Btrfs: attach delayed ref updates to delayed ref heads
[sfrench/cifs-2.6.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34
35 #define BTRFS_ROOT_TRANS_TAG 0
36
37 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
38         [TRANS_STATE_RUNNING]           = 0U,
39         [TRANS_STATE_BLOCKED]           = (__TRANS_USERSPACE |
40                                            __TRANS_START),
41         [TRANS_STATE_COMMIT_START]      = (__TRANS_USERSPACE |
42                                            __TRANS_START |
43                                            __TRANS_ATTACH),
44         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_USERSPACE |
45                                            __TRANS_START |
46                                            __TRANS_ATTACH |
47                                            __TRANS_JOIN),
48         [TRANS_STATE_UNBLOCKED]         = (__TRANS_USERSPACE |
49                                            __TRANS_START |
50                                            __TRANS_ATTACH |
51                                            __TRANS_JOIN |
52                                            __TRANS_JOIN_NOLOCK),
53         [TRANS_STATE_COMPLETED]         = (__TRANS_USERSPACE |
54                                            __TRANS_START |
55                                            __TRANS_ATTACH |
56                                            __TRANS_JOIN |
57                                            __TRANS_JOIN_NOLOCK),
58 };
59
60 void btrfs_put_transaction(struct btrfs_transaction *transaction)
61 {
62         WARN_ON(atomic_read(&transaction->use_count) == 0);
63         if (atomic_dec_and_test(&transaction->use_count)) {
64                 BUG_ON(!list_empty(&transaction->list));
65                 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
66                 while (!list_empty(&transaction->pending_chunks)) {
67                         struct extent_map *em;
68
69                         em = list_first_entry(&transaction->pending_chunks,
70                                               struct extent_map, list);
71                         list_del_init(&em->list);
72                         free_extent_map(em);
73                 }
74                 kmem_cache_free(btrfs_transaction_cachep, transaction);
75         }
76 }
77
78 static noinline void switch_commit_root(struct btrfs_root *root)
79 {
80         free_extent_buffer(root->commit_root);
81         root->commit_root = btrfs_root_node(root);
82 }
83
84 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
85                                          unsigned int type)
86 {
87         if (type & TRANS_EXTWRITERS)
88                 atomic_inc(&trans->num_extwriters);
89 }
90
91 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
92                                          unsigned int type)
93 {
94         if (type & TRANS_EXTWRITERS)
95                 atomic_dec(&trans->num_extwriters);
96 }
97
98 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
99                                           unsigned int type)
100 {
101         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
102 }
103
104 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
105 {
106         return atomic_read(&trans->num_extwriters);
107 }
108
109 /*
110  * either allocate a new transaction or hop into the existing one
111  */
112 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
113 {
114         struct btrfs_transaction *cur_trans;
115         struct btrfs_fs_info *fs_info = root->fs_info;
116
117         spin_lock(&fs_info->trans_lock);
118 loop:
119         /* The file system has been taken offline. No new transactions. */
120         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
121                 spin_unlock(&fs_info->trans_lock);
122                 return -EROFS;
123         }
124
125         cur_trans = fs_info->running_transaction;
126         if (cur_trans) {
127                 if (cur_trans->aborted) {
128                         spin_unlock(&fs_info->trans_lock);
129                         return cur_trans->aborted;
130                 }
131                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
132                         spin_unlock(&fs_info->trans_lock);
133                         return -EBUSY;
134                 }
135                 atomic_inc(&cur_trans->use_count);
136                 atomic_inc(&cur_trans->num_writers);
137                 extwriter_counter_inc(cur_trans, type);
138                 spin_unlock(&fs_info->trans_lock);
139                 return 0;
140         }
141         spin_unlock(&fs_info->trans_lock);
142
143         /*
144          * If we are ATTACH, we just want to catch the current transaction,
145          * and commit it. If there is no transaction, just return ENOENT.
146          */
147         if (type == TRANS_ATTACH)
148                 return -ENOENT;
149
150         /*
151          * JOIN_NOLOCK only happens during the transaction commit, so
152          * it is impossible that ->running_transaction is NULL
153          */
154         BUG_ON(type == TRANS_JOIN_NOLOCK);
155
156         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
157         if (!cur_trans)
158                 return -ENOMEM;
159
160         spin_lock(&fs_info->trans_lock);
161         if (fs_info->running_transaction) {
162                 /*
163                  * someone started a transaction after we unlocked.  Make sure
164                  * to redo the checks above
165                  */
166                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
167                 goto loop;
168         } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
169                 spin_unlock(&fs_info->trans_lock);
170                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
171                 return -EROFS;
172         }
173
174         atomic_set(&cur_trans->num_writers, 1);
175         extwriter_counter_init(cur_trans, type);
176         init_waitqueue_head(&cur_trans->writer_wait);
177         init_waitqueue_head(&cur_trans->commit_wait);
178         cur_trans->state = TRANS_STATE_RUNNING;
179         /*
180          * One for this trans handle, one so it will live on until we
181          * commit the transaction.
182          */
183         atomic_set(&cur_trans->use_count, 2);
184         cur_trans->start_time = get_seconds();
185
186         cur_trans->delayed_refs.href_root = RB_ROOT;
187         atomic_set(&cur_trans->delayed_refs.num_entries, 0);
188         cur_trans->delayed_refs.num_heads_ready = 0;
189         cur_trans->delayed_refs.num_heads = 0;
190         cur_trans->delayed_refs.flushing = 0;
191         cur_trans->delayed_refs.run_delayed_start = 0;
192
193         /*
194          * although the tree mod log is per file system and not per transaction,
195          * the log must never go across transaction boundaries.
196          */
197         smp_mb();
198         if (!list_empty(&fs_info->tree_mod_seq_list))
199                 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
200                         "creating a fresh transaction\n");
201         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
202                 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
203                         "creating a fresh transaction\n");
204         atomic64_set(&fs_info->tree_mod_seq, 0);
205
206         spin_lock_init(&cur_trans->delayed_refs.lock);
207
208         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
209         INIT_LIST_HEAD(&cur_trans->ordered_operations);
210         INIT_LIST_HEAD(&cur_trans->pending_chunks);
211         list_add_tail(&cur_trans->list, &fs_info->trans_list);
212         extent_io_tree_init(&cur_trans->dirty_pages,
213                              fs_info->btree_inode->i_mapping);
214         fs_info->generation++;
215         cur_trans->transid = fs_info->generation;
216         fs_info->running_transaction = cur_trans;
217         cur_trans->aborted = 0;
218         spin_unlock(&fs_info->trans_lock);
219
220         return 0;
221 }
222
223 /*
224  * this does all the record keeping required to make sure that a reference
225  * counted root is properly recorded in a given transaction.  This is required
226  * to make sure the old root from before we joined the transaction is deleted
227  * when the transaction commits
228  */
229 static int record_root_in_trans(struct btrfs_trans_handle *trans,
230                                struct btrfs_root *root)
231 {
232         if (root->ref_cows && root->last_trans < trans->transid) {
233                 WARN_ON(root == root->fs_info->extent_root);
234                 WARN_ON(root->commit_root != root->node);
235
236                 /*
237                  * see below for in_trans_setup usage rules
238                  * we have the reloc mutex held now, so there
239                  * is only one writer in this function
240                  */
241                 root->in_trans_setup = 1;
242
243                 /* make sure readers find in_trans_setup before
244                  * they find our root->last_trans update
245                  */
246                 smp_wmb();
247
248                 spin_lock(&root->fs_info->fs_roots_radix_lock);
249                 if (root->last_trans == trans->transid) {
250                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
251                         return 0;
252                 }
253                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
254                            (unsigned long)root->root_key.objectid,
255                            BTRFS_ROOT_TRANS_TAG);
256                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
257                 root->last_trans = trans->transid;
258
259                 /* this is pretty tricky.  We don't want to
260                  * take the relocation lock in btrfs_record_root_in_trans
261                  * unless we're really doing the first setup for this root in
262                  * this transaction.
263                  *
264                  * Normally we'd use root->last_trans as a flag to decide
265                  * if we want to take the expensive mutex.
266                  *
267                  * But, we have to set root->last_trans before we
268                  * init the relocation root, otherwise, we trip over warnings
269                  * in ctree.c.  The solution used here is to flag ourselves
270                  * with root->in_trans_setup.  When this is 1, we're still
271                  * fixing up the reloc trees and everyone must wait.
272                  *
273                  * When this is zero, they can trust root->last_trans and fly
274                  * through btrfs_record_root_in_trans without having to take the
275                  * lock.  smp_wmb() makes sure that all the writes above are
276                  * done before we pop in the zero below
277                  */
278                 btrfs_init_reloc_root(trans, root);
279                 smp_wmb();
280                 root->in_trans_setup = 0;
281         }
282         return 0;
283 }
284
285
286 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
287                                struct btrfs_root *root)
288 {
289         if (!root->ref_cows)
290                 return 0;
291
292         /*
293          * see record_root_in_trans for comments about in_trans_setup usage
294          * and barriers
295          */
296         smp_rmb();
297         if (root->last_trans == trans->transid &&
298             !root->in_trans_setup)
299                 return 0;
300
301         mutex_lock(&root->fs_info->reloc_mutex);
302         record_root_in_trans(trans, root);
303         mutex_unlock(&root->fs_info->reloc_mutex);
304
305         return 0;
306 }
307
308 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
309 {
310         return (trans->state >= TRANS_STATE_BLOCKED &&
311                 trans->state < TRANS_STATE_UNBLOCKED &&
312                 !trans->aborted);
313 }
314
315 /* wait for commit against the current transaction to become unblocked
316  * when this is done, it is safe to start a new transaction, but the current
317  * transaction might not be fully on disk.
318  */
319 static void wait_current_trans(struct btrfs_root *root)
320 {
321         struct btrfs_transaction *cur_trans;
322
323         spin_lock(&root->fs_info->trans_lock);
324         cur_trans = root->fs_info->running_transaction;
325         if (cur_trans && is_transaction_blocked(cur_trans)) {
326                 atomic_inc(&cur_trans->use_count);
327                 spin_unlock(&root->fs_info->trans_lock);
328
329                 wait_event(root->fs_info->transaction_wait,
330                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
331                            cur_trans->aborted);
332                 btrfs_put_transaction(cur_trans);
333         } else {
334                 spin_unlock(&root->fs_info->trans_lock);
335         }
336 }
337
338 static int may_wait_transaction(struct btrfs_root *root, int type)
339 {
340         if (root->fs_info->log_root_recovering)
341                 return 0;
342
343         if (type == TRANS_USERSPACE)
344                 return 1;
345
346         if (type == TRANS_START &&
347             !atomic_read(&root->fs_info->open_ioctl_trans))
348                 return 1;
349
350         return 0;
351 }
352
353 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
354 {
355         if (!root->fs_info->reloc_ctl ||
356             !root->ref_cows ||
357             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
358             root->reloc_root)
359                 return false;
360
361         return true;
362 }
363
364 static struct btrfs_trans_handle *
365 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
366                   enum btrfs_reserve_flush_enum flush)
367 {
368         struct btrfs_trans_handle *h;
369         struct btrfs_transaction *cur_trans;
370         u64 num_bytes = 0;
371         u64 qgroup_reserved = 0;
372         bool reloc_reserved = false;
373         int ret;
374
375         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
376                 return ERR_PTR(-EROFS);
377
378         if (current->journal_info) {
379                 WARN_ON(type & TRANS_EXTWRITERS);
380                 h = current->journal_info;
381                 h->use_count++;
382                 WARN_ON(h->use_count > 2);
383                 h->orig_rsv = h->block_rsv;
384                 h->block_rsv = NULL;
385                 goto got_it;
386         }
387
388         /*
389          * Do the reservation before we join the transaction so we can do all
390          * the appropriate flushing if need be.
391          */
392         if (num_items > 0 && root != root->fs_info->chunk_root) {
393                 if (root->fs_info->quota_enabled &&
394                     is_fstree(root->root_key.objectid)) {
395                         qgroup_reserved = num_items * root->leafsize;
396                         ret = btrfs_qgroup_reserve(root, qgroup_reserved);
397                         if (ret)
398                                 return ERR_PTR(ret);
399                 }
400
401                 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
402                 /*
403                  * Do the reservation for the relocation root creation
404                  */
405                 if (unlikely(need_reserve_reloc_root(root))) {
406                         num_bytes += root->nodesize;
407                         reloc_reserved = true;
408                 }
409
410                 ret = btrfs_block_rsv_add(root,
411                                           &root->fs_info->trans_block_rsv,
412                                           num_bytes, flush);
413                 if (ret)
414                         goto reserve_fail;
415         }
416 again:
417         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
418         if (!h) {
419                 ret = -ENOMEM;
420                 goto alloc_fail;
421         }
422
423         /*
424          * If we are JOIN_NOLOCK we're already committing a transaction and
425          * waiting on this guy, so we don't need to do the sb_start_intwrite
426          * because we're already holding a ref.  We need this because we could
427          * have raced in and did an fsync() on a file which can kick a commit
428          * and then we deadlock with somebody doing a freeze.
429          *
430          * If we are ATTACH, it means we just want to catch the current
431          * transaction and commit it, so we needn't do sb_start_intwrite(). 
432          */
433         if (type & __TRANS_FREEZABLE)
434                 sb_start_intwrite(root->fs_info->sb);
435
436         if (may_wait_transaction(root, type))
437                 wait_current_trans(root);
438
439         do {
440                 ret = join_transaction(root, type);
441                 if (ret == -EBUSY) {
442                         wait_current_trans(root);
443                         if (unlikely(type == TRANS_ATTACH))
444                                 ret = -ENOENT;
445                 }
446         } while (ret == -EBUSY);
447
448         if (ret < 0) {
449                 /* We must get the transaction if we are JOIN_NOLOCK. */
450                 BUG_ON(type == TRANS_JOIN_NOLOCK);
451                 goto join_fail;
452         }
453
454         cur_trans = root->fs_info->running_transaction;
455
456         h->transid = cur_trans->transid;
457         h->transaction = cur_trans;
458         h->blocks_used = 0;
459         h->bytes_reserved = 0;
460         h->root = root;
461         h->delayed_ref_updates = 0;
462         h->use_count = 1;
463         h->adding_csums = 0;
464         h->block_rsv = NULL;
465         h->orig_rsv = NULL;
466         h->aborted = 0;
467         h->qgroup_reserved = 0;
468         h->delayed_ref_elem.seq = 0;
469         h->type = type;
470         h->allocating_chunk = false;
471         h->reloc_reserved = false;
472         h->sync = false;
473         INIT_LIST_HEAD(&h->qgroup_ref_list);
474         INIT_LIST_HEAD(&h->new_bgs);
475
476         smp_mb();
477         if (cur_trans->state >= TRANS_STATE_BLOCKED &&
478             may_wait_transaction(root, type)) {
479                 btrfs_commit_transaction(h, root);
480                 goto again;
481         }
482
483         if (num_bytes) {
484                 trace_btrfs_space_reservation(root->fs_info, "transaction",
485                                               h->transid, num_bytes, 1);
486                 h->block_rsv = &root->fs_info->trans_block_rsv;
487                 h->bytes_reserved = num_bytes;
488                 h->reloc_reserved = reloc_reserved;
489         }
490         h->qgroup_reserved = qgroup_reserved;
491
492 got_it:
493         btrfs_record_root_in_trans(h, root);
494
495         if (!current->journal_info && type != TRANS_USERSPACE)
496                 current->journal_info = h;
497         return h;
498
499 join_fail:
500         if (type & __TRANS_FREEZABLE)
501                 sb_end_intwrite(root->fs_info->sb);
502         kmem_cache_free(btrfs_trans_handle_cachep, h);
503 alloc_fail:
504         if (num_bytes)
505                 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
506                                         num_bytes);
507 reserve_fail:
508         if (qgroup_reserved)
509                 btrfs_qgroup_free(root, qgroup_reserved);
510         return ERR_PTR(ret);
511 }
512
513 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
514                                                    int num_items)
515 {
516         return start_transaction(root, num_items, TRANS_START,
517                                  BTRFS_RESERVE_FLUSH_ALL);
518 }
519
520 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
521                                         struct btrfs_root *root, int num_items)
522 {
523         return start_transaction(root, num_items, TRANS_START,
524                                  BTRFS_RESERVE_FLUSH_LIMIT);
525 }
526
527 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
528 {
529         return start_transaction(root, 0, TRANS_JOIN, 0);
530 }
531
532 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
533 {
534         return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
535 }
536
537 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
538 {
539         return start_transaction(root, 0, TRANS_USERSPACE, 0);
540 }
541
542 /*
543  * btrfs_attach_transaction() - catch the running transaction
544  *
545  * It is used when we want to commit the current the transaction, but
546  * don't want to start a new one.
547  *
548  * Note: If this function return -ENOENT, it just means there is no
549  * running transaction. But it is possible that the inactive transaction
550  * is still in the memory, not fully on disk. If you hope there is no
551  * inactive transaction in the fs when -ENOENT is returned, you should
552  * invoke
553  *     btrfs_attach_transaction_barrier()
554  */
555 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
556 {
557         return start_transaction(root, 0, TRANS_ATTACH, 0);
558 }
559
560 /*
561  * btrfs_attach_transaction_barrier() - catch the running transaction
562  *
563  * It is similar to the above function, the differentia is this one
564  * will wait for all the inactive transactions until they fully
565  * complete.
566  */
567 struct btrfs_trans_handle *
568 btrfs_attach_transaction_barrier(struct btrfs_root *root)
569 {
570         struct btrfs_trans_handle *trans;
571
572         trans = start_transaction(root, 0, TRANS_ATTACH, 0);
573         if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
574                 btrfs_wait_for_commit(root, 0);
575
576         return trans;
577 }
578
579 /* wait for a transaction commit to be fully complete */
580 static noinline void wait_for_commit(struct btrfs_root *root,
581                                     struct btrfs_transaction *commit)
582 {
583         wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
584 }
585
586 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
587 {
588         struct btrfs_transaction *cur_trans = NULL, *t;
589         int ret = 0;
590
591         if (transid) {
592                 if (transid <= root->fs_info->last_trans_committed)
593                         goto out;
594
595                 ret = -EINVAL;
596                 /* find specified transaction */
597                 spin_lock(&root->fs_info->trans_lock);
598                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
599                         if (t->transid == transid) {
600                                 cur_trans = t;
601                                 atomic_inc(&cur_trans->use_count);
602                                 ret = 0;
603                                 break;
604                         }
605                         if (t->transid > transid) {
606                                 ret = 0;
607                                 break;
608                         }
609                 }
610                 spin_unlock(&root->fs_info->trans_lock);
611                 /* The specified transaction doesn't exist */
612                 if (!cur_trans)
613                         goto out;
614         } else {
615                 /* find newest transaction that is committing | committed */
616                 spin_lock(&root->fs_info->trans_lock);
617                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
618                                             list) {
619                         if (t->state >= TRANS_STATE_COMMIT_START) {
620                                 if (t->state == TRANS_STATE_COMPLETED)
621                                         break;
622                                 cur_trans = t;
623                                 atomic_inc(&cur_trans->use_count);
624                                 break;
625                         }
626                 }
627                 spin_unlock(&root->fs_info->trans_lock);
628                 if (!cur_trans)
629                         goto out;  /* nothing committing|committed */
630         }
631
632         wait_for_commit(root, cur_trans);
633         btrfs_put_transaction(cur_trans);
634 out:
635         return ret;
636 }
637
638 void btrfs_throttle(struct btrfs_root *root)
639 {
640         if (!atomic_read(&root->fs_info->open_ioctl_trans))
641                 wait_current_trans(root);
642 }
643
644 static int should_end_transaction(struct btrfs_trans_handle *trans,
645                                   struct btrfs_root *root)
646 {
647         if (root->fs_info->global_block_rsv.space_info->full &&
648             btrfs_should_throttle_delayed_refs(trans, root))
649                 return 1;
650
651         return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
652 }
653
654 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
655                                  struct btrfs_root *root)
656 {
657         struct btrfs_transaction *cur_trans = trans->transaction;
658         int updates;
659         int err;
660
661         smp_mb();
662         if (cur_trans->state >= TRANS_STATE_BLOCKED ||
663             cur_trans->delayed_refs.flushing)
664                 return 1;
665
666         updates = trans->delayed_ref_updates;
667         trans->delayed_ref_updates = 0;
668         if (updates) {
669                 err = btrfs_run_delayed_refs(trans, root, updates);
670                 if (err) /* Error code will also eval true */
671                         return err;
672         }
673
674         return should_end_transaction(trans, root);
675 }
676
677 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
678                           struct btrfs_root *root, int throttle)
679 {
680         struct btrfs_transaction *cur_trans = trans->transaction;
681         struct btrfs_fs_info *info = root->fs_info;
682         unsigned long cur = trans->delayed_ref_updates;
683         int lock = (trans->type != TRANS_JOIN_NOLOCK);
684         int err = 0;
685
686         if (--trans->use_count) {
687                 trans->block_rsv = trans->orig_rsv;
688                 return 0;
689         }
690
691         /*
692          * do the qgroup accounting as early as possible
693          */
694         err = btrfs_delayed_refs_qgroup_accounting(trans, info);
695
696         btrfs_trans_release_metadata(trans, root);
697         trans->block_rsv = NULL;
698
699         if (trans->qgroup_reserved) {
700                 /*
701                  * the same root has to be passed here between start_transaction
702                  * and end_transaction. Subvolume quota depends on this.
703                  */
704                 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
705                 trans->qgroup_reserved = 0;
706         }
707
708         if (!list_empty(&trans->new_bgs))
709                 btrfs_create_pending_block_groups(trans, root);
710
711         trans->delayed_ref_updates = 0;
712         if (!trans->sync && btrfs_should_throttle_delayed_refs(trans, root)) {
713                 cur = max_t(unsigned long, cur, 1);
714                 trans->delayed_ref_updates = 0;
715                 btrfs_run_delayed_refs(trans, root, cur);
716         }
717
718         btrfs_trans_release_metadata(trans, root);
719         trans->block_rsv = NULL;
720
721         if (!list_empty(&trans->new_bgs))
722                 btrfs_create_pending_block_groups(trans, root);
723
724         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
725             should_end_transaction(trans, root) &&
726             ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
727                 spin_lock(&info->trans_lock);
728                 if (cur_trans->state == TRANS_STATE_RUNNING)
729                         cur_trans->state = TRANS_STATE_BLOCKED;
730                 spin_unlock(&info->trans_lock);
731         }
732
733         if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
734                 if (throttle) {
735                         /*
736                          * We may race with somebody else here so end up having
737                          * to call end_transaction on ourselves again, so inc
738                          * our use_count.
739                          */
740                         trans->use_count++;
741                         return btrfs_commit_transaction(trans, root);
742                 } else {
743                         wake_up_process(info->transaction_kthread);
744                 }
745         }
746
747         if (trans->type & __TRANS_FREEZABLE)
748                 sb_end_intwrite(root->fs_info->sb);
749
750         WARN_ON(cur_trans != info->running_transaction);
751         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
752         atomic_dec(&cur_trans->num_writers);
753         extwriter_counter_dec(cur_trans, trans->type);
754
755         smp_mb();
756         if (waitqueue_active(&cur_trans->writer_wait))
757                 wake_up(&cur_trans->writer_wait);
758         btrfs_put_transaction(cur_trans);
759
760         if (current->journal_info == trans)
761                 current->journal_info = NULL;
762
763         if (throttle)
764                 btrfs_run_delayed_iputs(root);
765
766         if (trans->aborted ||
767             test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
768                 wake_up_process(info->transaction_kthread);
769                 err = -EIO;
770         }
771         assert_qgroups_uptodate(trans);
772
773         kmem_cache_free(btrfs_trans_handle_cachep, trans);
774         return err;
775 }
776
777 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
778                           struct btrfs_root *root)
779 {
780         return __btrfs_end_transaction(trans, root, 0);
781 }
782
783 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
784                                    struct btrfs_root *root)
785 {
786         return __btrfs_end_transaction(trans, root, 1);
787 }
788
789 /*
790  * when btree blocks are allocated, they have some corresponding bits set for
791  * them in one of two extent_io trees.  This is used to make sure all of
792  * those extents are sent to disk but does not wait on them
793  */
794 int btrfs_write_marked_extents(struct btrfs_root *root,
795                                struct extent_io_tree *dirty_pages, int mark)
796 {
797         int err = 0;
798         int werr = 0;
799         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
800         struct extent_state *cached_state = NULL;
801         u64 start = 0;
802         u64 end;
803
804         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
805                                       mark, &cached_state)) {
806                 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
807                                    mark, &cached_state, GFP_NOFS);
808                 cached_state = NULL;
809                 err = filemap_fdatawrite_range(mapping, start, end);
810                 if (err)
811                         werr = err;
812                 cond_resched();
813                 start = end + 1;
814         }
815         if (err)
816                 werr = err;
817         return werr;
818 }
819
820 /*
821  * when btree blocks are allocated, they have some corresponding bits set for
822  * them in one of two extent_io trees.  This is used to make sure all of
823  * those extents are on disk for transaction or log commit.  We wait
824  * on all the pages and clear them from the dirty pages state tree
825  */
826 int btrfs_wait_marked_extents(struct btrfs_root *root,
827                               struct extent_io_tree *dirty_pages, int mark)
828 {
829         int err = 0;
830         int werr = 0;
831         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
832         struct extent_state *cached_state = NULL;
833         u64 start = 0;
834         u64 end;
835
836         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
837                                       EXTENT_NEED_WAIT, &cached_state)) {
838                 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
839                                  0, 0, &cached_state, GFP_NOFS);
840                 err = filemap_fdatawait_range(mapping, start, end);
841                 if (err)
842                         werr = err;
843                 cond_resched();
844                 start = end + 1;
845         }
846         if (err)
847                 werr = err;
848         return werr;
849 }
850
851 /*
852  * when btree blocks are allocated, they have some corresponding bits set for
853  * them in one of two extent_io trees.  This is used to make sure all of
854  * those extents are on disk for transaction or log commit
855  */
856 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
857                                 struct extent_io_tree *dirty_pages, int mark)
858 {
859         int ret;
860         int ret2;
861         struct blk_plug plug;
862
863         blk_start_plug(&plug);
864         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
865         blk_finish_plug(&plug);
866         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
867
868         if (ret)
869                 return ret;
870         if (ret2)
871                 return ret2;
872         return 0;
873 }
874
875 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
876                                      struct btrfs_root *root)
877 {
878         if (!trans || !trans->transaction) {
879                 struct inode *btree_inode;
880                 btree_inode = root->fs_info->btree_inode;
881                 return filemap_write_and_wait(btree_inode->i_mapping);
882         }
883         return btrfs_write_and_wait_marked_extents(root,
884                                            &trans->transaction->dirty_pages,
885                                            EXTENT_DIRTY);
886 }
887
888 /*
889  * this is used to update the root pointer in the tree of tree roots.
890  *
891  * But, in the case of the extent allocation tree, updating the root
892  * pointer may allocate blocks which may change the root of the extent
893  * allocation tree.
894  *
895  * So, this loops and repeats and makes sure the cowonly root didn't
896  * change while the root pointer was being updated in the metadata.
897  */
898 static int update_cowonly_root(struct btrfs_trans_handle *trans,
899                                struct btrfs_root *root)
900 {
901         int ret;
902         u64 old_root_bytenr;
903         u64 old_root_used;
904         struct btrfs_root *tree_root = root->fs_info->tree_root;
905
906         old_root_used = btrfs_root_used(&root->root_item);
907         btrfs_write_dirty_block_groups(trans, root);
908
909         while (1) {
910                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
911                 if (old_root_bytenr == root->node->start &&
912                     old_root_used == btrfs_root_used(&root->root_item))
913                         break;
914
915                 btrfs_set_root_node(&root->root_item, root->node);
916                 ret = btrfs_update_root(trans, tree_root,
917                                         &root->root_key,
918                                         &root->root_item);
919                 if (ret)
920                         return ret;
921
922                 old_root_used = btrfs_root_used(&root->root_item);
923                 ret = btrfs_write_dirty_block_groups(trans, root);
924                 if (ret)
925                         return ret;
926         }
927
928         if (root != root->fs_info->extent_root)
929                 switch_commit_root(root);
930
931         return 0;
932 }
933
934 /*
935  * update all the cowonly tree roots on disk
936  *
937  * The error handling in this function may not be obvious. Any of the
938  * failures will cause the file system to go offline. We still need
939  * to clean up the delayed refs.
940  */
941 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
942                                          struct btrfs_root *root)
943 {
944         struct btrfs_fs_info *fs_info = root->fs_info;
945         struct list_head *next;
946         struct extent_buffer *eb;
947         int ret;
948
949         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
950         if (ret)
951                 return ret;
952
953         eb = btrfs_lock_root_node(fs_info->tree_root);
954         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
955                               0, &eb);
956         btrfs_tree_unlock(eb);
957         free_extent_buffer(eb);
958
959         if (ret)
960                 return ret;
961
962         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
963         if (ret)
964                 return ret;
965
966         ret = btrfs_run_dev_stats(trans, root->fs_info);
967         if (ret)
968                 return ret;
969         ret = btrfs_run_dev_replace(trans, root->fs_info);
970         if (ret)
971                 return ret;
972         ret = btrfs_run_qgroups(trans, root->fs_info);
973         if (ret)
974                 return ret;
975
976         /* run_qgroups might have added some more refs */
977         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
978         if (ret)
979                 return ret;
980
981         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
982                 next = fs_info->dirty_cowonly_roots.next;
983                 list_del_init(next);
984                 root = list_entry(next, struct btrfs_root, dirty_list);
985
986                 ret = update_cowonly_root(trans, root);
987                 if (ret)
988                         return ret;
989         }
990
991         down_write(&fs_info->extent_commit_sem);
992         switch_commit_root(fs_info->extent_root);
993         up_write(&fs_info->extent_commit_sem);
994
995         btrfs_after_dev_replace_commit(fs_info);
996
997         return 0;
998 }
999
1000 /*
1001  * dead roots are old snapshots that need to be deleted.  This allocates
1002  * a dirty root struct and adds it into the list of dead roots that need to
1003  * be deleted
1004  */
1005 void btrfs_add_dead_root(struct btrfs_root *root)
1006 {
1007         spin_lock(&root->fs_info->trans_lock);
1008         if (list_empty(&root->root_list))
1009                 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1010         spin_unlock(&root->fs_info->trans_lock);
1011 }
1012
1013 /*
1014  * update all the cowonly tree roots on disk
1015  */
1016 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1017                                     struct btrfs_root *root)
1018 {
1019         struct btrfs_root *gang[8];
1020         struct btrfs_fs_info *fs_info = root->fs_info;
1021         int i;
1022         int ret;
1023         int err = 0;
1024
1025         spin_lock(&fs_info->fs_roots_radix_lock);
1026         while (1) {
1027                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1028                                                  (void **)gang, 0,
1029                                                  ARRAY_SIZE(gang),
1030                                                  BTRFS_ROOT_TRANS_TAG);
1031                 if (ret == 0)
1032                         break;
1033                 for (i = 0; i < ret; i++) {
1034                         root = gang[i];
1035                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1036                                         (unsigned long)root->root_key.objectid,
1037                                         BTRFS_ROOT_TRANS_TAG);
1038                         spin_unlock(&fs_info->fs_roots_radix_lock);
1039
1040                         btrfs_free_log(trans, root);
1041                         btrfs_update_reloc_root(trans, root);
1042                         btrfs_orphan_commit_root(trans, root);
1043
1044                         btrfs_save_ino_cache(root, trans);
1045
1046                         /* see comments in should_cow_block() */
1047                         root->force_cow = 0;
1048                         smp_wmb();
1049
1050                         if (root->commit_root != root->node) {
1051                                 mutex_lock(&root->fs_commit_mutex);
1052                                 switch_commit_root(root);
1053                                 btrfs_unpin_free_ino(root);
1054                                 mutex_unlock(&root->fs_commit_mutex);
1055
1056                                 btrfs_set_root_node(&root->root_item,
1057                                                     root->node);
1058                         }
1059
1060                         err = btrfs_update_root(trans, fs_info->tree_root,
1061                                                 &root->root_key,
1062                                                 &root->root_item);
1063                         spin_lock(&fs_info->fs_roots_radix_lock);
1064                         if (err)
1065                                 break;
1066                 }
1067         }
1068         spin_unlock(&fs_info->fs_roots_radix_lock);
1069         return err;
1070 }
1071
1072 /*
1073  * defrag a given btree.
1074  * Every leaf in the btree is read and defragged.
1075  */
1076 int btrfs_defrag_root(struct btrfs_root *root)
1077 {
1078         struct btrfs_fs_info *info = root->fs_info;
1079         struct btrfs_trans_handle *trans;
1080         int ret;
1081
1082         if (xchg(&root->defrag_running, 1))
1083                 return 0;
1084
1085         while (1) {
1086                 trans = btrfs_start_transaction(root, 0);
1087                 if (IS_ERR(trans))
1088                         return PTR_ERR(trans);
1089
1090                 ret = btrfs_defrag_leaves(trans, root);
1091
1092                 btrfs_end_transaction(trans, root);
1093                 btrfs_btree_balance_dirty(info->tree_root);
1094                 cond_resched();
1095
1096                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1097                         break;
1098
1099                 if (btrfs_defrag_cancelled(root->fs_info)) {
1100                         pr_debug("BTRFS: defrag_root cancelled\n");
1101                         ret = -EAGAIN;
1102                         break;
1103                 }
1104         }
1105         root->defrag_running = 0;
1106         return ret;
1107 }
1108
1109 /*
1110  * new snapshots need to be created at a very specific time in the
1111  * transaction commit.  This does the actual creation.
1112  *
1113  * Note:
1114  * If the error which may affect the commitment of the current transaction
1115  * happens, we should return the error number. If the error which just affect
1116  * the creation of the pending snapshots, just return 0.
1117  */
1118 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1119                                    struct btrfs_fs_info *fs_info,
1120                                    struct btrfs_pending_snapshot *pending)
1121 {
1122         struct btrfs_key key;
1123         struct btrfs_root_item *new_root_item;
1124         struct btrfs_root *tree_root = fs_info->tree_root;
1125         struct btrfs_root *root = pending->root;
1126         struct btrfs_root *parent_root;
1127         struct btrfs_block_rsv *rsv;
1128         struct inode *parent_inode;
1129         struct btrfs_path *path;
1130         struct btrfs_dir_item *dir_item;
1131         struct dentry *dentry;
1132         struct extent_buffer *tmp;
1133         struct extent_buffer *old;
1134         struct timespec cur_time = CURRENT_TIME;
1135         int ret = 0;
1136         u64 to_reserve = 0;
1137         u64 index = 0;
1138         u64 objectid;
1139         u64 root_flags;
1140         uuid_le new_uuid;
1141
1142         path = btrfs_alloc_path();
1143         if (!path) {
1144                 pending->error = -ENOMEM;
1145                 return 0;
1146         }
1147
1148         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1149         if (!new_root_item) {
1150                 pending->error = -ENOMEM;
1151                 goto root_item_alloc_fail;
1152         }
1153
1154         pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1155         if (pending->error)
1156                 goto no_free_objectid;
1157
1158         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1159
1160         if (to_reserve > 0) {
1161                 pending->error = btrfs_block_rsv_add(root,
1162                                                      &pending->block_rsv,
1163                                                      to_reserve,
1164                                                      BTRFS_RESERVE_NO_FLUSH);
1165                 if (pending->error)
1166                         goto no_free_objectid;
1167         }
1168
1169         pending->error = btrfs_qgroup_inherit(trans, fs_info,
1170                                               root->root_key.objectid,
1171                                               objectid, pending->inherit);
1172         if (pending->error)
1173                 goto no_free_objectid;
1174
1175         key.objectid = objectid;
1176         key.offset = (u64)-1;
1177         key.type = BTRFS_ROOT_ITEM_KEY;
1178
1179         rsv = trans->block_rsv;
1180         trans->block_rsv = &pending->block_rsv;
1181         trans->bytes_reserved = trans->block_rsv->reserved;
1182
1183         dentry = pending->dentry;
1184         parent_inode = pending->dir;
1185         parent_root = BTRFS_I(parent_inode)->root;
1186         record_root_in_trans(trans, parent_root);
1187
1188         /*
1189          * insert the directory item
1190          */
1191         ret = btrfs_set_inode_index(parent_inode, &index);
1192         BUG_ON(ret); /* -ENOMEM */
1193
1194         /* check if there is a file/dir which has the same name. */
1195         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1196                                          btrfs_ino(parent_inode),
1197                                          dentry->d_name.name,
1198                                          dentry->d_name.len, 0);
1199         if (dir_item != NULL && !IS_ERR(dir_item)) {
1200                 pending->error = -EEXIST;
1201                 goto dir_item_existed;
1202         } else if (IS_ERR(dir_item)) {
1203                 ret = PTR_ERR(dir_item);
1204                 btrfs_abort_transaction(trans, root, ret);
1205                 goto fail;
1206         }
1207         btrfs_release_path(path);
1208
1209         /*
1210          * pull in the delayed directory update
1211          * and the delayed inode item
1212          * otherwise we corrupt the FS during
1213          * snapshot
1214          */
1215         ret = btrfs_run_delayed_items(trans, root);
1216         if (ret) {      /* Transaction aborted */
1217                 btrfs_abort_transaction(trans, root, ret);
1218                 goto fail;
1219         }
1220
1221         record_root_in_trans(trans, root);
1222         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1223         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1224         btrfs_check_and_init_root_item(new_root_item);
1225
1226         root_flags = btrfs_root_flags(new_root_item);
1227         if (pending->readonly)
1228                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1229         else
1230                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1231         btrfs_set_root_flags(new_root_item, root_flags);
1232
1233         btrfs_set_root_generation_v2(new_root_item,
1234                         trans->transid);
1235         uuid_le_gen(&new_uuid);
1236         memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1237         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1238                         BTRFS_UUID_SIZE);
1239         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1240                 memset(new_root_item->received_uuid, 0,
1241                        sizeof(new_root_item->received_uuid));
1242                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1243                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1244                 btrfs_set_root_stransid(new_root_item, 0);
1245                 btrfs_set_root_rtransid(new_root_item, 0);
1246         }
1247         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1248         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1249         btrfs_set_root_otransid(new_root_item, trans->transid);
1250
1251         old = btrfs_lock_root_node(root);
1252         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1253         if (ret) {
1254                 btrfs_tree_unlock(old);
1255                 free_extent_buffer(old);
1256                 btrfs_abort_transaction(trans, root, ret);
1257                 goto fail;
1258         }
1259
1260         btrfs_set_lock_blocking(old);
1261
1262         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1263         /* clean up in any case */
1264         btrfs_tree_unlock(old);
1265         free_extent_buffer(old);
1266         if (ret) {
1267                 btrfs_abort_transaction(trans, root, ret);
1268                 goto fail;
1269         }
1270
1271         /* see comments in should_cow_block() */
1272         root->force_cow = 1;
1273         smp_wmb();
1274
1275         btrfs_set_root_node(new_root_item, tmp);
1276         /* record when the snapshot was created in key.offset */
1277         key.offset = trans->transid;
1278         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1279         btrfs_tree_unlock(tmp);
1280         free_extent_buffer(tmp);
1281         if (ret) {
1282                 btrfs_abort_transaction(trans, root, ret);
1283                 goto fail;
1284         }
1285
1286         /*
1287          * insert root back/forward references
1288          */
1289         ret = btrfs_add_root_ref(trans, tree_root, objectid,
1290                                  parent_root->root_key.objectid,
1291                                  btrfs_ino(parent_inode), index,
1292                                  dentry->d_name.name, dentry->d_name.len);
1293         if (ret) {
1294                 btrfs_abort_transaction(trans, root, ret);
1295                 goto fail;
1296         }
1297
1298         key.offset = (u64)-1;
1299         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1300         if (IS_ERR(pending->snap)) {
1301                 ret = PTR_ERR(pending->snap);
1302                 btrfs_abort_transaction(trans, root, ret);
1303                 goto fail;
1304         }
1305
1306         ret = btrfs_reloc_post_snapshot(trans, pending);
1307         if (ret) {
1308                 btrfs_abort_transaction(trans, root, ret);
1309                 goto fail;
1310         }
1311
1312         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1313         if (ret) {
1314                 btrfs_abort_transaction(trans, root, ret);
1315                 goto fail;
1316         }
1317
1318         ret = btrfs_insert_dir_item(trans, parent_root,
1319                                     dentry->d_name.name, dentry->d_name.len,
1320                                     parent_inode, &key,
1321                                     BTRFS_FT_DIR, index);
1322         /* We have check then name at the beginning, so it is impossible. */
1323         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1324         if (ret) {
1325                 btrfs_abort_transaction(trans, root, ret);
1326                 goto fail;
1327         }
1328
1329         btrfs_i_size_write(parent_inode, parent_inode->i_size +
1330                                          dentry->d_name.len * 2);
1331         parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1332         ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1333         if (ret) {
1334                 btrfs_abort_transaction(trans, root, ret);
1335                 goto fail;
1336         }
1337         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1338                                   BTRFS_UUID_KEY_SUBVOL, objectid);
1339         if (ret) {
1340                 btrfs_abort_transaction(trans, root, ret);
1341                 goto fail;
1342         }
1343         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1344                 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1345                                           new_root_item->received_uuid,
1346                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1347                                           objectid);
1348                 if (ret && ret != -EEXIST) {
1349                         btrfs_abort_transaction(trans, root, ret);
1350                         goto fail;
1351                 }
1352         }
1353 fail:
1354         pending->error = ret;
1355 dir_item_existed:
1356         trans->block_rsv = rsv;
1357         trans->bytes_reserved = 0;
1358 no_free_objectid:
1359         kfree(new_root_item);
1360 root_item_alloc_fail:
1361         btrfs_free_path(path);
1362         return ret;
1363 }
1364
1365 /*
1366  * create all the snapshots we've scheduled for creation
1367  */
1368 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1369                                              struct btrfs_fs_info *fs_info)
1370 {
1371         struct btrfs_pending_snapshot *pending, *next;
1372         struct list_head *head = &trans->transaction->pending_snapshots;
1373         int ret = 0;
1374
1375         list_for_each_entry_safe(pending, next, head, list) {
1376                 list_del(&pending->list);
1377                 ret = create_pending_snapshot(trans, fs_info, pending);
1378                 if (ret)
1379                         break;
1380         }
1381         return ret;
1382 }
1383
1384 static void update_super_roots(struct btrfs_root *root)
1385 {
1386         struct btrfs_root_item *root_item;
1387         struct btrfs_super_block *super;
1388
1389         super = root->fs_info->super_copy;
1390
1391         root_item = &root->fs_info->chunk_root->root_item;
1392         super->chunk_root = root_item->bytenr;
1393         super->chunk_root_generation = root_item->generation;
1394         super->chunk_root_level = root_item->level;
1395
1396         root_item = &root->fs_info->tree_root->root_item;
1397         super->root = root_item->bytenr;
1398         super->generation = root_item->generation;
1399         super->root_level = root_item->level;
1400         if (btrfs_test_opt(root, SPACE_CACHE))
1401                 super->cache_generation = root_item->generation;
1402         if (root->fs_info->update_uuid_tree_gen)
1403                 super->uuid_tree_generation = root_item->generation;
1404 }
1405
1406 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1407 {
1408         struct btrfs_transaction *trans;
1409         int ret = 0;
1410
1411         spin_lock(&info->trans_lock);
1412         trans = info->running_transaction;
1413         if (trans)
1414                 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1415         spin_unlock(&info->trans_lock);
1416         return ret;
1417 }
1418
1419 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1420 {
1421         struct btrfs_transaction *trans;
1422         int ret = 0;
1423
1424         spin_lock(&info->trans_lock);
1425         trans = info->running_transaction;
1426         if (trans)
1427                 ret = is_transaction_blocked(trans);
1428         spin_unlock(&info->trans_lock);
1429         return ret;
1430 }
1431
1432 /*
1433  * wait for the current transaction commit to start and block subsequent
1434  * transaction joins
1435  */
1436 static void wait_current_trans_commit_start(struct btrfs_root *root,
1437                                             struct btrfs_transaction *trans)
1438 {
1439         wait_event(root->fs_info->transaction_blocked_wait,
1440                    trans->state >= TRANS_STATE_COMMIT_START ||
1441                    trans->aborted);
1442 }
1443
1444 /*
1445  * wait for the current transaction to start and then become unblocked.
1446  * caller holds ref.
1447  */
1448 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1449                                          struct btrfs_transaction *trans)
1450 {
1451         wait_event(root->fs_info->transaction_wait,
1452                    trans->state >= TRANS_STATE_UNBLOCKED ||
1453                    trans->aborted);
1454 }
1455
1456 /*
1457  * commit transactions asynchronously. once btrfs_commit_transaction_async
1458  * returns, any subsequent transaction will not be allowed to join.
1459  */
1460 struct btrfs_async_commit {
1461         struct btrfs_trans_handle *newtrans;
1462         struct btrfs_root *root;
1463         struct work_struct work;
1464 };
1465
1466 static void do_async_commit(struct work_struct *work)
1467 {
1468         struct btrfs_async_commit *ac =
1469                 container_of(work, struct btrfs_async_commit, work);
1470
1471         /*
1472          * We've got freeze protection passed with the transaction.
1473          * Tell lockdep about it.
1474          */
1475         if (ac->newtrans->type & __TRANS_FREEZABLE)
1476                 rwsem_acquire_read(
1477                      &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1478                      0, 1, _THIS_IP_);
1479
1480         current->journal_info = ac->newtrans;
1481
1482         btrfs_commit_transaction(ac->newtrans, ac->root);
1483         kfree(ac);
1484 }
1485
1486 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1487                                    struct btrfs_root *root,
1488                                    int wait_for_unblock)
1489 {
1490         struct btrfs_async_commit *ac;
1491         struct btrfs_transaction *cur_trans;
1492
1493         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1494         if (!ac)
1495                 return -ENOMEM;
1496
1497         INIT_WORK(&ac->work, do_async_commit);
1498         ac->root = root;
1499         ac->newtrans = btrfs_join_transaction(root);
1500         if (IS_ERR(ac->newtrans)) {
1501                 int err = PTR_ERR(ac->newtrans);
1502                 kfree(ac);
1503                 return err;
1504         }
1505
1506         /* take transaction reference */
1507         cur_trans = trans->transaction;
1508         atomic_inc(&cur_trans->use_count);
1509
1510         btrfs_end_transaction(trans, root);
1511
1512         /*
1513          * Tell lockdep we've released the freeze rwsem, since the
1514          * async commit thread will be the one to unlock it.
1515          */
1516         if (ac->newtrans->type & __TRANS_FREEZABLE)
1517                 rwsem_release(
1518                         &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1519                         1, _THIS_IP_);
1520
1521         schedule_work(&ac->work);
1522
1523         /* wait for transaction to start and unblock */
1524         if (wait_for_unblock)
1525                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1526         else
1527                 wait_current_trans_commit_start(root, cur_trans);
1528
1529         if (current->journal_info == trans)
1530                 current->journal_info = NULL;
1531
1532         btrfs_put_transaction(cur_trans);
1533         return 0;
1534 }
1535
1536
1537 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1538                                 struct btrfs_root *root, int err)
1539 {
1540         struct btrfs_transaction *cur_trans = trans->transaction;
1541         DEFINE_WAIT(wait);
1542
1543         WARN_ON(trans->use_count > 1);
1544
1545         btrfs_abort_transaction(trans, root, err);
1546
1547         spin_lock(&root->fs_info->trans_lock);
1548
1549         /*
1550          * If the transaction is removed from the list, it means this
1551          * transaction has been committed successfully, so it is impossible
1552          * to call the cleanup function.
1553          */
1554         BUG_ON(list_empty(&cur_trans->list));
1555
1556         list_del_init(&cur_trans->list);
1557         if (cur_trans == root->fs_info->running_transaction) {
1558                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1559                 spin_unlock(&root->fs_info->trans_lock);
1560                 wait_event(cur_trans->writer_wait,
1561                            atomic_read(&cur_trans->num_writers) == 1);
1562
1563                 spin_lock(&root->fs_info->trans_lock);
1564         }
1565         spin_unlock(&root->fs_info->trans_lock);
1566
1567         btrfs_cleanup_one_transaction(trans->transaction, root);
1568
1569         spin_lock(&root->fs_info->trans_lock);
1570         if (cur_trans == root->fs_info->running_transaction)
1571                 root->fs_info->running_transaction = NULL;
1572         spin_unlock(&root->fs_info->trans_lock);
1573
1574         if (trans->type & __TRANS_FREEZABLE)
1575                 sb_end_intwrite(root->fs_info->sb);
1576         btrfs_put_transaction(cur_trans);
1577         btrfs_put_transaction(cur_trans);
1578
1579         trace_btrfs_transaction_commit(root);
1580
1581         btrfs_scrub_continue(root);
1582
1583         if (current->journal_info == trans)
1584                 current->journal_info = NULL;
1585
1586         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1587 }
1588
1589 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1590                                           struct btrfs_root *root)
1591 {
1592         int ret;
1593
1594         ret = btrfs_run_delayed_items(trans, root);
1595         /*
1596          * running the delayed items may have added new refs. account
1597          * them now so that they hinder processing of more delayed refs
1598          * as little as possible.
1599          */
1600         if (ret) {
1601                 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1602                 return ret;
1603         }
1604
1605         ret = btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1606         if (ret)
1607                 return ret;
1608
1609         /*
1610          * rename don't use btrfs_join_transaction, so, once we
1611          * set the transaction to blocked above, we aren't going
1612          * to get any new ordered operations.  We can safely run
1613          * it here and no for sure that nothing new will be added
1614          * to the list
1615          */
1616         ret = btrfs_run_ordered_operations(trans, root, 1);
1617
1618         return ret;
1619 }
1620
1621 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1622 {
1623         if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1624                 return btrfs_start_delalloc_roots(fs_info, 1);
1625         return 0;
1626 }
1627
1628 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1629 {
1630         if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1631                 btrfs_wait_ordered_roots(fs_info, -1);
1632 }
1633
1634 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1635                              struct btrfs_root *root)
1636 {
1637         struct btrfs_transaction *cur_trans = trans->transaction;
1638         struct btrfs_transaction *prev_trans = NULL;
1639         int ret;
1640
1641         ret = btrfs_run_ordered_operations(trans, root, 0);
1642         if (ret) {
1643                 btrfs_abort_transaction(trans, root, ret);
1644                 btrfs_end_transaction(trans, root);
1645                 return ret;
1646         }
1647
1648         /* Stop the commit early if ->aborted is set */
1649         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1650                 ret = cur_trans->aborted;
1651                 btrfs_end_transaction(trans, root);
1652                 return ret;
1653         }
1654
1655         /* make a pass through all the delayed refs we have so far
1656          * any runnings procs may add more while we are here
1657          */
1658         ret = btrfs_run_delayed_refs(trans, root, 0);
1659         if (ret) {
1660                 btrfs_end_transaction(trans, root);
1661                 return ret;
1662         }
1663
1664         btrfs_trans_release_metadata(trans, root);
1665         trans->block_rsv = NULL;
1666         if (trans->qgroup_reserved) {
1667                 btrfs_qgroup_free(root, trans->qgroup_reserved);
1668                 trans->qgroup_reserved = 0;
1669         }
1670
1671         cur_trans = trans->transaction;
1672
1673         /*
1674          * set the flushing flag so procs in this transaction have to
1675          * start sending their work down.
1676          */
1677         cur_trans->delayed_refs.flushing = 1;
1678         smp_wmb();
1679
1680         if (!list_empty(&trans->new_bgs))
1681                 btrfs_create_pending_block_groups(trans, root);
1682
1683         ret = btrfs_run_delayed_refs(trans, root, 0);
1684         if (ret) {
1685                 btrfs_end_transaction(trans, root);
1686                 return ret;
1687         }
1688
1689         spin_lock(&root->fs_info->trans_lock);
1690         if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1691                 spin_unlock(&root->fs_info->trans_lock);
1692                 atomic_inc(&cur_trans->use_count);
1693                 ret = btrfs_end_transaction(trans, root);
1694
1695                 wait_for_commit(root, cur_trans);
1696
1697                 btrfs_put_transaction(cur_trans);
1698
1699                 return ret;
1700         }
1701
1702         cur_trans->state = TRANS_STATE_COMMIT_START;
1703         wake_up(&root->fs_info->transaction_blocked_wait);
1704
1705         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1706                 prev_trans = list_entry(cur_trans->list.prev,
1707                                         struct btrfs_transaction, list);
1708                 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1709                         atomic_inc(&prev_trans->use_count);
1710                         spin_unlock(&root->fs_info->trans_lock);
1711
1712                         wait_for_commit(root, prev_trans);
1713
1714                         btrfs_put_transaction(prev_trans);
1715                 } else {
1716                         spin_unlock(&root->fs_info->trans_lock);
1717                 }
1718         } else {
1719                 spin_unlock(&root->fs_info->trans_lock);
1720         }
1721
1722         extwriter_counter_dec(cur_trans, trans->type);
1723
1724         ret = btrfs_start_delalloc_flush(root->fs_info);
1725         if (ret)
1726                 goto cleanup_transaction;
1727
1728         ret = btrfs_flush_all_pending_stuffs(trans, root);
1729         if (ret)
1730                 goto cleanup_transaction;
1731
1732         wait_event(cur_trans->writer_wait,
1733                    extwriter_counter_read(cur_trans) == 0);
1734
1735         /* some pending stuffs might be added after the previous flush. */
1736         ret = btrfs_flush_all_pending_stuffs(trans, root);
1737         if (ret)
1738                 goto cleanup_transaction;
1739
1740         btrfs_wait_delalloc_flush(root->fs_info);
1741
1742         btrfs_scrub_pause(root);
1743         /*
1744          * Ok now we need to make sure to block out any other joins while we
1745          * commit the transaction.  We could have started a join before setting
1746          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1747          */
1748         spin_lock(&root->fs_info->trans_lock);
1749         cur_trans->state = TRANS_STATE_COMMIT_DOING;
1750         spin_unlock(&root->fs_info->trans_lock);
1751         wait_event(cur_trans->writer_wait,
1752                    atomic_read(&cur_trans->num_writers) == 1);
1753
1754         /* ->aborted might be set after the previous check, so check it */
1755         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1756                 ret = cur_trans->aborted;
1757                 goto cleanup_transaction;
1758         }
1759         /*
1760          * the reloc mutex makes sure that we stop
1761          * the balancing code from coming in and moving
1762          * extents around in the middle of the commit
1763          */
1764         mutex_lock(&root->fs_info->reloc_mutex);
1765
1766         /*
1767          * We needn't worry about the delayed items because we will
1768          * deal with them in create_pending_snapshot(), which is the
1769          * core function of the snapshot creation.
1770          */
1771         ret = create_pending_snapshots(trans, root->fs_info);
1772         if (ret) {
1773                 mutex_unlock(&root->fs_info->reloc_mutex);
1774                 goto cleanup_transaction;
1775         }
1776
1777         /*
1778          * We insert the dir indexes of the snapshots and update the inode
1779          * of the snapshots' parents after the snapshot creation, so there
1780          * are some delayed items which are not dealt with. Now deal with
1781          * them.
1782          *
1783          * We needn't worry that this operation will corrupt the snapshots,
1784          * because all the tree which are snapshoted will be forced to COW
1785          * the nodes and leaves.
1786          */
1787         ret = btrfs_run_delayed_items(trans, root);
1788         if (ret) {
1789                 mutex_unlock(&root->fs_info->reloc_mutex);
1790                 goto cleanup_transaction;
1791         }
1792
1793         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1794         if (ret) {
1795                 mutex_unlock(&root->fs_info->reloc_mutex);
1796                 goto cleanup_transaction;
1797         }
1798
1799         /*
1800          * make sure none of the code above managed to slip in a
1801          * delayed item
1802          */
1803         btrfs_assert_delayed_root_empty(root);
1804
1805         WARN_ON(cur_trans != trans->transaction);
1806
1807         /* btrfs_commit_tree_roots is responsible for getting the
1808          * various roots consistent with each other.  Every pointer
1809          * in the tree of tree roots has to point to the most up to date
1810          * root for every subvolume and other tree.  So, we have to keep
1811          * the tree logging code from jumping in and changing any
1812          * of the trees.
1813          *
1814          * At this point in the commit, there can't be any tree-log
1815          * writers, but a little lower down we drop the trans mutex
1816          * and let new people in.  By holding the tree_log_mutex
1817          * from now until after the super is written, we avoid races
1818          * with the tree-log code.
1819          */
1820         mutex_lock(&root->fs_info->tree_log_mutex);
1821
1822         ret = commit_fs_roots(trans, root);
1823         if (ret) {
1824                 mutex_unlock(&root->fs_info->tree_log_mutex);
1825                 mutex_unlock(&root->fs_info->reloc_mutex);
1826                 goto cleanup_transaction;
1827         }
1828
1829         /* commit_fs_roots gets rid of all the tree log roots, it is now
1830          * safe to free the root of tree log roots
1831          */
1832         btrfs_free_log_root_tree(trans, root->fs_info);
1833
1834         ret = commit_cowonly_roots(trans, root);
1835         if (ret) {
1836                 mutex_unlock(&root->fs_info->tree_log_mutex);
1837                 mutex_unlock(&root->fs_info->reloc_mutex);
1838                 goto cleanup_transaction;
1839         }
1840
1841         /*
1842          * The tasks which save the space cache and inode cache may also
1843          * update ->aborted, check it.
1844          */
1845         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1846                 ret = cur_trans->aborted;
1847                 mutex_unlock(&root->fs_info->tree_log_mutex);
1848                 mutex_unlock(&root->fs_info->reloc_mutex);
1849                 goto cleanup_transaction;
1850         }
1851
1852         btrfs_prepare_extent_commit(trans, root);
1853
1854         cur_trans = root->fs_info->running_transaction;
1855
1856         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1857                             root->fs_info->tree_root->node);
1858         switch_commit_root(root->fs_info->tree_root);
1859
1860         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1861                             root->fs_info->chunk_root->node);
1862         switch_commit_root(root->fs_info->chunk_root);
1863
1864         assert_qgroups_uptodate(trans);
1865         update_super_roots(root);
1866
1867         btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1868         btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1869         memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1870                sizeof(*root->fs_info->super_copy));
1871
1872         spin_lock(&root->fs_info->trans_lock);
1873         cur_trans->state = TRANS_STATE_UNBLOCKED;
1874         root->fs_info->running_transaction = NULL;
1875         spin_unlock(&root->fs_info->trans_lock);
1876         mutex_unlock(&root->fs_info->reloc_mutex);
1877
1878         wake_up(&root->fs_info->transaction_wait);
1879
1880         ret = btrfs_write_and_wait_transaction(trans, root);
1881         if (ret) {
1882                 btrfs_error(root->fs_info, ret,
1883                             "Error while writing out transaction");
1884                 mutex_unlock(&root->fs_info->tree_log_mutex);
1885                 goto cleanup_transaction;
1886         }
1887
1888         ret = write_ctree_super(trans, root, 0);
1889         if (ret) {
1890                 mutex_unlock(&root->fs_info->tree_log_mutex);
1891                 goto cleanup_transaction;
1892         }
1893
1894         /*
1895          * the super is written, we can safely allow the tree-loggers
1896          * to go about their business
1897          */
1898         mutex_unlock(&root->fs_info->tree_log_mutex);
1899
1900         btrfs_finish_extent_commit(trans, root);
1901
1902         root->fs_info->last_trans_committed = cur_trans->transid;
1903         /*
1904          * We needn't acquire the lock here because there is no other task
1905          * which can change it.
1906          */
1907         cur_trans->state = TRANS_STATE_COMPLETED;
1908         wake_up(&cur_trans->commit_wait);
1909
1910         spin_lock(&root->fs_info->trans_lock);
1911         list_del_init(&cur_trans->list);
1912         spin_unlock(&root->fs_info->trans_lock);
1913
1914         btrfs_put_transaction(cur_trans);
1915         btrfs_put_transaction(cur_trans);
1916
1917         if (trans->type & __TRANS_FREEZABLE)
1918                 sb_end_intwrite(root->fs_info->sb);
1919
1920         trace_btrfs_transaction_commit(root);
1921
1922         btrfs_scrub_continue(root);
1923
1924         if (current->journal_info == trans)
1925                 current->journal_info = NULL;
1926
1927         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1928
1929         if (current != root->fs_info->transaction_kthread)
1930                 btrfs_run_delayed_iputs(root);
1931
1932         return ret;
1933
1934 cleanup_transaction:
1935         btrfs_trans_release_metadata(trans, root);
1936         trans->block_rsv = NULL;
1937         if (trans->qgroup_reserved) {
1938                 btrfs_qgroup_free(root, trans->qgroup_reserved);
1939                 trans->qgroup_reserved = 0;
1940         }
1941         btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1942         if (current->journal_info == trans)
1943                 current->journal_info = NULL;
1944         cleanup_transaction(trans, root, ret);
1945
1946         return ret;
1947 }
1948
1949 /*
1950  * return < 0 if error
1951  * 0 if there are no more dead_roots at the time of call
1952  * 1 there are more to be processed, call me again
1953  *
1954  * The return value indicates there are certainly more snapshots to delete, but
1955  * if there comes a new one during processing, it may return 0. We don't mind,
1956  * because btrfs_commit_super will poke cleaner thread and it will process it a
1957  * few seconds later.
1958  */
1959 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1960 {
1961         int ret;
1962         struct btrfs_fs_info *fs_info = root->fs_info;
1963
1964         spin_lock(&fs_info->trans_lock);
1965         if (list_empty(&fs_info->dead_roots)) {
1966                 spin_unlock(&fs_info->trans_lock);
1967                 return 0;
1968         }
1969         root = list_first_entry(&fs_info->dead_roots,
1970                         struct btrfs_root, root_list);
1971         /*
1972          * Make sure root is not involved in send,
1973          * if we fail with first root, we return
1974          * directly rather than continue.
1975          */
1976         spin_lock(&root->root_item_lock);
1977         if (root->send_in_progress) {
1978                 spin_unlock(&fs_info->trans_lock);
1979                 spin_unlock(&root->root_item_lock);
1980                 return 0;
1981         }
1982         spin_unlock(&root->root_item_lock);
1983
1984         list_del_init(&root->root_list);
1985         spin_unlock(&fs_info->trans_lock);
1986
1987         pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
1988
1989         btrfs_kill_all_delayed_nodes(root);
1990
1991         if (btrfs_header_backref_rev(root->node) <
1992                         BTRFS_MIXED_BACKREF_REV)
1993                 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1994         else
1995                 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
1996         /*
1997          * If we encounter a transaction abort during snapshot cleaning, we
1998          * don't want to crash here
1999          */
2000         return (ret < 0) ? 0 : 1;
2001 }