                                   fs_info->bdev_holder);
2355         if (IS_ERR(bdev))
2356                 return PTR_ERR(bdev);
2357
2358         if (fs_devices->seeding) {
2359                 seeding_dev = 1;
2360                 down_write(&sb->s_umount);
2361                 mutex_lock(&uuid_mutex);
2362         }
2363
2364         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2365
2366         mutex_lock(&fs_devices->device_list_mutex);
2367         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2368                 if (device->bdev == bdev) {
2369                         ret = -EEXIST;
2370                         mutex_unlock(
2371                                 &fs_devices->device_list_mutex);
2372                         goto error;
2373                 }
2374         }
2375         mutex_unlock(&fs_devices->device_list_mutex);
2376
2377         device = btrfs_alloc_device(fs_info, NULL, NULL);
2378         if (IS_ERR(device)) {
2379                 /* we can safely leave the fs_devices entry around */
2380                 ret = PTR_ERR(device);
2381                 goto error;
2382         }
2383
2384         name = rcu_string_strdup(device_path, GFP_KERNEL);
2385         if (!name) {
2386                 ret = -ENOMEM;
2387                 goto error_free_device;
2388         }
2389         rcu_assign_pointer(device->name, name);
2390
2391         trans = btrfs_start_transaction(root, 0);
2392         if (IS_ERR(trans)) {
2393                 ret = PTR_ERR(trans);
2394                 goto error_free_device;
2395         }
2396
2397         q = bdev_get_queue(bdev);
2398         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2399         device->generation = trans->transid;
2400         device->io_width = fs_info->sectorsize;
2401         device->io_align = fs_info->sectorsize;
2402         device->sector_size = fs_info->sectorsize;
2403         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2404                                          fs_info->sectorsize);
2405         device->disk_total_bytes = device->total_bytes;
2406         device->commit_total_bytes = device->total_bytes;
2407         device->fs_info = fs_info;
2408         device->bdev = bdev;
2409         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2410         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2411         device->mode = FMODE_EXCL;
2412         device->dev_stats_valid = 1;
2413         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2414
2415         if (seeding_dev) {
2416                 sb->s_flags &= ~SB_RDONLY;
2417                 ret = btrfs_prepare_sprout(fs_info);
2418                 if (ret) {
2419                         btrfs_abort_transaction(trans, ret);
2420                         goto error_trans;
2421                 }
2422         }
2423
2424         device->fs_devices = fs_devices;
2425
2426         mutex_lock(&fs_devices->device_list_mutex);
2427         mutex_lock(&fs_info->chunk_mutex);
2428         list_add_rcu(&device->dev_list, &fs_devices->devices);
2429         list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2430         fs_devices->num_devices++;
2431         fs_devices->open_devices++;
2432         fs_devices->rw_devices++;
2433         fs_devices->total_devices++;
2434         fs_devices->total_rw_bytes += device->total_bytes;
2435
2436         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2437
2438         if (!blk_queue_nonrot(q))
2439                 fs_devices->rotating = 1;
2440
2441         orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2442         btrfs_set_super_total_bytes(fs_info->super_copy,
2443                 round_down(orig_super_total_bytes + device->total_bytes,
2444                            fs_info->sectorsize));
2445
2446         orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2447         btrfs_set_super_num_devices(fs_info->super_copy,
2448                                     orig_super_num_devices + 1);
2449
2450         /* add sysfs device entry */
2451         btrfs_sysfs_add_device_link(fs_devices, device);
2452
2453         /*
2454          * we've got more storage, clear any full flags on the space
2455          * infos
2456          */
2457         btrfs_clear_space_info_full(fs_info);
2458
2459         mutex_unlock(&fs_info->chunk_mutex);
2460         mutex_unlock(&fs_devices->device_list_mutex);
2461
2462         if (seeding_dev) {
2463                 mutex_lock(&fs_info->chunk_mutex);
2464                 ret = init_first_rw_device(trans, fs_info);
2465                 mutex_unlock(&fs_info->chunk_mutex);
2466                 if (ret) {
2467                         btrfs_abort_transaction(trans, ret);
2468                         goto error_sysfs;
2469                 }
2470         }
2471
2472         ret = btrfs_add_dev_item(trans, device);
2473         if (ret) {
2474                 btrfs_abort_transaction(trans, ret);
2475                 goto error_sysfs;
2476         }
2477
2478         if (seeding_dev) {
2479                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2480
2481                 ret = btrfs_finish_sprout(trans, fs_info);
2482                 if (ret) {
2483                         btrfs_abort_transaction(trans, ret);
2484                         goto error_sysfs;
2485                 }
2486
2487                 /* Sprouting would change fsid of the mounted root,
2488                  * so rename the fsid on the sysfs
2489                  */
2490                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2491                                                 fs_info->fsid);
2492                 if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
2493                         btrfs_warn(fs_info,
2494                                    "sysfs: failed to create fsid for sprout");
2495         }
2496
2497         ret = btrfs_commit_transaction(trans);
2498
2499         if (seeding_dev) {
2500                 mutex_unlock(&uuid_mutex);
2501                 up_write(&sb->s_umount);
2502                 unlocked = true;
2503
2504                 if (ret) /* transaction commit */
2505                         return ret;
2506
2507                 ret = btrfs_relocate_sys_chunks(fs_info);
2508                 if (ret < 0)
2509                         btrfs_handle_fs_error(fs_info, ret,
2510                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2511                 trans = btrfs_attach_transaction(root);
2512                 if (IS_ERR(trans)) {
2513                         if (PTR_ERR(trans) == -ENOENT)
2514                                 return 0;
2515                         ret = PTR_ERR(trans);
2516                         trans = NULL;
2517                         goto error_sysfs;
2518                 }
2519                 ret = btrfs_commit_transaction(trans);
2520         }
2521
2522         /* Update ctime/mtime for libblkid */
2523         update_dev_time(device_path);
2524         return ret;
2525
2526 error_sysfs:
2527         btrfs_sysfs_rm_device_link(fs_devices, device);
2528         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2529         mutex_lock(&fs_info->chunk_mutex);
2530         list_del_rcu(&device->dev_list);
2531         list_del(&device->dev_alloc_list);
2532         fs_info->fs_devices->num_devices--;
2533         fs_info->fs_devices->open_devices--;
2534         fs_info->fs_devices->rw_devices--;
2535         fs_info->fs_devices->total_devices--;
2536         fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2537         atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2538         btrfs_set_super_total_bytes(fs_info->super_copy,
2539                                     orig_super_total_bytes);
2540         btrfs_set_super_num_devices(fs_info->super_copy,
2541                                     orig_super_num_devices);
2542         mutex_unlock(&fs_info->chunk_mutex);
2543         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2544 error_trans:
2545         if (seeding_dev)
2546                 sb->s_flags |= SB_RDONLY;
2547         if (trans)
2548                 btrfs_end_transaction(trans);
2549 error_free_device:
2550         btrfs_free_device(device);
2551 error:
2552         blkdev_put(bdev, FMODE_EXCL);
2553         if (seeding_dev && !unlocked) {
2554                 mutex_unlock(&uuid_mutex);
2555                 up_write(&sb->s_umount);
2556         }
2557         return ret;
2558 }
2559
2560 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2561                                         struct btrfs_device *device)
2562 {
2563         int ret;
2564         struct btrfs_path *path;
2565         struct btrfs_root *root = device->fs_info->chunk_root;
2566         struct btrfs_dev_item *dev_item;
2567         struct extent_buffer *leaf;
2568         struct btrfs_key key;
2569
2570         path = btrfs_alloc_path();
2571         if (!path)
2572                 return -ENOMEM;
2573
2574         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2575         key.type = BTRFS_DEV_ITEM_KEY;
2576         key.offset = device->devid;
2577
2578         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2579         if (ret < 0)
2580                 goto out;
2581
2582         if (ret > 0) {
2583                 ret = -ENOENT;
2584                 goto out;
2585         }
2586
2587         leaf = path->nodes[0];
2588         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2589
2590         btrfs_set_device_id(leaf, dev_item, device->devid);
2591         btrfs_set_device_type(leaf, dev_item, device->type);
2592         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2593         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2594         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2595         btrfs_set_device_total_bytes(leaf, dev_item,
2596                                      btrfs_device_get_disk_total_bytes(device));
2597         btrfs_set_device_bytes_used(leaf, dev_item,
2598                                     btrfs_device_get_bytes_used(device));
2599         btrfs_mark_buffer_dirty(leaf);
2600
2601 out:
2602         btrfs_free_path(path);
2603         return ret;
2604 }
2605
2606 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2607                       struct btrfs_device *device, u64 new_size)
2608 {
2609         struct btrfs_fs_info *fs_info = device->fs_info;
2610         struct btrfs_super_block *super_copy = fs_info->super_copy;
2611         struct btrfs_fs_devices *fs_devices;
2612         u64 old_total;
2613         u64 diff;
2614
2615         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2616                 return -EACCES;
2617
2618         new_size = round_down(new_size, fs_info->sectorsize);
2619
2620         mutex_lock(&fs_info->chunk_mutex);
2621         old_total = btrfs_super_total_bytes(super_copy);
2622         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2623
2624         if (new_size <= device->total_bytes ||
2625             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2626                 mutex_unlock(&fs_info->chunk_mutex);
2627                 return -EINVAL;
2628         }
2629
2630         fs_devices = fs_info->fs_devices;
2631
2632         btrfs_set_super_total_bytes(super_copy,
2633                         round_down(old_total + diff, fs_info->sectorsize));
2634         device->fs_devices->total_rw_bytes += diff;
2635
2636         btrfs_device_set_total_bytes(device, new_size);
2637         btrfs_device_set_disk_total_bytes(device, new_size);
2638         btrfs_clear_space_info_full(device->fs_info);
2639         if (list_empty(&device->resized_list))
2640                 list_add_tail(&device->resized_list,
2641                               &fs_devices->resized_devices);
2642         mutex_unlock(&fs_info->chunk_mutex);
2643
2644         return btrfs_update_device(trans, device);
2645 }
2646
2647 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2648 {
2649         struct btrfs_fs_info *fs_info = trans->fs_info;
2650         struct btrfs_root *root = fs_info->chunk_root;
2651         int ret;
2652         struct btrfs_path *path;
2653         struct btrfs_key key;
2654
2655         path = btrfs_alloc_path();
2656         if (!path)
2657                 return -ENOMEM;
2658
2659         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2660         key.offset = chunk_offset;
2661         key.type = BTRFS_CHUNK_ITEM_KEY;
2662
2663         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2664         if (ret < 0)
2665                 goto out;
2666         else if (ret > 0) { /* Logic error or corruption */
2667                 btrfs_handle_fs_error(fs_info, -ENOENT,
2668                                       "Failed lookup while freeing chunk.");
2669                 ret = -ENOENT;
2670                 goto out;
2671         }
2672
2673         ret = btrfs_del_item(trans, root, path);
2674         if (ret < 0)
2675                 btrfs_handle_fs_error(fs_info, ret,
2676                                       "Failed to delete chunk item.");
2677 out:
2678         btrfs_free_path(path);
2679         return ret;
2680 }
2681
2682 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2683 {
2684         struct btrfs_super_block *super_copy = fs_info->super_copy;
2685         struct btrfs_disk_key *disk_key;
2686         struct btrfs_chunk *chunk;
2687         u8 *ptr;
2688         int ret = 0;
2689         u32 num_stripes;
2690         u32 array_size;
2691         u32 len = 0;
2692         u32 cur;
2693         struct btrfs_key key;
2694
2695         mutex_lock(&fs_info->chunk_mutex);
2696         array_size = btrfs_super_sys_array_size(super_copy);
2697
2698         ptr = super_copy->sys_chunk_array;
2699         cur = 0;
2700
2701         while (cur < array_size) {
2702                 disk_key = (struct btrfs_disk_key *)ptr;
2703                 btrfs_disk_key_to_cpu(&key, disk_key);
2704
2705                 len = sizeof(*disk_key);
2706
2707                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2708                         chunk = (struct btrfs_chunk *)(ptr + len);
2709                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2710                         len += btrfs_chunk_item_size(num_stripes);
2711                 } else {
2712                         ret = -EIO;
2713                         break;
2714                 }
2715                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2716                     key.offset == chunk_offset) {
2717                         memmove(ptr, ptr + len, array_size - (cur + len));
2718                         array_size -= len;
2719                         btrfs_set_super_sys_array_size(super_copy, array_size);
2720                 } else {
2721                         ptr += len;
2722                         cur += len;
2723                 }
2724         }
2725         mutex_unlock(&fs_info->chunk_mutex);
2726         return ret;
2727 }
2728
2729 /*
2730  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2731  * @logical: Logical block offset in bytes.
2732  * @length: Length of extent in bytes.
2733  *
2734  * Return: Chunk mapping or ERR_PTR.
2735  */
2736 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2737                                        u64 logical, u64 length)
2738 {
2739         struct extent_map_tree *em_tree;
2740         struct extent_map *em;
2741
2742         em_tree = &fs_info->mapping_tree.map_tree;
2743         read_lock(&em_tree->lock);
2744         em = lookup_extent_mapping(em_tree, logical, length);
2745         read_unlock(&em_tree->lock);
2746
2747         if (!em) {
2748                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2749                            logical, length);
2750                 return ERR_PTR(-EINVAL);
2751         }
2752
2753         if (em->start > logical || em->start + em->len < logical) {
2754                 btrfs_crit(fs_info,
2755                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2756                            logical, length, em->start, em->start + em->len);
2757                 free_extent_map(em);
2758                 return ERR_PTR(-EINVAL);
2759         }
2760
2761         /* callers are responsible for dropping em's ref. */
2762         return em;
2763 }
2764
2765 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2766 {
2767         struct btrfs_fs_info *fs_info = trans->fs_info;
2768         struct extent_map *em;
2769         struct map_lookup *map;
2770         u64 dev_extent_len = 0;
2771         int i, ret = 0;
2772         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2773
2774         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2775         if (IS_ERR(em)) {
2776                 /*
2777                  * This is a logic error, but we don't want to just rely on the
2778                  * user having built with ASSERT enabled, so if ASSERT doesn't
2779                  * do anything we still error out.
2780                  */
2781                 ASSERT(0);
2782                 return PTR_ERR(em);
2783         }
2784         map = em->map_lookup;
2785         mutex_lock(&fs_info->chunk_mutex);
2786         check_system_chunk(trans, map->type);
2787         mutex_unlock(&fs_info->chunk_mutex);
2788
2789         /*
2790          * Take the device list mutex to prevent races with the final phase of
2791          * a device replace operation that replaces the device object associated
2792          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2793          */
2794         mutex_lock(&fs_devices->device_list_mutex);
2795         for (i = 0; i < map->num_stripes; i++) {
2796                 struct btrfs_device *device = map->stripes[i].dev;
2797                 ret = btrfs_free_dev_extent(trans, device,
2798                                             map->stripes[i].physical,
2799                                             &dev_extent_len);
2800                 if (ret) {
2801                         mutex_unlock(&fs_devices->device_list_mutex);
2802                         btrfs_abort_transaction(trans, ret);
2803                         goto out;
2804                 }
2805
2806                 if (device->bytes_used > 0) {
2807                         mutex_lock(&fs_info->chunk_mutex);
2808                         btrfs_device_set_bytes_used(device,
2809                                         device->bytes_used - dev_extent_len);
2810                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2811                         btrfs_clear_space_info_full(fs_info);
2812                         mutex_unlock(&fs_info->chunk_mutex);
2813                 }
2814
2815                 if (map->stripes[i].dev) {
2816                         ret = btrfs_update_device(trans, map->stripes[i].dev);
2817                         if (ret) {
2818                                 mutex_unlock(&fs_devices->device_list_mutex);
2819                                 btrfs_abort_transaction(trans, ret);
2820                                 goto out;
2821                         }
2822                 }
2823         }
2824         mutex_unlock(&fs_devices->device_list_mutex);
2825
2826         ret = btrfs_free_chunk(trans, chunk_offset);
2827         if (ret) {
2828                 btrfs_abort_transaction(trans, ret);
2829                 goto out;
2830         }
2831
2832         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2833
2834         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2835                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2836                 if (ret) {
2837                         btrfs_abort_transaction(trans, ret);
2838                         goto out;
2839                 }
2840         }
2841
2842         ret = btrfs_remove_block_group(trans, chunk_offset, em);
2843         if (ret) {
2844                 btrfs_abort_transaction(trans, ret);
2845                 goto out;
2846         }
2847
2848 out:
2849         /* once for us */
2850         free_extent_map(em);
2851         return ret;
2852 }
2853
2854 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2855 {
2856         struct btrfs_root *root = fs_info->chunk_root;
2857         struct btrfs_trans_handle *trans;
2858         int ret;
2859
2860         /*
2861          * Prevent races with automatic removal of unused block groups.
2862          * After we relocate and before we remove the chunk with offset
2863          * chunk_offset, automatic removal of the block group can kick in,
2864          * resulting in a failure when calling btrfs_remove_chunk() below.
2865          *
2866          * Make sure to acquire this mutex before doing a tree search (dev
2867          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2868          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2869          * we release the path used to search the chunk/dev tree and before
2870          * the current task acquires this mutex and calls us.
2871          */
2872         lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
2873
2874         ret = btrfs_can_relocate(fs_info, chunk_offset);
2875         if (ret)
2876                 return -ENOSPC;
2877
2878         /* step one, relocate all the extents inside this chunk */
2879         btrfs_scrub_pause(fs_info);
2880         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2881         btrfs_scrub_continue(fs_info);
2882         if (ret)
2883                 return ret;
2884
2885         /*
2886          * We add the kobjects here (and after forcing data chunk creation)
2887          * since relocation is the only place we'll create chunks of a new
2888          * type at runtime.  The only place where we'll remove the last
2889          * chunk of a type is the call immediately below this one.  Even
2890          * so, we're protected against races with the cleaner thread since
2891          * we're covered by the delete_unused_bgs_mutex.
2892          */
2893         btrfs_add_raid_kobjects(fs_info);
2894
2895         trans = btrfs_start_trans_remove_block_group(root->fs_info,
2896                                                      chunk_offset);
2897         if (IS_ERR(trans)) {
2898                 ret = PTR_ERR(trans);
2899                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2900                 return ret;
2901         }
2902
2903         /*
2904          * step two, delete the device extents and the
2905          * chunk tree entries
2906          */
2907         ret = btrfs_remove_chunk(trans, chunk_offset);
2908         btrfs_end_transaction(trans);
2909         return ret;
2910 }
2911
2912 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2913 {
2914         struct btrfs_root *chunk_root = fs_info->chunk_root;
2915         struct btrfs_path *path;
2916         struct extent_buffer *leaf;
2917         struct btrfs_chunk *chunk;
2918         struct btrfs_key key;
2919         struct btrfs_key found_key;
2920         u64 chunk_type;
2921         bool retried = false;
2922         int failed = 0;
2923         int ret;
2924
2925         path = btrfs_alloc_path();
2926         if (!path)
2927                 return -ENOMEM;
2928
2929 again:
2930         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2931         key.offset = (u64)-1;
2932         key.type = BTRFS_CHUNK_ITEM_KEY;
2933
2934         while (1) {
2935                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2936                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2937                 if (ret < 0) {
2938                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2939                         goto error;
2940                 }
2941                 BUG_ON(ret == 0); /* Corruption */
2942
2943                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2944                                           key.type);
2945                 if (ret)
2946                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2947                 if (ret < 0)
2948                         goto error;
2949                 if (ret > 0)
2950                         break;
2951
2952                 leaf = path->nodes[0];
2953                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2954
2955                 chunk = btrfs_item_ptr(leaf, path->slots[0],
2956                                        struct btrfs_chunk);
2957                 chunk_type = btrfs_chunk_type(leaf, chunk);
2958                 btrfs_release_path(path);
2959
2960                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2961                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
2962                         if (ret == -ENOSPC)
2963                                 failed++;
2964                         else
2965                                 BUG_ON(ret);
2966                 }
2967                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2968
2969                 if (found_key.offset == 0)
2970                         break;
2971                 key.offset = found_key.offset - 1;
2972         }
2973         ret = 0;
2974         if (failed && !retried) {
2975                 failed = 0;
2976                 retried = true;
2977                 goto again;
2978         } else if (WARN_ON(failed && retried)) {
2979                 ret = -ENOSPC;
2980         }
2981 error:
2982         btrfs_free_path(path);
2983         return ret;
2984 }
2985
2986 /*
2987  * return 1 : allocate a data chunk successfully,
2988  * return <0: errors during allocating a data chunk,
2989  * return 0 : no need to allocate a data chunk.
2990  */
2991 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
2992                                       u64 chunk_offset)
2993 {
2994         struct btrfs_block_group_cache *cache;
2995         u64 bytes_used;
2996         u64 chunk_type;
2997
2998         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2999         ASSERT(cache);
3000         chunk_type = cache->flags;
3001         btrfs_put_block_group(cache);
3002
3003         if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3004                 spin_lock(&fs_info->data_sinfo->lock);
3005                 bytes_used = fs_info->data_sinfo->bytes_used;
3006                 spin_unlock(&fs_info->data_sinfo->lock);
3007
3008                 if (!bytes_used) {
3009                         struct btrfs_trans_handle *trans;
3010                         int ret;
3011
3012                         trans = btrfs_join_transaction(fs_info->tree_root);
3013                         if (IS_ERR(trans))
3014                                 return PTR_ERR(trans);
3015
3016                         ret = btrfs_force_chunk_alloc(trans,
3017                                                       BTRFS_BLOCK_GROUP_DATA);
3018                         btrfs_end_transaction(trans);
3019                         if (ret < 0)
3020                                 return ret;
3021
3022                         btrfs_add_raid_kobjects(fs_info);
3023
3024                         return 1;
3025                 }
3026         }
3027         return 0;
3028 }
3029
3030 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3031                                struct btrfs_balance_control *bctl)
3032 {
3033         struct btrfs_root *root = fs_info->tree_root;
3034         struct btrfs_trans_handle *trans;
3035         struct btrfs_balance_item *item;
3036         struct btrfs_disk_balance_args disk_bargs;
3037         struct btrfs_path *path;
3038         struct extent_buffer *leaf;
3039         struct btrfs_key key;
3040         int ret, err;
3041
3042         path = btrfs_alloc_path();
3043         if (!path)
3044                 return -ENOMEM;
3045
3046         trans = btrfs_start_transaction(root, 0);
3047         if (IS_ERR(trans)) {
3048                 btrfs_free_path(path);
3049                 return PTR_ERR(trans);
3050         }
3051
3052         key.objectid = BTRFS_BALANCE_OBJECTID;
3053         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3054         key.offset = 0;
3055
3056         ret = btrfs_insert_empty_item(trans, root, path, &key,
3057                                       sizeof(*item));
3058         if (ret)
3059                 goto out;
3060
3061         leaf = path->nodes[0];
3062         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3063
3064         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3065
3066         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3067         btrfs_set_balance_data(leaf, item, &disk_bargs);
3068         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3069         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3070         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3071         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3072
3073         btrfs_set_balance_flags(leaf, item, bctl->flags);
3074
3075         btrfs_mark_buffer_dirty(leaf);
3076 out:
3077         btrfs_free_path(path);
3078         err = btrfs_commit_transaction(trans);
3079         if (err && !ret)
3080                 ret = err;
3081         return ret;
3082 }
3083
3084 static int del_balance_item(struct btrfs_fs_info *fs_info)
3085 {
3086         struct btrfs_root *root = fs_info->tree_root;
3087         struct btrfs_trans_handle *trans;
3088         struct btrfs_path *path;
3089         struct btrfs_key key;
3090         int ret, err;
3091
3092         path = btrfs_alloc_path();
3093         if (!path)
3094                 return -ENOMEM;
3095
3096         trans = btrfs_start_transaction(root, 0);
3097         if (IS_ERR(trans)) {
3098                 btrfs_free_path(path);
3099                 return PTR_ERR(trans);
3100         }
3101
3102         key.objectid = BTRFS_BALANCE_OBJECTID;
3103         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3104         key.offset = 0;
3105
3106         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3107         if (ret < 0)
3108                 goto out;
3109         if (ret > 0) {
3110                 ret = -ENOENT;
3111                 goto out;
3112         }
3113
3114         ret = btrfs_del_item(trans, root, path);
3115 out:
3116         btrfs_free_path(path);
3117         err = btrfs_commit_transaction(trans);
3118         if (err && !ret)
3119                 ret = err;
3120         return ret;
3121 }
3122
3123 /*
3124  * This is a heuristic used to reduce the number of chunks balanced on
3125  * resume after balance was interrupted.
3126  */
3127 static void update_balance_args(struct btrfs_balance_control *bctl)
3128 {
3129         /*
3130          * Turn on soft mode for chunk types that were being converted.
3131          */
3132         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3133                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3134         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3135                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3136         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3137                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3138
3139         /*
3140          * Turn on usage filter if is not already used.  The idea is
3141          * that chunks that we have already balanced should be
3142          * reasonably full.  Don't do it for chunks that are being
3143          * converted - that will keep us from relocating unconverted
3144          * (albeit full) chunks.
3145          */
3146         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3147             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3148             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3149                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3150                 bctl->data.usage = 90;
3151         }
3152         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3153             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3154             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3155                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3156                 bctl->sys.usage = 90;
3157         }
3158         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3159             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3160             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3161                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3162                 bctl->meta.usage = 90;
3163         }
3164 }
3165
3166 /*
3167  * Clear the balance status in fs_info and delete the balance item from disk.
3168  */
3169 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3170 {
3171         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3172         int ret;
3173
3174         BUG_ON(!fs_info->balance_ctl);
3175
3176         spin_lock(&fs_info->balance_lock);
3177         fs_info->balance_ctl = NULL;
3178         spin_unlock(&fs_info->balance_lock);
3179
3180         kfree(bctl);
3181         ret = del_balance_item(fs_info);
3182         if (ret)
3183                 btrfs_handle_fs_error(fs_info, ret, NULL);
3184 }
3185
3186 /*
3187  * Balance filters.  Return 1 if chunk should be filtered out
3188  * (should not be balanced).
3189  */
3190 static int chunk_profiles_filter(u64 chunk_type,
3191                                  struct btrfs_balance_args *bargs)
3192 {
3193         chunk_type = chunk_to_extended(chunk_type) &
3194                                 BTRFS_EXTENDED_PROFILE_MASK;
3195
3196         if (bargs->profiles & chunk_type)
3197                 return 0;
3198
3199         return 1;
3200 }
3201
3202 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3203                               struct btrfs_balance_args *bargs)
3204 {
3205         struct btrfs_block_group_cache *cache;
3206         u64 chunk_used;
3207         u64 user_thresh_min;
3208         u64 user_thresh_max;
3209         int ret = 1;
3210
3211         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3212         chunk_used = btrfs_block_group_used(&cache->item);
3213
3214         if (bargs->usage_min == 0)
3215                 user_thresh_min = 0;
3216         else
3217                 user_thresh_min = div_factor_fine(cache->key.offset,
3218                                         bargs->usage_min);
3219
3220         if (bargs->usage_max == 0)
3221                 user_thresh_max = 1;
3222         else if (bargs->usage_max > 100)
3223                 user_thresh_max = cache->key.offset;
3224         else
3225                 user_thresh_max = div_factor_fine(cache->key.offset,
3226                                         bargs->usage_max);
3227
3228         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3229                 ret = 0;
3230
3231         btrfs_put_block_group(cache);
3232         return ret;
3233 }
3234
3235 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3236                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3237 {
3238         struct btrfs_block_group_cache *cache;
3239         u64 chunk_used, user_thresh;
3240         int ret = 1;
3241
3242         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3243         chunk_used = btrfs_block_group_used(&cache->item);
3244
3245         if (bargs->usage_min == 0)
3246                 user_thresh = 1;
3247         else if (bargs->usage > 100)
3248                 user_thresh = cache->key.offset;
3249         else
3250                 user_thresh = div_factor_fine(cache->key.offset,
3251                                               bargs->usage);
3252
3253         if (chunk_used < user_thresh)
3254                 ret = 0;
3255
3256         btrfs_put_block_group(cache);
3257         return ret;
3258 }
3259
3260 static int chunk_devid_filter(struct extent_buffer *leaf,
3261                               struct btrfs_chunk *chunk,
3262                               struct btrfs_balance_args *bargs)
3263 {
3264         struct btrfs_stripe *stripe;
3265         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3266         int i;
3267
3268         for (i = 0; i < num_stripes; i++) {
3269                 stripe = btrfs_stripe_nr(chunk, i);
3270                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3271                         return 0;
3272         }
3273
3274         return 1;
3275 }
3276
3277 /* [pstart, pend) */
3278 static int chunk_drange_filter(struct extent_buffer *leaf,
3279                                struct btrfs_chunk *chunk,
3280                                struct btrfs_balance_args *bargs)
3281 {
3282         struct btrfs_stripe *stripe;
3283         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3284         u64 stripe_offset;
3285         u64 stripe_length;
3286         int factor;
3287         int i;
3288
3289         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3290                 return 0;
3291
3292         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3293              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3294                 factor = num_stripes / 2;
3295         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3296                 factor = num_stripes - 1;
3297         } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3298                 factor = num_stripes - 2;
3299         } else {
3300                 factor = num_stripes;
3301         }
3302
3303         for (i = 0; i < num_stripes; i++) {
3304                 stripe = btrfs_stripe_nr(chunk, i);
3305                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3306                         continue;
3307
3308                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3309                 stripe_length = btrfs_chunk_length(leaf, chunk);
3310                 stripe_length = div_u64(stripe_length, factor);
3311
3312                 if (stripe_offset < bargs->pend &&
3313                     stripe_offset + stripe_length > bargs->pstart)
3314                         return 0;
3315         }
3316
3317         return 1;
3318 }
3319
3320 /* [vstart, vend) */
3321 static int chunk_vrange_filter(struct extent_buffer *leaf,
3322                                struct btrfs_chunk *chunk,
3323                                u64 chunk_offset,
3324                                struct btrfs_balance_args *bargs)
3325 {
3326         if (chunk_offset < bargs->vend &&
3327             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3328                 /* at least part of the chunk is inside this vrange */
3329                 return 0;
3330
3331         return 1;
3332 }
3333
3334 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3335                                struct btrfs_chunk *chunk,
3336                                struct btrfs_balance_args *bargs)
3337 {
3338         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3339
3340         if (bargs->stripes_min <= num_stripes
3341                         && num_stripes <= bargs->stripes_max)
3342                 return 0;
3343
3344         return 1;
3345 }
3346
3347 static int chunk_soft_convert_filter(u64 chunk_type,
3348                                      struct btrfs_balance_args *bargs)
3349 {
3350         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3351                 return 0;
3352
3353         chunk_type = chunk_to_extended(chunk_type) &
3354                                 BTRFS_EXTENDED_PROFILE_MASK;
3355
3356         if (bargs->target == chunk_type)
3357                 return 1;
3358
3359         return 0;
3360 }
3361
3362 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3363                                 struct extent_buffer *leaf,
3364                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3365 {
3366         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3367         struct btrfs_balance_args *bargs = NULL;
3368         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3369
3370         /* type filter */
3371         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3372               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3373                 return 0;
3374         }
3375
3376         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3377                 bargs = &bctl->data;
3378         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3379                 bargs = &bctl->sys;
3380         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3381                 bargs = &bctl->meta;
3382
3383         /* profiles filter */
3384         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3385             chunk_profiles_filter(chunk_type, bargs)) {
3386                 return 0;
3387         }
3388
3389         /* usage filter */
3390         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3391             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3392                 return 0;
3393         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3394             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3395                 return 0;
3396         }
3397
3398         /* devid filter */
3399         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3400             chunk_devid_filter(leaf, chunk, bargs)) {
3401                 return 0;
3402         }
3403
3404         /* drange filter, makes sense only with devid filter */
3405         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3406             chunk_drange_filter(leaf, chunk, bargs)) {
3407                 return 0;
3408         }
3409
3410         /* vrange filter */
3411         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3412             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3413                 return 0;
3414         }
3415
3416         /* stripes filter */
3417         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3418             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3419                 return 0;
3420         }
3421
3422         /* soft profile changing mode */
3423         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3424             chunk_soft_convert_filter(chunk_type, bargs)) {
3425                 return 0;
3426         }
3427
3428         /*
3429          * limited by count, must be the last filter
3430          */
3431         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3432                 if (bargs->limit == 0)
3433                         return 0;
3434                 else
3435                         bargs->limit--;
3436         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3437                 /*
3438                  * Same logic as the 'limit' filter; the minimum cannot be
3439                  * determined here because we do not have the global information
3440                  * about the count of all chunks that satisfy the filters.
3441                  */
3442                 if (bargs->limit_max == 0)
3443                         return 0;
3444                 else
3445                         bargs->limit_max--;
3446         }
3447
3448         return 1;
3449 }
3450
3451 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3452 {
3453         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3454         struct btrfs_root *chunk_root = fs_info->chunk_root;
3455         struct btrfs_root *dev_root = fs_info->dev_root;
3456         struct list_head *devices;
3457         struct btrfs_device *device;
3458         u64 old_size;
3459         u64 size_to_free;
3460         u64 chunk_type;
3461         struct btrfs_chunk *chunk;
3462         struct btrfs_path *path = NULL;
3463         struct btrfs_key key;
3464         struct btrfs_key found_key;
3465         struct btrfs_trans_handle *trans;
3466         struct extent_buffer *leaf;
3467         int slot;
3468         int ret;
3469         int enospc_errors = 0;
3470         bool counting = true;
3471         /* The single value limit and min/max limits use the same bytes in the */
3472         u64 limit_data = bctl->data.limit;
3473         u64 limit_meta = bctl->meta.limit;
3474         u64 limit_sys = bctl->sys.limit;
3475         u32 count_data = 0;
3476         u32 count_meta = 0;
3477         u32 count_sys = 0;
3478         int chunk_reserved = 0;
3479
3480         /* step one make some room on all the devices */
3481         devices = &fs_info->fs_devices->devices;
3482         list_for_each_entry(device, devices, dev_list) {
3483                 old_size = btrfs_device_get_total_bytes(device);
3484                 size_to_free = div_factor(old_size, 1);
3485                 size_to_free = min_t(u64, size_to_free, SZ_1M);
3486                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
3487                     btrfs_device_get_total_bytes(device) -
3488                     btrfs_device_get_bytes_used(device) > size_to_free ||
3489                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
3490                         continue;
3491
3492                 ret = btrfs_shrink_device(device, old_size - size_to_free);
3493                 if (ret == -ENOSPC)
3494                         break;
3495                 if (ret) {
3496                         /* btrfs_shrink_device never returns ret > 0 */
3497                         WARN_ON(ret > 0);
3498                         goto error;
3499                 }
3500
3501                 trans = btrfs_start_transaction(dev_root, 0);
3502                 if (IS_ERR(trans)) {
3503                         ret = PTR_ERR(trans);
3504                         btrfs_info_in_rcu(fs_info,
3505                  "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3506                                           rcu_str_deref(device->name), ret,
3507                                           old_size, old_size - size_to_free);
3508                         goto error;
3509                 }
3510
3511                 ret = btrfs_grow_device(trans, device, old_size);
3512                 if (ret) {
3513                         btrfs_end_transaction(trans);
3514                         /* btrfs_grow_device never returns ret > 0 */
3515                         WARN_ON(ret > 0);
3516                         btrfs_info_in_rcu(fs_info,
3517                  "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3518                                           rcu_str_deref(device->name), ret,
3519                                           old_size, old_size - size_to_free);
3520                         goto error;
3521                 }
3522
3523                 btrfs_end_transaction(trans);
3524         }
3525
3526         /* step two, relocate all the chunks */
3527         path = btrfs_alloc_path();
3528         if (!path) {
3529                 ret = -ENOMEM;
3530                 goto error;
3531         }
3532
3533         /* zero out stat counters */
3534         spin_lock(&fs_info->balance_lock);
3535         memset(&bctl->stat, 0, sizeof(bctl->stat));
3536         spin_unlock(&fs_info->balance_lock);
3537 again:
3538         if (!counting) {
3539                 /*
3540                  * The single value limit and min/max limits use the same bytes
3541                  * in the
3542                  */
3543                 bctl->data.limit = limit_data;
3544                 bctl->meta.limit = limit_meta;
3545                 bctl->sys.limit = limit_sys;
3546         }
3547         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3548         key.offset = (u64)-1;
3549         key.type = BTRFS_CHUNK_ITEM_KEY;
3550
3551         while (1) {
3552                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3553                     atomic_read(&fs_info->balance_cancel_req)) {
3554                         ret = -ECANCELED;
3555                         goto error;
3556                 }
3557
3558                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3559                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3560                 if (ret < 0) {
3561                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3562                         goto error;
3563                 }
3564
3565                 /*
3566                  * this shouldn't happen, it means the last relocate
3567                  * failed
3568                  */
3569                 if (ret == 0)
3570                         BUG(); /* FIXME break ? */
3571
3572                 ret = btrfs_previous_item(chunk_root, path, 0,
3573                                           BTRFS_CHUNK_ITEM_KEY);
3574                 if (ret) {
3575                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3576                         ret = 0;
3577                         break;
3578                 }
3579
3580                 leaf = path->nodes[0];
3581                 slot = path->slots[0];
3582                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3583
3584                 if (found_key.objectid != key.objectid) {
3585                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3586                         break;
3587                 }
3588
3589                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3590                 chunk_type = btrfs_chunk_type(leaf, chunk);
3591
3592                 if (!counting) {
3593                         spin_lock(&fs_info->balance_lock);
3594                         bctl->stat.considered++;
3595                         spin_unlock(&fs_info->balance_lock);
3596                 }
3597
3598                 ret = should_balance_chunk(fs_info, leaf, chunk,
3599                                            found_key.offset);
3600
3601                 btrfs_release_path(path);
3602                 if (!ret) {
3603                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3604                         goto loop;
3605                 }
3606
3607                 if (counting) {
3608                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3609                         spin_lock(&fs_info->balance_lock);
3610                         bctl->stat.expected++;
3611                         spin_unlock(&fs_info->balance_lock);
3612
3613                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3614                                 count_data++;
3615                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3616                                 count_sys++;
3617                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3618                                 count_meta++;
3619
3620                         goto loop;
3621                 }
3622
3623                 /*
3624                  * Apply limit_min filter, no need to check if the LIMITS
3625                  * filter is used, limit_min is 0 by default
3626                  */
3627                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3628                                         count_data < bctl->data.limit_min)
3629                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3630                                         count_meta < bctl->meta.limit_min)
3631                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3632                                         count_sys < bctl->sys.limit_min)) {
3633                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3634                         goto loop;
3635                 }
3636
3637                 if (!chunk_reserved) {
3638                         /*
3639                          * We may be relocating the only data chunk we have,
3640                          * which could potentially end up with losing data's
3641                          * raid profile, so lets allocate an empty one in
3642                          * advance.
3643                          */
3644                         ret = btrfs_may_alloc_data_chunk(fs_info,
3645                                                          found_key.offset);
3646                         if (ret < 0) {
3647                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3648                                 goto error;
3649                         } else if (ret == 1) {
3650                                 chunk_reserved = 1;
3651                         }
3652                 }
3653
3654                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3655                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3656                 if (ret == -ENOSPC) {
3657                         enospc_errors++;
3658                 } else if (ret == -ETXTBSY) {
3659                         btrfs_info(fs_info,
3660            "skipping relocation of block group %llu due to active swapfile",
3661                                    found_key.offset);
3662                         ret = 0;
3663                 } else if (ret) {
3664                         goto error;
3665                 } else {
3666                         spin_lock(&fs_info->balance_lock);
3667                         bctl->stat.completed++;
3668                         spin_unlock(&fs_info->balance_lock);
3669                 }
3670 loop:
3671                 if (found_key.offset == 0)
3672                         break;
3673                 key.offset = found_key.offset - 1;
3674         }
3675
3676         if (counting) {
3677                 btrfs_release_path(path);
3678                 counting = false;
3679                 goto again;
3680         }
3681 error:
3682         btrfs_free_path(path);
3683         if (enospc_errors) {
3684                 btrfs_info(fs_info, "%d enospc errors during balance",
3685                            enospc_errors);
3686                 if (!ret)
3687                         ret = -ENOSPC;
3688         }
3689
3690         return ret;
3691 }
3692
3693 /**
3694  * alloc_profile_is_valid - see if a given profile is valid and reduced
3695  * @flags: profile to validate
3696  * @extended: if true @flags is treated as an extended profile
3697  */
3698 static int alloc_profile_is_valid(u64 flags, int extended)
3699 {
3700         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3701                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3702
3703         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3704
3705         /* 1) check that all other bits are zeroed */
3706         if (flags & ~mask)
3707                 return 0;
3708
3709         /* 2) see if profile is reduced */
3710         if (flags == 0)
3711                 return !extended; /* "0" is valid for usual profiles */
3712
3713         /* true if exactly one bit set */
3714         return is_power_of_2(flags);
3715 }
3716
3717 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3718 {
3719         /* cancel requested || normal exit path */
3720         return atomic_read(&fs_info->balance_cancel_req) ||
3721                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3722                  atomic_read(&fs_info->balance_cancel_req) == 0);
3723 }
3724
3725 /* Non-zero return value signifies invalidity */
3726 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3727                 u64 allowed)
3728 {
3729         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3730                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3731                  (bctl_arg->target & ~allowed)));
3732 }
3733
3734 /*
3735  * Should be called with balance mutexe held
3736  */
3737 int btrfs_balance(struct btrfs_fs_info *fs_info,
3738                   struct btrfs_balance_control *bctl,
3739                   struct btrfs_ioctl_balance_args *bargs)
3740 {
3741         u64 meta_target, data_target;
3742         u64 allowed;
3743         int mixed = 0;
3744         int ret;
3745         u64 num_devices;
3746         unsigned seq;
3747
3748         if (btrfs_fs_closing(fs_info) ||
3749             atomic_read(&fs_info->balance_pause_req) ||
3750             atomic_read(&fs_info->balance_cancel_req)) {
3751                 ret = -EINVAL;
3752                 goto out;
3753         }
3754
3755         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3756         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3757                 mixed = 1;
3758
3759         /*
3760          * In case of mixed groups both data and meta should be picked,
3761          * and identical options should be given for both of them.
3762          */
3763         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3764         if (mixed && (bctl->flags & allowed)) {
3765                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3766                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3767                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3768                         btrfs_err(fs_info,
3769           "balance: mixed groups data and metadata options must be the same");
3770                         ret = -EINVAL;
3771                         goto out;
3772                 }
3773         }
3774
3775         num_devices = btrfs_num_devices(fs_info);
3776
3777         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3778         if (num_devices > 1)
3779                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3780         if (num_devices > 2)
3781                 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3782         if (num_devices > 3)
3783                 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3784                             BTRFS_BLOCK_GROUP_RAID6);
3785         if (validate_convert_profile(&bctl->data, allowed)) {
3786                 int index = btrfs_bg_flags_to_raid_index(bctl->data.target);
3787
3788                 btrfs_err(fs_info,
3789                           "balance: invalid convert data profile %s",
3790                           get_raid_name(index));
3791                 ret = -EINVAL;
3792                 goto out;
3793         }
3794         if (validate_convert_profile(&bctl->meta, allowed)) {
3795                 int index = btrfs_bg_flags_to_raid_index(bctl->meta.target);
3796
3797                 btrfs_err(fs_info,
3798                           "balance: invalid convert metadata profile %s",
3799                           get_raid_name(index));
3800                 ret = -EINVAL;
3801                 goto out;
3802         }
3803         if (validate_convert_profile(&bctl->sys, allowed)) {
3804                 int index = btrfs_bg_flags_to_raid_index(bctl->sys.target);
3805
3806                 btrfs_err(fs_info,
3807                           "balance: invalid convert system profile %s",
3808                           get_raid_name(index));
3809                 ret = -EINVAL;
3810                 goto out;
3811         }
3812
3813         /* allow to reduce meta or sys integrity only if force set */
3814         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3815                         BTRFS_BLOCK_GROUP_RAID10 |
3816                         BTRFS_BLOCK_GROUP_RAID5 |
3817                         BTRFS_BLOCK_GROUP_RAID6;
3818         do {
3819                 seq = read_seqbegin(&fs_info->profiles_lock);
3820
3821                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3822                      (fs_info->avail_system_alloc_bits & allowed) &&
3823                      !(bctl->sys.target & allowed)) ||
3824                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3825                      (fs_info->avail_metadata_alloc_bits & allowed) &&
3826                      !(bctl->meta.target & allowed))) {
3827                         if (bctl->flags & BTRFS_BALANCE_FORCE) {
3828                                 btrfs_info(fs_info,
3829                                 "balance: force reducing metadata integrity");
3830                         } else {
3831                                 btrfs_err(fs_info,
3832         "balance: reduces metadata integrity, use --force if you want this");
3833                                 ret = -EINVAL;
3834                                 goto out;
3835                         }
3836                 }
3837         } while (read_seqretry(&fs_info->profiles_lock, seq));
3838
3839         /* if we're not converting, the target field is uninitialized */
3840         meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3841                 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3842         data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3843                 bctl->data.target : fs_info->avail_data_alloc_bits;
3844         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3845                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3846                 int meta_index = btrfs_bg_flags_to_raid_index(meta_target);
3847                 int data_index = btrfs_bg_flags_to_raid_index(data_target);
3848
3849                 btrfs_warn(fs_info,
3850         "balance: metadata profile %s has lower redundancy than data profile %s",
3851                            get_raid_name(meta_index), get_raid_name(data_index));
3852         }
3853
3854         ret = insert_balance_item(fs_info, bctl);
3855         if (ret && ret != -EEXIST)
3856                 goto out;
3857
3858         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3859                 BUG_ON(ret == -EEXIST);
3860                 BUG_ON(fs_info->balance_ctl);
3861                 spin_lock(&fs_info->balance_lock);
3862                 fs_info->balance_ctl = bctl;
3863                 spin_unlock(&fs_info->balance_lock);
3864         } else {
3865                 BUG_ON(ret != -EEXIST);
3866                 spin_lock(&fs_info->balance_lock);
3867                 update_balance_args(bctl);
3868                 spin_unlock(&fs_info->balance_lock);
3869         }
3870
3871         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
3872         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3873         mutex_unlock(&fs_info->balance_mutex);
3874
3875         ret = __btrfs_balance(fs_info);
3876
3877         mutex_lock(&fs_info->balance_mutex);
3878         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3879
3880         if (bargs) {
3881                 memset(bargs, 0, sizeof(*bargs));
3882                 btrfs_update_ioctl_balance_args(fs_info, bargs);
3883         }
3884
3885         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3886             balance_need_close(fs_info)) {
3887                 reset_balance_state(fs_info);
3888                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3889         }
3890
3891         wake_up(&fs_info->balance_wait_q);
3892
3893         return ret;
3894 out:
3895         if (bctl->flags & BTRFS_BALANCE_RESUME)
3896                 reset_balance_state(fs_info);
3897         else
3898                 kfree(bctl);
3899         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3900
3901         return ret;
3902 }
3903
3904 static int balance_kthread(void *data)
3905 {
3906         struct btrfs_fs_info *fs_info = data;
3907         int ret = 0;
3908
3909         mutex_lock(&fs_info->balance_mutex);
3910         if (fs_info->balance_ctl) {
3911                 btrfs_info(fs_info, "balance: resuming");
3912                 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
3913         }
3914         mutex_unlock(&fs_info->balance_mutex);
3915
3916         return ret;
3917 }
3918
3919 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3920 {
3921         struct task_struct *tsk;
3922
3923         mutex_lock(&fs_info->balance_mutex);
3924         if (!fs_info->balance_ctl) {
3925                 mutex_unlock(&fs_info->balance_mutex);
3926                 return 0;
3927         }
3928         mutex_unlock(&fs_info->balance_mutex);
3929
3930         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3931                 btrfs_info(fs_info, "balance: resume skipped");
3932                 return 0;
3933         }
3934
3935         /*
3936          * A ro->rw remount sequence should continue with the paused balance
3937          * regardless of who pauses it, system or the user as of now, so set
3938          * the resume flag.
3939          */
3940         spin_lock(&fs_info->balance_lock);
3941         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
3942         spin_unlock(&fs_info->balance_lock);
3943
3944         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3945         return PTR_ERR_OR_ZERO(tsk);
3946 }
3947
3948 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3949 {
3950         struct btrfs_balance_control *bctl;
3951         struct btrfs_balance_item *item;
3952         struct btrfs_disk_balance_args disk_bargs;
3953         struct btrfs_path *path;
3954         struct extent_buffer *leaf;
3955         struct btrfs_key key;
3956         int ret;
3957
3958         path = btrfs_alloc_path();
3959         if (!path)
3960                 return -ENOMEM;
3961
3962         key.objectid = BTRFS_BALANCE_OBJECTID;
3963         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3964         key.offset = 0;
3965
3966         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3967         if (ret < 0)
3968                 goto out;
3969         if (ret > 0) { /* ret = -ENOENT; */
3970                 ret = 0;
3971                 goto out;
3972         }
3973
3974         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3975         if (!bctl) {
3976                 ret = -ENOMEM;
3977                 goto out;
3978         }
3979
3980         leaf = path->nodes[0];
3981         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3982
3983         bctl->flags = btrfs_balance_flags(leaf, item);
3984         bctl->flags |= BTRFS_BALANCE_RESUME;
3985
3986         btrfs_balance_data(leaf, item, &disk_bargs);
3987         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3988         btrfs_balance_meta(leaf, item, &disk_bargs);
3989         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3990         btrfs_balance_sys(leaf, item, &disk_bargs);
3991         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3992
3993         /*
3994          * This should never happen, as the paused balance state is recovered
3995          * during mount without any chance of other exclusive ops to collide.
3996          *
3997          * This gives the exclusive op status to balance and keeps in paused
3998          * state until user intervention (cancel or umount). If the ownership
3999          * cannot be assigned, show a message but do not fail. The balance
4000          * is in a paused state and must have fs_info::balance_ctl properly
4001          * set up.
4002          */
4003         if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4004                 btrfs_warn(fs_info,
4005         "balance: cannot set exclusive op status, resume manually");
4006
4007         mutex_lock(&fs_info->balance_mutex);
4008         BUG_ON(fs_info->balance_ctl);
4009         spin_lock(&fs_info->balance_lock);
4010         fs_info->balance_ctl = bctl;
4011         spin_unlock(&fs_info->balance_lock);
4012         mutex_unlock(&fs_info->balance_mutex);
4013 out:
4014         btrfs_free_path(path);
4015         return ret;
4016 }
4017
4018 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4019 {
4020         int ret = 0;
4021
4022         mutex_lock(&fs_info->balance_mutex);
4023         if (!fs_info->balance_ctl) {
4024                 mutex_unlock(&fs_info->balance_mutex);
4025                 return -ENOTCONN;
4026         }
4027
4028         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4029                 atomic_inc(&fs_info->balance_pause_req);
4030                 mutex_unlock(&fs_info->balance_mutex);
4031
4032                 wait_event(fs_info->balance_wait_q,
4033                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4034
4035                 mutex_lock(&fs_info->balance_mutex);
4036                 /* we are good with balance_ctl ripped off from under us */
4037                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4038                 atomic_dec(&fs_info->balance_pause_req);
4039         } else {
4040                 ret = -ENOTCONN;
4041         }
4042
4043         mutex_unlock(&fs_info->balance_mutex);
4044         return ret;
4045 }
4046
4047 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4048 {
4049         mutex_lock(&fs_info->balance_mutex);
4050         if (!fs_info->balance_ctl) {
4051                 mutex_unlock(&fs_info->balance_mutex);
4052                 return -ENOTCONN;
4053         }
4054
4055         /*
4056          * A paused balance with the item stored on disk can be resumed at
4057          * mount time if the mount is read-write. Otherwise it's still paused
4058          * and we must not allow cancelling as it deletes the item.
4059          */
4060         if (sb_rdonly(fs_info->sb)) {
4061                 mutex_unlock(&fs_info->balance_mutex);
4062                 return -EROFS;
4063         }
4064
4065         atomic_inc(&fs_info->balance_cancel_req);
4066         /*
4067          * if we are running just wait and return, balance item is
4068          * deleted in btrfs_balance in this case
4069          */
4070         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4071                 mutex_unlock(&fs_info->balance_mutex);
4072                 wait_event(fs_info->balance_wait_q,
4073                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4074                 mutex_lock(&fs_info->balance_mutex);
4075         } else {
4076                 mutex_unlock(&fs_info->balance_mutex);
4077                 /*
4078                  * Lock released to allow other waiters to continue, we'll
4079                  * reexamine the status again.
4080                  */
4081                 mutex_lock(&fs_info->balance_mutex);
4082
4083                 if (fs_info->balance_ctl) {
4084                         reset_balance_state(fs_info);
4085                         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4086                         btrfs_info(fs_info, "balance: canceled");
4087                 }
4088         }
4089
4090         BUG_ON(fs_info->balance_ctl ||
4091                 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4092         atomic_dec(&fs_info->balance_cancel_req);
4093         mutex_unlock(&fs_info->balance_mutex);
4094         return 0;
4095 }
4096
4097 static int btrfs_uuid_scan_kthread(void *data)
4098 {
4099         struct btrfs_fs_info *fs_info = data;
4100         struct btrfs_root *root = fs_info->tree_root;
4101         struct btrfs_key key;
4102         struct btrfs_path *path = NULL;
4103         int ret = 0;
4104         struct extent_buffer *eb;
4105         int slot;
4106         struct btrfs_root_item root_item;
4107         u32 item_size;
4108         struct btrfs_trans_handle *trans = NULL;
4109
4110         path = btrfs_alloc_path();
4111         if (!path) {
4112                 ret = -ENOMEM;
4113                 goto out;
4114         }
4115
4116         key.objectid = 0;
4117         key.type = BTRFS_ROOT_ITEM_KEY;
4118         key.offset = 0;
4119
4120         while (1) {
4121                 ret = btrfs_search_forward(root, &key, path,
4122                                 BTRFS_OLDEST_GENERATION);
4123                 if (ret) {
4124                         if (ret > 0)
4125                                 ret = 0;
4126                         break;
4127                 }
4128
4129                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4130                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4131                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4132                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4133                         goto skip;
4134
4135                 eb = path->nodes[0];
4136                 slot = path->slots[0];
4137                 item_size = btrfs_item_size_nr(eb, slot);
4138                 if (item_size < sizeof(root_item))
4139                         goto skip;
4140
4141                 read_extent_buffer(eb, &root_item,
4142                                    btrfs_item_ptr_offset(eb, slot),
4143                                    (int)sizeof(root_item));
4144                 if (btrfs_root_refs(&root_item) == 0)
4145                         goto skip;
4146
4147                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4148                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4149                         if (trans)
4150                                 goto update_tree;
4151
4152                         btrfs_release_path(path);
4153                         /*
4154                          * 1 - subvol uuid item
4155                          * 1 - received_subvol uuid item
4156                          */
4157                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4158                         if (IS_ERR(trans)) {
4159                                 ret = PTR_ERR(trans);
4160                                 break;
4161                         }
4162                         continue;
4163                 } else {
4164                         goto skip;
4165                 }
4166 update_tree:
4167                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4168                         ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4169                                                   BTRFS_UUID_KEY_SUBVOL,
4170                                                   key.objectid);
4171                         if (ret < 0) {
4172                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4173                                         ret);
4174                                 break;
4175                         }
4176                 }
4177
4178                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4179                         ret = btrfs_uuid_tree_add(trans,
4180                                                   root_item.received_uuid,
4181                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4182                                                   key.objectid);
4183                         if (ret < 0) {
4184                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4185                                         ret);
4186                                 break;
4187                         }
4188                 }
4189
4190 skip:
4191                 if (trans) {
4192                         ret = btrfs_end_transaction(trans);
4193                         trans = NULL;
4194                         if (ret)
4195                                 break;
4196                 }
4197
4198                 btrfs_release_path(path);
4199                 if (key.offset < (u64)-1) {
4200                         key.offset++;
4201                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4202                         key.offset = 0;
4203                         key.type = BTRFS_ROOT_ITEM_KEY;
4204                 } else if (key.objectid < (u64)-1) {
4205                         key.offset = 0;
4206                         key.type = BTRFS_ROOT_ITEM_KEY;
4207                         key.objectid++;
4208                 } else {
4209                         break;
4210                 }
4211                 cond_resched();
4212         }
4213
4214 out:
4215         btrfs_free_path(path);
4216         if (trans && !IS_ERR(trans))
4217                 btrfs_end_transaction(trans);
4218         if (ret)
4219                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4220         else
4221                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4222         up(&fs_info->uuid_tree_rescan_sem);
4223         return 0;
4224 }
4225
4226 /*
4227  * Callback for btrfs_uuid_tree_iterate().
4228  * returns:
4229  * 0    check succeeded, the entry is not outdated.
4230  * < 0  if an error occurred.
4231  * > 0  if the check failed, which means the caller shall remove the entry.
4232  */
4233 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4234                                        u8 *uuid, u8 type, u64 subid)
4235 {
4236         struct btrfs_key key;
4237         int ret = 0;
4238         struct btrfs_root *subvol_root;
4239
4240         if (type != BTRFS_UUID_KEY_SUBVOL &&
4241             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4242                 goto out;
4243
4244         key.objectid = subid;
4245         key.type = BTRFS_ROOT_ITEM_KEY;
4246         key.offset = (u64)-1;
4247         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4248         if (IS_ERR(subvol_root)) {
4249                 ret = PTR_ERR(subvol_root);
4250                 if (ret == -ENOENT)
4251                         ret = 1;
4252                 goto out;
4253         }
4254
4255         switch (type) {
4256         case BTRFS_UUID_KEY_SUBVOL:
4257                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4258                         ret = 1;
4259                 break;
4260         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4261                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4262                            BTRFS_UUID_SIZE))
4263                         ret = 1;
4264                 break;
4265         }
4266
4267 out:
4268         return ret;
4269 }
4270
4271 static int btrfs_uuid_rescan_kthread(void *data)
4272 {
4273         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4274         int ret;
4275
4276         /*
4277          * 1st step is to iterate through the existing UUID tree and
4278          * to delete all entries that contain outdated data.
4279          * 2nd step is to add all missing entries to the UUID tree.
4280          */
4281         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4282         if (ret < 0) {
4283                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4284                 up(&fs_info->uuid_tree_rescan_sem);
4285                 return ret;
4286         }
4287         return btrfs_uuid_scan_kthread(data);
4288 }
4289
4290 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4291 {
4292         struct btrfs_trans_handle *trans;
4293         struct btrfs_root *tree_root = fs_info->tree_root;
4294         struct btrfs_root *uuid_root;
4295         struct task_struct *task;
4296         int ret;
4297
4298         /*
4299          * 1 - root node
4300          * 1 - root item
4301          */
4302         trans = btrfs_start_transaction(tree_root, 2);
4303         if (IS_ERR(trans))
4304                 return PTR_ERR(trans);
4305
4306         uuid_root = btrfs_create_tree(trans, fs_info,
4307                                       BTRFS_UUID_TREE_OBJECTID);
4308         if (IS_ERR(uuid_root)) {
4309                 ret = PTR_ERR(uuid_root);
4310                 btrfs_abort_transaction(trans, ret);
4311                 btrfs_end_transaction(trans);
4312                 return ret;
4313         }
4314
4315         fs_info->uuid_root = uuid_root;
4316
4317         ret = btrfs_commit_transaction(trans);
4318         if (ret)
4319                 return ret;
4320
4321         down(&fs_info->uuid_tree_rescan_sem);
4322         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4323         if (IS_ERR(task)) {
4324                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4325                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4326                 up(&fs_info->uuid_tree_rescan_sem);
4327                 return PTR_ERR(task);
4328         }
4329
4330         return 0;
4331 }
4332
4333 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4334 {
4335         struct task_struct *task;
4336
4337         down(&fs_info->uuid_tree_rescan_sem);
4338         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4339         if (IS_ERR(task)) {
4340                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4341                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4342                 up(&fs_info->uuid_tree_rescan_sem);
4343                 return PTR_ERR(task);
4344         }
4345
4346         return 0;
4347 }
4348
4349 /*
4350  * shrinking a device means finding all of the device extents past
4351  * the new size, and then following the back refs to the chunks.
4352  * The chunk relocation code actually frees the device extent
4353  */
4354 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4355 {
4356         struct btrfs_fs_info *fs_info = device->fs_info;
4357         struct btrfs_root *root = fs_info->dev_root;
4358         struct btrfs_trans_handle *trans;
4359         struct btrfs_dev_extent *dev_extent = NULL;
4360         struct btrfs_path *path;
4361         u64 length;
4362         u64 chunk_offset;
4363         int ret;
4364         int slot;
4365         int failed = 0;
4366         bool retried = false;
4367         bool checked_pending_chunks = false;
4368         struct extent_buffer *l;
4369         struct btrfs_key key;
4370         struct btrfs_super_block *super_copy = fs_info->super_copy;
4371         u64 old_total = btrfs_super_total_bytes(super_copy);
4372         u64 old_size = btrfs_device_get_total_bytes(device);
4373         u64 diff;
4374
4375         new_size = round_down(new_size, fs_info->sectorsize);
4376         diff = round_down(old_size - new_size, fs_info->sectorsize);
4377
4378         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4379                 return -EINVAL;
4380
4381         path = btrfs_alloc_path();
4382         if (!path)
4383                 return -ENOMEM;
4384
4385         path->reada = READA_BACK;
4386
4387         mutex_lock(&fs_info->chunk_mutex);
4388
4389         btrfs_device_set_total_bytes(device, new_size);
4390         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4391                 device->fs_devices->total_rw_bytes -= diff;
4392                 atomic64_sub(diff, &fs_info->free_chunk_space);
4393         }
4394         mutex_unlock(&fs_info->chunk_mutex);
4395
4396 again:
4397         key.objectid = device->devid;
4398         key.offset = (u64)-1;
4399         key.type = BTRFS_DEV_EXTENT_KEY;
4400
4401         do {
4402                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4403                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4404                 if (ret < 0) {
4405                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4406                         goto done;
4407                 }
4408
4409                 ret = btrfs_previous_item(root, path, 0, key.type);
4410                 if (ret)
4411                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4412                 if (ret < 0)
4413                         goto done;
4414                 if (ret) {
4415                         ret = 0;
4416                         btrfs_release_path(path);
4417                         break;
4418                 }
4419
4420                 l = path->nodes[0];
4421                 slot = path->slots[0];
4422                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4423
4424                 if (key.objectid != device->devid) {
4425                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4426                         btrfs_release_path(path);
4427                         break;
4428                 }
4429
4430                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4431                 length = btrfs_dev_extent_length(l, dev_extent);
4432
4433                 if (key.offset + length <= new_size) {
4434                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4435                         btrfs_release_path(path);
4436                         break;
4437                 }
4438
4439                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4440                 btrfs_release_path(path);
4441
4442                 /*
4443                  * We may be relocating the only data chunk we have,
4444                  * which could potentially end up with losing data's
4445                  * raid profile, so lets allocate an empty one in
4446                  * advance.
4447                  */
4448                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4449                 if (ret < 0) {
4450                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4451                         goto done;
4452                 }
4453
4454                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4455                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4456                 if (ret == -ENOSPC) {
4457                         failed++;
4458                 } else if (ret) {
4459                         if (ret == -ETXTBSY) {
4460                                 btrfs_warn(fs_info,
4461                    "could not shrink block group %llu due to active swapfile",
4462                                            chunk_offset);
4463                         }
4464                         goto done;
4465                 }
4466         } while (key.offset-- > 0);
4467
4468         if (failed && !retried) {
4469                 failed = 0;
4470                 retried = true;
4471                 goto again;
4472         } else if (failed && retried) {
4473                 ret = -ENOSPC;
4474                 goto done;
4475         }
4476
4477         /* Shrinking succeeded, else we would be at "done". */
4478         trans = btrfs_start_transaction(root, 0);
4479         if (IS_ERR(trans)) {
4480                 ret = PTR_ERR(trans);
4481                 goto done;
4482         }
4483
4484         mutex_lock(&fs_info->chunk_mutex);
4485
4486         /*
4487          * We checked in the above loop all device extents that were already in
4488          * the device tree. However before we have updated the device's
4489          * total_bytes to the new size, we might have had chunk allocations that
4490          * have not complete yet (new block groups attached to transaction
4491          * handles), and therefore their device extents were not yet in the
4492          * device tree and we missed them in the loop above. So if we have any
4493          * pending chunk using a device extent that overlaps the device range
4494          * that we can not use anymore, commit the current transaction and
4495          * repeat the search on the device tree - this way we guarantee we will
4496          * not have chunks using device extents that end beyond 'new_size'.
4497          */
4498         if (!checked_pending_chunks) {
4499                 u64 start = new_size;
4500                 u64 len = old_size - new_size;
4501
4502                 if (contains_pending_extent(trans->transaction, device,
4503                                             &start, len)) {
4504                         mutex_unlock(&fs_info->chunk_mutex);
4505                         checked_pending_chunks = true;
4506                         failed = 0;
4507                         retried = false;
4508                         ret = btrfs_commit_transaction(trans);
4509                         if (ret)
4510                                 goto done;
4511                         goto again;
4512                 }
4513         }
4514
4515         btrfs_device_set_disk_total_bytes(device, new_size);
4516         if (list_empty(&device->resized_list))
4517                 list_add_tail(&device->resized_list,
4518                               &fs_info->fs_devices->resized_devices);
4519
4520         WARN_ON(diff > old_total);
4521         btrfs_set_super_total_bytes(super_copy,
4522                         round_down(old_total - diff, fs_info->sectorsize));
4523         mutex_unlock(&fs_info->chunk_mutex);
4524
4525         /* Now btrfs_update_device() will change the on-disk size. */
4526         ret = btrfs_update_device(trans, device);
4527         if (ret < 0) {
4528                 btrfs_abort_transaction(trans, ret);
4529                 btrfs_end_transaction(trans);
4530         } else {
4531                 ret = btrfs_commit_transaction(trans);
4532         }
4533 done:
4534         btrfs_free_path(path);
4535         if (ret) {
4536                 mutex_lock(&fs_info->chunk_mutex);
4537                 btrfs_device_set_total_bytes(device, old_size);
4538                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4539                         device->fs_devices->total_rw_bytes += diff;
4540                 atomic64_add(diff, &fs_info->free_chunk_space);
4541                 mutex_unlock(&fs_info->chunk_mutex);
4542         }
4543         return ret;
4544 }
4545
4546 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4547                            struct btrfs_key *key,
4548                            struct btrfs_chunk *chunk, int item_size)
4549 {
4550         struct btrfs_super_block *super_copy = fs_info->super_copy;
4551         struct btrfs_disk_key disk_key;
4552         u32 array_size;
4553         u8 *ptr;
4554
4555         mutex_lock(&fs_info->chunk_mutex);
4556         array_size = btrfs_super_sys_array_size(super_copy);
4557         if (array_size + item_size + sizeof(disk_key)
4558                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4559                 mutex_unlock(&fs_info->chunk_mutex);
4560                 return -EFBIG;
4561         }
4562
4563         ptr = super_copy->sys_chunk_array + array_size;
4564         btrfs_cpu_key_to_disk(&disk_key, key);
4565         memcpy(ptr, &disk_key, sizeof(disk_key));
4566         ptr += sizeof(disk_key);
4567         memcpy(ptr, chunk, item_size);
4568         item_size += sizeof(disk_key);
4569         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4570         mutex_unlock(&fs_info->chunk_mutex);
4571
4572         return 0;
4573 }
4574
4575 /*
4576  * sort the devices in descending order by max_avail, total_avail
4577  */
4578 static int btrfs_cmp_device_info(const void *a, const void *b)
4579 {
4580         const struct btrfs_device_info *di_a = a;
4581         const struct btrfs_device_info *di_b = b;
4582
4583         if (di_a->max_avail > di_b->max_avail)
4584                 return -1;
4585         if (di_a->max_avail < di_b->max_avail)
4586                 return 1;
4587         if (di_a->total_avail > di_b->total_avail)
4588                 return -1;
4589         if (di_a->total_avail < di_b->total_avail)
4590                 return 1;
4591         return 0;
4592 }
4593
4594 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4595 {
4596         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4597                 return;
4598
4599         btrfs_set_fs_incompat(info, RAID56);
4600 }
4601
4602 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info)        \
4603                         - sizeof(struct btrfs_chunk))           \
4604                         / sizeof(struct btrfs_stripe) + 1)
4605
4606 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE        \
4607                                 - 2 * sizeof(struct btrfs_disk_key)     \
4608                                 - 2 * sizeof(struct btrfs_chunk))       \
4609                                 / sizeof(struct btrfs_stripe) + 1)
4610
4611 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4612                                u64 start, u64 type)
4613 {
4614         struct btrfs_fs_info *info = trans->fs_info;
4615         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4616         struct btrfs_device *device;
4617         struct map_lookup *map = NULL;
4618         struct extent_map_tree *em_tree;
4619         struct extent_map *em;
4620         struct btrfs_device_info *devices_info = NULL;
4621         u64 total_avail;
4622         int num_stripes;        /* total number of stripes to allocate */
4623         int data_stripes;       /* number of stripes that count for
4624                                    block group size */
4625         int sub_stripes;        /* sub_stripes info for map */
4626         int dev_stripes;        /* stripes per dev */
4627         int devs_max;           /* max devs to use */
4628         int devs_min;           /* min devs needed */
4629         int devs_increment;     /* ndevs has to be a multiple of this */
4630         int ncopies;            /* how many copies to data has */
4631         int ret;
4632         u64 max_stripe_size;
4633         u64 max_chunk_size;
4634         u64 stripe_size;
4635         u64 chunk_size;
4636         int ndevs;
4637         int i;
4638         int j;
4639         int index;
4640
4641         BUG_ON(!alloc_profile_is_valid(type, 0));
4642
4643         if (list_empty(&fs_devices->alloc_list)) {
4644                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4645                         btrfs_debug(info, "%s: no writable device", __func__);
4646                 return -ENOSPC;
4647         }
4648
4649         index = btrfs_bg_flags_to_raid_index(type);
4650
4651         sub_stripes = btrfs_raid_array[index].sub_stripes;
4652         dev_stripes = btrfs_raid_array[index].dev_stripes;
4653         devs_max = btrfs_raid_array[index].devs_max;
4654         devs_min = btrfs_raid_array[index].devs_min;
4655         devs_increment = btrfs_raid_array[index].devs_increment;
4656         ncopies = btrfs_raid_array[index].ncopies;
4657
4658         if (type & BTRFS_BLOCK_GROUP_DATA) {
4659                 max_stripe_size = SZ_1G;
4660                 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4661                 if (!devs_max)
4662                         devs_max = BTRFS_MAX_DEVS(info);
4663         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4664                 /* for larger filesystems, use larger metadata chunks */
4665                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4666                         max_stripe_size = SZ_1G;
4667                 else
4668                         max_stripe_size = SZ_256M;
4669                 max_chunk_size = max_stripe_size;
4670                 if (!devs_max)
4671                         devs_max = BTRFS_MAX_DEVS(info);
4672         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4673                 max_stripe_size = SZ_32M;
4674                 max_chunk_size = 2 * max_stripe_size;
4675                 if (!devs_max)
4676                         devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4677         } else {
4678                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4679                        type);
4680                 BUG_ON(1);
4681         }
4682
4683         /* we don't want a chunk larger than 10% of writeable space */
4684         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4685                              max_chunk_size);
4686
4687         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4688                                GFP_NOFS);
4689         if (!devices_info)
4690                 return -ENOMEM;
4691
4692         /*
4693          * in the first pass through the devices list, we gather information
4694          * about the available holes on each device.
4695          */
4696         ndevs = 0;
4697         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4698                 u64 max_avail;
4699                 u64 dev_offset;
4700
4701                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4702                         WARN(1, KERN_ERR
4703                                "BTRFS: read-only device in alloc_list\n");
4704                         continue;
4705                 }
4706
4707                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4708                                         &device->dev_state) ||
4709                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4710                         continue;
4711
4712                 if (device->total_bytes > device->bytes_used)
4713                         total_avail = device->total_bytes - device->bytes_used;
4714                 else
4715                         total_avail = 0;
4716
4717                 /* If there is no space on this device, skip it. */
4718                 if (total_avail == 0)
4719                         continue;
4720
4721                 ret = find_free_dev_extent(trans, device,
4722                                            max_stripe_size * dev_stripes,
4723                                            &dev_offset, &max_avail);
4724                 if (ret && ret != -ENOSPC)
4725                         goto error;
4726
4727                 if (ret == 0)
4728                         max_avail = max_stripe_size * dev_stripes;
4729
4730                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4731                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
4732                                 btrfs_debug(info,
4733                         "%s: devid %llu has no free space, have=%llu want=%u",
4734                                             __func__, device->devid, max_avail,
4735                                             BTRFS_STRIPE_LEN * dev_stripes);
4736                         continue;
4737                 }
4738
4739                 if (ndevs == fs_devices->rw_devices) {
4740                         WARN(1, "%s: found more than %llu devices\n",
4741                              __func__, fs_devices->rw_devices);
4742                         break;
4743                 }
4744                 devices_info[ndevs].dev_offset = dev_offset;
4745                 devices_info[ndevs].max_avail = max_avail;
4746                 devices_info[ndevs].total_avail = total_avail;
4747                 devices_info[ndevs].dev = device;
4748                 ++ndevs;
4749         }
4750
4751         /*
4752          * now sort the devices by hole size / available space
4753          */
4754         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4755              btrfs_cmp_device_info, NULL);
4756
4757         /* round down to number of usable stripes */
4758         ndevs = round_down(ndevs, devs_increment);
4759
4760         if (ndevs < devs_min) {
4761                 ret = -ENOSPC;
4762                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4763                         btrfs_debug(info,
4764         "%s: not enough devices with free space: have=%d minimum required=%d",
4765                                     __func__, ndevs, devs_min);
4766                 }
4767                 goto error;
4768         }
4769
4770         ndevs = min(ndevs, devs_max);
4771
4772         /*
4773          * The primary goal is to maximize the number of stripes, so use as
4774          * many devices as possible, even if the stripes are not maximum sized.
4775          *
4776          * The DUP profile stores more than one stripe per device, the
4777          * max_avail is the total size so we have to adjust.
4778          */
4779         stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4780         num_stripes = ndevs * dev_stripes;
4781
4782         /*
4783          * this will have to be fixed for RAID1 and RAID10 over
4784          * more drives
4785          */
4786         data_stripes = num_stripes / ncopies;
4787
4788         if (type & BTRFS_BLOCK_GROUP_RAID5)
4789                 data_stripes = num_stripes - 1;
4790
4791         if (type & BTRFS_BLOCK_GROUP_RAID6)
4792                 data_stripes = num_stripes - 2;
4793
4794         /*
4795          * Use the number of data stripes to figure out how big this chunk
4796          * is really going to be in terms of logical address space,
4797          * and compare that answer with the max chunk size. If it's higher,
4798          * we try to reduce stripe_size.
4799          */
4800         if (stripe_size * data_stripes > max_chunk_size) {
4801                 /*
4802                  * Reduce stripe_size, round it up to a 16MB boundary again and
4803                  * then use it, unless it ends up being even bigger than the
4804                  * previous value we had already.
4805                  */
4806                 stripe_size = min(round_up(div_u64(max_chunk_size,
4807                                                    data_stripes), SZ_16M),
4808                                   stripe_size);
4809         }
4810
4811         /* align to BTRFS_STRIPE_LEN */
4812         stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4813
4814         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4815         if (!map) {
4816                 ret = -ENOMEM;
4817                 goto error;
4818         }
4819         map->num_stripes = num_stripes;
4820
4821         for (i = 0; i < ndevs; ++i) {
4822                 for (j = 0; j < dev_stripes; ++j) {
4823                         int s = i * dev_stripes + j;
4824                         map->stripes[s].dev = devices_info[i].dev;
4825                         map->stripes[s].physical = devices_info[i].dev_offset +
4826                                                    j * stripe_size;
4827                 }
4828         }
4829         map->stripe_len = BTRFS_STRIPE_LEN;
4830         map->io_align = BTRFS_STRIPE_LEN;
4831         map->io_width = BTRFS_STRIPE_LEN;
4832         map->type = type;
4833         map->sub_stripes = sub_stripes;
4834
4835         chunk_size = stripe_size * data_stripes;
4836
4837         trace_btrfs_chunk_alloc(info, map, start, chunk_size);
4838
4839         em = alloc_extent_map();
4840         if (!em) {
4841                 kfree(map);
4842                 ret = -ENOMEM;
4843                 goto error;
4844         }
4845         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4846         em->map_lookup = map;
4847         em->start = start;
4848         em->len = chunk_size;
4849         em->block_start = 0;
4850         em->block_len = em->len;
4851         em->orig_block_len = stripe_size;
4852
4853         em_tree = &info->mapping_tree.map_tree;
4854         write_lock(&em_tree->lock);
4855         ret = add_extent_mapping(em_tree, em, 0);
4856         if (ret) {
4857                 write_unlock(&em_tree->lock);
4858                 free_extent_map(em);
4859                 goto error;
4860         }
4861
4862         list_add_tail(&em->list, &trans->transaction->pending_chunks);
4863         refcount_inc(&em->refs);
4864         write_unlock(&em_tree->lock);
4865
4866         ret = btrfs_make_block_group(trans, 0, type, start, chunk_size);
4867         if (ret)
4868                 goto error_del_extent;
4869
4870         for (i = 0; i < map->num_stripes; i++)
4871                 btrfs_device_set_bytes_used(map->stripes[i].dev,
4872                                 map->stripes[i].dev->bytes_used + stripe_size);
4873
4874         atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4875
4876         free_extent_map(em);
4877         check_raid56_incompat_flag(info, type);
4878
4879         kfree(devices_info);
4880         return 0;
4881
4882 error_del_extent:
4883         write_lock(&em_tree->lock);
4884         remove_extent_mapping(em_tree, em);
4885         write_unlock(&em_tree->lock);
4886
4887         /* One for our allocation */
4888         free_extent_map(em);
4889         /* One for the tree reference */
4890         free_extent_map(em);
4891         /* One for the pending_chunks list reference */
4892         free_extent_map(em);
4893 error:
4894         kfree(devices_info);
4895         return ret;
4896 }
4897
4898 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4899                              u64 chunk_offset, u64 chunk_size)
4900 {
4901         struct btrfs_fs_info *fs_info = trans->fs_info;
4902         struct btrfs_root *extent_root = fs_info->extent_root;
4903         struct btrfs_root *chunk_root = fs_info->chunk_root;
4904         struct btrfs_key key;
4905         struct btrfs_device *device;
4906         struct btrfs_chunk *chunk;
4907         struct btrfs_stripe *stripe;
4908         struct extent_map *em;
4909         struct map_lookup *map;
4910         size_t item_size;
4911         u64 dev_offset;
4912         u64 stripe_size;
4913         int i = 0;
4914         int ret = 0;
4915
4916         em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
4917         if (IS_ERR(em))
4918                 return PTR_ERR(em);
4919
4920         map = em->map_lookup;
4921         item_size = btrfs_chunk_item_size(map->num_stripes);
4922         stripe_size = em->orig_block_len;
4923
4924         chunk = kzalloc(item_size, GFP_NOFS);
4925         if (!chunk) {
4926                 ret = -ENOMEM;
4927                 goto out;
4928         }
4929
4930         /*
4931          * Take the device list mutex to prevent races with the final phase of
4932          * a device replace operation that replaces the device object associated
4933          * with the map's stripes, because the device object's id can change
4934          * at any time during that final phase of the device replace operation
4935          * (dev-replace.c:btrfs_dev_replace_finishing()).
4936          */
4937         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4938         for (i = 0; i < map->num_stripes; i++) {
4939                 device = map->stripes[i].dev;
4940                 dev_offset = map->stripes[i].physical;
4941
4942                 ret = btrfs_update_device(trans, device);
4943                 if (ret)
4944                         break;
4945                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4946                                              dev_offset, stripe_size);
4947                 if (ret)
4948                         break;
4949         }
4950         if (ret) {
4951                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4952                 goto out;
4953         }
4954
4955         stripe = &chunk->stripe;
4956         for (i = 0; i < map->num_stripes; i++) {
4957                 device = map->stripes[i].dev;
4958                 dev_offset = map->stripes[i].physical;
4959
4960                 btrfs_set_stack_stripe_devid(stripe, device->devid);
4961                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4962                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4963                 stripe++;
4964         }
4965         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4966
4967         btrfs_set_stack_chunk_length(chunk, chunk_size);
4968         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4969         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4970         btrfs_set_stack_chunk_type(chunk, map->type);
4971         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4972         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4973         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4974         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4975         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4976
4977         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4978         key.type = BTRFS_CHUNK_ITEM_KEY;
4979         key.offset = chunk_offset;
4980
4981         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4982         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4983                 /*
4984                  * TODO: Cleanup of inserted chunk root in case of
4985                  * failure.
4986                  */
4987                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4988         }
4989
4990 out:
4991         kfree(chunk);
4992         free_extent_map(em);
4993         return ret;
4994 }
4995
4996 /*
4997  * Chunk allocation falls into two parts. The first part does works
4998  * that make the new allocated chunk useable, but not do any operation
4999  * that modifies the chunk tree. The second part does the works that
5000  * require modifying the chunk tree. This division is important for the
5001  * bootstrap process of adding storage to a seed btrfs.
5002  */
5003 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5004 {
5005         u64 chunk_offset;
5006
5007         lockdep_assert_held(&trans->fs_info->chunk_mutex);
5008         chunk_offset = find_next_chunk(trans->fs_info);
5009         return __btrfs_alloc_chunk(trans, chunk_offset, type);
5010 }
5011
5012 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5013                                          struct btrfs_fs_info *fs_info)
5014 {
5015         u64 chunk_offset;
5016         u64 sys_chunk_offset;
5017         u64 alloc_profile;
5018         int ret;
5019
5020         chunk_offset = find_next_chunk(fs_info);
5021         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5022         ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5023         if (ret)
5024                 return ret;
5025
5026         sys_chunk_offset = find_next_chunk(fs_info);
5027         alloc_profile = btrfs_system_alloc_profile(fs_info);
5028         ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5029         return ret;
5030 }
5031
5032 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5033 {
5034         int max_errors;
5035
5036         if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5037                          BTRFS_BLOCK_GROUP_RAID10 |
5038                          BTRFS_BLOCK_GROUP_RAID5 |
5039                          BTRFS_BLOCK_GROUP_DUP)) {
5040                 max_errors = 1;
5041         } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5042                 max_errors = 2;
5043         } else {
5044                 max_errors = 0;
5045         }
5046
5047         return max_errors;
5048 }
5049
5050 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5051 {
5052         struct extent_map *em;
5053         struct map_lookup *map;
5054         int readonly = 0;
5055         int miss_ndevs = 0;
5056         int i;
5057
5058         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5059         if (IS_ERR(em))
5060                 return 1;
5061
5062         map = em->map_lookup;
5063         for (i = 0; i < map->num_stripes; i++) {
5064                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5065                                         &map->stripes[i].dev->dev_state)) {
5066                         miss_ndevs++;
5067                         continue;
5068                 }
5069                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5070                                         &map->stripes[i].dev->dev_state)) {
5071                         readonly = 1;
5072                         goto end;
5073                 }
5074         }
5075
5076         /*
5077          * If the number of missing devices is larger than max errors,
5078          * we can not write the data into that chunk successfully, so
5079          * set it readonly.
5080          */
5081         if (miss_ndevs > btrfs_chunk_max_errors(map))
5082                 readonly = 1;
5083 end:
5084         free_extent_map(em);
5085         return readonly;
5086 }
5087
5088 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5089 {
5090         extent_map_tree_init(&tree->map_tree);
5091 }
5092
5093 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5094 {
5095         struct extent_map *em;
5096
5097         while (1) {
5098                 write_lock(&tree->map_tree.lock);
5099                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5100                 if (em)
5101                         remove_extent_mapping(&tree->map_tree, em);
5102                 write_unlock(&tree->map_tree.lock);
5103                 if (!em)
5104                         break;
5105                 /* once for us */
5106                 free_extent_map(em);
5107                 /* once for the tree */
5108                 free_extent_map(em);
5109         }
5110 }
5111
5112 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5113 {
5114         struct extent_map *em;
5115         struct map_lookup *map;
5116         int ret;
5117
5118         em = btrfs_get_chunk_map(fs_info, logical, len);
5119         if (IS_ERR(em))
5120                 /*
5121                  * We could return errors for these cases, but that could get
5122                  * ugly and we'd probably do the same thing which is just not do
5123                  * anything else and exit, so return 1 so the callers don't try
5124                  * to use other copies.
5125                  */
5126                 return 1;
5127
5128         map = em->map_lookup;
5129         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5130                 ret = map->num_stripes;
5131         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5132                 ret = map->sub_stripes;
5133         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5134                 ret = 2;
5135         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5136                 /*
5137                  * There could be two corrupted data stripes, we need
5138                  * to loop retry in order to rebuild the correct data.
5139                  *
5140                  * Fail a stripe at a time on every retry except the
5141                  * stripe under reconstruction.
5142                  */
5143                 ret = map->num_stripes;
5144         else
5145                 ret = 1;
5146         free_extent_map(em);
5147
5148         btrfs_dev_replace_read_lock(&fs_info->dev_replace);
5149         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5150             fs_info->dev_replace.tgtdev)
5151                 ret++;
5152         btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
5153
5154         return ret;
5155 }
5156
5157 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5158                                     u64 logical)
5159 {
5160         struct extent_map *em;
5161         struct map_lookup *map;
5162         unsigned long len = fs_info->sectorsize;
5163
5164         em = btrfs_get_chunk_map(fs_info, logical, len);
5165
5166         if (!WARN_ON(IS_ERR(em))) {
5167                 map = em->map_lookup;
5168                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5169                         len = map->stripe_len * nr_data_stripes(map);
5170                 free_extent_map(em);
5171         }
5172         return len;
5173 }
5174
5175 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5176 {
5177         struct extent_map *em;
5178         struct map_lookup *map;
5179         int ret = 0;
5180
5181         em = btrfs_get_chunk_map(fs_info, logical, len);
5182
5183         if(!WARN_ON(IS_ERR(em))) {
5184                 map = em->map_lookup;
5185                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5186                         ret = 1;
5187                 free_extent_map(em);
5188         }
5189         return ret;
5190 }
5191
5192 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5193                             struct map_lookup *map, int first,
5194                             int dev_replace_is_ongoing)
5195 {
5196         int i;
5197         int num_stripes;
5198         int preferred_mirror;
5199         int tolerance;
5200         struct btrfs_device *srcdev;
5201
5202         ASSERT((map->type &
5203                  (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)));
5204
5205         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5206                 num_stripes = map->sub_stripes;
5207         else
5208                 num_stripes = map->num_stripes;
5209
5210         preferred_mirror = first + current->pid % num_stripes;
5211
5212         if (dev_replace_is_ongoing &&
5213             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5214              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5215                 srcdev = fs_info->dev_replace.srcdev;
5216         else
5217                 srcdev = NULL;
5218
5219         /*
5220          * try to avoid the drive that is the source drive for a
5221          * dev-replace procedure, only choose it if no other non-missing
5222          * mirror is available
5223          */
5224         for (tolerance = 0; tolerance < 2; tolerance++) {
5225                 if (map->stripes[preferred_mirror].dev->bdev &&
5226                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5227                         return preferred_mirror;
5228                 for (i = first; i < first + num_stripes; i++) {
5229                         if (map->stripes[i].dev->bdev &&
5230                             (tolerance || map->stripes[i].dev != srcdev))
5231                                 return i;
5232                 }
5233         }
5234
5235         /* we couldn't find one that doesn't fail.  Just return something
5236          * and the io error handling code will clean up eventually
5237          */
5238         return preferred_mirror;
5239 }
5240
5241 static inline int parity_smaller(u64 a, u64 b)
5242 {
5243         return a > b;
5244 }
5245
5246 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5247 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5248 {
5249         struct btrfs_bio_stripe s;
5250         int i;
5251         u64 l;
5252         int again = 1;
5253
5254         while (again) {
5255                 again = 0;
5256                 for (i = 0; i < num_stripes - 1; i++) {
5257                         if (parity_smaller(bbio->raid_map[i],
5258                                            bbio->raid_map[i+1])) {
5259                                 s = bbio->stripes[i];
5260                                 l = bbio->raid_map[i];
5261                                 bbio->stripes[i] = bbio->stripes[i+1];
5262                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5263                                 bbio->stripes[i+1] = s;
5264                                 bbio->raid_map[i+1] = l;
5265
5266                                 again = 1;
5267                         }
5268                 }
5269         }
5270 }
5271
5272 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5273 {
5274         struct btrfs_bio *bbio = kzalloc(
5275                  /* the size of the btrfs_bio */
5276                 sizeof(struct btrfs_bio) +
5277                 /* plus the variable array for the stripes */
5278                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5279                 /* plus the variable array for the tgt dev */
5280                 sizeof(int) * (real_stripes) +
5281                 /*
5282                  * plus the raid_map, which includes both the tgt dev
5283                  * and the stripes
5284                  */
5285                 sizeof(u64) * (total_stripes),
5286                 GFP_NOFS|__GFP_NOFAIL);
5287
5288         atomic_set(&bbio->error, 0);
5289         refcount_set(&bbio->refs, 1);
5290
5291         return bbio;
5292 }
5293
5294 void btrfs_get_bbio(struct btrfs_bio *bbio)
5295 {
5296         WARN_ON(!refcount_read(&bbio->refs));
5297         refcount_inc(&bbio->refs);
5298 }
5299
5300 void btrfs_put_bbio(struct btrfs_bio *bbio)
5301 {
5302         if (!bbio)
5303                 return;
5304         if (refcount_dec_and_test(&bbio->refs))
5305                 kfree(bbio);
5306 }
5307
5308 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5309 /*
5310  * Please note that, discard won't be sent to target device of device
5311  * replace.
5312  */
5313 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5314                                          u64 logical, u64 length,
5315                                          struct btrfs_bio **bbio_ret)
5316 {
5317         struct extent_map *em;
5318         struct map_lookup *map;
5319         struct btrfs_bio *bbio;
5320         u64 offset;
5321         u64 stripe_nr;
5322         u64 stripe_nr_end;
5323         u64 stripe_end_offset;
5324         u64 stripe_cnt;
5325         u64 stripe_len;
5326         u64 stripe_offset;
5327         u64 num_stripes;
5328         u32 stripe_index;
5329         u32 factor = 0;
5330         u32 sub_stripes = 0;
5331         u64 stripes_per_dev = 0;
5332         u32 remaining_stripes = 0;
5333         u32 last_stripe = 0;
5334         int ret = 0;
5335         int i;
5336
5337         /* discard always return a bbio */
5338         ASSERT(bbio_ret);
5339
5340         em = btrfs_get_chunk_map(fs_info, logical, length);
5341         if (IS_ERR(em))
5342                 return PTR_ERR(em);
5343
5344         map = em->map_lookup;
5345         /* we don't discard raid56 yet */
5346         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5347                 ret = -EOPNOTSUPP;
5348                 goto out;
5349         }
5350
5351         offset = logical - em->start;
5352         length = min_t(u64, em->len - offset, length);
5353
5354         stripe_len = map->stripe_len;
5355         /*
5356          * stripe_nr counts the total number of stripes we have to stride
5357          * to get to this block
5358          */
5359         stripe_nr = div64_u64(offset, stripe_len);
5360
5361         /* stripe_offset is the offset of this block in its stripe */
5362         stripe_offset = offset - stripe_nr * stripe_len;
5363
5364         stripe_nr_end = round_up(offset + length, map->stripe_len);
5365         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5366         stripe_cnt = stripe_nr_end - stripe_nr;
5367         stripe_end_offset = stripe_nr_end * map->stripe_len -
5368                             (offset + length);
5369         /*
5370          * after this, stripe_nr is the number of stripes on this
5371          * device we have to walk to find the data, and stripe_index is
5372          * the number of our device in the stripe array
5373          */
5374         num_stripes = 1;
5375         stripe_index = 0;
5376         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5377                          BTRFS_BLOCK_GROUP_RAID10)) {
5378                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5379                         sub_stripes = 1;
5380                 else
5381                         sub_stripes = map->sub_stripes;
5382
5383                 factor = map->num_stripes / sub_stripes;
5384                 num_stripes = min_t(u64, map->num_stripes,
5385                                     sub_stripes * stripe_cnt);
5386                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5387                 stripe_index *= sub_stripes;
5388                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5389                                               &remaining_stripes);
5390                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5391                 last_stripe *= sub_stripes;
5392         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5393                                 BTRFS_BLOCK_GROUP_DUP)) {
5394                 num_stripes = map->num_stripes;
5395         } else {
5396                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5397                                         &stripe_index);
5398         }
5399
5400         bbio = alloc_btrfs_bio(num_stripes, 0);
5401         if (!bbio) {
5402                 ret = -ENOMEM;
5403                 goto out;
5404         }
5405
5406         for (i = 0; i < num_stripes; i++) {
5407                 bbio->stripes[i].physical =
5408                         map->stripes[stripe_index].physical +
5409                         stripe_offset + stripe_nr * map->stripe_len;
5410                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5411
5412                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5413                                  BTRFS_BLOCK_GROUP_RAID10)) {
5414                         bbio->stripes[i].length = stripes_per_dev *
5415                                 map->stripe_len;
5416
5417                         if (i / sub_stripes < remaining_stripes)
5418                                 bbio->stripes[i].length +=
5419                                         map->stripe_len;
5420
5421                         /*
5422                          * Special for the first stripe and
5423                          * the last stripe:
5424                          *
5425                          * |-------|...|-------|
5426                          *     |----------|
5427                          *    off     end_off
5428                          */
5429                         if (i < sub_stripes)
5430                                 bbio->stripes[i].length -=
5431                                         stripe_offset;
5432
5433                         if (stripe_index >= last_stripe &&
5434                             stripe_index <= (last_stripe +
5435                                              sub_stripes - 1))
5436                                 bbio->stripes[i].length -=
5437                                         stripe_end_offset;
5438
5439                         if (i == sub_stripes - 1)
5440                                 stripe_offset = 0;
5441                 } else {
5442                         bbio->stripes[i].length = length;
5443                 }
5444
5445                 stripe_index++;
5446                 if (stripe_index == map->num_stripes) {
5447                         stripe_index = 0;
5448                         stripe_nr++;
5449                 }
5450         }
5451
5452         *bbio_ret = bbio;
5453         bbio->map_type = map->type;
5454         bbio->num_stripes = num_stripes;
5455 out:
5456         free_extent_map(em);
5457         return ret;
5458 }
5459
5460 /*
5461  * In dev-replace case, for repair case (that's the only case where the mirror
5462  * is selected explicitly when calling btrfs_map_block), blocks left of the
5463  * left cursor can also be read from the target drive.
5464  *
5465  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5466  * array of stripes.
5467  * For READ, it also needs to be supported using the same mirror number.
5468  *
5469  * If the requested block is not left of the left cursor, EIO is returned. This
5470  * can happen because btrfs_num_copies() returns one more in the dev-replace
5471  * case.
5472  */
5473 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5474                                          u64 logical, u64 length,
5475                                          u64 srcdev_devid, int *mirror_num,
5476                                          u64 *physical)
5477 {
5478         struct btrfs_bio *bbio = NULL;
5479         int num_stripes;
5480         int index_srcdev = 0;
5481         int found = 0;
5482         u64 physical_of_found = 0;
5483         int i;
5484         int ret = 0;
5485
5486         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5487                                 logical, &length, &bbio, 0, 0);
5488         if (ret) {
5489                 ASSERT(bbio == NULL);
5490                 return ret;
5491         }
5492
5493         num_stripes = bbio->num_stripes;
5494         if (*mirror_num > num_stripes) {
5495                 /*
5496                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5497                  * that means that the requested area is not left of the left
5498                  * cursor
5499                  */
5500                 btrfs_put_bbio(bbio);
5501                 return -EIO;
5502         }
5503
5504         /*
5505          * process the rest of the function using the mirror_num of the source
5506          * drive. Therefore look it up first.  At the end, patch the device
5507          * pointer to the one of the target drive.
5508          */
5509         for (i = 0; i < num_stripes; i++) {
5510                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5511                         continue;
5512
5513                 /*
5514                  * In case of DUP, in order to keep it simple, only add the
5515                  * mirror with the lowest physical address
5516                  */
5517                 if (found &&
5518                     physical_of_found <= bbio->stripes[i].physical)
5519                         continue;
5520
5521                 index_srcdev = i;
5522                 found = 1;
5523                 physical_of_found = bbio->stripes[i].physical;
5524         }
5525
5526         btrfs_put_bbio(bbio);
5527
5528         ASSERT(found);
5529         if (!found)
5530                 return -EIO;
5531
5532         *mirror_num = index_srcdev + 1;
5533         *physical = physical_of_found;
5534         return ret;
5535 }
5536
5537 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5538                                       struct btrfs_bio **bbio_ret,
5539                                       struct btrfs_dev_replace *dev_replace,
5540                                       int *num_stripes_ret, int *max_errors_ret)
5541 {
5542         struct btrfs_bio *bbio = *bbio_ret;
5543         u64 srcdev_devid = dev_replace->srcdev->devid;
5544         int tgtdev_indexes = 0;
5545         int num_stripes = *num_stripes_ret;
5546         int max_errors = *max_errors_ret;
5547         int i;
5548
5549         if (op == BTRFS_MAP_WRITE) {
5550                 int index_where_to_add;
5551
5552                 /*
5553                  * duplicate the write operations while the dev replace
5554                  * procedure is running. Since the copying of the old disk to
5555                  * the new disk takes place at run time while the filesystem is
5556                  * mounted writable, the regular write operations to the old
5557                  * disk have to be duplicated to go to the new disk as well.
5558                  *
5559                  * Note that device->missing is handled by the caller, and that
5560                  * the write to the old disk is already set up in the stripes
5561                  * array.
5562                  */
5563                 index_where_to_add = num_stripes;
5564                 for (i = 0; i < num_stripes; i++) {
5565                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5566                                 /* write to new disk, too */
5567                                 struct btrfs_bio_stripe *new =
5568                                         bbio->stripes + index_where_to_add;
5569                                 struct btrfs_bio_stripe *old =
5570                                         bbio->stripes + i;
5571
5572                                 new->physical = old->physical;
5573                                 new->length = old->length;
5574                                 new->dev = dev_replace->tgtdev;
5575                                 bbio->tgtdev_map[i] = index_where_to_add;
5576                                 index_where_to_add++;
5577                                 max_errors++;
5578                                 tgtdev_indexes++;
5579                         }
5580                 }
5581                 num_stripes = index_where_to_add;
5582         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5583                 int index_srcdev = 0;
5584                 int found = 0;
5585                 u64 physical_of_found = 0;
5586
5587                 /*
5588                  * During the dev-replace procedure, the target drive can also
5589                  * be used to read data in case it is needed to repair a corrupt
5590                  * block elsewhere. This is possible if the requested area is
5591                  * left of the left cursor. In this area, the target drive is a
5592                  * full copy of the source drive.
5593                  */
5594                 for (i = 0; i < num_stripes; i++) {
5595                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5596                                 /*
5597                                  * In case of DUP, in order to keep it simple,
5598                                  * only add the mirror with the lowest physical
5599                                  * address
5600                                  */
5601                                 if (found &&
5602                                     physical_of_found <=
5603                                      bbio->stripes[i].physical)
5604                                         continue;
5605                                 index_srcdev = i;
5606                                 found = 1;
5607                                 physical_of_found = bbio->stripes[i].physical;
5608                         }
5609                 }
5610                 if (found) {
5611                         struct btrfs_bio_stripe *tgtdev_stripe =
5612                                 bbio->stripes + num_stripes;
5613
5614                         tgtdev_stripe->physical = physical_of_found;
5615                         tgtdev_stripe->length =
5616                                 bbio->stripes[index_srcdev].length;
5617                         tgtdev_stripe->dev = dev_replace->tgtdev;
5618                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5619
5620                         tgtdev_indexes++;
5621                         num_stripes++;
5622                 }
5623         }
5624
5625         *num_stripes_ret = num_stripes;
5626         *max_errors_ret = max_errors;
5627         bbio->num_tgtdevs = tgtdev_indexes;
5628         *bbio_ret = bbio;
5629 }
5630
5631 static bool need_full_stripe(enum btrfs_map_op op)
5632 {
5633         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5634 }
5635
5636 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5637                              enum btrfs_map_op op,
5638                              u64 logical, u64 *length,
5639                              struct btrfs_bio **bbio_ret,
5640                              int mirror_num, int need_raid_map)
5641 {
5642         struct extent_map *em;
5643         struct map_lookup *map;
5644         u64 offset;
5645         u64 stripe_offset;
5646         u64 stripe_nr;
5647         u64 stripe_len;
5648         u32 stripe_index;
5649         int i;
5650         int ret = 0;
5651         int num_stripes;
5652         int max_errors = 0;
5653         int tgtdev_indexes = 0;
5654         struct btrfs_bio *bbio = NULL;
5655         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5656         int dev_replace_is_ongoing = 0;
5657         int num_alloc_stripes;
5658         int patch_the_first_stripe_for_dev_replace = 0;
5659         u64 physical_to_patch_in_first_stripe = 0;
5660         u64 raid56_full_stripe_start = (u64)-1;
5661
5662         if (op == BTRFS_MAP_DISCARD)
5663                 return __btrfs_map_block_for_discard(fs_info, logical,
5664                                                      *length, bbio_ret);
5665
5666         em = btrfs_get_chunk_map(fs_info, logical, *length);
5667         if (IS_ERR(em))
5668                 return PTR_ERR(em);
5669
5670         map = em->map_lookup;
5671         offset = logical - em->start;
5672
5673         stripe_len = map->stripe_len;
5674         stripe_nr = offset;
5675         /*
5676          * stripe_nr counts the total number of stripes we have to stride
5677          * to get to this block
5678          */
5679         stripe_nr = div64_u64(stripe_nr, stripe_len);
5680
5681         stripe_offset = stripe_nr * stripe_len;
5682         if (offset < stripe_offset) {
5683                 btrfs_crit(fs_info,
5684                            "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5685                            stripe_offset, offset, em->start, logical,
5686                            stripe_len);
5687                 free_extent_map(em);
5688                 return -EINVAL;
5689         }
5690
5691         /* stripe_offset is the offset of this block in its stripe*/
5692         stripe_offset = offset - stripe_offset;
5693
5694         /* if we're here for raid56, we need to know the stripe aligned start */
5695         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5696                 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5697                 raid56_full_stripe_start = offset;
5698
5699                 /* allow a write of a full stripe, but make sure we don't
5700                  * allow straddling of stripes
5701                  */
5702                 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5703                                 full_stripe_len);
5704                 raid56_full_stripe_start *= full_stripe_len;
5705         }
5706
5707         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5708                 u64 max_len;
5709                 /* For writes to RAID[56], allow a full stripeset across all disks.
5710                    For other RAID types and for RAID[56] reads, just allow a single
5711                    stripe (on a single disk). */
5712                 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5713                     (op == BTRFS_MAP_WRITE)) {
5714                         max_len = stripe_len * nr_data_stripes(map) -
5715                                 (offset - raid56_full_stripe_start);
5716                 } else {
5717                         /* we limit the length of each bio to what fits in a stripe */
5718                         max_len = stripe_len - stripe_offset;
5719                 }
5720                 *length = min_t(u64, em->len - offset, max_len);
5721         } else {
5722                 *length = em->len - offset;
5723         }
5724
5725         /* This is for when we're called from btrfs_merge_bio_hook() and all
5726            it cares about is the length */
5727         if (!bbio_ret)
5728                 goto out;
5729
5730         btrfs_dev_replace_read_lock(dev_replace);
5731         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5732         if (!dev_replace_is_ongoing)
5733                 btrfs_dev_replace_read_unlock(dev_replace);
5734         else
5735                 btrfs_dev_replace_set_lock_blocking(dev_replace);
5736
5737         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5738             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5739                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5740                                                     dev_replace->srcdev->devid,
5741                                                     &mirror_num,
5742                                             &physical_to_patch_in_first_stripe);
5743                 if (ret)
5744                         goto out;
5745                 else
5746                         patch_the_first_stripe_for_dev_replace = 1;
5747         } else if (mirror_num > map->num_stripes) {
5748                 mirror_num = 0;
5749         }
5750
5751         num_stripes = 1;
5752         stripe_index = 0;
5753         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5754                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5755                                 &stripe_index);
5756                 if (!need_full_stripe(op))
5757                         mirror_num = 1;
5758         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5759                 if (need_full_stripe(op))
5760                         num_stripes = map->num_stripes;
5761                 else if (mirror_num)
5762                         stripe_index = mirror_num - 1;
5763                 else {
5764                         stripe_index = find_live_mirror(fs_info, map, 0,
5765                                             dev_replace_is_ongoing);
5766                         mirror_num = stripe_index + 1;
5767                 }
5768
5769         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5770                 if (need_full_stripe(op)) {
5771                         num_stripes = map->num_stripes;
5772                 } else if (mirror_num) {
5773                         stripe_index = mirror_num - 1;
5774                 } else {
5775                         mirror_num = 1;
5776                 }
5777
5778         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5779                 u32 factor = map->num_stripes / map->sub_stripes;
5780
5781                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5782                 stripe_index *= map->sub_stripes;
5783
5784                 if (need_full_stripe(op))
5785                         num_stripes = map->sub_stripes;
5786                 else if (mirror_num)
5787                         stripe_index += mirror_num - 1;
5788                 else {
5789                         int old_stripe_index = stripe_index;
5790                         stripe_index = find_live_mirror(fs_info, map,
5791                                               stripe_index,
5792                                               dev_replace_is_ongoing);
5793                         mirror_num = stripe_index - old_stripe_index + 1;
5794                 }
5795
5796         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5797                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5798                         /* push stripe_nr back to the start of the full stripe */
5799                         stripe_nr = div64_u64(raid56_full_stripe_start,
5800                                         stripe_len * nr_data_stripes(map));
5801
5802                         /* RAID[56] write or recovery. Return all stripes */
5803                         num_stripes = map->num_stripes;
5804                         max_errors = nr_parity_stripes(map);
5805
5806                         *length = map->stripe_len;
5807                         stripe_index = 0;
5808                         stripe_offset = 0;
5809                 } else {
5810                         /*
5811                          * Mirror #0 or #1 means the original data block.
5812                          * Mirror #2 is RAID5 parity block.
5813                          * Mirror #3 is RAID6 Q block.
5814                          */
5815                         stripe_nr = div_u64_rem(stripe_nr,
5816                                         nr_data_stripes(map), &stripe_index);
5817                         if (mirror_num > 1)
5818                                 stripe_index = nr_data_stripes(map) +
5819                                                 mirror_num - 2;
5820
5821                         /* We distribute the parity blocks across stripes */
5822                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5823                                         &stripe_index);
5824                         if (!need_full_stripe(op) && mirror_num <= 1)
5825                                 mirror_num = 1;
5826                 }
5827         } else {
5828                 /*
5829                  * after this, stripe_nr is the number of stripes on this
5830                  * device we have to walk to find the data, and stripe_index is
5831                  * the number of our device in the stripe array
5832                  */
5833                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5834                                 &stripe_index);
5835                 mirror_num = stripe_index + 1;
5836         }
5837         if (stripe_index >= map->num_stripes) {
5838                 btrfs_crit(fs_info,
5839                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5840                            stripe_index, map->num_stripes);
5841                 ret = -EINVAL;
5842                 goto out;
5843         }
5844
5845         num_alloc_stripes = num_stripes;
5846         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5847                 if (op == BTRFS_MAP_WRITE)
5848                         num_alloc_stripes <<= 1;
5849                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5850                         num_alloc_stripes++;
5851                 tgtdev_indexes = num_stripes;
5852         }
5853
5854         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5855         if (!bbio) {
5856                 ret = -ENOMEM;
5857                 goto out;
5858         }
5859         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5860                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5861
5862         /* build raid_map */
5863         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5864             (need_full_stripe(op) || mirror_num > 1)) {
5865                 u64 tmp;
5866                 unsigned rot;
5867
5868                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5869                                  sizeof(struct btrfs_bio_stripe) *
5870                                  num_alloc_stripes +
5871                                  sizeof(int) * tgtdev_indexes);
5872
5873                 /* Work out the disk rotation on this stripe-set */
5874                 div_u64_rem(stripe_nr, num_stripes, &rot);
5875
5876                 /* Fill in the logical address of each stripe */
5877                 tmp = stripe_nr * nr_data_stripes(map);
5878                 for (i = 0; i < nr_data_stripes(map); i++)
5879                         bbio->raid_map[(i+rot) % num_stripes] =
5880                                 em->start + (tmp + i) * map->stripe_len;
5881
5882                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5883                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5884                         bbio->raid_map[(i+rot+1) % num_stripes] =
5885                                 RAID6_Q_STRIPE;
5886         }
5887
5888
5889         for (i = 0; i < num_stripes; i++) {
5890                 bbio->stripes[i].physical =
5891                         map->stripes[stripe_index].physical +
5892                         stripe_offset +
5893                         stripe_nr * map->stripe_len;
5894                 bbio->stripes[i].dev =
5895                         map->stripes[stripe_index].dev;
5896                 stripe_index++;
5897         }
5898
5899         if (need_full_stripe(op))
5900                 max_errors = btrfs_chunk_max_errors(map);
5901
5902         if (bbio->raid_map)
5903                 sort_parity_stripes(bbio, num_stripes);
5904
5905         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5906             need_full_stripe(op)) {
5907                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5908                                           &max_errors);
5909         }
5910
5911         *bbio_ret = bbio;
5912         bbio->map_type = map->type;
5913         bbio->num_stripes = num_stripes;
5914         bbio->max_errors = max_errors;
5915         bbio->mirror_num = mirror_num;
5916
5917         /*
5918          * this is the case that REQ_READ && dev_replace_is_ongoing &&
5919          * mirror_num == num_stripes + 1 && dev_replace target drive is
5920          * available as a mirror
5921          */
5922         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5923                 WARN_ON(num_stripes > 1);
5924                 bbio->stripes[0].dev = dev_replace->tgtdev;
5925                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5926                 bbio->mirror_num = map->num_stripes + 1;
5927         }
5928 out:
5929         if (dev_replace_is_ongoing) {
5930                 ASSERT(atomic_read(&dev_replace->blocking_readers) > 0);
5931                 btrfs_dev_replace_read_lock(dev_replace);
5932                 /* Barrier implied by atomic_dec_and_test */
5933                 if (atomic_dec_and_test(&dev_replace->blocking_readers))
5934                         cond_wake_up_nomb(&dev_replace->read_lock_wq);
5935                 btrfs_dev_replace_read_unlock(dev_replace);
5936         }
5937         free_extent_map(em);
5938         return ret;
5939 }
5940
5941 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5942                       u64 logical, u64 *length,
5943                       struct btrfs_bio **bbio_ret, int mirror_num)
5944 {
5945         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5946                                  mirror_num, 0);
5947 }
5948
5949 /* For Scrub/replace */
5950 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5951                      u64 logical, u64 *length,
5952                      struct btrfs_bio **bbio_ret)
5953 {
5954         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5955 }
5956
5957 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
5958                      u64 physical, u64 **logical, int *naddrs, int *stripe_len)
5959 {
5960         struct extent_map *em;
5961         struct map_lookup *map;
5962         u64 *buf;
5963         u64 bytenr;
5964         u64 length;
5965         u64 stripe_nr;
5966         u64 rmap_len;
5967         int i, j, nr = 0;
5968
5969         em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
5970         if (IS_ERR(em))
5971                 return -EIO;
5972
5973         map = em->map_lookup;
5974         length = em->len;
5975         rmap_len = map->stripe_len;
5976
5977         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5978                 length = div_u64(length, map->num_stripes / map->sub_stripes);
5979         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5980                 length = div_u64(length, map->num_stripes);
5981         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5982                 length = div_u64(length, nr_data_stripes(map));
5983                 rmap_len = map->stripe_len * nr_data_stripes(map);
5984         }
5985
5986         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5987         BUG_ON(!buf); /* -ENOMEM */
5988
5989         for (i = 0; i < map->num_stripes; i++) {
5990                 if (map->stripes[i].physical > physical ||
5991                     map->stripes[i].physical + length <= physical)
5992                         continue;
5993
5994                 stripe_nr = physical - map->stripes[i].physical;
5995                 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
5996
5997                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5998                         stripe_nr = stripe_nr * map->num_stripes + i;
5999                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6000                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6001                         stripe_nr = stripe_nr * map->num_stripes + i;
6002                 } /* else if RAID[56], multiply by nr_data_stripes().
6003                    * Alternatively, just use rmap_len below instead of
6004                    * map->stripe_len */
6005
6006                 bytenr = chunk_start + stripe_nr * rmap_len;
6007                 WARN_ON(nr >= map->num_stripes);
6008                 for (j = 0; j < nr; j++) {
6009                         if (buf[j] == bytenr)
6010                                 break;
6011                 }
6012                 if (j == nr) {
6013                         WARN_ON(nr >= map->num_stripes);
6014                         buf[nr++] = bytenr;
6015                 }
6016         }
6017
6018         *logical = buf;
6019         *naddrs = nr;
6020         *stripe_len = rmap_len;
6021
6022         free_extent_map(em);
6023         return 0;
6024 }
6025
6026 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6027 {
6028         bio->bi_private = bbio->private;
6029         bio->bi_end_io = bbio->end_io;
6030         bio_endio(bio);
6031
6032         btrfs_put_bbio(bbio);
6033 }
6034
6035 static void btrfs_end_bio(struct bio *bio)
6036 {
6037         struct btrfs_bio *bbio = bio->bi_private;
6038         int is_orig_bio = 0;
6039
6040         if (bio->bi_status) {
6041                 atomic_inc(&bbio->error);
6042                 if (bio->bi_status == BLK_STS_IOERR ||
6043                     bio->bi_status == BLK_STS_TARGET) {
6044                         unsigned int stripe_index =
6045                                 btrfs_io_bio(bio)->stripe_index;
6046                         struct btrfs_device *dev;
6047
6048                         BUG_ON(stripe_index >= bbio->num_stripes);
6049                         dev = bbio->stripes[stripe_index].dev;
6050                         if (dev->bdev) {
6051                                 if (bio_op(bio) == REQ_OP_WRITE)
6052                                         btrfs_dev_stat_inc_and_print(dev,
6053                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6054                                 else
6055                                         btrfs_dev_stat_inc_and_print(dev,
6056                                                 BTRFS_DEV_STAT_READ_ERRS);
6057                                 if (bio->bi_opf & REQ_PREFLUSH)
6058                                         btrfs_dev_stat_inc_and_print(dev,
6059                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6060                         }
6061                 }
6062         }
6063
6064         if (bio == bbio->orig_bio)
6065                 is_orig_bio = 1;
6066
6067         btrfs_bio_counter_dec(bbio->fs_info);
6068
6069         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6070                 if (!is_orig_bio) {
6071                         bio_put(bio);
6072                         bio = bbio->orig_bio;
6073                 }
6074
6075                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6076                 /* only send an error to the higher layers if it is
6077                  * beyond the tolerance of the btrfs bio
6078                  */
6079                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6080                         bio->bi_status = BLK_STS_IOERR;
6081                 } else {
6082                         /*
6083                          * this bio is actually up to date, we didn't
6084                          * go over the max number of errors
6085                          */
6086                         bio->bi_status = BLK_STS_OK;
6087                 }
6088
6089                 btrfs_end_bbio(bbio, bio);
6090         } else if (!is_orig_bio) {
6091                 bio_put(bio);
6092         }
6093 }
6094
6095 /*
6096  * see run_scheduled_bios for a description of why bios are collected for
6097  * async submit.
6098  *
6099  * This will add one bio to the pending list for a device and make sure
6100  * the work struct is scheduled.
6101  */
6102 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6103                                         struct bio *bio)
6104 {
6105         struct btrfs_fs_info *fs_info = device->fs_info;
6106         int should_queue = 1;
6107         struct btrfs_pending_bios *pending_bios;
6108
6109         /* don't bother with additional async steps for reads, right now */
6110         if (bio_op(bio) == REQ_OP_READ) {
6111                 btrfsic_submit_bio(bio);
6112                 return;
6113         }
6114
6115         WARN_ON(bio->bi_next);
6116         bio->bi_next = NULL;
6117
6118         spin_lock(&device->io_lock);
6119         if (op_is_sync(bio->bi_opf))
6120                 pending_bios = &device->pending_sync_bios;
6121         else
6122                 pending_bios = &device->pending_bios;
6123
6124         if (pending_bios->tail)
6125                 pending_bios->tail->bi_next = bio;
6126
6127         pending_bios->tail = bio;
6128         if (!pending_bios->head)
6129                 pending_bios->head = bio;
6130         if (device->running_pending)
6131                 should_queue = 0;
6132
6133         spin_unlock(&device->io_lock);
6134
6135         if (should_queue)
6136                 btrfs_queue_work(fs_info->submit_workers, &device->work);
6137 }
6138
6139 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6140                               u64 physical, int dev_nr, int async)
6141 {
6142         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6143         struct btrfs_fs_info *fs_info = bbio->fs_info;
6144
6145         bio->bi_private = bbio;
6146         btrfs_io_bio(bio)->stripe_index = dev_nr;
6147         bio->bi_end_io = btrfs_end_bio;
6148         bio->bi_iter.bi_sector = physical >> 9;
6149         btrfs_debug_in_rcu(fs_info,
6150         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6151                 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6152                 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6153                 bio->bi_iter.bi_size);
6154         bio_set_dev(bio, dev->bdev);
6155
6156         btrfs_bio_counter_inc_noblocked(fs_info);
6157
6158         if (async)
6159                 btrfs_schedule_bio(dev, bio);
6160         else
6161                 btrfsic_submit_bio(bio);
6162 }
6163
6164 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6165 {
6166         atomic_inc(&bbio->error);
6167         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6168                 /* Should be the original bio. */
6169                 WARN_ON(bio != bbio->orig_bio);
6170
6171                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6172                 bio->bi_iter.bi_sector = logical >> 9;
6173                 if (atomic_read(&bbio->error) > bbio->max_errors)
6174                         bio->bi_status = BLK_STS_IOERR;
6175                 else
6176                         bio->bi_status = BLK_STS_OK;
6177                 btrfs_end_bbio(bbio, bio);
6178         }
6179 }
6180
6181 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6182                            int mirror_num, int async_submit)
6183 {
6184         struct btrfs_device *dev;
6185         struct bio *first_bio = bio;
6186         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6187         u64 length = 0;
6188         u64 map_length;
6189         int ret;
6190         int dev_nr;
6191         int total_devs;
6192         struct btrfs_bio *bbio = NULL;
6193
6194         length = bio->bi_iter.bi_size;
6195         map_length = length;
6196
6197         btrfs_bio_counter_inc_blocked(fs_info);
6198         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6199                                 &map_length, &bbio, mirror_num, 1);
6200         if (ret) {
6201                 btrfs_bio_counter_dec(fs_info);
6202                 return errno_to_blk_status(ret);
6203         }
6204
6205         total_devs = bbio->num_stripes;
6206         bbio->orig_bio = first_bio;
6207         bbio->private = first_bio->bi_private;
6208         bbio->end_io = first_bio->bi_end_io;
6209         bbio->fs_info = fs_info;
6210         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6211
6212         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6213             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6214                 /* In this case, map_length has been set to the length of
6215                    a single stripe; not the whole write */
6216                 if (bio_op(bio) == REQ_OP_WRITE) {
6217                         ret = raid56_parity_write(fs_info, bio, bbio,
6218                                                   map_length);
6219                 } else {
6220                         ret = raid56_parity_recover(fs_info, bio, bbio,
6221                                                     map_length, mirror_num, 1);
6222                 }
6223
6224                 btrfs_bio_counter_dec(fs_info);
6225                 return errno_to_blk_status(ret);
6226         }
6227
6228         if (map_length < length) {
6229                 btrfs_crit(fs_info,
6230                            "mapping failed logical %llu bio len %llu len %llu",
6231                            logical, length, map_length);
6232                 BUG();
6233         }
6234
6235         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6236                 dev = bbio->stripes[dev_nr].dev;
6237                 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6238                                                    &dev->dev_state) ||
6239                     (bio_op(first_bio) == REQ_OP_WRITE &&
6240                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6241                         bbio_error(bbio, first_bio, logical);
6242                         continue;
6243                 }
6244
6245                 if (dev_nr < total_devs - 1)
6246                         bio = btrfs_bio_clone(first_bio);
6247                 else
6248                         bio = first_bio;
6249
6250                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6251                                   dev_nr, async_submit);
6252         }
6253         btrfs_bio_counter_dec(fs_info);
6254         return BLK_STS_OK;
6255 }
6256
6257 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6258                                        u8 *uuid, u8 *fsid)
6259 {
6260         struct btrfs_device *device;
6261         struct btrfs_fs_devices *cur_devices;
6262
6263         cur_devices = fs_info->fs_devices;
6264         while (cur_devices) {
6265                 if (!fsid ||
6266                     !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6267                         device = find_device(cur_devices, devid, uuid);
6268                         if (device)
6269                                 return device;
6270                 }
6271                 cur_devices = cur_devices->seed;
6272         }
6273         return NULL;
6274 }
6275
6276 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6277                                             u64 devid, u8 *dev_uuid)
6278 {
6279         struct btrfs_device *device;
6280
6281         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6282         if (IS_ERR(device))
6283                 return device;
6284
6285         list_add(&device->dev_list, &fs_devices->devices);
6286         device->fs_devices = fs_devices;
6287         fs_devices->num_devices++;
6288
6289         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6290         fs_devices->missing_devices++;
6291
6292         return device;
6293 }
6294
6295 /**
6296  * btrfs_alloc_device - allocate struct btrfs_device
6297  * @fs_info:    used only for generating a new devid, can be NULL if
6298  *              devid is provided (i.e. @devid != NULL).
6299  * @devid:      a pointer to devid for this device.  If NULL a new devid
6300  *              is generated.
6301  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6302  *              is generated.
6303  *
6304  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6305  * on error.  Returned struct is not linked onto any lists and must be
6306  * destroyed with btrfs_free_device.
6307  */
6308 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6309                                         const u64 *devid,
6310                                         const u8 *uuid)
6311 {
6312         struct btrfs_device *dev;
6313         u64 tmp;
6314
6315         if (WARN_ON(!devid && !fs_info))
6316                 return ERR_PTR(-EINVAL);
6317
6318         dev = __alloc_device();
6319         if (IS_ERR(dev))
6320                 return dev;
6321
6322         if (devid)
6323                 tmp = *devid;
6324         else {
6325                 int ret;
6326
6327                 ret = find_next_devid(fs_info, &tmp);
6328                 if (ret) {
6329                         btrfs_free_device(dev);
6330                         return ERR_PTR(ret);
6331                 }
6332         }
6333         dev->devid = tmp;
6334
6335         if (uuid)
6336                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6337         else
6338                 generate_random_uuid(dev->uuid);
6339
6340         btrfs_init_work(&dev->work, btrfs_submit_helper,
6341                         pending_bios_fn, NULL, NULL);
6342
6343         return dev;
6344 }
6345
6346 /* Return -EIO if any error, otherwise return 0. */
6347 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6348                                    struct extent_buffer *leaf,
6349                                    struct btrfs_chunk *chunk, u64 logical)
6350 {
6351         u64 length;
6352         u64 stripe_len;
6353         u16 num_stripes;
6354         u16 sub_stripes;
6355         u64 type;
6356         u64 features;
6357         bool mixed = false;
6358
6359         length = btrfs_chunk_length(leaf, chunk);
6360         stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6361         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6362         sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6363         type = btrfs_chunk_type(leaf, chunk);
6364
6365         if (!num_stripes) {
6366                 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6367                           num_stripes);
6368                 return -EIO;
6369         }
6370         if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6371                 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6372                 return -EIO;
6373         }
6374         if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6375                 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6376                           btrfs_chunk_sector_size(leaf, chunk));
6377                 return -EIO;
6378         }
6379         if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6380                 btrfs_err(fs_info, "invalid chunk length %llu", length);
6381                 return -EIO;
6382         }
6383         if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6384                 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6385                           stripe_len);
6386                 return -EIO;
6387         }
6388         if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6389             type) {
6390                 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6391                           ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6392                             BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6393                           btrfs_chunk_type(leaf, chunk));
6394                 return -EIO;
6395         }
6396
6397         if ((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0) {
6398                 btrfs_err(fs_info, "missing chunk type flag: 0x%llx", type);
6399                 return -EIO;
6400         }
6401
6402         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
6403             (type & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA))) {
6404                 btrfs_err(fs_info,
6405                         "system chunk with data or metadata type: 0x%llx", type);
6406                 return -EIO;
6407         }
6408
6409         features = btrfs_super_incompat_flags(fs_info->super_copy);
6410         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
6411                 mixed = true;
6412
6413         if (!mixed) {
6414                 if ((type & BTRFS_BLOCK_GROUP_METADATA) &&
6415                     (type & BTRFS_BLOCK_GROUP_DATA)) {
6416                         btrfs_err(fs_info,
6417                         "mixed chunk type in non-mixed mode: 0x%llx", type);
6418                         return -EIO;
6419                 }
6420         }
6421
6422         if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6423             (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6424             (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6425             (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6426             (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6427             ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6428              num_stripes != 1)) {
6429                 btrfs_err(fs_info,
6430                         "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6431                         num_stripes, sub_stripes,
6432                         type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6433                 return -EIO;
6434         }
6435
6436         return 0;
6437 }
6438
6439 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6440                                         u64 devid, u8 *uuid, bool error)
6441 {
6442         if (error)
6443                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6444                               devid, uuid);
6445         else
6446                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6447                               devid, uuid);
6448 }
6449
6450 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6451                           struct extent_buffer *leaf,
6452                           struct btrfs_chunk *chunk)
6453 {
6454         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6455         struct map_lookup *map;
6456         struct extent_map *em;
6457         u64 logical;
6458         u64 length;
6459         u64 devid;
6460         u8 uuid[BTRFS_UUID_SIZE];
6461         int num_stripes;
6462         int ret;
6463         int i;
6464
6465         logical = key->offset;
6466         length = btrfs_chunk_length(leaf, chunk);
6467         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6468
6469         ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6470         if (ret)
6471                 return ret;
6472
6473         read_lock(&map_tree->map_tree.lock);
6474         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6475         read_unlock(&map_tree->map_tree.lock);
6476
6477         /* already mapped? */
6478         if (em && em->start <= logical && em->start + em->len > logical) {
6479                 free_extent_map(em);
6480                 return 0;
6481         } else if (em) {
6482                 free_extent_map(em);
6483         }
6484
6485         em = alloc_extent_map();
6486         if (!em)
6487                 return -ENOMEM;
6488         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6489         if (!map) {
6490                 free_extent_map(em);
6491                 return -ENOMEM;
6492         }
6493
6494         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6495         em->map_lookup = map;
6496         em->start = logical;
6497         em->len = length;
6498         em->orig_start = 0;
6499         em->block_start = 0;
6500         em->block_len = em->len;
6501
6502         map->num_stripes = num_stripes;
6503         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6504         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6505         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6506         map->type = btrfs_chunk_type(leaf, chunk);
6507         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6508         map->verified_stripes = 0;
6509         for (i = 0; i < num_stripes; i++) {
6510                 map->stripes[i].physical =
6511                         btrfs_stripe_offset_nr(leaf, chunk, i);
6512                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6513                 read_extent_buffer(leaf, uuid, (unsigned long)
6514                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6515                                    BTRFS_UUID_SIZE);
6516                 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6517                                                         uuid, NULL);
6518                 if (!map->stripes[i].dev &&
6519                     !btrfs_test_opt(fs_info, DEGRADED)) {
6520                         free_extent_map(em);
6521                         btrfs_report_missing_device(fs_info, devid, uuid, true);
6522                         return -ENOENT;
6523                 }
6524                 if (!map->stripes[i].dev) {
6525                         map->stripes[i].dev =
6526                                 add_missing_dev(fs_info->fs_devices, devid,
6527                                                 uuid);
6528                         if (IS_ERR(map->stripes[i].dev)) {
6529                                 free_extent_map(em);
6530                                 btrfs_err(fs_info,
6531                                         "failed to init missing dev %llu: %ld",
6532                                         devid, PTR_ERR(map->stripes[i].dev));
6533                                 return PTR_ERR(map->stripes[i].dev);
6534                         }
6535                         btrfs_report_missing_device(fs_info, devid, uuid, false);
6536                 }
6537                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6538                                 &(map->stripes[i].dev->dev_state));
6539
6540         }
6541
6542         write_lock(&map_tree->map_tree.lock);
6543         ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6544         write_unlock(&map_tree->map_tree.lock);
6545         if (ret < 0) {
6546                 btrfs_err(fs_info,
6547                           "failed to add chunk map, start=%llu len=%llu: %d",
6548                           em->start, em->len, ret);
6549         }
6550         free_extent_map(em);
6551
6552         return ret;
6553 }
6554
6555 static void fill_device_from_item(struct extent_buffer *leaf,
6556                                  struct btrfs_dev_item *dev_item,
6557                                  struct btrfs_device *device)
6558 {
6559         unsigned long ptr;
6560
6561         device->devid = btrfs_device_id(leaf, dev_item);
6562         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6563         device->total_bytes = device->disk_total_bytes;
6564         device->commit_total_bytes = device->disk_total_bytes;
6565         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6566         device->commit_bytes_used = device->bytes_used;
6567         device->type = btrfs_device_type(leaf, dev_item);
6568         device->io_align = btrfs_device_io_align(leaf, dev_item);
6569         device->io_width = btrfs_device_io_width(leaf, dev_item);
6570         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6571         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6572         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6573
6574         ptr = btrfs_device_uuid(dev_item);
6575         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6576 }
6577
6578 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6579                                                   u8 *fsid)
6580 {
6581         struct btrfs_fs_devices *fs_devices;
6582         int ret;
6583
6584         lockdep_assert_held(&uuid_mutex);
6585         ASSERT(fsid);
6586
6587         fs_devices = fs_info->fs_devices->seed;
6588         while (fs_devices) {
6589                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6590                         return fs_devices;
6591
6592                 fs_devices = fs_devices->seed;
6593         }
6594
6595         fs_devices = find_fsid(fsid);
6596         if (!fs_devices) {
6597                 if (!btrfs_test_opt(fs_info, DEGRADED))
6598                         return ERR_PTR(-ENOENT);
6599
6600                 fs_devices = alloc_fs_devices(fsid);
6601                 if (IS_ERR(fs_devices))
6602                         return fs_devices;
6603
6604                 fs_devices->seeding = 1;
6605                 fs_devices->opened = 1;
6606                 return fs_devices;
6607         }
6608
6609         fs_devices = clone_fs_devices(fs_devices);
6610         if (IS_ERR(fs_devices))
6611                 return fs_devices;
6612
6613         ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6614         if (ret) {
6615                 free_fs_devices(fs_devices);
6616                 fs_devices = ERR_PTR(ret);
6617                 goto out;
6618         }
6619
6620         if (!fs_devices->seeding) {
6621                 close_fs_devices(fs_devices);
6622                 free_fs_devices(fs_devices);
6623                 fs_devices = ERR_PTR(-EINVAL);
6624                 goto out;
6625         }
6626
6627         fs_devices->seed = fs_info->fs_devices->seed;
6628         fs_info->fs_devices->seed = fs_devices;
6629 out:
6630         return fs_devices;
6631 }
6632
6633 static int read_one_dev(struct btrfs_fs_info *fs_info,
6634                         struct extent_buffer *leaf,
6635                         struct btrfs_dev_item *dev_item)
6636 {
6637         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6638         struct btrfs_device *device;
6639         u64 devid;
6640         int ret;
6641         u8 fs_uuid[BTRFS_FSID_SIZE];
6642         u8 dev_uuid[BTRFS_UUID_SIZE];
6643
6644         devid = btrfs_device_id(leaf, dev_item);
6645         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6646                            BTRFS_UUID_SIZE);
6647         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6648                            BTRFS_FSID_SIZE);
6649
6650         if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6651                 fs_devices = open_seed_devices(fs_info, fs_uuid);
6652                 if (IS_ERR(fs_devices))
6653                         return PTR_ERR(fs_devices);
6654         }
6655
6656         device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6657         if (!device) {
6658                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6659                         btrfs_report_missing_device(fs_info, devid,
6660                                                         dev_uuid, true);
6661                         return -ENOENT;
6662                 }
6663
6664                 device = add_missing_dev(fs_devices, devid, dev_uuid);
6665                 if (IS_ERR(device)) {
6666                         btrfs_err(fs_info,
6667                                 "failed to add missing dev %llu: %ld",
6668                                 devid, PTR_ERR(device));
6669                         return PTR_ERR(device);
6670                 }
6671                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6672         } else {
6673                 if (!device->bdev) {
6674                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
6675                                 btrfs_report_missing_device(fs_info,
6676                                                 devid, dev_uuid, true);
6677                                 return -ENOENT;
6678                         }
6679                         btrfs_report_missing_device(fs_info, devid,
6680                                                         dev_uuid, false);
6681                 }
6682
6683                 if (!device->bdev &&
6684                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6685                         /*
6686                          * this happens when a device that was properly setup
6687                          * in the device info lists suddenly goes bad.
6688                          * device->bdev is NULL, and so we have to set
6689                          * device->missing to one here
6690                          */
6691                         device->fs_devices->missing_devices++;
6692                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6693                 }
6694
6695                 /* Move the device to its own fs_devices */
6696                 if (device->fs_devices != fs_devices) {
6697                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6698                                                         &device->dev_state));
6699
6700                         list_move(&device->dev_list, &fs_devices->devices);
6701                         device->fs_devices->num_devices--;
6702                         fs_devices->num_devices++;
6703
6704                         device->fs_devices->missing_devices--;
6705                         fs_devices->missing_devices++;
6706
6707                         device->fs_devices = fs_devices;
6708                 }
6709         }
6710
6711         if (device->fs_devices != fs_info->fs_devices) {
6712                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6713                 if (device->generation !=
6714                     btrfs_device_generation(leaf, dev_item))
6715                         return -EINVAL;
6716         }
6717
6718         fill_device_from_item(leaf, dev_item, device);
6719         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6720         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6721            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6722                 device->fs_devices->total_rw_bytes += device->total_bytes;
6723                 atomic64_add(device->total_bytes - device->bytes_used,
6724                                 &fs_info->free_chunk_space);
6725         }
6726         ret = 0;
6727         return ret;
6728 }
6729
6730 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6731 {
6732         struct btrfs_root *root = fs_info->tree_root;
6733         struct btrfs_super_block *super_copy = fs_info->super_copy;
6734         struct extent_buffer *sb;
6735         struct btrfs_disk_key *disk_key;
6736         struct btrfs_chunk *chunk;
6737         u8 *array_ptr;
6738         unsigned long sb_array_offset;
6739         int ret = 0;
6740         u32 num_stripes;
6741         u32 array_size;
6742         u32 len = 0;
6743         u32 cur_offset;
6744         u64 type;
6745         struct btrfs_key key;
6746
6747         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6748         /*
6749          * This will create extent buffer of nodesize, superblock size is
6750          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6751          * overallocate but we can keep it as-is, only the first page is used.
6752          */
6753         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6754         if (IS_ERR(sb))
6755                 return PTR_ERR(sb);
6756         set_extent_buffer_uptodate(sb);
6757         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6758         /*
6759          * The sb extent buffer is artificial and just used to read the system array.
6760          * set_extent_buffer_uptodate() call does not properly mark all it's
6761          * pages up-to-date when the page is larger: extent does not cover the
6762          * whole page and consequently check_page_uptodate does not find all
6763          * the page's extents up-to-date (the hole beyond sb),
6764          * write_extent_buffer then triggers a WARN_ON.
6765          *
6766          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6767          * but sb spans only this function. Add an explicit SetPageUptodate call
6768          * to silence the warning eg. on PowerPC 64.
6769          */
6770         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6771                 SetPageUptodate(sb->pages[0]);
6772
6773         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6774         array_size = btrfs_super_sys_array_size(super_copy);
6775
6776         array_ptr = super_copy->sys_chunk_array;
6777         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6778         cur_offset = 0;
6779
6780         while (cur_offset < array_size) {
6781                 disk_key = (struct btrfs_disk_key *)array_ptr;
6782                 len = sizeof(*disk_key);
6783                 if (cur_offset + len > array_size)
6784                         goto out_short_read;
6785
6786                 btrfs_disk_key_to_cpu(&key, disk_key);
6787
6788                 array_ptr += len;
6789                 sb_array_offset += len;
6790                 cur_offset += len;
6791
6792                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6793                         chunk = (struct btrfs_chunk *)sb_array_offset;
6794                         /*
6795                          * At least one btrfs_chunk with one stripe must be
6796                          * present, exact stripe count check comes afterwards
6797                          */
6798                         len = btrfs_chunk_item_size(1);
6799                         if (cur_offset + len > array_size)
6800                                 goto out_short_read;
6801
6802                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6803                         if (!num_stripes) {
6804                                 btrfs_err(fs_info,
6805                                         "invalid number of stripes %u in sys_array at offset %u",
6806                                         num_stripes, cur_offset);
6807                                 ret = -EIO;
6808                                 break;
6809                         }
6810
6811                         type = btrfs_chunk_type(sb, chunk);
6812                         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6813                                 btrfs_err(fs_info,
6814                             "invalid chunk type %llu in sys_array at offset %u",
6815                                         type, cur_offset);
6816                                 ret = -EIO;
6817                                 break;
6818                         }
6819
6820                         len = btrfs_chunk_item_size(num_stripes);
6821                         if (cur_offset + len > array_size)
6822                                 goto out_short_read;
6823
6824                         ret = read_one_chunk(fs_info, &key, sb, chunk);
6825                         if (ret)
6826                                 break;
6827                 } else {
6828                         btrfs_err(fs_info,
6829                             "unexpected item type %u in sys_array at offset %u",
6830                                   (u32)key.type, cur_offset);
6831                         ret = -EIO;
6832                         break;
6833                 }
6834                 array_ptr += len;
6835                 sb_array_offset += len;
6836                 cur_offset += len;
6837         }
6838         clear_extent_buffer_uptodate(sb);
6839         free_extent_buffer_stale(sb);
6840         return ret;
6841
6842 out_short_read:
6843         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6844                         len, cur_offset);
6845         clear_extent_buffer_uptodate(sb);
6846         free_extent_buffer_stale(sb);
6847         return -EIO;
6848 }
6849
6850 /*
6851  * Check if all chunks in the fs are OK for read-write degraded mount
6852  *
6853  * If the @failing_dev is specified, it's accounted as missing.
6854  *
6855  * Return true if all chunks meet the minimal RW mount requirements.
6856  * Return false if any chunk doesn't meet the minimal RW mount requirements.
6857  */
6858 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6859                                         struct btrfs_device *failing_dev)
6860 {
6861         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6862         struct extent_map *em;
6863         u64 next_start = 0;
6864         bool ret = true;
6865
6866         read_lock(&map_tree->map_tree.lock);
6867         em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6868         read_unlock(&map_tree->map_tree.lock);
6869         /* No chunk at all? Return false anyway */
6870         if (!em) {
6871                 ret = false;
6872                 goto out;
6873         }
6874         while (em) {
6875                 struct map_lookup *map;
6876                 int missing = 0;
6877                 int max_tolerated;
6878                 int i;
6879
6880                 map = em->map_lookup;
6881                 max_tolerated =
6882                         btrfs_get_num_tolerated_disk_barrier_failures(
6883                                         map->type);
6884                 for (i = 0; i < map->num_stripes; i++) {
6885                         struct btrfs_device *dev = map->stripes[i].dev;
6886
6887                         if (!dev || !dev->bdev ||
6888                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6889                             dev->last_flush_error)
6890                                 missing++;
6891                         else if (failing_dev && failing_dev == dev)
6892                                 missing++;
6893                 }
6894                 if (missing > max_tolerated) {
6895                         if (!failing_dev)
6896                                 btrfs_warn(fs_info,
6897         "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6898                                    em->start, missing, max_tolerated);
6899                         free_extent_map(em);
6900                         ret = false;
6901                         goto out;
6902                 }
6903                 next_start = extent_map_end(em);
6904                 free_extent_map(em);
6905
6906                 read_lock(&map_tree->map_tree.lock);
6907                 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6908                                            (u64)(-1) - next_start);
6909                 read_unlock(&map_tree->map_tree.lock);
6910         }
6911 out:
6912         return ret;
6913 }
6914
6915 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6916 {
6917         struct btrfs_root *root = fs_info->chunk_root;
6918         struct btrfs_path *path;
6919         struct extent_buffer *leaf;
6920         struct btrfs_key key;
6921         struct btrfs_key found_key;
6922         int ret;
6923         int slot;
6924         u64 total_dev = 0;
6925
6926         path = btrfs_alloc_path();
6927         if (!path)
6928                 return -ENOMEM;
6929
6930         /*
6931          * uuid_mutex is needed only if we are mounting a sprout FS
6932          * otherwise we don't need it.
6933          */
6934         mutex_lock(&uuid_mutex);
6935         mutex_lock(&fs_info->chunk_mutex);
6936
6937         /*
6938          * Read all device items, and then all the chunk items. All
6939          * device items are found before any chunk item (their object id
6940          * is smaller than the lowest possible object id for a chunk
6941          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6942          */
6943         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6944         key.offset = 0;
6945         key.type = 0;
6946         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6947         if (ret < 0)
6948                 goto error;
6949         while (1) {
6950                 leaf = path->nodes[0];
6951                 slot = path->slots[0];
6952                 if (slot >= btrfs_header_nritems(leaf)) {
6953                         ret = btrfs_next_leaf(root, path);
6954                         if (ret == 0)
6955                                 continue;
6956                         if (ret < 0)
6957                                 goto error;
6958                         break;
6959                 }
6960                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6961                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6962                         struct btrfs_dev_item *dev_item;
6963                         dev_item = btrfs_item_ptr(leaf, slot,
6964                                                   struct btrfs_dev_item);
6965                         ret = read_one_dev(fs_info, leaf, dev_item);
6966                         if (ret)
6967                                 goto error;
6968                         total_dev++;
6969                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6970                         struct btrfs_chunk *chunk;
6971                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6972                         ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6973                         if (ret)
6974                                 goto error;
6975                 }
6976                 path->slots[0]++;
6977         }
6978
6979         /*
6980          * After loading chunk tree, we've got all device information,
6981          * do another round of validation checks.
6982          */
6983         if (total_dev != fs_info->fs_devices->total_devices) {
6984                 btrfs_err(fs_info,
6985            "super_num_devices %llu mismatch with num_devices %llu found here",
6986                           btrfs_super_num_devices(fs_info->super_copy),
6987                           total_dev);
6988                 ret = -EINVAL;
6989                 goto error;
6990         }
6991         if (btrfs_super_total_bytes(fs_info->super_copy) <
6992             fs_info->fs_devices->total_rw_bytes) {
6993                 btrfs_err(fs_info,
6994         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6995                           btrfs_super_total_bytes(fs_info->super_copy),
6996                           fs_info->fs_devices->total_rw_bytes);
6997                 ret = -EINVAL;
6998                 goto error;
6999         }
7000         ret = 0;
7001 error:
7002         mutex_unlock(&fs_info->chunk_mutex);
7003         mutex_unlock(&uuid_mutex);
7004
7005         btrfs_free_path(path);
7006         return ret;
7007 }
7008
7009 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7010 {
7011         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7012         struct btrfs_device *device;
7013
7014         while (fs_devices) {
7015                 mutex_lock(&fs_devices->device_list_mutex);
7016                 list_for_each_entry(device, &fs_devices->devices, dev_list)
7017                         device->fs_info = fs_info;
7018                 mutex_unlock(&fs_devices->device_list_mutex);
7019
7020                 fs_devices = fs_devices->seed;
7021         }
7022 }
7023
7024 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7025 {
7026         int i;
7027
7028         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7029                 btrfs_dev_stat_reset(dev, i);
7030 }
7031
7032 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7033 {
7034         struct btrfs_key key;
7035         struct btrfs_key found_key;
7036         struct btrfs_root *dev_root = fs_info->dev_root;
7037         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7038         struct extent_buffer *eb;
7039         int slot;
7040         int ret = 0;
7041         struct btrfs_device *device;
7042         struct btrfs_path *path = NULL;
7043         int i;
7044
7045         path = btrfs_alloc_path();
7046         if (!path) {
7047                 ret = -ENOMEM;
7048                 goto out;
7049         }
7050
7051         mutex_lock(&fs_devices->device_list_mutex);
7052         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7053                 int item_size;
7054                 struct btrfs_dev_stats_item *ptr;
7055
7056                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7057                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7058                 key.offset = device->devid;
7059                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7060                 if (ret) {
7061                         __btrfs_reset_dev_stats(device);
7062                         device->dev_stats_valid = 1;
7063                         btrfs_release_path(path);
7064                         continue;
7065                 }
7066                 slot = path->slots[0];
7067                 eb = path->nodes[0];
7068                 btrfs_item_key_to_cpu(eb, &found_key, slot);
7069                 item_size = btrfs_item_size_nr(eb, slot);
7070
7071                 ptr = btrfs_item_ptr(eb, slot,
7072                                      struct btrfs_dev_stats_item);
7073
7074                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7075                         if (item_size >= (1 + i) * sizeof(__le64))
7076                                 btrfs_dev_stat_set(device, i,
7077                                         btrfs_dev_stats_value(eb, ptr, i));
7078                         else
7079                                 btrfs_dev_stat_reset(device, i);
7080                 }
7081
7082                 device->dev_stats_valid = 1;
7083                 btrfs_dev_stat_print_on_load(device);
7084                 btrfs_release_path(path);
7085         }
7086         mutex_unlock(&fs_devices->device_list_mutex);
7087
7088 out:
7089         btrfs_free_path(path);
7090         return ret < 0 ? ret : 0;
7091 }
7092
7093 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7094                                 struct btrfs_device *device)
7095 {
7096         struct btrfs_fs_info *fs_info = trans->fs_info;
7097         struct btrfs_root *dev_root = fs_info->dev_root;
7098         struct btrfs_path *path;
7099         struct btrfs_key key;
7100         struct extent_buffer *eb;
7101         struct btrfs_dev_stats_item *ptr;
7102         int ret;
7103         int i;
7104
7105         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7106         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7107         key.offset = device->devid;
7108
7109         path = btrfs_alloc_path();
7110         if (!path)
7111                 return -ENOMEM;
7112         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7113         if (ret < 0) {
7114                 btrfs_warn_in_rcu(fs_info,
7115                         "error %d while searching for dev_stats item for device %s",
7116                               ret, rcu_str_deref(device->name));
7117                 goto out;
7118         }
7119
7120         if (ret == 0 &&
7121             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7122                 /* need to delete old one and insert a new one */
7123                 ret = btrfs_del_item(trans, dev_root, path);
7124                 if (ret != 0) {
7125                         btrfs_warn_in_rcu(fs_info,
7126                                 "delete too small dev_stats item for device %s failed %d",
7127                                       rcu_str_deref(device->name), ret);
7128                         goto out;
7129                 }
7130                 ret = 1;
7131         }
7132
7133         if (ret == 1) {
7134                 /* need to insert a new item */
7135                 btrfs_release_path(path);
7136                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7137                                               &key, sizeof(*ptr));
7138                 if (ret < 0) {
7139                         btrfs_warn_in_rcu(fs_info,
7140                                 "insert dev_stats item for device %s failed %d",
7141                                 rcu_str_deref(device->name), ret);
7142                         goto out;
7143                 }
7144         }
7145
7146         eb = path->nodes[0];
7147         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7148         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7149                 btrfs_set_dev_stats_value(eb, ptr, i,
7150                                           btrfs_dev_stat_read(device, i));
7151         btrfs_mark_buffer_dirty(eb);
7152
7153 out:
7154         btrfs_free_path(path);
7155         return ret;
7156 }
7157
7158 /*
7159  * called from commit_transaction. Writes all changed device stats to disk.
7160  */
7161 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7162                         struct btrfs_fs_info *fs_info)
7163 {
7164         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7165         struct btrfs_device *device;
7166         int stats_cnt;
7167         int ret = 0;
7168
7169         mutex_lock(&fs_devices->device_list_mutex);
7170         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7171                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7172                 if (!device->dev_stats_valid || stats_cnt == 0)
7173                         continue;
7174
7175
7176                 /*
7177                  * There is a LOAD-LOAD control dependency between the value of
7178                  * dev_stats_ccnt and updating the on-disk values which requires
7179                  * reading the in-memory counters. Such control dependencies
7180                  * require explicit read memory barriers.
7181                  *
7182                  * This memory barriers pairs with smp_mb__before_atomic in
7183                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7184                  * barrier implied by atomic_xchg in
7185                  * btrfs_dev_stats_read_and_reset
7186                  */
7187                 smp_rmb();
7188
7189                 ret = update_dev_stat_item(trans, device);
7190                 if (!ret)
7191                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7192         }
7193         mutex_unlock(&fs_devices->device_list_mutex);
7194
7195         return ret;
7196 }
7197
7198 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7199 {
7200         btrfs_dev_stat_inc(dev, index);
7201         btrfs_dev_stat_print_on_error(dev);
7202 }
7203
7204 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7205 {
7206         if (!dev->dev_stats_valid)
7207                 return;
7208         btrfs_err_rl_in_rcu(dev->fs_info,
7209                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7210                            rcu_str_deref(dev->name),
7211                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7212                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7213                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7214                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7215                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7216 }
7217
7218 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7219 {
7220         int i;
7221
7222         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7223                 if (btrfs_dev_stat_read(dev, i) != 0)
7224                         break;
7225         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7226                 return; /* all values == 0, suppress message */
7227
7228         btrfs_info_in_rcu(dev->fs_info,
7229                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7230                rcu_str_deref(dev->name),
7231                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7232                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7233                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7234                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7235                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7236 }
7237
7238 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7239                         struct btrfs_ioctl_get_dev_stats *stats)
7240 {
7241         struct btrfs_device *dev;
7242         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7243         int i;
7244
7245         mutex_lock(&fs_devices->device_list_mutex);
7246         dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7247         mutex_unlock(&fs_devices->device_list_mutex);
7248
7249         if (!dev) {
7250                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7251                 return -ENODEV;
7252         } else if (!dev->dev_stats_valid) {
7253                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7254                 return -ENODEV;
7255         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7256                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7257                         if (stats->nr_items > i)
7258                                 stats->values[i] =
7259                                         btrfs_dev_stat_read_and_reset(dev, i);
7260                         else
7261                                 btrfs_dev_stat_reset(dev, i);
7262                 }
7263         } else {
7264                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7265                         if (stats->nr_items > i)
7266                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7267         }
7268         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7269                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7270         return 0;
7271 }
7272
7273 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7274 {
7275         struct buffer_head *bh;
7276         struct btrfs_super_block *disk_super;
7277         int copy_num;
7278
7279         if (!bdev)
7280                 return;
7281
7282         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7283                 copy_num++) {
7284
7285                 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7286                         continue;
7287
7288                 disk_super = (struct btrfs_super_block *)bh->b_data;
7289
7290                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7291                 set_buffer_dirty(bh);
7292                 sync_dirty_buffer(bh);
7293                 brelse(bh);
7294         }
7295
7296         /* Notify udev that device has changed */
7297         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7298
7299         /* Update ctime/mtime for device path for libblkid */
7300         update_dev_time(device_path);
7301 }
7302
7303 /*
7304  * Update the size of all devices, which is used for writing out the
7305  * super blocks.
7306  */
7307 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7308 {
7309         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7310         struct btrfs_device *curr, *next;
7311
7312         if (list_empty(&fs_devices->resized_devices))
7313                 return;
7314
7315         mutex_lock(&fs_devices->device_list_mutex);
7316         mutex_lock(&fs_info->chunk_mutex);
7317         list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7318                                  resized_list) {
7319                 list_del_init(&curr->resized_list);
7320                 curr->commit_total_bytes = curr->disk_total_bytes;
7321         }
7322         mutex_unlock(&fs_info->chunk_mutex);
7323         mutex_unlock(&fs_devices->device_list_mutex);
7324 }
7325
7326 /* Must be invoked during the transaction commit */
7327 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans)
7328 {
7329         struct btrfs_fs_info *fs_info = trans->fs_info;
7330         struct extent_map *em;
7331         struct map_lookup *map;
7332         struct btrfs_device *dev;
7333         int i;
7334
7335         if (list_empty(&trans->pending_chunks))
7336                 return;
7337
7338         /* In order to kick the device replace finish process */
7339         mutex_lock(&fs_info->chunk_mutex);
7340         list_for_each_entry(em, &trans->pending_chunks, list) {
7341                 map = em->map_lookup;
7342
7343                 for (i = 0; i < map->num_stripes; i++) {
7344                         dev = map->stripes[i].dev;
7345                         dev->commit_bytes_used = dev->bytes_used;
7346                 }
7347         }
7348         mutex_unlock(&fs_info->chunk_mutex);
7349 }
7350
7351 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7352 {
7353         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7354         while (fs_devices) {
7355                 fs_devices->fs_info = fs_info;
7356                 fs_devices = fs_devices->seed;
7357         }
7358 }
7359
7360 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7361 {
7362         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7363         while (fs_devices) {
7364                 fs_devices->fs_info = NULL;
7365                 fs_devices = fs_devices->seed;
7366         }
7367 }
7368
7369 /*
7370  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7371  */
7372 int btrfs_bg_type_to_factor(u64 flags)
7373 {
7374         if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
7375                      BTRFS_BLOCK_GROUP_RAID10))
7376                 return 2;
7377         return 1;
7378 }
7379
7380
7381 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
7382 {
7383         int index = btrfs_bg_flags_to_raid_index(type);
7384         int ncopies = btrfs_raid_array[index].ncopies;
7385         int data_stripes;
7386
7387         switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
7388         case BTRFS_BLOCK_GROUP_RAID5:
7389                 data_stripes = num_stripes - 1;
7390                 break;
7391         case BTRFS_BLOCK_GROUP_RAID6:
7392                 data_stripes = num_stripes - 2;
7393                 break;
7394         default:
7395                 data_stripes = num_stripes / ncopies;
7396                 break;
7397         }
7398         return div_u64(chunk_len, data_stripes);
7399 }
7400
7401 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7402                                  u64 chunk_offset, u64 devid,
7403                                  u64 physical_offset, u64 physical_len)
7404 {
7405         struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7406         struct extent_map *em;
7407         struct map_lookup *map;
7408         struct btrfs_device *dev;
7409         u64 stripe_len;
7410         bool found = false;
7411         int ret = 0;
7412         int i;
7413
7414         read_lock(&em_tree->lock);
7415         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7416         read_unlock(&em_tree->lock);
7417
7418         if (!em) {
7419                 btrfs_err(fs_info,
7420 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7421                           physical_offset, devid);
7422                 ret = -EUCLEAN;
7423                 goto out;
7424         }
7425
7426         map = em->map_lookup;
7427         stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7428         if (physical_len != stripe_len) {
7429                 btrfs_err(fs_info,
7430 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7431                           physical_offset, devid, em->start, physical_len,
7432                           stripe_len);
7433                 ret = -EUCLEAN;
7434                 goto out;
7435         }
7436
7437         for (i = 0; i < map->num_stripes; i++) {
7438                 if (map->stripes[i].dev->devid == devid &&
7439                     map->stripes[i].physical == physical_offset) {
7440                         found = true;
7441                         if (map->verified_stripes >= map->num_stripes) {
7442                                 btrfs_err(fs_info,
7443                                 "too many dev extents for chunk %llu found",
7444                                           em->start);
7445                                 ret = -EUCLEAN;
7446                                 goto out;
7447                         }
7448                         map->verified_stripes++;
7449                         break;
7450                 }
7451         }
7452         if (!found) {
7453                 btrfs_err(fs_info,
7454         "dev extent physical offset %llu devid %llu has no corresponding chunk",
7455                         physical_offset, devid);
7456                 ret = -EUCLEAN;
7457         }
7458
7459         /* Make sure no dev extent is beyond device bondary */
7460         dev = btrfs_find_device(fs_info, devid, NULL, NULL);
7461         if (!dev) {
7462                 btrfs_err(fs_info, "failed to find devid %llu", devid);
7463                 ret = -EUCLEAN;
7464                 goto out;
7465         }
7466         if (physical_offset + physical_len > dev->disk_total_bytes) {
7467                 btrfs_err(fs_info,
7468 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7469                           devid, physical_offset, physical_len,
7470                           dev->disk_total_bytes);
7471                 ret = -EUCLEAN;
7472                 goto out;
7473         }
7474 out:
7475         free_extent_map(em);
7476         return ret;
7477 }
7478
7479 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7480 {
7481         struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
7482         struct extent_map *em;
7483         struct rb_node *node;
7484         int ret = 0;
7485
7486         read_lock(&em_tree->lock);
7487         for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7488                 em = rb_entry(node, struct extent_map, rb_node);
7489                 if (em->map_lookup->num_stripes !=
7490                     em->map_lookup->verified_stripes) {
7491                         btrfs_err(fs_info,
7492                         "chunk %llu has missing dev extent, have %d expect %d",
7493                                   em->start, em->map_lookup->verified_stripes,
7494                                   em->map_lookup->num_stripes);
7495                         ret = -EUCLEAN;
7496                         goto out;
7497                 }
7498         }
7499 out:
7500         read_unlock(&em_tree->lock);
7501         return ret;
7502 }
7503
7504 /*
7505  * Ensure that all dev extents are mapped to correct chunk, otherwise
7506  * later chunk allocation/free would cause unexpected behavior.
7507  *
7508  * NOTE: This will iterate through the whole device tree, which should be of
7509  * the same size level as the chunk tree.  This slightly increases mount time.
7510  */
7511 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7512 {
7513         struct btrfs_path *path;
7514         struct btrfs_root *root = fs_info->dev_root;
7515         struct btrfs_key key;
7516         u64 prev_devid = 0;
7517         u64 prev_dev_ext_end = 0;
7518         int ret = 0;
7519
7520         key.objectid = 1;
7521         key.type = BTRFS_DEV_EXTENT_KEY;
7522         key.offset = 0;
7523
7524         path = btrfs_alloc_path();
7525         if (!path)
7526                 return -ENOMEM;
7527
7528         path->reada = READA_FORWARD;
7529         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7530         if (ret < 0)
7531                 goto out;
7532
7533         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7534                 ret = btrfs_next_item(root, path);
7535                 if (ret < 0)
7536                         goto out;
7537                 /* No dev extents at all? Not good */
7538                 if (ret > 0) {
7539                         ret = -EUCLEAN;
7540                         goto out;
7541                 }
7542         }
7543         while (1) {
7544                 struct extent_buffer *leaf = path->nodes[0];
7545                 struct btrfs_dev_extent *dext;
7546                 int slot = path->slots[0];
7547                 u64 chunk_offset;
7548                 u64 physical_offset;
7549                 u64 physical_len;
7550                 u64 devid;
7551
7552                 btrfs_item_key_to_cpu(leaf, &key, slot);
7553                 if (key.type != BTRFS_DEV_EXTENT_KEY)
7554                         break;
7555                 devid = key.objectid;
7556                 physical_offset = key.offset;
7557
7558                 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7559                 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7560                 physical_len = btrfs_dev_extent_length(leaf, dext);
7561
7562                 /* Check if this dev extent overlaps with the previous one */
7563                 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7564                         btrfs_err(fs_info,
7565 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7566                                   devid, physical_offset, prev_dev_ext_end);
7567                         ret = -EUCLEAN;
7568                         goto out;
7569                 }
7570
7571                 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7572                                             physical_offset, physical_len);
7573                 if (ret < 0)
7574                         goto out;
7575                 prev_devid = devid;
7576                 prev_dev_ext_end = physical_offset + physical_len;
7577
7578                 ret = btrfs_next_item(root, path);
7579                 if (ret < 0)
7580                         goto out;
7581                 if (ret > 0) {
7582                         ret = 0;
7583                         break;
7584                 }
7585         }
7586
7587         /* Ensure all chunks have corresponding dev extents */
7588         ret = verify_chunk_dev_extent_mapping(fs_info);
7589 out:
7590         btrfs_free_path(path);
7591         return ret;
7592 }
7593
7594 /*
7595  * Check whether the given block group or device is pinned by any inode being
7596  * used as a swapfile.
7597  */
7598 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7599 {
7600         struct btrfs_swapfile_pin *sp;
7601         struct rb_node *node;
7602
7603         spin_lock(&fs_info->swapfile_pins_lock);
7604         node = fs_info->swapfile_pins.rb_node;
7605         while (node) {
7606                 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7607                 if (ptr < sp->ptr)
7608                         node = node->rb_left;
7609                 else if (ptr > sp->ptr)
7610                         node = node->rb_right;
7611                 else
7612                         break;
7613         }
7614         spin_unlock(&fs_info->swapfile_pins_lock);
7615         return node != NULL;
7616 }