e87cbdad02a37bddef15b3adac4330e5251970bc
[sfrench/cifs-2.6.git] / fs / btrfs / ref-verify.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2014 Facebook.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/stacktrace.h>
8 #include "ctree.h"
9 #include "disk-io.h"
10 #include "locking.h"
11 #include "delayed-ref.h"
12 #include "ref-verify.h"
13
14 /*
15  * Used to keep track the roots and number of refs each root has for a given
16  * bytenr.  This just tracks the number of direct references, no shared
17  * references.
18  */
19 struct root_entry {
20         u64 root_objectid;
21         u64 num_refs;
22         struct rb_node node;
23 };
24
25 /*
26  * These are meant to represent what should exist in the extent tree, these can
27  * be used to verify the extent tree is consistent as these should all match
28  * what the extent tree says.
29  */
30 struct ref_entry {
31         u64 root_objectid;
32         u64 parent;
33         u64 owner;
34         u64 offset;
35         u64 num_refs;
36         struct rb_node node;
37 };
38
39 #define MAX_TRACE       16
40
41 /*
42  * Whenever we add/remove a reference we record the action.  The action maps
43  * back to the delayed ref action.  We hold the ref we are changing in the
44  * action so we can account for the history properly, and we record the root we
45  * were called with since it could be different from ref_root.  We also store
46  * stack traces because that's how I roll.
47  */
48 struct ref_action {
49         int action;
50         u64 root;
51         struct ref_entry ref;
52         struct list_head list;
53         unsigned long trace[MAX_TRACE];
54         unsigned int trace_len;
55 };
56
57 /*
58  * One of these for every block we reference, it holds the roots and references
59  * to it as well as all of the ref actions that have occurred to it.  We never
60  * free it until we unmount the file system in order to make sure re-allocations
61  * are happening properly.
62  */
63 struct block_entry {
64         u64 bytenr;
65         u64 len;
66         u64 num_refs;
67         int metadata;
68         int from_disk;
69         struct rb_root roots;
70         struct rb_root refs;
71         struct rb_node node;
72         struct list_head actions;
73 };
74
75 static struct block_entry *insert_block_entry(struct rb_root *root,
76                                               struct block_entry *be)
77 {
78         struct rb_node **p = &root->rb_node;
79         struct rb_node *parent_node = NULL;
80         struct block_entry *entry;
81
82         while (*p) {
83                 parent_node = *p;
84                 entry = rb_entry(parent_node, struct block_entry, node);
85                 if (entry->bytenr > be->bytenr)
86                         p = &(*p)->rb_left;
87                 else if (entry->bytenr < be->bytenr)
88                         p = &(*p)->rb_right;
89                 else
90                         return entry;
91         }
92
93         rb_link_node(&be->node, parent_node, p);
94         rb_insert_color(&be->node, root);
95         return NULL;
96 }
97
98 static struct block_entry *lookup_block_entry(struct rb_root *root, u64 bytenr)
99 {
100         struct rb_node *n;
101         struct block_entry *entry = NULL;
102
103         n = root->rb_node;
104         while (n) {
105                 entry = rb_entry(n, struct block_entry, node);
106                 if (entry->bytenr < bytenr)
107                         n = n->rb_right;
108                 else if (entry->bytenr > bytenr)
109                         n = n->rb_left;
110                 else
111                         return entry;
112         }
113         return NULL;
114 }
115
116 static struct root_entry *insert_root_entry(struct rb_root *root,
117                                             struct root_entry *re)
118 {
119         struct rb_node **p = &root->rb_node;
120         struct rb_node *parent_node = NULL;
121         struct root_entry *entry;
122
123         while (*p) {
124                 parent_node = *p;
125                 entry = rb_entry(parent_node, struct root_entry, node);
126                 if (entry->root_objectid > re->root_objectid)
127                         p = &(*p)->rb_left;
128                 else if (entry->root_objectid < re->root_objectid)
129                         p = &(*p)->rb_right;
130                 else
131                         return entry;
132         }
133
134         rb_link_node(&re->node, parent_node, p);
135         rb_insert_color(&re->node, root);
136         return NULL;
137
138 }
139
140 static int comp_refs(struct ref_entry *ref1, struct ref_entry *ref2)
141 {
142         if (ref1->root_objectid < ref2->root_objectid)
143                 return -1;
144         if (ref1->root_objectid > ref2->root_objectid)
145                 return 1;
146         if (ref1->parent < ref2->parent)
147                 return -1;
148         if (ref1->parent > ref2->parent)
149                 return 1;
150         if (ref1->owner < ref2->owner)
151                 return -1;
152         if (ref1->owner > ref2->owner)
153                 return 1;
154         if (ref1->offset < ref2->offset)
155                 return -1;
156         if (ref1->offset > ref2->offset)
157                 return 1;
158         return 0;
159 }
160
161 static struct ref_entry *insert_ref_entry(struct rb_root *root,
162                                           struct ref_entry *ref)
163 {
164         struct rb_node **p = &root->rb_node;
165         struct rb_node *parent_node = NULL;
166         struct ref_entry *entry;
167         int cmp;
168
169         while (*p) {
170                 parent_node = *p;
171                 entry = rb_entry(parent_node, struct ref_entry, node);
172                 cmp = comp_refs(entry, ref);
173                 if (cmp > 0)
174                         p = &(*p)->rb_left;
175                 else if (cmp < 0)
176                         p = &(*p)->rb_right;
177                 else
178                         return entry;
179         }
180
181         rb_link_node(&ref->node, parent_node, p);
182         rb_insert_color(&ref->node, root);
183         return NULL;
184
185 }
186
187 static struct root_entry *lookup_root_entry(struct rb_root *root, u64 objectid)
188 {
189         struct rb_node *n;
190         struct root_entry *entry = NULL;
191
192         n = root->rb_node;
193         while (n) {
194                 entry = rb_entry(n, struct root_entry, node);
195                 if (entry->root_objectid < objectid)
196                         n = n->rb_right;
197                 else if (entry->root_objectid > objectid)
198                         n = n->rb_left;
199                 else
200                         return entry;
201         }
202         return NULL;
203 }
204
205 #ifdef CONFIG_STACKTRACE
206 static void __save_stack_trace(struct ref_action *ra)
207 {
208         ra->trace_len = stack_trace_save(ra->trace, MAX_TRACE, 2);
209 }
210
211 static void __print_stack_trace(struct btrfs_fs_info *fs_info,
212                                 struct ref_action *ra)
213 {
214         if (ra->trace_len == 0) {
215                 btrfs_err(fs_info, "  ref-verify: no stacktrace");
216                 return;
217         }
218         stack_trace_print(ra->trace, ra->trace_len, 2);
219 }
220 #else
221 static void inline __save_stack_trace(struct ref_action *ra)
222 {
223 }
224
225 static void inline __print_stack_trace(struct btrfs_fs_info *fs_info,
226                                        struct ref_action *ra)
227 {
228         btrfs_err(fs_info, "  ref-verify: no stacktrace support");
229 }
230 #endif
231
232 static void free_block_entry(struct block_entry *be)
233 {
234         struct root_entry *re;
235         struct ref_entry *ref;
236         struct ref_action *ra;
237         struct rb_node *n;
238
239         while ((n = rb_first(&be->roots))) {
240                 re = rb_entry(n, struct root_entry, node);
241                 rb_erase(&re->node, &be->roots);
242                 kfree(re);
243         }
244
245         while((n = rb_first(&be->refs))) {
246                 ref = rb_entry(n, struct ref_entry, node);
247                 rb_erase(&ref->node, &be->refs);
248                 kfree(ref);
249         }
250
251         while (!list_empty(&be->actions)) {
252                 ra = list_first_entry(&be->actions, struct ref_action,
253                                       list);
254                 list_del(&ra->list);
255                 kfree(ra);
256         }
257         kfree(be);
258 }
259
260 static struct block_entry *add_block_entry(struct btrfs_fs_info *fs_info,
261                                            u64 bytenr, u64 len,
262                                            u64 root_objectid)
263 {
264         struct block_entry *be = NULL, *exist;
265         struct root_entry *re = NULL;
266
267         re = kzalloc(sizeof(struct root_entry), GFP_KERNEL);
268         be = kzalloc(sizeof(struct block_entry), GFP_KERNEL);
269         if (!be || !re) {
270                 kfree(re);
271                 kfree(be);
272                 return ERR_PTR(-ENOMEM);
273         }
274         be->bytenr = bytenr;
275         be->len = len;
276
277         re->root_objectid = root_objectid;
278         re->num_refs = 0;
279
280         spin_lock(&fs_info->ref_verify_lock);
281         exist = insert_block_entry(&fs_info->block_tree, be);
282         if (exist) {
283                 if (root_objectid) {
284                         struct root_entry *exist_re;
285
286                         exist_re = insert_root_entry(&exist->roots, re);
287                         if (exist_re)
288                                 kfree(re);
289                 }
290                 kfree(be);
291                 return exist;
292         }
293
294         be->num_refs = 0;
295         be->metadata = 0;
296         be->from_disk = 0;
297         be->roots = RB_ROOT;
298         be->refs = RB_ROOT;
299         INIT_LIST_HEAD(&be->actions);
300         if (root_objectid)
301                 insert_root_entry(&be->roots, re);
302         else
303                 kfree(re);
304         return be;
305 }
306
307 static int add_tree_block(struct btrfs_fs_info *fs_info, u64 ref_root,
308                           u64 parent, u64 bytenr, int level)
309 {
310         struct block_entry *be;
311         struct root_entry *re;
312         struct ref_entry *ref = NULL, *exist;
313
314         ref = kmalloc(sizeof(struct ref_entry), GFP_KERNEL);
315         if (!ref)
316                 return -ENOMEM;
317
318         if (parent)
319                 ref->root_objectid = 0;
320         else
321                 ref->root_objectid = ref_root;
322         ref->parent = parent;
323         ref->owner = level;
324         ref->offset = 0;
325         ref->num_refs = 1;
326
327         be = add_block_entry(fs_info, bytenr, fs_info->nodesize, ref_root);
328         if (IS_ERR(be)) {
329                 kfree(ref);
330                 return PTR_ERR(be);
331         }
332         be->num_refs++;
333         be->from_disk = 1;
334         be->metadata = 1;
335
336         if (!parent) {
337                 ASSERT(ref_root);
338                 re = lookup_root_entry(&be->roots, ref_root);
339                 ASSERT(re);
340                 re->num_refs++;
341         }
342         exist = insert_ref_entry(&be->refs, ref);
343         if (exist) {
344                 exist->num_refs++;
345                 kfree(ref);
346         }
347         spin_unlock(&fs_info->ref_verify_lock);
348
349         return 0;
350 }
351
352 static int add_shared_data_ref(struct btrfs_fs_info *fs_info,
353                                u64 parent, u32 num_refs, u64 bytenr,
354                                u64 num_bytes)
355 {
356         struct block_entry *be;
357         struct ref_entry *ref;
358
359         ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL);
360         if (!ref)
361                 return -ENOMEM;
362         be = add_block_entry(fs_info, bytenr, num_bytes, 0);
363         if (IS_ERR(be)) {
364                 kfree(ref);
365                 return PTR_ERR(be);
366         }
367         be->num_refs += num_refs;
368
369         ref->parent = parent;
370         ref->num_refs = num_refs;
371         if (insert_ref_entry(&be->refs, ref)) {
372                 spin_unlock(&fs_info->ref_verify_lock);
373                 btrfs_err(fs_info, "existing shared ref when reading from disk?");
374                 kfree(ref);
375                 return -EINVAL;
376         }
377         spin_unlock(&fs_info->ref_verify_lock);
378         return 0;
379 }
380
381 static int add_extent_data_ref(struct btrfs_fs_info *fs_info,
382                                struct extent_buffer *leaf,
383                                struct btrfs_extent_data_ref *dref,
384                                u64 bytenr, u64 num_bytes)
385 {
386         struct block_entry *be;
387         struct ref_entry *ref;
388         struct root_entry *re;
389         u64 ref_root = btrfs_extent_data_ref_root(leaf, dref);
390         u64 owner = btrfs_extent_data_ref_objectid(leaf, dref);
391         u64 offset = btrfs_extent_data_ref_offset(leaf, dref);
392         u32 num_refs = btrfs_extent_data_ref_count(leaf, dref);
393
394         ref = kzalloc(sizeof(struct ref_entry), GFP_KERNEL);
395         if (!ref)
396                 return -ENOMEM;
397         be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
398         if (IS_ERR(be)) {
399                 kfree(ref);
400                 return PTR_ERR(be);
401         }
402         be->num_refs += num_refs;
403
404         ref->parent = 0;
405         ref->owner = owner;
406         ref->root_objectid = ref_root;
407         ref->offset = offset;
408         ref->num_refs = num_refs;
409         if (insert_ref_entry(&be->refs, ref)) {
410                 spin_unlock(&fs_info->ref_verify_lock);
411                 btrfs_err(fs_info, "existing ref when reading from disk?");
412                 kfree(ref);
413                 return -EINVAL;
414         }
415
416         re = lookup_root_entry(&be->roots, ref_root);
417         if (!re) {
418                 spin_unlock(&fs_info->ref_verify_lock);
419                 btrfs_err(fs_info, "missing root in new block entry?");
420                 return -EINVAL;
421         }
422         re->num_refs += num_refs;
423         spin_unlock(&fs_info->ref_verify_lock);
424         return 0;
425 }
426
427 static int process_extent_item(struct btrfs_fs_info *fs_info,
428                                struct btrfs_path *path, struct btrfs_key *key,
429                                int slot, int *tree_block_level)
430 {
431         struct btrfs_extent_item *ei;
432         struct btrfs_extent_inline_ref *iref;
433         struct btrfs_extent_data_ref *dref;
434         struct btrfs_shared_data_ref *sref;
435         struct extent_buffer *leaf = path->nodes[0];
436         u32 item_size = btrfs_item_size_nr(leaf, slot);
437         unsigned long end, ptr;
438         u64 offset, flags, count;
439         int type, ret;
440
441         ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
442         flags = btrfs_extent_flags(leaf, ei);
443
444         if ((key->type == BTRFS_EXTENT_ITEM_KEY) &&
445             flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
446                 struct btrfs_tree_block_info *info;
447
448                 info = (struct btrfs_tree_block_info *)(ei + 1);
449                 *tree_block_level = btrfs_tree_block_level(leaf, info);
450                 iref = (struct btrfs_extent_inline_ref *)(info + 1);
451         } else {
452                 if (key->type == BTRFS_METADATA_ITEM_KEY)
453                         *tree_block_level = key->offset;
454                 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
455         }
456
457         ptr = (unsigned long)iref;
458         end = (unsigned long)ei + item_size;
459         while (ptr < end) {
460                 iref = (struct btrfs_extent_inline_ref *)ptr;
461                 type = btrfs_extent_inline_ref_type(leaf, iref);
462                 offset = btrfs_extent_inline_ref_offset(leaf, iref);
463                 switch (type) {
464                 case BTRFS_TREE_BLOCK_REF_KEY:
465                         ret = add_tree_block(fs_info, offset, 0, key->objectid,
466                                              *tree_block_level);
467                         break;
468                 case BTRFS_SHARED_BLOCK_REF_KEY:
469                         ret = add_tree_block(fs_info, 0, offset, key->objectid,
470                                              *tree_block_level);
471                         break;
472                 case BTRFS_EXTENT_DATA_REF_KEY:
473                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
474                         ret = add_extent_data_ref(fs_info, leaf, dref,
475                                                   key->objectid, key->offset);
476                         break;
477                 case BTRFS_SHARED_DATA_REF_KEY:
478                         sref = (struct btrfs_shared_data_ref *)(iref + 1);
479                         count = btrfs_shared_data_ref_count(leaf, sref);
480                         ret = add_shared_data_ref(fs_info, offset, count,
481                                                   key->objectid, key->offset);
482                         break;
483                 default:
484                         btrfs_err(fs_info, "invalid key type in iref");
485                         ret = -EINVAL;
486                         break;
487                 }
488                 if (ret)
489                         break;
490                 ptr += btrfs_extent_inline_ref_size(type);
491         }
492         return ret;
493 }
494
495 static int process_leaf(struct btrfs_root *root,
496                         struct btrfs_path *path, u64 *bytenr, u64 *num_bytes)
497 {
498         struct btrfs_fs_info *fs_info = root->fs_info;
499         struct extent_buffer *leaf = path->nodes[0];
500         struct btrfs_extent_data_ref *dref;
501         struct btrfs_shared_data_ref *sref;
502         u32 count;
503         int i = 0, tree_block_level = 0, ret;
504         struct btrfs_key key;
505         int nritems = btrfs_header_nritems(leaf);
506
507         for (i = 0; i < nritems; i++) {
508                 btrfs_item_key_to_cpu(leaf, &key, i);
509                 switch (key.type) {
510                 case BTRFS_EXTENT_ITEM_KEY:
511                         *num_bytes = key.offset;
512                         /* fall through */
513                 case BTRFS_METADATA_ITEM_KEY:
514                         *bytenr = key.objectid;
515                         ret = process_extent_item(fs_info, path, &key, i,
516                                                   &tree_block_level);
517                         break;
518                 case BTRFS_TREE_BLOCK_REF_KEY:
519                         ret = add_tree_block(fs_info, key.offset, 0,
520                                              key.objectid, tree_block_level);
521                         break;
522                 case BTRFS_SHARED_BLOCK_REF_KEY:
523                         ret = add_tree_block(fs_info, 0, key.offset,
524                                              key.objectid, tree_block_level);
525                         break;
526                 case BTRFS_EXTENT_DATA_REF_KEY:
527                         dref = btrfs_item_ptr(leaf, i,
528                                               struct btrfs_extent_data_ref);
529                         ret = add_extent_data_ref(fs_info, leaf, dref, *bytenr,
530                                                   *num_bytes);
531                         break;
532                 case BTRFS_SHARED_DATA_REF_KEY:
533                         sref = btrfs_item_ptr(leaf, i,
534                                               struct btrfs_shared_data_ref);
535                         count = btrfs_shared_data_ref_count(leaf, sref);
536                         ret = add_shared_data_ref(fs_info, key.offset, count,
537                                                   *bytenr, *num_bytes);
538                         break;
539                 default:
540                         break;
541                 }
542                 if (ret)
543                         break;
544         }
545         return ret;
546 }
547
548 /* Walk down to the leaf from the given level */
549 static int walk_down_tree(struct btrfs_root *root, struct btrfs_path *path,
550                           int level, u64 *bytenr, u64 *num_bytes)
551 {
552         struct btrfs_fs_info *fs_info = root->fs_info;
553         struct extent_buffer *eb;
554         u64 block_bytenr, gen;
555         int ret = 0;
556
557         while (level >= 0) {
558                 if (level) {
559                         struct btrfs_key first_key;
560
561                         block_bytenr = btrfs_node_blockptr(path->nodes[level],
562                                                            path->slots[level]);
563                         gen = btrfs_node_ptr_generation(path->nodes[level],
564                                                         path->slots[level]);
565                         btrfs_node_key_to_cpu(path->nodes[level], &first_key,
566                                               path->slots[level]);
567                         eb = read_tree_block(fs_info, block_bytenr, gen,
568                                              level - 1, &first_key);
569                         if (IS_ERR(eb))
570                                 return PTR_ERR(eb);
571                         if (!extent_buffer_uptodate(eb)) {
572                                 free_extent_buffer(eb);
573                                 return -EIO;
574                         }
575                         btrfs_tree_read_lock(eb);
576                         btrfs_set_lock_blocking_read(eb);
577                         path->nodes[level-1] = eb;
578                         path->slots[level-1] = 0;
579                         path->locks[level-1] = BTRFS_READ_LOCK_BLOCKING;
580                 } else {
581                         ret = process_leaf(root, path, bytenr, num_bytes);
582                         if (ret)
583                                 break;
584                 }
585                 level--;
586         }
587         return ret;
588 }
589
590 /* Walk up to the next node that needs to be processed */
591 static int walk_up_tree(struct btrfs_path *path, int *level)
592 {
593         int l;
594
595         for (l = 0; l < BTRFS_MAX_LEVEL; l++) {
596                 if (!path->nodes[l])
597                         continue;
598                 if (l) {
599                         path->slots[l]++;
600                         if (path->slots[l] <
601                             btrfs_header_nritems(path->nodes[l])) {
602                                 *level = l;
603                                 return 0;
604                         }
605                 }
606                 btrfs_tree_unlock_rw(path->nodes[l], path->locks[l]);
607                 free_extent_buffer(path->nodes[l]);
608                 path->nodes[l] = NULL;
609                 path->slots[l] = 0;
610                 path->locks[l] = 0;
611         }
612
613         return 1;
614 }
615
616 static void dump_ref_action(struct btrfs_fs_info *fs_info,
617                             struct ref_action *ra)
618 {
619         btrfs_err(fs_info,
620 "  Ref action %d, root %llu, ref_root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
621                   ra->action, ra->root, ra->ref.root_objectid, ra->ref.parent,
622                   ra->ref.owner, ra->ref.offset, ra->ref.num_refs);
623         __print_stack_trace(fs_info, ra);
624 }
625
626 /*
627  * Dumps all the information from the block entry to printk, it's going to be
628  * awesome.
629  */
630 static void dump_block_entry(struct btrfs_fs_info *fs_info,
631                              struct block_entry *be)
632 {
633         struct ref_entry *ref;
634         struct root_entry *re;
635         struct ref_action *ra;
636         struct rb_node *n;
637
638         btrfs_err(fs_info,
639 "dumping block entry [%llu %llu], num_refs %llu, metadata %d, from disk %d",
640                   be->bytenr, be->len, be->num_refs, be->metadata,
641                   be->from_disk);
642
643         for (n = rb_first(&be->refs); n; n = rb_next(n)) {
644                 ref = rb_entry(n, struct ref_entry, node);
645                 btrfs_err(fs_info,
646 "  ref root %llu, parent %llu, owner %llu, offset %llu, num_refs %llu",
647                           ref->root_objectid, ref->parent, ref->owner,
648                           ref->offset, ref->num_refs);
649         }
650
651         for (n = rb_first(&be->roots); n; n = rb_next(n)) {
652                 re = rb_entry(n, struct root_entry, node);
653                 btrfs_err(fs_info, "  root entry %llu, num_refs %llu",
654                           re->root_objectid, re->num_refs);
655         }
656
657         list_for_each_entry(ra, &be->actions, list)
658                 dump_ref_action(fs_info, ra);
659 }
660
661 /*
662  * btrfs_ref_tree_mod: called when we modify a ref for a bytenr
663  *
664  * This will add an action item to the given bytenr and do sanity checks to make
665  * sure we haven't messed something up.  If we are making a new allocation and
666  * this block entry has history we will delete all previous actions as long as
667  * our sanity checks pass as they are no longer needed.
668  */
669 int btrfs_ref_tree_mod(struct btrfs_fs_info *fs_info,
670                        struct btrfs_ref *generic_ref)
671 {
672         struct ref_entry *ref = NULL, *exist;
673         struct ref_action *ra = NULL;
674         struct block_entry *be = NULL;
675         struct root_entry *re = NULL;
676         int action = generic_ref->action;
677         int ret = 0;
678         bool metadata;
679         u64 bytenr = generic_ref->bytenr;
680         u64 num_bytes = generic_ref->len;
681         u64 parent = generic_ref->parent;
682         u64 ref_root;
683         u64 owner;
684         u64 offset;
685
686         if (!btrfs_test_opt(fs_info, REF_VERIFY))
687                 return 0;
688
689         if (generic_ref->type == BTRFS_REF_METADATA) {
690                 ref_root = generic_ref->tree_ref.root;
691                 owner = generic_ref->tree_ref.level;
692                 offset = 0;
693         } else {
694                 ref_root = generic_ref->data_ref.ref_root;
695                 owner = generic_ref->data_ref.ino;
696                 offset = generic_ref->data_ref.offset;
697         }
698         metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
699
700         ref = kzalloc(sizeof(struct ref_entry), GFP_NOFS);
701         ra = kmalloc(sizeof(struct ref_action), GFP_NOFS);
702         if (!ra || !ref) {
703                 kfree(ref);
704                 kfree(ra);
705                 ret = -ENOMEM;
706                 goto out;
707         }
708
709         if (parent) {
710                 ref->parent = parent;
711         } else {
712                 ref->root_objectid = ref_root;
713                 ref->owner = owner;
714                 ref->offset = offset;
715         }
716         ref->num_refs = (action == BTRFS_DROP_DELAYED_REF) ? -1 : 1;
717
718         memcpy(&ra->ref, ref, sizeof(struct ref_entry));
719         /*
720          * Save the extra info from the delayed ref in the ref action to make it
721          * easier to figure out what is happening.  The real ref's we add to the
722          * ref tree need to reflect what we save on disk so it matches any
723          * on-disk refs we pre-loaded.
724          */
725         ra->ref.owner = owner;
726         ra->ref.offset = offset;
727         ra->ref.root_objectid = ref_root;
728         __save_stack_trace(ra);
729
730         INIT_LIST_HEAD(&ra->list);
731         ra->action = action;
732         ra->root = generic_ref->real_root;
733
734         /*
735          * This is an allocation, preallocate the block_entry in case we haven't
736          * used it before.
737          */
738         ret = -EINVAL;
739         if (action == BTRFS_ADD_DELAYED_EXTENT) {
740                 /*
741                  * For subvol_create we'll just pass in whatever the parent root
742                  * is and the new root objectid, so let's not treat the passed
743                  * in root as if it really has a ref for this bytenr.
744                  */
745                 be = add_block_entry(fs_info, bytenr, num_bytes, ref_root);
746                 if (IS_ERR(be)) {
747                         kfree(ra);
748                         ret = PTR_ERR(be);
749                         goto out;
750                 }
751                 be->num_refs++;
752                 if (metadata)
753                         be->metadata = 1;
754
755                 if (be->num_refs != 1) {
756                         btrfs_err(fs_info,
757                         "re-allocated a block that still has references to it!");
758                         dump_block_entry(fs_info, be);
759                         dump_ref_action(fs_info, ra);
760                         goto out_unlock;
761                 }
762
763                 while (!list_empty(&be->actions)) {
764                         struct ref_action *tmp;
765
766                         tmp = list_first_entry(&be->actions, struct ref_action,
767                                                list);
768                         list_del(&tmp->list);
769                         kfree(tmp);
770                 }
771         } else {
772                 struct root_entry *tmp;
773
774                 if (!parent) {
775                         re = kmalloc(sizeof(struct root_entry), GFP_NOFS);
776                         if (!re) {
777                                 kfree(ref);
778                                 kfree(ra);
779                                 ret = -ENOMEM;
780                                 goto out;
781                         }
782                         /*
783                          * This is the root that is modifying us, so it's the
784                          * one we want to lookup below when we modify the
785                          * re->num_refs.
786                          */
787                         ref_root = generic_ref->real_root;
788                         re->root_objectid = generic_ref->real_root;
789                         re->num_refs = 0;
790                 }
791
792                 spin_lock(&fs_info->ref_verify_lock);
793                 be = lookup_block_entry(&fs_info->block_tree, bytenr);
794                 if (!be) {
795                         btrfs_err(fs_info,
796 "trying to do action %d to bytenr %llu num_bytes %llu but there is no existing entry!",
797                                   action, (unsigned long long)bytenr,
798                                   (unsigned long long)num_bytes);
799                         dump_ref_action(fs_info, ra);
800                         kfree(ref);
801                         kfree(ra);
802                         goto out_unlock;
803                 }
804
805                 if (!parent) {
806                         tmp = insert_root_entry(&be->roots, re);
807                         if (tmp) {
808                                 kfree(re);
809                                 re = tmp;
810                         }
811                 }
812         }
813
814         exist = insert_ref_entry(&be->refs, ref);
815         if (exist) {
816                 if (action == BTRFS_DROP_DELAYED_REF) {
817                         if (exist->num_refs == 0) {
818                                 btrfs_err(fs_info,
819 "dropping a ref for a existing root that doesn't have a ref on the block");
820                                 dump_block_entry(fs_info, be);
821                                 dump_ref_action(fs_info, ra);
822                                 kfree(ra);
823                                 goto out_unlock;
824                         }
825                         exist->num_refs--;
826                         if (exist->num_refs == 0) {
827                                 rb_erase(&exist->node, &be->refs);
828                                 kfree(exist);
829                         }
830                 } else if (!be->metadata) {
831                         exist->num_refs++;
832                 } else {
833                         btrfs_err(fs_info,
834 "attempting to add another ref for an existing ref on a tree block");
835                         dump_block_entry(fs_info, be);
836                         dump_ref_action(fs_info, ra);
837                         kfree(ra);
838                         goto out_unlock;
839                 }
840                 kfree(ref);
841         } else {
842                 if (action == BTRFS_DROP_DELAYED_REF) {
843                         btrfs_err(fs_info,
844 "dropping a ref for a root that doesn't have a ref on the block");
845                         dump_block_entry(fs_info, be);
846                         dump_ref_action(fs_info, ra);
847                         kfree(ra);
848                         goto out_unlock;
849                 }
850         }
851
852         if (!parent && !re) {
853                 re = lookup_root_entry(&be->roots, ref_root);
854                 if (!re) {
855                         /*
856                          * This shouldn't happen because we will add our re
857                          * above when we lookup the be with !parent, but just in
858                          * case catch this case so we don't panic because I
859                          * didn't think of some other corner case.
860                          */
861                         btrfs_err(fs_info, "failed to find root %llu for %llu",
862                                   generic_ref->real_root, be->bytenr);
863                         dump_block_entry(fs_info, be);
864                         dump_ref_action(fs_info, ra);
865                         kfree(ra);
866                         goto out_unlock;
867                 }
868         }
869         if (action == BTRFS_DROP_DELAYED_REF) {
870                 if (re)
871                         re->num_refs--;
872                 be->num_refs--;
873         } else if (action == BTRFS_ADD_DELAYED_REF) {
874                 be->num_refs++;
875                 if (re)
876                         re->num_refs++;
877         }
878         list_add_tail(&ra->list, &be->actions);
879         ret = 0;
880 out_unlock:
881         spin_unlock(&fs_info->ref_verify_lock);
882 out:
883         if (ret)
884                 btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
885         return ret;
886 }
887
888 /* Free up the ref cache */
889 void btrfs_free_ref_cache(struct btrfs_fs_info *fs_info)
890 {
891         struct block_entry *be;
892         struct rb_node *n;
893
894         if (!btrfs_test_opt(fs_info, REF_VERIFY))
895                 return;
896
897         spin_lock(&fs_info->ref_verify_lock);
898         while ((n = rb_first(&fs_info->block_tree))) {
899                 be = rb_entry(n, struct block_entry, node);
900                 rb_erase(&be->node, &fs_info->block_tree);
901                 free_block_entry(be);
902                 cond_resched_lock(&fs_info->ref_verify_lock);
903         }
904         spin_unlock(&fs_info->ref_verify_lock);
905 }
906
907 void btrfs_free_ref_tree_range(struct btrfs_fs_info *fs_info, u64 start,
908                                u64 len)
909 {
910         struct block_entry *be = NULL, *entry;
911         struct rb_node *n;
912
913         if (!btrfs_test_opt(fs_info, REF_VERIFY))
914                 return;
915
916         spin_lock(&fs_info->ref_verify_lock);
917         n = fs_info->block_tree.rb_node;
918         while (n) {
919                 entry = rb_entry(n, struct block_entry, node);
920                 if (entry->bytenr < start) {
921                         n = n->rb_right;
922                 } else if (entry->bytenr > start) {
923                         n = n->rb_left;
924                 } else {
925                         be = entry;
926                         break;
927                 }
928                 /* We want to get as close to start as possible */
929                 if (be == NULL ||
930                     (entry->bytenr < start && be->bytenr > start) ||
931                     (entry->bytenr < start && entry->bytenr > be->bytenr))
932                         be = entry;
933         }
934
935         /*
936          * Could have an empty block group, maybe have something to check for
937          * this case to verify we were actually empty?
938          */
939         if (!be) {
940                 spin_unlock(&fs_info->ref_verify_lock);
941                 return;
942         }
943
944         n = &be->node;
945         while (n) {
946                 be = rb_entry(n, struct block_entry, node);
947                 n = rb_next(n);
948                 if (be->bytenr < start && be->bytenr + be->len > start) {
949                         btrfs_err(fs_info,
950                                 "block entry overlaps a block group [%llu,%llu]!",
951                                 start, len);
952                         dump_block_entry(fs_info, be);
953                         continue;
954                 }
955                 if (be->bytenr < start)
956                         continue;
957                 if (be->bytenr >= start + len)
958                         break;
959                 if (be->bytenr + be->len > start + len) {
960                         btrfs_err(fs_info,
961                                 "block entry overlaps a block group [%llu,%llu]!",
962                                 start, len);
963                         dump_block_entry(fs_info, be);
964                 }
965                 rb_erase(&be->node, &fs_info->block_tree);
966                 free_block_entry(be);
967         }
968         spin_unlock(&fs_info->ref_verify_lock);
969 }
970
971 /* Walk down all roots and build the ref tree, meant to be called at mount */
972 int btrfs_build_ref_tree(struct btrfs_fs_info *fs_info)
973 {
974         struct btrfs_path *path;
975         struct extent_buffer *eb;
976         u64 bytenr = 0, num_bytes = 0;
977         int ret, level;
978
979         if (!btrfs_test_opt(fs_info, REF_VERIFY))
980                 return 0;
981
982         path = btrfs_alloc_path();
983         if (!path)
984                 return -ENOMEM;
985
986         eb = btrfs_read_lock_root_node(fs_info->extent_root);
987         btrfs_set_lock_blocking_read(eb);
988         level = btrfs_header_level(eb);
989         path->nodes[level] = eb;
990         path->slots[level] = 0;
991         path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
992
993         while (1) {
994                 /*
995                  * We have to keep track of the bytenr/num_bytes we last hit
996                  * because we could have run out of space for an inline ref, and
997                  * would have had to added a ref key item which may appear on a
998                  * different leaf from the original extent item.
999                  */
1000                 ret = walk_down_tree(fs_info->extent_root, path, level,
1001                                      &bytenr, &num_bytes);
1002                 if (ret)
1003                         break;
1004                 ret = walk_up_tree(path, &level);
1005                 if (ret < 0)
1006                         break;
1007                 if (ret > 0) {
1008                         ret = 0;
1009                         break;
1010                 }
1011         }
1012         if (ret) {
1013                 btrfs_clear_opt(fs_info->mount_opt, REF_VERIFY);
1014                 btrfs_free_ref_cache(fs_info);
1015         }
1016         btrfs_free_path(path);
1017         return ret;
1018 }