Merge remote-tracking branches 'asoc/topic/tlv320dac33', 'asoc/topic/ts3a227e', ...
[sfrench/cifs-2.6.git] / fs / btrfs / ioctl.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/compat.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/security.h>
39 #include <linux/xattr.h>
40 #include <linux/mm.h>
41 #include <linux/slab.h>
42 #include <linux/blkdev.h>
43 #include <linux/uuid.h>
44 #include <linux/btrfs.h>
45 #include <linux/uaccess.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "volumes.h"
52 #include "locking.h"
53 #include "inode-map.h"
54 #include "backref.h"
55 #include "rcu-string.h"
56 #include "send.h"
57 #include "dev-replace.h"
58 #include "props.h"
59 #include "sysfs.h"
60 #include "qgroup.h"
61 #include "tree-log.h"
62 #include "compression.h"
63
64 #ifdef CONFIG_64BIT
65 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
66  * structures are incorrect, as the timespec structure from userspace
67  * is 4 bytes too small. We define these alternatives here to teach
68  * the kernel about the 32-bit struct packing.
69  */
70 struct btrfs_ioctl_timespec_32 {
71         __u64 sec;
72         __u32 nsec;
73 } __attribute__ ((__packed__));
74
75 struct btrfs_ioctl_received_subvol_args_32 {
76         char    uuid[BTRFS_UUID_SIZE];  /* in */
77         __u64   stransid;               /* in */
78         __u64   rtransid;               /* out */
79         struct btrfs_ioctl_timespec_32 stime; /* in */
80         struct btrfs_ioctl_timespec_32 rtime; /* out */
81         __u64   flags;                  /* in */
82         __u64   reserved[16];           /* in */
83 } __attribute__ ((__packed__));
84
85 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
86                                 struct btrfs_ioctl_received_subvol_args_32)
87 #endif
88
89 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
90 struct btrfs_ioctl_send_args_32 {
91         __s64 send_fd;                  /* in */
92         __u64 clone_sources_count;      /* in */
93         compat_uptr_t clone_sources;    /* in */
94         __u64 parent_root;              /* in */
95         __u64 flags;                    /* in */
96         __u64 reserved[4];              /* in */
97 } __attribute__ ((__packed__));
98
99 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
100                                struct btrfs_ioctl_send_args_32)
101 #endif
102
103 static int btrfs_clone(struct inode *src, struct inode *inode,
104                        u64 off, u64 olen, u64 olen_aligned, u64 destoff,
105                        int no_time_update);
106
107 /* Mask out flags that are inappropriate for the given type of inode. */
108 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
109 {
110         if (S_ISDIR(mode))
111                 return flags;
112         else if (S_ISREG(mode))
113                 return flags & ~FS_DIRSYNC_FL;
114         else
115                 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
116 }
117
118 /*
119  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
120  */
121 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
122 {
123         unsigned int iflags = 0;
124
125         if (flags & BTRFS_INODE_SYNC)
126                 iflags |= FS_SYNC_FL;
127         if (flags & BTRFS_INODE_IMMUTABLE)
128                 iflags |= FS_IMMUTABLE_FL;
129         if (flags & BTRFS_INODE_APPEND)
130                 iflags |= FS_APPEND_FL;
131         if (flags & BTRFS_INODE_NODUMP)
132                 iflags |= FS_NODUMP_FL;
133         if (flags & BTRFS_INODE_NOATIME)
134                 iflags |= FS_NOATIME_FL;
135         if (flags & BTRFS_INODE_DIRSYNC)
136                 iflags |= FS_DIRSYNC_FL;
137         if (flags & BTRFS_INODE_NODATACOW)
138                 iflags |= FS_NOCOW_FL;
139
140         if (flags & BTRFS_INODE_NOCOMPRESS)
141                 iflags |= FS_NOCOMP_FL;
142         else if (flags & BTRFS_INODE_COMPRESS)
143                 iflags |= FS_COMPR_FL;
144
145         return iflags;
146 }
147
148 /*
149  * Update inode->i_flags based on the btrfs internal flags.
150  */
151 void btrfs_update_iflags(struct inode *inode)
152 {
153         struct btrfs_inode *ip = BTRFS_I(inode);
154         unsigned int new_fl = 0;
155
156         if (ip->flags & BTRFS_INODE_SYNC)
157                 new_fl |= S_SYNC;
158         if (ip->flags & BTRFS_INODE_IMMUTABLE)
159                 new_fl |= S_IMMUTABLE;
160         if (ip->flags & BTRFS_INODE_APPEND)
161                 new_fl |= S_APPEND;
162         if (ip->flags & BTRFS_INODE_NOATIME)
163                 new_fl |= S_NOATIME;
164         if (ip->flags & BTRFS_INODE_DIRSYNC)
165                 new_fl |= S_DIRSYNC;
166
167         set_mask_bits(&inode->i_flags,
168                       S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
169                       new_fl);
170 }
171
172 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
173 {
174         struct btrfs_inode *ip = BTRFS_I(file_inode(file));
175         unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
176
177         if (copy_to_user(arg, &flags, sizeof(flags)))
178                 return -EFAULT;
179         return 0;
180 }
181
182 static int check_flags(unsigned int flags)
183 {
184         if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
185                       FS_NOATIME_FL | FS_NODUMP_FL | \
186                       FS_SYNC_FL | FS_DIRSYNC_FL | \
187                       FS_NOCOMP_FL | FS_COMPR_FL |
188                       FS_NOCOW_FL))
189                 return -EOPNOTSUPP;
190
191         if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
192                 return -EINVAL;
193
194         return 0;
195 }
196
197 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
198 {
199         struct inode *inode = file_inode(file);
200         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
201         struct btrfs_inode *ip = BTRFS_I(inode);
202         struct btrfs_root *root = ip->root;
203         struct btrfs_trans_handle *trans;
204         unsigned int flags, oldflags;
205         int ret;
206         u64 ip_oldflags;
207         unsigned int i_oldflags;
208         umode_t mode;
209
210         if (!inode_owner_or_capable(inode))
211                 return -EPERM;
212
213         if (btrfs_root_readonly(root))
214                 return -EROFS;
215
216         if (copy_from_user(&flags, arg, sizeof(flags)))
217                 return -EFAULT;
218
219         ret = check_flags(flags);
220         if (ret)
221                 return ret;
222
223         ret = mnt_want_write_file(file);
224         if (ret)
225                 return ret;
226
227         inode_lock(inode);
228
229         ip_oldflags = ip->flags;
230         i_oldflags = inode->i_flags;
231         mode = inode->i_mode;
232
233         flags = btrfs_mask_flags(inode->i_mode, flags);
234         oldflags = btrfs_flags_to_ioctl(ip->flags);
235         if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
236                 if (!capable(CAP_LINUX_IMMUTABLE)) {
237                         ret = -EPERM;
238                         goto out_unlock;
239                 }
240         }
241
242         if (flags & FS_SYNC_FL)
243                 ip->flags |= BTRFS_INODE_SYNC;
244         else
245                 ip->flags &= ~BTRFS_INODE_SYNC;
246         if (flags & FS_IMMUTABLE_FL)
247                 ip->flags |= BTRFS_INODE_IMMUTABLE;
248         else
249                 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
250         if (flags & FS_APPEND_FL)
251                 ip->flags |= BTRFS_INODE_APPEND;
252         else
253                 ip->flags &= ~BTRFS_INODE_APPEND;
254         if (flags & FS_NODUMP_FL)
255                 ip->flags |= BTRFS_INODE_NODUMP;
256         else
257                 ip->flags &= ~BTRFS_INODE_NODUMP;
258         if (flags & FS_NOATIME_FL)
259                 ip->flags |= BTRFS_INODE_NOATIME;
260         else
261                 ip->flags &= ~BTRFS_INODE_NOATIME;
262         if (flags & FS_DIRSYNC_FL)
263                 ip->flags |= BTRFS_INODE_DIRSYNC;
264         else
265                 ip->flags &= ~BTRFS_INODE_DIRSYNC;
266         if (flags & FS_NOCOW_FL) {
267                 if (S_ISREG(mode)) {
268                         /*
269                          * It's safe to turn csums off here, no extents exist.
270                          * Otherwise we want the flag to reflect the real COW
271                          * status of the file and will not set it.
272                          */
273                         if (inode->i_size == 0)
274                                 ip->flags |= BTRFS_INODE_NODATACOW
275                                            | BTRFS_INODE_NODATASUM;
276                 } else {
277                         ip->flags |= BTRFS_INODE_NODATACOW;
278                 }
279         } else {
280                 /*
281                  * Revert back under same assumptions as above
282                  */
283                 if (S_ISREG(mode)) {
284                         if (inode->i_size == 0)
285                                 ip->flags &= ~(BTRFS_INODE_NODATACOW
286                                              | BTRFS_INODE_NODATASUM);
287                 } else {
288                         ip->flags &= ~BTRFS_INODE_NODATACOW;
289                 }
290         }
291
292         /*
293          * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
294          * flag may be changed automatically if compression code won't make
295          * things smaller.
296          */
297         if (flags & FS_NOCOMP_FL) {
298                 ip->flags &= ~BTRFS_INODE_COMPRESS;
299                 ip->flags |= BTRFS_INODE_NOCOMPRESS;
300
301                 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
302                 if (ret && ret != -ENODATA)
303                         goto out_drop;
304         } else if (flags & FS_COMPR_FL) {
305                 const char *comp;
306
307                 ip->flags |= BTRFS_INODE_COMPRESS;
308                 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
309
310                 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
311                         comp = "lzo";
312                 else if (fs_info->compress_type == BTRFS_COMPRESS_ZLIB)
313                         comp = "zlib";
314                 else
315                         comp = "zstd";
316                 ret = btrfs_set_prop(inode, "btrfs.compression",
317                                      comp, strlen(comp), 0);
318                 if (ret)
319                         goto out_drop;
320
321         } else {
322                 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
323                 if (ret && ret != -ENODATA)
324                         goto out_drop;
325                 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
326         }
327
328         trans = btrfs_start_transaction(root, 1);
329         if (IS_ERR(trans)) {
330                 ret = PTR_ERR(trans);
331                 goto out_drop;
332         }
333
334         btrfs_update_iflags(inode);
335         inode_inc_iversion(inode);
336         inode->i_ctime = current_time(inode);
337         ret = btrfs_update_inode(trans, root, inode);
338
339         btrfs_end_transaction(trans);
340  out_drop:
341         if (ret) {
342                 ip->flags = ip_oldflags;
343                 inode->i_flags = i_oldflags;
344         }
345
346  out_unlock:
347         inode_unlock(inode);
348         mnt_drop_write_file(file);
349         return ret;
350 }
351
352 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
353 {
354         struct inode *inode = file_inode(file);
355
356         return put_user(inode->i_generation, arg);
357 }
358
359 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
360 {
361         struct inode *inode = file_inode(file);
362         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
363         struct btrfs_device *device;
364         struct request_queue *q;
365         struct fstrim_range range;
366         u64 minlen = ULLONG_MAX;
367         u64 num_devices = 0;
368         u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
369         int ret;
370
371         if (!capable(CAP_SYS_ADMIN))
372                 return -EPERM;
373
374         rcu_read_lock();
375         list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
376                                 dev_list) {
377                 if (!device->bdev)
378                         continue;
379                 q = bdev_get_queue(device->bdev);
380                 if (blk_queue_discard(q)) {
381                         num_devices++;
382                         minlen = min_t(u64, q->limits.discard_granularity,
383                                      minlen);
384                 }
385         }
386         rcu_read_unlock();
387
388         if (!num_devices)
389                 return -EOPNOTSUPP;
390         if (copy_from_user(&range, arg, sizeof(range)))
391                 return -EFAULT;
392         if (range.start > total_bytes ||
393             range.len < fs_info->sb->s_blocksize)
394                 return -EINVAL;
395
396         range.len = min(range.len, total_bytes - range.start);
397         range.minlen = max(range.minlen, minlen);
398         ret = btrfs_trim_fs(fs_info, &range);
399         if (ret < 0)
400                 return ret;
401
402         if (copy_to_user(arg, &range, sizeof(range)))
403                 return -EFAULT;
404
405         return 0;
406 }
407
408 int btrfs_is_empty_uuid(u8 *uuid)
409 {
410         int i;
411
412         for (i = 0; i < BTRFS_UUID_SIZE; i++) {
413                 if (uuid[i])
414                         return 0;
415         }
416         return 1;
417 }
418
419 static noinline int create_subvol(struct inode *dir,
420                                   struct dentry *dentry,
421                                   const char *name, int namelen,
422                                   u64 *async_transid,
423                                   struct btrfs_qgroup_inherit *inherit)
424 {
425         struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
426         struct btrfs_trans_handle *trans;
427         struct btrfs_key key;
428         struct btrfs_root_item *root_item;
429         struct btrfs_inode_item *inode_item;
430         struct extent_buffer *leaf;
431         struct btrfs_root *root = BTRFS_I(dir)->root;
432         struct btrfs_root *new_root;
433         struct btrfs_block_rsv block_rsv;
434         struct timespec cur_time = current_time(dir);
435         struct inode *inode;
436         int ret;
437         int err;
438         u64 objectid;
439         u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
440         u64 index = 0;
441         u64 qgroup_reserved;
442         uuid_le new_uuid;
443
444         root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
445         if (!root_item)
446                 return -ENOMEM;
447
448         ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
449         if (ret)
450                 goto fail_free;
451
452         /*
453          * Don't create subvolume whose level is not zero. Or qgroup will be
454          * screwed up since it assumes subvolume qgroup's level to be 0.
455          */
456         if (btrfs_qgroup_level(objectid)) {
457                 ret = -ENOSPC;
458                 goto fail_free;
459         }
460
461         btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
462         /*
463          * The same as the snapshot creation, please see the comment
464          * of create_snapshot().
465          */
466         ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
467                                                8, &qgroup_reserved, false);
468         if (ret)
469                 goto fail_free;
470
471         trans = btrfs_start_transaction(root, 0);
472         if (IS_ERR(trans)) {
473                 ret = PTR_ERR(trans);
474                 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
475                 goto fail_free;
476         }
477         trans->block_rsv = &block_rsv;
478         trans->bytes_reserved = block_rsv.size;
479
480         ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit);
481         if (ret)
482                 goto fail;
483
484         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
485         if (IS_ERR(leaf)) {
486                 ret = PTR_ERR(leaf);
487                 goto fail;
488         }
489
490         memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
491         btrfs_set_header_bytenr(leaf, leaf->start);
492         btrfs_set_header_generation(leaf, trans->transid);
493         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
494         btrfs_set_header_owner(leaf, objectid);
495
496         write_extent_buffer_fsid(leaf, fs_info->fsid);
497         write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
498         btrfs_mark_buffer_dirty(leaf);
499
500         inode_item = &root_item->inode;
501         btrfs_set_stack_inode_generation(inode_item, 1);
502         btrfs_set_stack_inode_size(inode_item, 3);
503         btrfs_set_stack_inode_nlink(inode_item, 1);
504         btrfs_set_stack_inode_nbytes(inode_item,
505                                      fs_info->nodesize);
506         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
507
508         btrfs_set_root_flags(root_item, 0);
509         btrfs_set_root_limit(root_item, 0);
510         btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
511
512         btrfs_set_root_bytenr(root_item, leaf->start);
513         btrfs_set_root_generation(root_item, trans->transid);
514         btrfs_set_root_level(root_item, 0);
515         btrfs_set_root_refs(root_item, 1);
516         btrfs_set_root_used(root_item, leaf->len);
517         btrfs_set_root_last_snapshot(root_item, 0);
518
519         btrfs_set_root_generation_v2(root_item,
520                         btrfs_root_generation(root_item));
521         uuid_le_gen(&new_uuid);
522         memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
523         btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
524         btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
525         root_item->ctime = root_item->otime;
526         btrfs_set_root_ctransid(root_item, trans->transid);
527         btrfs_set_root_otransid(root_item, trans->transid);
528
529         btrfs_tree_unlock(leaf);
530         free_extent_buffer(leaf);
531         leaf = NULL;
532
533         btrfs_set_root_dirid(root_item, new_dirid);
534
535         key.objectid = objectid;
536         key.offset = 0;
537         key.type = BTRFS_ROOT_ITEM_KEY;
538         ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
539                                 root_item);
540         if (ret)
541                 goto fail;
542
543         key.offset = (u64)-1;
544         new_root = btrfs_read_fs_root_no_name(fs_info, &key);
545         if (IS_ERR(new_root)) {
546                 ret = PTR_ERR(new_root);
547                 btrfs_abort_transaction(trans, ret);
548                 goto fail;
549         }
550
551         btrfs_record_root_in_trans(trans, new_root);
552
553         ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
554         if (ret) {
555                 /* We potentially lose an unused inode item here */
556                 btrfs_abort_transaction(trans, ret);
557                 goto fail;
558         }
559
560         mutex_lock(&new_root->objectid_mutex);
561         new_root->highest_objectid = new_dirid;
562         mutex_unlock(&new_root->objectid_mutex);
563
564         /*
565          * insert the directory item
566          */
567         ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
568         if (ret) {
569                 btrfs_abort_transaction(trans, ret);
570                 goto fail;
571         }
572
573         ret = btrfs_insert_dir_item(trans, root,
574                                     name, namelen, BTRFS_I(dir), &key,
575                                     BTRFS_FT_DIR, index);
576         if (ret) {
577                 btrfs_abort_transaction(trans, ret);
578                 goto fail;
579         }
580
581         btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
582         ret = btrfs_update_inode(trans, root, dir);
583         BUG_ON(ret);
584
585         ret = btrfs_add_root_ref(trans, fs_info,
586                                  objectid, root->root_key.objectid,
587                                  btrfs_ino(BTRFS_I(dir)), index, name, namelen);
588         BUG_ON(ret);
589
590         ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid,
591                                   BTRFS_UUID_KEY_SUBVOL, objectid);
592         if (ret)
593                 btrfs_abort_transaction(trans, ret);
594
595 fail:
596         kfree(root_item);
597         trans->block_rsv = NULL;
598         trans->bytes_reserved = 0;
599         btrfs_subvolume_release_metadata(fs_info, &block_rsv);
600
601         if (async_transid) {
602                 *async_transid = trans->transid;
603                 err = btrfs_commit_transaction_async(trans, 1);
604                 if (err)
605                         err = btrfs_commit_transaction(trans);
606         } else {
607                 err = btrfs_commit_transaction(trans);
608         }
609         if (err && !ret)
610                 ret = err;
611
612         if (!ret) {
613                 inode = btrfs_lookup_dentry(dir, dentry);
614                 if (IS_ERR(inode))
615                         return PTR_ERR(inode);
616                 d_instantiate(dentry, inode);
617         }
618         return ret;
619
620 fail_free:
621         kfree(root_item);
622         return ret;
623 }
624
625 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
626                            struct dentry *dentry,
627                            u64 *async_transid, bool readonly,
628                            struct btrfs_qgroup_inherit *inherit)
629 {
630         struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
631         struct inode *inode;
632         struct btrfs_pending_snapshot *pending_snapshot;
633         struct btrfs_trans_handle *trans;
634         int ret;
635
636         if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
637                 return -EINVAL;
638
639         pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
640         if (!pending_snapshot)
641                 return -ENOMEM;
642
643         pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
644                         GFP_KERNEL);
645         pending_snapshot->path = btrfs_alloc_path();
646         if (!pending_snapshot->root_item || !pending_snapshot->path) {
647                 ret = -ENOMEM;
648                 goto free_pending;
649         }
650
651         atomic_inc(&root->will_be_snapshotted);
652         smp_mb__after_atomic();
653         /* wait for no snapshot writes */
654         wait_event(root->subv_writers->wait,
655                    percpu_counter_sum(&root->subv_writers->counter) == 0);
656
657         ret = btrfs_start_delalloc_inodes(root, 0);
658         if (ret)
659                 goto dec_and_free;
660
661         btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
662
663         btrfs_init_block_rsv(&pending_snapshot->block_rsv,
664                              BTRFS_BLOCK_RSV_TEMP);
665         /*
666          * 1 - parent dir inode
667          * 2 - dir entries
668          * 1 - root item
669          * 2 - root ref/backref
670          * 1 - root of snapshot
671          * 1 - UUID item
672          */
673         ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
674                                         &pending_snapshot->block_rsv, 8,
675                                         &pending_snapshot->qgroup_reserved,
676                                         false);
677         if (ret)
678                 goto dec_and_free;
679
680         pending_snapshot->dentry = dentry;
681         pending_snapshot->root = root;
682         pending_snapshot->readonly = readonly;
683         pending_snapshot->dir = dir;
684         pending_snapshot->inherit = inherit;
685
686         trans = btrfs_start_transaction(root, 0);
687         if (IS_ERR(trans)) {
688                 ret = PTR_ERR(trans);
689                 goto fail;
690         }
691
692         spin_lock(&fs_info->trans_lock);
693         list_add(&pending_snapshot->list,
694                  &trans->transaction->pending_snapshots);
695         spin_unlock(&fs_info->trans_lock);
696         if (async_transid) {
697                 *async_transid = trans->transid;
698                 ret = btrfs_commit_transaction_async(trans, 1);
699                 if (ret)
700                         ret = btrfs_commit_transaction(trans);
701         } else {
702                 ret = btrfs_commit_transaction(trans);
703         }
704         if (ret)
705                 goto fail;
706
707         ret = pending_snapshot->error;
708         if (ret)
709                 goto fail;
710
711         ret = btrfs_orphan_cleanup(pending_snapshot->snap);
712         if (ret)
713                 goto fail;
714
715         inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
716         if (IS_ERR(inode)) {
717                 ret = PTR_ERR(inode);
718                 goto fail;
719         }
720
721         d_instantiate(dentry, inode);
722         ret = 0;
723 fail:
724         btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
725 dec_and_free:
726         if (atomic_dec_and_test(&root->will_be_snapshotted))
727                 wake_up_atomic_t(&root->will_be_snapshotted);
728 free_pending:
729         kfree(pending_snapshot->root_item);
730         btrfs_free_path(pending_snapshot->path);
731         kfree(pending_snapshot);
732
733         return ret;
734 }
735
736 /*  copy of may_delete in fs/namei.c()
737  *      Check whether we can remove a link victim from directory dir, check
738  *  whether the type of victim is right.
739  *  1. We can't do it if dir is read-only (done in permission())
740  *  2. We should have write and exec permissions on dir
741  *  3. We can't remove anything from append-only dir
742  *  4. We can't do anything with immutable dir (done in permission())
743  *  5. If the sticky bit on dir is set we should either
744  *      a. be owner of dir, or
745  *      b. be owner of victim, or
746  *      c. have CAP_FOWNER capability
747  *  6. If the victim is append-only or immutable we can't do anything with
748  *     links pointing to it.
749  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
750  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
751  *  9. We can't remove a root or mountpoint.
752  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
753  *     nfs_async_unlink().
754  */
755
756 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
757 {
758         int error;
759
760         if (d_really_is_negative(victim))
761                 return -ENOENT;
762
763         BUG_ON(d_inode(victim->d_parent) != dir);
764         audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
765
766         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
767         if (error)
768                 return error;
769         if (IS_APPEND(dir))
770                 return -EPERM;
771         if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
772             IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
773                 return -EPERM;
774         if (isdir) {
775                 if (!d_is_dir(victim))
776                         return -ENOTDIR;
777                 if (IS_ROOT(victim))
778                         return -EBUSY;
779         } else if (d_is_dir(victim))
780                 return -EISDIR;
781         if (IS_DEADDIR(dir))
782                 return -ENOENT;
783         if (victim->d_flags & DCACHE_NFSFS_RENAMED)
784                 return -EBUSY;
785         return 0;
786 }
787
788 /* copy of may_create in fs/namei.c() */
789 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
790 {
791         if (d_really_is_positive(child))
792                 return -EEXIST;
793         if (IS_DEADDIR(dir))
794                 return -ENOENT;
795         return inode_permission(dir, MAY_WRITE | MAY_EXEC);
796 }
797
798 /*
799  * Create a new subvolume below @parent.  This is largely modeled after
800  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
801  * inside this filesystem so it's quite a bit simpler.
802  */
803 static noinline int btrfs_mksubvol(const struct path *parent,
804                                    const char *name, int namelen,
805                                    struct btrfs_root *snap_src,
806                                    u64 *async_transid, bool readonly,
807                                    struct btrfs_qgroup_inherit *inherit)
808 {
809         struct inode *dir = d_inode(parent->dentry);
810         struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
811         struct dentry *dentry;
812         int error;
813
814         error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
815         if (error == -EINTR)
816                 return error;
817
818         dentry = lookup_one_len(name, parent->dentry, namelen);
819         error = PTR_ERR(dentry);
820         if (IS_ERR(dentry))
821                 goto out_unlock;
822
823         error = btrfs_may_create(dir, dentry);
824         if (error)
825                 goto out_dput;
826
827         /*
828          * even if this name doesn't exist, we may get hash collisions.
829          * check for them now when we can safely fail
830          */
831         error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
832                                                dir->i_ino, name,
833                                                namelen);
834         if (error)
835                 goto out_dput;
836
837         down_read(&fs_info->subvol_sem);
838
839         if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
840                 goto out_up_read;
841
842         if (snap_src) {
843                 error = create_snapshot(snap_src, dir, dentry,
844                                         async_transid, readonly, inherit);
845         } else {
846                 error = create_subvol(dir, dentry, name, namelen,
847                                       async_transid, inherit);
848         }
849         if (!error)
850                 fsnotify_mkdir(dir, dentry);
851 out_up_read:
852         up_read(&fs_info->subvol_sem);
853 out_dput:
854         dput(dentry);
855 out_unlock:
856         inode_unlock(dir);
857         return error;
858 }
859
860 /*
861  * When we're defragging a range, we don't want to kick it off again
862  * if it is really just waiting for delalloc to send it down.
863  * If we find a nice big extent or delalloc range for the bytes in the
864  * file you want to defrag, we return 0 to let you know to skip this
865  * part of the file
866  */
867 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
868 {
869         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
870         struct extent_map *em = NULL;
871         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
872         u64 end;
873
874         read_lock(&em_tree->lock);
875         em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
876         read_unlock(&em_tree->lock);
877
878         if (em) {
879                 end = extent_map_end(em);
880                 free_extent_map(em);
881                 if (end - offset > thresh)
882                         return 0;
883         }
884         /* if we already have a nice delalloc here, just stop */
885         thresh /= 2;
886         end = count_range_bits(io_tree, &offset, offset + thresh,
887                                thresh, EXTENT_DELALLOC, 1);
888         if (end >= thresh)
889                 return 0;
890         return 1;
891 }
892
893 /*
894  * helper function to walk through a file and find extents
895  * newer than a specific transid, and smaller than thresh.
896  *
897  * This is used by the defragging code to find new and small
898  * extents
899  */
900 static int find_new_extents(struct btrfs_root *root,
901                             struct inode *inode, u64 newer_than,
902                             u64 *off, u32 thresh)
903 {
904         struct btrfs_path *path;
905         struct btrfs_key min_key;
906         struct extent_buffer *leaf;
907         struct btrfs_file_extent_item *extent;
908         int type;
909         int ret;
910         u64 ino = btrfs_ino(BTRFS_I(inode));
911
912         path = btrfs_alloc_path();
913         if (!path)
914                 return -ENOMEM;
915
916         min_key.objectid = ino;
917         min_key.type = BTRFS_EXTENT_DATA_KEY;
918         min_key.offset = *off;
919
920         while (1) {
921                 ret = btrfs_search_forward(root, &min_key, path, newer_than);
922                 if (ret != 0)
923                         goto none;
924 process_slot:
925                 if (min_key.objectid != ino)
926                         goto none;
927                 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
928                         goto none;
929
930                 leaf = path->nodes[0];
931                 extent = btrfs_item_ptr(leaf, path->slots[0],
932                                         struct btrfs_file_extent_item);
933
934                 type = btrfs_file_extent_type(leaf, extent);
935                 if (type == BTRFS_FILE_EXTENT_REG &&
936                     btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
937                     check_defrag_in_cache(inode, min_key.offset, thresh)) {
938                         *off = min_key.offset;
939                         btrfs_free_path(path);
940                         return 0;
941                 }
942
943                 path->slots[0]++;
944                 if (path->slots[0] < btrfs_header_nritems(leaf)) {
945                         btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
946                         goto process_slot;
947                 }
948
949                 if (min_key.offset == (u64)-1)
950                         goto none;
951
952                 min_key.offset++;
953                 btrfs_release_path(path);
954         }
955 none:
956         btrfs_free_path(path);
957         return -ENOENT;
958 }
959
960 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
961 {
962         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
963         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
964         struct extent_map *em;
965         u64 len = PAGE_SIZE;
966
967         /*
968          * hopefully we have this extent in the tree already, try without
969          * the full extent lock
970          */
971         read_lock(&em_tree->lock);
972         em = lookup_extent_mapping(em_tree, start, len);
973         read_unlock(&em_tree->lock);
974
975         if (!em) {
976                 struct extent_state *cached = NULL;
977                 u64 end = start + len - 1;
978
979                 /* get the big lock and read metadata off disk */
980                 lock_extent_bits(io_tree, start, end, &cached);
981                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
982                 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
983
984                 if (IS_ERR(em))
985                         return NULL;
986         }
987
988         return em;
989 }
990
991 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
992 {
993         struct extent_map *next;
994         bool ret = true;
995
996         /* this is the last extent */
997         if (em->start + em->len >= i_size_read(inode))
998                 return false;
999
1000         next = defrag_lookup_extent(inode, em->start + em->len);
1001         if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1002                 ret = false;
1003         else if ((em->block_start + em->block_len == next->block_start) &&
1004                  (em->block_len > SZ_128K && next->block_len > SZ_128K))
1005                 ret = false;
1006
1007         free_extent_map(next);
1008         return ret;
1009 }
1010
1011 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1012                                u64 *last_len, u64 *skip, u64 *defrag_end,
1013                                int compress)
1014 {
1015         struct extent_map *em;
1016         int ret = 1;
1017         bool next_mergeable = true;
1018         bool prev_mergeable = true;
1019
1020         /*
1021          * make sure that once we start defragging an extent, we keep on
1022          * defragging it
1023          */
1024         if (start < *defrag_end)
1025                 return 1;
1026
1027         *skip = 0;
1028
1029         em = defrag_lookup_extent(inode, start);
1030         if (!em)
1031                 return 0;
1032
1033         /* this will cover holes, and inline extents */
1034         if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1035                 ret = 0;
1036                 goto out;
1037         }
1038
1039         if (!*defrag_end)
1040                 prev_mergeable = false;
1041
1042         next_mergeable = defrag_check_next_extent(inode, em);
1043         /*
1044          * we hit a real extent, if it is big or the next extent is not a
1045          * real extent, don't bother defragging it
1046          */
1047         if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1048             (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1049                 ret = 0;
1050 out:
1051         /*
1052          * last_len ends up being a counter of how many bytes we've defragged.
1053          * every time we choose not to defrag an extent, we reset *last_len
1054          * so that the next tiny extent will force a defrag.
1055          *
1056          * The end result of this is that tiny extents before a single big
1057          * extent will force at least part of that big extent to be defragged.
1058          */
1059         if (ret) {
1060                 *defrag_end = extent_map_end(em);
1061         } else {
1062                 *last_len = 0;
1063                 *skip = extent_map_end(em);
1064                 *defrag_end = 0;
1065         }
1066
1067         free_extent_map(em);
1068         return ret;
1069 }
1070
1071 /*
1072  * it doesn't do much good to defrag one or two pages
1073  * at a time.  This pulls in a nice chunk of pages
1074  * to COW and defrag.
1075  *
1076  * It also makes sure the delalloc code has enough
1077  * dirty data to avoid making new small extents as part
1078  * of the defrag
1079  *
1080  * It's a good idea to start RA on this range
1081  * before calling this.
1082  */
1083 static int cluster_pages_for_defrag(struct inode *inode,
1084                                     struct page **pages,
1085                                     unsigned long start_index,
1086                                     unsigned long num_pages)
1087 {
1088         unsigned long file_end;
1089         u64 isize = i_size_read(inode);
1090         u64 page_start;
1091         u64 page_end;
1092         u64 page_cnt;
1093         int ret;
1094         int i;
1095         int i_done;
1096         struct btrfs_ordered_extent *ordered;
1097         struct extent_state *cached_state = NULL;
1098         struct extent_io_tree *tree;
1099         struct extent_changeset *data_reserved = NULL;
1100         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1101
1102         file_end = (isize - 1) >> PAGE_SHIFT;
1103         if (!isize || start_index > file_end)
1104                 return 0;
1105
1106         page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1107
1108         ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1109                         start_index << PAGE_SHIFT,
1110                         page_cnt << PAGE_SHIFT);
1111         if (ret)
1112                 return ret;
1113         i_done = 0;
1114         tree = &BTRFS_I(inode)->io_tree;
1115
1116         /* step one, lock all the pages */
1117         for (i = 0; i < page_cnt; i++) {
1118                 struct page *page;
1119 again:
1120                 page = find_or_create_page(inode->i_mapping,
1121                                            start_index + i, mask);
1122                 if (!page)
1123                         break;
1124
1125                 page_start = page_offset(page);
1126                 page_end = page_start + PAGE_SIZE - 1;
1127                 while (1) {
1128                         lock_extent_bits(tree, page_start, page_end,
1129                                          &cached_state);
1130                         ordered = btrfs_lookup_ordered_extent(inode,
1131                                                               page_start);
1132                         unlock_extent_cached(tree, page_start, page_end,
1133                                              &cached_state, GFP_NOFS);
1134                         if (!ordered)
1135                                 break;
1136
1137                         unlock_page(page);
1138                         btrfs_start_ordered_extent(inode, ordered, 1);
1139                         btrfs_put_ordered_extent(ordered);
1140                         lock_page(page);
1141                         /*
1142                          * we unlocked the page above, so we need check if
1143                          * it was released or not.
1144                          */
1145                         if (page->mapping != inode->i_mapping) {
1146                                 unlock_page(page);
1147                                 put_page(page);
1148                                 goto again;
1149                         }
1150                 }
1151
1152                 if (!PageUptodate(page)) {
1153                         btrfs_readpage(NULL, page);
1154                         lock_page(page);
1155                         if (!PageUptodate(page)) {
1156                                 unlock_page(page);
1157                                 put_page(page);
1158                                 ret = -EIO;
1159                                 break;
1160                         }
1161                 }
1162
1163                 if (page->mapping != inode->i_mapping) {
1164                         unlock_page(page);
1165                         put_page(page);
1166                         goto again;
1167                 }
1168
1169                 pages[i] = page;
1170                 i_done++;
1171         }
1172         if (!i_done || ret)
1173                 goto out;
1174
1175         if (!(inode->i_sb->s_flags & SB_ACTIVE))
1176                 goto out;
1177
1178         /*
1179          * so now we have a nice long stream of locked
1180          * and up to date pages, lets wait on them
1181          */
1182         for (i = 0; i < i_done; i++)
1183                 wait_on_page_writeback(pages[i]);
1184
1185         page_start = page_offset(pages[0]);
1186         page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1187
1188         lock_extent_bits(&BTRFS_I(inode)->io_tree,
1189                          page_start, page_end - 1, &cached_state);
1190         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1191                           page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1192                           EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1193                           &cached_state, GFP_NOFS);
1194
1195         if (i_done != page_cnt) {
1196                 spin_lock(&BTRFS_I(inode)->lock);
1197                 BTRFS_I(inode)->outstanding_extents++;
1198                 spin_unlock(&BTRFS_I(inode)->lock);
1199                 btrfs_delalloc_release_space(inode, data_reserved,
1200                                 start_index << PAGE_SHIFT,
1201                                 (page_cnt - i_done) << PAGE_SHIFT);
1202         }
1203
1204
1205         set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1206                           &cached_state);
1207
1208         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1209                              page_start, page_end - 1, &cached_state,
1210                              GFP_NOFS);
1211
1212         for (i = 0; i < i_done; i++) {
1213                 clear_page_dirty_for_io(pages[i]);
1214                 ClearPageChecked(pages[i]);
1215                 set_page_extent_mapped(pages[i]);
1216                 set_page_dirty(pages[i]);
1217                 unlock_page(pages[i]);
1218                 put_page(pages[i]);
1219         }
1220         btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1221         extent_changeset_free(data_reserved);
1222         return i_done;
1223 out:
1224         for (i = 0; i < i_done; i++) {
1225                 unlock_page(pages[i]);
1226                 put_page(pages[i]);
1227         }
1228         btrfs_delalloc_release_space(inode, data_reserved,
1229                         start_index << PAGE_SHIFT,
1230                         page_cnt << PAGE_SHIFT);
1231         btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1232         extent_changeset_free(data_reserved);
1233         return ret;
1234
1235 }
1236
1237 int btrfs_defrag_file(struct inode *inode, struct file *file,
1238                       struct btrfs_ioctl_defrag_range_args *range,
1239                       u64 newer_than, unsigned long max_to_defrag)
1240 {
1241         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1242         struct btrfs_root *root = BTRFS_I(inode)->root;
1243         struct file_ra_state *ra = NULL;
1244         unsigned long last_index;
1245         u64 isize = i_size_read(inode);
1246         u64 last_len = 0;
1247         u64 skip = 0;
1248         u64 defrag_end = 0;
1249         u64 newer_off = range->start;
1250         unsigned long i;
1251         unsigned long ra_index = 0;
1252         int ret;
1253         int defrag_count = 0;
1254         int compress_type = BTRFS_COMPRESS_ZLIB;
1255         u32 extent_thresh = range->extent_thresh;
1256         unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1257         unsigned long cluster = max_cluster;
1258         u64 new_align = ~((u64)SZ_128K - 1);
1259         struct page **pages = NULL;
1260         bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1261
1262         if (isize == 0)
1263                 return 0;
1264
1265         if (range->start >= isize)
1266                 return -EINVAL;
1267
1268         if (do_compress) {
1269                 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1270                         return -EINVAL;
1271                 if (range->compress_type)
1272                         compress_type = range->compress_type;
1273         }
1274
1275         if (extent_thresh == 0)
1276                 extent_thresh = SZ_256K;
1277
1278         /*
1279          * If we were not given a file, allocate a readahead context. As
1280          * readahead is just an optimization, defrag will work without it so
1281          * we don't error out.
1282          */
1283         if (!file) {
1284                 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1285                 if (ra)
1286                         file_ra_state_init(ra, inode->i_mapping);
1287         } else {
1288                 ra = &file->f_ra;
1289         }
1290
1291         pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1292         if (!pages) {
1293                 ret = -ENOMEM;
1294                 goto out_ra;
1295         }
1296
1297         /* find the last page to defrag */
1298         if (range->start + range->len > range->start) {
1299                 last_index = min_t(u64, isize - 1,
1300                          range->start + range->len - 1) >> PAGE_SHIFT;
1301         } else {
1302                 last_index = (isize - 1) >> PAGE_SHIFT;
1303         }
1304
1305         if (newer_than) {
1306                 ret = find_new_extents(root, inode, newer_than,
1307                                        &newer_off, SZ_64K);
1308                 if (!ret) {
1309                         range->start = newer_off;
1310                         /*
1311                          * we always align our defrag to help keep
1312                          * the extents in the file evenly spaced
1313                          */
1314                         i = (newer_off & new_align) >> PAGE_SHIFT;
1315                 } else
1316                         goto out_ra;
1317         } else {
1318                 i = range->start >> PAGE_SHIFT;
1319         }
1320         if (!max_to_defrag)
1321                 max_to_defrag = last_index - i + 1;
1322
1323         /*
1324          * make writeback starts from i, so the defrag range can be
1325          * written sequentially.
1326          */
1327         if (i < inode->i_mapping->writeback_index)
1328                 inode->i_mapping->writeback_index = i;
1329
1330         while (i <= last_index && defrag_count < max_to_defrag &&
1331                (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1332                 /*
1333                  * make sure we stop running if someone unmounts
1334                  * the FS
1335                  */
1336                 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1337                         break;
1338
1339                 if (btrfs_defrag_cancelled(fs_info)) {
1340                         btrfs_debug(fs_info, "defrag_file cancelled");
1341                         ret = -EAGAIN;
1342                         break;
1343                 }
1344
1345                 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1346                                          extent_thresh, &last_len, &skip,
1347                                          &defrag_end, do_compress)){
1348                         unsigned long next;
1349                         /*
1350                          * the should_defrag function tells us how much to skip
1351                          * bump our counter by the suggested amount
1352                          */
1353                         next = DIV_ROUND_UP(skip, PAGE_SIZE);
1354                         i = max(i + 1, next);
1355                         continue;
1356                 }
1357
1358                 if (!newer_than) {
1359                         cluster = (PAGE_ALIGN(defrag_end) >>
1360                                    PAGE_SHIFT) - i;
1361                         cluster = min(cluster, max_cluster);
1362                 } else {
1363                         cluster = max_cluster;
1364                 }
1365
1366                 if (i + cluster > ra_index) {
1367                         ra_index = max(i, ra_index);
1368                         if (ra)
1369                                 page_cache_sync_readahead(inode->i_mapping, ra,
1370                                                 file, ra_index, cluster);
1371                         ra_index += cluster;
1372                 }
1373
1374                 inode_lock(inode);
1375                 if (do_compress)
1376                         BTRFS_I(inode)->defrag_compress = compress_type;
1377                 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1378                 if (ret < 0) {
1379                         inode_unlock(inode);
1380                         goto out_ra;
1381                 }
1382
1383                 defrag_count += ret;
1384                 balance_dirty_pages_ratelimited(inode->i_mapping);
1385                 inode_unlock(inode);
1386
1387                 if (newer_than) {
1388                         if (newer_off == (u64)-1)
1389                                 break;
1390
1391                         if (ret > 0)
1392                                 i += ret;
1393
1394                         newer_off = max(newer_off + 1,
1395                                         (u64)i << PAGE_SHIFT);
1396
1397                         ret = find_new_extents(root, inode, newer_than,
1398                                                &newer_off, SZ_64K);
1399                         if (!ret) {
1400                                 range->start = newer_off;
1401                                 i = (newer_off & new_align) >> PAGE_SHIFT;
1402                         } else {
1403                                 break;
1404                         }
1405                 } else {
1406                         if (ret > 0) {
1407                                 i += ret;
1408                                 last_len += ret << PAGE_SHIFT;
1409                         } else {
1410                                 i++;
1411                                 last_len = 0;
1412                         }
1413                 }
1414         }
1415
1416         if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1417                 filemap_flush(inode->i_mapping);
1418                 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1419                              &BTRFS_I(inode)->runtime_flags))
1420                         filemap_flush(inode->i_mapping);
1421         }
1422
1423         if (range->compress_type == BTRFS_COMPRESS_LZO) {
1424                 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1425         } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1426                 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1427         }
1428
1429         ret = defrag_count;
1430
1431 out_ra:
1432         if (do_compress) {
1433                 inode_lock(inode);
1434                 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1435                 inode_unlock(inode);
1436         }
1437         if (!file)
1438                 kfree(ra);
1439         kfree(pages);
1440         return ret;
1441 }
1442
1443 static noinline int btrfs_ioctl_resize(struct file *file,
1444                                         void __user *arg)
1445 {
1446         struct inode *inode = file_inode(file);
1447         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1448         u64 new_size;
1449         u64 old_size;
1450         u64 devid = 1;
1451         struct btrfs_root *root = BTRFS_I(inode)->root;
1452         struct btrfs_ioctl_vol_args *vol_args;
1453         struct btrfs_trans_handle *trans;
1454         struct btrfs_device *device = NULL;
1455         char *sizestr;
1456         char *retptr;
1457         char *devstr = NULL;
1458         int ret = 0;
1459         int mod = 0;
1460
1461         if (!capable(CAP_SYS_ADMIN))
1462                 return -EPERM;
1463
1464         ret = mnt_want_write_file(file);
1465         if (ret)
1466                 return ret;
1467
1468         if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1469                 mnt_drop_write_file(file);
1470                 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1471         }
1472
1473         mutex_lock(&fs_info->volume_mutex);
1474         vol_args = memdup_user(arg, sizeof(*vol_args));
1475         if (IS_ERR(vol_args)) {
1476                 ret = PTR_ERR(vol_args);
1477                 goto out;
1478         }
1479
1480         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1481
1482         sizestr = vol_args->name;
1483         devstr = strchr(sizestr, ':');
1484         if (devstr) {
1485                 sizestr = devstr + 1;
1486                 *devstr = '\0';
1487                 devstr = vol_args->name;
1488                 ret = kstrtoull(devstr, 10, &devid);
1489                 if (ret)
1490                         goto out_free;
1491                 if (!devid) {
1492                         ret = -EINVAL;
1493                         goto out_free;
1494                 }
1495                 btrfs_info(fs_info, "resizing devid %llu", devid);
1496         }
1497
1498         device = btrfs_find_device(fs_info, devid, NULL, NULL);
1499         if (!device) {
1500                 btrfs_info(fs_info, "resizer unable to find device %llu",
1501                            devid);
1502                 ret = -ENODEV;
1503                 goto out_free;
1504         }
1505
1506         if (!device->writeable) {
1507                 btrfs_info(fs_info,
1508                            "resizer unable to apply on readonly device %llu",
1509                        devid);
1510                 ret = -EPERM;
1511                 goto out_free;
1512         }
1513
1514         if (!strcmp(sizestr, "max"))
1515                 new_size = device->bdev->bd_inode->i_size;
1516         else {
1517                 if (sizestr[0] == '-') {
1518                         mod = -1;
1519                         sizestr++;
1520                 } else if (sizestr[0] == '+') {
1521                         mod = 1;
1522                         sizestr++;
1523                 }
1524                 new_size = memparse(sizestr, &retptr);
1525                 if (*retptr != '\0' || new_size == 0) {
1526                         ret = -EINVAL;
1527                         goto out_free;
1528                 }
1529         }
1530
1531         if (device->is_tgtdev_for_dev_replace) {
1532                 ret = -EPERM;
1533                 goto out_free;
1534         }
1535
1536         old_size = btrfs_device_get_total_bytes(device);
1537
1538         if (mod < 0) {
1539                 if (new_size > old_size) {
1540                         ret = -EINVAL;
1541                         goto out_free;
1542                 }
1543                 new_size = old_size - new_size;
1544         } else if (mod > 0) {
1545                 if (new_size > ULLONG_MAX - old_size) {
1546                         ret = -ERANGE;
1547                         goto out_free;
1548                 }
1549                 new_size = old_size + new_size;
1550         }
1551
1552         if (new_size < SZ_256M) {
1553                 ret = -EINVAL;
1554                 goto out_free;
1555         }
1556         if (new_size > device->bdev->bd_inode->i_size) {
1557                 ret = -EFBIG;
1558                 goto out_free;
1559         }
1560
1561         new_size = round_down(new_size, fs_info->sectorsize);
1562
1563         btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1564                           rcu_str_deref(device->name), new_size);
1565
1566         if (new_size > old_size) {
1567                 trans = btrfs_start_transaction(root, 0);
1568                 if (IS_ERR(trans)) {
1569                         ret = PTR_ERR(trans);
1570                         goto out_free;
1571                 }
1572                 ret = btrfs_grow_device(trans, device, new_size);
1573                 btrfs_commit_transaction(trans);
1574         } else if (new_size < old_size) {
1575                 ret = btrfs_shrink_device(device, new_size);
1576         } /* equal, nothing need to do */
1577
1578 out_free:
1579         kfree(vol_args);
1580 out:
1581         mutex_unlock(&fs_info->volume_mutex);
1582         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1583         mnt_drop_write_file(file);
1584         return ret;
1585 }
1586
1587 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1588                                 const char *name, unsigned long fd, int subvol,
1589                                 u64 *transid, bool readonly,
1590                                 struct btrfs_qgroup_inherit *inherit)
1591 {
1592         int namelen;
1593         int ret = 0;
1594
1595         if (!S_ISDIR(file_inode(file)->i_mode))
1596                 return -ENOTDIR;
1597
1598         ret = mnt_want_write_file(file);
1599         if (ret)
1600                 goto out;
1601
1602         namelen = strlen(name);
1603         if (strchr(name, '/')) {
1604                 ret = -EINVAL;
1605                 goto out_drop_write;
1606         }
1607
1608         if (name[0] == '.' &&
1609            (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1610                 ret = -EEXIST;
1611                 goto out_drop_write;
1612         }
1613
1614         if (subvol) {
1615                 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1616                                      NULL, transid, readonly, inherit);
1617         } else {
1618                 struct fd src = fdget(fd);
1619                 struct inode *src_inode;
1620                 if (!src.file) {
1621                         ret = -EINVAL;
1622                         goto out_drop_write;
1623                 }
1624
1625                 src_inode = file_inode(src.file);
1626                 if (src_inode->i_sb != file_inode(file)->i_sb) {
1627                         btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1628                                    "Snapshot src from another FS");
1629                         ret = -EXDEV;
1630                 } else if (!inode_owner_or_capable(src_inode)) {
1631                         /*
1632                          * Subvolume creation is not restricted, but snapshots
1633                          * are limited to own subvolumes only
1634                          */
1635                         ret = -EPERM;
1636                 } else {
1637                         ret = btrfs_mksubvol(&file->f_path, name, namelen,
1638                                              BTRFS_I(src_inode)->root,
1639                                              transid, readonly, inherit);
1640                 }
1641                 fdput(src);
1642         }
1643 out_drop_write:
1644         mnt_drop_write_file(file);
1645 out:
1646         return ret;
1647 }
1648
1649 static noinline int btrfs_ioctl_snap_create(struct file *file,
1650                                             void __user *arg, int subvol)
1651 {
1652         struct btrfs_ioctl_vol_args *vol_args;
1653         int ret;
1654
1655         if (!S_ISDIR(file_inode(file)->i_mode))
1656                 return -ENOTDIR;
1657
1658         vol_args = memdup_user(arg, sizeof(*vol_args));
1659         if (IS_ERR(vol_args))
1660                 return PTR_ERR(vol_args);
1661         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1662
1663         ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1664                                               vol_args->fd, subvol,
1665                                               NULL, false, NULL);
1666
1667         kfree(vol_args);
1668         return ret;
1669 }
1670
1671 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1672                                                void __user *arg, int subvol)
1673 {
1674         struct btrfs_ioctl_vol_args_v2 *vol_args;
1675         int ret;
1676         u64 transid = 0;
1677         u64 *ptr = NULL;
1678         bool readonly = false;
1679         struct btrfs_qgroup_inherit *inherit = NULL;
1680
1681         if (!S_ISDIR(file_inode(file)->i_mode))
1682                 return -ENOTDIR;
1683
1684         vol_args = memdup_user(arg, sizeof(*vol_args));
1685         if (IS_ERR(vol_args))
1686                 return PTR_ERR(vol_args);
1687         vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1688
1689         if (vol_args->flags &
1690             ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1691               BTRFS_SUBVOL_QGROUP_INHERIT)) {
1692                 ret = -EOPNOTSUPP;
1693                 goto free_args;
1694         }
1695
1696         if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1697                 ptr = &transid;
1698         if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1699                 readonly = true;
1700         if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1701                 if (vol_args->size > PAGE_SIZE) {
1702                         ret = -EINVAL;
1703                         goto free_args;
1704                 }
1705                 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1706                 if (IS_ERR(inherit)) {
1707                         ret = PTR_ERR(inherit);
1708                         goto free_args;
1709                 }
1710         }
1711
1712         ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1713                                               vol_args->fd, subvol, ptr,
1714                                               readonly, inherit);
1715         if (ret)
1716                 goto free_inherit;
1717
1718         if (ptr && copy_to_user(arg +
1719                                 offsetof(struct btrfs_ioctl_vol_args_v2,
1720                                         transid),
1721                                 ptr, sizeof(*ptr)))
1722                 ret = -EFAULT;
1723
1724 free_inherit:
1725         kfree(inherit);
1726 free_args:
1727         kfree(vol_args);
1728         return ret;
1729 }
1730
1731 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1732                                                 void __user *arg)
1733 {
1734         struct inode *inode = file_inode(file);
1735         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1736         struct btrfs_root *root = BTRFS_I(inode)->root;
1737         int ret = 0;
1738         u64 flags = 0;
1739
1740         if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1741                 return -EINVAL;
1742
1743         down_read(&fs_info->subvol_sem);
1744         if (btrfs_root_readonly(root))
1745                 flags |= BTRFS_SUBVOL_RDONLY;
1746         up_read(&fs_info->subvol_sem);
1747
1748         if (copy_to_user(arg, &flags, sizeof(flags)))
1749                 ret = -EFAULT;
1750
1751         return ret;
1752 }
1753
1754 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1755                                               void __user *arg)
1756 {
1757         struct inode *inode = file_inode(file);
1758         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1759         struct btrfs_root *root = BTRFS_I(inode)->root;
1760         struct btrfs_trans_handle *trans;
1761         u64 root_flags;
1762         u64 flags;
1763         int ret = 0;
1764
1765         if (!inode_owner_or_capable(inode))
1766                 return -EPERM;
1767
1768         ret = mnt_want_write_file(file);
1769         if (ret)
1770                 goto out;
1771
1772         if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1773                 ret = -EINVAL;
1774                 goto out_drop_write;
1775         }
1776
1777         if (copy_from_user(&flags, arg, sizeof(flags))) {
1778                 ret = -EFAULT;
1779                 goto out_drop_write;
1780         }
1781
1782         if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1783                 ret = -EINVAL;
1784                 goto out_drop_write;
1785         }
1786
1787         if (flags & ~BTRFS_SUBVOL_RDONLY) {
1788                 ret = -EOPNOTSUPP;
1789                 goto out_drop_write;
1790         }
1791
1792         down_write(&fs_info->subvol_sem);
1793
1794         /* nothing to do */
1795         if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1796                 goto out_drop_sem;
1797
1798         root_flags = btrfs_root_flags(&root->root_item);
1799         if (flags & BTRFS_SUBVOL_RDONLY) {
1800                 btrfs_set_root_flags(&root->root_item,
1801                                      root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1802         } else {
1803                 /*
1804                  * Block RO -> RW transition if this subvolume is involved in
1805                  * send
1806                  */
1807                 spin_lock(&root->root_item_lock);
1808                 if (root->send_in_progress == 0) {
1809                         btrfs_set_root_flags(&root->root_item,
1810                                      root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1811                         spin_unlock(&root->root_item_lock);
1812                 } else {
1813                         spin_unlock(&root->root_item_lock);
1814                         btrfs_warn(fs_info,
1815                                    "Attempt to set subvolume %llu read-write during send",
1816                                    root->root_key.objectid);
1817                         ret = -EPERM;
1818                         goto out_drop_sem;
1819                 }
1820         }
1821
1822         trans = btrfs_start_transaction(root, 1);
1823         if (IS_ERR(trans)) {
1824                 ret = PTR_ERR(trans);
1825                 goto out_reset;
1826         }
1827
1828         ret = btrfs_update_root(trans, fs_info->tree_root,
1829                                 &root->root_key, &root->root_item);
1830         if (ret < 0) {
1831                 btrfs_end_transaction(trans);
1832                 goto out_reset;
1833         }
1834
1835         ret = btrfs_commit_transaction(trans);
1836
1837 out_reset:
1838         if (ret)
1839                 btrfs_set_root_flags(&root->root_item, root_flags);
1840 out_drop_sem:
1841         up_write(&fs_info->subvol_sem);
1842 out_drop_write:
1843         mnt_drop_write_file(file);
1844 out:
1845         return ret;
1846 }
1847
1848 /*
1849  * helper to check if the subvolume references other subvolumes
1850  */
1851 static noinline int may_destroy_subvol(struct btrfs_root *root)
1852 {
1853         struct btrfs_fs_info *fs_info = root->fs_info;
1854         struct btrfs_path *path;
1855         struct btrfs_dir_item *di;
1856         struct btrfs_key key;
1857         u64 dir_id;
1858         int ret;
1859
1860         path = btrfs_alloc_path();
1861         if (!path)
1862                 return -ENOMEM;
1863
1864         /* Make sure this root isn't set as the default subvol */
1865         dir_id = btrfs_super_root_dir(fs_info->super_copy);
1866         di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
1867                                    dir_id, "default", 7, 0);
1868         if (di && !IS_ERR(di)) {
1869                 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1870                 if (key.objectid == root->root_key.objectid) {
1871                         ret = -EPERM;
1872                         btrfs_err(fs_info,
1873                                   "deleting default subvolume %llu is not allowed",
1874                                   key.objectid);
1875                         goto out;
1876                 }
1877                 btrfs_release_path(path);
1878         }
1879
1880         key.objectid = root->root_key.objectid;
1881         key.type = BTRFS_ROOT_REF_KEY;
1882         key.offset = (u64)-1;
1883
1884         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1885         if (ret < 0)
1886                 goto out;
1887         BUG_ON(ret == 0);
1888
1889         ret = 0;
1890         if (path->slots[0] > 0) {
1891                 path->slots[0]--;
1892                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1893                 if (key.objectid == root->root_key.objectid &&
1894                     key.type == BTRFS_ROOT_REF_KEY)
1895                         ret = -ENOTEMPTY;
1896         }
1897 out:
1898         btrfs_free_path(path);
1899         return ret;
1900 }
1901
1902 static noinline int key_in_sk(struct btrfs_key *key,
1903                               struct btrfs_ioctl_search_key *sk)
1904 {
1905         struct btrfs_key test;
1906         int ret;
1907
1908         test.objectid = sk->min_objectid;
1909         test.type = sk->min_type;
1910         test.offset = sk->min_offset;
1911
1912         ret = btrfs_comp_cpu_keys(key, &test);
1913         if (ret < 0)
1914                 return 0;
1915
1916         test.objectid = sk->max_objectid;
1917         test.type = sk->max_type;
1918         test.offset = sk->max_offset;
1919
1920         ret = btrfs_comp_cpu_keys(key, &test);
1921         if (ret > 0)
1922                 return 0;
1923         return 1;
1924 }
1925
1926 static noinline int copy_to_sk(struct btrfs_path *path,
1927                                struct btrfs_key *key,
1928                                struct btrfs_ioctl_search_key *sk,
1929                                size_t *buf_size,
1930                                char __user *ubuf,
1931                                unsigned long *sk_offset,
1932                                int *num_found)
1933 {
1934         u64 found_transid;
1935         struct extent_buffer *leaf;
1936         struct btrfs_ioctl_search_header sh;
1937         struct btrfs_key test;
1938         unsigned long item_off;
1939         unsigned long item_len;
1940         int nritems;
1941         int i;
1942         int slot;
1943         int ret = 0;
1944
1945         leaf = path->nodes[0];
1946         slot = path->slots[0];
1947         nritems = btrfs_header_nritems(leaf);
1948
1949         if (btrfs_header_generation(leaf) > sk->max_transid) {
1950                 i = nritems;
1951                 goto advance_key;
1952         }
1953         found_transid = btrfs_header_generation(leaf);
1954
1955         for (i = slot; i < nritems; i++) {
1956                 item_off = btrfs_item_ptr_offset(leaf, i);
1957                 item_len = btrfs_item_size_nr(leaf, i);
1958
1959                 btrfs_item_key_to_cpu(leaf, key, i);
1960                 if (!key_in_sk(key, sk))
1961                         continue;
1962
1963                 if (sizeof(sh) + item_len > *buf_size) {
1964                         if (*num_found) {
1965                                 ret = 1;
1966                                 goto out;
1967                         }
1968
1969                         /*
1970                          * return one empty item back for v1, which does not
1971                          * handle -EOVERFLOW
1972                          */
1973
1974                         *buf_size = sizeof(sh) + item_len;
1975                         item_len = 0;
1976                         ret = -EOVERFLOW;
1977                 }
1978
1979                 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1980                         ret = 1;
1981                         goto out;
1982                 }
1983
1984                 sh.objectid = key->objectid;
1985                 sh.offset = key->offset;
1986                 sh.type = key->type;
1987                 sh.len = item_len;
1988                 sh.transid = found_transid;
1989
1990                 /* copy search result header */
1991                 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
1992                         ret = -EFAULT;
1993                         goto out;
1994                 }
1995
1996                 *sk_offset += sizeof(sh);
1997
1998                 if (item_len) {
1999                         char __user *up = ubuf + *sk_offset;
2000                         /* copy the item */
2001                         if (read_extent_buffer_to_user(leaf, up,
2002                                                        item_off, item_len)) {
2003                                 ret = -EFAULT;
2004                                 goto out;
2005                         }
2006
2007                         *sk_offset += item_len;
2008                 }
2009                 (*num_found)++;
2010
2011                 if (ret) /* -EOVERFLOW from above */
2012                         goto out;
2013
2014                 if (*num_found >= sk->nr_items) {
2015                         ret = 1;
2016                         goto out;
2017                 }
2018         }
2019 advance_key:
2020         ret = 0;
2021         test.objectid = sk->max_objectid;
2022         test.type = sk->max_type;
2023         test.offset = sk->max_offset;
2024         if (btrfs_comp_cpu_keys(key, &test) >= 0)
2025                 ret = 1;
2026         else if (key->offset < (u64)-1)
2027                 key->offset++;
2028         else if (key->type < (u8)-1) {
2029                 key->offset = 0;
2030                 key->type++;
2031         } else if (key->objectid < (u64)-1) {
2032                 key->offset = 0;
2033                 key->type = 0;
2034                 key->objectid++;
2035         } else
2036                 ret = 1;
2037 out:
2038         /*
2039          *  0: all items from this leaf copied, continue with next
2040          *  1: * more items can be copied, but unused buffer is too small
2041          *     * all items were found
2042          *     Either way, it will stops the loop which iterates to the next
2043          *     leaf
2044          *  -EOVERFLOW: item was to large for buffer
2045          *  -EFAULT: could not copy extent buffer back to userspace
2046          */
2047         return ret;
2048 }
2049
2050 static noinline int search_ioctl(struct inode *inode,
2051                                  struct btrfs_ioctl_search_key *sk,
2052                                  size_t *buf_size,
2053                                  char __user *ubuf)
2054 {
2055         struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2056         struct btrfs_root *root;
2057         struct btrfs_key key;
2058         struct btrfs_path *path;
2059         int ret;
2060         int num_found = 0;
2061         unsigned long sk_offset = 0;
2062
2063         if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2064                 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2065                 return -EOVERFLOW;
2066         }
2067
2068         path = btrfs_alloc_path();
2069         if (!path)
2070                 return -ENOMEM;
2071
2072         if (sk->tree_id == 0) {
2073                 /* search the root of the inode that was passed */
2074                 root = BTRFS_I(inode)->root;
2075         } else {
2076                 key.objectid = sk->tree_id;
2077                 key.type = BTRFS_ROOT_ITEM_KEY;
2078                 key.offset = (u64)-1;
2079                 root = btrfs_read_fs_root_no_name(info, &key);
2080                 if (IS_ERR(root)) {
2081                         btrfs_free_path(path);
2082                         return -ENOENT;
2083                 }
2084         }
2085
2086         key.objectid = sk->min_objectid;
2087         key.type = sk->min_type;
2088         key.offset = sk->min_offset;
2089
2090         while (1) {
2091                 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2092                 if (ret != 0) {
2093                         if (ret > 0)
2094                                 ret = 0;
2095                         goto err;
2096                 }
2097                 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2098                                  &sk_offset, &num_found);
2099                 btrfs_release_path(path);
2100                 if (ret)
2101                         break;
2102
2103         }
2104         if (ret > 0)
2105                 ret = 0;
2106 err:
2107         sk->nr_items = num_found;
2108         btrfs_free_path(path);
2109         return ret;
2110 }
2111
2112 static noinline int btrfs_ioctl_tree_search(struct file *file,
2113                                            void __user *argp)
2114 {
2115         struct btrfs_ioctl_search_args __user *uargs;
2116         struct btrfs_ioctl_search_key sk;
2117         struct inode *inode;
2118         int ret;
2119         size_t buf_size;
2120
2121         if (!capable(CAP_SYS_ADMIN))
2122                 return -EPERM;
2123
2124         uargs = (struct btrfs_ioctl_search_args __user *)argp;
2125
2126         if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2127                 return -EFAULT;
2128
2129         buf_size = sizeof(uargs->buf);
2130
2131         inode = file_inode(file);
2132         ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2133
2134         /*
2135          * In the origin implementation an overflow is handled by returning a
2136          * search header with a len of zero, so reset ret.
2137          */
2138         if (ret == -EOVERFLOW)
2139                 ret = 0;
2140
2141         if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2142                 ret = -EFAULT;
2143         return ret;
2144 }
2145
2146 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2147                                                void __user *argp)
2148 {
2149         struct btrfs_ioctl_search_args_v2 __user *uarg;
2150         struct btrfs_ioctl_search_args_v2 args;
2151         struct inode *inode;
2152         int ret;
2153         size_t buf_size;
2154         const size_t buf_limit = SZ_16M;
2155
2156         if (!capable(CAP_SYS_ADMIN))
2157                 return -EPERM;
2158
2159         /* copy search header and buffer size */
2160         uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2161         if (copy_from_user(&args, uarg, sizeof(args)))
2162                 return -EFAULT;
2163
2164         buf_size = args.buf_size;
2165
2166         /* limit result size to 16MB */
2167         if (buf_size > buf_limit)
2168                 buf_size = buf_limit;
2169
2170         inode = file_inode(file);
2171         ret = search_ioctl(inode, &args.key, &buf_size,
2172                            (char __user *)(&uarg->buf[0]));
2173         if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2174                 ret = -EFAULT;
2175         else if (ret == -EOVERFLOW &&
2176                 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2177                 ret = -EFAULT;
2178
2179         return ret;
2180 }
2181
2182 /*
2183  * Search INODE_REFs to identify path name of 'dirid' directory
2184  * in a 'tree_id' tree. and sets path name to 'name'.
2185  */
2186 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2187                                 u64 tree_id, u64 dirid, char *name)
2188 {
2189         struct btrfs_root *root;
2190         struct btrfs_key key;
2191         char *ptr;
2192         int ret = -1;
2193         int slot;
2194         int len;
2195         int total_len = 0;
2196         struct btrfs_inode_ref *iref;
2197         struct extent_buffer *l;
2198         struct btrfs_path *path;
2199
2200         if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2201                 name[0]='\0';
2202                 return 0;
2203         }
2204
2205         path = btrfs_alloc_path();
2206         if (!path)
2207                 return -ENOMEM;
2208
2209         ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2210
2211         key.objectid = tree_id;
2212         key.type = BTRFS_ROOT_ITEM_KEY;
2213         key.offset = (u64)-1;
2214         root = btrfs_read_fs_root_no_name(info, &key);
2215         if (IS_ERR(root)) {
2216                 btrfs_err(info, "could not find root %llu", tree_id);
2217                 ret = -ENOENT;
2218                 goto out;
2219         }
2220
2221         key.objectid = dirid;
2222         key.type = BTRFS_INODE_REF_KEY;
2223         key.offset = (u64)-1;
2224
2225         while (1) {
2226                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2227                 if (ret < 0)
2228                         goto out;
2229                 else if (ret > 0) {
2230                         ret = btrfs_previous_item(root, path, dirid,
2231                                                   BTRFS_INODE_REF_KEY);
2232                         if (ret < 0)
2233                                 goto out;
2234                         else if (ret > 0) {
2235                                 ret = -ENOENT;
2236                                 goto out;
2237                         }
2238                 }
2239
2240                 l = path->nodes[0];
2241                 slot = path->slots[0];
2242                 btrfs_item_key_to_cpu(l, &key, slot);
2243
2244                 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2245                 len = btrfs_inode_ref_name_len(l, iref);
2246                 ptr -= len + 1;
2247                 total_len += len + 1;
2248                 if (ptr < name) {
2249                         ret = -ENAMETOOLONG;
2250                         goto out;
2251                 }
2252
2253                 *(ptr + len) = '/';
2254                 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2255
2256                 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2257                         break;
2258
2259                 btrfs_release_path(path);
2260                 key.objectid = key.offset;
2261                 key.offset = (u64)-1;
2262                 dirid = key.objectid;
2263         }
2264         memmove(name, ptr, total_len);
2265         name[total_len] = '\0';
2266         ret = 0;
2267 out:
2268         btrfs_free_path(path);
2269         return ret;
2270 }
2271
2272 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2273                                            void __user *argp)
2274 {
2275          struct btrfs_ioctl_ino_lookup_args *args;
2276          struct inode *inode;
2277         int ret = 0;
2278
2279         args = memdup_user(argp, sizeof(*args));
2280         if (IS_ERR(args))
2281                 return PTR_ERR(args);
2282
2283         inode = file_inode(file);
2284
2285         /*
2286          * Unprivileged query to obtain the containing subvolume root id. The
2287          * path is reset so it's consistent with btrfs_search_path_in_tree.
2288          */
2289         if (args->treeid == 0)
2290                 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2291
2292         if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2293                 args->name[0] = 0;
2294                 goto out;
2295         }
2296
2297         if (!capable(CAP_SYS_ADMIN)) {
2298                 ret = -EPERM;
2299                 goto out;
2300         }
2301
2302         ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2303                                         args->treeid, args->objectid,
2304                                         args->name);
2305
2306 out:
2307         if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2308                 ret = -EFAULT;
2309
2310         kfree(args);
2311         return ret;
2312 }
2313
2314 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2315                                              void __user *arg)
2316 {
2317         struct dentry *parent = file->f_path.dentry;
2318         struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2319         struct dentry *dentry;
2320         struct inode *dir = d_inode(parent);
2321         struct inode *inode;
2322         struct btrfs_root *root = BTRFS_I(dir)->root;
2323         struct btrfs_root *dest = NULL;
2324         struct btrfs_ioctl_vol_args *vol_args;
2325         struct btrfs_trans_handle *trans;
2326         struct btrfs_block_rsv block_rsv;
2327         u64 root_flags;
2328         u64 qgroup_reserved;
2329         int namelen;
2330         int ret;
2331         int err = 0;
2332
2333         if (!S_ISDIR(dir->i_mode))
2334                 return -ENOTDIR;
2335
2336         vol_args = memdup_user(arg, sizeof(*vol_args));
2337         if (IS_ERR(vol_args))
2338                 return PTR_ERR(vol_args);
2339
2340         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2341         namelen = strlen(vol_args->name);
2342         if (strchr(vol_args->name, '/') ||
2343             strncmp(vol_args->name, "..", namelen) == 0) {
2344                 err = -EINVAL;
2345                 goto out;
2346         }
2347
2348         err = mnt_want_write_file(file);
2349         if (err)
2350                 goto out;
2351
2352
2353         err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2354         if (err == -EINTR)
2355                 goto out_drop_write;
2356         dentry = lookup_one_len(vol_args->name, parent, namelen);
2357         if (IS_ERR(dentry)) {
2358                 err = PTR_ERR(dentry);
2359                 goto out_unlock_dir;
2360         }
2361
2362         if (d_really_is_negative(dentry)) {
2363                 err = -ENOENT;
2364                 goto out_dput;
2365         }
2366
2367         inode = d_inode(dentry);
2368         dest = BTRFS_I(inode)->root;
2369         if (!capable(CAP_SYS_ADMIN)) {
2370                 /*
2371                  * Regular user.  Only allow this with a special mount
2372                  * option, when the user has write+exec access to the
2373                  * subvol root, and when rmdir(2) would have been
2374                  * allowed.
2375                  *
2376                  * Note that this is _not_ check that the subvol is
2377                  * empty or doesn't contain data that we wouldn't
2378                  * otherwise be able to delete.
2379                  *
2380                  * Users who want to delete empty subvols should try
2381                  * rmdir(2).
2382                  */
2383                 err = -EPERM;
2384                 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2385                         goto out_dput;
2386
2387                 /*
2388                  * Do not allow deletion if the parent dir is the same
2389                  * as the dir to be deleted.  That means the ioctl
2390                  * must be called on the dentry referencing the root
2391                  * of the subvol, not a random directory contained
2392                  * within it.
2393                  */
2394                 err = -EINVAL;
2395                 if (root == dest)
2396                         goto out_dput;
2397
2398                 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2399                 if (err)
2400                         goto out_dput;
2401         }
2402
2403         /* check if subvolume may be deleted by a user */
2404         err = btrfs_may_delete(dir, dentry, 1);
2405         if (err)
2406                 goto out_dput;
2407
2408         if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2409                 err = -EINVAL;
2410                 goto out_dput;
2411         }
2412
2413         inode_lock(inode);
2414
2415         /*
2416          * Don't allow to delete a subvolume with send in progress. This is
2417          * inside the i_mutex so the error handling that has to drop the bit
2418          * again is not run concurrently.
2419          */
2420         spin_lock(&dest->root_item_lock);
2421         root_flags = btrfs_root_flags(&dest->root_item);
2422         if (dest->send_in_progress == 0) {
2423                 btrfs_set_root_flags(&dest->root_item,
2424                                 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2425                 spin_unlock(&dest->root_item_lock);
2426         } else {
2427                 spin_unlock(&dest->root_item_lock);
2428                 btrfs_warn(fs_info,
2429                            "Attempt to delete subvolume %llu during send",
2430                            dest->root_key.objectid);
2431                 err = -EPERM;
2432                 goto out_unlock_inode;
2433         }
2434
2435         down_write(&fs_info->subvol_sem);
2436
2437         err = may_destroy_subvol(dest);
2438         if (err)
2439                 goto out_up_write;
2440
2441         btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2442         /*
2443          * One for dir inode, two for dir entries, two for root
2444          * ref/backref.
2445          */
2446         err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2447                                                5, &qgroup_reserved, true);
2448         if (err)
2449                 goto out_up_write;
2450
2451         trans = btrfs_start_transaction(root, 0);
2452         if (IS_ERR(trans)) {
2453                 err = PTR_ERR(trans);
2454                 goto out_release;
2455         }
2456         trans->block_rsv = &block_rsv;
2457         trans->bytes_reserved = block_rsv.size;
2458
2459         btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
2460
2461         ret = btrfs_unlink_subvol(trans, root, dir,
2462                                 dest->root_key.objectid,
2463                                 dentry->d_name.name,
2464                                 dentry->d_name.len);
2465         if (ret) {
2466                 err = ret;
2467                 btrfs_abort_transaction(trans, ret);
2468                 goto out_end_trans;
2469         }
2470
2471         btrfs_record_root_in_trans(trans, dest);
2472
2473         memset(&dest->root_item.drop_progress, 0,
2474                 sizeof(dest->root_item.drop_progress));
2475         dest->root_item.drop_level = 0;
2476         btrfs_set_root_refs(&dest->root_item, 0);
2477
2478         if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2479                 ret = btrfs_insert_orphan_item(trans,
2480                                         fs_info->tree_root,
2481                                         dest->root_key.objectid);
2482                 if (ret) {
2483                         btrfs_abort_transaction(trans, ret);
2484                         err = ret;
2485                         goto out_end_trans;
2486                 }
2487         }
2488
2489         ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid,
2490                                   BTRFS_UUID_KEY_SUBVOL,
2491                                   dest->root_key.objectid);
2492         if (ret && ret != -ENOENT) {
2493                 btrfs_abort_transaction(trans, ret);
2494                 err = ret;
2495                 goto out_end_trans;
2496         }
2497         if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2498                 ret = btrfs_uuid_tree_rem(trans, fs_info,
2499                                           dest->root_item.received_uuid,
2500                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2501                                           dest->root_key.objectid);
2502                 if (ret && ret != -ENOENT) {
2503                         btrfs_abort_transaction(trans, ret);
2504                         err = ret;
2505                         goto out_end_trans;
2506                 }
2507         }
2508
2509 out_end_trans:
2510         trans->block_rsv = NULL;
2511         trans->bytes_reserved = 0;
2512         ret = btrfs_end_transaction(trans);
2513         if (ret && !err)
2514                 err = ret;
2515         inode->i_flags |= S_DEAD;
2516 out_release:
2517         btrfs_subvolume_release_metadata(fs_info, &block_rsv);
2518 out_up_write:
2519         up_write(&fs_info->subvol_sem);
2520         if (err) {
2521                 spin_lock(&dest->root_item_lock);
2522                 root_flags = btrfs_root_flags(&dest->root_item);
2523                 btrfs_set_root_flags(&dest->root_item,
2524                                 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2525                 spin_unlock(&dest->root_item_lock);
2526         }
2527 out_unlock_inode:
2528         inode_unlock(inode);
2529         if (!err) {
2530                 d_invalidate(dentry);
2531                 btrfs_invalidate_inodes(dest);
2532                 d_delete(dentry);
2533                 ASSERT(dest->send_in_progress == 0);
2534
2535                 /* the last ref */
2536                 if (dest->ino_cache_inode) {
2537                         iput(dest->ino_cache_inode);
2538                         dest->ino_cache_inode = NULL;
2539                 }
2540         }
2541 out_dput:
2542         dput(dentry);
2543 out_unlock_dir:
2544         inode_unlock(dir);
2545 out_drop_write:
2546         mnt_drop_write_file(file);
2547 out:
2548         kfree(vol_args);
2549         return err;
2550 }
2551
2552 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2553 {
2554         struct inode *inode = file_inode(file);
2555         struct btrfs_root *root = BTRFS_I(inode)->root;
2556         struct btrfs_ioctl_defrag_range_args *range;
2557         int ret;
2558
2559         ret = mnt_want_write_file(file);
2560         if (ret)
2561                 return ret;
2562
2563         if (btrfs_root_readonly(root)) {
2564                 ret = -EROFS;
2565                 goto out;
2566         }
2567
2568         switch (inode->i_mode & S_IFMT) {
2569         case S_IFDIR:
2570                 if (!capable(CAP_SYS_ADMIN)) {
2571                         ret = -EPERM;
2572                         goto out;
2573                 }
2574                 ret = btrfs_defrag_root(root);
2575                 break;
2576         case S_IFREG:
2577                 if (!(file->f_mode & FMODE_WRITE)) {
2578                         ret = -EINVAL;
2579                         goto out;
2580                 }
2581
2582                 range = kzalloc(sizeof(*range), GFP_KERNEL);
2583                 if (!range) {
2584                         ret = -ENOMEM;
2585                         goto out;
2586                 }
2587
2588                 if (argp) {
2589                         if (copy_from_user(range, argp,
2590                                            sizeof(*range))) {
2591                                 ret = -EFAULT;
2592                                 kfree(range);
2593                                 goto out;
2594                         }
2595                         /* compression requires us to start the IO */
2596                         if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2597                                 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2598                                 range->extent_thresh = (u32)-1;
2599                         }
2600                 } else {
2601                         /* the rest are all set to zero by kzalloc */
2602                         range->len = (u64)-1;
2603                 }
2604                 ret = btrfs_defrag_file(file_inode(file), file,
2605                                         range, 0, 0);
2606                 if (ret > 0)
2607                         ret = 0;
2608                 kfree(range);
2609                 break;
2610         default:
2611                 ret = -EINVAL;
2612         }
2613 out:
2614         mnt_drop_write_file(file);
2615         return ret;
2616 }
2617
2618 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2619 {
2620         struct btrfs_ioctl_vol_args *vol_args;
2621         int ret;
2622
2623         if (!capable(CAP_SYS_ADMIN))
2624                 return -EPERM;
2625
2626         if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
2627                 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2628
2629         mutex_lock(&fs_info->volume_mutex);
2630         vol_args = memdup_user(arg, sizeof(*vol_args));
2631         if (IS_ERR(vol_args)) {
2632                 ret = PTR_ERR(vol_args);
2633                 goto out;
2634         }
2635
2636         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2637         ret = btrfs_init_new_device(fs_info, vol_args->name);
2638
2639         if (!ret)
2640                 btrfs_info(fs_info, "disk added %s", vol_args->name);
2641
2642         kfree(vol_args);
2643 out:
2644         mutex_unlock(&fs_info->volume_mutex);
2645         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2646         return ret;
2647 }
2648
2649 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2650 {
2651         struct inode *inode = file_inode(file);
2652         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2653         struct btrfs_ioctl_vol_args_v2 *vol_args;
2654         int ret;
2655
2656         if (!capable(CAP_SYS_ADMIN))
2657                 return -EPERM;
2658
2659         ret = mnt_want_write_file(file);
2660         if (ret)
2661                 return ret;
2662
2663         vol_args = memdup_user(arg, sizeof(*vol_args));
2664         if (IS_ERR(vol_args)) {
2665                 ret = PTR_ERR(vol_args);
2666                 goto err_drop;
2667         }
2668
2669         /* Check for compatibility reject unknown flags */
2670         if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED)
2671                 return -EOPNOTSUPP;
2672
2673         if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2674                 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2675                 goto out;
2676         }
2677
2678         mutex_lock(&fs_info->volume_mutex);
2679         if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2680                 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
2681         } else {
2682                 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2683                 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2684         }
2685         mutex_unlock(&fs_info->volume_mutex);
2686         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2687
2688         if (!ret) {
2689                 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2690                         btrfs_info(fs_info, "device deleted: id %llu",
2691                                         vol_args->devid);
2692                 else
2693                         btrfs_info(fs_info, "device deleted: %s",
2694                                         vol_args->name);
2695         }
2696 out:
2697         kfree(vol_args);
2698 err_drop:
2699         mnt_drop_write_file(file);
2700         return ret;
2701 }
2702
2703 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2704 {
2705         struct inode *inode = file_inode(file);
2706         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2707         struct btrfs_ioctl_vol_args *vol_args;
2708         int ret;
2709
2710         if (!capable(CAP_SYS_ADMIN))
2711                 return -EPERM;
2712
2713         ret = mnt_want_write_file(file);
2714         if (ret)
2715                 return ret;
2716
2717         if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2718                 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2719                 goto out_drop_write;
2720         }
2721
2722         vol_args = memdup_user(arg, sizeof(*vol_args));
2723         if (IS_ERR(vol_args)) {
2724                 ret = PTR_ERR(vol_args);
2725                 goto out;
2726         }
2727
2728         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2729         mutex_lock(&fs_info->volume_mutex);
2730         ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2731         mutex_unlock(&fs_info->volume_mutex);
2732
2733         if (!ret)
2734                 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2735         kfree(vol_args);
2736 out:
2737         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2738 out_drop_write:
2739         mnt_drop_write_file(file);
2740
2741         return ret;
2742 }
2743
2744 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2745                                 void __user *arg)
2746 {
2747         struct btrfs_ioctl_fs_info_args *fi_args;
2748         struct btrfs_device *device;
2749         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2750         int ret = 0;
2751
2752         fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2753         if (!fi_args)
2754                 return -ENOMEM;
2755
2756         mutex_lock(&fs_devices->device_list_mutex);
2757         fi_args->num_devices = fs_devices->num_devices;
2758         memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
2759
2760         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2761                 if (device->devid > fi_args->max_id)
2762                         fi_args->max_id = device->devid;
2763         }
2764         mutex_unlock(&fs_devices->device_list_mutex);
2765
2766         fi_args->nodesize = fs_info->nodesize;
2767         fi_args->sectorsize = fs_info->sectorsize;
2768         fi_args->clone_alignment = fs_info->sectorsize;
2769
2770         if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2771                 ret = -EFAULT;
2772
2773         kfree(fi_args);
2774         return ret;
2775 }
2776
2777 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2778                                  void __user *arg)
2779 {
2780         struct btrfs_ioctl_dev_info_args *di_args;
2781         struct btrfs_device *dev;
2782         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2783         int ret = 0;
2784         char *s_uuid = NULL;
2785
2786         di_args = memdup_user(arg, sizeof(*di_args));
2787         if (IS_ERR(di_args))
2788                 return PTR_ERR(di_args);
2789
2790         if (!btrfs_is_empty_uuid(di_args->uuid))
2791                 s_uuid = di_args->uuid;
2792
2793         mutex_lock(&fs_devices->device_list_mutex);
2794         dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL);
2795
2796         if (!dev) {
2797                 ret = -ENODEV;
2798                 goto out;
2799         }
2800
2801         di_args->devid = dev->devid;
2802         di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2803         di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2804         memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2805         if (dev->name) {
2806                 struct rcu_string *name;
2807
2808                 rcu_read_lock();
2809                 name = rcu_dereference(dev->name);
2810                 strncpy(di_args->path, name->str, sizeof(di_args->path));
2811                 rcu_read_unlock();
2812                 di_args->path[sizeof(di_args->path) - 1] = 0;
2813         } else {
2814                 di_args->path[0] = '\0';
2815         }
2816
2817 out:
2818         mutex_unlock(&fs_devices->device_list_mutex);
2819         if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2820                 ret = -EFAULT;
2821
2822         kfree(di_args);
2823         return ret;
2824 }
2825
2826 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2827 {
2828         struct page *page;
2829
2830         page = grab_cache_page(inode->i_mapping, index);
2831         if (!page)
2832                 return ERR_PTR(-ENOMEM);
2833
2834         if (!PageUptodate(page)) {
2835                 int ret;
2836
2837                 ret = btrfs_readpage(NULL, page);
2838                 if (ret)
2839                         return ERR_PTR(ret);
2840                 lock_page(page);
2841                 if (!PageUptodate(page)) {
2842                         unlock_page(page);
2843                         put_page(page);
2844                         return ERR_PTR(-EIO);
2845                 }
2846                 if (page->mapping != inode->i_mapping) {
2847                         unlock_page(page);
2848                         put_page(page);
2849                         return ERR_PTR(-EAGAIN);
2850                 }
2851         }
2852
2853         return page;
2854 }
2855
2856 static int gather_extent_pages(struct inode *inode, struct page **pages,
2857                                int num_pages, u64 off)
2858 {
2859         int i;
2860         pgoff_t index = off >> PAGE_SHIFT;
2861
2862         for (i = 0; i < num_pages; i++) {
2863 again:
2864                 pages[i] = extent_same_get_page(inode, index + i);
2865                 if (IS_ERR(pages[i])) {
2866                         int err = PTR_ERR(pages[i]);
2867
2868                         if (err == -EAGAIN)
2869                                 goto again;
2870                         pages[i] = NULL;
2871                         return err;
2872                 }
2873         }
2874         return 0;
2875 }
2876
2877 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2878                              bool retry_range_locking)
2879 {
2880         /*
2881          * Do any pending delalloc/csum calculations on inode, one way or
2882          * another, and lock file content.
2883          * The locking order is:
2884          *
2885          *   1) pages
2886          *   2) range in the inode's io tree
2887          */
2888         while (1) {
2889                 struct btrfs_ordered_extent *ordered;
2890                 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2891                 ordered = btrfs_lookup_first_ordered_extent(inode,
2892                                                             off + len - 1);
2893                 if ((!ordered ||
2894                      ordered->file_offset + ordered->len <= off ||
2895                      ordered->file_offset >= off + len) &&
2896                     !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2897                                     off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2898                         if (ordered)
2899                                 btrfs_put_ordered_extent(ordered);
2900                         break;
2901                 }
2902                 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2903                 if (ordered)
2904                         btrfs_put_ordered_extent(ordered);
2905                 if (!retry_range_locking)
2906                         return -EAGAIN;
2907                 btrfs_wait_ordered_range(inode, off, len);
2908         }
2909         return 0;
2910 }
2911
2912 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2913 {
2914         inode_unlock(inode1);
2915         inode_unlock(inode2);
2916 }
2917
2918 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2919 {
2920         if (inode1 < inode2)
2921                 swap(inode1, inode2);
2922
2923         inode_lock_nested(inode1, I_MUTEX_PARENT);
2924         inode_lock_nested(inode2, I_MUTEX_CHILD);
2925 }
2926
2927 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2928                                       struct inode *inode2, u64 loff2, u64 len)
2929 {
2930         unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2931         unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2932 }
2933
2934 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2935                                     struct inode *inode2, u64 loff2, u64 len,
2936                                     bool retry_range_locking)
2937 {
2938         int ret;
2939
2940         if (inode1 < inode2) {
2941                 swap(inode1, inode2);
2942                 swap(loff1, loff2);
2943         }
2944         ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2945         if (ret)
2946                 return ret;
2947         ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2948         if (ret)
2949                 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2950                               loff1 + len - 1);
2951         return ret;
2952 }
2953
2954 struct cmp_pages {
2955         int             num_pages;
2956         struct page     **src_pages;
2957         struct page     **dst_pages;
2958 };
2959
2960 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2961 {
2962         int i;
2963         struct page *pg;
2964
2965         for (i = 0; i < cmp->num_pages; i++) {
2966                 pg = cmp->src_pages[i];
2967                 if (pg) {
2968                         unlock_page(pg);
2969                         put_page(pg);
2970                 }
2971                 pg = cmp->dst_pages[i];
2972                 if (pg) {
2973                         unlock_page(pg);
2974                         put_page(pg);
2975                 }
2976         }
2977         kfree(cmp->src_pages);
2978         kfree(cmp->dst_pages);
2979 }
2980
2981 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
2982                                   struct inode *dst, u64 dst_loff,
2983                                   u64 len, struct cmp_pages *cmp)
2984 {
2985         int ret;
2986         int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
2987         struct page **src_pgarr, **dst_pgarr;
2988
2989         /*
2990          * We must gather up all the pages before we initiate our
2991          * extent locking. We use an array for the page pointers. Size
2992          * of the array is bounded by len, which is in turn bounded by
2993          * BTRFS_MAX_DEDUPE_LEN.
2994          */
2995         src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2996         dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2997         if (!src_pgarr || !dst_pgarr) {
2998                 kfree(src_pgarr);
2999                 kfree(dst_pgarr);
3000                 return -ENOMEM;
3001         }
3002         cmp->num_pages = num_pages;
3003         cmp->src_pages = src_pgarr;
3004         cmp->dst_pages = dst_pgarr;
3005
3006         /*
3007          * If deduping ranges in the same inode, locking rules make it mandatory
3008          * to always lock pages in ascending order to avoid deadlocks with
3009          * concurrent tasks (such as starting writeback/delalloc).
3010          */
3011         if (src == dst && dst_loff < loff) {
3012                 swap(src_pgarr, dst_pgarr);
3013                 swap(loff, dst_loff);
3014         }
3015
3016         ret = gather_extent_pages(src, src_pgarr, cmp->num_pages, loff);
3017         if (ret)
3018                 goto out;
3019
3020         ret = gather_extent_pages(dst, dst_pgarr, cmp->num_pages, dst_loff);
3021
3022 out:
3023         if (ret)
3024                 btrfs_cmp_data_free(cmp);
3025         return ret;
3026 }
3027
3028 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp)
3029 {
3030         int ret = 0;
3031         int i;
3032         struct page *src_page, *dst_page;
3033         unsigned int cmp_len = PAGE_SIZE;
3034         void *addr, *dst_addr;
3035
3036         i = 0;
3037         while (len) {
3038                 if (len < PAGE_SIZE)
3039                         cmp_len = len;
3040
3041                 BUG_ON(i >= cmp->num_pages);
3042
3043                 src_page = cmp->src_pages[i];
3044                 dst_page = cmp->dst_pages[i];
3045                 ASSERT(PageLocked(src_page));
3046                 ASSERT(PageLocked(dst_page));
3047
3048                 addr = kmap_atomic(src_page);
3049                 dst_addr = kmap_atomic(dst_page);
3050
3051                 flush_dcache_page(src_page);
3052                 flush_dcache_page(dst_page);
3053
3054                 if (memcmp(addr, dst_addr, cmp_len))
3055                         ret = -EBADE;
3056
3057                 kunmap_atomic(addr);
3058                 kunmap_atomic(dst_addr);
3059
3060                 if (ret)
3061                         break;
3062
3063                 len -= cmp_len;
3064                 i++;
3065         }
3066
3067         return ret;
3068 }
3069
3070 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3071                                      u64 olen)
3072 {
3073         u64 len = *plen;
3074         u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3075
3076         if (off + olen > inode->i_size || off + olen < off)
3077                 return -EINVAL;
3078
3079         /* if we extend to eof, continue to block boundary */
3080         if (off + len == inode->i_size)
3081                 *plen = len = ALIGN(inode->i_size, bs) - off;
3082
3083         /* Check that we are block aligned - btrfs_clone() requires this */
3084         if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3085                 return -EINVAL;
3086
3087         return 0;
3088 }
3089
3090 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3091                              struct inode *dst, u64 dst_loff)
3092 {
3093         int ret;
3094         u64 len = olen;
3095         struct cmp_pages cmp;
3096         bool same_inode = (src == dst);
3097         u64 same_lock_start = 0;
3098         u64 same_lock_len = 0;
3099
3100         if (len == 0)
3101                 return 0;
3102
3103         if (same_inode)
3104                 inode_lock(src);
3105         else
3106                 btrfs_double_inode_lock(src, dst);
3107
3108         ret = extent_same_check_offsets(src, loff, &len, olen);
3109         if (ret)
3110                 goto out_unlock;
3111
3112         ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3113         if (ret)
3114                 goto out_unlock;
3115
3116         if (same_inode) {
3117                 /*
3118                  * Single inode case wants the same checks, except we
3119                  * don't want our length pushed out past i_size as
3120                  * comparing that data range makes no sense.
3121                  *
3122                  * extent_same_check_offsets() will do this for an
3123                  * unaligned length at i_size, so catch it here and
3124                  * reject the request.
3125                  *
3126                  * This effectively means we require aligned extents
3127                  * for the single-inode case, whereas the other cases
3128                  * allow an unaligned length so long as it ends at
3129                  * i_size.
3130                  */
3131                 if (len != olen) {
3132                         ret = -EINVAL;
3133                         goto out_unlock;
3134                 }
3135
3136                 /* Check for overlapping ranges */
3137                 if (dst_loff + len > loff && dst_loff < loff + len) {
3138                         ret = -EINVAL;
3139                         goto out_unlock;
3140                 }
3141
3142                 same_lock_start = min_t(u64, loff, dst_loff);
3143                 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3144         }
3145
3146         /* don't make the dst file partly checksummed */
3147         if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3148             (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3149                 ret = -EINVAL;
3150                 goto out_unlock;
3151         }
3152
3153 again:
3154         ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3155         if (ret)
3156                 goto out_unlock;
3157
3158         if (same_inode)
3159                 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3160                                         false);
3161         else
3162                 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3163                                                false);
3164         /*
3165          * If one of the inodes has dirty pages in the respective range or
3166          * ordered extents, we need to flush dellaloc and wait for all ordered
3167          * extents in the range. We must unlock the pages and the ranges in the
3168          * io trees to avoid deadlocks when flushing delalloc (requires locking
3169          * pages) and when waiting for ordered extents to complete (they require
3170          * range locking).
3171          */
3172         if (ret == -EAGAIN) {
3173                 /*
3174                  * Ranges in the io trees already unlocked. Now unlock all
3175                  * pages before waiting for all IO to complete.
3176                  */
3177                 btrfs_cmp_data_free(&cmp);
3178                 if (same_inode) {
3179                         btrfs_wait_ordered_range(src, same_lock_start,
3180                                                  same_lock_len);
3181                 } else {
3182                         btrfs_wait_ordered_range(src, loff, len);
3183                         btrfs_wait_ordered_range(dst, dst_loff, len);
3184                 }
3185                 goto again;
3186         }
3187         ASSERT(ret == 0);
3188         if (WARN_ON(ret)) {
3189                 /* ranges in the io trees already unlocked */
3190                 btrfs_cmp_data_free(&cmp);
3191                 return ret;
3192         }
3193
3194         /* pass original length for comparison so we stay within i_size */
3195         ret = btrfs_cmp_data(olen, &cmp);
3196         if (ret == 0)
3197                 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3198
3199         if (same_inode)
3200                 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3201                               same_lock_start + same_lock_len - 1);
3202         else
3203                 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3204
3205         btrfs_cmp_data_free(&cmp);
3206 out_unlock:
3207         if (same_inode)
3208                 inode_unlock(src);
3209         else
3210                 btrfs_double_inode_unlock(src, dst);
3211
3212         return ret;
3213 }
3214
3215 #define BTRFS_MAX_DEDUPE_LEN    SZ_16M
3216
3217 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3218                                 struct file *dst_file, u64 dst_loff)
3219 {
3220         struct inode *src = file_inode(src_file);
3221         struct inode *dst = file_inode(dst_file);
3222         u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3223         ssize_t res;
3224
3225         if (olen > BTRFS_MAX_DEDUPE_LEN)
3226                 olen = BTRFS_MAX_DEDUPE_LEN;
3227
3228         if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3229                 /*
3230                  * Btrfs does not support blocksize < page_size. As a
3231                  * result, btrfs_cmp_data() won't correctly handle
3232                  * this situation without an update.
3233                  */
3234                 return -EINVAL;
3235         }
3236
3237         res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3238         if (res)
3239                 return res;
3240         return olen;
3241 }
3242
3243 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3244                                      struct inode *inode,
3245                                      u64 endoff,
3246                                      const u64 destoff,
3247                                      const u64 olen,
3248                                      int no_time_update)
3249 {
3250         struct btrfs_root *root = BTRFS_I(inode)->root;
3251         int ret;
3252
3253         inode_inc_iversion(inode);
3254         if (!no_time_update)
3255                 inode->i_mtime = inode->i_ctime = current_time(inode);
3256         /*
3257          * We round up to the block size at eof when determining which
3258          * extents to clone above, but shouldn't round up the file size.
3259          */
3260         if (endoff > destoff + olen)
3261                 endoff = destoff + olen;
3262         if (endoff > inode->i_size)
3263                 btrfs_i_size_write(BTRFS_I(inode), endoff);
3264
3265         ret = btrfs_update_inode(trans, root, inode);
3266         if (ret) {
3267                 btrfs_abort_transaction(trans, ret);
3268                 btrfs_end_transaction(trans);
3269                 goto out;
3270         }
3271         ret = btrfs_end_transaction(trans);
3272 out:
3273         return ret;
3274 }
3275
3276 static void clone_update_extent_map(struct btrfs_inode *inode,
3277                                     const struct btrfs_trans_handle *trans,
3278                                     const struct btrfs_path *path,
3279                                     const u64 hole_offset,
3280                                     const u64 hole_len)
3281 {
3282         struct extent_map_tree *em_tree = &inode->extent_tree;
3283         struct extent_map *em;
3284         int ret;
3285
3286         em = alloc_extent_map();
3287         if (!em) {
3288                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3289                 return;
3290         }
3291
3292         if (path) {
3293                 struct btrfs_file_extent_item *fi;
3294
3295                 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3296                                     struct btrfs_file_extent_item);
3297                 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3298                 em->generation = -1;
3299                 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3300                     BTRFS_FILE_EXTENT_INLINE)
3301                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3302                                         &inode->runtime_flags);
3303         } else {
3304                 em->start = hole_offset;
3305                 em->len = hole_len;
3306                 em->ram_bytes = em->len;
3307                 em->orig_start = hole_offset;
3308                 em->block_start = EXTENT_MAP_HOLE;
3309                 em->block_len = 0;
3310                 em->orig_block_len = 0;
3311                 em->compress_type = BTRFS_COMPRESS_NONE;
3312                 em->generation = trans->transid;
3313         }
3314
3315         while (1) {
3316                 write_lock(&em_tree->lock);
3317                 ret = add_extent_mapping(em_tree, em, 1);
3318                 write_unlock(&em_tree->lock);
3319                 if (ret != -EEXIST) {
3320                         free_extent_map(em);
3321                         break;
3322                 }
3323                 btrfs_drop_extent_cache(inode, em->start,
3324                                         em->start + em->len - 1, 0);
3325         }
3326
3327         if (ret)
3328                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3329 }
3330
3331 /*
3332  * Make sure we do not end up inserting an inline extent into a file that has
3333  * already other (non-inline) extents. If a file has an inline extent it can
3334  * not have any other extents and the (single) inline extent must start at the
3335  * file offset 0. Failing to respect these rules will lead to file corruption,
3336  * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3337  *
3338  * We can have extents that have been already written to disk or we can have
3339  * dirty ranges still in delalloc, in which case the extent maps and items are
3340  * created only when we run delalloc, and the delalloc ranges might fall outside
3341  * the range we are currently locking in the inode's io tree. So we check the
3342  * inode's i_size because of that (i_size updates are done while holding the
3343  * i_mutex, which we are holding here).
3344  * We also check to see if the inode has a size not greater than "datal" but has
3345  * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3346  * protected against such concurrent fallocate calls by the i_mutex).
3347  *
3348  * If the file has no extents but a size greater than datal, do not allow the
3349  * copy because we would need turn the inline extent into a non-inline one (even
3350  * with NO_HOLES enabled). If we find our destination inode only has one inline
3351  * extent, just overwrite it with the source inline extent if its size is less
3352  * than the source extent's size, or we could copy the source inline extent's
3353  * data into the destination inode's inline extent if the later is greater then
3354  * the former.
3355  */
3356 static int clone_copy_inline_extent(struct inode *dst,
3357                                     struct btrfs_trans_handle *trans,
3358                                     struct btrfs_path *path,
3359                                     struct btrfs_key *new_key,
3360                                     const u64 drop_start,
3361                                     const u64 datal,
3362                                     const u64 skip,
3363                                     const u64 size,
3364                                     char *inline_data)
3365 {
3366         struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3367         struct btrfs_root *root = BTRFS_I(dst)->root;
3368         const u64 aligned_end = ALIGN(new_key->offset + datal,
3369                                       fs_info->sectorsize);
3370         int ret;
3371         struct btrfs_key key;
3372
3373         if (new_key->offset > 0)
3374                 return -EOPNOTSUPP;
3375
3376         key.objectid = btrfs_ino(BTRFS_I(dst));
3377         key.type = BTRFS_EXTENT_DATA_KEY;
3378         key.offset = 0;
3379         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3380         if (ret < 0) {
3381                 return ret;
3382         } else if (ret > 0) {
3383                 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3384                         ret = btrfs_next_leaf(root, path);
3385                         if (ret < 0)
3386                                 return ret;
3387                         else if (ret > 0)
3388                                 goto copy_inline_extent;
3389                 }
3390                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3391                 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3392                     key.type == BTRFS_EXTENT_DATA_KEY) {
3393                         ASSERT(key.offset > 0);
3394                         return -EOPNOTSUPP;
3395                 }
3396         } else if (i_size_read(dst) <= datal) {
3397                 struct btrfs_file_extent_item *ei;
3398                 u64 ext_len;
3399
3400                 /*
3401                  * If the file size is <= datal, make sure there are no other
3402                  * extents following (can happen do to an fallocate call with
3403                  * the flag FALLOC_FL_KEEP_SIZE).
3404                  */
3405                 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3406                                     struct btrfs_file_extent_item);
3407                 /*
3408                  * If it's an inline extent, it can not have other extents
3409                  * following it.
3410                  */
3411                 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3412                     BTRFS_FILE_EXTENT_INLINE)
3413                         goto copy_inline_extent;
3414
3415                 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3416                 if (ext_len > aligned_end)
3417                         return -EOPNOTSUPP;
3418
3419                 ret = btrfs_next_item(root, path);
3420                 if (ret < 0) {
3421                         return ret;
3422                 } else if (ret == 0) {
3423                         btrfs_item_key_to_cpu(path->nodes[0], &key,
3424                                               path->slots[0]);
3425                         if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3426                             key.type == BTRFS_EXTENT_DATA_KEY)
3427                                 return -EOPNOTSUPP;
3428                 }
3429         }
3430
3431 copy_inline_extent:
3432         /*
3433          * We have no extent items, or we have an extent at offset 0 which may
3434          * or may not be inlined. All these cases are dealt the same way.
3435          */
3436         if (i_size_read(dst) > datal) {
3437                 /*
3438                  * If the destination inode has an inline extent...
3439                  * This would require copying the data from the source inline
3440                  * extent into the beginning of the destination's inline extent.
3441                  * But this is really complex, both extents can be compressed
3442                  * or just one of them, which would require decompressing and
3443                  * re-compressing data (which could increase the new compressed
3444                  * size, not allowing the compressed data to fit anymore in an
3445                  * inline extent).
3446                  * So just don't support this case for now (it should be rare,
3447                  * we are not really saving space when cloning inline extents).
3448                  */
3449                 return -EOPNOTSUPP;
3450         }
3451
3452         btrfs_release_path(path);
3453         ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3454         if (ret)
3455                 return ret;
3456         ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3457         if (ret)
3458                 return ret;
3459
3460         if (skip) {
3461                 const u32 start = btrfs_file_extent_calc_inline_size(0);
3462
3463                 memmove(inline_data + start, inline_data + start + skip, datal);
3464         }
3465
3466         write_extent_buffer(path->nodes[0], inline_data,
3467                             btrfs_item_ptr_offset(path->nodes[0],
3468                                                   path->slots[0]),
3469                             size);
3470         inode_add_bytes(dst, datal);
3471
3472         return 0;
3473 }
3474
3475 /**
3476  * btrfs_clone() - clone a range from inode file to another
3477  *
3478  * @src: Inode to clone from
3479  * @inode: Inode to clone to
3480  * @off: Offset within source to start clone from
3481  * @olen: Original length, passed by user, of range to clone
3482  * @olen_aligned: Block-aligned value of olen
3483  * @destoff: Offset within @inode to start clone
3484  * @no_time_update: Whether to update mtime/ctime on the target inode
3485  */
3486 static int btrfs_clone(struct inode *src, struct inode *inode,
3487                        const u64 off, const u64 olen, const u64 olen_aligned,
3488                        const u64 destoff, int no_time_update)
3489 {
3490         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3491         struct btrfs_root *root = BTRFS_I(inode)->root;
3492         struct btrfs_path *path = NULL;
3493         struct extent_buffer *leaf;
3494         struct btrfs_trans_handle *trans;
3495         char *buf = NULL;
3496         struct btrfs_key key;
3497         u32 nritems;
3498         int slot;
3499         int ret;
3500         const u64 len = olen_aligned;
3501         u64 last_dest_end = destoff;
3502
3503         ret = -ENOMEM;
3504         buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3505         if (!buf)
3506                 return ret;
3507
3508         path = btrfs_alloc_path();
3509         if (!path) {
3510                 kvfree(buf);
3511                 return ret;
3512         }
3513
3514         path->reada = READA_FORWARD;
3515         /* clone data */
3516         key.objectid = btrfs_ino(BTRFS_I(src));
3517         key.type = BTRFS_EXTENT_DATA_KEY;
3518         key.offset = off;
3519
3520         while (1) {
3521                 u64 next_key_min_offset = key.offset + 1;
3522
3523                 /*
3524                  * note the key will change type as we walk through the
3525                  * tree.
3526                  */
3527                 path->leave_spinning = 1;
3528                 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3529                                 0, 0);
3530                 if (ret < 0)
3531                         goto out;
3532                 /*
3533                  * First search, if no extent item that starts at offset off was
3534                  * found but the previous item is an extent item, it's possible
3535                  * it might overlap our target range, therefore process it.
3536                  */
3537                 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3538                         btrfs_item_key_to_cpu(path->nodes[0], &key,
3539                                               path->slots[0] - 1);
3540                         if (key.type == BTRFS_EXTENT_DATA_KEY)
3541                                 path->slots[0]--;
3542                 }
3543
3544                 nritems = btrfs_header_nritems(path->nodes[0]);
3545 process_slot:
3546                 if (path->slots[0] >= nritems) {
3547                         ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3548                         if (ret < 0)
3549                                 goto out;
3550                         if (ret > 0)
3551                                 break;
3552                         nritems = btrfs_header_nritems(path->nodes[0]);
3553                 }
3554                 leaf = path->nodes[0];
3555                 slot = path->slots[0];
3556
3557                 btrfs_item_key_to_cpu(leaf, &key, slot);
3558                 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3559                     key.objectid != btrfs_ino(BTRFS_I(src)))
3560                         break;
3561
3562                 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3563                         struct btrfs_file_extent_item *extent;
3564                         int type;
3565                         u32 size;
3566                         struct btrfs_key new_key;
3567                         u64 disko = 0, diskl = 0;
3568                         u64 datao = 0, datal = 0;
3569                         u8 comp;
3570                         u64 drop_start;
3571
3572                         extent = btrfs_item_ptr(leaf, slot,
3573                                                 struct btrfs_file_extent_item);
3574                         comp = btrfs_file_extent_compression(leaf, extent);
3575                         type = btrfs_file_extent_type(leaf, extent);
3576                         if (type == BTRFS_FILE_EXTENT_REG ||
3577                             type == BTRFS_FILE_EXTENT_PREALLOC) {
3578                                 disko = btrfs_file_extent_disk_bytenr(leaf,
3579                                                                       extent);
3580                                 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3581                                                                  extent);
3582                                 datao = btrfs_file_extent_offset(leaf, extent);
3583                                 datal = btrfs_file_extent_num_bytes(leaf,
3584                                                                     extent);
3585                         } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3586                                 /* take upper bound, may be compressed */
3587                                 datal = btrfs_file_extent_ram_bytes(leaf,
3588                                                                     extent);
3589                         }
3590
3591                         /*
3592                          * The first search might have left us at an extent
3593                          * item that ends before our target range's start, can
3594                          * happen if we have holes and NO_HOLES feature enabled.
3595                          */
3596                         if (key.offset + datal <= off) {
3597                                 path->slots[0]++;
3598                                 goto process_slot;
3599                         } else if (key.offset >= off + len) {
3600                                 break;
3601                         }
3602                         next_key_min_offset = key.offset + datal;
3603                         size = btrfs_item_size_nr(leaf, slot);
3604                         read_extent_buffer(leaf, buf,
3605                                            btrfs_item_ptr_offset(leaf, slot),
3606                                            size);
3607
3608                         btrfs_release_path(path);
3609                         path->leave_spinning = 0;
3610
3611                         memcpy(&new_key, &key, sizeof(new_key));
3612                         new_key.objectid = btrfs_ino(BTRFS_I(inode));
3613                         if (off <= key.offset)
3614                                 new_key.offset = key.offset + destoff - off;
3615                         else
3616                                 new_key.offset = destoff;
3617
3618                         /*
3619                          * Deal with a hole that doesn't have an extent item
3620                          * that represents it (NO_HOLES feature enabled).
3621                          * This hole is either in the middle of the cloning
3622                          * range or at the beginning (fully overlaps it or
3623                          * partially overlaps it).
3624                          */
3625                         if (new_key.offset != last_dest_end)
3626                                 drop_start = last_dest_end;
3627                         else
3628                                 drop_start = new_key.offset;
3629
3630                         /*
3631                          * 1 - adjusting old extent (we may have to split it)
3632                          * 1 - add new extent
3633                          * 1 - inode update
3634                          */
3635                         trans = btrfs_start_transaction(root, 3);
3636                         if (IS_ERR(trans)) {
3637                                 ret = PTR_ERR(trans);
3638                                 goto out;
3639                         }
3640
3641                         if (type == BTRFS_FILE_EXTENT_REG ||
3642                             type == BTRFS_FILE_EXTENT_PREALLOC) {
3643                                 /*
3644                                  *    a  | --- range to clone ---|  b
3645                                  * | ------------- extent ------------- |
3646                                  */
3647
3648                                 /* subtract range b */
3649                                 if (key.offset + datal > off + len)
3650                                         datal = off + len - key.offset;
3651
3652                                 /* subtract range a */
3653                                 if (off > key.offset) {
3654                                         datao += off - key.offset;
3655                                         datal -= off - key.offset;
3656                                 }
3657
3658                                 ret = btrfs_drop_extents(trans, root, inode,
3659                                                          drop_start,
3660                                                          new_key.offset + datal,
3661                                                          1);
3662                                 if (ret) {
3663                                         if (ret != -EOPNOTSUPP)
3664                                                 btrfs_abort_transaction(trans,
3665                                                                         ret);
3666                                         btrfs_end_transaction(trans);
3667                                         goto out;
3668                                 }
3669
3670                                 ret = btrfs_insert_empty_item(trans, root, path,
3671                                                               &new_key, size);
3672                                 if (ret) {
3673                                         btrfs_abort_transaction(trans, ret);
3674                                         btrfs_end_transaction(trans);
3675                                         goto out;
3676                                 }
3677
3678                                 leaf = path->nodes[0];
3679                                 slot = path->slots[0];
3680                                 write_extent_buffer(leaf, buf,
3681                                             btrfs_item_ptr_offset(leaf, slot),
3682                                             size);
3683
3684                                 extent = btrfs_item_ptr(leaf, slot,
3685                                                 struct btrfs_file_extent_item);
3686
3687                                 /* disko == 0 means it's a hole */
3688                                 if (!disko)
3689                                         datao = 0;
3690
3691                                 btrfs_set_file_extent_offset(leaf, extent,
3692                                                              datao);
3693                                 btrfs_set_file_extent_num_bytes(leaf, extent,
3694                                                                 datal);
3695
3696                                 if (disko) {
3697                                         inode_add_bytes(inode, datal);
3698                                         ret = btrfs_inc_extent_ref(trans,
3699                                                         root,
3700                                                         disko, diskl, 0,
3701                                                         root->root_key.objectid,
3702                                                         btrfs_ino(BTRFS_I(inode)),
3703                                                         new_key.offset - datao);
3704                                         if (ret) {
3705                                                 btrfs_abort_transaction(trans,
3706                                                                         ret);
3707                                                 btrfs_end_transaction(trans);
3708                                                 goto out;
3709
3710                                         }
3711                                 }
3712                         } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3713                                 u64 skip = 0;
3714                                 u64 trim = 0;
3715
3716                                 if (off > key.offset) {
3717                                         skip = off - key.offset;
3718                                         new_key.offset += skip;
3719                                 }
3720
3721                                 if (key.offset + datal > off + len)
3722                                         trim = key.offset + datal - (off + len);
3723
3724                                 if (comp && (skip || trim)) {
3725                                         ret = -EINVAL;
3726                                         btrfs_end_transaction(trans);
3727                                         goto out;
3728                                 }
3729                                 size -= skip + trim;
3730                                 datal -= skip + trim;
3731
3732                                 ret = clone_copy_inline_extent(inode,
3733                                                                trans, path,
3734                                                                &new_key,
3735                                                                drop_start,
3736                                                                datal,
3737                                                                skip, size, buf);
3738                                 if (ret) {
3739                                         if (ret != -EOPNOTSUPP)
3740                                                 btrfs_abort_transaction(trans,
3741                                                                         ret);
3742                                         btrfs_end_transaction(trans);
3743                                         goto out;
3744                                 }
3745                                 leaf = path->nodes[0];
3746                                 slot = path->slots[0];
3747                         }
3748
3749                         /* If we have an implicit hole (NO_HOLES feature). */
3750                         if (drop_start < new_key.offset)
3751                                 clone_update_extent_map(BTRFS_I(inode), trans,
3752                                                 NULL, drop_start,
3753                                                 new_key.offset - drop_start);
3754
3755                         clone_update_extent_map(BTRFS_I(inode), trans,
3756                                         path, 0, 0);
3757
3758                         btrfs_mark_buffer_dirty(leaf);
3759                         btrfs_release_path(path);
3760
3761                         last_dest_end = ALIGN(new_key.offset + datal,
3762                                               fs_info->sectorsize);
3763                         ret = clone_finish_inode_update(trans, inode,
3764                                                         last_dest_end,
3765                                                         destoff, olen,
3766                                                         no_time_update);
3767                         if (ret)
3768                                 goto out;
3769                         if (new_key.offset + datal >= destoff + len)
3770                                 break;
3771                 }
3772                 btrfs_release_path(path);
3773                 key.offset = next_key_min_offset;
3774
3775                 if (fatal_signal_pending(current)) {
3776                         ret = -EINTR;
3777                         goto out;
3778                 }
3779         }
3780         ret = 0;
3781
3782         if (last_dest_end < destoff + len) {
3783                 /*
3784                  * We have an implicit hole (NO_HOLES feature is enabled) that
3785                  * fully or partially overlaps our cloning range at its end.
3786                  */
3787                 btrfs_release_path(path);
3788
3789                 /*
3790                  * 1 - remove extent(s)
3791                  * 1 - inode update
3792                  */
3793                 trans = btrfs_start_transaction(root, 2);
3794                 if (IS_ERR(trans)) {
3795                         ret = PTR_ERR(trans);
3796                         goto out;
3797                 }
3798                 ret = btrfs_drop_extents(trans, root, inode,
3799                                          last_dest_end, destoff + len, 1);
3800                 if (ret) {
3801                         if (ret != -EOPNOTSUPP)
3802                                 btrfs_abort_transaction(trans, ret);
3803                         btrfs_end_transaction(trans);
3804                         goto out;
3805                 }
3806                 clone_update_extent_map(BTRFS_I(inode), trans, NULL,
3807                                 last_dest_end,
3808                                 destoff + len - last_dest_end);
3809                 ret = clone_finish_inode_update(trans, inode, destoff + len,
3810                                                 destoff, olen, no_time_update);
3811         }
3812
3813 out:
3814         btrfs_free_path(path);
3815         kvfree(buf);
3816         return ret;
3817 }
3818
3819 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3820                                         u64 off, u64 olen, u64 destoff)
3821 {
3822         struct inode *inode = file_inode(file);
3823         struct inode *src = file_inode(file_src);
3824         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3825         struct btrfs_root *root = BTRFS_I(inode)->root;
3826         int ret;
3827         u64 len = olen;
3828         u64 bs = fs_info->sb->s_blocksize;
3829         int same_inode = src == inode;
3830
3831         /*
3832          * TODO:
3833          * - split compressed inline extents.  annoying: we need to
3834          *   decompress into destination's address_space (the file offset
3835          *   may change, so source mapping won't do), then recompress (or
3836          *   otherwise reinsert) a subrange.
3837          *
3838          * - split destination inode's inline extents.  The inline extents can
3839          *   be either compressed or non-compressed.
3840          */
3841
3842         if (btrfs_root_readonly(root))
3843                 return -EROFS;
3844
3845         if (file_src->f_path.mnt != file->f_path.mnt ||
3846             src->i_sb != inode->i_sb)
3847                 return -EXDEV;
3848
3849         /* don't make the dst file partly checksummed */
3850         if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3851             (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3852                 return -EINVAL;
3853
3854         if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3855                 return -EISDIR;
3856
3857         if (!same_inode) {
3858                 btrfs_double_inode_lock(src, inode);
3859         } else {
3860                 inode_lock(src);
3861         }
3862
3863         /* determine range to clone */
3864         ret = -EINVAL;
3865         if (off + len > src->i_size || off + len < off)
3866                 goto out_unlock;
3867         if (len == 0)
3868                 olen = len = src->i_size - off;
3869         /* if we extend to eof, continue to block boundary */
3870         if (off + len == src->i_size)
3871                 len = ALIGN(src->i_size, bs) - off;
3872
3873         if (len == 0) {
3874                 ret = 0;
3875                 goto out_unlock;
3876         }
3877
3878         /* verify the end result is block aligned */
3879         if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3880             !IS_ALIGNED(destoff, bs))
3881                 goto out_unlock;
3882
3883         /* verify if ranges are overlapped within the same file */
3884         if (same_inode) {
3885                 if (destoff + len > off && destoff < off + len)
3886                         goto out_unlock;
3887         }
3888
3889         if (destoff > inode->i_size) {
3890                 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3891                 if (ret)
3892                         goto out_unlock;
3893         }
3894
3895         /*
3896          * Lock the target range too. Right after we replace the file extent
3897          * items in the fs tree (which now point to the cloned data), we might
3898          * have a worker replace them with extent items relative to a write
3899          * operation that was issued before this clone operation (i.e. confront
3900          * with inode.c:btrfs_finish_ordered_io).
3901          */
3902         if (same_inode) {
3903                 u64 lock_start = min_t(u64, off, destoff);
3904                 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3905
3906                 ret = lock_extent_range(src, lock_start, lock_len, true);
3907         } else {
3908                 ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3909                                                true);
3910         }
3911         ASSERT(ret == 0);
3912         if (WARN_ON(ret)) {
3913                 /* ranges in the io trees already unlocked */
3914                 goto out_unlock;
3915         }
3916
3917         ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3918
3919         if (same_inode) {
3920                 u64 lock_start = min_t(u64, off, destoff);
3921                 u64 lock_end = max_t(u64, off, destoff) + len - 1;
3922
3923                 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3924         } else {
3925                 btrfs_double_extent_unlock(src, off, inode, destoff, len);
3926         }
3927         /*
3928          * Truncate page cache pages so that future reads will see the cloned
3929          * data immediately and not the previous data.
3930          */
3931         truncate_inode_pages_range(&inode->i_data,
3932                                 round_down(destoff, PAGE_SIZE),
3933                                 round_up(destoff + len, PAGE_SIZE) - 1);
3934 out_unlock:
3935         if (!same_inode)
3936                 btrfs_double_inode_unlock(src, inode);
3937         else
3938                 inode_unlock(src);
3939         return ret;
3940 }
3941
3942 int btrfs_clone_file_range(struct file *src_file, loff_t off,
3943                 struct file *dst_file, loff_t destoff, u64 len)
3944 {
3945         return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3946 }
3947
3948 /*
3949  * there are many ways the trans_start and trans_end ioctls can lead
3950  * to deadlocks.  They should only be used by applications that
3951  * basically own the machine, and have a very in depth understanding
3952  * of all the possible deadlocks and enospc problems.
3953  */
3954 static long btrfs_ioctl_trans_start(struct file *file)
3955 {
3956         struct inode *inode = file_inode(file);
3957         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3958         struct btrfs_root *root = BTRFS_I(inode)->root;
3959         struct btrfs_trans_handle *trans;
3960         struct btrfs_file_private *private;
3961         int ret;
3962         static bool warned = false;
3963
3964         ret = -EPERM;
3965         if (!capable(CAP_SYS_ADMIN))
3966                 goto out;
3967
3968         if (!warned) {
3969                 btrfs_warn(fs_info,
3970                         "Userspace transaction mechanism is considered "
3971                         "deprecated and slated to be removed in 4.17. "
3972                         "If you have a valid use case please "
3973                         "speak up on the mailing list");
3974                 WARN_ON(1);
3975                 warned = true;
3976         }
3977
3978         ret = -EINPROGRESS;
3979         private = file->private_data;
3980         if (private && private->trans)
3981                 goto out;
3982         if (!private) {
3983                 private = kzalloc(sizeof(struct btrfs_file_private),
3984                                   GFP_KERNEL);
3985                 if (!private)
3986                         return -ENOMEM;
3987                 file->private_data = private;
3988         }
3989
3990         ret = -EROFS;
3991         if (btrfs_root_readonly(root))
3992                 goto out;
3993
3994         ret = mnt_want_write_file(file);
3995         if (ret)
3996                 goto out;
3997
3998         atomic_inc(&fs_info->open_ioctl_trans);
3999
4000         ret = -ENOMEM;
4001         trans = btrfs_start_ioctl_transaction(root);
4002         if (IS_ERR(trans))
4003                 goto out_drop;
4004
4005         private->trans = trans;
4006         return 0;
4007
4008 out_drop:
4009         atomic_dec(&fs_info->open_ioctl_trans);
4010         mnt_drop_write_file(file);
4011 out:
4012         return ret;
4013 }
4014
4015 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4016 {
4017         struct inode *inode = file_inode(file);
4018         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4019         struct btrfs_root *root = BTRFS_I(inode)->root;
4020         struct btrfs_root *new_root;
4021         struct btrfs_dir_item *di;
4022         struct btrfs_trans_handle *trans;
4023         struct btrfs_path *path;
4024         struct btrfs_key location;
4025         struct btrfs_disk_key disk_key;
4026         u64 objectid = 0;
4027         u64 dir_id;
4028         int ret;
4029
4030         if (!capable(CAP_SYS_ADMIN))
4031                 return -EPERM;
4032
4033         ret = mnt_want_write_file(file);
4034         if (ret)
4035                 return ret;
4036
4037         if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4038                 ret = -EFAULT;
4039                 goto out;
4040         }
4041
4042         if (!objectid)
4043                 objectid = BTRFS_FS_TREE_OBJECTID;
4044
4045         location.objectid = objectid;
4046         location.type = BTRFS_ROOT_ITEM_KEY;
4047         location.offset = (u64)-1;
4048
4049         new_root = btrfs_read_fs_root_no_name(fs_info, &location);
4050         if (IS_ERR(new_root)) {
4051                 ret = PTR_ERR(new_root);
4052                 goto out;
4053         }
4054         if (!is_fstree(new_root->objectid)) {
4055                 ret = -ENOENT;
4056                 goto out;
4057         }
4058
4059         path = btrfs_alloc_path();
4060         if (!path) {
4061                 ret = -ENOMEM;
4062                 goto out;
4063         }
4064         path->leave_spinning = 1;
4065
4066         trans = btrfs_start_transaction(root, 1);
4067         if (IS_ERR(trans)) {
4068                 btrfs_free_path(path);
4069                 ret = PTR_ERR(trans);
4070                 goto out;
4071         }
4072
4073         dir_id = btrfs_super_root_dir(fs_info->super_copy);
4074         di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4075                                    dir_id, "default", 7, 1);
4076         if (IS_ERR_OR_NULL(di)) {
4077                 btrfs_free_path(path);
4078                 btrfs_end_transaction(trans);
4079                 btrfs_err(fs_info,
4080                           "Umm, you don't have the default diritem, this isn't going to work");
4081                 ret = -ENOENT;
4082                 goto out;
4083         }
4084
4085         btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4086         btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4087         btrfs_mark_buffer_dirty(path->nodes[0]);
4088         btrfs_free_path(path);
4089
4090         btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4091         btrfs_end_transaction(trans);
4092 out:
4093         mnt_drop_write_file(file);
4094         return ret;
4095 }
4096
4097 void btrfs_get_block_group_info(struct list_head *groups_list,
4098                                 struct btrfs_ioctl_space_info *space)
4099 {
4100         struct btrfs_block_group_cache *block_group;
4101
4102         space->total_bytes = 0;
4103         space->used_bytes = 0;
4104         space->flags = 0;
4105         list_for_each_entry(block_group, groups_list, list) {
4106                 space->flags = block_group->flags;
4107                 space->total_bytes += block_group->key.offset;
4108                 space->used_bytes +=
4109                         btrfs_block_group_used(&block_group->item);
4110         }
4111 }
4112
4113 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4114                                    void __user *arg)
4115 {
4116         struct btrfs_ioctl_space_args space_args;
4117         struct btrfs_ioctl_space_info space;
4118         struct btrfs_ioctl_space_info *dest;
4119         struct btrfs_ioctl_space_info *dest_orig;
4120         struct btrfs_ioctl_space_info __user *user_dest;
4121         struct btrfs_space_info *info;
4122         static const u64 types[] = {
4123                 BTRFS_BLOCK_GROUP_DATA,
4124                 BTRFS_BLOCK_GROUP_SYSTEM,
4125                 BTRFS_BLOCK_GROUP_METADATA,
4126                 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
4127         };
4128         int num_types = 4;
4129         int alloc_size;
4130         int ret = 0;
4131         u64 slot_count = 0;
4132         int i, c;
4133
4134         if (copy_from_user(&space_args,
4135                            (struct btrfs_ioctl_space_args __user *)arg,
4136                            sizeof(space_args)))
4137                 return -EFAULT;
4138
4139         for (i = 0; i < num_types; i++) {
4140                 struct btrfs_space_info *tmp;
4141
4142                 info = NULL;
4143                 rcu_read_lock();
4144                 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4145                                         list) {
4146                         if (tmp->flags == types[i]) {
4147                                 info = tmp;
4148                                 break;
4149                         }
4150                 }
4151                 rcu_read_unlock();
4152
4153                 if (!info)
4154                         continue;
4155
4156                 down_read(&info->groups_sem);
4157                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4158                         if (!list_empty(&info->block_groups[c]))
4159                                 slot_count++;
4160                 }
4161                 up_read(&info->groups_sem);
4162         }
4163
4164         /*
4165          * Global block reserve, exported as a space_info
4166          */
4167         slot_count++;
4168
4169         /* space_slots == 0 means they are asking for a count */
4170         if (space_args.space_slots == 0) {
4171                 space_args.total_spaces = slot_count;
4172                 goto out;
4173         }
4174
4175         slot_count = min_t(u64, space_args.space_slots, slot_count);
4176
4177         alloc_size = sizeof(*dest) * slot_count;
4178
4179         /* we generally have at most 6 or so space infos, one for each raid
4180          * level.  So, a whole page should be more than enough for everyone
4181          */
4182         if (alloc_size > PAGE_SIZE)
4183                 return -ENOMEM;
4184
4185         space_args.total_spaces = 0;
4186         dest = kmalloc(alloc_size, GFP_KERNEL);
4187         if (!dest)
4188                 return -ENOMEM;
4189         dest_orig = dest;
4190
4191         /* now we have a buffer to copy into */
4192         for (i = 0; i < num_types; i++) {
4193                 struct btrfs_space_info *tmp;
4194
4195                 if (!slot_count)
4196                         break;
4197
4198                 info = NULL;
4199                 rcu_read_lock();
4200                 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4201                                         list) {
4202                         if (tmp->flags == types[i]) {
4203                                 info = tmp;
4204                                 break;
4205                         }
4206                 }
4207                 rcu_read_unlock();
4208
4209                 if (!info)
4210                         continue;
4211                 down_read(&info->groups_sem);
4212                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4213                         if (!list_empty(&info->block_groups[c])) {
4214                                 btrfs_get_block_group_info(
4215                                         &info->block_groups[c], &space);
4216                                 memcpy(dest, &space, sizeof(space));
4217                                 dest++;
4218                                 space_args.total_spaces++;
4219                                 slot_count--;
4220                         }
4221                         if (!slot_count)
4222                                 break;
4223                 }
4224                 up_read(&info->groups_sem);
4225         }
4226
4227         /*
4228          * Add global block reserve
4229          */
4230         if (slot_count) {
4231                 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4232
4233                 spin_lock(&block_rsv->lock);
4234                 space.total_bytes = block_rsv->size;
4235                 space.used_bytes = block_rsv->size - block_rsv->reserved;
4236                 spin_unlock(&block_rsv->lock);
4237                 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4238                 memcpy(dest, &space, sizeof(space));
4239                 space_args.total_spaces++;
4240         }
4241
4242         user_dest = (struct btrfs_ioctl_space_info __user *)
4243                 (arg + sizeof(struct btrfs_ioctl_space_args));
4244
4245         if (copy_to_user(user_dest, dest_orig, alloc_size))
4246                 ret = -EFAULT;
4247
4248         kfree(dest_orig);
4249 out:
4250         if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4251                 ret = -EFAULT;
4252
4253         return ret;
4254 }
4255
4256 /*
4257  * there are many ways the trans_start and trans_end ioctls can lead
4258  * to deadlocks.  They should only be used by applications that
4259  * basically own the machine, and have a very in depth understanding
4260  * of all the possible deadlocks and enospc problems.
4261  */
4262 long btrfs_ioctl_trans_end(struct file *file)
4263 {
4264         struct inode *inode = file_inode(file);
4265         struct btrfs_root *root = BTRFS_I(inode)->root;
4266         struct btrfs_file_private *private = file->private_data;
4267
4268         if (!private || !private->trans)
4269                 return -EINVAL;
4270
4271         btrfs_end_transaction(private->trans);
4272         private->trans = NULL;
4273
4274         atomic_dec(&root->fs_info->open_ioctl_trans);
4275
4276         mnt_drop_write_file(file);
4277         return 0;
4278 }
4279
4280 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4281                                             void __user *argp)
4282 {
4283         struct btrfs_trans_handle *trans;
4284         u64 transid;
4285         int ret;
4286
4287         trans = btrfs_attach_transaction_barrier(root);
4288         if (IS_ERR(trans)) {
4289                 if (PTR_ERR(trans) != -ENOENT)
4290                         return PTR_ERR(trans);
4291
4292                 /* No running transaction, don't bother */
4293                 transid = root->fs_info->last_trans_committed;
4294                 goto out;
4295         }
4296         transid = trans->transid;
4297         ret = btrfs_commit_transaction_async(trans, 0);
4298         if (ret) {
4299                 btrfs_end_transaction(trans);
4300                 return ret;
4301         }
4302 out:
4303         if (argp)
4304                 if (copy_to_user(argp, &transid, sizeof(transid)))
4305                         return -EFAULT;
4306         return 0;
4307 }
4308
4309 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4310                                            void __user *argp)
4311 {
4312         u64 transid;
4313
4314         if (argp) {
4315                 if (copy_from_user(&transid, argp, sizeof(transid)))
4316                         return -EFAULT;
4317         } else {
4318                 transid = 0;  /* current trans */
4319         }
4320         return btrfs_wait_for_commit(fs_info, transid);
4321 }
4322
4323 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4324 {
4325         struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4326         struct btrfs_ioctl_scrub_args *sa;
4327         int ret;
4328
4329         if (!capable(CAP_SYS_ADMIN))
4330                 return -EPERM;
4331
4332         sa = memdup_user(arg, sizeof(*sa));
4333         if (IS_ERR(sa))
4334                 return PTR_ERR(sa);
4335
4336         if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4337                 ret = mnt_want_write_file(file);
4338                 if (ret)
4339                         goto out;
4340         }
4341
4342         ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4343                               &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4344                               0);
4345
4346         if (copy_to_user(arg, sa, sizeof(*sa)))
4347                 ret = -EFAULT;
4348
4349         if (!(sa->flags & BTRFS_SCRUB_READONLY))
4350                 mnt_drop_write_file(file);
4351 out:
4352         kfree(sa);
4353         return ret;
4354 }
4355
4356 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4357 {
4358         if (!capable(CAP_SYS_ADMIN))
4359                 return -EPERM;
4360
4361         return btrfs_scrub_cancel(fs_info);
4362 }
4363
4364 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4365                                        void __user *arg)
4366 {
4367         struct btrfs_ioctl_scrub_args *sa;
4368         int ret;
4369
4370         if (!capable(CAP_SYS_ADMIN))
4371                 return -EPERM;
4372
4373         sa = memdup_user(arg, sizeof(*sa));
4374         if (IS_ERR(sa))
4375                 return PTR_ERR(sa);
4376
4377         ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4378
4379         if (copy_to_user(arg, sa, sizeof(*sa)))
4380                 ret = -EFAULT;
4381
4382         kfree(sa);
4383         return ret;
4384 }
4385
4386 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4387                                       void __user *arg)
4388 {
4389         struct btrfs_ioctl_get_dev_stats *sa;
4390         int ret;
4391
4392         sa = memdup_user(arg, sizeof(*sa));
4393         if (IS_ERR(sa))
4394                 return PTR_ERR(sa);
4395
4396         if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4397                 kfree(sa);
4398                 return -EPERM;
4399         }
4400
4401         ret = btrfs_get_dev_stats(fs_info, sa);
4402
4403         if (copy_to_user(arg, sa, sizeof(*sa)))
4404                 ret = -EFAULT;
4405
4406         kfree(sa);
4407         return ret;
4408 }
4409
4410 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4411                                     void __user *arg)
4412 {
4413         struct btrfs_ioctl_dev_replace_args *p;
4414         int ret;
4415
4416         if (!capable(CAP_SYS_ADMIN))
4417                 return -EPERM;
4418
4419         p = memdup_user(arg, sizeof(*p));
4420         if (IS_ERR(p))
4421                 return PTR_ERR(p);
4422
4423         switch (p->cmd) {
4424         case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4425                 if (sb_rdonly(fs_info->sb)) {
4426                         ret = -EROFS;
4427                         goto out;
4428                 }
4429                 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4430                         ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4431                 } else {
4432                         ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4433                         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4434                 }
4435                 break;
4436         case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4437                 btrfs_dev_replace_status(fs_info, p);
4438                 ret = 0;
4439                 break;
4440         case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4441                 ret = btrfs_dev_replace_cancel(fs_info, p);
4442                 break;
4443         default:
4444                 ret = -EINVAL;
4445                 break;
4446         }
4447
4448         if (copy_to_user(arg, p, sizeof(*p)))
4449                 ret = -EFAULT;
4450 out:
4451         kfree(p);
4452         return ret;
4453 }
4454
4455 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4456 {
4457         int ret = 0;
4458         int i;
4459         u64 rel_ptr;
4460         int size;
4461         struct btrfs_ioctl_ino_path_args *ipa = NULL;
4462         struct inode_fs_paths *ipath = NULL;
4463         struct btrfs_path *path;
4464
4465         if (!capable(CAP_DAC_READ_SEARCH))
4466                 return -EPERM;
4467
4468         path = btrfs_alloc_path();
4469         if (!path) {
4470                 ret = -ENOMEM;
4471                 goto out;
4472         }
4473
4474         ipa = memdup_user(arg, sizeof(*ipa));
4475         if (IS_ERR(ipa)) {
4476                 ret = PTR_ERR(ipa);
4477                 ipa = NULL;
4478                 goto out;
4479         }
4480
4481         size = min_t(u32, ipa->size, 4096);
4482         ipath = init_ipath(size, root, path);
4483         if (IS_ERR(ipath)) {
4484                 ret = PTR_ERR(ipath);
4485                 ipath = NULL;
4486                 goto out;
4487         }
4488
4489         ret = paths_from_inode(ipa->inum, ipath);
4490         if (ret < 0)
4491                 goto out;
4492
4493         for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4494                 rel_ptr = ipath->fspath->val[i] -
4495                           (u64)(unsigned long)ipath->fspath->val;
4496                 ipath->fspath->val[i] = rel_ptr;
4497         }
4498
4499         ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4500                            ipath->fspath, size);
4501         if (ret) {
4502                 ret = -EFAULT;
4503                 goto out;
4504         }
4505
4506 out:
4507         btrfs_free_path(path);
4508         free_ipath(ipath);
4509         kfree(ipa);
4510
4511         return ret;
4512 }
4513
4514 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4515 {
4516         struct btrfs_data_container *inodes = ctx;
4517         const size_t c = 3 * sizeof(u64);
4518
4519         if (inodes->bytes_left >= c) {
4520                 inodes->bytes_left -= c;
4521                 inodes->val[inodes->elem_cnt] = inum;
4522                 inodes->val[inodes->elem_cnt + 1] = offset;
4523                 inodes->val[inodes->elem_cnt + 2] = root;
4524                 inodes->elem_cnt += 3;
4525         } else {
4526                 inodes->bytes_missing += c - inodes->bytes_left;
4527                 inodes->bytes_left = 0;
4528                 inodes->elem_missed += 3;
4529         }
4530
4531         return 0;
4532 }
4533
4534 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4535                                         void __user *arg, int version)
4536 {
4537         int ret = 0;
4538         int size;
4539         struct btrfs_ioctl_logical_ino_args *loi;
4540         struct btrfs_data_container *inodes = NULL;
4541         struct btrfs_path *path = NULL;
4542         bool ignore_offset;
4543
4544         if (!capable(CAP_SYS_ADMIN))
4545                 return -EPERM;
4546
4547         loi = memdup_user(arg, sizeof(*loi));
4548         if (IS_ERR(loi))
4549                 return PTR_ERR(loi);
4550
4551         if (version == 1) {
4552                 ignore_offset = false;
4553                 size = min_t(u32, loi->size, SZ_64K);
4554         } else {
4555                 /* All reserved bits must be 0 for now */
4556                 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4557                         ret = -EINVAL;
4558                         goto out_loi;
4559                 }
4560                 /* Only accept flags we have defined so far */
4561                 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4562                         ret = -EINVAL;
4563                         goto out_loi;
4564                 }
4565                 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4566                 size = min_t(u32, loi->size, SZ_16M);
4567         }
4568
4569         path = btrfs_alloc_path();
4570         if (!path) {
4571                 ret = -ENOMEM;
4572                 goto out;
4573         }
4574
4575         inodes = init_data_container(size);
4576         if (IS_ERR(inodes)) {
4577                 ret = PTR_ERR(inodes);
4578                 inodes = NULL;
4579                 goto out;
4580         }
4581
4582         ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4583                                           build_ino_list, inodes, ignore_offset);
4584         if (ret == -EINVAL)
4585                 ret = -ENOENT;
4586         if (ret < 0)
4587                 goto out;
4588
4589         ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4590                            size);
4591         if (ret)
4592                 ret = -EFAULT;
4593
4594 out:
4595         btrfs_free_path(path);
4596         kvfree(inodes);
4597 out_loi:
4598         kfree(loi);
4599
4600         return ret;
4601 }
4602
4603 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4604                                struct btrfs_ioctl_balance_args *bargs)
4605 {
4606         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4607
4608         bargs->flags = bctl->flags;
4609
4610         if (atomic_read(&fs_info->balance_running))
4611                 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4612         if (atomic_read(&fs_info->balance_pause_req))
4613                 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4614         if (atomic_read(&fs_info->balance_cancel_req))
4615                 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4616
4617         memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4618         memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4619         memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4620
4621         if (lock) {
4622                 spin_lock(&fs_info->balance_lock);
4623                 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4624                 spin_unlock(&fs_info->balance_lock);
4625         } else {
4626                 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4627         }
4628 }
4629
4630 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4631 {
4632         struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4633         struct btrfs_fs_info *fs_info = root->fs_info;
4634         struct btrfs_ioctl_balance_args *bargs;
4635         struct btrfs_balance_control *bctl;
4636         bool need_unlock; /* for mut. excl. ops lock */
4637         int ret;
4638
4639         if (!capable(CAP_SYS_ADMIN))
4640                 return -EPERM;
4641
4642         ret = mnt_want_write_file(file);
4643         if (ret)
4644                 return ret;
4645
4646 again:
4647         if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4648                 mutex_lock(&fs_info->volume_mutex);
4649                 mutex_lock(&fs_info->balance_mutex);
4650                 need_unlock = true;
4651                 goto locked;
4652         }
4653
4654         /*
4655          * mut. excl. ops lock is locked.  Three possibilities:
4656          *   (1) some other op is running
4657          *   (2) balance is running
4658          *   (3) balance is paused -- special case (think resume)
4659          */
4660         mutex_lock(&fs_info->balance_mutex);
4661         if (fs_info->balance_ctl) {
4662                 /* this is either (2) or (3) */
4663                 if (!atomic_read(&fs_info->balance_running)) {
4664                         mutex_unlock(&fs_info->balance_mutex);
4665                         if (!mutex_trylock(&fs_info->volume_mutex))
4666                                 goto again;
4667                         mutex_lock(&fs_info->balance_mutex);
4668
4669                         if (fs_info->balance_ctl &&
4670                             !atomic_read(&fs_info->balance_running)) {
4671                                 /* this is (3) */
4672                                 need_unlock = false;
4673                                 goto locked;
4674                         }
4675
4676                         mutex_unlock(&fs_info->balance_mutex);
4677                         mutex_unlock(&fs_info->volume_mutex);
4678                         goto again;
4679                 } else {
4680                         /* this is (2) */
4681                         mutex_unlock(&fs_info->balance_mutex);
4682                         ret = -EINPROGRESS;
4683                         goto out;
4684                 }
4685         } else {
4686                 /* this is (1) */
4687                 mutex_unlock(&fs_info->balance_mutex);
4688                 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4689                 goto out;
4690         }
4691
4692 locked:
4693         BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4694
4695         if (arg) {
4696                 bargs = memdup_user(arg, sizeof(*bargs));
4697                 if (IS_ERR(bargs)) {
4698                         ret = PTR_ERR(bargs);
4699                         goto out_unlock;
4700                 }
4701
4702                 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4703                         if (!fs_info->balance_ctl) {
4704                                 ret = -ENOTCONN;
4705                                 goto out_bargs;
4706                         }
4707
4708                         bctl = fs_info->balance_ctl;
4709                         spin_lock(&fs_info->balance_lock);
4710                         bctl->flags |= BTRFS_BALANCE_RESUME;
4711                         spin_unlock(&fs_info->balance_lock);
4712
4713                         goto do_balance;
4714                 }
4715         } else {
4716                 bargs = NULL;
4717         }
4718
4719         if (fs_info->balance_ctl) {
4720                 ret = -EINPROGRESS;
4721                 goto out_bargs;
4722         }
4723
4724         bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4725         if (!bctl) {
4726                 ret = -ENOMEM;
4727                 goto out_bargs;
4728         }
4729
4730         bctl->fs_info = fs_info;
4731         if (arg) {
4732                 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4733                 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4734                 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4735
4736                 bctl->flags = bargs->flags;
4737         } else {
4738                 /* balance everything - no filters */
4739                 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4740         }
4741
4742         if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4743                 ret = -EINVAL;
4744                 goto out_bctl;
4745         }
4746
4747 do_balance:
4748         /*
4749          * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP
4750          * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
4751          * or, if restriper was paused all the way until unmount, in
4752          * free_fs_info.  The flag is cleared in __cancel_balance.
4753          */
4754         need_unlock = false;
4755
4756         ret = btrfs_balance(bctl, bargs);
4757         bctl = NULL;
4758
4759         if (arg) {
4760                 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4761                         ret = -EFAULT;
4762         }
4763
4764 out_bctl:
4765         kfree(bctl);
4766 out_bargs:
4767         kfree(bargs);
4768 out_unlock:
4769         mutex_unlock(&fs_info->balance_mutex);
4770         mutex_unlock(&fs_info->volume_mutex);
4771         if (need_unlock)
4772                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4773 out:
4774         mnt_drop_write_file(file);
4775         return ret;
4776 }
4777
4778 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4779 {
4780         if (!capable(CAP_SYS_ADMIN))
4781                 return -EPERM;
4782
4783         switch (cmd) {
4784         case BTRFS_BALANCE_CTL_PAUSE:
4785                 return btrfs_pause_balance(fs_info);
4786         case BTRFS_BALANCE_CTL_CANCEL:
4787                 return btrfs_cancel_balance(fs_info);
4788         }
4789
4790         return -EINVAL;
4791 }
4792
4793 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4794                                          void __user *arg)
4795 {
4796         struct btrfs_ioctl_balance_args *bargs;
4797         int ret = 0;
4798
4799         if (!capable(CAP_SYS_ADMIN))
4800                 return -EPERM;
4801
4802         mutex_lock(&fs_info->balance_mutex);
4803         if (!fs_info->balance_ctl) {
4804                 ret = -ENOTCONN;
4805                 goto out;
4806         }
4807
4808         bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4809         if (!bargs) {
4810                 ret = -ENOMEM;
4811                 goto out;
4812         }
4813
4814         update_ioctl_balance_args(fs_info, 1, bargs);
4815
4816         if (copy_to_user(arg, bargs, sizeof(*bargs)))
4817                 ret = -EFAULT;
4818
4819         kfree(bargs);
4820 out:
4821         mutex_unlock(&fs_info->balance_mutex);
4822         return ret;
4823 }
4824
4825 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4826 {
4827         struct inode *inode = file_inode(file);
4828         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4829         struct btrfs_ioctl_quota_ctl_args *sa;
4830         struct btrfs_trans_handle *trans = NULL;
4831         int ret;
4832         int err;
4833
4834         if (!capable(CAP_SYS_ADMIN))
4835                 return -EPERM;
4836
4837         ret = mnt_want_write_file(file);
4838         if (ret)
4839                 return ret;
4840
4841         sa = memdup_user(arg, sizeof(*sa));
4842         if (IS_ERR(sa)) {
4843                 ret = PTR_ERR(sa);
4844                 goto drop_write;
4845         }
4846
4847         down_write(&fs_info->subvol_sem);
4848         trans = btrfs_start_transaction(fs_info->tree_root, 2);
4849         if (IS_ERR(trans)) {
4850                 ret = PTR_ERR(trans);
4851                 goto out;
4852         }
4853
4854         switch (sa->cmd) {
4855         case BTRFS_QUOTA_CTL_ENABLE:
4856                 ret = btrfs_quota_enable(trans, fs_info);
4857                 break;
4858         case BTRFS_QUOTA_CTL_DISABLE:
4859                 ret = btrfs_quota_disable(trans, fs_info);
4860                 break;
4861         default:
4862                 ret = -EINVAL;
4863                 break;
4864         }
4865
4866         err = btrfs_commit_transaction(trans);
4867         if (err && !ret)
4868                 ret = err;
4869 out:
4870         kfree(sa);
4871         up_write(&fs_info->subvol_sem);
4872 drop_write:
4873         mnt_drop_write_file(file);
4874         return ret;
4875 }
4876
4877 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4878 {
4879         struct inode *inode = file_inode(file);
4880         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4881         struct btrfs_root *root = BTRFS_I(inode)->root;
4882         struct btrfs_ioctl_qgroup_assign_args *sa;
4883         struct btrfs_trans_handle *trans;
4884         int ret;
4885         int err;
4886
4887         if (!capable(CAP_SYS_ADMIN))
4888                 return -EPERM;
4889
4890         ret = mnt_want_write_file(file);
4891         if (ret)
4892                 return ret;
4893
4894         sa = memdup_user(arg, sizeof(*sa));
4895         if (IS_ERR(sa)) {
4896                 ret = PTR_ERR(sa);
4897                 goto drop_write;
4898         }
4899
4900         trans = btrfs_join_transaction(root);
4901         if (IS_ERR(trans)) {
4902                 ret = PTR_ERR(trans);
4903                 goto out;
4904         }
4905
4906         if (sa->assign) {
4907                 ret = btrfs_add_qgroup_relation(trans, fs_info,
4908                                                 sa->src, sa->dst);
4909         } else {
4910                 ret = btrfs_del_qgroup_relation(trans, fs_info,
4911                                                 sa->src, sa->dst);
4912         }
4913
4914         /* update qgroup status and info */
4915         err = btrfs_run_qgroups(trans, fs_info);
4916         if (err < 0)
4917                 btrfs_handle_fs_error(fs_info, err,
4918                                       "failed to update qgroup status and info");
4919         err = btrfs_end_transaction(trans);
4920         if (err && !ret)
4921                 ret = err;
4922
4923 out:
4924         kfree(sa);
4925 drop_write:
4926         mnt_drop_write_file(file);
4927         return ret;
4928 }
4929
4930 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4931 {
4932         struct inode *inode = file_inode(file);
4933         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4934         struct btrfs_root *root = BTRFS_I(inode)->root;
4935         struct btrfs_ioctl_qgroup_create_args *sa;
4936         struct btrfs_trans_handle *trans;
4937         int ret;
4938         int err;
4939
4940         if (!capable(CAP_SYS_ADMIN))
4941                 return -EPERM;
4942
4943         ret = mnt_want_write_file(file);
4944         if (ret)
4945                 return ret;
4946
4947         sa = memdup_user(arg, sizeof(*sa));
4948         if (IS_ERR(sa)) {
4949                 ret = PTR_ERR(sa);
4950                 goto drop_write;
4951         }
4952
4953         if (!sa->qgroupid) {
4954                 ret = -EINVAL;
4955                 goto out;
4956         }
4957
4958         trans = btrfs_join_transaction(root);
4959         if (IS_ERR(trans)) {
4960                 ret = PTR_ERR(trans);
4961                 goto out;
4962         }
4963
4964         if (sa->create) {
4965                 ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid);
4966         } else {
4967                 ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid);
4968         }
4969
4970         err = btrfs_end_transaction(trans);
4971         if (err && !ret)
4972                 ret = err;
4973
4974 out:
4975         kfree(sa);
4976 drop_write:
4977         mnt_drop_write_file(file);
4978         return ret;
4979 }
4980
4981 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4982 {
4983         struct inode *inode = file_inode(file);
4984         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4985         struct btrfs_root *root = BTRFS_I(inode)->root;
4986         struct btrfs_ioctl_qgroup_limit_args *sa;
4987         struct btrfs_trans_handle *trans;
4988         int ret;
4989         int err;
4990         u64 qgroupid;
4991
4992         if (!capable(CAP_SYS_ADMIN))
4993                 return -EPERM;
4994
4995         ret = mnt_want_write_file(file);
4996         if (ret)
4997                 return ret;
4998
4999         sa = memdup_user(arg, sizeof(*sa));
5000         if (IS_ERR(sa)) {
5001                 ret = PTR_ERR(sa);
5002                 goto drop_write;
5003         }
5004
5005         trans = btrfs_join_transaction(root);
5006         if (IS_ERR(trans)) {
5007                 ret = PTR_ERR(trans);
5008                 goto out;
5009         }
5010
5011         qgroupid = sa->qgroupid;
5012         if (!qgroupid) {
5013                 /* take the current subvol as qgroup */
5014                 qgroupid = root->root_key.objectid;
5015         }
5016
5017         ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim);
5018
5019         err = btrfs_end_transaction(trans);
5020         if (err && !ret)
5021                 ret = err;
5022
5023 out:
5024         kfree(sa);
5025 drop_write:
5026         mnt_drop_write_file(file);
5027         return ret;
5028 }
5029
5030 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5031 {
5032         struct inode *inode = file_inode(file);
5033         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5034         struct btrfs_ioctl_quota_rescan_args *qsa;
5035         int ret;
5036
5037         if (!capable(CAP_SYS_ADMIN))
5038                 return -EPERM;
5039
5040         ret = mnt_want_write_file(file);
5041         if (ret)
5042                 return ret;
5043
5044         qsa = memdup_user(arg, sizeof(*qsa));
5045         if (IS_ERR(qsa)) {
5046                 ret = PTR_ERR(qsa);
5047                 goto drop_write;
5048         }
5049
5050         if (qsa->flags) {
5051                 ret = -EINVAL;
5052                 goto out;
5053         }
5054
5055         ret = btrfs_qgroup_rescan(fs_info);
5056
5057 out:
5058         kfree(qsa);
5059 drop_write:
5060         mnt_drop_write_file(file);
5061         return ret;
5062 }
5063
5064 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5065 {
5066         struct inode *inode = file_inode(file);
5067         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5068         struct btrfs_ioctl_quota_rescan_args *qsa;
5069         int ret = 0;
5070
5071         if (!capable(CAP_SYS_ADMIN))
5072                 return -EPERM;
5073
5074         qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5075         if (!qsa)
5076                 return -ENOMEM;
5077
5078         if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5079                 qsa->flags = 1;
5080                 qsa->progress = fs_info->qgroup_rescan_progress.objectid;
5081         }
5082
5083         if (copy_to_user(arg, qsa, sizeof(*qsa)))
5084                 ret = -EFAULT;
5085
5086         kfree(qsa);
5087         return ret;
5088 }
5089
5090 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5091 {
5092         struct inode *inode = file_inode(file);
5093         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5094
5095         if (!capable(CAP_SYS_ADMIN))
5096                 return -EPERM;
5097
5098         return btrfs_qgroup_wait_for_completion(fs_info, true);
5099 }
5100
5101 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5102                                             struct btrfs_ioctl_received_subvol_args *sa)
5103 {
5104         struct inode *inode = file_inode(file);
5105         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5106         struct btrfs_root *root = BTRFS_I(inode)->root;
5107         struct btrfs_root_item *root_item = &root->root_item;
5108         struct btrfs_trans_handle *trans;
5109         struct timespec ct = current_time(inode);
5110         int ret = 0;
5111         int received_uuid_changed;
5112
5113         if (!inode_owner_or_capable(inode))
5114                 return -EPERM;
5115
5116         ret = mnt_want_write_file(file);
5117         if (ret < 0)
5118                 return ret;
5119
5120         down_write(&fs_info->subvol_sem);
5121
5122         if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5123                 ret = -EINVAL;
5124                 goto out;
5125         }
5126
5127         if (btrfs_root_readonly(root)) {
5128                 ret = -EROFS;
5129                 goto out;
5130         }
5131
5132         /*
5133          * 1 - root item
5134          * 2 - uuid items (received uuid + subvol uuid)
5135          */
5136         trans = btrfs_start_transaction(root, 3);
5137         if (IS_ERR(trans)) {
5138                 ret = PTR_ERR(trans);
5139                 trans = NULL;
5140                 goto out;
5141         }
5142
5143         sa->rtransid = trans->transid;
5144         sa->rtime.sec = ct.tv_sec;
5145         sa->rtime.nsec = ct.tv_nsec;
5146
5147         received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5148                                        BTRFS_UUID_SIZE);
5149         if (received_uuid_changed &&
5150             !btrfs_is_empty_uuid(root_item->received_uuid))
5151                 btrfs_uuid_tree_rem(trans, fs_info, root_item->received_uuid,
5152                                     BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5153                                     root->root_key.objectid);
5154         memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5155         btrfs_set_root_stransid(root_item, sa->stransid);
5156         btrfs_set_root_rtransid(root_item, sa->rtransid);
5157         btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5158         btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5159         btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5160         btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5161
5162         ret = btrfs_update_root(trans, fs_info->tree_root,
5163                                 &root->root_key, &root->root_item);
5164         if (ret < 0) {
5165                 btrfs_end_transaction(trans);
5166                 goto out;
5167         }
5168         if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5169                 ret = btrfs_uuid_tree_add(trans, fs_info, sa->uuid,
5170                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5171                                           root->root_key.objectid);
5172                 if (ret < 0 && ret != -EEXIST) {
5173                         btrfs_abort_transaction(trans, ret);
5174                         btrfs_end_transaction(trans);
5175                         goto out;
5176                 }
5177         }
5178         ret = btrfs_commit_transaction(trans);
5179 out:
5180         up_write(&fs_info->subvol_sem);
5181         mnt_drop_write_file(file);
5182         return ret;
5183 }
5184
5185 #ifdef CONFIG_64BIT
5186 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5187                                                 void __user *arg)
5188 {
5189         struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5190         struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5191         int ret = 0;
5192
5193         args32 = memdup_user(arg, sizeof(*args32));
5194         if (IS_ERR(args32))
5195                 return PTR_ERR(args32);
5196
5197         args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5198         if (!args64) {
5199                 ret = -ENOMEM;
5200                 goto out;
5201         }
5202
5203         memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5204         args64->stransid = args32->stransid;
5205         args64->rtransid = args32->rtransid;
5206         args64->stime.sec = args32->stime.sec;
5207         args64->stime.nsec = args32->stime.nsec;
5208         args64->rtime.sec = args32->rtime.sec;
5209         args64->rtime.nsec = args32->rtime.nsec;
5210         args64->flags = args32->flags;
5211
5212         ret = _btrfs_ioctl_set_received_subvol(file, args64);
5213         if (ret)
5214                 goto out;
5215
5216         memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5217         args32->stransid = args64->stransid;
5218         args32->rtransid = args64->rtransid;
5219         args32->stime.sec = args64->stime.sec;
5220         args32->stime.nsec = args64->stime.nsec;
5221         args32->rtime.sec = args64->rtime.sec;
5222         args32->rtime.nsec = args64->rtime.nsec;
5223         args32->flags = args64->flags;
5224
5225         ret = copy_to_user(arg, args32, sizeof(*args32));
5226         if (ret)
5227                 ret = -EFAULT;
5228
5229 out:
5230         kfree(args32);
5231         kfree(args64);
5232         return ret;
5233 }
5234 #endif
5235
5236 static long btrfs_ioctl_set_received_subvol(struct file *file,
5237                                             void __user *arg)
5238 {
5239         struct btrfs_ioctl_received_subvol_args *sa = NULL;
5240         int ret = 0;
5241
5242         sa = memdup_user(arg, sizeof(*sa));
5243         if (IS_ERR(sa))
5244                 return PTR_ERR(sa);
5245
5246         ret = _btrfs_ioctl_set_received_subvol(file, sa);
5247
5248         if (ret)
5249                 goto out;
5250
5251         ret = copy_to_user(arg, sa, sizeof(*sa));
5252         if (ret)
5253                 ret = -EFAULT;
5254
5255 out:
5256         kfree(sa);
5257         return ret;
5258 }
5259
5260 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5261 {
5262         struct inode *inode = file_inode(file);
5263         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5264         size_t len;
5265         int ret;
5266         char label[BTRFS_LABEL_SIZE];
5267
5268         spin_lock(&fs_info->super_lock);
5269         memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5270         spin_unlock(&fs_info->super_lock);
5271
5272         len = strnlen(label, BTRFS_LABEL_SIZE);
5273
5274         if (len == BTRFS_LABEL_SIZE) {
5275                 btrfs_warn(fs_info,
5276                            "label is too long, return the first %zu bytes",
5277                            --len);
5278         }
5279
5280         ret = copy_to_user(arg, label, len);
5281
5282         return ret ? -EFAULT : 0;
5283 }
5284
5285 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5286 {
5287         struct inode *inode = file_inode(file);
5288         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5289         struct btrfs_root *root = BTRFS_I(inode)->root;
5290         struct btrfs_super_block *super_block = fs_info->super_copy;
5291         struct btrfs_trans_handle *trans;
5292         char label[BTRFS_LABEL_SIZE];
5293         int ret;
5294
5295         if (!capable(CAP_SYS_ADMIN))
5296                 return -EPERM;
5297
5298         if (copy_from_user(label, arg, sizeof(label)))
5299                 return -EFAULT;
5300
5301         if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5302                 btrfs_err(fs_info,
5303                           "unable to set label with more than %d bytes",
5304                           BTRFS_LABEL_SIZE - 1);
5305                 return -EINVAL;
5306         }
5307
5308         ret = mnt_want_write_file(file);
5309         if (ret)
5310                 return ret;
5311
5312         trans = btrfs_start_transaction(root, 0);
5313         if (IS_ERR(trans)) {
5314                 ret = PTR_ERR(trans);
5315                 goto out_unlock;
5316         }
5317
5318         spin_lock(&fs_info->super_lock);
5319         strcpy(super_block->label, label);
5320         spin_unlock(&fs_info->super_lock);
5321         ret = btrfs_commit_transaction(trans);
5322
5323 out_unlock:
5324         mnt_drop_write_file(file);
5325         return ret;
5326 }
5327
5328 #define INIT_FEATURE_FLAGS(suffix) \
5329         { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5330           .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5331           .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5332
5333 int btrfs_ioctl_get_supported_features(void __user *arg)
5334 {
5335         static const struct btrfs_ioctl_feature_flags features[3] = {
5336                 INIT_FEATURE_FLAGS(SUPP),
5337                 INIT_FEATURE_FLAGS(SAFE_SET),
5338                 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5339         };
5340
5341         if (copy_to_user(arg, &features, sizeof(features)))
5342                 return -EFAULT;
5343
5344         return 0;
5345 }
5346
5347 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5348 {
5349         struct inode *inode = file_inode(file);
5350         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5351         struct btrfs_super_block *super_block = fs_info->super_copy;
5352         struct btrfs_ioctl_feature_flags features;
5353
5354         features.compat_flags = btrfs_super_compat_flags(super_block);
5355         features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5356         features.incompat_flags = btrfs_super_incompat_flags(super_block);
5357
5358         if (copy_to_user(arg, &features, sizeof(features)))
5359                 return -EFAULT;
5360
5361         return 0;
5362 }
5363
5364 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5365                               enum btrfs_feature_set set,
5366                               u64 change_mask, u64 flags, u64 supported_flags,
5367                               u64 safe_set, u64 safe_clear)
5368 {
5369         const char *type = btrfs_feature_set_names[set];
5370         char *names;
5371         u64 disallowed, unsupported;
5372         u64 set_mask = flags & change_mask;
5373         u64 clear_mask = ~flags & change_mask;
5374
5375         unsupported = set_mask & ~supported_flags;
5376         if (unsupported) {
5377                 names = btrfs_printable_features(set, unsupported);
5378                 if (names) {
5379                         btrfs_warn(fs_info,
5380                                    "this kernel does not support the %s feature bit%s",
5381                                    names, strchr(names, ',') ? "s" : "");
5382                         kfree(names);
5383                 } else
5384                         btrfs_warn(fs_info,
5385                                    "this kernel does not support %s bits 0x%llx",
5386                                    type, unsupported);
5387                 return -EOPNOTSUPP;
5388         }
5389
5390         disallowed = set_mask & ~safe_set;
5391         if (disallowed) {
5392                 names = btrfs_printable_features(set, disallowed);
5393                 if (names) {
5394                         btrfs_warn(fs_info,
5395                                    "can't set the %s feature bit%s while mounted",
5396                                    names, strchr(names, ',') ? "s" : "");
5397                         kfree(names);
5398                 } else
5399                         btrfs_warn(fs_info,
5400                                    "can't set %s bits 0x%llx while mounted",
5401                                    type, disallowed);
5402                 return -EPERM;
5403         }
5404
5405         disallowed = clear_mask & ~safe_clear;
5406         if (disallowed) {
5407                 names = btrfs_printable_features(set, disallowed);
5408                 if (names) {
5409                         btrfs_warn(fs_info,
5410                                    "can't clear the %s feature bit%s while mounted",
5411                                    names, strchr(names, ',') ? "s" : "");
5412                         kfree(names);
5413                 } else
5414                         btrfs_warn(fs_info,
5415                                    "can't clear %s bits 0x%llx while mounted",
5416                                    type, disallowed);
5417                 return -EPERM;
5418         }
5419
5420         return 0;
5421 }
5422
5423 #define check_feature(fs_info, change_mask, flags, mask_base)   \
5424 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,       \
5425                    BTRFS_FEATURE_ ## mask_base ## _SUPP,        \
5426                    BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,    \
5427                    BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5428
5429 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5430 {
5431         struct inode *inode = file_inode(file);
5432         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5433         struct btrfs_root *root = BTRFS_I(inode)->root;
5434         struct btrfs_super_block *super_block = fs_info->super_copy;
5435         struct btrfs_ioctl_feature_flags flags[2];
5436         struct btrfs_trans_handle *trans;
5437         u64 newflags;
5438         int ret;
5439
5440         if (!capable(CAP_SYS_ADMIN))
5441                 return -EPERM;
5442
5443         if (copy_from_user(flags, arg, sizeof(flags)))
5444                 return -EFAULT;
5445
5446         /* Nothing to do */
5447         if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5448             !flags[0].incompat_flags)
5449                 return 0;
5450
5451         ret = check_feature(fs_info, flags[0].compat_flags,
5452                             flags[1].compat_flags, COMPAT);
5453         if (ret)
5454                 return ret;
5455
5456         ret = check_feature(fs_info, flags[0].compat_ro_flags,
5457                             flags[1].compat_ro_flags, COMPAT_RO);
5458         if (ret)
5459                 return ret;
5460
5461         ret = check_feature(fs_info, flags[0].incompat_flags,
5462                             flags[1].incompat_flags, INCOMPAT);
5463         if (ret)
5464                 return ret;
5465
5466         ret = mnt_want_write_file(file);
5467         if (ret)
5468                 return ret;
5469
5470         trans = btrfs_start_transaction(root, 0);
5471         if (IS_ERR(trans)) {
5472                 ret = PTR_ERR(trans);
5473                 goto out_drop_write;
5474         }
5475
5476         spin_lock(&fs_info->super_lock);
5477         newflags = btrfs_super_compat_flags(super_block);
5478         newflags |= flags[0].compat_flags & flags[1].compat_flags;
5479         newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5480         btrfs_set_super_compat_flags(super_block, newflags);
5481
5482         newflags = btrfs_super_compat_ro_flags(super_block);
5483         newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5484         newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5485         btrfs_set_super_compat_ro_flags(super_block, newflags);
5486
5487         newflags = btrfs_super_incompat_flags(super_block);
5488         newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5489         newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5490         btrfs_set_super_incompat_flags(super_block, newflags);
5491         spin_unlock(&fs_info->super_lock);
5492
5493         ret = btrfs_commit_transaction(trans);
5494 out_drop_write:
5495         mnt_drop_write_file(file);
5496
5497         return ret;
5498 }
5499
5500 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
5501 {
5502         struct btrfs_ioctl_send_args *arg;
5503         int ret;
5504
5505         if (compat) {
5506 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5507                 struct btrfs_ioctl_send_args_32 args32;
5508
5509                 ret = copy_from_user(&args32, argp, sizeof(args32));
5510                 if (ret)
5511                         return -EFAULT;
5512                 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5513                 if (!arg)
5514                         return -ENOMEM;
5515                 arg->send_fd = args32.send_fd;
5516                 arg->clone_sources_count = args32.clone_sources_count;
5517                 arg->clone_sources = compat_ptr(args32.clone_sources);
5518                 arg->parent_root = args32.parent_root;
5519                 arg->flags = args32.flags;
5520                 memcpy(arg->reserved, args32.reserved,
5521                        sizeof(args32.reserved));
5522 #else
5523                 return -ENOTTY;
5524 #endif
5525         } else {
5526                 arg = memdup_user(argp, sizeof(*arg));
5527                 if (IS_ERR(arg))
5528                         return PTR_ERR(arg);
5529         }
5530         ret = btrfs_ioctl_send(file, arg);
5531         kfree(arg);
5532         return ret;
5533 }
5534
5535 long btrfs_ioctl(struct file *file, unsigned int
5536                 cmd, unsigned long arg)
5537 {
5538         struct inode *inode = file_inode(file);
5539         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5540         struct btrfs_root *root = BTRFS_I(inode)->root;
5541         void __user *argp = (void __user *)arg;
5542
5543         switch (cmd) {
5544         case FS_IOC_GETFLAGS:
5545                 return btrfs_ioctl_getflags(file, argp);
5546         case FS_IOC_SETFLAGS:
5547                 return btrfs_ioctl_setflags(file, argp);
5548         case FS_IOC_GETVERSION:
5549                 return btrfs_ioctl_getversion(file, argp);
5550         case FITRIM:
5551                 return btrfs_ioctl_fitrim(file, argp);
5552         case BTRFS_IOC_SNAP_CREATE:
5553                 return btrfs_ioctl_snap_create(file, argp, 0);
5554         case BTRFS_IOC_SNAP_CREATE_V2:
5555                 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5556         case BTRFS_IOC_SUBVOL_CREATE:
5557                 return btrfs_ioctl_snap_create(file, argp, 1);
5558         case BTRFS_IOC_SUBVOL_CREATE_V2:
5559                 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5560         case BTRFS_IOC_SNAP_DESTROY:
5561                 return btrfs_ioctl_snap_destroy(file, argp);
5562         case BTRFS_IOC_SUBVOL_GETFLAGS:
5563                 return btrfs_ioctl_subvol_getflags(file, argp);
5564         case BTRFS_IOC_SUBVOL_SETFLAGS:
5565                 return btrfs_ioctl_subvol_setflags(file, argp);
5566         case BTRFS_IOC_DEFAULT_SUBVOL:
5567                 return btrfs_ioctl_default_subvol(file, argp);
5568         case BTRFS_IOC_DEFRAG:
5569                 return btrfs_ioctl_defrag(file, NULL);
5570         case BTRFS_IOC_DEFRAG_RANGE:
5571                 return btrfs_ioctl_defrag(file, argp);
5572         case BTRFS_IOC_RESIZE:
5573                 return btrfs_ioctl_resize(file, argp);
5574         case BTRFS_IOC_ADD_DEV:
5575                 return btrfs_ioctl_add_dev(fs_info, argp);
5576         case BTRFS_IOC_RM_DEV:
5577                 return btrfs_ioctl_rm_dev(file, argp);
5578         case BTRFS_IOC_RM_DEV_V2:
5579                 return btrfs_ioctl_rm_dev_v2(file, argp);
5580         case BTRFS_IOC_FS_INFO:
5581                 return btrfs_ioctl_fs_info(fs_info, argp);
5582         case BTRFS_IOC_DEV_INFO:
5583                 return btrfs_ioctl_dev_info(fs_info, argp);
5584         case BTRFS_IOC_BALANCE:
5585                 return btrfs_ioctl_balance(file, NULL);
5586         case BTRFS_IOC_TRANS_START:
5587                 return btrfs_ioctl_trans_start(file);
5588         case BTRFS_IOC_TRANS_END:
5589                 return btrfs_ioctl_trans_end(file);
5590         case BTRFS_IOC_TREE_SEARCH:
5591                 return btrfs_ioctl_tree_search(file, argp);
5592         case BTRFS_IOC_TREE_SEARCH_V2:
5593                 return btrfs_ioctl_tree_search_v2(file, argp);
5594         case BTRFS_IOC_INO_LOOKUP:
5595                 return btrfs_ioctl_ino_lookup(file, argp);
5596         case BTRFS_IOC_INO_PATHS:
5597                 return btrfs_ioctl_ino_to_path(root, argp);
5598         case BTRFS_IOC_LOGICAL_INO:
5599                 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5600         case BTRFS_IOC_LOGICAL_INO_V2:
5601                 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5602         case BTRFS_IOC_SPACE_INFO:
5603                 return btrfs_ioctl_space_info(fs_info, argp);
5604         case BTRFS_IOC_SYNC: {
5605                 int ret;
5606
5607                 ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
5608                 if (ret)
5609                         return ret;
5610                 ret = btrfs_sync_fs(inode->i_sb, 1);
5611                 /*
5612                  * The transaction thread may want to do more work,
5613                  * namely it pokes the cleaner kthread that will start
5614                  * processing uncleaned subvols.
5615                  */
5616                 wake_up_process(fs_info->transaction_kthread);
5617                 return ret;
5618         }
5619         case BTRFS_IOC_START_SYNC:
5620                 return btrfs_ioctl_start_sync(root, argp);
5621         case BTRFS_IOC_WAIT_SYNC:
5622                 return btrfs_ioctl_wait_sync(fs_info, argp);
5623         case BTRFS_IOC_SCRUB:
5624                 return btrfs_ioctl_scrub(file, argp);
5625         case BTRFS_IOC_SCRUB_CANCEL:
5626                 return btrfs_ioctl_scrub_cancel(fs_info);
5627         case BTRFS_IOC_SCRUB_PROGRESS:
5628                 return btrfs_ioctl_scrub_progress(fs_info, argp);
5629         case BTRFS_IOC_BALANCE_V2:
5630                 return btrfs_ioctl_balance(file, argp);
5631         case BTRFS_IOC_BALANCE_CTL:
5632                 return btrfs_ioctl_balance_ctl(fs_info, arg);
5633         case BTRFS_IOC_BALANCE_PROGRESS:
5634                 return btrfs_ioctl_balance_progress(fs_info, argp);
5635         case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5636                 return btrfs_ioctl_set_received_subvol(file, argp);
5637 #ifdef CONFIG_64BIT
5638         case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5639                 return btrfs_ioctl_set_received_subvol_32(file, argp);
5640 #endif
5641         case BTRFS_IOC_SEND:
5642                 return _btrfs_ioctl_send(file, argp, false);
5643 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5644         case BTRFS_IOC_SEND_32:
5645                 return _btrfs_ioctl_send(file, argp, true);
5646 #endif
5647         case BTRFS_IOC_GET_DEV_STATS:
5648                 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5649         case BTRFS_IOC_QUOTA_CTL:
5650                 return btrfs_ioctl_quota_ctl(file, argp);
5651         case BTRFS_IOC_QGROUP_ASSIGN:
5652                 return btrfs_ioctl_qgroup_assign(file, argp);
5653         case BTRFS_IOC_QGROUP_CREATE:
5654                 return btrfs_ioctl_qgroup_create(file, argp);
5655         case BTRFS_IOC_QGROUP_LIMIT:
5656                 return btrfs_ioctl_qgroup_limit(file, argp);
5657         case BTRFS_IOC_QUOTA_RESCAN:
5658                 return btrfs_ioctl_quota_rescan(file, argp);
5659         case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5660                 return btrfs_ioctl_quota_rescan_status(file, argp);
5661         case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5662                 return btrfs_ioctl_quota_rescan_wait(file, argp);
5663         case BTRFS_IOC_DEV_REPLACE:
5664                 return btrfs_ioctl_dev_replace(fs_info, argp);
5665         case BTRFS_IOC_GET_FSLABEL:
5666                 return btrfs_ioctl_get_fslabel(file, argp);
5667         case BTRFS_IOC_SET_FSLABEL:
5668                 return btrfs_ioctl_set_fslabel(file, argp);
5669         case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5670                 return btrfs_ioctl_get_supported_features(argp);
5671         case BTRFS_IOC_GET_FEATURES:
5672                 return btrfs_ioctl_get_features(file, argp);
5673         case BTRFS_IOC_SET_FEATURES:
5674                 return btrfs_ioctl_set_features(file, argp);
5675         }
5676
5677         return -ENOTTY;
5678 }
5679
5680 #ifdef CONFIG_COMPAT
5681 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5682 {
5683         /*
5684          * These all access 32-bit values anyway so no further
5685          * handling is necessary.
5686          */
5687         switch (cmd) {
5688         case FS_IOC32_GETFLAGS:
5689                 cmd = FS_IOC_GETFLAGS;
5690                 break;
5691         case FS_IOC32_SETFLAGS:
5692                 cmd = FS_IOC_SETFLAGS;
5693                 break;
5694         case FS_IOC32_GETVERSION:
5695                 cmd = FS_IOC_GETVERSION;
5696                 break;
5697         }
5698
5699         return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5700 }
5701 #endif