Merge branch 'WIP.x86/asm' into x86/urgent, because the topic is ready
[sfrench/cifs-2.6.git] / fs / btrfs / extent-tree.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include <linux/lockdep.h>
30 #include "hash.h"
31 #include "tree-log.h"
32 #include "disk-io.h"
33 #include "print-tree.h"
34 #include "volumes.h"
35 #include "raid56.h"
36 #include "locking.h"
37 #include "free-space-cache.h"
38 #include "free-space-tree.h"
39 #include "math.h"
40 #include "sysfs.h"
41 #include "qgroup.h"
42 #include "ref-verify.h"
43
44 #undef SCRAMBLE_DELAYED_REFS
45
46 /*
47  * control flags for do_chunk_alloc's force field
48  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
49  * if we really need one.
50  *
51  * CHUNK_ALLOC_LIMITED means to only try and allocate one
52  * if we have very few chunks already allocated.  This is
53  * used as part of the clustering code to help make sure
54  * we have a good pool of storage to cluster in, without
55  * filling the FS with empty chunks
56  *
57  * CHUNK_ALLOC_FORCE means it must try to allocate one
58  *
59  */
60 enum {
61         CHUNK_ALLOC_NO_FORCE = 0,
62         CHUNK_ALLOC_LIMITED = 1,
63         CHUNK_ALLOC_FORCE = 2,
64 };
65
66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
67                                struct btrfs_fs_info *fs_info,
68                                 struct btrfs_delayed_ref_node *node, u64 parent,
69                                 u64 root_objectid, u64 owner_objectid,
70                                 u64 owner_offset, int refs_to_drop,
71                                 struct btrfs_delayed_extent_op *extra_op);
72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73                                     struct extent_buffer *leaf,
74                                     struct btrfs_extent_item *ei);
75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
76                                       struct btrfs_fs_info *fs_info,
77                                       u64 parent, u64 root_objectid,
78                                       u64 flags, u64 owner, u64 offset,
79                                       struct btrfs_key *ins, int ref_mod);
80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
81                                      struct btrfs_fs_info *fs_info,
82                                      u64 parent, u64 root_objectid,
83                                      u64 flags, struct btrfs_disk_key *key,
84                                      int level, struct btrfs_key *ins);
85 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
86                           struct btrfs_fs_info *fs_info, u64 flags,
87                           int force);
88 static int find_next_key(struct btrfs_path *path, int level,
89                          struct btrfs_key *key);
90 static void dump_space_info(struct btrfs_fs_info *fs_info,
91                             struct btrfs_space_info *info, u64 bytes,
92                             int dump_block_groups);
93 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
94                                u64 num_bytes);
95 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
96                                      struct btrfs_space_info *space_info,
97                                      u64 num_bytes);
98 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
99                                      struct btrfs_space_info *space_info,
100                                      u64 num_bytes);
101
102 static noinline int
103 block_group_cache_done(struct btrfs_block_group_cache *cache)
104 {
105         smp_mb();
106         return cache->cached == BTRFS_CACHE_FINISHED ||
107                 cache->cached == BTRFS_CACHE_ERROR;
108 }
109
110 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
111 {
112         return (cache->flags & bits) == bits;
113 }
114
115 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
116 {
117         atomic_inc(&cache->count);
118 }
119
120 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
121 {
122         if (atomic_dec_and_test(&cache->count)) {
123                 WARN_ON(cache->pinned > 0);
124                 WARN_ON(cache->reserved > 0);
125
126                 /*
127                  * If not empty, someone is still holding mutex of
128                  * full_stripe_lock, which can only be released by caller.
129                  * And it will definitely cause use-after-free when caller
130                  * tries to release full stripe lock.
131                  *
132                  * No better way to resolve, but only to warn.
133                  */
134                 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
135                 kfree(cache->free_space_ctl);
136                 kfree(cache);
137         }
138 }
139
140 /*
141  * this adds the block group to the fs_info rb tree for the block group
142  * cache
143  */
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145                                 struct btrfs_block_group_cache *block_group)
146 {
147         struct rb_node **p;
148         struct rb_node *parent = NULL;
149         struct btrfs_block_group_cache *cache;
150
151         spin_lock(&info->block_group_cache_lock);
152         p = &info->block_group_cache_tree.rb_node;
153
154         while (*p) {
155                 parent = *p;
156                 cache = rb_entry(parent, struct btrfs_block_group_cache,
157                                  cache_node);
158                 if (block_group->key.objectid < cache->key.objectid) {
159                         p = &(*p)->rb_left;
160                 } else if (block_group->key.objectid > cache->key.objectid) {
161                         p = &(*p)->rb_right;
162                 } else {
163                         spin_unlock(&info->block_group_cache_lock);
164                         return -EEXIST;
165                 }
166         }
167
168         rb_link_node(&block_group->cache_node, parent, p);
169         rb_insert_color(&block_group->cache_node,
170                         &info->block_group_cache_tree);
171
172         if (info->first_logical_byte > block_group->key.objectid)
173                 info->first_logical_byte = block_group->key.objectid;
174
175         spin_unlock(&info->block_group_cache_lock);
176
177         return 0;
178 }
179
180 /*
181  * This will return the block group at or after bytenr if contains is 0, else
182  * it will return the block group that contains the bytenr
183  */
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186                               int contains)
187 {
188         struct btrfs_block_group_cache *cache, *ret = NULL;
189         struct rb_node *n;
190         u64 end, start;
191
192         spin_lock(&info->block_group_cache_lock);
193         n = info->block_group_cache_tree.rb_node;
194
195         while (n) {
196                 cache = rb_entry(n, struct btrfs_block_group_cache,
197                                  cache_node);
198                 end = cache->key.objectid + cache->key.offset - 1;
199                 start = cache->key.objectid;
200
201                 if (bytenr < start) {
202                         if (!contains && (!ret || start < ret->key.objectid))
203                                 ret = cache;
204                         n = n->rb_left;
205                 } else if (bytenr > start) {
206                         if (contains && bytenr <= end) {
207                                 ret = cache;
208                                 break;
209                         }
210                         n = n->rb_right;
211                 } else {
212                         ret = cache;
213                         break;
214                 }
215         }
216         if (ret) {
217                 btrfs_get_block_group(ret);
218                 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219                         info->first_logical_byte = ret->key.objectid;
220         }
221         spin_unlock(&info->block_group_cache_lock);
222
223         return ret;
224 }
225
226 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
227                                u64 start, u64 num_bytes)
228 {
229         u64 end = start + num_bytes - 1;
230         set_extent_bits(&fs_info->freed_extents[0],
231                         start, end, EXTENT_UPTODATE);
232         set_extent_bits(&fs_info->freed_extents[1],
233                         start, end, EXTENT_UPTODATE);
234         return 0;
235 }
236
237 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
238                                   struct btrfs_block_group_cache *cache)
239 {
240         u64 start, end;
241
242         start = cache->key.objectid;
243         end = start + cache->key.offset - 1;
244
245         clear_extent_bits(&fs_info->freed_extents[0],
246                           start, end, EXTENT_UPTODATE);
247         clear_extent_bits(&fs_info->freed_extents[1],
248                           start, end, EXTENT_UPTODATE);
249 }
250
251 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
252                                  struct btrfs_block_group_cache *cache)
253 {
254         u64 bytenr;
255         u64 *logical;
256         int stripe_len;
257         int i, nr, ret;
258
259         if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260                 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261                 cache->bytes_super += stripe_len;
262                 ret = add_excluded_extent(fs_info, cache->key.objectid,
263                                           stripe_len);
264                 if (ret)
265                         return ret;
266         }
267
268         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269                 bytenr = btrfs_sb_offset(i);
270                 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
271                                        bytenr, 0, &logical, &nr, &stripe_len);
272                 if (ret)
273                         return ret;
274
275                 while (nr--) {
276                         u64 start, len;
277
278                         if (logical[nr] > cache->key.objectid +
279                             cache->key.offset)
280                                 continue;
281
282                         if (logical[nr] + stripe_len <= cache->key.objectid)
283                                 continue;
284
285                         start = logical[nr];
286                         if (start < cache->key.objectid) {
287                                 start = cache->key.objectid;
288                                 len = (logical[nr] + stripe_len) - start;
289                         } else {
290                                 len = min_t(u64, stripe_len,
291                                             cache->key.objectid +
292                                             cache->key.offset - start);
293                         }
294
295                         cache->bytes_super += len;
296                         ret = add_excluded_extent(fs_info, start, len);
297                         if (ret) {
298                                 kfree(logical);
299                                 return ret;
300                         }
301                 }
302
303                 kfree(logical);
304         }
305         return 0;
306 }
307
308 static struct btrfs_caching_control *
309 get_caching_control(struct btrfs_block_group_cache *cache)
310 {
311         struct btrfs_caching_control *ctl;
312
313         spin_lock(&cache->lock);
314         if (!cache->caching_ctl) {
315                 spin_unlock(&cache->lock);
316                 return NULL;
317         }
318
319         ctl = cache->caching_ctl;
320         refcount_inc(&ctl->count);
321         spin_unlock(&cache->lock);
322         return ctl;
323 }
324
325 static void put_caching_control(struct btrfs_caching_control *ctl)
326 {
327         if (refcount_dec_and_test(&ctl->count))
328                 kfree(ctl);
329 }
330
331 #ifdef CONFIG_BTRFS_DEBUG
332 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
333 {
334         struct btrfs_fs_info *fs_info = block_group->fs_info;
335         u64 start = block_group->key.objectid;
336         u64 len = block_group->key.offset;
337         u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
338                 fs_info->nodesize : fs_info->sectorsize;
339         u64 step = chunk << 1;
340
341         while (len > chunk) {
342                 btrfs_remove_free_space(block_group, start, chunk);
343                 start += step;
344                 if (len < step)
345                         len = 0;
346                 else
347                         len -= step;
348         }
349 }
350 #endif
351
352 /*
353  * this is only called by cache_block_group, since we could have freed extents
354  * we need to check the pinned_extents for any extents that can't be used yet
355  * since their free space will be released as soon as the transaction commits.
356  */
357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358                        struct btrfs_fs_info *info, u64 start, u64 end)
359 {
360         u64 extent_start, extent_end, size, total_added = 0;
361         int ret;
362
363         while (start < end) {
364                 ret = find_first_extent_bit(info->pinned_extents, start,
365                                             &extent_start, &extent_end,
366                                             EXTENT_DIRTY | EXTENT_UPTODATE,
367                                             NULL);
368                 if (ret)
369                         break;
370
371                 if (extent_start <= start) {
372                         start = extent_end + 1;
373                 } else if (extent_start > start && extent_start < end) {
374                         size = extent_start - start;
375                         total_added += size;
376                         ret = btrfs_add_free_space(block_group, start,
377                                                    size);
378                         BUG_ON(ret); /* -ENOMEM or logic error */
379                         start = extent_end + 1;
380                 } else {
381                         break;
382                 }
383         }
384
385         if (start < end) {
386                 size = end - start;
387                 total_added += size;
388                 ret = btrfs_add_free_space(block_group, start, size);
389                 BUG_ON(ret); /* -ENOMEM or logic error */
390         }
391
392         return total_added;
393 }
394
395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
396 {
397         struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
398         struct btrfs_fs_info *fs_info = block_group->fs_info;
399         struct btrfs_root *extent_root = fs_info->extent_root;
400         struct btrfs_path *path;
401         struct extent_buffer *leaf;
402         struct btrfs_key key;
403         u64 total_found = 0;
404         u64 last = 0;
405         u32 nritems;
406         int ret;
407         bool wakeup = true;
408
409         path = btrfs_alloc_path();
410         if (!path)
411                 return -ENOMEM;
412
413         last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
414
415 #ifdef CONFIG_BTRFS_DEBUG
416         /*
417          * If we're fragmenting we don't want to make anybody think we can
418          * allocate from this block group until we've had a chance to fragment
419          * the free space.
420          */
421         if (btrfs_should_fragment_free_space(block_group))
422                 wakeup = false;
423 #endif
424         /*
425          * We don't want to deadlock with somebody trying to allocate a new
426          * extent for the extent root while also trying to search the extent
427          * root to add free space.  So we skip locking and search the commit
428          * root, since its read-only
429          */
430         path->skip_locking = 1;
431         path->search_commit_root = 1;
432         path->reada = READA_FORWARD;
433
434         key.objectid = last;
435         key.offset = 0;
436         key.type = BTRFS_EXTENT_ITEM_KEY;
437
438 next:
439         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
440         if (ret < 0)
441                 goto out;
442
443         leaf = path->nodes[0];
444         nritems = btrfs_header_nritems(leaf);
445
446         while (1) {
447                 if (btrfs_fs_closing(fs_info) > 1) {
448                         last = (u64)-1;
449                         break;
450                 }
451
452                 if (path->slots[0] < nritems) {
453                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
454                 } else {
455                         ret = find_next_key(path, 0, &key);
456                         if (ret)
457                                 break;
458
459                         if (need_resched() ||
460                             rwsem_is_contended(&fs_info->commit_root_sem)) {
461                                 if (wakeup)
462                                         caching_ctl->progress = last;
463                                 btrfs_release_path(path);
464                                 up_read(&fs_info->commit_root_sem);
465                                 mutex_unlock(&caching_ctl->mutex);
466                                 cond_resched();
467                                 mutex_lock(&caching_ctl->mutex);
468                                 down_read(&fs_info->commit_root_sem);
469                                 goto next;
470                         }
471
472                         ret = btrfs_next_leaf(extent_root, path);
473                         if (ret < 0)
474                                 goto out;
475                         if (ret)
476                                 break;
477                         leaf = path->nodes[0];
478                         nritems = btrfs_header_nritems(leaf);
479                         continue;
480                 }
481
482                 if (key.objectid < last) {
483                         key.objectid = last;
484                         key.offset = 0;
485                         key.type = BTRFS_EXTENT_ITEM_KEY;
486
487                         if (wakeup)
488                                 caching_ctl->progress = last;
489                         btrfs_release_path(path);
490                         goto next;
491                 }
492
493                 if (key.objectid < block_group->key.objectid) {
494                         path->slots[0]++;
495                         continue;
496                 }
497
498                 if (key.objectid >= block_group->key.objectid +
499                     block_group->key.offset)
500                         break;
501
502                 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
503                     key.type == BTRFS_METADATA_ITEM_KEY) {
504                         total_found += add_new_free_space(block_group,
505                                                           fs_info, last,
506                                                           key.objectid);
507                         if (key.type == BTRFS_METADATA_ITEM_KEY)
508                                 last = key.objectid +
509                                         fs_info->nodesize;
510                         else
511                                 last = key.objectid + key.offset;
512
513                         if (total_found > CACHING_CTL_WAKE_UP) {
514                                 total_found = 0;
515                                 if (wakeup)
516                                         wake_up(&caching_ctl->wait);
517                         }
518                 }
519                 path->slots[0]++;
520         }
521         ret = 0;
522
523         total_found += add_new_free_space(block_group, fs_info, last,
524                                           block_group->key.objectid +
525                                           block_group->key.offset);
526         caching_ctl->progress = (u64)-1;
527
528 out:
529         btrfs_free_path(path);
530         return ret;
531 }
532
533 static noinline void caching_thread(struct btrfs_work *work)
534 {
535         struct btrfs_block_group_cache *block_group;
536         struct btrfs_fs_info *fs_info;
537         struct btrfs_caching_control *caching_ctl;
538         struct btrfs_root *extent_root;
539         int ret;
540
541         caching_ctl = container_of(work, struct btrfs_caching_control, work);
542         block_group = caching_ctl->block_group;
543         fs_info = block_group->fs_info;
544         extent_root = fs_info->extent_root;
545
546         mutex_lock(&caching_ctl->mutex);
547         down_read(&fs_info->commit_root_sem);
548
549         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
550                 ret = load_free_space_tree(caching_ctl);
551         else
552                 ret = load_extent_tree_free(caching_ctl);
553
554         spin_lock(&block_group->lock);
555         block_group->caching_ctl = NULL;
556         block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
557         spin_unlock(&block_group->lock);
558
559 #ifdef CONFIG_BTRFS_DEBUG
560         if (btrfs_should_fragment_free_space(block_group)) {
561                 u64 bytes_used;
562
563                 spin_lock(&block_group->space_info->lock);
564                 spin_lock(&block_group->lock);
565                 bytes_used = block_group->key.offset -
566                         btrfs_block_group_used(&block_group->item);
567                 block_group->space_info->bytes_used += bytes_used >> 1;
568                 spin_unlock(&block_group->lock);
569                 spin_unlock(&block_group->space_info->lock);
570                 fragment_free_space(block_group);
571         }
572 #endif
573
574         caching_ctl->progress = (u64)-1;
575
576         up_read(&fs_info->commit_root_sem);
577         free_excluded_extents(fs_info, block_group);
578         mutex_unlock(&caching_ctl->mutex);
579
580         wake_up(&caching_ctl->wait);
581
582         put_caching_control(caching_ctl);
583         btrfs_put_block_group(block_group);
584 }
585
586 static int cache_block_group(struct btrfs_block_group_cache *cache,
587                              int load_cache_only)
588 {
589         DEFINE_WAIT(wait);
590         struct btrfs_fs_info *fs_info = cache->fs_info;
591         struct btrfs_caching_control *caching_ctl;
592         int ret = 0;
593
594         caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
595         if (!caching_ctl)
596                 return -ENOMEM;
597
598         INIT_LIST_HEAD(&caching_ctl->list);
599         mutex_init(&caching_ctl->mutex);
600         init_waitqueue_head(&caching_ctl->wait);
601         caching_ctl->block_group = cache;
602         caching_ctl->progress = cache->key.objectid;
603         refcount_set(&caching_ctl->count, 1);
604         btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
605                         caching_thread, NULL, NULL);
606
607         spin_lock(&cache->lock);
608         /*
609          * This should be a rare occasion, but this could happen I think in the
610          * case where one thread starts to load the space cache info, and then
611          * some other thread starts a transaction commit which tries to do an
612          * allocation while the other thread is still loading the space cache
613          * info.  The previous loop should have kept us from choosing this block
614          * group, but if we've moved to the state where we will wait on caching
615          * block groups we need to first check if we're doing a fast load here,
616          * so we can wait for it to finish, otherwise we could end up allocating
617          * from a block group who's cache gets evicted for one reason or
618          * another.
619          */
620         while (cache->cached == BTRFS_CACHE_FAST) {
621                 struct btrfs_caching_control *ctl;
622
623                 ctl = cache->caching_ctl;
624                 refcount_inc(&ctl->count);
625                 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
626                 spin_unlock(&cache->lock);
627
628                 schedule();
629
630                 finish_wait(&ctl->wait, &wait);
631                 put_caching_control(ctl);
632                 spin_lock(&cache->lock);
633         }
634
635         if (cache->cached != BTRFS_CACHE_NO) {
636                 spin_unlock(&cache->lock);
637                 kfree(caching_ctl);
638                 return 0;
639         }
640         WARN_ON(cache->caching_ctl);
641         cache->caching_ctl = caching_ctl;
642         cache->cached = BTRFS_CACHE_FAST;
643         spin_unlock(&cache->lock);
644
645         if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
646                 mutex_lock(&caching_ctl->mutex);
647                 ret = load_free_space_cache(fs_info, cache);
648
649                 spin_lock(&cache->lock);
650                 if (ret == 1) {
651                         cache->caching_ctl = NULL;
652                         cache->cached = BTRFS_CACHE_FINISHED;
653                         cache->last_byte_to_unpin = (u64)-1;
654                         caching_ctl->progress = (u64)-1;
655                 } else {
656                         if (load_cache_only) {
657                                 cache->caching_ctl = NULL;
658                                 cache->cached = BTRFS_CACHE_NO;
659                         } else {
660                                 cache->cached = BTRFS_CACHE_STARTED;
661                                 cache->has_caching_ctl = 1;
662                         }
663                 }
664                 spin_unlock(&cache->lock);
665 #ifdef CONFIG_BTRFS_DEBUG
666                 if (ret == 1 &&
667                     btrfs_should_fragment_free_space(cache)) {
668                         u64 bytes_used;
669
670                         spin_lock(&cache->space_info->lock);
671                         spin_lock(&cache->lock);
672                         bytes_used = cache->key.offset -
673                                 btrfs_block_group_used(&cache->item);
674                         cache->space_info->bytes_used += bytes_used >> 1;
675                         spin_unlock(&cache->lock);
676                         spin_unlock(&cache->space_info->lock);
677                         fragment_free_space(cache);
678                 }
679 #endif
680                 mutex_unlock(&caching_ctl->mutex);
681
682                 wake_up(&caching_ctl->wait);
683                 if (ret == 1) {
684                         put_caching_control(caching_ctl);
685                         free_excluded_extents(fs_info, cache);
686                         return 0;
687                 }
688         } else {
689                 /*
690                  * We're either using the free space tree or no caching at all.
691                  * Set cached to the appropriate value and wakeup any waiters.
692                  */
693                 spin_lock(&cache->lock);
694                 if (load_cache_only) {
695                         cache->caching_ctl = NULL;
696                         cache->cached = BTRFS_CACHE_NO;
697                 } else {
698                         cache->cached = BTRFS_CACHE_STARTED;
699                         cache->has_caching_ctl = 1;
700                 }
701                 spin_unlock(&cache->lock);
702                 wake_up(&caching_ctl->wait);
703         }
704
705         if (load_cache_only) {
706                 put_caching_control(caching_ctl);
707                 return 0;
708         }
709
710         down_write(&fs_info->commit_root_sem);
711         refcount_inc(&caching_ctl->count);
712         list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
713         up_write(&fs_info->commit_root_sem);
714
715         btrfs_get_block_group(cache);
716
717         btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
718
719         return ret;
720 }
721
722 /*
723  * return the block group that starts at or after bytenr
724  */
725 static struct btrfs_block_group_cache *
726 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
727 {
728         return block_group_cache_tree_search(info, bytenr, 0);
729 }
730
731 /*
732  * return the block group that contains the given bytenr
733  */
734 struct btrfs_block_group_cache *btrfs_lookup_block_group(
735                                                  struct btrfs_fs_info *info,
736                                                  u64 bytenr)
737 {
738         return block_group_cache_tree_search(info, bytenr, 1);
739 }
740
741 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
742                                                   u64 flags)
743 {
744         struct list_head *head = &info->space_info;
745         struct btrfs_space_info *found;
746
747         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
748
749         rcu_read_lock();
750         list_for_each_entry_rcu(found, head, list) {
751                 if (found->flags & flags) {
752                         rcu_read_unlock();
753                         return found;
754                 }
755         }
756         rcu_read_unlock();
757         return NULL;
758 }
759
760 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
761                              u64 owner, u64 root_objectid)
762 {
763         struct btrfs_space_info *space_info;
764         u64 flags;
765
766         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
767                 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
768                         flags = BTRFS_BLOCK_GROUP_SYSTEM;
769                 else
770                         flags = BTRFS_BLOCK_GROUP_METADATA;
771         } else {
772                 flags = BTRFS_BLOCK_GROUP_DATA;
773         }
774
775         space_info = __find_space_info(fs_info, flags);
776         ASSERT(space_info);
777         percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
778 }
779
780 /*
781  * after adding space to the filesystem, we need to clear the full flags
782  * on all the space infos.
783  */
784 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
785 {
786         struct list_head *head = &info->space_info;
787         struct btrfs_space_info *found;
788
789         rcu_read_lock();
790         list_for_each_entry_rcu(found, head, list)
791                 found->full = 0;
792         rcu_read_unlock();
793 }
794
795 /* simple helper to search for an existing data extent at a given offset */
796 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
797 {
798         int ret;
799         struct btrfs_key key;
800         struct btrfs_path *path;
801
802         path = btrfs_alloc_path();
803         if (!path)
804                 return -ENOMEM;
805
806         key.objectid = start;
807         key.offset = len;
808         key.type = BTRFS_EXTENT_ITEM_KEY;
809         ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
810         btrfs_free_path(path);
811         return ret;
812 }
813
814 /*
815  * helper function to lookup reference count and flags of a tree block.
816  *
817  * the head node for delayed ref is used to store the sum of all the
818  * reference count modifications queued up in the rbtree. the head
819  * node may also store the extent flags to set. This way you can check
820  * to see what the reference count and extent flags would be if all of
821  * the delayed refs are not processed.
822  */
823 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
824                              struct btrfs_fs_info *fs_info, u64 bytenr,
825                              u64 offset, int metadata, u64 *refs, u64 *flags)
826 {
827         struct btrfs_delayed_ref_head *head;
828         struct btrfs_delayed_ref_root *delayed_refs;
829         struct btrfs_path *path;
830         struct btrfs_extent_item *ei;
831         struct extent_buffer *leaf;
832         struct btrfs_key key;
833         u32 item_size;
834         u64 num_refs;
835         u64 extent_flags;
836         int ret;
837
838         /*
839          * If we don't have skinny metadata, don't bother doing anything
840          * different
841          */
842         if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
843                 offset = fs_info->nodesize;
844                 metadata = 0;
845         }
846
847         path = btrfs_alloc_path();
848         if (!path)
849                 return -ENOMEM;
850
851         if (!trans) {
852                 path->skip_locking = 1;
853                 path->search_commit_root = 1;
854         }
855
856 search_again:
857         key.objectid = bytenr;
858         key.offset = offset;
859         if (metadata)
860                 key.type = BTRFS_METADATA_ITEM_KEY;
861         else
862                 key.type = BTRFS_EXTENT_ITEM_KEY;
863
864         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
865         if (ret < 0)
866                 goto out_free;
867
868         if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
869                 if (path->slots[0]) {
870                         path->slots[0]--;
871                         btrfs_item_key_to_cpu(path->nodes[0], &key,
872                                               path->slots[0]);
873                         if (key.objectid == bytenr &&
874                             key.type == BTRFS_EXTENT_ITEM_KEY &&
875                             key.offset == fs_info->nodesize)
876                                 ret = 0;
877                 }
878         }
879
880         if (ret == 0) {
881                 leaf = path->nodes[0];
882                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
883                 if (item_size >= sizeof(*ei)) {
884                         ei = btrfs_item_ptr(leaf, path->slots[0],
885                                             struct btrfs_extent_item);
886                         num_refs = btrfs_extent_refs(leaf, ei);
887                         extent_flags = btrfs_extent_flags(leaf, ei);
888                 } else {
889 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
890                         struct btrfs_extent_item_v0 *ei0;
891                         BUG_ON(item_size != sizeof(*ei0));
892                         ei0 = btrfs_item_ptr(leaf, path->slots[0],
893                                              struct btrfs_extent_item_v0);
894                         num_refs = btrfs_extent_refs_v0(leaf, ei0);
895                         /* FIXME: this isn't correct for data */
896                         extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
897 #else
898                         BUG();
899 #endif
900                 }
901                 BUG_ON(num_refs == 0);
902         } else {
903                 num_refs = 0;
904                 extent_flags = 0;
905                 ret = 0;
906         }
907
908         if (!trans)
909                 goto out;
910
911         delayed_refs = &trans->transaction->delayed_refs;
912         spin_lock(&delayed_refs->lock);
913         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
914         if (head) {
915                 if (!mutex_trylock(&head->mutex)) {
916                         refcount_inc(&head->refs);
917                         spin_unlock(&delayed_refs->lock);
918
919                         btrfs_release_path(path);
920
921                         /*
922                          * Mutex was contended, block until it's released and try
923                          * again
924                          */
925                         mutex_lock(&head->mutex);
926                         mutex_unlock(&head->mutex);
927                         btrfs_put_delayed_ref_head(head);
928                         goto search_again;
929                 }
930                 spin_lock(&head->lock);
931                 if (head->extent_op && head->extent_op->update_flags)
932                         extent_flags |= head->extent_op->flags_to_set;
933                 else
934                         BUG_ON(num_refs == 0);
935
936                 num_refs += head->ref_mod;
937                 spin_unlock(&head->lock);
938                 mutex_unlock(&head->mutex);
939         }
940         spin_unlock(&delayed_refs->lock);
941 out:
942         WARN_ON(num_refs == 0);
943         if (refs)
944                 *refs = num_refs;
945         if (flags)
946                 *flags = extent_flags;
947 out_free:
948         btrfs_free_path(path);
949         return ret;
950 }
951
952 /*
953  * Back reference rules.  Back refs have three main goals:
954  *
955  * 1) differentiate between all holders of references to an extent so that
956  *    when a reference is dropped we can make sure it was a valid reference
957  *    before freeing the extent.
958  *
959  * 2) Provide enough information to quickly find the holders of an extent
960  *    if we notice a given block is corrupted or bad.
961  *
962  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
963  *    maintenance.  This is actually the same as #2, but with a slightly
964  *    different use case.
965  *
966  * There are two kinds of back refs. The implicit back refs is optimized
967  * for pointers in non-shared tree blocks. For a given pointer in a block,
968  * back refs of this kind provide information about the block's owner tree
969  * and the pointer's key. These information allow us to find the block by
970  * b-tree searching. The full back refs is for pointers in tree blocks not
971  * referenced by their owner trees. The location of tree block is recorded
972  * in the back refs. Actually the full back refs is generic, and can be
973  * used in all cases the implicit back refs is used. The major shortcoming
974  * of the full back refs is its overhead. Every time a tree block gets
975  * COWed, we have to update back refs entry for all pointers in it.
976  *
977  * For a newly allocated tree block, we use implicit back refs for
978  * pointers in it. This means most tree related operations only involve
979  * implicit back refs. For a tree block created in old transaction, the
980  * only way to drop a reference to it is COW it. So we can detect the
981  * event that tree block loses its owner tree's reference and do the
982  * back refs conversion.
983  *
984  * When a tree block is COWed through a tree, there are four cases:
985  *
986  * The reference count of the block is one and the tree is the block's
987  * owner tree. Nothing to do in this case.
988  *
989  * The reference count of the block is one and the tree is not the
990  * block's owner tree. In this case, full back refs is used for pointers
991  * in the block. Remove these full back refs, add implicit back refs for
992  * every pointers in the new block.
993  *
994  * The reference count of the block is greater than one and the tree is
995  * the block's owner tree. In this case, implicit back refs is used for
996  * pointers in the block. Add full back refs for every pointers in the
997  * block, increase lower level extents' reference counts. The original
998  * implicit back refs are entailed to the new block.
999  *
1000  * The reference count of the block is greater than one and the tree is
1001  * not the block's owner tree. Add implicit back refs for every pointer in
1002  * the new block, increase lower level extents' reference count.
1003  *
1004  * Back Reference Key composing:
1005  *
1006  * The key objectid corresponds to the first byte in the extent,
1007  * The key type is used to differentiate between types of back refs.
1008  * There are different meanings of the key offset for different types
1009  * of back refs.
1010  *
1011  * File extents can be referenced by:
1012  *
1013  * - multiple snapshots, subvolumes, or different generations in one subvol
1014  * - different files inside a single subvolume
1015  * - different offsets inside a file (bookend extents in file.c)
1016  *
1017  * The extent ref structure for the implicit back refs has fields for:
1018  *
1019  * - Objectid of the subvolume root
1020  * - objectid of the file holding the reference
1021  * - original offset in the file
1022  * - how many bookend extents
1023  *
1024  * The key offset for the implicit back refs is hash of the first
1025  * three fields.
1026  *
1027  * The extent ref structure for the full back refs has field for:
1028  *
1029  * - number of pointers in the tree leaf
1030  *
1031  * The key offset for the implicit back refs is the first byte of
1032  * the tree leaf
1033  *
1034  * When a file extent is allocated, The implicit back refs is used.
1035  * the fields are filled in:
1036  *
1037  *     (root_key.objectid, inode objectid, offset in file, 1)
1038  *
1039  * When a file extent is removed file truncation, we find the
1040  * corresponding implicit back refs and check the following fields:
1041  *
1042  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1043  *
1044  * Btree extents can be referenced by:
1045  *
1046  * - Different subvolumes
1047  *
1048  * Both the implicit back refs and the full back refs for tree blocks
1049  * only consist of key. The key offset for the implicit back refs is
1050  * objectid of block's owner tree. The key offset for the full back refs
1051  * is the first byte of parent block.
1052  *
1053  * When implicit back refs is used, information about the lowest key and
1054  * level of the tree block are required. These information are stored in
1055  * tree block info structure.
1056  */
1057
1058 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1059 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1060                                   struct btrfs_fs_info *fs_info,
1061                                   struct btrfs_path *path,
1062                                   u64 owner, u32 extra_size)
1063 {
1064         struct btrfs_root *root = fs_info->extent_root;
1065         struct btrfs_extent_item *item;
1066         struct btrfs_extent_item_v0 *ei0;
1067         struct btrfs_extent_ref_v0 *ref0;
1068         struct btrfs_tree_block_info *bi;
1069         struct extent_buffer *leaf;
1070         struct btrfs_key key;
1071         struct btrfs_key found_key;
1072         u32 new_size = sizeof(*item);
1073         u64 refs;
1074         int ret;
1075
1076         leaf = path->nodes[0];
1077         BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1078
1079         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1080         ei0 = btrfs_item_ptr(leaf, path->slots[0],
1081                              struct btrfs_extent_item_v0);
1082         refs = btrfs_extent_refs_v0(leaf, ei0);
1083
1084         if (owner == (u64)-1) {
1085                 while (1) {
1086                         if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1087                                 ret = btrfs_next_leaf(root, path);
1088                                 if (ret < 0)
1089                                         return ret;
1090                                 BUG_ON(ret > 0); /* Corruption */
1091                                 leaf = path->nodes[0];
1092                         }
1093                         btrfs_item_key_to_cpu(leaf, &found_key,
1094                                               path->slots[0]);
1095                         BUG_ON(key.objectid != found_key.objectid);
1096                         if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1097                                 path->slots[0]++;
1098                                 continue;
1099                         }
1100                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1101                                               struct btrfs_extent_ref_v0);
1102                         owner = btrfs_ref_objectid_v0(leaf, ref0);
1103                         break;
1104                 }
1105         }
1106         btrfs_release_path(path);
1107
1108         if (owner < BTRFS_FIRST_FREE_OBJECTID)
1109                 new_size += sizeof(*bi);
1110
1111         new_size -= sizeof(*ei0);
1112         ret = btrfs_search_slot(trans, root, &key, path,
1113                                 new_size + extra_size, 1);
1114         if (ret < 0)
1115                 return ret;
1116         BUG_ON(ret); /* Corruption */
1117
1118         btrfs_extend_item(fs_info, path, new_size);
1119
1120         leaf = path->nodes[0];
1121         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1122         btrfs_set_extent_refs(leaf, item, refs);
1123         /* FIXME: get real generation */
1124         btrfs_set_extent_generation(leaf, item, 0);
1125         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1126                 btrfs_set_extent_flags(leaf, item,
1127                                        BTRFS_EXTENT_FLAG_TREE_BLOCK |
1128                                        BTRFS_BLOCK_FLAG_FULL_BACKREF);
1129                 bi = (struct btrfs_tree_block_info *)(item + 1);
1130                 /* FIXME: get first key of the block */
1131                 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1132                 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1133         } else {
1134                 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1135         }
1136         btrfs_mark_buffer_dirty(leaf);
1137         return 0;
1138 }
1139 #endif
1140
1141 /*
1142  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1143  * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1144  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1145  */
1146 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1147                                      struct btrfs_extent_inline_ref *iref,
1148                                      enum btrfs_inline_ref_type is_data)
1149 {
1150         int type = btrfs_extent_inline_ref_type(eb, iref);
1151         u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1152
1153         if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1154             type == BTRFS_SHARED_BLOCK_REF_KEY ||
1155             type == BTRFS_SHARED_DATA_REF_KEY ||
1156             type == BTRFS_EXTENT_DATA_REF_KEY) {
1157                 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1158                         if (type == BTRFS_TREE_BLOCK_REF_KEY)
1159                                 return type;
1160                         if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1161                                 ASSERT(eb->fs_info);
1162                                 /*
1163                                  * Every shared one has parent tree
1164                                  * block, which must be aligned to
1165                                  * nodesize.
1166                                  */
1167                                 if (offset &&
1168                                     IS_ALIGNED(offset, eb->fs_info->nodesize))
1169                                         return type;
1170                         }
1171                 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1172                         if (type == BTRFS_EXTENT_DATA_REF_KEY)
1173                                 return type;
1174                         if (type == BTRFS_SHARED_DATA_REF_KEY) {
1175                                 ASSERT(eb->fs_info);
1176                                 /*
1177                                  * Every shared one has parent tree
1178                                  * block, which must be aligned to
1179                                  * nodesize.
1180                                  */
1181                                 if (offset &&
1182                                     IS_ALIGNED(offset, eb->fs_info->nodesize))
1183                                         return type;
1184                         }
1185                 } else {
1186                         ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1187                         return type;
1188                 }
1189         }
1190
1191         btrfs_print_leaf((struct extent_buffer *)eb);
1192         btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1193                   eb->start, type);
1194         WARN_ON(1);
1195
1196         return BTRFS_REF_TYPE_INVALID;
1197 }
1198
1199 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1200 {
1201         u32 high_crc = ~(u32)0;
1202         u32 low_crc = ~(u32)0;
1203         __le64 lenum;
1204
1205         lenum = cpu_to_le64(root_objectid);
1206         high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1207         lenum = cpu_to_le64(owner);
1208         low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1209         lenum = cpu_to_le64(offset);
1210         low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1211
1212         return ((u64)high_crc << 31) ^ (u64)low_crc;
1213 }
1214
1215 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1216                                      struct btrfs_extent_data_ref *ref)
1217 {
1218         return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1219                                     btrfs_extent_data_ref_objectid(leaf, ref),
1220                                     btrfs_extent_data_ref_offset(leaf, ref));
1221 }
1222
1223 static int match_extent_data_ref(struct extent_buffer *leaf,
1224                                  struct btrfs_extent_data_ref *ref,
1225                                  u64 root_objectid, u64 owner, u64 offset)
1226 {
1227         if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1228             btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1229             btrfs_extent_data_ref_offset(leaf, ref) != offset)
1230                 return 0;
1231         return 1;
1232 }
1233
1234 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1235                                            struct btrfs_fs_info *fs_info,
1236                                            struct btrfs_path *path,
1237                                            u64 bytenr, u64 parent,
1238                                            u64 root_objectid,
1239                                            u64 owner, u64 offset)
1240 {
1241         struct btrfs_root *root = fs_info->extent_root;
1242         struct btrfs_key key;
1243         struct btrfs_extent_data_ref *ref;
1244         struct extent_buffer *leaf;
1245         u32 nritems;
1246         int ret;
1247         int recow;
1248         int err = -ENOENT;
1249
1250         key.objectid = bytenr;
1251         if (parent) {
1252                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1253                 key.offset = parent;
1254         } else {
1255                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1256                 key.offset = hash_extent_data_ref(root_objectid,
1257                                                   owner, offset);
1258         }
1259 again:
1260         recow = 0;
1261         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1262         if (ret < 0) {
1263                 err = ret;
1264                 goto fail;
1265         }
1266
1267         if (parent) {
1268                 if (!ret)
1269                         return 0;
1270 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1271                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1272                 btrfs_release_path(path);
1273                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1274                 if (ret < 0) {
1275                         err = ret;
1276                         goto fail;
1277                 }
1278                 if (!ret)
1279                         return 0;
1280 #endif
1281                 goto fail;
1282         }
1283
1284         leaf = path->nodes[0];
1285         nritems = btrfs_header_nritems(leaf);
1286         while (1) {
1287                 if (path->slots[0] >= nritems) {
1288                         ret = btrfs_next_leaf(root, path);
1289                         if (ret < 0)
1290                                 err = ret;
1291                         if (ret)
1292                                 goto fail;
1293
1294                         leaf = path->nodes[0];
1295                         nritems = btrfs_header_nritems(leaf);
1296                         recow = 1;
1297                 }
1298
1299                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1300                 if (key.objectid != bytenr ||
1301                     key.type != BTRFS_EXTENT_DATA_REF_KEY)
1302                         goto fail;
1303
1304                 ref = btrfs_item_ptr(leaf, path->slots[0],
1305                                      struct btrfs_extent_data_ref);
1306
1307                 if (match_extent_data_ref(leaf, ref, root_objectid,
1308                                           owner, offset)) {
1309                         if (recow) {
1310                                 btrfs_release_path(path);
1311                                 goto again;
1312                         }
1313                         err = 0;
1314                         break;
1315                 }
1316                 path->slots[0]++;
1317         }
1318 fail:
1319         return err;
1320 }
1321
1322 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1323                                            struct btrfs_fs_info *fs_info,
1324                                            struct btrfs_path *path,
1325                                            u64 bytenr, u64 parent,
1326                                            u64 root_objectid, u64 owner,
1327                                            u64 offset, int refs_to_add)
1328 {
1329         struct btrfs_root *root = fs_info->extent_root;
1330         struct btrfs_key key;
1331         struct extent_buffer *leaf;
1332         u32 size;
1333         u32 num_refs;
1334         int ret;
1335
1336         key.objectid = bytenr;
1337         if (parent) {
1338                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1339                 key.offset = parent;
1340                 size = sizeof(struct btrfs_shared_data_ref);
1341         } else {
1342                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1343                 key.offset = hash_extent_data_ref(root_objectid,
1344                                                   owner, offset);
1345                 size = sizeof(struct btrfs_extent_data_ref);
1346         }
1347
1348         ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1349         if (ret && ret != -EEXIST)
1350                 goto fail;
1351
1352         leaf = path->nodes[0];
1353         if (parent) {
1354                 struct btrfs_shared_data_ref *ref;
1355                 ref = btrfs_item_ptr(leaf, path->slots[0],
1356                                      struct btrfs_shared_data_ref);
1357                 if (ret == 0) {
1358                         btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1359                 } else {
1360                         num_refs = btrfs_shared_data_ref_count(leaf, ref);
1361                         num_refs += refs_to_add;
1362                         btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1363                 }
1364         } else {
1365                 struct btrfs_extent_data_ref *ref;
1366                 while (ret == -EEXIST) {
1367                         ref = btrfs_item_ptr(leaf, path->slots[0],
1368                                              struct btrfs_extent_data_ref);
1369                         if (match_extent_data_ref(leaf, ref, root_objectid,
1370                                                   owner, offset))
1371                                 break;
1372                         btrfs_release_path(path);
1373                         key.offset++;
1374                         ret = btrfs_insert_empty_item(trans, root, path, &key,
1375                                                       size);
1376                         if (ret && ret != -EEXIST)
1377                                 goto fail;
1378
1379                         leaf = path->nodes[0];
1380                 }
1381                 ref = btrfs_item_ptr(leaf, path->slots[0],
1382                                      struct btrfs_extent_data_ref);
1383                 if (ret == 0) {
1384                         btrfs_set_extent_data_ref_root(leaf, ref,
1385                                                        root_objectid);
1386                         btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1387                         btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1388                         btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1389                 } else {
1390                         num_refs = btrfs_extent_data_ref_count(leaf, ref);
1391                         num_refs += refs_to_add;
1392                         btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1393                 }
1394         }
1395         btrfs_mark_buffer_dirty(leaf);
1396         ret = 0;
1397 fail:
1398         btrfs_release_path(path);
1399         return ret;
1400 }
1401
1402 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1403                                            struct btrfs_fs_info *fs_info,
1404                                            struct btrfs_path *path,
1405                                            int refs_to_drop, int *last_ref)
1406 {
1407         struct btrfs_key key;
1408         struct btrfs_extent_data_ref *ref1 = NULL;
1409         struct btrfs_shared_data_ref *ref2 = NULL;
1410         struct extent_buffer *leaf;
1411         u32 num_refs = 0;
1412         int ret = 0;
1413
1414         leaf = path->nodes[0];
1415         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1416
1417         if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1418                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1419                                       struct btrfs_extent_data_ref);
1420                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1421         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1422                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1423                                       struct btrfs_shared_data_ref);
1424                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1425 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1426         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1427                 struct btrfs_extent_ref_v0 *ref0;
1428                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1429                                       struct btrfs_extent_ref_v0);
1430                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1431 #endif
1432         } else {
1433                 BUG();
1434         }
1435
1436         BUG_ON(num_refs < refs_to_drop);
1437         num_refs -= refs_to_drop;
1438
1439         if (num_refs == 0) {
1440                 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1441                 *last_ref = 1;
1442         } else {
1443                 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1444                         btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1445                 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1446                         btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1447 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1448                 else {
1449                         struct btrfs_extent_ref_v0 *ref0;
1450                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1451                                         struct btrfs_extent_ref_v0);
1452                         btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1453                 }
1454 #endif
1455                 btrfs_mark_buffer_dirty(leaf);
1456         }
1457         return ret;
1458 }
1459
1460 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1461                                           struct btrfs_extent_inline_ref *iref)
1462 {
1463         struct btrfs_key key;
1464         struct extent_buffer *leaf;
1465         struct btrfs_extent_data_ref *ref1;
1466         struct btrfs_shared_data_ref *ref2;
1467         u32 num_refs = 0;
1468         int type;
1469
1470         leaf = path->nodes[0];
1471         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1472         if (iref) {
1473                 /*
1474                  * If type is invalid, we should have bailed out earlier than
1475                  * this call.
1476                  */
1477                 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1478                 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1479                 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1480                         ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1481                         num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1482                 } else {
1483                         ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1484                         num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1485                 }
1486         } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1487                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1488                                       struct btrfs_extent_data_ref);
1489                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1490         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1491                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1492                                       struct btrfs_shared_data_ref);
1493                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1494 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1495         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1496                 struct btrfs_extent_ref_v0 *ref0;
1497                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1498                                       struct btrfs_extent_ref_v0);
1499                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1500 #endif
1501         } else {
1502                 WARN_ON(1);
1503         }
1504         return num_refs;
1505 }
1506
1507 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1508                                           struct btrfs_fs_info *fs_info,
1509                                           struct btrfs_path *path,
1510                                           u64 bytenr, u64 parent,
1511                                           u64 root_objectid)
1512 {
1513         struct btrfs_root *root = fs_info->extent_root;
1514         struct btrfs_key key;
1515         int ret;
1516
1517         key.objectid = bytenr;
1518         if (parent) {
1519                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1520                 key.offset = parent;
1521         } else {
1522                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1523                 key.offset = root_objectid;
1524         }
1525
1526         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1527         if (ret > 0)
1528                 ret = -ENOENT;
1529 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1530         if (ret == -ENOENT && parent) {
1531                 btrfs_release_path(path);
1532                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1533                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1534                 if (ret > 0)
1535                         ret = -ENOENT;
1536         }
1537 #endif
1538         return ret;
1539 }
1540
1541 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1542                                           struct btrfs_fs_info *fs_info,
1543                                           struct btrfs_path *path,
1544                                           u64 bytenr, u64 parent,
1545                                           u64 root_objectid)
1546 {
1547         struct btrfs_key key;
1548         int ret;
1549
1550         key.objectid = bytenr;
1551         if (parent) {
1552                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1553                 key.offset = parent;
1554         } else {
1555                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1556                 key.offset = root_objectid;
1557         }
1558
1559         ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1560                                       path, &key, 0);
1561         btrfs_release_path(path);
1562         return ret;
1563 }
1564
1565 static inline int extent_ref_type(u64 parent, u64 owner)
1566 {
1567         int type;
1568         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1569                 if (parent > 0)
1570                         type = BTRFS_SHARED_BLOCK_REF_KEY;
1571                 else
1572                         type = BTRFS_TREE_BLOCK_REF_KEY;
1573         } else {
1574                 if (parent > 0)
1575                         type = BTRFS_SHARED_DATA_REF_KEY;
1576                 else
1577                         type = BTRFS_EXTENT_DATA_REF_KEY;
1578         }
1579         return type;
1580 }
1581
1582 static int find_next_key(struct btrfs_path *path, int level,
1583                          struct btrfs_key *key)
1584
1585 {
1586         for (; level < BTRFS_MAX_LEVEL; level++) {
1587                 if (!path->nodes[level])
1588                         break;
1589                 if (path->slots[level] + 1 >=
1590                     btrfs_header_nritems(path->nodes[level]))
1591                         continue;
1592                 if (level == 0)
1593                         btrfs_item_key_to_cpu(path->nodes[level], key,
1594                                               path->slots[level] + 1);
1595                 else
1596                         btrfs_node_key_to_cpu(path->nodes[level], key,
1597                                               path->slots[level] + 1);
1598                 return 0;
1599         }
1600         return 1;
1601 }
1602
1603 /*
1604  * look for inline back ref. if back ref is found, *ref_ret is set
1605  * to the address of inline back ref, and 0 is returned.
1606  *
1607  * if back ref isn't found, *ref_ret is set to the address where it
1608  * should be inserted, and -ENOENT is returned.
1609  *
1610  * if insert is true and there are too many inline back refs, the path
1611  * points to the extent item, and -EAGAIN is returned.
1612  *
1613  * NOTE: inline back refs are ordered in the same way that back ref
1614  *       items in the tree are ordered.
1615  */
1616 static noinline_for_stack
1617 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1618                                  struct btrfs_fs_info *fs_info,
1619                                  struct btrfs_path *path,
1620                                  struct btrfs_extent_inline_ref **ref_ret,
1621                                  u64 bytenr, u64 num_bytes,
1622                                  u64 parent, u64 root_objectid,
1623                                  u64 owner, u64 offset, int insert)
1624 {
1625         struct btrfs_root *root = fs_info->extent_root;
1626         struct btrfs_key key;
1627         struct extent_buffer *leaf;
1628         struct btrfs_extent_item *ei;
1629         struct btrfs_extent_inline_ref *iref;
1630         u64 flags;
1631         u64 item_size;
1632         unsigned long ptr;
1633         unsigned long end;
1634         int extra_size;
1635         int type;
1636         int want;
1637         int ret;
1638         int err = 0;
1639         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1640         int needed;
1641
1642         key.objectid = bytenr;
1643         key.type = BTRFS_EXTENT_ITEM_KEY;
1644         key.offset = num_bytes;
1645
1646         want = extent_ref_type(parent, owner);
1647         if (insert) {
1648                 extra_size = btrfs_extent_inline_ref_size(want);
1649                 path->keep_locks = 1;
1650         } else
1651                 extra_size = -1;
1652
1653         /*
1654          * Owner is our parent level, so we can just add one to get the level
1655          * for the block we are interested in.
1656          */
1657         if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1658                 key.type = BTRFS_METADATA_ITEM_KEY;
1659                 key.offset = owner;
1660         }
1661
1662 again:
1663         ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1664         if (ret < 0) {
1665                 err = ret;
1666                 goto out;
1667         }
1668
1669         /*
1670          * We may be a newly converted file system which still has the old fat
1671          * extent entries for metadata, so try and see if we have one of those.
1672          */
1673         if (ret > 0 && skinny_metadata) {
1674                 skinny_metadata = false;
1675                 if (path->slots[0]) {
1676                         path->slots[0]--;
1677                         btrfs_item_key_to_cpu(path->nodes[0], &key,
1678                                               path->slots[0]);
1679                         if (key.objectid == bytenr &&
1680                             key.type == BTRFS_EXTENT_ITEM_KEY &&
1681                             key.offset == num_bytes)
1682                                 ret = 0;
1683                 }
1684                 if (ret) {
1685                         key.objectid = bytenr;
1686                         key.type = BTRFS_EXTENT_ITEM_KEY;
1687                         key.offset = num_bytes;
1688                         btrfs_release_path(path);
1689                         goto again;
1690                 }
1691         }
1692
1693         if (ret && !insert) {
1694                 err = -ENOENT;
1695                 goto out;
1696         } else if (WARN_ON(ret)) {
1697                 err = -EIO;
1698                 goto out;
1699         }
1700
1701         leaf = path->nodes[0];
1702         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1703 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1704         if (item_size < sizeof(*ei)) {
1705                 if (!insert) {
1706                         err = -ENOENT;
1707                         goto out;
1708                 }
1709                 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1710                                              extra_size);
1711                 if (ret < 0) {
1712                         err = ret;
1713                         goto out;
1714                 }
1715                 leaf = path->nodes[0];
1716                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1717         }
1718 #endif
1719         BUG_ON(item_size < sizeof(*ei));
1720
1721         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1722         flags = btrfs_extent_flags(leaf, ei);
1723
1724         ptr = (unsigned long)(ei + 1);
1725         end = (unsigned long)ei + item_size;
1726
1727         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1728                 ptr += sizeof(struct btrfs_tree_block_info);
1729                 BUG_ON(ptr > end);
1730         }
1731
1732         if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1733                 needed = BTRFS_REF_TYPE_DATA;
1734         else
1735                 needed = BTRFS_REF_TYPE_BLOCK;
1736
1737         err = -ENOENT;
1738         while (1) {
1739                 if (ptr >= end) {
1740                         WARN_ON(ptr > end);
1741                         break;
1742                 }
1743                 iref = (struct btrfs_extent_inline_ref *)ptr;
1744                 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1745                 if (type == BTRFS_REF_TYPE_INVALID) {
1746                         err = -EINVAL;
1747                         goto out;
1748                 }
1749
1750                 if (want < type)
1751                         break;
1752                 if (want > type) {
1753                         ptr += btrfs_extent_inline_ref_size(type);
1754                         continue;
1755                 }
1756
1757                 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1758                         struct btrfs_extent_data_ref *dref;
1759                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1760                         if (match_extent_data_ref(leaf, dref, root_objectid,
1761                                                   owner, offset)) {
1762                                 err = 0;
1763                                 break;
1764                         }
1765                         if (hash_extent_data_ref_item(leaf, dref) <
1766                             hash_extent_data_ref(root_objectid, owner, offset))
1767                                 break;
1768                 } else {
1769                         u64 ref_offset;
1770                         ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1771                         if (parent > 0) {
1772                                 if (parent == ref_offset) {
1773                                         err = 0;
1774                                         break;
1775                                 }
1776                                 if (ref_offset < parent)
1777                                         break;
1778                         } else {
1779                                 if (root_objectid == ref_offset) {
1780                                         err = 0;
1781                                         break;
1782                                 }
1783                                 if (ref_offset < root_objectid)
1784                                         break;
1785                         }
1786                 }
1787                 ptr += btrfs_extent_inline_ref_size(type);
1788         }
1789         if (err == -ENOENT && insert) {
1790                 if (item_size + extra_size >=
1791                     BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1792                         err = -EAGAIN;
1793                         goto out;
1794                 }
1795                 /*
1796                  * To add new inline back ref, we have to make sure
1797                  * there is no corresponding back ref item.
1798                  * For simplicity, we just do not add new inline back
1799                  * ref if there is any kind of item for this block
1800                  */
1801                 if (find_next_key(path, 0, &key) == 0 &&
1802                     key.objectid == bytenr &&
1803                     key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1804                         err = -EAGAIN;
1805                         goto out;
1806                 }
1807         }
1808         *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1809 out:
1810         if (insert) {
1811                 path->keep_locks = 0;
1812                 btrfs_unlock_up_safe(path, 1);
1813         }
1814         return err;
1815 }
1816
1817 /*
1818  * helper to add new inline back ref
1819  */
1820 static noinline_for_stack
1821 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1822                                  struct btrfs_path *path,
1823                                  struct btrfs_extent_inline_ref *iref,
1824                                  u64 parent, u64 root_objectid,
1825                                  u64 owner, u64 offset, int refs_to_add,
1826                                  struct btrfs_delayed_extent_op *extent_op)
1827 {
1828         struct extent_buffer *leaf;
1829         struct btrfs_extent_item *ei;
1830         unsigned long ptr;
1831         unsigned long end;
1832         unsigned long item_offset;
1833         u64 refs;
1834         int size;
1835         int type;
1836
1837         leaf = path->nodes[0];
1838         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1839         item_offset = (unsigned long)iref - (unsigned long)ei;
1840
1841         type = extent_ref_type(parent, owner);
1842         size = btrfs_extent_inline_ref_size(type);
1843
1844         btrfs_extend_item(fs_info, path, size);
1845
1846         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1847         refs = btrfs_extent_refs(leaf, ei);
1848         refs += refs_to_add;
1849         btrfs_set_extent_refs(leaf, ei, refs);
1850         if (extent_op)
1851                 __run_delayed_extent_op(extent_op, leaf, ei);
1852
1853         ptr = (unsigned long)ei + item_offset;
1854         end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1855         if (ptr < end - size)
1856                 memmove_extent_buffer(leaf, ptr + size, ptr,
1857                                       end - size - ptr);
1858
1859         iref = (struct btrfs_extent_inline_ref *)ptr;
1860         btrfs_set_extent_inline_ref_type(leaf, iref, type);
1861         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862                 struct btrfs_extent_data_ref *dref;
1863                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1864                 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1865                 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1866                 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1867                 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1868         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1869                 struct btrfs_shared_data_ref *sref;
1870                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1871                 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1872                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1873         } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1874                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1875         } else {
1876                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1877         }
1878         btrfs_mark_buffer_dirty(leaf);
1879 }
1880
1881 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1882                                  struct btrfs_fs_info *fs_info,
1883                                  struct btrfs_path *path,
1884                                  struct btrfs_extent_inline_ref **ref_ret,
1885                                  u64 bytenr, u64 num_bytes, u64 parent,
1886                                  u64 root_objectid, u64 owner, u64 offset)
1887 {
1888         int ret;
1889
1890         ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1891                                            bytenr, num_bytes, parent,
1892                                            root_objectid, owner, offset, 0);
1893         if (ret != -ENOENT)
1894                 return ret;
1895
1896         btrfs_release_path(path);
1897         *ref_ret = NULL;
1898
1899         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1900                 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1901                                             parent, root_objectid);
1902         } else {
1903                 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1904                                              parent, root_objectid, owner,
1905                                              offset);
1906         }
1907         return ret;
1908 }
1909
1910 /*
1911  * helper to update/remove inline back ref
1912  */
1913 static noinline_for_stack
1914 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1915                                   struct btrfs_path *path,
1916                                   struct btrfs_extent_inline_ref *iref,
1917                                   int refs_to_mod,
1918                                   struct btrfs_delayed_extent_op *extent_op,
1919                                   int *last_ref)
1920 {
1921         struct extent_buffer *leaf;
1922         struct btrfs_extent_item *ei;
1923         struct btrfs_extent_data_ref *dref = NULL;
1924         struct btrfs_shared_data_ref *sref = NULL;
1925         unsigned long ptr;
1926         unsigned long end;
1927         u32 item_size;
1928         int size;
1929         int type;
1930         u64 refs;
1931
1932         leaf = path->nodes[0];
1933         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1934         refs = btrfs_extent_refs(leaf, ei);
1935         WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1936         refs += refs_to_mod;
1937         btrfs_set_extent_refs(leaf, ei, refs);
1938         if (extent_op)
1939                 __run_delayed_extent_op(extent_op, leaf, ei);
1940
1941         /*
1942          * If type is invalid, we should have bailed out after
1943          * lookup_inline_extent_backref().
1944          */
1945         type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1946         ASSERT(type != BTRFS_REF_TYPE_INVALID);
1947
1948         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1949                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1950                 refs = btrfs_extent_data_ref_count(leaf, dref);
1951         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1952                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1953                 refs = btrfs_shared_data_ref_count(leaf, sref);
1954         } else {
1955                 refs = 1;
1956                 BUG_ON(refs_to_mod != -1);
1957         }
1958
1959         BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1960         refs += refs_to_mod;
1961
1962         if (refs > 0) {
1963                 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1964                         btrfs_set_extent_data_ref_count(leaf, dref, refs);
1965                 else
1966                         btrfs_set_shared_data_ref_count(leaf, sref, refs);
1967         } else {
1968                 *last_ref = 1;
1969                 size =  btrfs_extent_inline_ref_size(type);
1970                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1971                 ptr = (unsigned long)iref;
1972                 end = (unsigned long)ei + item_size;
1973                 if (ptr + size < end)
1974                         memmove_extent_buffer(leaf, ptr, ptr + size,
1975                                               end - ptr - size);
1976                 item_size -= size;
1977                 btrfs_truncate_item(fs_info, path, item_size, 1);
1978         }
1979         btrfs_mark_buffer_dirty(leaf);
1980 }
1981
1982 static noinline_for_stack
1983 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1984                                  struct btrfs_fs_info *fs_info,
1985                                  struct btrfs_path *path,
1986                                  u64 bytenr, u64 num_bytes, u64 parent,
1987                                  u64 root_objectid, u64 owner,
1988                                  u64 offset, int refs_to_add,
1989                                  struct btrfs_delayed_extent_op *extent_op)
1990 {
1991         struct btrfs_extent_inline_ref *iref;
1992         int ret;
1993
1994         ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1995                                            bytenr, num_bytes, parent,
1996                                            root_objectid, owner, offset, 1);
1997         if (ret == 0) {
1998                 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1999                 update_inline_extent_backref(fs_info, path, iref,
2000                                              refs_to_add, extent_op, NULL);
2001         } else if (ret == -ENOENT) {
2002                 setup_inline_extent_backref(fs_info, path, iref, parent,
2003                                             root_objectid, owner, offset,
2004                                             refs_to_add, extent_op);
2005                 ret = 0;
2006         }
2007         return ret;
2008 }
2009
2010 static int insert_extent_backref(struct btrfs_trans_handle *trans,
2011                                  struct btrfs_fs_info *fs_info,
2012                                  struct btrfs_path *path,
2013                                  u64 bytenr, u64 parent, u64 root_objectid,
2014                                  u64 owner, u64 offset, int refs_to_add)
2015 {
2016         int ret;
2017         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2018                 BUG_ON(refs_to_add != 1);
2019                 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
2020                                             parent, root_objectid);
2021         } else {
2022                 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
2023                                              parent, root_objectid,
2024                                              owner, offset, refs_to_add);
2025         }
2026         return ret;
2027 }
2028
2029 static int remove_extent_backref(struct btrfs_trans_handle *trans,
2030                                  struct btrfs_fs_info *fs_info,
2031                                  struct btrfs_path *path,
2032                                  struct btrfs_extent_inline_ref *iref,
2033                                  int refs_to_drop, int is_data, int *last_ref)
2034 {
2035         int ret = 0;
2036
2037         BUG_ON(!is_data && refs_to_drop != 1);
2038         if (iref) {
2039                 update_inline_extent_backref(fs_info, path, iref,
2040                                              -refs_to_drop, NULL, last_ref);
2041         } else if (is_data) {
2042                 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
2043                                              last_ref);
2044         } else {
2045                 *last_ref = 1;
2046                 ret = btrfs_del_item(trans, fs_info->extent_root, path);
2047         }
2048         return ret;
2049 }
2050
2051 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
2052 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2053                                u64 *discarded_bytes)
2054 {
2055         int j, ret = 0;
2056         u64 bytes_left, end;
2057         u64 aligned_start = ALIGN(start, 1 << 9);
2058
2059         if (WARN_ON(start != aligned_start)) {
2060                 len -= aligned_start - start;
2061                 len = round_down(len, 1 << 9);
2062                 start = aligned_start;
2063         }
2064
2065         *discarded_bytes = 0;
2066
2067         if (!len)
2068                 return 0;
2069
2070         end = start + len;
2071         bytes_left = len;
2072
2073         /* Skip any superblocks on this device. */
2074         for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2075                 u64 sb_start = btrfs_sb_offset(j);
2076                 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2077                 u64 size = sb_start - start;
2078
2079                 if (!in_range(sb_start, start, bytes_left) &&
2080                     !in_range(sb_end, start, bytes_left) &&
2081                     !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2082                         continue;
2083
2084                 /*
2085                  * Superblock spans beginning of range.  Adjust start and
2086                  * try again.
2087                  */
2088                 if (sb_start <= start) {
2089                         start += sb_end - start;
2090                         if (start > end) {
2091                                 bytes_left = 0;
2092                                 break;
2093                         }
2094                         bytes_left = end - start;
2095                         continue;
2096                 }
2097
2098                 if (size) {
2099                         ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2100                                                    GFP_NOFS, 0);
2101                         if (!ret)
2102                                 *discarded_bytes += size;
2103                         else if (ret != -EOPNOTSUPP)
2104                                 return ret;
2105                 }
2106
2107                 start = sb_end;
2108                 if (start > end) {
2109                         bytes_left = 0;
2110                         break;
2111                 }
2112                 bytes_left = end - start;
2113         }
2114
2115         if (bytes_left) {
2116                 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2117                                            GFP_NOFS, 0);
2118                 if (!ret)
2119                         *discarded_bytes += bytes_left;
2120         }
2121         return ret;
2122 }
2123
2124 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2125                          u64 num_bytes, u64 *actual_bytes)
2126 {
2127         int ret;
2128         u64 discarded_bytes = 0;
2129         struct btrfs_bio *bbio = NULL;
2130
2131
2132         /*
2133          * Avoid races with device replace and make sure our bbio has devices
2134          * associated to its stripes that don't go away while we are discarding.
2135          */
2136         btrfs_bio_counter_inc_blocked(fs_info);
2137         /* Tell the block device(s) that the sectors can be discarded */
2138         ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2139                               &bbio, 0);
2140         /* Error condition is -ENOMEM */
2141         if (!ret) {
2142                 struct btrfs_bio_stripe *stripe = bbio->stripes;
2143                 int i;
2144
2145
2146                 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2147                         u64 bytes;
2148                         struct request_queue *req_q;
2149
2150                         if (!stripe->dev->bdev) {
2151                                 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2152                                 continue;
2153                         }
2154                         req_q = bdev_get_queue(stripe->dev->bdev);
2155                         if (!blk_queue_discard(req_q))
2156                                 continue;
2157
2158                         ret = btrfs_issue_discard(stripe->dev->bdev,
2159                                                   stripe->physical,
2160                                                   stripe->length,
2161                                                   &bytes);
2162                         if (!ret)
2163                                 discarded_bytes += bytes;
2164                         else if (ret != -EOPNOTSUPP)
2165                                 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2166
2167                         /*
2168                          * Just in case we get back EOPNOTSUPP for some reason,
2169                          * just ignore the return value so we don't screw up
2170                          * people calling discard_extent.
2171                          */
2172                         ret = 0;
2173                 }
2174                 btrfs_put_bbio(bbio);
2175         }
2176         btrfs_bio_counter_dec(fs_info);
2177
2178         if (actual_bytes)
2179                 *actual_bytes = discarded_bytes;
2180
2181
2182         if (ret == -EOPNOTSUPP)
2183                 ret = 0;
2184         return ret;
2185 }
2186
2187 /* Can return -ENOMEM */
2188 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2189                          struct btrfs_root *root,
2190                          u64 bytenr, u64 num_bytes, u64 parent,
2191                          u64 root_objectid, u64 owner, u64 offset)
2192 {
2193         struct btrfs_fs_info *fs_info = root->fs_info;
2194         int old_ref_mod, new_ref_mod;
2195         int ret;
2196
2197         BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2198                root_objectid == BTRFS_TREE_LOG_OBJECTID);
2199
2200         btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2201                            owner, offset, BTRFS_ADD_DELAYED_REF);
2202
2203         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2204                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2205                                                  num_bytes, parent,
2206                                                  root_objectid, (int)owner,
2207                                                  BTRFS_ADD_DELAYED_REF, NULL,
2208                                                  &old_ref_mod, &new_ref_mod);
2209         } else {
2210                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2211                                                  num_bytes, parent,
2212                                                  root_objectid, owner, offset,
2213                                                  0, BTRFS_ADD_DELAYED_REF,
2214                                                  &old_ref_mod, &new_ref_mod);
2215         }
2216
2217         if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2218                 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2219
2220         return ret;
2221 }
2222
2223 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2224                                   struct btrfs_fs_info *fs_info,
2225                                   struct btrfs_delayed_ref_node *node,
2226                                   u64 parent, u64 root_objectid,
2227                                   u64 owner, u64 offset, int refs_to_add,
2228                                   struct btrfs_delayed_extent_op *extent_op)
2229 {
2230         struct btrfs_path *path;
2231         struct extent_buffer *leaf;
2232         struct btrfs_extent_item *item;
2233         struct btrfs_key key;
2234         u64 bytenr = node->bytenr;
2235         u64 num_bytes = node->num_bytes;
2236         u64 refs;
2237         int ret;
2238
2239         path = btrfs_alloc_path();
2240         if (!path)
2241                 return -ENOMEM;
2242
2243         path->reada = READA_FORWARD;
2244         path->leave_spinning = 1;
2245         /* this will setup the path even if it fails to insert the back ref */
2246         ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2247                                            num_bytes, parent, root_objectid,
2248                                            owner, offset,
2249                                            refs_to_add, extent_op);
2250         if ((ret < 0 && ret != -EAGAIN) || !ret)
2251                 goto out;
2252
2253         /*
2254          * Ok we had -EAGAIN which means we didn't have space to insert and
2255          * inline extent ref, so just update the reference count and add a
2256          * normal backref.
2257          */
2258         leaf = path->nodes[0];
2259         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2260         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2261         refs = btrfs_extent_refs(leaf, item);
2262         btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2263         if (extent_op)
2264                 __run_delayed_extent_op(extent_op, leaf, item);
2265
2266         btrfs_mark_buffer_dirty(leaf);
2267         btrfs_release_path(path);
2268
2269         path->reada = READA_FORWARD;
2270         path->leave_spinning = 1;
2271         /* now insert the actual backref */
2272         ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2273                                     root_objectid, owner, offset, refs_to_add);
2274         if (ret)
2275                 btrfs_abort_transaction(trans, ret);
2276 out:
2277         btrfs_free_path(path);
2278         return ret;
2279 }
2280
2281 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2282                                 struct btrfs_fs_info *fs_info,
2283                                 struct btrfs_delayed_ref_node *node,
2284                                 struct btrfs_delayed_extent_op *extent_op,
2285                                 int insert_reserved)
2286 {
2287         int ret = 0;
2288         struct btrfs_delayed_data_ref *ref;
2289         struct btrfs_key ins;
2290         u64 parent = 0;
2291         u64 ref_root = 0;
2292         u64 flags = 0;
2293
2294         ins.objectid = node->bytenr;
2295         ins.offset = node->num_bytes;
2296         ins.type = BTRFS_EXTENT_ITEM_KEY;
2297
2298         ref = btrfs_delayed_node_to_data_ref(node);
2299         trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2300
2301         if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2302                 parent = ref->parent;
2303         ref_root = ref->root;
2304
2305         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2306                 if (extent_op)
2307                         flags |= extent_op->flags_to_set;
2308                 ret = alloc_reserved_file_extent(trans, fs_info,
2309                                                  parent, ref_root, flags,
2310                                                  ref->objectid, ref->offset,
2311                                                  &ins, node->ref_mod);
2312         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2313                 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2314                                              ref_root, ref->objectid,
2315                                              ref->offset, node->ref_mod,
2316                                              extent_op);
2317         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2318                 ret = __btrfs_free_extent(trans, fs_info, node, parent,
2319                                           ref_root, ref->objectid,
2320                                           ref->offset, node->ref_mod,
2321                                           extent_op);
2322         } else {
2323                 BUG();
2324         }
2325         return ret;
2326 }
2327
2328 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2329                                     struct extent_buffer *leaf,
2330                                     struct btrfs_extent_item *ei)
2331 {
2332         u64 flags = btrfs_extent_flags(leaf, ei);
2333         if (extent_op->update_flags) {
2334                 flags |= extent_op->flags_to_set;
2335                 btrfs_set_extent_flags(leaf, ei, flags);
2336         }
2337
2338         if (extent_op->update_key) {
2339                 struct btrfs_tree_block_info *bi;
2340                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2341                 bi = (struct btrfs_tree_block_info *)(ei + 1);
2342                 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2343         }
2344 }
2345
2346 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2347                                  struct btrfs_fs_info *fs_info,
2348                                  struct btrfs_delayed_ref_head *head,
2349                                  struct btrfs_delayed_extent_op *extent_op)
2350 {
2351         struct btrfs_key key;
2352         struct btrfs_path *path;
2353         struct btrfs_extent_item *ei;
2354         struct extent_buffer *leaf;
2355         u32 item_size;
2356         int ret;
2357         int err = 0;
2358         int metadata = !extent_op->is_data;
2359
2360         if (trans->aborted)
2361                 return 0;
2362
2363         if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2364                 metadata = 0;
2365
2366         path = btrfs_alloc_path();
2367         if (!path)
2368                 return -ENOMEM;
2369
2370         key.objectid = head->bytenr;
2371
2372         if (metadata) {
2373                 key.type = BTRFS_METADATA_ITEM_KEY;
2374                 key.offset = extent_op->level;
2375         } else {
2376                 key.type = BTRFS_EXTENT_ITEM_KEY;
2377                 key.offset = head->num_bytes;
2378         }
2379
2380 again:
2381         path->reada = READA_FORWARD;
2382         path->leave_spinning = 1;
2383         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2384         if (ret < 0) {
2385                 err = ret;
2386                 goto out;
2387         }
2388         if (ret > 0) {
2389                 if (metadata) {
2390                         if (path->slots[0] > 0) {
2391                                 path->slots[0]--;
2392                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
2393                                                       path->slots[0]);
2394                                 if (key.objectid == head->bytenr &&
2395                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
2396                                     key.offset == head->num_bytes)
2397                                         ret = 0;
2398                         }
2399                         if (ret > 0) {
2400                                 btrfs_release_path(path);
2401                                 metadata = 0;
2402
2403                                 key.objectid = head->bytenr;
2404                                 key.offset = head->num_bytes;
2405                                 key.type = BTRFS_EXTENT_ITEM_KEY;
2406                                 goto again;
2407                         }
2408                 } else {
2409                         err = -EIO;
2410                         goto out;
2411                 }
2412         }
2413
2414         leaf = path->nodes[0];
2415         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2416 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2417         if (item_size < sizeof(*ei)) {
2418                 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2419                 if (ret < 0) {
2420                         err = ret;
2421                         goto out;
2422                 }
2423                 leaf = path->nodes[0];
2424                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2425         }
2426 #endif
2427         BUG_ON(item_size < sizeof(*ei));
2428         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2429         __run_delayed_extent_op(extent_op, leaf, ei);
2430
2431         btrfs_mark_buffer_dirty(leaf);
2432 out:
2433         btrfs_free_path(path);
2434         return err;
2435 }
2436
2437 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2438                                 struct btrfs_fs_info *fs_info,
2439                                 struct btrfs_delayed_ref_node *node,
2440                                 struct btrfs_delayed_extent_op *extent_op,
2441                                 int insert_reserved)
2442 {
2443         int ret = 0;
2444         struct btrfs_delayed_tree_ref *ref;
2445         struct btrfs_key ins;
2446         u64 parent = 0;
2447         u64 ref_root = 0;
2448         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2449
2450         ref = btrfs_delayed_node_to_tree_ref(node);
2451         trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2452
2453         if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2454                 parent = ref->parent;
2455         ref_root = ref->root;
2456
2457         ins.objectid = node->bytenr;
2458         if (skinny_metadata) {
2459                 ins.offset = ref->level;
2460                 ins.type = BTRFS_METADATA_ITEM_KEY;
2461         } else {
2462                 ins.offset = node->num_bytes;
2463                 ins.type = BTRFS_EXTENT_ITEM_KEY;
2464         }
2465
2466         if (node->ref_mod != 1) {
2467                 btrfs_err(fs_info,
2468         "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2469                           node->bytenr, node->ref_mod, node->action, ref_root,
2470                           parent);
2471                 return -EIO;
2472         }
2473         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2474                 BUG_ON(!extent_op || !extent_op->update_flags);
2475                 ret = alloc_reserved_tree_block(trans, fs_info,
2476                                                 parent, ref_root,
2477                                                 extent_op->flags_to_set,
2478                                                 &extent_op->key,
2479                                                 ref->level, &ins);
2480         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2481                 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2482                                              parent, ref_root,
2483                                              ref->level, 0, 1,
2484                                              extent_op);
2485         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2486                 ret = __btrfs_free_extent(trans, fs_info, node,
2487                                           parent, ref_root,
2488                                           ref->level, 0, 1, extent_op);
2489         } else {
2490                 BUG();
2491         }
2492         return ret;
2493 }
2494
2495 /* helper function to actually process a single delayed ref entry */
2496 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2497                                struct btrfs_fs_info *fs_info,
2498                                struct btrfs_delayed_ref_node *node,
2499                                struct btrfs_delayed_extent_op *extent_op,
2500                                int insert_reserved)
2501 {
2502         int ret = 0;
2503
2504         if (trans->aborted) {
2505                 if (insert_reserved)
2506                         btrfs_pin_extent(fs_info, node->bytenr,
2507                                          node->num_bytes, 1);
2508                 return 0;
2509         }
2510
2511         if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2512             node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2513                 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2514                                            insert_reserved);
2515         else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2516                  node->type == BTRFS_SHARED_DATA_REF_KEY)
2517                 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2518                                            insert_reserved);
2519         else
2520                 BUG();
2521         return ret;
2522 }
2523
2524 static inline struct btrfs_delayed_ref_node *
2525 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2526 {
2527         struct btrfs_delayed_ref_node *ref;
2528
2529         if (RB_EMPTY_ROOT(&head->ref_tree))
2530                 return NULL;
2531
2532         /*
2533          * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2534          * This is to prevent a ref count from going down to zero, which deletes
2535          * the extent item from the extent tree, when there still are references
2536          * to add, which would fail because they would not find the extent item.
2537          */
2538         if (!list_empty(&head->ref_add_list))
2539                 return list_first_entry(&head->ref_add_list,
2540                                 struct btrfs_delayed_ref_node, add_list);
2541
2542         ref = rb_entry(rb_first(&head->ref_tree),
2543                        struct btrfs_delayed_ref_node, ref_node);
2544         ASSERT(list_empty(&ref->add_list));
2545         return ref;
2546 }
2547
2548 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2549                                       struct btrfs_delayed_ref_head *head)
2550 {
2551         spin_lock(&delayed_refs->lock);
2552         head->processing = 0;
2553         delayed_refs->num_heads_ready++;
2554         spin_unlock(&delayed_refs->lock);
2555         btrfs_delayed_ref_unlock(head);
2556 }
2557
2558 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2559                              struct btrfs_fs_info *fs_info,
2560                              struct btrfs_delayed_ref_head *head)
2561 {
2562         struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2563         int ret;
2564
2565         if (!extent_op)
2566                 return 0;
2567         head->extent_op = NULL;
2568         if (head->must_insert_reserved) {
2569                 btrfs_free_delayed_extent_op(extent_op);
2570                 return 0;
2571         }
2572         spin_unlock(&head->lock);
2573         ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
2574         btrfs_free_delayed_extent_op(extent_op);
2575         return ret ? ret : 1;
2576 }
2577
2578 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2579                             struct btrfs_fs_info *fs_info,
2580                             struct btrfs_delayed_ref_head *head)
2581 {
2582         struct btrfs_delayed_ref_root *delayed_refs;
2583         int ret;
2584
2585         delayed_refs = &trans->transaction->delayed_refs;
2586
2587         ret = cleanup_extent_op(trans, fs_info, head);
2588         if (ret < 0) {
2589                 unselect_delayed_ref_head(delayed_refs, head);
2590                 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2591                 return ret;
2592         } else if (ret) {
2593                 return ret;
2594         }
2595
2596         /*
2597          * Need to drop our head ref lock and re-acquire the delayed ref lock
2598          * and then re-check to make sure nobody got added.
2599          */
2600         spin_unlock(&head->lock);
2601         spin_lock(&delayed_refs->lock);
2602         spin_lock(&head->lock);
2603         if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2604                 spin_unlock(&head->lock);
2605                 spin_unlock(&delayed_refs->lock);
2606                 return 1;
2607         }
2608         delayed_refs->num_heads--;
2609         rb_erase(&head->href_node, &delayed_refs->href_root);
2610         RB_CLEAR_NODE(&head->href_node);
2611         spin_unlock(&delayed_refs->lock);
2612         spin_unlock(&head->lock);
2613         atomic_dec(&delayed_refs->num_entries);
2614
2615         trace_run_delayed_ref_head(fs_info, head, 0);
2616
2617         if (head->total_ref_mod < 0) {
2618                 struct btrfs_block_group_cache *cache;
2619
2620                 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
2621                 ASSERT(cache);
2622                 percpu_counter_add(&cache->space_info->total_bytes_pinned,
2623                                    -head->num_bytes);
2624                 btrfs_put_block_group(cache);
2625
2626                 if (head->is_data) {
2627                         spin_lock(&delayed_refs->lock);
2628                         delayed_refs->pending_csums -= head->num_bytes;
2629                         spin_unlock(&delayed_refs->lock);
2630                 }
2631         }
2632
2633         if (head->must_insert_reserved) {
2634                 btrfs_pin_extent(fs_info, head->bytenr,
2635                                  head->num_bytes, 1);
2636                 if (head->is_data) {
2637                         ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2638                                               head->num_bytes);
2639                 }
2640         }
2641
2642         /* Also free its reserved qgroup space */
2643         btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2644                                       head->qgroup_reserved);
2645         btrfs_delayed_ref_unlock(head);
2646         btrfs_put_delayed_ref_head(head);
2647         return 0;
2648 }
2649
2650 /*
2651  * Returns 0 on success or if called with an already aborted transaction.
2652  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2653  */
2654 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2655                                              struct btrfs_fs_info *fs_info,
2656                                              unsigned long nr)
2657 {
2658         struct btrfs_delayed_ref_root *delayed_refs;
2659         struct btrfs_delayed_ref_node *ref;
2660         struct btrfs_delayed_ref_head *locked_ref = NULL;
2661         struct btrfs_delayed_extent_op *extent_op;
2662         ktime_t start = ktime_get();
2663         int ret;
2664         unsigned long count = 0;
2665         unsigned long actual_count = 0;
2666         int must_insert_reserved = 0;
2667
2668         delayed_refs = &trans->transaction->delayed_refs;
2669         while (1) {
2670                 if (!locked_ref) {
2671                         if (count >= nr)
2672                                 break;
2673
2674                         spin_lock(&delayed_refs->lock);
2675                         locked_ref = btrfs_select_ref_head(trans);
2676                         if (!locked_ref) {
2677                                 spin_unlock(&delayed_refs->lock);
2678                                 break;
2679                         }
2680
2681                         /* grab the lock that says we are going to process
2682                          * all the refs for this head */
2683                         ret = btrfs_delayed_ref_lock(trans, locked_ref);
2684                         spin_unlock(&delayed_refs->lock);
2685                         /*
2686                          * we may have dropped the spin lock to get the head
2687                          * mutex lock, and that might have given someone else
2688                          * time to free the head.  If that's true, it has been
2689                          * removed from our list and we can move on.
2690                          */
2691                         if (ret == -EAGAIN) {
2692                                 locked_ref = NULL;
2693                                 count++;
2694                                 continue;
2695                         }
2696                 }
2697
2698                 /*
2699                  * We need to try and merge add/drops of the same ref since we
2700                  * can run into issues with relocate dropping the implicit ref
2701                  * and then it being added back again before the drop can
2702                  * finish.  If we merged anything we need to re-loop so we can
2703                  * get a good ref.
2704                  * Or we can get node references of the same type that weren't
2705                  * merged when created due to bumps in the tree mod seq, and
2706                  * we need to merge them to prevent adding an inline extent
2707                  * backref before dropping it (triggering a BUG_ON at
2708                  * insert_inline_extent_backref()).
2709                  */
2710                 spin_lock(&locked_ref->lock);
2711                 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2712                                          locked_ref);
2713
2714                 /*
2715                  * locked_ref is the head node, so we have to go one
2716                  * node back for any delayed ref updates
2717                  */
2718                 ref = select_delayed_ref(locked_ref);
2719
2720                 if (ref && ref->seq &&
2721                     btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2722                         spin_unlock(&locked_ref->lock);
2723                         unselect_delayed_ref_head(delayed_refs, locked_ref);
2724                         locked_ref = NULL;
2725                         cond_resched();
2726                         count++;
2727                         continue;
2728                 }
2729
2730                 /*
2731                  * We're done processing refs in this ref_head, clean everything
2732                  * up and move on to the next ref_head.
2733                  */
2734                 if (!ref) {
2735                         ret = cleanup_ref_head(trans, fs_info, locked_ref);
2736                         if (ret > 0 ) {
2737                                 /* We dropped our lock, we need to loop. */
2738                                 ret = 0;
2739                                 continue;
2740                         } else if (ret) {
2741                                 return ret;
2742                         }
2743                         locked_ref = NULL;
2744                         count++;
2745                         continue;
2746                 }
2747
2748                 actual_count++;
2749                 ref->in_tree = 0;
2750                 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2751                 RB_CLEAR_NODE(&ref->ref_node);
2752                 if (!list_empty(&ref->add_list))
2753                         list_del(&ref->add_list);
2754                 /*
2755                  * When we play the delayed ref, also correct the ref_mod on
2756                  * head
2757                  */
2758                 switch (ref->action) {
2759                 case BTRFS_ADD_DELAYED_REF:
2760                 case BTRFS_ADD_DELAYED_EXTENT:
2761                         locked_ref->ref_mod -= ref->ref_mod;
2762                         break;
2763                 case BTRFS_DROP_DELAYED_REF:
2764                         locked_ref->ref_mod += ref->ref_mod;
2765                         break;
2766                 default:
2767                         WARN_ON(1);
2768                 }
2769                 atomic_dec(&delayed_refs->num_entries);
2770
2771                 /*
2772                  * Record the must-insert_reserved flag before we drop the spin
2773                  * lock.
2774                  */
2775                 must_insert_reserved = locked_ref->must_insert_reserved;
2776                 locked_ref->must_insert_reserved = 0;
2777
2778                 extent_op = locked_ref->extent_op;
2779                 locked_ref->extent_op = NULL;
2780                 spin_unlock(&locked_ref->lock);
2781
2782                 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2783                                           must_insert_reserved);
2784
2785                 btrfs_free_delayed_extent_op(extent_op);
2786                 if (ret) {
2787                         unselect_delayed_ref_head(delayed_refs, locked_ref);
2788                         btrfs_put_delayed_ref(ref);
2789                         btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2790                                     ret);
2791                         return ret;
2792                 }
2793
2794                 btrfs_put_delayed_ref(ref);
2795                 count++;
2796                 cond_resched();
2797         }
2798
2799         /*
2800          * We don't want to include ref heads since we can have empty ref heads
2801          * and those will drastically skew our runtime down since we just do
2802          * accounting, no actual extent tree updates.
2803          */
2804         if (actual_count > 0) {
2805                 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2806                 u64 avg;
2807
2808                 /*
2809                  * We weigh the current average higher than our current runtime
2810                  * to avoid large swings in the average.
2811                  */
2812                 spin_lock(&delayed_refs->lock);
2813                 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2814                 fs_info->avg_delayed_ref_runtime = avg >> 2;    /* div by 4 */
2815                 spin_unlock(&delayed_refs->lock);
2816         }
2817         return 0;
2818 }
2819
2820 #ifdef SCRAMBLE_DELAYED_REFS
2821 /*
2822  * Normally delayed refs get processed in ascending bytenr order. This
2823  * correlates in most cases to the order added. To expose dependencies on this
2824  * order, we start to process the tree in the middle instead of the beginning
2825  */
2826 static u64 find_middle(struct rb_root *root)
2827 {
2828         struct rb_node *n = root->rb_node;
2829         struct btrfs_delayed_ref_node *entry;
2830         int alt = 1;
2831         u64 middle;
2832         u64 first = 0, last = 0;
2833
2834         n = rb_first(root);
2835         if (n) {
2836                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2837                 first = entry->bytenr;
2838         }
2839         n = rb_last(root);
2840         if (n) {
2841                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2842                 last = entry->bytenr;
2843         }
2844         n = root->rb_node;
2845
2846         while (n) {
2847                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2848                 WARN_ON(!entry->in_tree);
2849
2850                 middle = entry->bytenr;
2851
2852                 if (alt)
2853                         n = n->rb_left;
2854                 else
2855                         n = n->rb_right;
2856
2857                 alt = 1 - alt;
2858         }
2859         return middle;
2860 }
2861 #endif
2862
2863 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2864 {
2865         u64 num_bytes;
2866
2867         num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2868                              sizeof(struct btrfs_extent_inline_ref));
2869         if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2870                 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2871
2872         /*
2873          * We don't ever fill up leaves all the way so multiply by 2 just to be
2874          * closer to what we're really going to want to use.
2875          */
2876         return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2877 }
2878
2879 /*
2880  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2881  * would require to store the csums for that many bytes.
2882  */
2883 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2884 {
2885         u64 csum_size;
2886         u64 num_csums_per_leaf;
2887         u64 num_csums;
2888
2889         csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2890         num_csums_per_leaf = div64_u64(csum_size,
2891                         (u64)btrfs_super_csum_size(fs_info->super_copy));
2892         num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2893         num_csums += num_csums_per_leaf - 1;
2894         num_csums = div64_u64(num_csums, num_csums_per_leaf);
2895         return num_csums;
2896 }
2897
2898 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2899                                        struct btrfs_fs_info *fs_info)
2900 {
2901         struct btrfs_block_rsv *global_rsv;
2902         u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2903         u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2904         unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2905         u64 num_bytes, num_dirty_bgs_bytes;
2906         int ret = 0;
2907
2908         num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2909         num_heads = heads_to_leaves(fs_info, num_heads);
2910         if (num_heads > 1)
2911                 num_bytes += (num_heads - 1) * fs_info->nodesize;
2912         num_bytes <<= 1;
2913         num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2914                                                         fs_info->nodesize;
2915         num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2916                                                              num_dirty_bgs);
2917         global_rsv = &fs_info->global_block_rsv;
2918
2919         /*
2920          * If we can't allocate any more chunks lets make sure we have _lots_ of
2921          * wiggle room since running delayed refs can create more delayed refs.
2922          */
2923         if (global_rsv->space_info->full) {
2924                 num_dirty_bgs_bytes <<= 1;
2925                 num_bytes <<= 1;
2926         }
2927
2928         spin_lock(&global_rsv->lock);
2929         if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2930                 ret = 1;
2931         spin_unlock(&global_rsv->lock);
2932         return ret;
2933 }
2934
2935 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2936                                        struct btrfs_fs_info *fs_info)
2937 {
2938         u64 num_entries =
2939                 atomic_read(&trans->transaction->delayed_refs.num_entries);
2940         u64 avg_runtime;
2941         u64 val;
2942
2943         smp_mb();
2944         avg_runtime = fs_info->avg_delayed_ref_runtime;
2945         val = num_entries * avg_runtime;
2946         if (val >= NSEC_PER_SEC)
2947                 return 1;
2948         if (val >= NSEC_PER_SEC / 2)
2949                 return 2;
2950
2951         return btrfs_check_space_for_delayed_refs(trans, fs_info);
2952 }
2953
2954 struct async_delayed_refs {
2955         struct btrfs_root *root;
2956         u64 transid;
2957         int count;
2958         int error;
2959         int sync;
2960         struct completion wait;
2961         struct btrfs_work work;
2962 };
2963
2964 static inline struct async_delayed_refs *
2965 to_async_delayed_refs(struct btrfs_work *work)
2966 {
2967         return container_of(work, struct async_delayed_refs, work);
2968 }
2969
2970 static void delayed_ref_async_start(struct btrfs_work *work)
2971 {
2972         struct async_delayed_refs *async = to_async_delayed_refs(work);
2973         struct btrfs_trans_handle *trans;
2974         struct btrfs_fs_info *fs_info = async->root->fs_info;
2975         int ret;
2976
2977         /* if the commit is already started, we don't need to wait here */
2978         if (btrfs_transaction_blocked(fs_info))
2979                 goto done;
2980
2981         trans = btrfs_join_transaction(async->root);
2982         if (IS_ERR(trans)) {
2983                 async->error = PTR_ERR(trans);
2984                 goto done;
2985         }
2986
2987         /*
2988          * trans->sync means that when we call end_transaction, we won't
2989          * wait on delayed refs
2990          */
2991         trans->sync = true;
2992
2993         /* Don't bother flushing if we got into a different transaction */
2994         if (trans->transid > async->transid)
2995                 goto end;
2996
2997         ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
2998         if (ret)
2999                 async->error = ret;
3000 end:
3001         ret = btrfs_end_transaction(trans);
3002         if (ret && !async->error)
3003                 async->error = ret;
3004 done:
3005         if (async->sync)
3006                 complete(&async->wait);
3007         else
3008                 kfree(async);
3009 }
3010
3011 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
3012                                  unsigned long count, u64 transid, int wait)
3013 {
3014         struct async_delayed_refs *async;
3015         int ret;
3016
3017         async = kmalloc(sizeof(*async), GFP_NOFS);
3018         if (!async)
3019                 return -ENOMEM;
3020
3021         async->root = fs_info->tree_root;
3022         async->count = count;
3023         async->error = 0;
3024         async->transid = transid;
3025         if (wait)
3026                 async->sync = 1;
3027         else
3028                 async->sync = 0;
3029         init_completion(&async->wait);
3030
3031         btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3032                         delayed_ref_async_start, NULL, NULL);
3033
3034         btrfs_queue_work(fs_info->extent_workers, &async->work);
3035
3036         if (wait) {
3037                 wait_for_completion(&async->wait);
3038                 ret = async->error;
3039                 kfree(async);
3040                 return ret;
3041         }
3042         return 0;
3043 }
3044
3045 /*
3046  * this starts processing the delayed reference count updates and
3047  * extent insertions we have queued up so far.  count can be
3048  * 0, which means to process everything in the tree at the start
3049  * of the run (but not newly added entries), or it can be some target
3050  * number you'd like to process.
3051  *
3052  * Returns 0 on success or if called with an aborted transaction
3053  * Returns <0 on error and aborts the transaction
3054  */
3055 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3056                            struct btrfs_fs_info *fs_info, unsigned long count)
3057 {
3058         struct rb_node *node;
3059         struct btrfs_delayed_ref_root *delayed_refs;
3060         struct btrfs_delayed_ref_head *head;
3061         int ret;
3062         int run_all = count == (unsigned long)-1;
3063         bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
3064
3065         /* We'll clean this up in btrfs_cleanup_transaction */
3066         if (trans->aborted)
3067                 return 0;
3068
3069         if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
3070                 return 0;
3071
3072         delayed_refs = &trans->transaction->delayed_refs;
3073         if (count == 0)
3074                 count = atomic_read(&delayed_refs->num_entries) * 2;
3075
3076 again:
3077 #ifdef SCRAMBLE_DELAYED_REFS
3078         delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3079 #endif
3080         trans->can_flush_pending_bgs = false;
3081         ret = __btrfs_run_delayed_refs(trans, fs_info, count);
3082         if (ret < 0) {
3083                 btrfs_abort_transaction(trans, ret);
3084                 return ret;
3085         }
3086
3087         if (run_all) {
3088                 if (!list_empty(&trans->new_bgs))
3089                         btrfs_create_pending_block_groups(trans, fs_info);
3090
3091                 spin_lock(&delayed_refs->lock);
3092                 node = rb_first(&delayed_refs->href_root);
3093                 if (!node) {
3094                         spin_unlock(&delayed_refs->lock);
3095                         goto out;
3096                 }
3097                 head = rb_entry(node, struct btrfs_delayed_ref_head,
3098                                 href_node);
3099                 refcount_inc(&head->refs);
3100                 spin_unlock(&delayed_refs->lock);
3101
3102                 /* Mutex was contended, block until it's released and retry. */
3103                 mutex_lock(&head->mutex);
3104                 mutex_unlock(&head->mutex);
3105
3106                 btrfs_put_delayed_ref_head(head);
3107                 cond_resched();
3108                 goto again;
3109         }
3110 out:
3111         trans->can_flush_pending_bgs = can_flush_pending_bgs;
3112         return 0;
3113 }
3114
3115 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3116                                 struct btrfs_fs_info *fs_info,
3117                                 u64 bytenr, u64 num_bytes, u64 flags,
3118                                 int level, int is_data)
3119 {
3120         struct btrfs_delayed_extent_op *extent_op;
3121         int ret;
3122
3123         extent_op = btrfs_alloc_delayed_extent_op();
3124         if (!extent_op)
3125                 return -ENOMEM;
3126
3127         extent_op->flags_to_set = flags;
3128         extent_op->update_flags = true;
3129         extent_op->update_key = false;
3130         extent_op->is_data = is_data ? true : false;
3131         extent_op->level = level;
3132
3133         ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3134                                           num_bytes, extent_op);
3135         if (ret)
3136                 btrfs_free_delayed_extent_op(extent_op);
3137         return ret;
3138 }
3139
3140 static noinline int check_delayed_ref(struct btrfs_root *root,
3141                                       struct btrfs_path *path,
3142                                       u64 objectid, u64 offset, u64 bytenr)
3143 {
3144         struct btrfs_delayed_ref_head *head;
3145         struct btrfs_delayed_ref_node *ref;
3146         struct btrfs_delayed_data_ref *data_ref;
3147         struct btrfs_delayed_ref_root *delayed_refs;
3148         struct btrfs_transaction *cur_trans;
3149         struct rb_node *node;
3150         int ret = 0;
3151
3152         cur_trans = root->fs_info->running_transaction;
3153         if (!cur_trans)
3154                 return 0;
3155
3156         delayed_refs = &cur_trans->delayed_refs;
3157         spin_lock(&delayed_refs->lock);
3158         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3159         if (!head) {
3160                 spin_unlock(&delayed_refs->lock);
3161                 return 0;
3162         }
3163
3164         if (!mutex_trylock(&head->mutex)) {
3165                 refcount_inc(&head->refs);
3166                 spin_unlock(&delayed_refs->lock);
3167
3168                 btrfs_release_path(path);
3169
3170                 /*
3171                  * Mutex was contended, block until it's released and let
3172                  * caller try again
3173                  */
3174                 mutex_lock(&head->mutex);
3175                 mutex_unlock(&head->mutex);
3176                 btrfs_put_delayed_ref_head(head);
3177                 return -EAGAIN;
3178         }
3179         spin_unlock(&delayed_refs->lock);
3180
3181         spin_lock(&head->lock);
3182         /*
3183          * XXX: We should replace this with a proper search function in the
3184          * future.
3185          */
3186         for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3187                 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3188                 /* If it's a shared ref we know a cross reference exists */
3189                 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3190                         ret = 1;
3191                         break;
3192                 }
3193
3194                 data_ref = btrfs_delayed_node_to_data_ref(ref);
3195
3196                 /*
3197                  * If our ref doesn't match the one we're currently looking at
3198                  * then we have a cross reference.
3199                  */
3200                 if (data_ref->root != root->root_key.objectid ||
3201                     data_ref->objectid != objectid ||
3202                     data_ref->offset != offset) {
3203                         ret = 1;
3204                         break;
3205                 }
3206         }
3207         spin_unlock(&head->lock);
3208         mutex_unlock(&head->mutex);
3209         return ret;
3210 }
3211
3212 static noinline int check_committed_ref(struct btrfs_root *root,
3213                                         struct btrfs_path *path,
3214                                         u64 objectid, u64 offset, u64 bytenr)
3215 {
3216         struct btrfs_fs_info *fs_info = root->fs_info;
3217         struct btrfs_root *extent_root = fs_info->extent_root;
3218         struct extent_buffer *leaf;
3219         struct btrfs_extent_data_ref *ref;
3220         struct btrfs_extent_inline_ref *iref;
3221         struct btrfs_extent_item *ei;
3222         struct btrfs_key key;
3223         u32 item_size;
3224         int type;
3225         int ret;
3226
3227         key.objectid = bytenr;
3228         key.offset = (u64)-1;
3229         key.type = BTRFS_EXTENT_ITEM_KEY;
3230
3231         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3232         if (ret < 0)
3233                 goto out;
3234         BUG_ON(ret == 0); /* Corruption */
3235
3236         ret = -ENOENT;
3237         if (path->slots[0] == 0)
3238                 goto out;
3239
3240         path->slots[0]--;
3241         leaf = path->nodes[0];
3242         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3243
3244         if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3245                 goto out;
3246
3247         ret = 1;
3248         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3249 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3250         if (item_size < sizeof(*ei)) {
3251                 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3252                 goto out;
3253         }
3254 #endif
3255         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3256
3257         if (item_size != sizeof(*ei) +
3258             btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3259                 goto out;
3260
3261         if (btrfs_extent_generation(leaf, ei) <=
3262             btrfs_root_last_snapshot(&root->root_item))
3263                 goto out;
3264
3265         iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3266
3267         type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3268         if (type != BTRFS_EXTENT_DATA_REF_KEY)
3269                 goto out;
3270
3271         ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3272         if (btrfs_extent_refs(leaf, ei) !=
3273             btrfs_extent_data_ref_count(leaf, ref) ||
3274             btrfs_extent_data_ref_root(leaf, ref) !=
3275             root->root_key.objectid ||
3276             btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3277             btrfs_extent_data_ref_offset(leaf, ref) != offset)
3278                 goto out;
3279
3280         ret = 0;
3281 out:
3282         return ret;
3283 }
3284
3285 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3286                           u64 bytenr)
3287 {
3288         struct btrfs_path *path;
3289         int ret;
3290         int ret2;
3291
3292         path = btrfs_alloc_path();
3293         if (!path)
3294                 return -ENOENT;
3295
3296         do {
3297                 ret = check_committed_ref(root, path, objectid,
3298                                           offset, bytenr);
3299                 if (ret && ret != -ENOENT)
3300                         goto out;
3301
3302                 ret2 = check_delayed_ref(root, path, objectid,
3303                                          offset, bytenr);
3304         } while (ret2 == -EAGAIN);
3305
3306         if (ret2 && ret2 != -ENOENT) {
3307                 ret = ret2;
3308                 goto out;
3309         }
3310
3311         if (ret != -ENOENT || ret2 != -ENOENT)
3312                 ret = 0;
3313 out:
3314         btrfs_free_path(path);
3315         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3316                 WARN_ON(ret > 0);
3317         return ret;
3318 }
3319
3320 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3321                            struct btrfs_root *root,
3322                            struct extent_buffer *buf,
3323                            int full_backref, int inc)
3324 {
3325         struct btrfs_fs_info *fs_info = root->fs_info;
3326         u64 bytenr;
3327         u64 num_bytes;
3328         u64 parent;
3329         u64 ref_root;
3330         u32 nritems;
3331         struct btrfs_key key;
3332         struct btrfs_file_extent_item *fi;
3333         int i;
3334         int level;
3335         int ret = 0;
3336         int (*process_func)(struct btrfs_trans_handle *,
3337                             struct btrfs_root *,
3338                             u64, u64, u64, u64, u64, u64);
3339
3340
3341         if (btrfs_is_testing(fs_info))
3342                 return 0;
3343
3344         ref_root = btrfs_header_owner(buf);
3345         nritems = btrfs_header_nritems(buf);
3346         level = btrfs_header_level(buf);
3347
3348         if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3349                 return 0;
3350
3351         if (inc)
3352                 process_func = btrfs_inc_extent_ref;
3353         else
3354                 process_func = btrfs_free_extent;
3355
3356         if (full_backref)
3357                 parent = buf->start;
3358         else
3359                 parent = 0;
3360
3361         for (i = 0; i < nritems; i++) {
3362                 if (level == 0) {
3363                         btrfs_item_key_to_cpu(buf, &key, i);
3364                         if (key.type != BTRFS_EXTENT_DATA_KEY)
3365                                 continue;
3366                         fi = btrfs_item_ptr(buf, i,
3367                                             struct btrfs_file_extent_item);
3368                         if (btrfs_file_extent_type(buf, fi) ==
3369                             BTRFS_FILE_EXTENT_INLINE)
3370                                 continue;
3371                         bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3372                         if (bytenr == 0)
3373                                 continue;
3374
3375                         num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3376                         key.offset -= btrfs_file_extent_offset(buf, fi);
3377                         ret = process_func(trans, root, bytenr, num_bytes,
3378                                            parent, ref_root, key.objectid,
3379                                            key.offset);
3380                         if (ret)
3381                                 goto fail;
3382                 } else {
3383                         bytenr = btrfs_node_blockptr(buf, i);
3384                         num_bytes = fs_info->nodesize;
3385                         ret = process_func(trans, root, bytenr, num_bytes,
3386                                            parent, ref_root, level - 1, 0);
3387                         if (ret)
3388                                 goto fail;
3389                 }
3390         }
3391         return 0;
3392 fail:
3393         return ret;
3394 }
3395
3396 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3397                   struct extent_buffer *buf, int full_backref)
3398 {
3399         return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3400 }
3401
3402 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3403                   struct extent_buffer *buf, int full_backref)
3404 {
3405         return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3406 }
3407
3408 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3409                                  struct btrfs_fs_info *fs_info,
3410                                  struct btrfs_path *path,
3411                                  struct btrfs_block_group_cache *cache)
3412 {
3413         int ret;
3414         struct btrfs_root *extent_root = fs_info->extent_root;
3415         unsigned long bi;
3416         struct extent_buffer *leaf;
3417
3418         ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3419         if (ret) {
3420                 if (ret > 0)
3421                         ret = -ENOENT;
3422                 goto fail;
3423         }
3424
3425         leaf = path->nodes[0];
3426         bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3427         write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3428         btrfs_mark_buffer_dirty(leaf);
3429 fail:
3430         btrfs_release_path(path);
3431         return ret;
3432
3433 }
3434
3435 static struct btrfs_block_group_cache *
3436 next_block_group(struct btrfs_fs_info *fs_info,
3437                  struct btrfs_block_group_cache *cache)
3438 {
3439         struct rb_node *node;
3440
3441         spin_lock(&fs_info->block_group_cache_lock);
3442
3443         /* If our block group was removed, we need a full search. */
3444         if (RB_EMPTY_NODE(&cache->cache_node)) {
3445                 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3446
3447                 spin_unlock(&fs_info->block_group_cache_lock);
3448                 btrfs_put_block_group(cache);
3449                 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3450         }
3451         node = rb_next(&cache->cache_node);
3452         btrfs_put_block_group(cache);
3453         if (node) {
3454                 cache = rb_entry(node, struct btrfs_block_group_cache,
3455                                  cache_node);
3456                 btrfs_get_block_group(cache);
3457         } else
3458                 cache = NULL;
3459         spin_unlock(&fs_info->block_group_cache_lock);
3460         return cache;
3461 }
3462
3463 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3464                             struct btrfs_trans_handle *trans,
3465                             struct btrfs_path *path)
3466 {
3467         struct btrfs_fs_info *fs_info = block_group->fs_info;
3468         struct btrfs_root *root = fs_info->tree_root;
3469         struct inode *inode = NULL;
3470         struct extent_changeset *data_reserved = NULL;
3471         u64 alloc_hint = 0;
3472         int dcs = BTRFS_DC_ERROR;
3473         u64 num_pages = 0;
3474         int retries = 0;
3475         int ret = 0;
3476
3477         /*
3478          * If this block group is smaller than 100 megs don't bother caching the
3479          * block group.
3480          */
3481         if (block_group->key.offset < (100 * SZ_1M)) {
3482                 spin_lock(&block_group->lock);
3483                 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3484                 spin_unlock(&block_group->lock);
3485                 return 0;
3486         }
3487
3488         if (trans->aborted)
3489                 return 0;
3490 again:
3491         inode = lookup_free_space_inode(fs_info, block_group, path);
3492         if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3493                 ret = PTR_ERR(inode);
3494                 btrfs_release_path(path);
3495                 goto out;
3496         }
3497
3498         if (IS_ERR(inode)) {
3499                 BUG_ON(retries);
3500                 retries++;
3501
3502                 if (block_group->ro)
3503                         goto out_free;
3504
3505                 ret = create_free_space_inode(fs_info, trans, block_group,
3506                                               path);
3507                 if (ret)
3508                         goto out_free;
3509                 goto again;
3510         }
3511
3512         /*
3513          * We want to set the generation to 0, that way if anything goes wrong
3514          * from here on out we know not to trust this cache when we load up next
3515          * time.
3516          */
3517         BTRFS_I(inode)->generation = 0;
3518         ret = btrfs_update_inode(trans, root, inode);
3519         if (ret) {
3520                 /*
3521                  * So theoretically we could recover from this, simply set the
3522                  * super cache generation to 0 so we know to invalidate the
3523                  * cache, but then we'd have to keep track of the block groups
3524                  * that fail this way so we know we _have_ to reset this cache
3525                  * before the next commit or risk reading stale cache.  So to
3526                  * limit our exposure to horrible edge cases lets just abort the
3527                  * transaction, this only happens in really bad situations
3528                  * anyway.
3529                  */
3530                 btrfs_abort_transaction(trans, ret);
3531                 goto out_put;
3532         }
3533         WARN_ON(ret);
3534
3535         /* We've already setup this transaction, go ahead and exit */
3536         if (block_group->cache_generation == trans->transid &&
3537             i_size_read(inode)) {
3538                 dcs = BTRFS_DC_SETUP;
3539                 goto out_put;
3540         }
3541
3542         if (i_size_read(inode) > 0) {
3543                 ret = btrfs_check_trunc_cache_free_space(fs_info,
3544                                         &fs_info->global_block_rsv);
3545                 if (ret)
3546                         goto out_put;
3547
3548                 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3549                 if (ret)
3550                         goto out_put;
3551         }
3552
3553         spin_lock(&block_group->lock);
3554         if (block_group->cached != BTRFS_CACHE_FINISHED ||
3555             !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3556                 /*
3557                  * don't bother trying to write stuff out _if_
3558                  * a) we're not cached,
3559                  * b) we're with nospace_cache mount option,
3560                  * c) we're with v2 space_cache (FREE_SPACE_TREE).
3561                  */
3562                 dcs = BTRFS_DC_WRITTEN;
3563                 spin_unlock(&block_group->lock);
3564                 goto out_put;
3565         }
3566         spin_unlock(&block_group->lock);
3567
3568         /*
3569          * We hit an ENOSPC when setting up the cache in this transaction, just
3570          * skip doing the setup, we've already cleared the cache so we're safe.
3571          */
3572         if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3573                 ret = -ENOSPC;
3574                 goto out_put;
3575         }
3576
3577         /*
3578          * Try to preallocate enough space based on how big the block group is.
3579          * Keep in mind this has to include any pinned space which could end up
3580          * taking up quite a bit since it's not folded into the other space
3581          * cache.
3582          */
3583         num_pages = div_u64(block_group->key.offset, SZ_256M);
3584         if (!num_pages)
3585                 num_pages = 1;
3586
3587         num_pages *= 16;
3588         num_pages *= PAGE_SIZE;
3589
3590         ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3591         if (ret)
3592                 goto out_put;
3593
3594         ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3595                                               num_pages, num_pages,
3596                                               &alloc_hint);
3597         /*
3598          * Our cache requires contiguous chunks so that we don't modify a bunch
3599          * of metadata or split extents when writing the cache out, which means
3600          * we can enospc if we are heavily fragmented in addition to just normal
3601          * out of space conditions.  So if we hit this just skip setting up any
3602          * other block groups for this transaction, maybe we'll unpin enough
3603          * space the next time around.
3604          */
3605         if (!ret)
3606                 dcs = BTRFS_DC_SETUP;
3607         else if (ret == -ENOSPC)
3608                 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3609
3610 out_put:
3611         iput(inode);
3612 out_free:
3613         btrfs_release_path(path);
3614 out:
3615         spin_lock(&block_group->lock);
3616         if (!ret && dcs == BTRFS_DC_SETUP)
3617                 block_group->cache_generation = trans->transid;
3618         block_group->disk_cache_state = dcs;
3619         spin_unlock(&block_group->lock);
3620
3621         extent_changeset_free(data_reserved);
3622         return ret;
3623 }
3624
3625 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3626                             struct btrfs_fs_info *fs_info)
3627 {
3628         struct btrfs_block_group_cache *cache, *tmp;
3629         struct btrfs_transaction *cur_trans = trans->transaction;
3630         struct btrfs_path *path;
3631
3632         if (list_empty(&cur_trans->dirty_bgs) ||
3633             !btrfs_test_opt(fs_info, SPACE_CACHE))
3634                 return 0;
3635
3636         path = btrfs_alloc_path();
3637         if (!path)
3638                 return -ENOMEM;
3639
3640         /* Could add new block groups, use _safe just in case */
3641         list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3642                                  dirty_list) {
3643                 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3644                         cache_save_setup(cache, trans, path);
3645         }
3646
3647         btrfs_free_path(path);
3648         return 0;
3649 }
3650
3651 /*
3652  * transaction commit does final block group cache writeback during a
3653  * critical section where nothing is allowed to change the FS.  This is
3654  * required in order for the cache to actually match the block group,
3655  * but can introduce a lot of latency into the commit.
3656  *
3657  * So, btrfs_start_dirty_block_groups is here to kick off block group
3658  * cache IO.  There's a chance we'll have to redo some of it if the
3659  * block group changes again during the commit, but it greatly reduces
3660  * the commit latency by getting rid of the easy block groups while
3661  * we're still allowing others to join the commit.
3662  */
3663 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3664                                    struct btrfs_fs_info *fs_info)
3665 {
3666         struct btrfs_block_group_cache *cache;
3667         struct btrfs_transaction *cur_trans = trans->transaction;
3668         int ret = 0;
3669         int should_put;
3670         struct btrfs_path *path = NULL;
3671         LIST_HEAD(dirty);
3672         struct list_head *io = &cur_trans->io_bgs;
3673         int num_started = 0;
3674         int loops = 0;
3675
3676         spin_lock(&cur_trans->dirty_bgs_lock);
3677         if (list_empty(&cur_trans->dirty_bgs)) {
3678                 spin_unlock(&cur_trans->dirty_bgs_lock);
3679                 return 0;
3680         }
3681         list_splice_init(&cur_trans->dirty_bgs, &dirty);
3682         spin_unlock(&cur_trans->dirty_bgs_lock);
3683
3684 again:
3685         /*
3686          * make sure all the block groups on our dirty list actually
3687          * exist
3688          */
3689         btrfs_create_pending_block_groups(trans, fs_info);
3690
3691         if (!path) {
3692                 path = btrfs_alloc_path();
3693                 if (!path)
3694                         return -ENOMEM;
3695         }
3696
3697         /*
3698          * cache_write_mutex is here only to save us from balance or automatic
3699          * removal of empty block groups deleting this block group while we are
3700          * writing out the cache
3701          */
3702         mutex_lock(&trans->transaction->cache_write_mutex);
3703         while (!list_empty(&dirty)) {
3704                 cache = list_first_entry(&dirty,
3705                                          struct btrfs_block_group_cache,
3706                                          dirty_list);
3707                 /*
3708                  * this can happen if something re-dirties a block
3709                  * group that is already under IO.  Just wait for it to
3710                  * finish and then do it all again
3711                  */
3712                 if (!list_empty(&cache->io_list)) {
3713                         list_del_init(&cache->io_list);
3714                         btrfs_wait_cache_io(trans, cache, path);
3715                         btrfs_put_block_group(cache);
3716                 }
3717
3718
3719                 /*
3720                  * btrfs_wait_cache_io uses the cache->dirty_list to decide
3721                  * if it should update the cache_state.  Don't delete
3722                  * until after we wait.
3723                  *
3724                  * Since we're not running in the commit critical section
3725                  * we need the dirty_bgs_lock to protect from update_block_group
3726                  */
3727                 spin_lock(&cur_trans->dirty_bgs_lock);
3728                 list_del_init(&cache->dirty_list);
3729                 spin_unlock(&cur_trans->dirty_bgs_lock);
3730
3731                 should_put = 1;
3732
3733                 cache_save_setup(cache, trans, path);
3734
3735                 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3736                         cache->io_ctl.inode = NULL;
3737                         ret = btrfs_write_out_cache(fs_info, trans,
3738                                                     cache, path);
3739                         if (ret == 0 && cache->io_ctl.inode) {
3740                                 num_started++;
3741                                 should_put = 0;
3742
3743                                 /*
3744                                  * the cache_write_mutex is protecting
3745                                  * the io_list
3746                                  */
3747                                 list_add_tail(&cache->io_list, io);
3748                         } else {
3749                                 /*
3750                                  * if we failed to write the cache, the
3751                                  * generation will be bad and life goes on
3752                                  */
3753                                 ret = 0;
3754                         }
3755                 }
3756                 if (!ret) {
3757                         ret = write_one_cache_group(trans, fs_info,
3758                                                     path, cache);
3759                         /*
3760                          * Our block group might still be attached to the list
3761                          * of new block groups in the transaction handle of some
3762                          * other task (struct btrfs_trans_handle->new_bgs). This
3763                          * means its block group item isn't yet in the extent
3764                          * tree. If this happens ignore the error, as we will
3765                          * try again later in the critical section of the
3766                          * transaction commit.
3767                          */
3768                         if (ret == -ENOENT) {
3769                                 ret = 0;
3770                                 spin_lock(&cur_trans->dirty_bgs_lock);
3771                                 if (list_empty(&cache->dirty_list)) {
3772                                         list_add_tail(&cache->dirty_list,
3773                                                       &cur_trans->dirty_bgs);
3774                                         btrfs_get_block_group(cache);
3775                                 }
3776                                 spin_unlock(&cur_trans->dirty_bgs_lock);
3777                         } else if (ret) {
3778                                 btrfs_abort_transaction(trans, ret);
3779                         }
3780                 }
3781
3782                 /* if its not on the io list, we need to put the block group */
3783                 if (should_put)
3784                         btrfs_put_block_group(cache);
3785
3786                 if (ret)
3787                         break;
3788
3789                 /*
3790                  * Avoid blocking other tasks for too long. It might even save
3791                  * us from writing caches for block groups that are going to be
3792                  * removed.
3793                  */
3794                 mutex_unlock(&trans->transaction->cache_write_mutex);
3795                 mutex_lock(&trans->transaction->cache_write_mutex);
3796         }
3797         mutex_unlock(&trans->transaction->cache_write_mutex);
3798
3799         /*
3800          * go through delayed refs for all the stuff we've just kicked off
3801          * and then loop back (just once)
3802          */
3803         ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3804         if (!ret && loops == 0) {
3805                 loops++;
3806                 spin_lock(&cur_trans->dirty_bgs_lock);
3807                 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3808                 /*
3809                  * dirty_bgs_lock protects us from concurrent block group
3810                  * deletes too (not just cache_write_mutex).
3811                  */
3812                 if (!list_empty(&dirty)) {
3813                         spin_unlock(&cur_trans->dirty_bgs_lock);
3814                         goto again;
3815                 }
3816                 spin_unlock(&cur_trans->dirty_bgs_lock);
3817         } else if (ret < 0) {
3818                 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3819         }
3820
3821         btrfs_free_path(path);
3822         return ret;
3823 }
3824
3825 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3826                                    struct btrfs_fs_info *fs_info)
3827 {
3828         struct btrfs_block_group_cache *cache;
3829         struct btrfs_transaction *cur_trans = trans->transaction;
3830         int ret = 0;
3831         int should_put;
3832         struct btrfs_path *path;
3833         struct list_head *io = &cur_trans->io_bgs;
3834         int num_started = 0;
3835
3836         path = btrfs_alloc_path();
3837         if (!path)
3838                 return -ENOMEM;
3839
3840         /*
3841          * Even though we are in the critical section of the transaction commit,
3842          * we can still have concurrent tasks adding elements to this
3843          * transaction's list of dirty block groups. These tasks correspond to
3844          * endio free space workers started when writeback finishes for a
3845          * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3846          * allocate new block groups as a result of COWing nodes of the root
3847          * tree when updating the free space inode. The writeback for the space
3848          * caches is triggered by an earlier call to
3849          * btrfs_start_dirty_block_groups() and iterations of the following
3850          * loop.
3851          * Also we want to do the cache_save_setup first and then run the
3852          * delayed refs to make sure we have the best chance at doing this all
3853          * in one shot.
3854          */
3855         spin_lock(&cur_trans->dirty_bgs_lock);
3856         while (!list_empty(&cur_trans->dirty_bgs)) {
3857                 cache = list_first_entry(&cur_trans->dirty_bgs,
3858                                          struct btrfs_block_group_cache,
3859                                          dirty_list);
3860
3861                 /*
3862                  * this can happen if cache_save_setup re-dirties a block
3863                  * group that is already under IO.  Just wait for it to
3864                  * finish and then do it all again
3865                  */
3866                 if (!list_empty(&cache->io_list)) {
3867                         spin_unlock(&cur_trans->dirty_bgs_lock);
3868                         list_del_init(&cache->io_list);
3869                         btrfs_wait_cache_io(trans, cache, path);
3870                         btrfs_put_block_group(cache);
3871                         spin_lock(&cur_trans->dirty_bgs_lock);
3872                 }
3873
3874                 /*
3875                  * don't remove from the dirty list until after we've waited
3876                  * on any pending IO
3877                  */
3878                 list_del_init(&cache->dirty_list);
3879                 spin_unlock(&cur_trans->dirty_bgs_lock);
3880                 should_put = 1;
3881
3882                 cache_save_setup(cache, trans, path);
3883
3884                 if (!ret)
3885                         ret = btrfs_run_delayed_refs(trans, fs_info,
3886                                                      (unsigned long) -1);
3887
3888                 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3889                         cache->io_ctl.inode = NULL;
3890                         ret = btrfs_write_out_cache(fs_info, trans,
3891                                                     cache, path);
3892                         if (ret == 0 && cache->io_ctl.inode) {
3893                                 num_started++;
3894                                 should_put = 0;
3895                                 list_add_tail(&cache->io_list, io);
3896                         } else {
3897                                 /*
3898                                  * if we failed to write the cache, the
3899                                  * generation will be bad and life goes on
3900                                  */
3901                                 ret = 0;
3902                         }
3903                 }
3904                 if (!ret) {
3905                         ret = write_one_cache_group(trans, fs_info,
3906                                                     path, cache);
3907                         /*
3908                          * One of the free space endio workers might have
3909                          * created a new block group while updating a free space
3910                          * cache's inode (at inode.c:btrfs_finish_ordered_io())
3911                          * and hasn't released its transaction handle yet, in
3912                          * which case the new block group is still attached to
3913                          * its transaction handle and its creation has not
3914                          * finished yet (no block group item in the extent tree
3915                          * yet, etc). If this is the case, wait for all free
3916                          * space endio workers to finish and retry. This is a
3917                          * a very rare case so no need for a more efficient and
3918                          * complex approach.
3919                          */
3920                         if (ret == -ENOENT) {
3921                                 wait_event(cur_trans->writer_wait,
3922                                    atomic_read(&cur_trans->num_writers) == 1);
3923                                 ret = write_one_cache_group(trans, fs_info,
3924                                                             path, cache);
3925                         }
3926                         if (ret)
3927                                 btrfs_abort_transaction(trans, ret);
3928                 }
3929
3930                 /* if its not on the io list, we need to put the block group */
3931                 if (should_put)
3932                         btrfs_put_block_group(cache);
3933                 spin_lock(&cur_trans->dirty_bgs_lock);
3934         }
3935         spin_unlock(&cur_trans->dirty_bgs_lock);
3936
3937         while (!list_empty(io)) {
3938                 cache = list_first_entry(io, struct btrfs_block_group_cache,
3939                                          io_list);
3940                 list_del_init(&cache->io_list);
3941                 btrfs_wait_cache_io(trans, cache, path);
3942                 btrfs_put_block_group(cache);
3943         }
3944
3945         btrfs_free_path(path);
3946         return ret;
3947 }
3948
3949 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3950 {
3951         struct btrfs_block_group_cache *block_group;
3952         int readonly = 0;
3953
3954         block_group = btrfs_lookup_block_group(fs_info, bytenr);
3955         if (!block_group || block_group->ro)
3956                 readonly = 1;
3957         if (block_group)
3958                 btrfs_put_block_group(block_group);
3959         return readonly;
3960 }
3961
3962 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3963 {
3964         struct btrfs_block_group_cache *bg;
3965         bool ret = true;
3966
3967         bg = btrfs_lookup_block_group(fs_info, bytenr);
3968         if (!bg)
3969                 return false;
3970
3971         spin_lock(&bg->lock);
3972         if (bg->ro)
3973                 ret = false;
3974         else
3975                 atomic_inc(&bg->nocow_writers);
3976         spin_unlock(&bg->lock);
3977
3978         /* no put on block group, done by btrfs_dec_nocow_writers */
3979         if (!ret)
3980                 btrfs_put_block_group(bg);
3981
3982         return ret;
3983
3984 }
3985
3986 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3987 {
3988         struct btrfs_block_group_cache *bg;
3989
3990         bg = btrfs_lookup_block_group(fs_info, bytenr);
3991         ASSERT(bg);
3992         if (atomic_dec_and_test(&bg->nocow_writers))
3993                 wake_up_var(&bg->nocow_writers);
3994         /*
3995          * Once for our lookup and once for the lookup done by a previous call
3996          * to btrfs_inc_nocow_writers()
3997          */
3998         btrfs_put_block_group(bg);
3999         btrfs_put_block_group(bg);
4000 }
4001
4002 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
4003 {
4004         wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
4005 }
4006
4007 static const char *alloc_name(u64 flags)
4008 {
4009         switch (flags) {
4010         case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4011                 return "mixed";
4012         case BTRFS_BLOCK_GROUP_METADATA:
4013                 return "metadata";
4014         case BTRFS_BLOCK_GROUP_DATA:
4015                 return "data";
4016         case BTRFS_BLOCK_GROUP_SYSTEM:
4017                 return "system";
4018         default:
4019                 WARN_ON(1);
4020                 return "invalid-combination";
4021         };
4022 }
4023
4024 static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4025                              struct btrfs_space_info **new)
4026 {
4027
4028         struct btrfs_space_info *space_info;
4029         int i;
4030         int ret;
4031
4032         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4033         if (!space_info)
4034                 return -ENOMEM;
4035
4036         ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4037                                  GFP_KERNEL);
4038         if (ret) {
4039                 kfree(space_info);
4040                 return ret;
4041         }
4042
4043         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4044                 INIT_LIST_HEAD(&space_info->block_groups[i]);
4045         init_rwsem(&space_info->groups_sem);
4046         spin_lock_init(&space_info->lock);
4047         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4048         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4049         init_waitqueue_head(&space_info->wait);
4050         INIT_LIST_HEAD(&space_info->ro_bgs);
4051         INIT_LIST_HEAD(&space_info->tickets);
4052         INIT_LIST_HEAD(&space_info->priority_tickets);
4053
4054         ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4055                                     info->space_info_kobj, "%s",
4056                                     alloc_name(space_info->flags));
4057         if (ret) {
4058                 percpu_counter_destroy(&space_info->total_bytes_pinned);
4059                 kfree(space_info);
4060                 return ret;
4061         }
4062
4063         *new = space_info;
4064         list_add_rcu(&space_info->list, &info->space_info);
4065         if (flags & BTRFS_BLOCK_GROUP_DATA)
4066                 info->data_sinfo = space_info;
4067
4068         return ret;
4069 }
4070
4071 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4072                              u64 total_bytes, u64 bytes_used,
4073                              u64 bytes_readonly,
4074                              struct btrfs_space_info **space_info)
4075 {
4076         struct btrfs_space_info *found;
4077         int factor;
4078
4079         if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4080                      BTRFS_BLOCK_GROUP_RAID10))
4081                 factor = 2;
4082         else
4083                 factor = 1;
4084
4085         found = __find_space_info(info, flags);
4086         ASSERT(found);
4087         spin_lock(&found->lock);
4088         found->total_bytes += total_bytes;
4089         found->disk_total += total_bytes * factor;
4090         found->bytes_used += bytes_used;
4091         found->disk_used += bytes_used * factor;
4092         found->bytes_readonly += bytes_readonly;
4093         if (total_bytes > 0)
4094                 found->full = 0;
4095         space_info_add_new_bytes(info, found, total_bytes -
4096                                  bytes_used - bytes_readonly);
4097         spin_unlock(&found->lock);
4098         *space_info = found;
4099 }
4100
4101 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4102 {
4103         u64 extra_flags = chunk_to_extended(flags) &
4104                                 BTRFS_EXTENDED_PROFILE_MASK;
4105
4106         write_seqlock(&fs_info->profiles_lock);
4107         if (flags & BTRFS_BLOCK_GROUP_DATA)
4108                 fs_info->avail_data_alloc_bits |= extra_flags;
4109         if (flags & BTRFS_BLOCK_GROUP_METADATA)
4110                 fs_info->avail_metadata_alloc_bits |= extra_flags;
4111         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4112                 fs_info->avail_system_alloc_bits |= extra_flags;
4113         write_sequnlock(&fs_info->profiles_lock);
4114 }
4115
4116 /*
4117  * returns target flags in extended format or 0 if restripe for this
4118  * chunk_type is not in progress
4119  *
4120  * should be called with either volume_mutex or balance_lock held
4121  */
4122 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4123 {
4124         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4125         u64 target = 0;
4126
4127         if (!bctl)
4128                 return 0;
4129
4130         if (flags & BTRFS_BLOCK_GROUP_DATA &&
4131             bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4132                 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4133         } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4134                    bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4135                 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4136         } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4137                    bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4138                 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4139         }
4140
4141         return target;
4142 }
4143
4144 /*
4145  * @flags: available profiles in extended format (see ctree.h)
4146  *
4147  * Returns reduced profile in chunk format.  If profile changing is in
4148  * progress (either running or paused) picks the target profile (if it's
4149  * already available), otherwise falls back to plain reducing.
4150  */
4151 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4152 {
4153         u64 num_devices = fs_info->fs_devices->rw_devices;
4154         u64 target;
4155         u64 raid_type;
4156         u64 allowed = 0;
4157
4158         /*
4159          * see if restripe for this chunk_type is in progress, if so
4160          * try to reduce to the target profile
4161          */
4162         spin_lock(&fs_info->balance_lock);
4163         target = get_restripe_target(fs_info, flags);
4164         if (target) {
4165                 /* pick target profile only if it's already available */
4166                 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4167                         spin_unlock(&fs_info->balance_lock);
4168                         return extended_to_chunk(target);
4169                 }
4170         }
4171         spin_unlock(&fs_info->balance_lock);
4172
4173         /* First, mask out the RAID levels which aren't possible */
4174         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4175                 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4176                         allowed |= btrfs_raid_group[raid_type];
4177         }
4178         allowed &= flags;
4179
4180         if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4181                 allowed = BTRFS_BLOCK_GROUP_RAID6;
4182         else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4183                 allowed = BTRFS_BLOCK_GROUP_RAID5;
4184         else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4185                 allowed = BTRFS_BLOCK_GROUP_RAID10;
4186         else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4187                 allowed = BTRFS_BLOCK_GROUP_RAID1;
4188         else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4189                 allowed = BTRFS_BLOCK_GROUP_RAID0;
4190
4191         flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4192
4193         return extended_to_chunk(flags | allowed);
4194 }
4195
4196 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4197 {
4198         unsigned seq;
4199         u64 flags;
4200
4201         do {
4202                 flags = orig_flags;
4203                 seq = read_seqbegin(&fs_info->profiles_lock);
4204
4205                 if (flags & BTRFS_BLOCK_GROUP_DATA)
4206                         flags |= fs_info->avail_data_alloc_bits;
4207                 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4208                         flags |= fs_info->avail_system_alloc_bits;
4209                 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4210                         flags |= fs_info->avail_metadata_alloc_bits;
4211         } while (read_seqretry(&fs_info->profiles_lock, seq));
4212
4213         return btrfs_reduce_alloc_profile(fs_info, flags);
4214 }
4215
4216 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4217 {
4218         struct btrfs_fs_info *fs_info = root->fs_info;
4219         u64 flags;
4220         u64 ret;
4221
4222         if (data)
4223                 flags = BTRFS_BLOCK_GROUP_DATA;
4224         else if (root == fs_info->chunk_root)
4225                 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4226         else
4227                 flags = BTRFS_BLOCK_GROUP_METADATA;
4228
4229         ret = get_alloc_profile(fs_info, flags);
4230         return ret;
4231 }
4232
4233 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4234 {
4235         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4236 }
4237
4238 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4239 {
4240         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4241 }
4242
4243 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4244 {
4245         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4246 }
4247
4248 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4249                                  bool may_use_included)
4250 {
4251         ASSERT(s_info);
4252         return s_info->bytes_used + s_info->bytes_reserved +
4253                 s_info->bytes_pinned + s_info->bytes_readonly +
4254                 (may_use_included ? s_info->bytes_may_use : 0);
4255 }
4256
4257 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4258 {
4259         struct btrfs_root *root = inode->root;
4260         struct btrfs_fs_info *fs_info = root->fs_info;
4261         struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4262         u64 used;
4263         int ret = 0;
4264         int need_commit = 2;
4265         int have_pinned_space;
4266
4267         /* make sure bytes are sectorsize aligned */
4268         bytes = ALIGN(bytes, fs_info->sectorsize);
4269
4270         if (btrfs_is_free_space_inode(inode)) {
4271                 need_commit = 0;
4272                 ASSERT(current->journal_info);
4273         }
4274
4275 again:
4276         /* make sure we have enough space to handle the data first */
4277         spin_lock(&data_sinfo->lock);
4278         used = btrfs_space_info_used(data_sinfo, true);
4279
4280         if (used + bytes > data_sinfo->total_bytes) {
4281                 struct btrfs_trans_handle *trans;
4282
4283                 /*
4284                  * if we don't have enough free bytes in this space then we need
4285                  * to alloc a new chunk.
4286                  */
4287                 if (!data_sinfo->full) {
4288                         u64 alloc_target;
4289
4290                         data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4291                         spin_unlock(&data_sinfo->lock);
4292
4293                         alloc_target = btrfs_data_alloc_profile(fs_info);
4294                         /*
4295                          * It is ugly that we don't call nolock join
4296                          * transaction for the free space inode case here.
4297                          * But it is safe because we only do the data space
4298                          * reservation for the free space cache in the
4299                          * transaction context, the common join transaction
4300                          * just increase the counter of the current transaction
4301                          * handler, doesn't try to acquire the trans_lock of
4302                          * the fs.
4303                          */
4304                         trans = btrfs_join_transaction(root);
4305                         if (IS_ERR(trans))
4306                                 return PTR_ERR(trans);
4307
4308                         ret = do_chunk_alloc(trans, fs_info, alloc_target,
4309                                              CHUNK_ALLOC_NO_FORCE);
4310                         btrfs_end_transaction(trans);
4311                         if (ret < 0) {
4312                                 if (ret != -ENOSPC)
4313                                         return ret;
4314                                 else {
4315                                         have_pinned_space = 1;
4316                                         goto commit_trans;
4317                                 }
4318                         }
4319
4320                         goto again;
4321                 }
4322
4323                 /*
4324                  * If we don't have enough pinned space to deal with this
4325                  * allocation, and no removed chunk in current transaction,
4326                  * don't bother committing the transaction.
4327                  */
4328                 have_pinned_space = percpu_counter_compare(
4329                         &data_sinfo->total_bytes_pinned,
4330                         used + bytes - data_sinfo->total_bytes);
4331                 spin_unlock(&data_sinfo->lock);
4332
4333                 /* commit the current transaction and try again */
4334 commit_trans:
4335                 if (need_commit &&
4336                     !atomic_read(&fs_info->open_ioctl_trans)) {
4337                         need_commit--;
4338
4339                         if (need_commit > 0) {
4340                                 btrfs_start_delalloc_roots(fs_info, 0, -1);
4341                                 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4342                                                          (u64)-1);
4343                         }
4344
4345                         trans = btrfs_join_transaction(root);
4346                         if (IS_ERR(trans))
4347                                 return PTR_ERR(trans);
4348                         if (have_pinned_space >= 0 ||
4349                             test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4350                                      &trans->transaction->flags) ||
4351                             need_commit > 0) {
4352                                 ret = btrfs_commit_transaction(trans);
4353                                 if (ret)
4354                                         return ret;
4355                                 /*
4356                                  * The cleaner kthread might still be doing iput
4357                                  * operations. Wait for it to finish so that
4358                                  * more space is released.
4359                                  */
4360                                 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4361                                 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4362                                 goto again;
4363                         } else {
4364                                 btrfs_end_transaction(trans);
4365                         }
4366                 }
4367
4368                 trace_btrfs_space_reservation(fs_info,
4369                                               "space_info:enospc",
4370                                               data_sinfo->flags, bytes, 1);
4371                 return -ENOSPC;
4372         }
4373         data_sinfo->bytes_may_use += bytes;
4374         trace_btrfs_space_reservation(fs_info, "space_info",
4375                                       data_sinfo->flags, bytes, 1);
4376         spin_unlock(&data_sinfo->lock);
4377
4378         return ret;
4379 }
4380
4381 int btrfs_check_data_free_space(struct inode *inode,
4382                         struct extent_changeset **reserved, u64 start, u64 len)
4383 {
4384         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4385         int ret;
4386
4387         /* align the range */
4388         len = round_up(start + len, fs_info->sectorsize) -
4389               round_down(start, fs_info->sectorsize);
4390         start = round_down(start, fs_info->sectorsize);
4391
4392         ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4393         if (ret < 0)
4394                 return ret;
4395
4396         /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4397         ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4398         if (ret < 0)
4399                 btrfs_free_reserved_data_space_noquota(inode, start, len);
4400         else
4401                 ret = 0;
4402         return ret;
4403 }
4404
4405 /*
4406  * Called if we need to clear a data reservation for this inode
4407  * Normally in a error case.
4408  *
4409  * This one will *NOT* use accurate qgroup reserved space API, just for case
4410  * which we can't sleep and is sure it won't affect qgroup reserved space.
4411  * Like clear_bit_hook().
4412  */
4413 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4414                                             u64 len)
4415 {
4416         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4417         struct btrfs_space_info *data_sinfo;
4418
4419         /* Make sure the range is aligned to sectorsize */
4420         len = round_up(start + len, fs_info->sectorsize) -
4421               round_down(start, fs_info->sectorsize);
4422         start = round_down(start, fs_info->sectorsize);
4423
4424         data_sinfo = fs_info->data_sinfo;
4425         spin_lock(&data_sinfo->lock);
4426         if (WARN_ON(data_sinfo->bytes_may_use < len))
4427                 data_sinfo->bytes_may_use = 0;
4428         else
4429                 data_sinfo->bytes_may_use -= len;
4430         trace_btrfs_space_reservation(fs_info, "space_info",
4431                                       data_sinfo->flags, len, 0);
4432         spin_unlock(&data_sinfo->lock);
4433 }
4434
4435 /*
4436  * Called if we need to clear a data reservation for this inode
4437  * Normally in a error case.
4438  *
4439  * This one will handle the per-inode data rsv map for accurate reserved
4440  * space framework.
4441  */
4442 void btrfs_free_reserved_data_space(struct inode *inode,
4443                         struct extent_changeset *reserved, u64 start, u64 len)
4444 {
4445         struct btrfs_root *root = BTRFS_I(inode)->root;
4446
4447         /* Make sure the range is aligned to sectorsize */
4448         len = round_up(start + len, root->fs_info->sectorsize) -
4449               round_down(start, root->fs_info->sectorsize);
4450         start = round_down(start, root->fs_info->sectorsize);
4451
4452         btrfs_free_reserved_data_space_noquota(inode, start, len);
4453         btrfs_qgroup_free_data(inode, reserved, start, len);
4454 }
4455
4456 static void force_metadata_allocation(struct btrfs_fs_info *info)
4457 {
4458         struct list_head *head = &info->space_info;
4459         struct btrfs_space_info *found;
4460
4461         rcu_read_lock();
4462         list_for_each_entry_rcu(found, head, list) {
4463                 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4464                         found->force_alloc = CHUNK_ALLOC_FORCE;
4465         }
4466         rcu_read_unlock();
4467 }
4468
4469 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4470 {
4471         return (global->size << 1);
4472 }
4473
4474 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4475                               struct btrfs_space_info *sinfo, int force)
4476 {
4477         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4478         u64 bytes_used = btrfs_space_info_used(sinfo, false);
4479         u64 thresh;
4480
4481         if (force == CHUNK_ALLOC_FORCE)
4482                 return 1;
4483
4484         /*
4485          * We need to take into account the global rsv because for all intents
4486          * and purposes it's used space.  Don't worry about locking the
4487          * global_rsv, it doesn't change except when the transaction commits.
4488          */
4489         if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4490                 bytes_used += calc_global_rsv_need_space(global_rsv);
4491
4492         /*
4493          * in limited mode, we want to have some free space up to
4494          * about 1% of the FS size.
4495          */
4496         if (force == CHUNK_ALLOC_LIMITED) {
4497                 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4498                 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4499
4500                 if (sinfo->total_bytes - bytes_used < thresh)
4501                         return 1;
4502         }
4503
4504         if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4505                 return 0;
4506         return 1;
4507 }
4508
4509 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4510 {
4511         u64 num_dev;
4512
4513         if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4514                     BTRFS_BLOCK_GROUP_RAID0 |
4515                     BTRFS_BLOCK_GROUP_RAID5 |
4516                     BTRFS_BLOCK_GROUP_RAID6))
4517                 num_dev = fs_info->fs_devices->rw_devices;
4518         else if (type & BTRFS_BLOCK_GROUP_RAID1)
4519                 num_dev = 2;
4520         else
4521                 num_dev = 1;    /* DUP or single */
4522
4523         return num_dev;
4524 }
4525
4526 /*
4527  * If @is_allocation is true, reserve space in the system space info necessary
4528  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4529  * removing a chunk.
4530  */
4531 void check_system_chunk(struct btrfs_trans_handle *trans,
4532                         struct btrfs_fs_info *fs_info, u64 type)
4533 {
4534         struct btrfs_space_info *info;
4535         u64 left;
4536         u64 thresh;
4537         int ret = 0;
4538         u64 num_devs;
4539
4540         /*
4541          * Needed because we can end up allocating a system chunk and for an
4542          * atomic and race free space reservation in the chunk block reserve.
4543          */
4544         ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4545
4546         info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4547         spin_lock(&info->lock);
4548         left = info->total_bytes - btrfs_space_info_used(info, true);
4549         spin_unlock(&info->lock);
4550
4551         num_devs = get_profile_num_devs(fs_info, type);
4552
4553         /* num_devs device items to update and 1 chunk item to add or remove */
4554         thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4555                 btrfs_calc_trans_metadata_size(fs_info, 1);
4556
4557         if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4558                 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4559                            left, thresh, type);
4560                 dump_space_info(fs_info, info, 0, 0);
4561         }
4562
4563         if (left < thresh) {
4564                 u64 flags = btrfs_system_alloc_profile(fs_info);
4565
4566                 /*
4567                  * Ignore failure to create system chunk. We might end up not
4568                  * needing it, as we might not need to COW all nodes/leafs from
4569                  * the paths we visit in the chunk tree (they were already COWed
4570                  * or created in the current transaction for example).
4571                  */
4572                 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4573         }
4574
4575         if (!ret) {
4576                 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4577                                           &fs_info->chunk_block_rsv,
4578                                           thresh, BTRFS_RESERVE_NO_FLUSH);
4579                 if (!ret)
4580                         trans->chunk_bytes_reserved += thresh;
4581         }
4582 }
4583
4584 /*
4585  * If force is CHUNK_ALLOC_FORCE:
4586  *    - return 1 if it successfully allocates a chunk,
4587  *    - return errors including -ENOSPC otherwise.
4588  * If force is NOT CHUNK_ALLOC_FORCE:
4589  *    - return 0 if it doesn't need to allocate a new chunk,
4590  *    - return 1 if it successfully allocates a chunk,
4591  *    - return errors including -ENOSPC otherwise.
4592  */
4593 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4594                           struct btrfs_fs_info *fs_info, u64 flags, int force)
4595 {
4596         struct btrfs_space_info *space_info;
4597         int wait_for_alloc = 0;
4598         int ret = 0;
4599
4600         /* Don't re-enter if we're already allocating a chunk */
4601         if (trans->allocating_chunk)
4602                 return -ENOSPC;
4603
4604         space_info = __find_space_info(fs_info, flags);
4605         if (!space_info) {
4606                 ret = create_space_info(fs_info, flags, &space_info);
4607                 if (ret)
4608                         return ret;
4609         }
4610
4611 again:
4612         spin_lock(&space_info->lock);
4613         if (force < space_info->force_alloc)
4614                 force = space_info->force_alloc;
4615         if (space_info->full) {
4616                 if (should_alloc_chunk(fs_info, space_info, force))
4617                         ret = -ENOSPC;
4618                 else
4619                         ret = 0;
4620                 spin_unlock(&space_info->lock);
4621                 return ret;
4622         }
4623
4624         if (!should_alloc_chunk(fs_info, space_info, force)) {
4625                 spin_unlock(&space_info->lock);
4626                 return 0;
4627         } else if (space_info->chunk_alloc) {
4628                 wait_for_alloc = 1;
4629         } else {
4630                 space_info->chunk_alloc = 1;
4631         }
4632
4633         spin_unlock(&space_info->lock);
4634
4635         mutex_lock(&fs_info->chunk_mutex);
4636
4637         /*
4638          * The chunk_mutex is held throughout the entirety of a chunk
4639          * allocation, so once we've acquired the chunk_mutex we know that the
4640          * other guy is done and we need to recheck and see if we should
4641          * allocate.
4642          */
4643         if (wait_for_alloc) {
4644                 mutex_unlock(&fs_info->chunk_mutex);
4645                 wait_for_alloc = 0;
4646                 goto again;
4647         }
4648
4649         trans->allocating_chunk = true;
4650
4651         /*
4652          * If we have mixed data/metadata chunks we want to make sure we keep
4653          * allocating mixed chunks instead of individual chunks.
4654          */
4655         if (btrfs_mixed_space_info(space_info))
4656                 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4657
4658         /*
4659          * if we're doing a data chunk, go ahead and make sure that
4660          * we keep a reasonable number of metadata chunks allocated in the
4661          * FS as well.
4662          */
4663         if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4664                 fs_info->data_chunk_allocations++;
4665                 if (!(fs_info->data_chunk_allocations %
4666                       fs_info->metadata_ratio))
4667                         force_metadata_allocation(fs_info);
4668         }
4669
4670         /*
4671          * Check if we have enough space in SYSTEM chunk because we may need
4672          * to update devices.
4673          */
4674         check_system_chunk(trans, fs_info, flags);
4675
4676         ret = btrfs_alloc_chunk(trans, fs_info, flags);
4677         trans->allocating_chunk = false;
4678
4679         spin_lock(&space_info->lock);
4680         if (ret < 0 && ret != -ENOSPC)
4681                 goto out;
4682         if (ret)
4683                 space_info->full = 1;
4684         else
4685                 ret = 1;
4686
4687         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4688 out:
4689         space_info->chunk_alloc = 0;
4690         spin_unlock(&space_info->lock);
4691         mutex_unlock(&fs_info->chunk_mutex);
4692         /*
4693          * When we allocate a new chunk we reserve space in the chunk block
4694          * reserve to make sure we can COW nodes/leafs in the chunk tree or
4695          * add new nodes/leafs to it if we end up needing to do it when
4696          * inserting the chunk item and updating device items as part of the
4697          * second phase of chunk allocation, performed by
4698          * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4699          * large number of new block groups to create in our transaction
4700          * handle's new_bgs list to avoid exhausting the chunk block reserve
4701          * in extreme cases - like having a single transaction create many new
4702          * block groups when starting to write out the free space caches of all
4703          * the block groups that were made dirty during the lifetime of the
4704          * transaction.
4705          */
4706         if (trans->can_flush_pending_bgs &&
4707             trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4708                 btrfs_create_pending_block_groups(trans, fs_info);
4709                 btrfs_trans_release_chunk_metadata(trans);
4710         }
4711         return ret;
4712 }
4713
4714 static int can_overcommit(struct btrfs_fs_info *fs_info,
4715                           struct btrfs_space_info *space_info, u64 bytes,
4716                           enum btrfs_reserve_flush_enum flush,
4717                           bool system_chunk)
4718 {
4719         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4720         u64 profile;
4721         u64 space_size;
4722         u64 avail;
4723         u64 used;
4724
4725         /* Don't overcommit when in mixed mode. */
4726         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4727                 return 0;
4728
4729         if (system_chunk)
4730                 profile = btrfs_system_alloc_profile(fs_info);
4731         else
4732                 profile = btrfs_metadata_alloc_profile(fs_info);
4733
4734         used = btrfs_space_info_used(space_info, false);
4735
4736         /*
4737          * We only want to allow over committing if we have lots of actual space
4738          * free, but if we don't have enough space to handle the global reserve
4739          * space then we could end up having a real enospc problem when trying
4740          * to allocate a chunk or some other such important allocation.
4741          */
4742         spin_lock(&global_rsv->lock);
4743         space_size = calc_global_rsv_need_space(global_rsv);
4744         spin_unlock(&global_rsv->lock);
4745         if (used + space_size >= space_info->total_bytes)
4746                 return 0;
4747
4748         used += space_info->bytes_may_use;
4749
4750         avail = atomic64_read(&fs_info->free_chunk_space);
4751
4752         /*
4753          * If we have dup, raid1 or raid10 then only half of the free
4754          * space is actually useable.  For raid56, the space info used
4755          * doesn't include the parity drive, so we don't have to
4756          * change the math
4757          */
4758         if (profile & (BTRFS_BLOCK_GROUP_DUP |
4759                        BTRFS_BLOCK_GROUP_RAID1 |
4760                        BTRFS_BLOCK_GROUP_RAID10))
4761                 avail >>= 1;
4762
4763         /*
4764          * If we aren't flushing all things, let us overcommit up to
4765          * 1/2th of the space. If we can flush, don't let us overcommit
4766          * too much, let it overcommit up to 1/8 of the space.
4767          */
4768         if (flush == BTRFS_RESERVE_FLUSH_ALL)
4769                 avail >>= 3;
4770         else
4771                 avail >>= 1;
4772
4773         if (used + bytes < space_info->total_bytes + avail)
4774                 return 1;
4775         return 0;
4776 }
4777
4778 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4779                                          unsigned long nr_pages, int nr_items)
4780 {
4781         struct super_block *sb = fs_info->sb;
4782
4783         if (down_read_trylock(&sb->s_umount)) {
4784                 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4785                 up_read(&sb->s_umount);
4786         } else {
4787                 /*
4788                  * We needn't worry the filesystem going from r/w to r/o though
4789                  * we don't acquire ->s_umount mutex, because the filesystem
4790                  * should guarantee the delalloc inodes list be empty after
4791                  * the filesystem is readonly(all dirty pages are written to
4792                  * the disk).
4793                  */
4794                 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4795                 if (!current->journal_info)
4796                         btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4797         }
4798 }
4799
4800 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4801                                         u64 to_reclaim)
4802 {
4803         u64 bytes;
4804         u64 nr;
4805
4806         bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4807         nr = div64_u64(to_reclaim, bytes);
4808         if (!nr)
4809                 nr = 1;
4810         return nr;
4811 }
4812
4813 #define EXTENT_SIZE_PER_ITEM    SZ_256K
4814
4815 /*
4816  * shrink metadata reservation for delalloc
4817  */
4818 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4819                             u64 orig, bool wait_ordered)
4820 {
4821         struct btrfs_space_info *space_info;
4822         struct btrfs_trans_handle *trans;
4823         u64 delalloc_bytes;
4824         u64 max_reclaim;
4825         u64 items;
4826         long time_left;
4827         unsigned long nr_pages;
4828         int loops;
4829         enum btrfs_reserve_flush_enum flush;
4830
4831         /* Calc the number of the pages we need flush for space reservation */
4832         items = calc_reclaim_items_nr(fs_info, to_reclaim);
4833         to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4834
4835         trans = (struct btrfs_trans_handle *)current->journal_info;
4836         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4837
4838         delalloc_bytes = percpu_counter_sum_positive(
4839                                                 &fs_info->delalloc_bytes);
4840         if (delalloc_bytes == 0) {
4841                 if (trans)
4842                         return;
4843                 if (wait_ordered)
4844                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4845                 return;
4846         }
4847
4848         loops = 0;
4849         while (delalloc_bytes && loops < 3) {
4850                 max_reclaim = min(delalloc_bytes, to_reclaim);
4851                 nr_pages = max_reclaim >> PAGE_SHIFT;
4852                 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4853                 /*
4854                  * We need to wait for the async pages to actually start before
4855                  * we do anything.
4856                  */
4857                 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4858                 if (!max_reclaim)
4859                         goto skip_async;
4860
4861                 if (max_reclaim <= nr_pages)
4862                         max_reclaim = 0;
4863                 else
4864                         max_reclaim -= nr_pages;
4865
4866                 wait_event(fs_info->async_submit_wait,
4867                            atomic_read(&fs_info->async_delalloc_pages) <=
4868                            (int)max_reclaim);
4869 skip_async:
4870                 if (!trans)
4871                         flush = BTRFS_RESERVE_FLUSH_ALL;
4872                 else
4873                         flush = BTRFS_RESERVE_NO_FLUSH;
4874                 spin_lock(&space_info->lock);
4875                 if (list_empty(&space_info->tickets) &&
4876                     list_empty(&space_info->priority_tickets)) {
4877                         spin_unlock(&space_info->lock);
4878                         break;
4879                 }
4880                 spin_unlock(&space_info->lock);
4881
4882                 loops++;
4883                 if (wait_ordered && !trans) {
4884                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4885                 } else {
4886                         time_left = schedule_timeout_killable(1);
4887                         if (time_left)
4888                                 break;
4889                 }
4890                 delalloc_bytes = percpu_counter_sum_positive(
4891                                                 &fs_info->delalloc_bytes);
4892         }
4893 }
4894
4895 struct reserve_ticket {
4896         u64 bytes;
4897         int error;
4898         struct list_head list;
4899         wait_queue_head_t wait;
4900 };
4901
4902 /**
4903  * maybe_commit_transaction - possibly commit the transaction if its ok to
4904  * @root - the root we're allocating for
4905  * @bytes - the number of bytes we want to reserve
4906  * @force - force the commit
4907  *
4908  * This will check to make sure that committing the transaction will actually
4909  * get us somewhere and then commit the transaction if it does.  Otherwise it
4910  * will return -ENOSPC.
4911  */
4912 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4913                                   struct btrfs_space_info *space_info)
4914 {
4915         struct reserve_ticket *ticket = NULL;
4916         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4917         struct btrfs_trans_handle *trans;
4918         u64 bytes;
4919
4920         trans = (struct btrfs_trans_handle *)current->journal_info;
4921         if (trans)
4922                 return -EAGAIN;
4923
4924         spin_lock(&space_info->lock);
4925         if (!list_empty(&space_info->priority_tickets))
4926                 ticket = list_first_entry(&space_info->priority_tickets,
4927                                           struct reserve_ticket, list);
4928         else if (!list_empty(&space_info->tickets))
4929                 ticket = list_first_entry(&space_info->tickets,
4930                                           struct reserve_ticket, list);
4931         bytes = (ticket) ? ticket->bytes : 0;
4932         spin_unlock(&space_info->lock);
4933
4934         if (!bytes)
4935                 return 0;
4936
4937         /* See if there is enough pinned space to make this reservation */
4938         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4939                                    bytes) >= 0)
4940                 goto commit;
4941
4942         /*
4943          * See if there is some space in the delayed insertion reservation for
4944          * this reservation.
4945          */
4946         if (space_info != delayed_rsv->space_info)
4947                 return -ENOSPC;
4948
4949         spin_lock(&delayed_rsv->lock);
4950         if (delayed_rsv->size > bytes)
4951                 bytes = 0;
4952         else
4953                 bytes -= delayed_rsv->size;
4954         spin_unlock(&delayed_rsv->lock);
4955
4956         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4957                                    bytes) < 0) {
4958                 return -ENOSPC;
4959         }
4960
4961 commit:
4962         trans = btrfs_join_transaction(fs_info->extent_root);
4963         if (IS_ERR(trans))
4964                 return -ENOSPC;
4965
4966         return btrfs_commit_transaction(trans);
4967 }
4968
4969 /*
4970  * Try to flush some data based on policy set by @state. This is only advisory
4971  * and may fail for various reasons. The caller is supposed to examine the
4972  * state of @space_info to detect the outcome.
4973  */
4974 static void flush_space(struct btrfs_fs_info *fs_info,
4975                        struct btrfs_space_info *space_info, u64 num_bytes,
4976                        int state)
4977 {
4978         struct btrfs_root *root = fs_info->extent_root;
4979         struct btrfs_trans_handle *trans;
4980         int nr;
4981         int ret = 0;
4982
4983         switch (state) {
4984         case FLUSH_DELAYED_ITEMS_NR:
4985         case FLUSH_DELAYED_ITEMS:
4986                 if (state == FLUSH_DELAYED_ITEMS_NR)
4987                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4988                 else
4989                         nr = -1;
4990
4991                 trans = btrfs_join_transaction(root);
4992                 if (IS_ERR(trans)) {
4993                         ret = PTR_ERR(trans);
4994                         break;
4995                 }
4996                 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
4997                 btrfs_end_transaction(trans);
4998                 break;
4999         case FLUSH_DELALLOC:
5000         case FLUSH_DELALLOC_WAIT:
5001                 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
5002                                 state == FLUSH_DELALLOC_WAIT);
5003                 break;
5004         case ALLOC_CHUNK:
5005                 trans = btrfs_join_transaction(root);
5006                 if (IS_ERR(trans)) {
5007                         ret = PTR_ERR(trans);
5008                         break;
5009                 }
5010                 ret = do_chunk_alloc(trans, fs_info,
5011                                      btrfs_metadata_alloc_profile(fs_info),
5012                                      CHUNK_ALLOC_NO_FORCE);
5013                 btrfs_end_transaction(trans);
5014                 if (ret > 0 || ret == -ENOSPC)
5015                         ret = 0;
5016                 break;
5017         case COMMIT_TRANS:
5018                 ret = may_commit_transaction(fs_info, space_info);
5019                 break;
5020         default:
5021                 ret = -ENOSPC;
5022                 break;
5023         }
5024
5025         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5026                                 ret);
5027         return;
5028 }
5029
5030 static inline u64
5031 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5032                                  struct btrfs_space_info *space_info,
5033                                  bool system_chunk)
5034 {
5035         struct reserve_ticket *ticket;
5036         u64 used;
5037         u64 expected;
5038         u64 to_reclaim = 0;
5039
5040         list_for_each_entry(ticket, &space_info->tickets, list)
5041                 to_reclaim += ticket->bytes;
5042         list_for_each_entry(ticket, &space_info->priority_tickets, list)
5043                 to_reclaim += ticket->bytes;
5044         if (to_reclaim)
5045                 return to_reclaim;
5046
5047         to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
5048         if (can_overcommit(fs_info, space_info, to_reclaim,
5049                            BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5050                 return 0;
5051
5052         used = btrfs_space_info_used(space_info, true);
5053
5054         if (can_overcommit(fs_info, space_info, SZ_1M,
5055                            BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5056                 expected = div_factor_fine(space_info->total_bytes, 95);
5057         else
5058                 expected = div_factor_fine(space_info->total_bytes, 90);
5059
5060         if (used > expected)
5061                 to_reclaim = used - expected;
5062         else
5063                 to_reclaim = 0;
5064         to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5065                                      space_info->bytes_reserved);
5066         return to_reclaim;
5067 }
5068
5069 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5070                                         struct btrfs_space_info *space_info,
5071                                         u64 used, bool system_chunk)
5072 {
5073         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5074
5075         /* If we're just plain full then async reclaim just slows us down. */
5076         if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5077                 return 0;
5078
5079         if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5080                                               system_chunk))
5081                 return 0;
5082
5083         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5084                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5085 }
5086
5087 static void wake_all_tickets(struct list_head *head)
5088 {
5089         struct reserve_ticket *ticket;
5090
5091         while (!list_empty(head)) {
5092                 ticket = list_first_entry(head, struct reserve_ticket, list);
5093                 list_del_init(&ticket->list);
5094                 ticket->error = -ENOSPC;
5095                 wake_up(&ticket->wait);
5096         }
5097 }
5098
5099 /*
5100  * This is for normal flushers, we can wait all goddamned day if we want to.  We
5101  * will loop and continuously try to flush as long as we are making progress.
5102  * We count progress as clearing off tickets each time we have to loop.
5103  */
5104 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5105 {
5106         struct btrfs_fs_info *fs_info;
5107         struct btrfs_space_info *space_info;
5108         u64 to_reclaim;
5109         int flush_state;
5110         int commit_cycles = 0;
5111         u64 last_tickets_id;
5112
5113         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5114         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5115
5116         spin_lock(&space_info->lock);
5117         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5118                                                       false);
5119         if (!to_reclaim) {
5120                 space_info->flush = 0;
5121                 spin_unlock(&space_info->lock);
5122                 return;
5123         }
5124         last_tickets_id = space_info->tickets_id;
5125         spin_unlock(&space_info->lock);
5126
5127         flush_state = FLUSH_DELAYED_ITEMS_NR;
5128         do {
5129                 flush_space(fs_info, space_info, to_reclaim, flush_state);
5130                 spin_lock(&space_info->lock);
5131                 if (list_empty(&space_info->tickets)) {
5132                         space_info->flush = 0;
5133                         spin_unlock(&space_info->lock);
5134                         return;
5135                 }
5136                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5137                                                               space_info,
5138                                                               false);
5139                 if (last_tickets_id == space_info->tickets_id) {
5140                         flush_state++;
5141                 } else {
5142                         last_tickets_id = space_info->tickets_id;
5143                         flush_state = FLUSH_DELAYED_ITEMS_NR;
5144                         if (commit_cycles)
5145                                 commit_cycles--;
5146                 }
5147
5148                 if (flush_state > COMMIT_TRANS) {
5149                         commit_cycles++;
5150                         if (commit_cycles > 2) {
5151                                 wake_all_tickets(&space_info->tickets);
5152                                 space_info->flush = 0;
5153                         } else {
5154                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
5155                         }
5156                 }
5157                 spin_unlock(&space_info->lock);
5158         } while (flush_state <= COMMIT_TRANS);
5159 }
5160
5161 void btrfs_init_async_reclaim_work(struct work_struct *work)
5162 {
5163         INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5164 }
5165
5166 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5167                                             struct btrfs_space_info *space_info,
5168                                             struct reserve_ticket *ticket)
5169 {
5170         u64 to_reclaim;
5171         int flush_state = FLUSH_DELAYED_ITEMS_NR;
5172
5173         spin_lock(&space_info->lock);
5174         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5175                                                       false);
5176         if (!to_reclaim) {
5177                 spin_unlock(&space_info->lock);
5178                 return;
5179         }
5180         spin_unlock(&space_info->lock);
5181
5182         do {
5183                 flush_space(fs_info, space_info, to_reclaim, flush_state);
5184                 flush_state++;
5185                 spin_lock(&space_info->lock);
5186                 if (ticket->bytes == 0) {
5187                         spin_unlock(&space_info->lock);
5188                         return;
5189                 }
5190                 spin_unlock(&space_info->lock);
5191
5192                 /*
5193                  * Priority flushers can't wait on delalloc without
5194                  * deadlocking.
5195                  */
5196                 if (flush_state == FLUSH_DELALLOC ||
5197                     flush_state == FLUSH_DELALLOC_WAIT)
5198                         flush_state = ALLOC_CHUNK;
5199         } while (flush_state < COMMIT_TRANS);
5200 }
5201
5202 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5203                                struct btrfs_space_info *space_info,
5204                                struct reserve_ticket *ticket, u64 orig_bytes)
5205
5206 {
5207         DEFINE_WAIT(wait);
5208         int ret = 0;
5209
5210         spin_lock(&space_info->lock);
5211         while (ticket->bytes > 0 && ticket->error == 0) {
5212                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5213                 if (ret) {
5214                         ret = -EINTR;
5215                         break;
5216                 }
5217                 spin_unlock(&space_info->lock);
5218
5219                 schedule();
5220
5221                 finish_wait(&ticket->wait, &wait);
5222                 spin_lock(&space_info->lock);
5223         }
5224         if (!ret)
5225                 ret = ticket->error;
5226         if (!list_empty(&ticket->list))
5227                 list_del_init(&ticket->list);
5228         if (ticket->bytes && ticket->bytes < orig_bytes) {
5229                 u64 num_bytes = orig_bytes - ticket->bytes;
5230                 space_info->bytes_may_use -= num_bytes;
5231                 trace_btrfs_space_reservation(fs_info, "space_info",
5232                                               space_info->flags, num_bytes, 0);
5233         }
5234         spin_unlock(&space_info->lock);
5235
5236         return ret;
5237 }
5238
5239 /**
5240  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5241  * @root - the root we're allocating for
5242  * @space_info - the space info we want to allocate from
5243  * @orig_bytes - the number of bytes we want
5244  * @flush - whether or not we can flush to make our reservation
5245  *
5246  * This will reserve orig_bytes number of bytes from the space info associated
5247  * with the block_rsv.  If there is not enough space it will make an attempt to
5248  * flush out space to make room.  It will do this by flushing delalloc if
5249  * possible or committing the transaction.  If flush is 0 then no attempts to
5250  * regain reservations will be made and this will fail if there is not enough
5251  * space already.
5252  */
5253 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5254                                     struct btrfs_space_info *space_info,
5255                                     u64 orig_bytes,
5256                                     enum btrfs_reserve_flush_enum flush,
5257                                     bool system_chunk)
5258 {
5259         struct reserve_ticket ticket;
5260         u64 used;
5261         int ret = 0;
5262
5263         ASSERT(orig_bytes);
5264         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5265
5266         spin_lock(&space_info->lock);
5267         ret = -ENOSPC;
5268         used = btrfs_space_info_used(space_info, true);
5269
5270         /*
5271          * If we have enough space then hooray, make our reservation and carry
5272          * on.  If not see if we can overcommit, and if we can, hooray carry on.
5273          * If not things get more complicated.
5274          */
5275         if (used + orig_bytes <= space_info->total_bytes) {
5276                 space_info->bytes_may_use += orig_bytes;
5277                 trace_btrfs_space_reservation(fs_info, "space_info",
5278                                               space_info->flags, orig_bytes, 1);
5279                 ret = 0;
5280         } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5281                                   system_chunk)) {
5282                 space_info->bytes_may_use += orig_bytes;
5283                 trace_btrfs_space_reservation(fs_info, "space_info",
5284                                               space_info->flags, orig_bytes, 1);
5285                 ret = 0;
5286         }
5287
5288         /*
5289          * If we couldn't make a reservation then setup our reservation ticket
5290          * and kick the async worker if it's not already running.
5291          *
5292          * If we are a priority flusher then we just need to add our ticket to
5293          * the list and we will do our own flushing further down.
5294          */
5295         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5296                 ticket.bytes = orig_bytes;
5297                 ticket.error = 0;
5298                 init_waitqueue_head(&ticket.wait);
5299                 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5300                         list_add_tail(&ticket.list, &space_info->tickets);
5301                         if (!space_info->flush) {
5302                                 space_info->flush = 1;
5303                                 trace_btrfs_trigger_flush(fs_info,
5304                                                           space_info->flags,
5305                                                           orig_bytes, flush,
5306                                                           "enospc");
5307                                 queue_work(system_unbound_wq,
5308                                            &fs_info->async_reclaim_work);
5309                         }
5310                 } else {
5311                         list_add_tail(&ticket.list,
5312                                       &space_info->priority_tickets);
5313                 }
5314         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5315                 used += orig_bytes;
5316                 /*
5317                  * We will do the space reservation dance during log replay,
5318                  * which means we won't have fs_info->fs_root set, so don't do
5319                  * the async reclaim as we will panic.
5320                  */
5321                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5322                     need_do_async_reclaim(fs_info, space_info,
5323                                           used, system_chunk) &&
5324                     !work_busy(&fs_info->async_reclaim_work)) {
5325                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
5326                                                   orig_bytes, flush, "preempt");
5327                         queue_work(system_unbound_wq,
5328                                    &fs_info->async_reclaim_work);
5329                 }
5330         }
5331         spin_unlock(&space_info->lock);
5332         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5333                 return ret;
5334
5335         if (flush == BTRFS_RESERVE_FLUSH_ALL)
5336                 return wait_reserve_ticket(fs_info, space_info, &ticket,
5337                                            orig_bytes);
5338
5339         ret = 0;
5340         priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5341         spin_lock(&space_info->lock);
5342         if (ticket.bytes) {
5343                 if (ticket.bytes < orig_bytes) {
5344                         u64 num_bytes = orig_bytes - ticket.bytes;
5345                         space_info->bytes_may_use -= num_bytes;
5346                         trace_btrfs_space_reservation(fs_info, "space_info",
5347                                                       space_info->flags,
5348                                                       num_bytes, 0);
5349
5350                 }
5351                 list_del_init(&ticket.list);
5352                 ret = -ENOSPC;
5353         }
5354         spin_unlock(&space_info->lock);
5355         ASSERT(list_empty(&ticket.list));
5356         return ret;
5357 }
5358
5359 /**
5360  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5361  * @root - the root we're allocating for
5362  * @block_rsv - the block_rsv we're allocating for
5363  * @orig_bytes - the number of bytes we want
5364  * @flush - whether or not we can flush to make our reservation
5365  *
5366  * This will reserve orgi_bytes number of bytes from the space info associated
5367  * with the block_rsv.  If there is not enough space it will make an attempt to
5368  * flush out space to make room.  It will do this by flushing delalloc if
5369  * possible or committing the transaction.  If flush is 0 then no attempts to
5370  * regain reservations will be made and this will fail if there is not enough
5371  * space already.
5372  */
5373 static int reserve_metadata_bytes(struct btrfs_root *root,
5374                                   struct btrfs_block_rsv *block_rsv,
5375                                   u64 orig_bytes,
5376                                   enum btrfs_reserve_flush_enum flush)
5377 {
5378         struct btrfs_fs_info *fs_info = root->fs_info;
5379         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5380         int ret;
5381         bool system_chunk = (root == fs_info->chunk_root);
5382
5383         ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5384                                        orig_bytes, flush, system_chunk);
5385         if (ret == -ENOSPC &&
5386             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5387                 if (block_rsv != global_rsv &&
5388                     !block_rsv_use_bytes(global_rsv, orig_bytes))
5389                         ret = 0;
5390         }
5391         if (ret == -ENOSPC)
5392                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5393                                               block_rsv->space_info->flags,
5394                                               orig_bytes, 1);
5395         return ret;
5396 }
5397
5398 static struct btrfs_block_rsv *get_block_rsv(
5399                                         const struct btrfs_trans_handle *trans,
5400                                         const struct btrfs_root *root)
5401 {
5402         struct btrfs_fs_info *fs_info = root->fs_info;
5403         struct btrfs_block_rsv *block_rsv = NULL;
5404
5405         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5406             (root == fs_info->csum_root && trans->adding_csums) ||
5407             (root == fs_info->uuid_root))
5408                 block_rsv = trans->block_rsv;
5409
5410         if (!block_rsv)
5411                 block_rsv = root->block_rsv;
5412
5413         if (!block_rsv)
5414                 block_rsv = &fs_info->empty_block_rsv;
5415
5416         return block_rsv;
5417 }
5418
5419 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5420                                u64 num_bytes)
5421 {
5422         int ret = -ENOSPC;
5423         spin_lock(&block_rsv->lock);
5424         if (block_rsv->reserved >= num_bytes) {
5425                 block_rsv->reserved -= num_bytes;
5426                 if (block_rsv->reserved < block_rsv->size)
5427                         block_rsv->full = 0;
5428                 ret = 0;
5429         }
5430         spin_unlock(&block_rsv->lock);
5431         return ret;
5432 }
5433
5434 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5435                                 u64 num_bytes, int update_size)
5436 {
5437         spin_lock(&block_rsv->lock);
5438         block_rsv->reserved += num_bytes;
5439         if (update_size)
5440                 block_rsv->size += num_bytes;
5441         else if (block_rsv->reserved >= block_rsv->size)
5442                 block_rsv->full = 1;
5443         spin_unlock(&block_rsv->lock);
5444 }
5445
5446 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5447                              struct btrfs_block_rsv *dest, u64 num_bytes,
5448                              int min_factor)
5449 {
5450         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5451         u64 min_bytes;
5452
5453         if (global_rsv->space_info != dest->space_info)
5454                 return -ENOSPC;
5455
5456         spin_lock(&global_rsv->lock);
5457         min_bytes = div_factor(global_rsv->size, min_factor);
5458         if (global_rsv->reserved < min_bytes + num_bytes) {
5459                 spin_unlock(&global_rsv->lock);
5460                 return -ENOSPC;
5461         }
5462         global_rsv->reserved -= num_bytes;
5463         if (global_rsv->reserved < global_rsv->size)
5464                 global_rsv->full = 0;
5465         spin_unlock(&global_rsv->lock);
5466
5467         block_rsv_add_bytes(dest, num_bytes, 1);
5468         return 0;
5469 }
5470
5471 /*
5472  * This is for space we already have accounted in space_info->bytes_may_use, so
5473  * basically when we're returning space from block_rsv's.
5474  */
5475 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5476                                      struct btrfs_space_info *space_info,
5477                                      u64 num_bytes)
5478 {
5479         struct reserve_ticket *ticket;
5480         struct list_head *head;
5481         u64 used;
5482         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5483         bool check_overcommit = false;
5484
5485         spin_lock(&space_info->lock);
5486         head = &space_info->priority_tickets;
5487
5488         /*
5489          * If we are over our limit then we need to check and see if we can
5490          * overcommit, and if we can't then we just need to free up our space
5491          * and not satisfy any requests.
5492          */
5493         used = btrfs_space_info_used(space_info, true);
5494         if (used - num_bytes >= space_info->total_bytes)
5495                 check_overcommit = true;
5496 again:
5497         while (!list_empty(head) && num_bytes) {
5498                 ticket = list_first_entry(head, struct reserve_ticket,
5499                                           list);
5500                 /*
5501                  * We use 0 bytes because this space is already reserved, so
5502                  * adding the ticket space would be a double count.
5503                  */
5504                 if (check_overcommit &&
5505                     !can_overcommit(fs_info, space_info, 0, flush, false))
5506                         break;
5507                 if (num_bytes >= ticket->bytes) {
5508                         list_del_init(&ticket->list);
5509                         num_bytes -= ticket->bytes;
5510                         ticket->bytes = 0;
5511                         space_info->tickets_id++;
5512                         wake_up(&ticket->wait);
5513                 } else {
5514                         ticket->bytes -= num_bytes;
5515                         num_bytes = 0;
5516                 }
5517         }
5518
5519         if (num_bytes && head == &space_info->priority_tickets) {
5520                 head = &space_info->tickets;
5521                 flush = BTRFS_RESERVE_FLUSH_ALL;
5522                 goto again;
5523         }
5524         space_info->bytes_may_use -= num_bytes;
5525         trace_btrfs_space_reservation(fs_info, "space_info",
5526                                       space_info->flags, num_bytes, 0);
5527         spin_unlock(&space_info->lock);
5528 }
5529
5530 /*
5531  * This is for newly allocated space that isn't accounted in
5532  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5533  * we use this helper.
5534  */
5535 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5536                                      struct btrfs_space_info *space_info,
5537                                      u64 num_bytes)
5538 {
5539         struct reserve_ticket *ticket;
5540         struct list_head *head = &space_info->priority_tickets;
5541
5542 again:
5543         while (!list_empty(head) && num_bytes) {
5544                 ticket = list_first_entry(head, struct reserve_ticket,
5545                                           list);
5546                 if (num_bytes >= ticket->bytes) {
5547                         trace_btrfs_space_reservation(fs_info, "space_info",
5548                                                       space_info->flags,
5549                                                       ticket->bytes, 1);
5550                         list_del_init(&ticket->list);
5551                         num_bytes -= ticket->bytes;
5552                         space_info->bytes_may_use += ticket->bytes;
5553                         ticket->bytes = 0;
5554                         space_info->tickets_id++;
5555                         wake_up(&ticket->wait);
5556                 } else {
5557                         trace_btrfs_space_reservation(fs_info, "space_info",
5558                                                       space_info->flags,
5559                                                       num_bytes, 1);
5560                         space_info->bytes_may_use += num_bytes;
5561                         ticket->bytes -= num_bytes;
5562                         num_bytes = 0;
5563                 }
5564         }
5565
5566         if (num_bytes && head == &space_info->priority_tickets) {
5567                 head = &space_info->tickets;
5568                 goto again;
5569         }
5570 }
5571
5572 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5573                                     struct btrfs_block_rsv *block_rsv,
5574                                     struct btrfs_block_rsv *dest, u64 num_bytes)
5575 {
5576         struct btrfs_space_info *space_info = block_rsv->space_info;
5577         u64 ret;
5578
5579         spin_lock(&block_rsv->lock);
5580         if (num_bytes == (u64)-1)
5581                 num_bytes = block_rsv->size;
5582         block_rsv->size -= num_bytes;
5583         if (block_rsv->reserved >= block_rsv->size) {
5584                 num_bytes = block_rsv->reserved - block_rsv->size;
5585                 block_rsv->reserved = block_rsv->size;
5586                 block_rsv->full = 1;
5587         } else {
5588                 num_bytes = 0;
5589         }
5590         spin_unlock(&block_rsv->lock);
5591
5592         ret = num_bytes;
5593         if (num_bytes > 0) {
5594                 if (dest) {
5595                         spin_lock(&dest->lock);
5596                         if (!dest->full) {
5597                                 u64 bytes_to_add;
5598
5599                                 bytes_to_add = dest->size - dest->reserved;
5600                                 bytes_to_add = min(num_bytes, bytes_to_add);
5601                                 dest->reserved += bytes_to_add;
5602                                 if (dest->reserved >= dest->size)
5603                                         dest->full = 1;
5604                                 num_bytes -= bytes_to_add;
5605                         }
5606                         spin_unlock(&dest->lock);
5607                 }
5608                 if (num_bytes)
5609                         space_info_add_old_bytes(fs_info, space_info,
5610                                                  num_bytes);
5611         }
5612         return ret;
5613 }
5614
5615 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5616                             struct btrfs_block_rsv *dst, u64 num_bytes,
5617                             int update_size)
5618 {
5619         int ret;
5620
5621         ret = block_rsv_use_bytes(src, num_bytes);
5622         if (ret)
5623                 return ret;
5624
5625         block_rsv_add_bytes(dst, num_bytes, update_size);
5626         return 0;
5627 }
5628
5629 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5630 {
5631         memset(rsv, 0, sizeof(*rsv));
5632         spin_lock_init(&rsv->lock);
5633         rsv->type = type;
5634 }
5635
5636 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5637                                    struct btrfs_block_rsv *rsv,
5638                                    unsigned short type)
5639 {
5640         btrfs_init_block_rsv(rsv, type);
5641         rsv->space_info = __find_space_info(fs_info,
5642                                             BTRFS_BLOCK_GROUP_METADATA);
5643 }
5644
5645 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5646                                               unsigned short type)
5647 {
5648         struct btrfs_block_rsv *block_rsv;
5649
5650         block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5651         if (!block_rsv)
5652                 return NULL;
5653
5654         btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5655         return block_rsv;
5656 }
5657
5658 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5659                           struct btrfs_block_rsv *rsv)
5660 {
5661         if (!rsv)
5662                 return;
5663         btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5664         kfree(rsv);
5665 }
5666
5667 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5668 {
5669         kfree(rsv);
5670 }
5671
5672 int btrfs_block_rsv_add(struct btrfs_root *root,
5673                         struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5674                         enum btrfs_reserve_flush_enum flush)
5675 {
5676         int ret;
5677
5678         if (num_bytes == 0)
5679                 return 0;
5680
5681         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5682         if (!ret) {
5683                 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5684                 return 0;
5685         }
5686
5687         return ret;
5688 }
5689
5690 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5691 {
5692         u64 num_bytes = 0;
5693         int ret = -ENOSPC;
5694
5695         if (!block_rsv)
5696                 return 0;
5697
5698         spin_lock(&block_rsv->lock);
5699         num_bytes = div_factor(block_rsv->size, min_factor);
5700         if (block_rsv->reserved >= num_bytes)
5701                 ret = 0;
5702         spin_unlock(&block_rsv->lock);
5703
5704         return ret;
5705 }
5706
5707 int btrfs_block_rsv_refill(struct btrfs_root *root,
5708                            struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5709                            enum btrfs_reserve_flush_enum flush)
5710 {
5711         u64 num_bytes = 0;
5712         int ret = -ENOSPC;
5713
5714         if (!block_rsv)
5715                 return 0;
5716
5717         spin_lock(&block_rsv->lock);
5718         num_bytes = min_reserved;
5719         if (block_rsv->reserved >= num_bytes)
5720                 ret = 0;
5721         else
5722                 num_bytes -= block_rsv->reserved;
5723         spin_unlock(&block_rsv->lock);
5724
5725         if (!ret)
5726                 return 0;
5727
5728         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5729         if (!ret) {
5730                 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5731                 return 0;
5732         }
5733
5734         return ret;
5735 }
5736
5737 /**
5738  * btrfs_inode_rsv_refill - refill the inode block rsv.
5739  * @inode - the inode we are refilling.
5740  * @flush - the flusing restriction.
5741  *
5742  * Essentially the same as btrfs_block_rsv_refill, except it uses the
5743  * block_rsv->size as the minimum size.  We'll either refill the missing amount
5744  * or return if we already have enough space.  This will also handle the resreve
5745  * tracepoint for the reserved amount.
5746  */
5747 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5748                                   enum btrfs_reserve_flush_enum flush)
5749 {
5750         struct btrfs_root *root = inode->root;
5751         struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5752         u64 num_bytes = 0;
5753         int ret = -ENOSPC;
5754
5755         spin_lock(&block_rsv->lock);
5756         if (block_rsv->reserved < block_rsv->size)
5757                 num_bytes = block_rsv->size - block_rsv->reserved;
5758         spin_unlock(&block_rsv->lock);
5759
5760         if (num_bytes == 0)
5761                 return 0;
5762
5763         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5764         if (!ret) {
5765                 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5766                 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5767                                               btrfs_ino(inode), num_bytes, 1);
5768         }
5769         return ret;
5770 }
5771
5772 /**
5773  * btrfs_inode_rsv_release - release any excessive reservation.
5774  * @inode - the inode we need to release from.
5775  *
5776  * This is the same as btrfs_block_rsv_release, except that it handles the
5777  * tracepoint for the reservation.
5778  */
5779 static void btrfs_inode_rsv_release(struct btrfs_inode *inode)
5780 {
5781         struct btrfs_fs_info *fs_info = inode->root->fs_info;
5782         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5783         struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5784         u64 released = 0;
5785
5786         /*
5787          * Since we statically set the block_rsv->size we just want to say we
5788          * are releasing 0 bytes, and then we'll just get the reservation over
5789          * the size free'd.
5790          */
5791         released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0);
5792         if (released > 0)
5793                 trace_btrfs_space_reservation(fs_info, "delalloc",
5794                                               btrfs_ino(inode), released, 0);
5795 }
5796
5797 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5798                              struct btrfs_block_rsv *block_rsv,
5799                              u64 num_bytes)
5800 {
5801         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5802
5803         if (global_rsv == block_rsv ||
5804             block_rsv->space_info != global_rsv->space_info)
5805                 global_rsv = NULL;
5806         block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5807 }
5808
5809 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5810 {
5811         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5812         struct btrfs_space_info *sinfo = block_rsv->space_info;
5813         u64 num_bytes;
5814
5815         /*
5816          * The global block rsv is based on the size of the extent tree, the
5817          * checksum tree and the root tree.  If the fs is empty we want to set
5818          * it to a minimal amount for safety.
5819          */
5820         num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5821                 btrfs_root_used(&fs_info->csum_root->root_item) +
5822                 btrfs_root_used(&fs_info->tree_root->root_item);
5823         num_bytes = max_t(u64, num_bytes, SZ_16M);
5824
5825         spin_lock(&sinfo->lock);
5826         spin_lock(&block_rsv->lock);
5827
5828         block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5829
5830         if (block_rsv->reserved < block_rsv->size) {
5831                 num_bytes = btrfs_space_info_used(sinfo, true);
5832                 if (sinfo->total_bytes > num_bytes) {
5833                         num_bytes = sinfo->total_bytes - num_bytes;
5834                         num_bytes = min(num_bytes,
5835                                         block_rsv->size - block_rsv->reserved);
5836                         block_rsv->reserved += num_bytes;
5837                         sinfo->bytes_may_use += num_bytes;
5838                         trace_btrfs_space_reservation(fs_info, "space_info",
5839                                                       sinfo->flags, num_bytes,
5840                                                       1);
5841                 }
5842         } else if (block_rsv->reserved > block_rsv->size) {
5843                 num_bytes = block_rsv->reserved - block_rsv->size;
5844                 sinfo->bytes_may_use -= num_bytes;
5845                 trace_btrfs_space_reservation(fs_info, "space_info",
5846                                       sinfo->flags, num_bytes, 0);
5847                 block_rsv->reserved = block_rsv->size;
5848         }
5849
5850         if (block_rsv->reserved == block_rsv->size)
5851                 block_rsv->full = 1;
5852         else
5853                 block_rsv->full = 0;
5854
5855         spin_unlock(&block_rsv->lock);
5856         spin_unlock(&sinfo->lock);
5857 }
5858
5859 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5860 {
5861         struct btrfs_space_info *space_info;
5862
5863         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5864         fs_info->chunk_block_rsv.space_info = space_info;
5865
5866         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5867         fs_info->global_block_rsv.space_info = space_info;
5868         fs_info->trans_block_rsv.space_info = space_info;
5869         fs_info->empty_block_rsv.space_info = space_info;
5870         fs_info->delayed_block_rsv.space_info = space_info;
5871
5872         fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5873         fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5874         fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5875         fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5876         if (fs_info->quota_root)
5877                 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5878         fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5879
5880         update_global_block_rsv(fs_info);
5881 }
5882
5883 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5884 {
5885         block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5886                                 (u64)-1);
5887         WARN_ON(fs_info->trans_block_rsv.size > 0);
5888         WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5889         WARN_ON(fs_info->chunk_block_rsv.size > 0);
5890         WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5891         WARN_ON(fs_info->delayed_block_rsv.size > 0);
5892         WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5893 }
5894
5895 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5896                                   struct btrfs_fs_info *fs_info)
5897 {
5898         if (!trans->block_rsv) {
5899                 ASSERT(!trans->bytes_reserved);
5900                 return;
5901         }
5902
5903         if (!trans->bytes_reserved)
5904                 return;
5905
5906         ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
5907         trace_btrfs_space_reservation(fs_info, "transaction",
5908                                       trans->transid, trans->bytes_reserved, 0);
5909         btrfs_block_rsv_release(fs_info, trans->block_rsv,
5910                                 trans->bytes_reserved);
5911         trans->bytes_reserved = 0;
5912 }
5913
5914 /*
5915  * To be called after all the new block groups attached to the transaction
5916  * handle have been created (btrfs_create_pending_block_groups()).
5917  */
5918 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5919 {
5920         struct btrfs_fs_info *fs_info = trans->fs_info;
5921
5922         if (!trans->chunk_bytes_reserved)
5923                 return;
5924
5925         WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5926
5927         block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5928                                 trans->chunk_bytes_reserved);
5929         trans->chunk_bytes_reserved = 0;
5930 }
5931
5932 /* Can only return 0 or -ENOSPC */
5933 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5934                                   struct btrfs_inode *inode)
5935 {
5936         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5937         struct btrfs_root *root = inode->root;
5938         /*
5939          * We always use trans->block_rsv here as we will have reserved space
5940          * for our orphan when starting the transaction, using get_block_rsv()
5941          * here will sometimes make us choose the wrong block rsv as we could be
5942          * doing a reloc inode for a non refcounted root.
5943          */
5944         struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5945         struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5946
5947         /*
5948          * We need to hold space in order to delete our orphan item once we've
5949          * added it, so this takes the reservation so we can release it later
5950          * when we are truly done with the orphan item.
5951          */
5952         u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5953
5954         trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 
5955                         num_bytes, 1);
5956         return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5957 }
5958
5959 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5960 {
5961         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5962         struct btrfs_root *root = inode->root;
5963         u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5964
5965         trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5966                         num_bytes, 0);
5967         btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5968 }
5969
5970 /*
5971  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5972  * root: the root of the parent directory
5973  * rsv: block reservation
5974  * items: the number of items that we need do reservation
5975  * qgroup_reserved: used to return the reserved size in qgroup
5976  *
5977  * This function is used to reserve the space for snapshot/subvolume
5978  * creation and deletion. Those operations are different with the
5979  * common file/directory operations, they change two fs/file trees
5980  * and root tree, the number of items that the qgroup reserves is
5981  * different with the free space reservation. So we can not use
5982  * the space reservation mechanism in start_transaction().
5983  */
5984 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5985                                      struct btrfs_block_rsv *rsv,
5986                                      int items,
5987                                      u64 *qgroup_reserved,
5988                                      bool use_global_rsv)
5989 {
5990         u64 num_bytes;
5991         int ret;
5992         struct btrfs_fs_info *fs_info = root->fs_info;
5993         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5994
5995         if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5996                 /* One for parent inode, two for dir entries */
5997                 num_bytes = 3 * fs_info->nodesize;
5998                 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
5999                 if (ret)
6000                         return ret;
6001         } else {
6002                 num_bytes = 0;
6003         }
6004
6005         *qgroup_reserved = num_bytes;
6006
6007         num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6008         rsv->space_info = __find_space_info(fs_info,
6009                                             BTRFS_BLOCK_GROUP_METADATA);
6010         ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6011                                   BTRFS_RESERVE_FLUSH_ALL);
6012
6013         if (ret == -ENOSPC && use_global_rsv)
6014                 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
6015
6016         if (ret && *qgroup_reserved)
6017                 btrfs_qgroup_free_meta(root, *qgroup_reserved);
6018
6019         return ret;
6020 }
6021
6022 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
6023                                       struct btrfs_block_rsv *rsv)
6024 {
6025         btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
6026 }
6027
6028 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6029                                                  struct btrfs_inode *inode)
6030 {
6031         struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6032         u64 reserve_size = 0;
6033         u64 csum_leaves;
6034         unsigned outstanding_extents;
6035
6036         lockdep_assert_held(&inode->lock);
6037         outstanding_extents = inode->outstanding_extents;
6038         if (outstanding_extents)
6039                 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6040                                                 outstanding_extents + 1);
6041         csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6042                                                  inode->csum_bytes);
6043         reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6044                                                        csum_leaves);
6045
6046         spin_lock(&block_rsv->lock);
6047         block_rsv->size = reserve_size;
6048         spin_unlock(&block_rsv->lock);
6049 }
6050
6051 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6052 {
6053         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6054         struct btrfs_root *root = inode->root;
6055         unsigned nr_extents;
6056         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6057         int ret = 0;
6058         bool delalloc_lock = true;
6059
6060         /* If we are a free space inode we need to not flush since we will be in
6061          * the middle of a transaction commit.  We also don't need the delalloc
6062          * mutex since we won't race with anybody.  We need this mostly to make
6063          * lockdep shut its filthy mouth.
6064          *
6065          * If we have a transaction open (can happen if we call truncate_block
6066          * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6067          */
6068         if (btrfs_is_free_space_inode(inode)) {
6069                 flush = BTRFS_RESERVE_NO_FLUSH;
6070                 delalloc_lock = false;
6071         } else if (current->journal_info) {
6072                 flush = BTRFS_RESERVE_FLUSH_LIMIT;
6073         }
6074
6075         if (flush != BTRFS_RESERVE_NO_FLUSH &&
6076             btrfs_transaction_in_commit(fs_info))
6077                 schedule_timeout(1);
6078
6079         if (delalloc_lock)
6080                 mutex_lock(&inode->delalloc_mutex);
6081
6082         num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6083
6084         /* Add our new extents and calculate the new rsv size. */
6085         spin_lock(&inode->lock);
6086         nr_extents = count_max_extents(num_bytes);
6087         btrfs_mod_outstanding_extents(inode, nr_extents);
6088         inode->csum_bytes += num_bytes;
6089         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6090         spin_unlock(&inode->lock);
6091
6092         if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6093                 ret = btrfs_qgroup_reserve_meta(root,
6094                                 nr_extents * fs_info->nodesize, true);
6095                 if (ret)
6096                         goto out_fail;
6097         }
6098
6099         ret = btrfs_inode_rsv_refill(inode, flush);
6100         if (unlikely(ret)) {
6101                 btrfs_qgroup_free_meta(root,
6102                                        nr_extents * fs_info->nodesize);
6103                 goto out_fail;
6104         }
6105
6106         if (delalloc_lock)
6107                 mutex_unlock(&inode->delalloc_mutex);
6108         return 0;
6109
6110 out_fail:
6111         spin_lock(&inode->lock);
6112         nr_extents = count_max_extents(num_bytes);
6113         btrfs_mod_outstanding_extents(inode, -nr_extents);
6114         inode->csum_bytes -= num_bytes;
6115         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6116         spin_unlock(&inode->lock);
6117
6118         btrfs_inode_rsv_release(inode);
6119         if (delalloc_lock)
6120                 mutex_unlock(&inode->delalloc_mutex);
6121         return ret;
6122 }
6123
6124 /**
6125  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6126  * @inode: the inode to release the reservation for.
6127  * @num_bytes: the number of bytes we are releasing.
6128  *
6129  * This will release the metadata reservation for an inode.  This can be called
6130  * once we complete IO for a given set of bytes to release their metadata
6131  * reservations, or on error for the same reason.
6132  */
6133 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
6134 {
6135         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6136
6137         num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6138         spin_lock(&inode->lock);
6139         inode->csum_bytes -= num_bytes;
6140         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6141         spin_unlock(&inode->lock);
6142
6143         if (btrfs_is_testing(fs_info))
6144                 return;
6145
6146         btrfs_inode_rsv_release(inode);
6147 }
6148
6149 /**
6150  * btrfs_delalloc_release_extents - release our outstanding_extents
6151  * @inode: the inode to balance the reservation for.
6152  * @num_bytes: the number of bytes we originally reserved with
6153  *
6154  * When we reserve space we increase outstanding_extents for the extents we may
6155  * add.  Once we've set the range as delalloc or created our ordered extents we
6156  * have outstanding_extents to track the real usage, so we use this to free our
6157  * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
6158  * with btrfs_delalloc_reserve_metadata.
6159  */
6160 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
6161 {
6162         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6163         unsigned num_extents;
6164
6165         spin_lock(&inode->lock);
6166         num_extents = count_max_extents(num_bytes);
6167         btrfs_mod_outstanding_extents(inode, -num_extents);
6168         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6169         spin_unlock(&inode->lock);
6170
6171         if (btrfs_is_testing(fs_info))
6172                 return;
6173
6174         btrfs_inode_rsv_release(inode);
6175 }
6176
6177 /**
6178  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6179  * delalloc
6180  * @inode: inode we're writing to
6181  * @start: start range we are writing to
6182  * @len: how long the range we are writing to
6183  * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6184  *            current reservation.
6185  *
6186  * This will do the following things
6187  *
6188  * o reserve space in data space info for num bytes
6189  *   and reserve precious corresponding qgroup space
6190  *   (Done in check_data_free_space)
6191  *
6192  * o reserve space for metadata space, based on the number of outstanding
6193  *   extents and how much csums will be needed
6194  *   also reserve metadata space in a per root over-reserve method.
6195  * o add to the inodes->delalloc_bytes
6196  * o add it to the fs_info's delalloc inodes list.
6197  *   (Above 3 all done in delalloc_reserve_metadata)
6198  *
6199  * Return 0 for success
6200  * Return <0 for error(-ENOSPC or -EQUOT)
6201  */
6202 int btrfs_delalloc_reserve_space(struct inode *inode,
6203                         struct extent_changeset **reserved, u64 start, u64 len)
6204 {
6205         int ret;
6206
6207         ret = btrfs_check_data_free_space(inode, reserved, start, len);
6208         if (ret < 0)
6209                 return ret;
6210         ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6211         if (ret < 0)
6212                 btrfs_free_reserved_data_space(inode, *reserved, start, len);
6213         return ret;
6214 }
6215
6216 /**
6217  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6218  * @inode: inode we're releasing space for
6219  * @start: start position of the space already reserved
6220  * @len: the len of the space already reserved
6221  * @release_bytes: the len of the space we consumed or didn't use
6222  *
6223  * This function will release the metadata space that was not used and will
6224  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6225  * list if there are no delalloc bytes left.
6226  * Also it will handle the qgroup reserved space.
6227  */
6228 void btrfs_delalloc_release_space(struct inode *inode,
6229                                   struct extent_changeset *reserved,
6230                                   u64 start, u64 len)
6231 {
6232         btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
6233         btrfs_free_reserved_data_space(inode, reserved, start, len);
6234 }
6235
6236 static int update_block_group(struct btrfs_trans_handle *trans,
6237                               struct btrfs_fs_info *info, u64 bytenr,
6238                               u64 num_bytes, int alloc)
6239 {
6240         struct btrfs_block_group_cache *cache = NULL;
6241         u64 total = num_bytes;
6242         u64 old_val;
6243         u64 byte_in_group;
6244         int factor;
6245
6246         /* block accounting for super block */
6247         spin_lock(&info->delalloc_root_lock);
6248         old_val = btrfs_super_bytes_used(info->super_copy);
6249         if (alloc)
6250                 old_val += num_bytes;
6251         else
6252                 old_val -= num_bytes;
6253         btrfs_set_super_bytes_used(info->super_copy, old_val);
6254         spin_unlock(&info->delalloc_root_lock);
6255
6256         while (total) {
6257                 cache = btrfs_lookup_block_group(info, bytenr);
6258                 if (!cache)
6259                         return -ENOENT;
6260                 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6261                                     BTRFS_BLOCK_GROUP_RAID1 |
6262                                     BTRFS_BLOCK_GROUP_RAID10))
6263                         factor = 2;
6264                 else
6265                         factor = 1;
6266                 /*
6267                  * If this block group has free space cache written out, we
6268                  * need to make sure to load it if we are removing space.  This
6269                  * is because we need the unpinning stage to actually add the
6270                  * space back to the block group, otherwise we will leak space.
6271                  */
6272                 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6273                         cache_block_group(cache, 1);
6274
6275                 byte_in_group = bytenr - cache->key.objectid;
6276                 WARN_ON(byte_in_group > cache->key.offset);
6277
6278                 spin_lock(&cache->space_info->lock);
6279                 spin_lock(&cache->lock);
6280
6281                 if (btrfs_test_opt(info, SPACE_CACHE) &&
6282                     cache->disk_cache_state < BTRFS_DC_CLEAR)
6283                         cache->disk_cache_state = BTRFS_DC_CLEAR;
6284
6285                 old_val = btrfs_block_group_used(&cache->item);
6286                 num_bytes = min(total, cache->key.offset - byte_in_group);
6287                 if (alloc) {
6288                         old_val += num_bytes;
6289                         btrfs_set_block_group_used(&cache->item, old_val);
6290                         cache->reserved -= num_bytes;
6291                         cache->space_info->bytes_reserved -= num_bytes;
6292                         cache->space_info->bytes_used += num_bytes;
6293                         cache->space_info->disk_used += num_bytes * factor;
6294                         spin_unlock(&cache->lock);
6295                         spin_unlock(&cache->space_info->lock);
6296                 } else {
6297                         old_val -= num_bytes;
6298                         btrfs_set_block_group_used(&cache->item, old_val);
6299                         cache->pinned += num_bytes;
6300                         cache->space_info->bytes_pinned += num_bytes;
6301                         cache->space_info->bytes_used -= num_bytes;
6302                         cache->space_info->disk_used -= num_bytes * factor;
6303                         spin_unlock(&cache->lock);
6304                         spin_unlock(&cache->space_info->lock);
6305
6306                         trace_btrfs_space_reservation(info, "pinned",
6307                                                       cache->space_info->flags,
6308                                                       num_bytes, 1);
6309                         percpu_counter_add(&cache->space_info->total_bytes_pinned,
6310                                            num_bytes);
6311                         set_extent_dirty(info->pinned_extents,
6312                                          bytenr, bytenr + num_bytes - 1,
6313                                          GFP_NOFS | __GFP_NOFAIL);
6314                 }
6315
6316                 spin_lock(&trans->transaction->dirty_bgs_lock);
6317                 if (list_empty(&cache->dirty_list)) {
6318                         list_add_tail(&cache->dirty_list,
6319                                       &trans->transaction->dirty_bgs);
6320                                 trans->transaction->num_dirty_bgs++;
6321                         btrfs_get_block_group(cache);
6322                 }
6323                 spin_unlock(&trans->transaction->dirty_bgs_lock);
6324
6325                 /*
6326                  * No longer have used bytes in this block group, queue it for
6327                  * deletion. We do this after adding the block group to the
6328                  * dirty list to avoid races between cleaner kthread and space
6329                  * cache writeout.
6330                  */
6331                 if (!alloc && old_val == 0) {
6332                         spin_lock(&info->unused_bgs_lock);
6333                         if (list_empty(&cache->bg_list)) {
6334                                 btrfs_get_block_group(cache);
6335                                 list_add_tail(&cache->bg_list,
6336                                               &info->unused_bgs);
6337                         }
6338                         spin_unlock(&info->unused_bgs_lock);
6339                 }
6340
6341                 btrfs_put_block_group(cache);
6342                 total -= num_bytes;
6343                 bytenr += num_bytes;
6344         }
6345         return 0;
6346 }
6347
6348 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6349 {
6350         struct btrfs_block_group_cache *cache;
6351         u64 bytenr;
6352
6353         spin_lock(&fs_info->block_group_cache_lock);
6354         bytenr = fs_info->first_logical_byte;
6355         spin_unlock(&fs_info->block_group_cache_lock);
6356
6357         if (bytenr < (u64)-1)
6358                 return bytenr;
6359
6360         cache = btrfs_lookup_first_block_group(fs_info, search_start);
6361         if (!cache)
6362                 return 0;
6363
6364         bytenr = cache->key.objectid;
6365         btrfs_put_block_group(cache);
6366
6367         return bytenr;
6368 }
6369
6370 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6371                            struct btrfs_block_group_cache *cache,
6372                            u64 bytenr, u64 num_bytes, int reserved)
6373 {
6374         spin_lock(&cache->space_info->lock);
6375         spin_lock(&cache->lock);
6376         cache->pinned += num_bytes;
6377         cache->space_info->bytes_pinned += num_bytes;
6378         if (reserved) {
6379                 cache->reserved -= num_bytes;
6380                 cache->space_info->bytes_reserved -= num_bytes;
6381         }
6382         spin_unlock(&cache->lock);
6383         spin_unlock(&cache->space_info->lock);
6384
6385         trace_btrfs_space_reservation(fs_info, "pinned",
6386                                       cache->space_info->flags, num_bytes, 1);
6387         percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
6388         set_extent_dirty(fs_info->pinned_extents, bytenr,
6389                          bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6390         return 0;
6391 }
6392
6393 /*
6394  * this function must be called within transaction
6395  */
6396 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6397                      u64 bytenr, u64 num_bytes, int reserved)
6398 {
6399         struct btrfs_block_group_cache *cache;
6400
6401         cache = btrfs_lookup_block_group(fs_info, bytenr);
6402         BUG_ON(!cache); /* Logic error */
6403
6404         pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6405
6406         btrfs_put_block_group(cache);
6407         return 0;
6408 }
6409
6410 /*
6411  * this function must be called within transaction
6412  */
6413 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6414                                     u64 bytenr, u64 num_bytes)
6415 {
6416         struct btrfs_block_group_cache *cache;
6417         int ret;
6418
6419         cache = btrfs_lookup_block_group(fs_info, bytenr);
6420         if (!cache)
6421                 return -EINVAL;
6422
6423         /*
6424          * pull in the free space cache (if any) so that our pin
6425          * removes the free space from the cache.  We have load_only set
6426          * to one because the slow code to read in the free extents does check
6427          * the pinned extents.
6428          */
6429         cache_block_group(cache, 1);
6430
6431         pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6432
6433         /* remove us from the free space cache (if we're there at all) */
6434         ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6435         btrfs_put_block_group(cache);
6436         return ret;
6437 }
6438
6439 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6440                                    u64 start, u64 num_bytes)
6441 {
6442         int ret;
6443         struct btrfs_block_group_cache *block_group;
6444         struct btrfs_caching_control *caching_ctl;
6445
6446         block_group = btrfs_lookup_block_group(fs_info, start);
6447         if (!block_group)
6448                 return -EINVAL;
6449
6450         cache_block_group(block_group, 0);
6451         caching_ctl = get_caching_control(block_group);
6452
6453         if (!caching_ctl) {
6454                 /* Logic error */
6455                 BUG_ON(!block_group_cache_done(block_group));
6456                 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6457         } else {
6458                 mutex_lock(&caching_ctl->mutex);
6459
6460                 if (start >= caching_ctl->progress) {
6461                         ret = add_excluded_extent(fs_info, start, num_bytes);
6462                 } else if (start + num_bytes <= caching_ctl->progress) {
6463                         ret = btrfs_remove_free_space(block_group,
6464                                                       start, num_bytes);
6465                 } else {
6466                         num_bytes = caching_ctl->progress - start;
6467                         ret = btrfs_remove_free_space(block_group,
6468                                                       start, num_bytes);
6469                         if (ret)
6470                                 goto out_lock;
6471
6472                         num_bytes = (start + num_bytes) -
6473                                 caching_ctl->progress;
6474                         start = caching_ctl->progress;
6475                         ret = add_excluded_extent(fs_info, start, num_bytes);
6476                 }
6477 out_lock:
6478                 mutex_unlock(&caching_ctl->mutex);
6479                 put_caching_control(caching_ctl);
6480         }
6481         btrfs_put_block_group(block_group);
6482         return ret;
6483 }
6484
6485 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6486                                  struct extent_buffer *eb)
6487 {
6488         struct btrfs_file_extent_item *item;
6489         struct btrfs_key key;
6490         int found_type;
6491         int i;
6492
6493         if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6494                 return 0;
6495
6496         for (i = 0; i < btrfs_header_nritems(eb); i++) {
6497                 btrfs_item_key_to_cpu(eb, &key, i);
6498                 if (key.type != BTRFS_EXTENT_DATA_KEY)
6499                         continue;
6500                 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6501                 found_type = btrfs_file_extent_type(eb, item);
6502                 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6503                         continue;
6504                 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6505                         continue;
6506                 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6507                 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6508                 __exclude_logged_extent(fs_info, key.objectid, key.offset);
6509         }
6510
6511         return 0;
6512 }
6513
6514 static void
6515 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6516 {
6517         atomic_inc(&bg->reservations);
6518 }
6519
6520 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6521                                         const u64 start)
6522 {
6523         struct btrfs_block_group_cache *bg;
6524
6525         bg = btrfs_lookup_block_group(fs_info, start);
6526         ASSERT(bg);
6527         if (atomic_dec_and_test(&bg->reservations))
6528                 wake_up_var(&bg->reservations);
6529         btrfs_put_block_group(bg);
6530 }
6531
6532 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6533 {
6534         struct btrfs_space_info *space_info = bg->space_info;
6535
6536         ASSERT(bg->ro);
6537
6538         if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6539                 return;
6540
6541         /*
6542          * Our block group is read only but before we set it to read only,
6543          * some task might have had allocated an extent from it already, but it
6544          * has not yet created a respective ordered extent (and added it to a
6545          * root's list of ordered extents).
6546          * Therefore wait for any task currently allocating extents, since the
6547          * block group's reservations counter is incremented while a read lock
6548          * on the groups' semaphore is held and decremented after releasing
6549          * the read access on that semaphore and creating the ordered extent.
6550          */
6551         down_write(&space_info->groups_sem);
6552         up_write(&space_info->groups_sem);
6553
6554         wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
6555 }
6556
6557 /**
6558  * btrfs_add_reserved_bytes - update the block_group and space info counters
6559  * @cache:      The cache we are manipulating
6560  * @ram_bytes:  The number of bytes of file content, and will be same to
6561  *              @num_bytes except for the compress path.
6562  * @num_bytes:  The number of bytes in question
6563  * @delalloc:   The blocks are allocated for the delalloc write
6564  *
6565  * This is called by the allocator when it reserves space. If this is a
6566  * reservation and the block group has become read only we cannot make the
6567  * reservation and return -EAGAIN, otherwise this function always succeeds.
6568  */
6569 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6570                                     u64 ram_bytes, u64 num_bytes, int delalloc)
6571 {
6572         struct btrfs_space_info *space_info = cache->space_info;
6573         int ret = 0;
6574
6575         spin_lock(&space_info->lock);
6576         spin_lock(&cache->lock);
6577         if (cache->ro) {
6578                 ret = -EAGAIN;
6579         } else {
6580                 cache->reserved += num_bytes;
6581                 space_info->bytes_reserved += num_bytes;
6582
6583                 trace_btrfs_space_reservation(cache->fs_info,
6584                                 "space_info", space_info->flags,
6585                                 ram_bytes, 0);
6586                 space_info->bytes_may_use -= ram_bytes;
6587                 if (delalloc)
6588                         cache->delalloc_bytes += num_bytes;
6589         }
6590         spin_unlock(&cache->lock);
6591         spin_unlock(&space_info->lock);
6592         return ret;
6593 }
6594
6595 /**
6596  * btrfs_free_reserved_bytes - update the block_group and space info counters
6597  * @cache:      The cache we are manipulating
6598  * @num_bytes:  The number of bytes in question
6599  * @delalloc:   The blocks are allocated for the delalloc write
6600  *
6601  * This is called by somebody who is freeing space that was never actually used
6602  * on disk.  For example if you reserve some space for a new leaf in transaction
6603  * A and before transaction A commits you free that leaf, you call this with
6604  * reserve set to 0 in order to clear the reservation.
6605  */
6606
6607 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6608                                      u64 num_bytes, int delalloc)
6609 {
6610         struct btrfs_space_info *space_info = cache->space_info;
6611         int ret = 0;
6612
6613         spin_lock(&space_info->lock);
6614         spin_lock(&cache->lock);
6615         if (cache->ro)
6616                 space_info->bytes_readonly += num_bytes;
6617         cache->reserved -= num_bytes;
6618         space_info->bytes_reserved -= num_bytes;
6619
6620         if (delalloc)
6621                 cache->delalloc_bytes -= num_bytes;
6622         spin_unlock(&cache->lock);
6623         spin_unlock(&space_info->lock);
6624         return ret;
6625 }
6626 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6627 {
6628         struct btrfs_caching_control *next;
6629         struct btrfs_caching_control *caching_ctl;
6630         struct btrfs_block_group_cache *cache;
6631
6632         down_write(&fs_info->commit_root_sem);
6633
6634         list_for_each_entry_safe(caching_ctl, next,
6635                                  &fs_info->caching_block_groups, list) {
6636                 cache = caching_ctl->block_group;
6637                 if (block_group_cache_done(cache)) {
6638                         cache->last_byte_to_unpin = (u64)-1;
6639                         list_del_init(&caching_ctl->list);
6640                         put_caching_control(caching_ctl);
6641                 } else {
6642                         cache->last_byte_to_unpin = caching_ctl->progress;
6643                 }
6644         }
6645
6646         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6647                 fs_info->pinned_extents = &fs_info->freed_extents[1];
6648         else
6649                 fs_info->pinned_extents = &fs_info->freed_extents[0];
6650
6651         up_write(&fs_info->commit_root_sem);
6652
6653         update_global_block_rsv(fs_info);
6654 }
6655
6656 /*
6657  * Returns the free cluster for the given space info and sets empty_cluster to
6658  * what it should be based on the mount options.
6659  */
6660 static struct btrfs_free_cluster *
6661 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6662                    struct btrfs_space_info *space_info, u64 *empty_cluster)
6663 {
6664         struct btrfs_free_cluster *ret = NULL;
6665
6666         *empty_cluster = 0;
6667         if (btrfs_mixed_space_info(space_info))
6668                 return ret;
6669
6670         if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6671                 ret = &fs_info->meta_alloc_cluster;
6672                 if (btrfs_test_opt(fs_info, SSD))
6673                         *empty_cluster = SZ_2M;
6674                 else
6675                         *empty_cluster = SZ_64K;
6676         } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6677                    btrfs_test_opt(fs_info, SSD_SPREAD)) {
6678                 *empty_cluster = SZ_2M;
6679                 ret = &fs_info->data_alloc_cluster;
6680         }
6681
6682         return ret;
6683 }
6684
6685 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6686                               u64 start, u64 end,
6687                               const bool return_free_space)
6688 {
6689         struct btrfs_block_group_cache *cache = NULL;
6690         struct btrfs_space_info *space_info;
6691         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6692         struct btrfs_free_cluster *cluster = NULL;
6693         u64 len;
6694         u64 total_unpinned = 0;
6695         u64 empty_cluster = 0;
6696         bool readonly;
6697
6698         while (start <= end) {
6699                 readonly = false;
6700                 if (!cache ||
6701                     start >= cache->key.objectid + cache->key.offset) {
6702                         if (cache)
6703                                 btrfs_put_block_group(cache);
6704                         total_unpinned = 0;
6705                         cache = btrfs_lookup_block_group(fs_info, start);
6706                         BUG_ON(!cache); /* Logic error */
6707
6708                         cluster = fetch_cluster_info(fs_info,
6709                                                      cache->space_info,
6710                                                      &empty_cluster);
6711                         empty_cluster <<= 1;
6712                 }
6713
6714                 len = cache->key.objectid + cache->key.offset - start;
6715                 len = min(len, end + 1 - start);
6716
6717                 if (start < cache->last_byte_to_unpin) {
6718                         len = min(len, cache->last_byte_to_unpin - start);
6719                         if (return_free_space)
6720                                 btrfs_add_free_space(cache, start, len);
6721                 }
6722
6723                 start += len;
6724                 total_unpinned += len;
6725                 space_info = cache->space_info;
6726
6727                 /*
6728                  * If this space cluster has been marked as fragmented and we've
6729                  * unpinned enough in this block group to potentially allow a
6730                  * cluster to be created inside of it go ahead and clear the
6731                  * fragmented check.
6732                  */
6733                 if (cluster && cluster->fragmented &&
6734                     total_unpinned > empty_cluster) {
6735                         spin_lock(&cluster->lock);
6736                         cluster->fragmented = 0;
6737                         spin_unlock(&cluster->lock);
6738                 }
6739
6740                 spin_lock(&space_info->lock);
6741                 spin_lock(&cache->lock);
6742                 cache->pinned -= len;
6743                 space_info->bytes_pinned -= len;
6744
6745                 trace_btrfs_space_reservation(fs_info, "pinned",
6746                                               space_info->flags, len, 0);
6747                 space_info->max_extent_size = 0;
6748                 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6749                 if (cache->ro) {
6750                         space_info->bytes_readonly += len;
6751                         readonly = true;
6752                 }
6753                 spin_unlock(&cache->lock);
6754                 if (!readonly && return_free_space &&
6755                     global_rsv->space_info == space_info) {
6756                         u64 to_add = len;
6757
6758                         spin_lock(&global_rsv->lock);
6759                         if (!global_rsv->full) {
6760                                 to_add = min(len, global_rsv->size -
6761                                              global_rsv->reserved);
6762                                 global_rsv->reserved += to_add;
6763                                 space_info->bytes_may_use += to_add;
6764                                 if (global_rsv->reserved >= global_rsv->size)
6765                                         global_rsv->full = 1;
6766                                 trace_btrfs_space_reservation(fs_info,
6767                                                               "space_info",
6768                                                               space_info->flags,
6769                                                               to_add, 1);
6770                                 len -= to_add;
6771                         }
6772                         spin_unlock(&global_rsv->lock);
6773                         /* Add to any tickets we may have */
6774                         if (len)
6775                                 space_info_add_new_bytes(fs_info, space_info,
6776                                                          len);
6777                 }
6778                 spin_unlock(&space_info->lock);
6779         }
6780
6781         if (cache)
6782                 btrfs_put_block_group(cache);
6783         return 0;
6784 }
6785
6786 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6787                                struct btrfs_fs_info *fs_info)
6788 {
6789         struct btrfs_block_group_cache *block_group, *tmp;
6790         struct list_head *deleted_bgs;
6791         struct extent_io_tree *unpin;
6792         u64 start;
6793         u64 end;
6794         int ret;
6795
6796         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6797                 unpin = &fs_info->freed_extents[1];
6798         else
6799                 unpin = &fs_info->freed_extents[0];
6800
6801         while (!trans->aborted) {
6802                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6803                 ret = find_first_extent_bit(unpin, 0, &start, &end,
6804                                             EXTENT_DIRTY, NULL);
6805                 if (ret) {
6806                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6807                         break;
6808                 }
6809
6810                 if (btrfs_test_opt(fs_info, DISCARD))
6811                         ret = btrfs_discard_extent(fs_info, start,
6812                                                    end + 1 - start, NULL);
6813
6814                 clear_extent_dirty(unpin, start, end);
6815                 unpin_extent_range(fs_info, start, end, true);
6816                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6817                 cond_resched();
6818         }
6819
6820         /*
6821          * Transaction is finished.  We don't need the lock anymore.  We
6822          * do need to clean up the block groups in case of a transaction
6823          * abort.
6824          */
6825         deleted_bgs = &trans->transaction->deleted_bgs;
6826         list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6827                 u64 trimmed = 0;
6828
6829                 ret = -EROFS;
6830                 if (!trans->aborted)
6831                         ret = btrfs_discard_extent(fs_info,
6832                                                    block_group->key.objectid,
6833                                                    block_group->key.offset,
6834                                                    &trimmed);
6835
6836                 list_del_init(&block_group->bg_list);
6837                 btrfs_put_block_group_trimming(block_group);
6838                 btrfs_put_block_group(block_group);
6839
6840                 if (ret) {
6841                         const char *errstr = btrfs_decode_error(ret);
6842                         btrfs_warn(fs_info,
6843                            "discard failed while removing blockgroup: errno=%d %s",
6844                                    ret, errstr);
6845                 }
6846         }
6847
6848         return 0;
6849 }
6850
6851 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6852                                 struct btrfs_fs_info *info,
6853                                 struct btrfs_delayed_ref_node *node, u64 parent,
6854                                 u64 root_objectid, u64 owner_objectid,
6855                                 u64 owner_offset, int refs_to_drop,
6856                                 struct btrfs_delayed_extent_op *extent_op)
6857 {
6858         struct btrfs_key key;
6859         struct btrfs_path *path;
6860         struct btrfs_root *extent_root = info->extent_root;
6861         struct extent_buffer *leaf;
6862         struct btrfs_extent_item *ei;
6863         struct btrfs_extent_inline_ref *iref;
6864         int ret;
6865         int is_data;
6866         int extent_slot = 0;
6867         int found_extent = 0;
6868         int num_to_del = 1;
6869         u32 item_size;
6870         u64 refs;
6871         u64 bytenr = node->bytenr;
6872         u64 num_bytes = node->num_bytes;
6873         int last_ref = 0;
6874         bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6875
6876         path = btrfs_alloc_path();
6877         if (!path)
6878                 return -ENOMEM;
6879
6880         path->reada = READA_FORWARD;
6881         path->leave_spinning = 1;
6882
6883         is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6884         BUG_ON(!is_data && refs_to_drop != 1);
6885
6886         if (is_data)
6887                 skinny_metadata = false;
6888
6889         ret = lookup_extent_backref(trans, info, path, &iref,
6890                                     bytenr, num_bytes, parent,
6891                                     root_objectid, owner_objectid,
6892                                     owner_offset);
6893         if (ret == 0) {
6894                 extent_slot = path->slots[0];
6895                 while (extent_slot >= 0) {
6896                         btrfs_item_key_to_cpu(path->nodes[0], &key,
6897                                               extent_slot);
6898                         if (key.objectid != bytenr)
6899                                 break;
6900                         if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6901                             key.offset == num_bytes) {
6902                                 found_extent = 1;
6903                                 break;
6904                         }
6905                         if (key.type == BTRFS_METADATA_ITEM_KEY &&
6906                             key.offset == owner_objectid) {
6907                                 found_extent = 1;
6908                                 break;
6909                         }
6910                         if (path->slots[0] - extent_slot > 5)
6911                                 break;
6912                         extent_slot--;
6913                 }
6914 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6915                 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6916                 if (found_extent && item_size < sizeof(*ei))
6917                         found_extent = 0;
6918 #endif
6919                 if (!found_extent) {
6920                         BUG_ON(iref);
6921                         ret = remove_extent_backref(trans, info, path, NULL,
6922                                                     refs_to_drop,
6923                                                     is_data, &last_ref);
6924                         if (ret) {
6925                                 btrfs_abort_transaction(trans, ret);
6926                                 goto out;
6927                         }
6928                         btrfs_release_path(path);
6929                         path->leave_spinning = 1;
6930
6931                         key.objectid = bytenr;
6932                         key.type = BTRFS_EXTENT_ITEM_KEY;
6933                         key.offset = num_bytes;
6934
6935                         if (!is_data && skinny_metadata) {
6936                                 key.type = BTRFS_METADATA_ITEM_KEY;
6937                                 key.offset = owner_objectid;
6938                         }
6939
6940                         ret = btrfs_search_slot(trans, extent_root,
6941                                                 &key, path, -1, 1);
6942                         if (ret > 0 && skinny_metadata && path->slots[0]) {
6943                                 /*
6944                                  * Couldn't find our skinny metadata item,
6945                                  * see if we have ye olde extent item.
6946                                  */
6947                                 path->slots[0]--;
6948                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
6949                                                       path->slots[0]);
6950                                 if (key.objectid == bytenr &&
6951                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
6952                                     key.offset == num_bytes)
6953                                         ret = 0;
6954                         }
6955
6956                         if (ret > 0 && skinny_metadata) {
6957                                 skinny_metadata = false;
6958                                 key.objectid = bytenr;
6959                                 key.type = BTRFS_EXTENT_ITEM_KEY;
6960                                 key.offset = num_bytes;
6961                                 btrfs_release_path(path);
6962                                 ret = btrfs_search_slot(trans, extent_root,
6963                                                         &key, path, -1, 1);
6964                         }
6965
6966                         if (ret) {
6967                                 btrfs_err(info,
6968                                           "umm, got %d back from search, was looking for %llu",
6969                                           ret, bytenr);
6970                                 if (ret > 0)
6971                                         btrfs_print_leaf(path->nodes[0]);
6972                         }
6973                         if (ret < 0) {
6974                                 btrfs_abort_transaction(trans, ret);
6975                                 goto out;
6976                         }
6977                         extent_slot = path->slots[0];
6978                 }
6979         } else if (WARN_ON(ret == -ENOENT)) {
6980                 btrfs_print_leaf(path->nodes[0]);
6981                 btrfs_err(info,
6982                         "unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6983                         bytenr, parent, root_objectid, owner_objectid,
6984                         owner_offset);
6985                 btrfs_abort_transaction(trans, ret);
6986                 goto out;
6987         } else {
6988                 btrfs_abort_transaction(trans, ret);
6989                 goto out;
6990         }
6991
6992         leaf = path->nodes[0];
6993         item_size = btrfs_item_size_nr(leaf, extent_slot);
6994 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6995         if (item_size < sizeof(*ei)) {
6996                 BUG_ON(found_extent || extent_slot != path->slots[0]);
6997                 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6998                                              0);
6999                 if (ret < 0) {
7000                         btrfs_abort_transaction(trans, ret);
7001                         goto out;
7002                 }
7003
7004                 btrfs_release_path(path);
7005                 path->leave_spinning = 1;
7006
7007                 key.objectid = bytenr;
7008                 key.type = BTRFS_EXTENT_ITEM_KEY;
7009                 key.offset = num_bytes;
7010
7011                 ret = btrfs_search_slot(trans, extent_root, &key, path,
7012                                         -1, 1);
7013                 if (ret) {
7014                         btrfs_err(info,
7015                                   "umm, got %d back from search, was looking for %llu",
7016                                 ret, bytenr);
7017                         btrfs_print_leaf(path->nodes[0]);
7018                 }
7019                 if (ret < 0) {
7020                         btrfs_abort_transaction(trans, ret);
7021                         goto out;
7022                 }
7023
7024                 extent_slot = path->slots[0];
7025                 leaf = path->nodes[0];
7026                 item_size = btrfs_item_size_nr(leaf, extent_slot);
7027         }
7028 #endif
7029         BUG_ON(item_size < sizeof(*ei));
7030         ei = btrfs_item_ptr(leaf, extent_slot,
7031                             struct btrfs_extent_item);
7032         if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7033             key.type == BTRFS_EXTENT_ITEM_KEY) {
7034                 struct btrfs_tree_block_info *bi;
7035                 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7036                 bi = (struct btrfs_tree_block_info *)(ei + 1);
7037                 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7038         }
7039
7040         refs = btrfs_extent_refs(leaf, ei);
7041         if (refs < refs_to_drop) {
7042                 btrfs_err(info,
7043                           "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7044                           refs_to_drop, refs, bytenr);
7045                 ret = -EINVAL;
7046                 btrfs_abort_transaction(trans, ret);
7047                 goto out;
7048         }
7049         refs -= refs_to_drop;
7050
7051         if (refs > 0) {
7052                 if (extent_op)
7053                         __run_delayed_extent_op(extent_op, leaf, ei);
7054                 /*
7055                  * In the case of inline back ref, reference count will
7056                  * be updated by remove_extent_backref
7057                  */
7058                 if (iref) {
7059                         BUG_ON(!found_extent);
7060                 } else {
7061                         btrfs_set_extent_refs(leaf, ei, refs);
7062                         btrfs_mark_buffer_dirty(leaf);
7063                 }
7064                 if (found_extent) {
7065                         ret = remove_extent_backref(trans, info, path,
7066                                                     iref, refs_to_drop,
7067                                                     is_data, &last_ref);
7068                         if (ret) {
7069                                 btrfs_abort_transaction(trans, ret);
7070                                 goto out;
7071                         }
7072                 }
7073         } else {
7074                 if (found_extent) {
7075                         BUG_ON(is_data && refs_to_drop !=
7076                                extent_data_ref_count(path, iref));
7077                         if (iref) {
7078                                 BUG_ON(path->slots[0] != extent_slot);
7079                         } else {
7080                                 BUG_ON(path->slots[0] != extent_slot + 1);
7081                                 path->slots[0] = extent_slot;
7082                                 num_to_del = 2;
7083                         }
7084                 }
7085
7086                 last_ref = 1;
7087                 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7088                                       num_to_del);
7089                 if (ret) {
7090                         btrfs_abort_transaction(trans, ret);
7091                         goto out;
7092                 }
7093                 btrfs_release_path(path);
7094
7095                 if (is_data) {
7096                         ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7097                         if (ret) {
7098                                 btrfs_abort_transaction(trans, ret);
7099                                 goto out;
7100                         }
7101                 }
7102
7103                 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7104                 if (ret) {
7105                         btrfs_abort_transaction(trans, ret);
7106                         goto out;
7107                 }
7108
7109                 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7110                 if (ret) {
7111                         btrfs_abort_transaction(trans, ret);
7112                         goto out;
7113                 }
7114         }
7115         btrfs_release_path(path);
7116
7117 out:
7118         btrfs_free_path(path);
7119         return ret;
7120 }
7121
7122 /*
7123  * when we free an block, it is possible (and likely) that we free the last
7124  * delayed ref for that extent as well.  This searches the delayed ref tree for
7125  * a given extent, and if there are no other delayed refs to be processed, it
7126  * removes it from the tree.
7127  */
7128 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7129                                       u64 bytenr)
7130 {
7131         struct btrfs_delayed_ref_head *head;
7132         struct btrfs_delayed_ref_root *delayed_refs;
7133         int ret = 0;
7134
7135         delayed_refs = &trans->transaction->delayed_refs;
7136         spin_lock(&delayed_refs->lock);
7137         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7138         if (!head)
7139                 goto out_delayed_unlock;
7140
7141         spin_lock(&head->lock);
7142         if (!RB_EMPTY_ROOT(&head->ref_tree))
7143                 goto out;
7144
7145         if (head->extent_op) {
7146                 if (!head->must_insert_reserved)
7147                         goto out;
7148                 btrfs_free_delayed_extent_op(head->extent_op);
7149                 head->extent_op = NULL;
7150         }
7151
7152         /*
7153          * waiting for the lock here would deadlock.  If someone else has it
7154          * locked they are already in the process of dropping it anyway
7155          */
7156         if (!mutex_trylock(&head->mutex))
7157                 goto out;
7158
7159         /*
7160          * at this point we have a head with no other entries.  Go
7161          * ahead and process it.
7162          */
7163         rb_erase(&head->href_node, &delayed_refs->href_root);
7164         RB_CLEAR_NODE(&head->href_node);
7165         atomic_dec(&delayed_refs->num_entries);
7166
7167         /*
7168          * we don't take a ref on the node because we're removing it from the
7169          * tree, so we just steal the ref the tree was holding.
7170          */
7171         delayed_refs->num_heads--;
7172         if (head->processing == 0)
7173                 delayed_refs->num_heads_ready--;
7174         head->processing = 0;
7175         spin_unlock(&head->lock);
7176         spin_unlock(&delayed_refs->lock);
7177
7178         BUG_ON(head->extent_op);
7179         if (head->must_insert_reserved)
7180                 ret = 1;
7181
7182         mutex_unlock(&head->mutex);
7183         btrfs_put_delayed_ref_head(head);
7184         return ret;
7185 out:
7186         spin_unlock(&head->lock);
7187
7188 out_delayed_unlock:
7189         spin_unlock(&delayed_refs->lock);
7190         return 0;
7191 }
7192
7193 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7194                            struct btrfs_root *root,
7195                            struct extent_buffer *buf,
7196                            u64 parent, int last_ref)
7197 {
7198         struct btrfs_fs_info *fs_info = root->fs_info;
7199         int pin = 1;
7200         int ret;
7201
7202         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7203                 int old_ref_mod, new_ref_mod;
7204
7205                 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7206                                    root->root_key.objectid,
7207                                    btrfs_header_level(buf), 0,
7208                                    BTRFS_DROP_DELAYED_REF);
7209                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7210                                                  buf->len, parent,
7211                                                  root->root_key.objectid,
7212                                                  btrfs_header_level(buf),
7213                                                  BTRFS_DROP_DELAYED_REF, NULL,
7214                                                  &old_ref_mod, &new_ref_mod);
7215                 BUG_ON(ret); /* -ENOMEM */
7216                 pin = old_ref_mod >= 0 && new_ref_mod < 0;
7217         }
7218
7219         if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7220                 struct btrfs_block_group_cache *cache;
7221
7222                 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7223                         ret = check_ref_cleanup(trans, buf->start);
7224                         if (!ret)
7225                                 goto out;
7226                 }
7227
7228                 pin = 0;
7229                 cache = btrfs_lookup_block_group(fs_info, buf->start);
7230
7231                 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7232                         pin_down_extent(fs_info, cache, buf->start,
7233                                         buf->len, 1);
7234                         btrfs_put_block_group(cache);
7235                         goto out;
7236                 }
7237
7238                 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7239
7240                 btrfs_add_free_space(cache, buf->start, buf->len);
7241                 btrfs_free_reserved_bytes(cache, buf->len, 0);
7242                 btrfs_put_block_group(cache);
7243                 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7244         }
7245 out:
7246         if (pin)
7247                 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7248                                  root->root_key.objectid);
7249
7250         if (last_ref) {
7251                 /*
7252                  * Deleting the buffer, clear the corrupt flag since it doesn't
7253                  * matter anymore.
7254                  */
7255                 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7256         }
7257 }
7258
7259 /* Can return -ENOMEM */
7260 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7261                       struct btrfs_root *root,
7262                       u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7263                       u64 owner, u64 offset)
7264 {
7265         struct btrfs_fs_info *fs_info = root->fs_info;
7266         int old_ref_mod, new_ref_mod;
7267         int ret;
7268
7269         if (btrfs_is_testing(fs_info))
7270                 return 0;
7271
7272         if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7273                 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7274                                    root_objectid, owner, offset,
7275                                    BTRFS_DROP_DELAYED_REF);
7276
7277         /*
7278          * tree log blocks never actually go into the extent allocation
7279          * tree, just update pinning info and exit early.
7280          */
7281         if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7282                 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7283                 /* unlocks the pinned mutex */
7284                 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7285                 old_ref_mod = new_ref_mod = 0;
7286                 ret = 0;
7287         } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7288                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7289                                                  num_bytes, parent,
7290                                                  root_objectid, (int)owner,
7291                                                  BTRFS_DROP_DELAYED_REF, NULL,
7292                                                  &old_ref_mod, &new_ref_mod);
7293         } else {
7294                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7295                                                  num_bytes, parent,
7296                                                  root_objectid, owner, offset,
7297                                                  0, BTRFS_DROP_DELAYED_REF,
7298                                                  &old_ref_mod, &new_ref_mod);
7299         }
7300
7301         if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7302                 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7303
7304         return ret;
7305 }
7306
7307 /*
7308  * when we wait for progress in the block group caching, its because
7309  * our allocation attempt failed at least once.  So, we must sleep
7310  * and let some progress happen before we try again.
7311  *
7312  * This function will sleep at least once waiting for new free space to
7313  * show up, and then it will check the block group free space numbers
7314  * for our min num_bytes.  Another option is to have it go ahead
7315  * and look in the rbtree for a free extent of a given size, but this
7316  * is a good start.
7317  *
7318  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7319  * any of the information in this block group.
7320  */
7321 static noinline void
7322 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7323                                 u64 num_bytes)
7324 {
7325         struct btrfs_caching_control *caching_ctl;
7326
7327         caching_ctl = get_caching_control(cache);
7328         if (!caching_ctl)
7329                 return;
7330
7331         wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7332                    (cache->free_space_ctl->free_space >= num_bytes));
7333
7334         put_caching_control(caching_ctl);
7335 }
7336
7337 static noinline int
7338 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7339 {
7340         struct btrfs_caching_control *caching_ctl;
7341         int ret = 0;
7342
7343         caching_ctl = get_caching_control(cache);
7344         if (!caching_ctl)
7345                 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7346
7347         wait_event(caching_ctl->wait, block_group_cache_done(cache));
7348         if (cache->cached == BTRFS_CACHE_ERROR)
7349                 ret = -EIO;
7350         put_caching_control(caching_ctl);
7351         return ret;
7352 }
7353
7354 int __get_raid_index(u64 flags)
7355 {
7356         if (flags & BTRFS_BLOCK_GROUP_RAID10)
7357                 return BTRFS_RAID_RAID10;
7358         else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7359                 return BTRFS_RAID_RAID1;
7360         else if (flags & BTRFS_BLOCK_GROUP_DUP)
7361                 return BTRFS_RAID_DUP;
7362         else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7363                 return BTRFS_RAID_RAID0;
7364         else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7365                 return BTRFS_RAID_RAID5;
7366         else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7367                 return BTRFS_RAID_RAID6;
7368
7369         return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7370 }
7371
7372 int get_block_group_index(struct btrfs_block_group_cache *cache)
7373 {
7374         return __get_raid_index(cache->flags);
7375 }
7376
7377 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7378         [BTRFS_RAID_RAID10]     = "raid10",
7379         [BTRFS_RAID_RAID1]      = "raid1",
7380         [BTRFS_RAID_DUP]        = "dup",
7381         [BTRFS_RAID_RAID0]      = "raid0",
7382         [BTRFS_RAID_SINGLE]     = "single",
7383         [BTRFS_RAID_RAID5]      = "raid5",
7384         [BTRFS_RAID_RAID6]      = "raid6",
7385 };
7386
7387 static const char *get_raid_name(enum btrfs_raid_types type)
7388 {
7389         if (type >= BTRFS_NR_RAID_TYPES)
7390                 return NULL;
7391
7392         return btrfs_raid_type_names[type];
7393 }
7394
7395 enum btrfs_loop_type {
7396         LOOP_CACHING_NOWAIT = 0,
7397         LOOP_CACHING_WAIT = 1,
7398         LOOP_ALLOC_CHUNK = 2,
7399         LOOP_NO_EMPTY_SIZE = 3,
7400 };
7401
7402 static inline void
7403 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7404                        int delalloc)
7405 {
7406         if (delalloc)
7407                 down_read(&cache->data_rwsem);
7408 }
7409
7410 static inline void
7411 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7412                        int delalloc)
7413 {
7414         btrfs_get_block_group(cache);
7415         if (delalloc)
7416                 down_read(&cache->data_rwsem);
7417 }
7418
7419 static struct btrfs_block_group_cache *
7420 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7421                    struct btrfs_free_cluster *cluster,
7422                    int delalloc)
7423 {
7424         struct btrfs_block_group_cache *used_bg = NULL;
7425
7426         spin_lock(&cluster->refill_lock);
7427         while (1) {
7428                 used_bg = cluster->block_group;
7429                 if (!used_bg)
7430                         return NULL;
7431
7432                 if (used_bg == block_group)
7433                         return used_bg;
7434
7435                 btrfs_get_block_group(used_bg);
7436
7437                 if (!delalloc)
7438                         return used_bg;
7439
7440                 if (down_read_trylock(&used_bg->data_rwsem))
7441                         return used_bg;
7442
7443                 spin_unlock(&cluster->refill_lock);
7444
7445                 /* We should only have one-level nested. */
7446                 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7447
7448                 spin_lock(&cluster->refill_lock);
7449                 if (used_bg == cluster->block_group)
7450                         return used_bg;
7451
7452                 up_read(&used_bg->data_rwsem);
7453                 btrfs_put_block_group(used_bg);
7454         }
7455 }
7456
7457 static inline void
7458 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7459                          int delalloc)
7460 {
7461         if (delalloc)
7462                 up_read(&cache->data_rwsem);
7463         btrfs_put_block_group(cache);
7464 }
7465
7466 /*
7467  * walks the btree of allocated extents and find a hole of a given size.
7468  * The key ins is changed to record the hole:
7469  * ins->objectid == start position
7470  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7471  * ins->offset == the size of the hole.
7472  * Any available blocks before search_start are skipped.
7473  *
7474  * If there is no suitable free space, we will record the max size of
7475  * the free space extent currently.
7476  */
7477 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7478                                 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7479                                 u64 hint_byte, struct btrfs_key *ins,
7480                                 u64 flags, int delalloc)
7481 {
7482         int ret = 0;
7483         struct btrfs_root *root = fs_info->extent_root;
7484         struct btrfs_free_cluster *last_ptr = NULL;
7485         struct btrfs_block_group_cache *block_group = NULL;
7486         u64 search_start = 0;
7487         u64 max_extent_size = 0;
7488         u64 empty_cluster = 0;
7489         struct btrfs_space_info *space_info;
7490         int loop = 0;
7491         int index = __get_raid_index(flags);
7492         bool failed_cluster_refill = false;
7493         bool failed_alloc = false;
7494         bool use_cluster = true;
7495         bool have_caching_bg = false;
7496         bool orig_have_caching_bg = false;
7497         bool full_search = false;
7498
7499         WARN_ON(num_bytes < fs_info->sectorsize);
7500         ins->type = BTRFS_EXTENT_ITEM_KEY;
7501         ins->objectid = 0;
7502         ins->offset = 0;
7503
7504         trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7505
7506         space_info = __find_space_info(fs_info, flags);
7507         if (!space_info) {
7508                 btrfs_err(fs_info, "No space info for %llu", flags);
7509                 return -ENOSPC;
7510         }
7511
7512         /*
7513          * If our free space is heavily fragmented we may not be able to make
7514          * big contiguous allocations, so instead of doing the expensive search
7515          * for free space, simply return ENOSPC with our max_extent_size so we
7516          * can go ahead and search for a more manageable chunk.
7517          *
7518          * If our max_extent_size is large enough for our allocation simply
7519          * disable clustering since we will likely not be able to find enough
7520          * space to create a cluster and induce latency trying.
7521          */
7522         if (unlikely(space_info->max_extent_size)) {
7523                 spin_lock(&space_info->lock);
7524                 if (space_info->max_extent_size &&
7525                     num_bytes > space_info->max_extent_size) {
7526                         ins->offset = space_info->max_extent_size;
7527                         spin_unlock(&space_info->lock);
7528                         return -ENOSPC;
7529                 } else if (space_info->max_extent_size) {
7530                         use_cluster = false;
7531                 }
7532                 spin_unlock(&space_info->lock);
7533         }
7534
7535         last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7536         if (last_ptr) {
7537                 spin_lock(&last_ptr->lock);
7538                 if (last_ptr->block_group)
7539                         hint_byte = last_ptr->window_start;
7540                 if (last_ptr->fragmented) {
7541                         /*
7542                          * We still set window_start so we can keep track of the
7543                          * last place we found an allocation to try and save
7544                          * some time.
7545                          */
7546                         hint_byte = last_ptr->window_start;
7547                         use_cluster = false;
7548                 }
7549                 spin_unlock(&last_ptr->lock);
7550         }
7551
7552         search_start = max(search_start, first_logical_byte(fs_info, 0));
7553         search_start = max(search_start, hint_byte);
7554         if (search_start == hint_byte) {
7555                 block_group = btrfs_lookup_block_group(fs_info, search_start);
7556                 /*
7557                  * we don't want to use the block group if it doesn't match our
7558                  * allocation bits, or if its not cached.
7559                  *
7560                  * However if we are re-searching with an ideal block group
7561                  * picked out then we don't care that the block group is cached.
7562                  */
7563                 if (block_group && block_group_bits(block_group, flags) &&
7564                     block_group->cached != BTRFS_CACHE_NO) {
7565                         down_read(&space_info->groups_sem);
7566                         if (list_empty(&block_group->list) ||
7567                             block_group->ro) {
7568                                 /*
7569                                  * someone is removing this block group,
7570                                  * we can't jump into the have_block_group
7571                                  * target because our list pointers are not
7572                                  * valid
7573                                  */
7574                                 btrfs_put_block_group(block_group);
7575                                 up_read(&space_info->groups_sem);
7576                         } else {
7577                                 index = get_block_group_index(block_group);
7578                                 btrfs_lock_block_group(block_group, delalloc);
7579                                 goto have_block_group;
7580                         }
7581                 } else if (block_group) {
7582                         btrfs_put_block_group(block_group);
7583                 }
7584         }
7585 search:
7586         have_caching_bg = false;
7587         if (index == 0 || index == __get_raid_index(flags))
7588                 full_search = true;
7589         down_read(&space_info->groups_sem);
7590         list_for_each_entry(block_group, &space_info->block_groups[index],
7591                             list) {
7592                 u64 offset;
7593                 int cached;
7594
7595                 /* If the block group is read-only, we can skip it entirely. */
7596                 if (unlikely(block_group->ro))
7597                         continue;
7598
7599                 btrfs_grab_block_group(block_group, delalloc);
7600                 search_start = block_group->key.objectid;
7601
7602                 /*
7603                  * this can happen if we end up cycling through all the
7604                  * raid types, but we want to make sure we only allocate
7605                  * for the proper type.
7606                  */
7607                 if (!block_group_bits(block_group, flags)) {
7608                     u64 extra = BTRFS_BLOCK_GROUP_DUP |
7609                                 BTRFS_BLOCK_GROUP_RAID1 |
7610                                 BTRFS_BLOCK_GROUP_RAID5 |
7611                                 BTRFS_BLOCK_GROUP_RAID6 |
7612                                 BTRFS_BLOCK_GROUP_RAID10;
7613
7614                         /*
7615                          * if they asked for extra copies and this block group
7616                          * doesn't provide them, bail.  This does allow us to
7617                          * fill raid0 from raid1.
7618                          */
7619                         if ((flags & extra) && !(block_group->flags & extra))
7620                                 goto loop;
7621                 }
7622
7623 have_block_group:
7624                 cached = block_group_cache_done(block_group);
7625                 if (unlikely(!cached)) {
7626                         have_caching_bg = true;
7627                         ret = cache_block_group(block_group, 0);
7628                         BUG_ON(ret < 0);
7629                         ret = 0;
7630                 }
7631
7632                 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7633                         goto loop;
7634
7635                 /*
7636                  * Ok we want to try and use the cluster allocator, so
7637                  * lets look there
7638                  */
7639                 if (last_ptr && use_cluster) {
7640                         struct btrfs_block_group_cache *used_block_group;
7641                         unsigned long aligned_cluster;
7642                         /*
7643                          * the refill lock keeps out other
7644                          * people trying to start a new cluster
7645                          */
7646                         used_block_group = btrfs_lock_cluster(block_group,
7647                                                               last_ptr,
7648                                                               delalloc);
7649                         if (!used_block_group)
7650                                 goto refill_cluster;
7651
7652                         if (used_block_group != block_group &&
7653                             (used_block_group->ro ||
7654                              !block_group_bits(used_block_group, flags)))
7655                                 goto release_cluster;
7656
7657                         offset = btrfs_alloc_from_cluster(used_block_group,
7658                                                 last_ptr,
7659                                                 num_bytes,
7660                                                 used_block_group->key.objectid,
7661                                                 &max_extent_size);
7662                         if (offset) {
7663                                 /* we have a block, we're done */
7664                                 spin_unlock(&last_ptr->refill_lock);
7665                                 trace_btrfs_reserve_extent_cluster(fs_info,
7666                                                 used_block_group,
7667                                                 search_start, num_bytes);
7668                                 if (used_block_group != block_group) {
7669                                         btrfs_release_block_group(block_group,
7670                                                                   delalloc);
7671                                         block_group = used_block_group;
7672                                 }
7673                                 goto checks;
7674                         }
7675
7676                         WARN_ON(last_ptr->block_group != used_block_group);
7677 release_cluster:
7678                         /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7679                          * set up a new clusters, so lets just skip it
7680                          * and let the allocator find whatever block
7681                          * it can find.  If we reach this point, we
7682                          * will have tried the cluster allocator
7683                          * plenty of times and not have found
7684                          * anything, so we are likely way too
7685                          * fragmented for the clustering stuff to find
7686                          * anything.
7687                          *
7688                          * However, if the cluster is taken from the
7689                          * current block group, release the cluster
7690                          * first, so that we stand a better chance of
7691                          * succeeding in the unclustered
7692                          * allocation.  */
7693                         if (loop >= LOOP_NO_EMPTY_SIZE &&
7694                             used_block_group != block_group) {
7695                                 spin_unlock(&last_ptr->refill_lock);
7696                                 btrfs_release_block_group(used_block_group,
7697                                                           delalloc);
7698                                 goto unclustered_alloc;
7699                         }
7700
7701                         /*
7702                          * this cluster didn't work out, free it and
7703                          * start over
7704                          */
7705                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7706
7707                         if (used_block_group != block_group)
7708                                 btrfs_release_block_group(used_block_group,
7709                                                           delalloc);
7710 refill_cluster:
7711                         if (loop >= LOOP_NO_EMPTY_SIZE) {
7712                                 spin_unlock(&last_ptr->refill_lock);
7713                                 goto unclustered_alloc;
7714                         }
7715
7716                         aligned_cluster = max_t(unsigned long,
7717                                                 empty_cluster + empty_size,
7718                                               block_group->full_stripe_len);
7719
7720                         /* allocate a cluster in this block group */
7721                         ret = btrfs_find_space_cluster(fs_info, block_group,
7722                                                        last_ptr, search_start,
7723                                                        num_bytes,
7724                                                        aligned_cluster);
7725                         if (ret == 0) {
7726                                 /*
7727                                  * now pull our allocation out of this
7728                                  * cluster
7729                                  */
7730                                 offset = btrfs_alloc_from_cluster(block_group,
7731                                                         last_ptr,
7732                                                         num_bytes,
7733                                                         search_start,
7734                                                         &max_extent_size);
7735                                 if (offset) {
7736                                         /* we found one, proceed */
7737                                         spin_unlock(&last_ptr->refill_lock);
7738                                         trace_btrfs_reserve_extent_cluster(fs_info,
7739                                                 block_group, search_start,
7740                                                 num_bytes);
7741                                         goto checks;
7742                                 }
7743                         } else if (!cached && loop > LOOP_CACHING_NOWAIT
7744                                    && !failed_cluster_refill) {
7745                                 spin_unlock(&last_ptr->refill_lock);
7746
7747                                 failed_cluster_refill = true;
7748                                 wait_block_group_cache_progress(block_group,
7749                                        num_bytes + empty_cluster + empty_size);
7750                                 goto have_block_group;
7751                         }
7752
7753                         /*
7754                          * at this point we either didn't find a cluster
7755                          * or we weren't able to allocate a block from our
7756                          * cluster.  Free the cluster we've been trying
7757                          * to use, and go to the next block group
7758                          */
7759                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7760                         spin_unlock(&last_ptr->refill_lock);
7761                         goto loop;
7762                 }
7763
7764 unclustered_alloc:
7765                 /*
7766                  * We are doing an unclustered alloc, set the fragmented flag so
7767                  * we don't bother trying to setup a cluster again until we get
7768                  * more space.
7769                  */
7770                 if (unlikely(last_ptr)) {
7771                         spin_lock(&last_ptr->lock);
7772                         last_ptr->fragmented = 1;
7773                         spin_unlock(&last_ptr->lock);
7774                 }
7775                 if (cached) {
7776                         struct btrfs_free_space_ctl *ctl =
7777                                 block_group->free_space_ctl;
7778
7779                         spin_lock(&ctl->tree_lock);
7780                         if (ctl->free_space <
7781                             num_bytes + empty_cluster + empty_size) {
7782                                 if (ctl->free_space > max_extent_size)
7783                                         max_extent_size = ctl->free_space;
7784                                 spin_unlock(&ctl->tree_lock);
7785                                 goto loop;
7786                         }
7787                         spin_unlock(&ctl->tree_lock);
7788                 }
7789
7790                 offset = btrfs_find_space_for_alloc(block_group, search_start,
7791                                                     num_bytes, empty_size,
7792                                                     &max_extent_size);
7793                 /*
7794                  * If we didn't find a chunk, and we haven't failed on this
7795                  * block group before, and this block group is in the middle of
7796                  * caching and we are ok with waiting, then go ahead and wait
7797                  * for progress to be made, and set failed_alloc to true.
7798                  *
7799                  * If failed_alloc is true then we've already waited on this
7800                  * block group once and should move on to the next block group.
7801                  */
7802                 if (!offset && !failed_alloc && !cached &&
7803                     loop > LOOP_CACHING_NOWAIT) {
7804                         wait_block_group_cache_progress(block_group,
7805                                                 num_bytes + empty_size);
7806                         failed_alloc = true;
7807                         goto have_block_group;
7808                 } else if (!offset) {
7809                         goto loop;
7810                 }
7811 checks:
7812                 search_start = ALIGN(offset, fs_info->stripesize);
7813
7814                 /* move on to the next group */
7815                 if (search_start + num_bytes >
7816                     block_group->key.objectid + block_group->key.offset) {
7817                         btrfs_add_free_space(block_group, offset, num_bytes);
7818                         goto loop;
7819                 }
7820
7821                 if (offset < search_start)
7822                         btrfs_add_free_space(block_group, offset,
7823                                              search_start - offset);
7824                 BUG_ON(offset > search_start);
7825
7826                 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7827                                 num_bytes, delalloc);
7828                 if (ret == -EAGAIN) {
7829                         btrfs_add_free_space(block_group, offset, num_bytes);
7830                         goto loop;
7831                 }
7832                 btrfs_inc_block_group_reservations(block_group);
7833
7834                 /* we are all good, lets return */
7835                 ins->objectid = search_start;
7836                 ins->offset = num_bytes;
7837
7838                 trace_btrfs_reserve_extent(fs_info, block_group,
7839                                            search_start, num_bytes);
7840                 btrfs_release_block_group(block_group, delalloc);
7841                 break;
7842 loop:
7843                 failed_cluster_refill = false;
7844                 failed_alloc = false;
7845                 BUG_ON(index != get_block_group_index(block_group));
7846                 btrfs_release_block_group(block_group, delalloc);
7847                 cond_resched();
7848         }
7849         up_read(&space_info->groups_sem);
7850
7851         if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7852                 && !orig_have_caching_bg)
7853                 orig_have_caching_bg = true;
7854
7855         if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7856                 goto search;
7857
7858         if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7859                 goto search;
7860
7861         /*
7862          * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7863          *                      caching kthreads as we move along
7864          * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7865          * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7866          * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7867          *                      again
7868          */
7869         if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7870                 index = 0;
7871                 if (loop == LOOP_CACHING_NOWAIT) {
7872                         /*
7873                          * We want to skip the LOOP_CACHING_WAIT step if we
7874                          * don't have any uncached bgs and we've already done a
7875                          * full search through.
7876                          */
7877                         if (orig_have_caching_bg || !full_search)
7878                                 loop = LOOP_CACHING_WAIT;
7879                         else
7880                                 loop = LOOP_ALLOC_CHUNK;
7881                 } else {
7882                         loop++;
7883                 }
7884
7885                 if (loop == LOOP_ALLOC_CHUNK) {
7886                         struct btrfs_trans_handle *trans;
7887                         int exist = 0;
7888
7889                         trans = current->journal_info;
7890                         if (trans)
7891                                 exist = 1;
7892                         else
7893                                 trans = btrfs_join_transaction(root);
7894
7895                         if (IS_ERR(trans)) {
7896                                 ret = PTR_ERR(trans);
7897                                 goto out;
7898                         }
7899
7900                         ret = do_chunk_alloc(trans, fs_info, flags,
7901                                              CHUNK_ALLOC_FORCE);
7902
7903                         /*
7904                          * If we can't allocate a new chunk we've already looped
7905                          * through at least once, move on to the NO_EMPTY_SIZE
7906                          * case.
7907                          */
7908                         if (ret == -ENOSPC)
7909                                 loop = LOOP_NO_EMPTY_SIZE;
7910
7911                         /*
7912                          * Do not bail out on ENOSPC since we
7913                          * can do more things.
7914                          */
7915                         if (ret < 0 && ret != -ENOSPC)
7916                                 btrfs_abort_transaction(trans, ret);
7917                         else
7918                                 ret = 0;
7919                         if (!exist)
7920                                 btrfs_end_transaction(trans);
7921                         if (ret)
7922                                 goto out;
7923                 }
7924
7925                 if (loop == LOOP_NO_EMPTY_SIZE) {
7926                         /*
7927                          * Don't loop again if we already have no empty_size and
7928                          * no empty_cluster.
7929                          */
7930                         if (empty_size == 0 &&
7931                             empty_cluster == 0) {
7932                                 ret = -ENOSPC;
7933                                 goto out;
7934                         }
7935                         empty_size = 0;
7936                         empty_cluster = 0;
7937                 }
7938
7939                 goto search;
7940         } else if (!ins->objectid) {
7941                 ret = -ENOSPC;
7942         } else if (ins->objectid) {
7943                 if (!use_cluster && last_ptr) {
7944                         spin_lock(&last_ptr->lock);
7945                         last_ptr->window_start = ins->objectid;
7946                         spin_unlock(&last_ptr->lock);
7947                 }
7948                 ret = 0;
7949         }
7950 out:
7951         if (ret == -ENOSPC) {
7952                 spin_lock(&space_info->lock);
7953                 space_info->max_extent_size = max_extent_size;
7954                 spin_unlock(&space_info->lock);
7955                 ins->offset = max_extent_size;
7956         }
7957         return ret;
7958 }
7959
7960 static void dump_space_info(struct btrfs_fs_info *fs_info,
7961                             struct btrfs_space_info *info, u64 bytes,
7962                             int dump_block_groups)
7963 {
7964         struct btrfs_block_group_cache *cache;
7965         int index = 0;
7966
7967         spin_lock(&info->lock);
7968         btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7969                    info->flags,
7970                    info->total_bytes - btrfs_space_info_used(info, true),
7971                    info->full ? "" : "not ");
7972         btrfs_info(fs_info,
7973                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7974                 info->total_bytes, info->bytes_used, info->bytes_pinned,
7975                 info->bytes_reserved, info->bytes_may_use,
7976                 info->bytes_readonly);
7977         spin_unlock(&info->lock);
7978
7979         if (!dump_block_groups)
7980                 return;
7981
7982         down_read(&info->groups_sem);
7983 again:
7984         list_for_each_entry(cache, &info->block_groups[index], list) {
7985                 spin_lock(&cache->lock);
7986                 btrfs_info(fs_info,
7987                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7988                         cache->key.objectid, cache->key.offset,
7989                         btrfs_block_group_used(&cache->item), cache->pinned,
7990                         cache->reserved, cache->ro ? "[readonly]" : "");
7991                 btrfs_dump_free_space(cache, bytes);
7992                 spin_unlock(&cache->lock);
7993         }
7994         if (++index < BTRFS_NR_RAID_TYPES)
7995                 goto again;
7996         up_read(&info->groups_sem);
7997 }
7998
7999 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
8000                          u64 num_bytes, u64 min_alloc_size,
8001                          u64 empty_size, u64 hint_byte,
8002                          struct btrfs_key *ins, int is_data, int delalloc)
8003 {
8004         struct btrfs_fs_info *fs_info = root->fs_info;
8005         bool final_tried = num_bytes == min_alloc_size;
8006         u64 flags;
8007         int ret;
8008
8009         flags = get_alloc_profile_by_root(root, is_data);
8010 again:
8011         WARN_ON(num_bytes < fs_info->sectorsize);
8012         ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8013                                hint_byte, ins, flags, delalloc);
8014         if (!ret && !is_data) {
8015                 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8016         } else if (ret == -ENOSPC) {
8017                 if (!final_tried && ins->offset) {
8018                         num_bytes = min(num_bytes >> 1, ins->offset);
8019                         num_bytes = round_down(num_bytes,
8020                                                fs_info->sectorsize);
8021                         num_bytes = max(num_bytes, min_alloc_size);
8022                         ram_bytes = num_bytes;
8023                         if (num_bytes == min_alloc_size)
8024                                 final_tried = true;
8025                         goto again;
8026                 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8027                         struct btrfs_space_info *sinfo;
8028
8029                         sinfo = __find_space_info(fs_info, flags);
8030                         btrfs_err(fs_info,
8031                                   "allocation failed flags %llu, wanted %llu",
8032                                   flags, num_bytes);
8033                         if (sinfo)
8034                                 dump_space_info(fs_info, sinfo, num_bytes, 1);
8035                 }
8036         }
8037
8038         return ret;
8039 }
8040
8041 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8042                                         u64 start, u64 len,
8043                                         int pin, int delalloc)
8044 {
8045         struct btrfs_block_group_cache *cache;
8046         int ret = 0;
8047
8048         cache = btrfs_lookup_block_group(fs_info, start);
8049         if (!cache) {
8050                 btrfs_err(fs_info, "Unable to find block group for %llu",
8051                           start);
8052                 return -ENOSPC;
8053         }
8054
8055         if (pin)
8056                 pin_down_extent(fs_info, cache, start, len, 1);
8057         else {
8058                 if (btrfs_test_opt(fs_info, DISCARD))
8059                         ret = btrfs_discard_extent(fs_info, start, len, NULL);
8060                 btrfs_add_free_space(cache, start, len);
8061                 btrfs_free_reserved_bytes(cache, len, delalloc);
8062                 trace_btrfs_reserved_extent_free(fs_info, start, len);
8063         }
8064
8065         btrfs_put_block_group(cache);
8066         return ret;
8067 }
8068
8069 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8070                                u64 start, u64 len, int delalloc)
8071 {
8072         return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8073 }
8074
8075 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8076                                        u64 start, u64 len)
8077 {
8078         return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8079 }
8080
8081 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8082                                       struct btrfs_fs_info *fs_info,
8083                                       u64 parent, u64 root_objectid,
8084                                       u64 flags, u64 owner, u64 offset,
8085                                       struct btrfs_key *ins, int ref_mod)
8086 {
8087         int ret;
8088         struct btrfs_extent_item *extent_item;
8089         struct btrfs_extent_inline_ref *iref;
8090         struct btrfs_path *path;
8091         struct extent_buffer *leaf;
8092         int type;
8093         u32 size;
8094
8095         if (parent > 0)
8096                 type = BTRFS_SHARED_DATA_REF_KEY;
8097         else
8098                 type = BTRFS_EXTENT_DATA_REF_KEY;
8099
8100         size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8101
8102         path = btrfs_alloc_path();
8103         if (!path)
8104                 return -ENOMEM;
8105
8106         path->leave_spinning = 1;
8107         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8108                                       ins, size);
8109         if (ret) {
8110                 btrfs_free_path(path);
8111                 return ret;
8112         }
8113
8114         leaf = path->nodes[0];
8115         extent_item = btrfs_item_ptr(leaf, path->slots[0],
8116                                      struct btrfs_extent_item);
8117         btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8118         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8119         btrfs_set_extent_flags(leaf, extent_item,
8120                                flags | BTRFS_EXTENT_FLAG_DATA);
8121
8122         iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8123         btrfs_set_extent_inline_ref_type(leaf, iref, type);
8124         if (parent > 0) {
8125                 struct btrfs_shared_data_ref *ref;
8126                 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8127                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8128                 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8129         } else {
8130                 struct btrfs_extent_data_ref *ref;
8131                 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8132                 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8133                 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8134                 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8135                 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8136         }
8137
8138         btrfs_mark_buffer_dirty(path->nodes[0]);
8139         btrfs_free_path(path);
8140
8141         ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8142                                           ins->offset);
8143         if (ret)
8144                 return ret;
8145
8146         ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8147         if (ret) { /* -ENOENT, logic error */
8148                 btrfs_err(fs_info, "update block group failed for %llu %llu",
8149                         ins->objectid, ins->offset);
8150                 BUG();
8151         }
8152         trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8153         return ret;
8154 }
8155
8156 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8157                                      struct btrfs_fs_info *fs_info,
8158                                      u64 parent, u64 root_objectid,
8159                                      u64 flags, struct btrfs_disk_key *key,
8160                                      int level, struct btrfs_key *ins)
8161 {
8162         int ret;
8163         struct btrfs_extent_item *extent_item;
8164         struct btrfs_tree_block_info *block_info;
8165         struct btrfs_extent_inline_ref *iref;
8166         struct btrfs_path *path;
8167         struct extent_buffer *leaf;
8168         u32 size = sizeof(*extent_item) + sizeof(*iref);
8169         u64 num_bytes = ins->offset;
8170         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8171
8172         if (!skinny_metadata)
8173                 size += sizeof(*block_info);
8174
8175         path = btrfs_alloc_path();
8176         if (!path) {
8177                 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8178                                                    fs_info->nodesize);
8179                 return -ENOMEM;
8180         }
8181
8182         path->leave_spinning = 1;
8183         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8184                                       ins, size);
8185         if (ret) {
8186                 btrfs_free_path(path);
8187                 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8188                                                    fs_info->nodesize);
8189                 return ret;
8190         }
8191
8192         leaf = path->nodes[0];
8193         extent_item = btrfs_item_ptr(leaf, path->slots[0],
8194                                      struct btrfs_extent_item);
8195         btrfs_set_extent_refs(leaf, extent_item, 1);
8196         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8197         btrfs_set_extent_flags(leaf, extent_item,
8198                                flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8199
8200         if (skinny_metadata) {
8201                 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8202                 num_bytes = fs_info->nodesize;
8203         } else {
8204                 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8205                 btrfs_set_tree_block_key(leaf, block_info, key);
8206                 btrfs_set_tree_block_level(leaf, block_info, level);
8207                 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8208         }
8209
8210         if (parent > 0) {
8211                 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8212                 btrfs_set_extent_inline_ref_type(leaf, iref,
8213                                                  BTRFS_SHARED_BLOCK_REF_KEY);
8214                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8215         } else {
8216                 btrfs_set_extent_inline_ref_type(leaf, iref,
8217                                                  BTRFS_TREE_BLOCK_REF_KEY);
8218                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8219         }
8220
8221         btrfs_mark_buffer_dirty(leaf);
8222         btrfs_free_path(path);
8223
8224         ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8225                                           num_bytes);
8226         if (ret)
8227                 return ret;
8228
8229         ret = update_block_group(trans, fs_info, ins->objectid,
8230                                  fs_info->nodesize, 1);
8231         if (ret) { /* -ENOENT, logic error */
8232                 btrfs_err(fs_info, "update block group failed for %llu %llu",
8233                         ins->objectid, ins->offset);
8234                 BUG();
8235         }
8236
8237         trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8238                                           fs_info->nodesize);
8239         return ret;
8240 }
8241
8242 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8243                                      struct btrfs_root *root, u64 owner,
8244                                      u64 offset, u64 ram_bytes,
8245                                      struct btrfs_key *ins)
8246 {
8247         struct btrfs_fs_info *fs_info = root->fs_info;
8248         int ret;
8249
8250         BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8251
8252         btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8253                            root->root_key.objectid, owner, offset,
8254                            BTRFS_ADD_DELAYED_EXTENT);
8255
8256         ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8257                                          ins->offset, 0,
8258                                          root->root_key.objectid, owner,
8259                                          offset, ram_bytes,
8260                                          BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8261         return ret;
8262 }
8263
8264 /*
8265  * this is used by the tree logging recovery code.  It records that
8266  * an extent has been allocated and makes sure to clear the free
8267  * space cache bits as well
8268  */
8269 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8270                                    struct btrfs_fs_info *fs_info,
8271                                    u64 root_objectid, u64 owner, u64 offset,
8272                                    struct btrfs_key *ins)
8273 {
8274         int ret;
8275         struct btrfs_block_group_cache *block_group;
8276         struct btrfs_space_info *space_info;
8277
8278         /*
8279          * Mixed block groups will exclude before processing the log so we only
8280          * need to do the exclude dance if this fs isn't mixed.
8281          */
8282         if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8283                 ret = __exclude_logged_extent(fs_info, ins->objectid,
8284                                               ins->offset);
8285                 if (ret)
8286                         return ret;
8287         }
8288
8289         block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8290         if (!block_group)
8291                 return -EINVAL;
8292
8293         space_info = block_group->space_info;
8294         spin_lock(&space_info->lock);
8295         spin_lock(&block_group->lock);
8296         space_info->bytes_reserved += ins->offset;
8297         block_group->reserved += ins->offset;
8298         spin_unlock(&block_group->lock);
8299         spin_unlock(&space_info->lock);
8300
8301         ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8302                                          0, owner, offset, ins, 1);
8303         btrfs_put_block_group(block_group);
8304         return ret;
8305 }
8306
8307 static struct extent_buffer *
8308 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8309                       u64 bytenr, int level)
8310 {
8311         struct btrfs_fs_info *fs_info = root->fs_info;
8312         struct extent_buffer *buf;
8313
8314         buf = btrfs_find_create_tree_block(fs_info, bytenr);
8315         if (IS_ERR(buf))
8316                 return buf;
8317
8318         btrfs_set_header_generation(buf, trans->transid);
8319         btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8320         btrfs_tree_lock(buf);
8321         clean_tree_block(fs_info, buf);
8322         clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8323
8324         btrfs_set_lock_blocking(buf);
8325         set_extent_buffer_uptodate(buf);
8326
8327         if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8328                 buf->log_index = root->log_transid % 2;
8329                 /*
8330                  * we allow two log transactions at a time, use different
8331                  * EXENT bit to differentiate dirty pages.
8332                  */
8333                 if (buf->log_index == 0)
8334                         set_extent_dirty(&root->dirty_log_pages, buf->start,
8335                                         buf->start + buf->len - 1, GFP_NOFS);
8336                 else
8337                         set_extent_new(&root->dirty_log_pages, buf->start,
8338                                         buf->start + buf->len - 1);
8339         } else {
8340                 buf->log_index = -1;
8341                 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8342                          buf->start + buf->len - 1, GFP_NOFS);
8343         }
8344         trans->dirty = true;
8345         /* this returns a buffer locked for blocking */
8346         return buf;
8347 }
8348
8349 static struct btrfs_block_rsv *
8350 use_block_rsv(struct btrfs_trans_handle *trans,
8351               struct btrfs_root *root, u32 blocksize)
8352 {
8353         struct btrfs_fs_info *fs_info = root->fs_info;
8354         struct btrfs_block_rsv *block_rsv;
8355         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8356         int ret;
8357         bool global_updated = false;
8358
8359         block_rsv = get_block_rsv(trans, root);
8360
8361         if (unlikely(block_rsv->size == 0))
8362                 goto try_reserve;
8363 again:
8364         ret = block_rsv_use_bytes(block_rsv, blocksize);
8365         if (!ret)
8366                 return block_rsv;
8367
8368         if (block_rsv->failfast)
8369                 return ERR_PTR(ret);
8370
8371         if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8372                 global_updated = true;
8373                 update_global_block_rsv(fs_info);
8374                 goto again;
8375         }
8376
8377         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8378                 static DEFINE_RATELIMIT_STATE(_rs,
8379                                 DEFAULT_RATELIMIT_INTERVAL * 10,
8380                                 /*DEFAULT_RATELIMIT_BURST*/ 1);
8381                 if (__ratelimit(&_rs))
8382                         WARN(1, KERN_DEBUG
8383                                 "BTRFS: block rsv returned %d\n", ret);
8384         }
8385 try_reserve:
8386         ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8387                                      BTRFS_RESERVE_NO_FLUSH);
8388         if (!ret)
8389                 return block_rsv;
8390         /*
8391          * If we couldn't reserve metadata bytes try and use some from
8392          * the global reserve if its space type is the same as the global
8393          * reservation.
8394          */
8395         if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8396             block_rsv->space_info == global_rsv->space_info) {
8397                 ret = block_rsv_use_bytes(global_rsv, blocksize);
8398                 if (!ret)
8399                         return global_rsv;
8400         }
8401         return ERR_PTR(ret);
8402 }
8403
8404 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8405                             struct btrfs_block_rsv *block_rsv, u32 blocksize)
8406 {
8407         block_rsv_add_bytes(block_rsv, blocksize, 0);
8408         block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8409 }
8410
8411 /*
8412  * finds a free extent and does all the dirty work required for allocation
8413  * returns the tree buffer or an ERR_PTR on error.
8414  */
8415 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8416                                              struct btrfs_root *root,
8417                                              u64 parent, u64 root_objectid,
8418                                              const struct btrfs_disk_key *key,
8419                                              int level, u64 hint,
8420                                              u64 empty_size)
8421 {
8422         struct btrfs_fs_info *fs_info = root->fs_info;
8423         struct btrfs_key ins;
8424         struct btrfs_block_rsv *block_rsv;
8425         struct extent_buffer *buf;
8426         struct btrfs_delayed_extent_op *extent_op;
8427         u64 flags = 0;
8428         int ret;
8429         u32 blocksize = fs_info->nodesize;
8430         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8431
8432 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8433         if (btrfs_is_testing(fs_info)) {
8434                 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8435                                             level);
8436                 if (!IS_ERR(buf))
8437                         root->alloc_bytenr += blocksize;
8438                 return buf;
8439         }
8440 #endif
8441
8442         block_rsv = use_block_rsv(trans, root, blocksize);
8443         if (IS_ERR(block_rsv))
8444                 return ERR_CAST(block_rsv);
8445
8446         ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8447                                    empty_size, hint, &ins, 0, 0);
8448         if (ret)
8449                 goto out_unuse;
8450
8451         buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8452         if (IS_ERR(buf)) {
8453                 ret = PTR_ERR(buf);
8454                 goto out_free_reserved;
8455         }
8456
8457         if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8458                 if (parent == 0)
8459                         parent = ins.objectid;
8460                 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8461         } else
8462                 BUG_ON(parent > 0);
8463
8464         if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8465                 extent_op = btrfs_alloc_delayed_extent_op();
8466                 if (!extent_op) {
8467                         ret = -ENOMEM;
8468                         goto out_free_buf;
8469                 }
8470                 if (key)
8471                         memcpy(&extent_op->key, key, sizeof(extent_op->key));
8472                 else
8473                         memset(&extent_op->key, 0, sizeof(extent_op->key));
8474                 extent_op->flags_to_set = flags;
8475                 extent_op->update_key = skinny_metadata ? false : true;
8476                 extent_op->update_flags = true;
8477                 extent_op->is_data = false;
8478                 extent_op->level = level;
8479
8480                 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8481                                    root_objectid, level, 0,
8482                                    BTRFS_ADD_DELAYED_EXTENT);
8483                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8484                                                  ins.offset, parent,
8485                                                  root_objectid, level,
8486                                                  BTRFS_ADD_DELAYED_EXTENT,
8487                                                  extent_op, NULL, NULL);
8488                 if (ret)
8489                         goto out_free_delayed;
8490         }
8491         return buf;
8492
8493 out_free_delayed:
8494         btrfs_free_delayed_extent_op(extent_op);
8495 out_free_buf:
8496         free_extent_buffer(buf);
8497 out_free_reserved:
8498         btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8499 out_unuse:
8500         unuse_block_rsv(fs_info, block_rsv, blocksize);
8501         return ERR_PTR(ret);
8502 }
8503
8504 struct walk_control {
8505         u64 refs[BTRFS_MAX_LEVEL];
8506         u64 flags[BTRFS_MAX_LEVEL];
8507         struct btrfs_key update_progress;
8508         int stage;
8509         int level;
8510         int shared_level;
8511         int update_ref;
8512         int keep_locks;
8513         int reada_slot;
8514         int reada_count;
8515         int for_reloc;
8516 };
8517
8518 #define DROP_REFERENCE  1
8519 #define UPDATE_BACKREF  2
8520
8521 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8522                                      struct btrfs_root *root,
8523                                      struct walk_control *wc,
8524                                      struct btrfs_path *path)
8525 {
8526         struct btrfs_fs_info *fs_info = root->fs_info;
8527         u64 bytenr;
8528         u64 generation;
8529         u64 refs;
8530         u64 flags;
8531         u32 nritems;
8532         struct btrfs_key key;
8533         struct extent_buffer *eb;
8534         int ret;
8535         int slot;
8536         int nread = 0;
8537
8538         if (path->slots[wc->level] < wc->reada_slot) {
8539                 wc->reada_count = wc->reada_count * 2 / 3;
8540                 wc->reada_count = max(wc->reada_count, 2);
8541         } else {
8542                 wc->reada_count = wc->reada_count * 3 / 2;
8543                 wc->reada_count = min_t(int, wc->reada_count,
8544                                         BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8545         }
8546
8547         eb = path->nodes[wc->level];
8548         nritems = btrfs_header_nritems(eb);
8549
8550         for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8551                 if (nread >= wc->reada_count)
8552                         break;
8553
8554                 cond_resched();
8555                 bytenr = btrfs_node_blockptr(eb, slot);
8556                 generation = btrfs_node_ptr_generation(eb, slot);
8557
8558                 if (slot == path->slots[wc->level])
8559                         goto reada;
8560
8561                 if (wc->stage == UPDATE_BACKREF &&
8562                     generation <= root->root_key.offset)
8563                         continue;
8564
8565                 /* We don't lock the tree block, it's OK to be racy here */
8566                 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8567                                                wc->level - 1, 1, &refs,
8568                                                &flags);
8569                 /* We don't care about errors in readahead. */
8570                 if (ret < 0)
8571                         continue;
8572                 BUG_ON(refs == 0);
8573
8574                 if (wc->stage == DROP_REFERENCE) {
8575                         if (refs == 1)
8576                                 goto reada;
8577
8578                         if (wc->level == 1 &&
8579                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8580                                 continue;
8581                         if (!wc->update_ref ||
8582                             generation <= root->root_key.offset)
8583                                 continue;
8584                         btrfs_node_key_to_cpu(eb, &key, slot);
8585                         ret = btrfs_comp_cpu_keys(&key,
8586                                                   &wc->update_progress);
8587                         if (ret < 0)
8588                                 continue;
8589                 } else {
8590                         if (wc->level == 1 &&
8591                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8592                                 continue;
8593                 }
8594 reada:
8595                 readahead_tree_block(fs_info, bytenr);
8596                 nread++;
8597         }
8598         wc->reada_slot = slot;
8599 }
8600
8601 /*
8602  * helper to process tree block while walking down the tree.
8603  *
8604  * when wc->stage == UPDATE_BACKREF, this function updates
8605  * back refs for pointers in the block.
8606  *
8607  * NOTE: return value 1 means we should stop walking down.
8608  */
8609 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8610                                    struct btrfs_root *root,
8611                                    struct btrfs_path *path,
8612                                    struct walk_control *wc, int lookup_info)
8613 {
8614         struct btrfs_fs_info *fs_info = root->fs_info;
8615         int level = wc->level;
8616         struct extent_buffer *eb = path->nodes[level];
8617         u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8618         int ret;
8619
8620         if (wc->stage == UPDATE_BACKREF &&
8621             btrfs_header_owner(eb) != root->root_key.objectid)
8622                 return 1;
8623
8624         /*
8625          * when reference count of tree block is 1, it won't increase
8626          * again. once full backref flag is set, we never clear it.
8627          */
8628         if (lookup_info &&
8629             ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8630              (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8631                 BUG_ON(!path->locks[level]);
8632                 ret = btrfs_lookup_extent_info(trans, fs_info,
8633                                                eb->start, level, 1,
8634                                                &wc->refs[level],
8635                                                &wc->flags[level]);
8636                 BUG_ON(ret == -ENOMEM);
8637                 if (ret)
8638                         return ret;
8639                 BUG_ON(wc->refs[level] == 0);
8640         }
8641
8642         if (wc->stage == DROP_REFERENCE) {
8643                 if (wc->refs[level] > 1)
8644                         return 1;
8645
8646                 if (path->locks[level] && !wc->keep_locks) {
8647                         btrfs_tree_unlock_rw(eb, path->locks[level]);
8648                         path->locks[level] = 0;
8649                 }
8650                 return 0;
8651         }
8652
8653         /* wc->stage == UPDATE_BACKREF */
8654         if (!(wc->flags[level] & flag)) {
8655                 BUG_ON(!path->locks[level]);
8656                 ret = btrfs_inc_ref(trans, root, eb, 1);
8657                 BUG_ON(ret); /* -ENOMEM */
8658                 ret = btrfs_dec_ref(trans, root, eb, 0);
8659                 BUG_ON(ret); /* -ENOMEM */
8660                 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8661                                                   eb->len, flag,
8662                                                   btrfs_header_level(eb), 0);
8663                 BUG_ON(ret); /* -ENOMEM */
8664                 wc->flags[level] |= flag;
8665         }
8666
8667         /*
8668          * the block is shared by multiple trees, so it's not good to
8669          * keep the tree lock
8670          */
8671         if (path->locks[level] && level > 0) {
8672                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8673                 path->locks[level] = 0;
8674         }
8675         return 0;
8676 }
8677
8678 /*
8679  * helper to process tree block pointer.
8680  *
8681  * when wc->stage == DROP_REFERENCE, this function checks
8682  * reference count of the block pointed to. if the block
8683  * is shared and we need update back refs for the subtree
8684  * rooted at the block, this function changes wc->stage to
8685  * UPDATE_BACKREF. if the block is shared and there is no
8686  * need to update back, this function drops the reference
8687  * to the block.
8688  *
8689  * NOTE: return value 1 means we should stop walking down.
8690  */
8691 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8692                                  struct btrfs_root *root,
8693                                  struct btrfs_path *path,
8694                                  struct walk_control *wc, int *lookup_info)
8695 {
8696         struct btrfs_fs_info *fs_info = root->fs_info;
8697         u64 bytenr;
8698         u64 generation;
8699         u64 parent;
8700         u32 blocksize;
8701         struct btrfs_key key;
8702         struct extent_buffer *next;
8703         int level = wc->level;
8704         int reada = 0;
8705         int ret = 0;
8706         bool need_account = false;
8707
8708         generation = btrfs_node_ptr_generation(path->nodes[level],
8709                                                path->slots[level]);
8710         /*
8711          * if the lower level block was created before the snapshot
8712          * was created, we know there is no need to update back refs
8713          * for the subtree
8714          */
8715         if (wc->stage == UPDATE_BACKREF &&
8716             generation <= root->root_key.offset) {
8717                 *lookup_info = 1;
8718                 return 1;
8719         }
8720
8721         bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8722         blocksize = fs_info->nodesize;
8723
8724         next = find_extent_buffer(fs_info, bytenr);
8725         if (!next) {
8726                 next = btrfs_find_create_tree_block(fs_info, bytenr);
8727                 if (IS_ERR(next))
8728                         return PTR_ERR(next);
8729
8730                 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8731                                                level - 1);
8732                 reada = 1;
8733         }
8734         btrfs_tree_lock(next);
8735         btrfs_set_lock_blocking(next);
8736
8737         ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8738                                        &wc->refs[level - 1],
8739                                        &wc->flags[level - 1]);
8740         if (ret < 0)
8741                 goto out_unlock;
8742
8743         if (unlikely(wc->refs[level - 1] == 0)) {
8744                 btrfs_err(fs_info, "Missing references.");
8745                 ret = -EIO;
8746                 goto out_unlock;
8747         }
8748         *lookup_info = 0;
8749
8750         if (wc->stage == DROP_REFERENCE) {
8751                 if (wc->refs[level - 1] > 1) {
8752                         need_account = true;
8753                         if (level == 1 &&
8754                             (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8755                                 goto skip;
8756
8757                         if (!wc->update_ref ||
8758                             generation <= root->root_key.offset)
8759                                 goto skip;
8760
8761                         btrfs_node_key_to_cpu(path->nodes[level], &key,
8762                                               path->slots[level]);
8763                         ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8764                         if (ret < 0)
8765                                 goto skip;
8766
8767                         wc->stage = UPDATE_BACKREF;
8768                         wc->shared_level = level - 1;
8769                 }
8770         } else {
8771                 if (level == 1 &&
8772                     (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8773                         goto skip;
8774         }
8775
8776         if (!btrfs_buffer_uptodate(next, generation, 0)) {
8777                 btrfs_tree_unlock(next);
8778                 free_extent_buffer(next);
8779                 next = NULL;
8780                 *lookup_info = 1;
8781         }
8782
8783         if (!next) {
8784                 if (reada && level == 1)
8785                         reada_walk_down(trans, root, wc, path);
8786                 next = read_tree_block(fs_info, bytenr, generation);
8787                 if (IS_ERR(next)) {
8788                         return PTR_ERR(next);
8789                 } else if (!extent_buffer_uptodate(next)) {
8790                         free_extent_buffer(next);
8791                         return -EIO;
8792                 }
8793                 btrfs_tree_lock(next);
8794                 btrfs_set_lock_blocking(next);
8795         }
8796
8797         level--;
8798         ASSERT(level == btrfs_header_level(next));
8799         if (level != btrfs_header_level(next)) {
8800                 btrfs_err(root->fs_info, "mismatched level");
8801                 ret = -EIO;
8802                 goto out_unlock;
8803         }
8804         path->nodes[level] = next;
8805         path->slots[level] = 0;
8806         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8807         wc->level = level;
8808         if (wc->level == 1)
8809                 wc->reada_slot = 0;
8810         return 0;
8811 skip:
8812         wc->refs[level - 1] = 0;
8813         wc->flags[level - 1] = 0;
8814         if (wc->stage == DROP_REFERENCE) {
8815                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8816                         parent = path->nodes[level]->start;
8817                 } else {
8818                         ASSERT(root->root_key.objectid ==
8819                                btrfs_header_owner(path->nodes[level]));
8820                         if (root->root_key.objectid !=
8821                             btrfs_header_owner(path->nodes[level])) {
8822                                 btrfs_err(root->fs_info,
8823                                                 "mismatched block owner");
8824                                 ret = -EIO;
8825                                 goto out_unlock;
8826                         }
8827                         parent = 0;
8828                 }
8829
8830                 if (need_account) {
8831                         ret = btrfs_qgroup_trace_subtree(trans, root, next,
8832                                                          generation, level - 1);
8833                         if (ret) {
8834                                 btrfs_err_rl(fs_info,
8835                                              "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8836                                              ret);
8837                         }
8838                 }
8839                 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8840                                         parent, root->root_key.objectid,
8841                                         level - 1, 0);
8842                 if (ret)
8843                         goto out_unlock;
8844         }
8845
8846         *lookup_info = 1;
8847         ret = 1;
8848
8849 out_unlock:
8850         btrfs_tree_unlock(next);
8851         free_extent_buffer(next);
8852
8853         return ret;
8854 }
8855
8856 /*
8857  * helper to process tree block while walking up the tree.
8858  *
8859  * when wc->stage == DROP_REFERENCE, this function drops
8860  * reference count on the block.
8861  *
8862  * when wc->stage == UPDATE_BACKREF, this function changes
8863  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8864  * to UPDATE_BACKREF previously while processing the block.
8865  *
8866  * NOTE: return value 1 means we should stop walking up.
8867  */
8868 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8869                                  struct btrfs_root *root,
8870                                  struct btrfs_path *path,
8871                                  struct walk_control *wc)
8872 {
8873         struct btrfs_fs_info *fs_info = root->fs_info;
8874         int ret;
8875         int level = wc->level;
8876         struct extent_buffer *eb = path->nodes[level];
8877         u64 parent = 0;
8878
8879         if (wc->stage == UPDATE_BACKREF) {
8880                 BUG_ON(wc->shared_level < level);
8881                 if (level < wc->shared_level)
8882                         goto out;
8883
8884                 ret = find_next_key(path, level + 1, &wc->update_progress);
8885                 if (ret > 0)
8886                         wc->update_ref = 0;
8887
8888                 wc->stage = DROP_REFERENCE;
8889                 wc->shared_level = -1;
8890                 path->slots[level] = 0;
8891
8892                 /*
8893                  * check reference count again if the block isn't locked.
8894                  * we should start walking down the tree again if reference
8895                  * count is one.
8896                  */
8897                 if (!path->locks[level]) {
8898                         BUG_ON(level == 0);
8899                         btrfs_tree_lock(eb);
8900                         btrfs_set_lock_blocking(eb);
8901                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8902
8903                         ret = btrfs_lookup_extent_info(trans, fs_info,
8904                                                        eb->start, level, 1,
8905                                                        &wc->refs[level],
8906                                                        &wc->flags[level]);
8907                         if (ret < 0) {
8908                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8909                                 path->locks[level] = 0;
8910                                 return ret;
8911                         }
8912                         BUG_ON(wc->refs[level] == 0);
8913                         if (wc->refs[level] == 1) {
8914                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8915                                 path->locks[level] = 0;
8916                                 return 1;
8917                         }
8918                 }
8919         }
8920
8921         /* wc->stage == DROP_REFERENCE */
8922         BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8923
8924         if (wc->refs[level] == 1) {
8925                 if (level == 0) {
8926                         if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8927                                 ret = btrfs_dec_ref(trans, root, eb, 1);
8928                         else
8929                                 ret = btrfs_dec_ref(trans, root, eb, 0);
8930                         BUG_ON(ret); /* -ENOMEM */
8931                         ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8932                         if (ret) {
8933                                 btrfs_err_rl(fs_info,
8934                                              "error %d accounting leaf items. Quota is out of sync, rescan required.",
8935                                              ret);
8936                         }
8937                 }
8938                 /* make block locked assertion in clean_tree_block happy */
8939                 if (!path->locks[level] &&
8940                     btrfs_header_generation(eb) == trans->transid) {
8941                         btrfs_tree_lock(eb);
8942                         btrfs_set_lock_blocking(eb);
8943                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8944                 }
8945                 clean_tree_block(fs_info, eb);
8946         }
8947
8948         if (eb == root->node) {
8949                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8950                         parent = eb->start;
8951                 else
8952                         BUG_ON(root->root_key.objectid !=
8953                                btrfs_header_owner(eb));
8954         } else {
8955                 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8956                         parent = path->nodes[level + 1]->start;
8957                 else
8958                         BUG_ON(root->root_key.objectid !=
8959                                btrfs_header_owner(path->nodes[level + 1]));
8960         }
8961
8962         btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8963 out:
8964         wc->refs[level] = 0;
8965         wc->flags[level] = 0;
8966         return 0;
8967 }
8968
8969 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8970                                    struct btrfs_root *root,
8971                                    struct btrfs_path *path,
8972                                    struct walk_control *wc)
8973 {
8974         int level = wc->level;
8975         int lookup_info = 1;
8976         int ret;
8977
8978         while (level >= 0) {
8979                 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8980                 if (ret > 0)
8981                         break;
8982
8983                 if (level == 0)
8984                         break;
8985
8986                 if (path->slots[level] >=
8987                     btrfs_header_nritems(path->nodes[level]))
8988                         break;
8989
8990                 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8991                 if (ret > 0) {
8992                         path->slots[level]++;
8993                         continue;
8994                 } else if (ret < 0)
8995                         return ret;
8996                 level = wc->level;
8997         }
8998         return 0;
8999 }
9000
9001 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9002                                  struct btrfs_root *root,
9003                                  struct btrfs_path *path,
9004                                  struct walk_control *wc, int max_level)
9005 {
9006         int level = wc->level;
9007         int ret;
9008
9009         path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9010         while (level < max_level && path->nodes[level]) {
9011                 wc->level = level;
9012                 if (path->slots[level] + 1 <
9013                     btrfs_header_nritems(path->nodes[level])) {
9014                         path->slots[level]++;
9015                         return 0;
9016                 } else {
9017                         ret = walk_up_proc(trans, root, path, wc);
9018                         if (ret > 0)
9019                                 return 0;
9020
9021                         if (path->locks[level]) {
9022                                 btrfs_tree_unlock_rw(path->nodes[level],
9023                                                      path->locks[level]);
9024                                 path->locks[level] = 0;
9025                         }
9026                         free_extent_buffer(path->nodes[level]);
9027                         path->nodes[level] = NULL;
9028                         level++;
9029                 }
9030         }
9031         return 1;
9032 }
9033
9034 /*
9035  * drop a subvolume tree.
9036  *
9037  * this function traverses the tree freeing any blocks that only
9038  * referenced by the tree.
9039  *
9040  * when a shared tree block is found. this function decreases its
9041  * reference count by one. if update_ref is true, this function
9042  * also make sure backrefs for the shared block and all lower level
9043  * blocks are properly updated.
9044  *
9045  * If called with for_reloc == 0, may exit early with -EAGAIN
9046  */
9047 int btrfs_drop_snapshot(struct btrfs_root *root,
9048                          struct btrfs_block_rsv *block_rsv, int update_ref,
9049                          int for_reloc)
9050 {
9051         struct btrfs_fs_info *fs_info = root->fs_info;
9052         struct btrfs_path *path;
9053         struct btrfs_trans_handle *trans;
9054         struct btrfs_root *tree_root = fs_info->tree_root;
9055         struct btrfs_root_item *root_item = &root->root_item;
9056         struct walk_control *wc;
9057         struct btrfs_key key;
9058         int err = 0;
9059         int ret;
9060         int level;
9061         bool root_dropped = false;
9062
9063         btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9064
9065         path = btrfs_alloc_path();
9066         if (!path) {
9067                 err = -ENOMEM;
9068                 goto out;
9069         }
9070
9071         wc = kzalloc(sizeof(*wc), GFP_NOFS);
9072         if (!wc) {
9073                 btrfs_free_path(path);
9074                 err = -ENOMEM;
9075                 goto out;
9076         }
9077
9078         trans = btrfs_start_transaction(tree_root, 0);
9079         if (IS_ERR(trans)) {
9080                 err = PTR_ERR(trans);
9081                 goto out_free;
9082         }
9083
9084         if (block_rsv)
9085                 trans->block_rsv = block_rsv;
9086
9087         if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9088                 level = btrfs_header_level(root->node);
9089                 path->nodes[level] = btrfs_lock_root_node(root);
9090                 btrfs_set_lock_blocking(path->nodes[level]);
9091                 path->slots[level] = 0;
9092                 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9093                 memset(&wc->update_progress, 0,
9094                        sizeof(wc->update_progress));
9095         } else {
9096                 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9097                 memcpy(&wc->update_progress, &key,
9098                        sizeof(wc->update_progress));
9099
9100                 level = root_item->drop_level;
9101                 BUG_ON(level == 0);
9102                 path->lowest_level = level;
9103                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9104                 path->lowest_level = 0;
9105                 if (ret < 0) {
9106                         err = ret;
9107                         goto out_end_trans;
9108                 }
9109                 WARN_ON(ret > 0);
9110
9111                 /*
9112                  * unlock our path, this is safe because only this
9113                  * function is allowed to delete this snapshot
9114                  */
9115                 btrfs_unlock_up_safe(path, 0);
9116
9117                 level = btrfs_header_level(root->node);
9118                 while (1) {
9119                         btrfs_tree_lock(path->nodes[level]);
9120                         btrfs_set_lock_blocking(path->nodes[level]);
9121                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9122
9123                         ret = btrfs_lookup_extent_info(trans, fs_info,
9124                                                 path->nodes[level]->start,
9125                                                 level, 1, &wc->refs[level],
9126                                                 &wc->flags[level]);
9127                         if (ret < 0) {
9128                                 err = ret;
9129                                 goto out_end_trans;
9130                         }
9131                         BUG_ON(wc->refs[level] == 0);
9132
9133                         if (level == root_item->drop_level)
9134                                 break;
9135
9136                         btrfs_tree_unlock(path->nodes[level]);
9137                         path->locks[level] = 0;
9138                         WARN_ON(wc->refs[level] != 1);
9139                         level--;
9140                 }
9141         }
9142
9143         wc->level = level;
9144         wc->shared_level = -1;
9145         wc->stage = DROP_REFERENCE;
9146         wc->update_ref = update_ref;
9147         wc->keep_locks = 0;
9148         wc->for_reloc = for_reloc;
9149         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9150
9151         while (1) {
9152
9153                 ret = walk_down_tree(trans, root, path, wc);
9154                 if (ret < 0) {
9155                         err = ret;
9156                         break;
9157                 }
9158
9159                 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9160                 if (ret < 0) {
9161                         err = ret;
9162                         break;
9163                 }
9164
9165                 if (ret > 0) {
9166                         BUG_ON(wc->stage != DROP_REFERENCE);
9167                         break;
9168                 }
9169
9170                 if (wc->stage == DROP_REFERENCE) {
9171                         level = wc->level;
9172                         btrfs_node_key(path->nodes[level],
9173                                        &root_item->drop_progress,
9174                                        path->slots[level]);
9175                         root_item->drop_level = level;
9176                 }
9177
9178                 BUG_ON(wc->level == 0);
9179                 if (btrfs_should_end_transaction(trans) ||
9180                     (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9181                         ret = btrfs_update_root(trans, tree_root,
9182                                                 &root->root_key,
9183                                                 root_item);
9184                         if (ret) {
9185                                 btrfs_abort_transaction(trans, ret);
9186                                 err = ret;
9187                                 goto out_end_trans;
9188                         }
9189
9190                         btrfs_end_transaction_throttle(trans);
9191                         if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9192                                 btrfs_debug(fs_info,
9193                                             "drop snapshot early exit");
9194                                 err = -EAGAIN;
9195                                 goto out_free;
9196                         }
9197
9198                         trans = btrfs_start_transaction(tree_root, 0);
9199                         if (IS_ERR(trans)) {
9200                                 err = PTR_ERR(trans);
9201                                 goto out_free;
9202                         }
9203                         if (block_rsv)
9204                                 trans->block_rsv = block_rsv;
9205                 }
9206         }
9207         btrfs_release_path(path);
9208         if (err)
9209                 goto out_end_trans;
9210
9211         ret = btrfs_del_root(trans, fs_info, &root->root_key);
9212         if (ret) {
9213                 btrfs_abort_transaction(trans, ret);
9214                 err = ret;
9215                 goto out_end_trans;
9216         }
9217
9218         if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9219                 ret = btrfs_find_root(tree_root, &root->root_key, path,
9220                                       NULL, NULL);
9221                 if (ret < 0) {
9222                         btrfs_abort_transaction(trans, ret);
9223                         err = ret;
9224                         goto out_end_trans;
9225                 } else if (ret > 0) {
9226                         /* if we fail to delete the orphan item this time
9227                          * around, it'll get picked up the next time.
9228                          *
9229                          * The most common failure here is just -ENOENT.
9230                          */
9231                         btrfs_del_orphan_item(trans, tree_root,
9232                                               root->root_key.objectid);
9233                 }
9234         }
9235
9236         if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9237                 btrfs_add_dropped_root(trans, root);
9238         } else {
9239                 free_extent_buffer(root->node);
9240                 free_extent_buffer(root->commit_root);
9241                 btrfs_put_fs_root(root);
9242         }
9243         root_dropped = true;
9244 out_end_trans:
9245         btrfs_end_transaction_throttle(trans);
9246 out_free:
9247         kfree(wc);
9248         btrfs_free_path(path);
9249 out:
9250         /*
9251          * So if we need to stop dropping the snapshot for whatever reason we
9252          * need to make sure to add it back to the dead root list so that we
9253          * keep trying to do the work later.  This also cleans up roots if we
9254          * don't have it in the radix (like when we recover after a power fail
9255          * or unmount) so we don't leak memory.
9256          */
9257         if (!for_reloc && !root_dropped)
9258                 btrfs_add_dead_root(root);
9259         if (err && err != -EAGAIN)
9260                 btrfs_handle_fs_error(fs_info, err, NULL);
9261         return err;
9262 }
9263
9264 /*
9265  * drop subtree rooted at tree block 'node'.
9266  *
9267  * NOTE: this function will unlock and release tree block 'node'
9268  * only used by relocation code
9269  */
9270 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9271                         struct btrfs_root *root,
9272                         struct extent_buffer *node,
9273                         struct extent_buffer *parent)
9274 {
9275         struct btrfs_fs_info *fs_info = root->fs_info;
9276         struct btrfs_path *path;
9277         struct walk_control *wc;
9278         int level;
9279         int parent_level;
9280         int ret = 0;
9281         int wret;
9282
9283         BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9284
9285         path = btrfs_alloc_path();
9286         if (!path)
9287                 return -ENOMEM;
9288
9289         wc = kzalloc(sizeof(*wc), GFP_NOFS);
9290         if (!wc) {
9291                 btrfs_free_path(path);
9292                 return -ENOMEM;
9293         }
9294
9295         btrfs_assert_tree_locked(parent);
9296         parent_level = btrfs_header_level(parent);
9297         extent_buffer_get(parent);
9298         path->nodes[parent_level] = parent;
9299         path->slots[parent_level] = btrfs_header_nritems(parent);
9300
9301         btrfs_assert_tree_locked(node);
9302         level = btrfs_header_level(node);
9303         path->nodes[level] = node;
9304         path->slots[level] = 0;
9305         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9306
9307         wc->refs[parent_level] = 1;
9308         wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9309         wc->level = level;
9310         wc->shared_level = -1;
9311         wc->stage = DROP_REFERENCE;
9312         wc->update_ref = 0;
9313         wc->keep_locks = 1;
9314         wc->for_reloc = 1;
9315         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9316
9317         while (1) {
9318                 wret = walk_down_tree(trans, root, path, wc);
9319                 if (wret < 0) {
9320                         ret = wret;
9321                         break;
9322                 }
9323
9324                 wret = walk_up_tree(trans, root, path, wc, parent_level);
9325                 if (wret < 0)
9326                         ret = wret;
9327                 if (wret != 0)
9328                         break;
9329         }
9330
9331         kfree(wc);
9332         btrfs_free_path(path);
9333         return ret;
9334 }
9335
9336 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9337 {
9338         u64 num_devices;
9339         u64 stripped;
9340
9341         /*
9342          * if restripe for this chunk_type is on pick target profile and
9343          * return, otherwise do the usual balance
9344          */
9345         stripped = get_restripe_target(fs_info, flags);
9346         if (stripped)
9347                 return extended_to_chunk(stripped);
9348
9349         num_devices = fs_info->fs_devices->rw_devices;
9350
9351         stripped = BTRFS_BLOCK_GROUP_RAID0 |
9352                 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9353                 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9354
9355         if (num_devices == 1) {
9356                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9357                 stripped = flags & ~stripped;
9358
9359                 /* turn raid0 into single device chunks */
9360                 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9361                         return stripped;
9362
9363                 /* turn mirroring into duplication */
9364                 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9365                              BTRFS_BLOCK_GROUP_RAID10))
9366                         return stripped | BTRFS_BLOCK_GROUP_DUP;
9367         } else {
9368                 /* they already had raid on here, just return */
9369                 if (flags & stripped)
9370                         return flags;
9371
9372                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9373                 stripped = flags & ~stripped;
9374
9375                 /* switch duplicated blocks with raid1 */
9376                 if (flags & BTRFS_BLOCK_GROUP_DUP)
9377                         return stripped | BTRFS_BLOCK_GROUP_RAID1;
9378
9379                 /* this is drive concat, leave it alone */
9380         }
9381
9382         return flags;
9383 }
9384
9385 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9386 {
9387         struct btrfs_space_info *sinfo = cache->space_info;
9388         u64 num_bytes;
9389         u64 min_allocable_bytes;
9390         int ret = -ENOSPC;
9391
9392         /*
9393          * We need some metadata space and system metadata space for
9394          * allocating chunks in some corner cases until we force to set
9395          * it to be readonly.
9396          */
9397         if ((sinfo->flags &
9398              (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9399             !force)
9400                 min_allocable_bytes = SZ_1M;
9401         else
9402                 min_allocable_bytes = 0;
9403
9404         spin_lock(&sinfo->lock);
9405         spin_lock(&cache->lock);
9406
9407         if (cache->ro) {
9408                 cache->ro++;
9409                 ret = 0;
9410                 goto out;
9411         }
9412
9413         num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9414                     cache->bytes_super - btrfs_block_group_used(&cache->item);
9415
9416         if (btrfs_space_info_used(sinfo, true) + num_bytes +
9417             min_allocable_bytes <= sinfo->total_bytes) {
9418                 sinfo->bytes_readonly += num_bytes;
9419                 cache->ro++;
9420                 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9421                 ret = 0;
9422         }
9423 out:
9424         spin_unlock(&cache->lock);
9425         spin_unlock(&sinfo->lock);
9426         return ret;
9427 }
9428
9429 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9430                              struct btrfs_block_group_cache *cache)
9431
9432 {
9433         struct btrfs_trans_handle *trans;
9434         u64 alloc_flags;
9435         int ret;
9436
9437 again:
9438         trans = btrfs_join_transaction(fs_info->extent_root);
9439         if (IS_ERR(trans))
9440                 return PTR_ERR(trans);
9441
9442         /*
9443          * we're not allowed to set block groups readonly after the dirty
9444          * block groups cache has started writing.  If it already started,
9445          * back off and let this transaction commit
9446          */
9447         mutex_lock(&fs_info->ro_block_group_mutex);
9448         if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9449                 u64 transid = trans->transid;
9450
9451                 mutex_unlock(&fs_info->ro_block_group_mutex);
9452                 btrfs_end_transaction(trans);
9453
9454                 ret = btrfs_wait_for_commit(fs_info, transid);
9455                 if (ret)
9456                         return ret;
9457                 goto again;
9458         }
9459
9460         /*
9461          * if we are changing raid levels, try to allocate a corresponding
9462          * block group with the new raid level.
9463          */
9464         alloc_flags = update_block_group_flags(fs_info, cache->flags);
9465         if (alloc_flags != cache->flags) {
9466                 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9467                                      CHUNK_ALLOC_FORCE);
9468                 /*
9469                  * ENOSPC is allowed here, we may have enough space
9470                  * already allocated at the new raid level to
9471                  * carry on
9472                  */
9473                 if (ret == -ENOSPC)
9474                         ret = 0;
9475                 if (ret < 0)
9476                         goto out;
9477         }
9478
9479         ret = inc_block_group_ro(cache, 0);
9480         if (!ret)
9481                 goto out;
9482         alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9483         ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9484                              CHUNK_ALLOC_FORCE);
9485         if (ret < 0)
9486                 goto out;
9487         ret = inc_block_group_ro(cache, 0);
9488 out:
9489         if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9490                 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9491                 mutex_lock(&fs_info->chunk_mutex);
9492                 check_system_chunk(trans, fs_info, alloc_flags);
9493                 mutex_unlock(&fs_info->chunk_mutex);
9494         }
9495         mutex_unlock(&fs_info->ro_block_group_mutex);
9496
9497         btrfs_end_transaction(trans);
9498         return ret;
9499 }
9500
9501 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9502                             struct btrfs_fs_info *fs_info, u64 type)
9503 {
9504         u64 alloc_flags = get_alloc_profile(fs_info, type);
9505
9506         return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9507 }
9508
9509 /*
9510  * helper to account the unused space of all the readonly block group in the
9511  * space_info. takes mirrors into account.
9512  */
9513 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9514 {
9515         struct btrfs_block_group_cache *block_group;
9516         u64 free_bytes = 0;
9517         int factor;
9518
9519         /* It's df, we don't care if it's racy */
9520         if (list_empty(&sinfo->ro_bgs))
9521                 return 0;
9522
9523         spin_lock(&sinfo->lock);
9524         list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9525                 spin_lock(&block_group->lock);
9526
9527                 if (!block_group->ro) {
9528                         spin_unlock(&block_group->lock);
9529                         continue;
9530                 }
9531
9532                 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9533                                           BTRFS_BLOCK_GROUP_RAID10 |
9534                                           BTRFS_BLOCK_GROUP_DUP))
9535                         factor = 2;
9536                 else
9537                         factor = 1;
9538
9539                 free_bytes += (block_group->key.offset -
9540                                btrfs_block_group_used(&block_group->item)) *
9541                                factor;
9542
9543                 spin_unlock(&block_group->lock);
9544         }
9545         spin_unlock(&sinfo->lock);
9546
9547         return free_bytes;
9548 }
9549
9550 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9551 {
9552         struct btrfs_space_info *sinfo = cache->space_info;
9553         u64 num_bytes;
9554
9555         BUG_ON(!cache->ro);
9556
9557         spin_lock(&sinfo->lock);
9558         spin_lock(&cache->lock);
9559         if (!--cache->ro) {
9560                 num_bytes = cache->key.offset - cache->reserved -
9561                             cache->pinned - cache->bytes_super -
9562                             btrfs_block_group_used(&cache->item);
9563                 sinfo->bytes_readonly -= num_bytes;
9564                 list_del_init(&cache->ro_list);
9565         }
9566         spin_unlock(&cache->lock);
9567         spin_unlock(&sinfo->lock);
9568 }
9569
9570 /*
9571  * checks to see if its even possible to relocate this block group.
9572  *
9573  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9574  * ok to go ahead and try.
9575  */
9576 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9577 {
9578         struct btrfs_root *root = fs_info->extent_root;
9579         struct btrfs_block_group_cache *block_group;
9580         struct btrfs_space_info *space_info;
9581         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9582         struct btrfs_device *device;
9583         struct btrfs_trans_handle *trans;
9584         u64 min_free;
9585         u64 dev_min = 1;
9586         u64 dev_nr = 0;
9587         u64 target;
9588         int debug;
9589         int index;
9590         int full = 0;
9591         int ret = 0;
9592
9593         debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9594
9595         block_group = btrfs_lookup_block_group(fs_info, bytenr);
9596
9597         /* odd, couldn't find the block group, leave it alone */
9598         if (!block_group) {
9599                 if (debug)
9600                         btrfs_warn(fs_info,
9601                                    "can't find block group for bytenr %llu",
9602                                    bytenr);
9603                 return -1;
9604         }
9605
9606         min_free = btrfs_block_group_used(&block_group->item);
9607
9608         /* no bytes used, we're good */
9609         if (!min_free)
9610                 goto out;
9611
9612         space_info = block_group->space_info;
9613         spin_lock(&space_info->lock);
9614
9615         full = space_info->full;
9616
9617         /*
9618          * if this is the last block group we have in this space, we can't
9619          * relocate it unless we're able to allocate a new chunk below.
9620          *
9621          * Otherwise, we need to make sure we have room in the space to handle
9622          * all of the extents from this block group.  If we can, we're good
9623          */
9624         if ((space_info->total_bytes != block_group->key.offset) &&
9625             (btrfs_space_info_used(space_info, false) + min_free <
9626              space_info->total_bytes)) {
9627                 spin_unlock(&space_info->lock);
9628                 goto out;
9629         }
9630         spin_unlock(&space_info->lock);
9631
9632         /*
9633          * ok we don't have enough space, but maybe we have free space on our
9634          * devices to allocate new chunks for relocation, so loop through our
9635          * alloc devices and guess if we have enough space.  if this block
9636          * group is going to be restriped, run checks against the target
9637          * profile instead of the current one.
9638          */
9639         ret = -1;
9640
9641         /*
9642          * index:
9643          *      0: raid10
9644          *      1: raid1
9645          *      2: dup
9646          *      3: raid0
9647          *      4: single
9648          */
9649         target = get_restripe_target(fs_info, block_group->flags);
9650         if (target) {
9651                 index = __get_raid_index(extended_to_chunk(target));
9652         } else {
9653                 /*
9654                  * this is just a balance, so if we were marked as full
9655                  * we know there is no space for a new chunk
9656                  */
9657                 if (full) {
9658                         if (debug)
9659                                 btrfs_warn(fs_info,
9660                                            "no space to alloc new chunk for block group %llu",
9661                                            block_group->key.objectid);
9662                         goto out;
9663                 }
9664
9665                 index = get_block_group_index(block_group);
9666         }
9667
9668         if (index == BTRFS_RAID_RAID10) {
9669                 dev_min = 4;
9670                 /* Divide by 2 */
9671                 min_free >>= 1;
9672         } else if (index == BTRFS_RAID_RAID1) {
9673                 dev_min = 2;
9674         } else if (index == BTRFS_RAID_DUP) {
9675                 /* Multiply by 2 */
9676                 min_free <<= 1;
9677         } else if (index == BTRFS_RAID_RAID0) {
9678                 dev_min = fs_devices->rw_devices;
9679                 min_free = div64_u64(min_free, dev_min);
9680         }
9681
9682         /* We need to do this so that we can look at pending chunks */
9683         trans = btrfs_join_transaction(root);
9684         if (IS_ERR(trans)) {
9685                 ret = PTR_ERR(trans);
9686                 goto out;
9687         }
9688
9689         mutex_lock(&fs_info->chunk_mutex);
9690         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9691                 u64 dev_offset;
9692
9693                 /*
9694                  * check to make sure we can actually find a chunk with enough
9695                  * space to fit our block group in.
9696                  */
9697                 if (device->total_bytes > device->bytes_used + min_free &&
9698                     !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9699                         ret = find_free_dev_extent(trans, device, min_free,
9700                                                    &dev_offset, NULL);
9701                         if (!ret)
9702                                 dev_nr++;
9703
9704                         if (dev_nr >= dev_min)
9705                                 break;
9706
9707                         ret = -1;
9708                 }
9709         }
9710         if (debug && ret == -1)
9711                 btrfs_warn(fs_info,
9712                            "no space to allocate a new chunk for block group %llu",
9713                            block_group->key.objectid);
9714         mutex_unlock(&fs_info->chunk_mutex);
9715         btrfs_end_transaction(trans);
9716 out:
9717         btrfs_put_block_group(block_group);
9718         return ret;
9719 }
9720
9721 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9722                                   struct btrfs_path *path,
9723                                   struct btrfs_key *key)
9724 {
9725         struct btrfs_root *root = fs_info->extent_root;
9726         int ret = 0;
9727         struct btrfs_key found_key;
9728         struct extent_buffer *leaf;
9729         int slot;
9730
9731         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9732         if (ret < 0)
9733                 goto out;
9734
9735         while (1) {
9736                 slot = path->slots[0];
9737                 leaf = path->nodes[0];
9738                 if (slot >= btrfs_header_nritems(leaf)) {
9739                         ret = btrfs_next_leaf(root, path);
9740                         if (ret == 0)
9741                                 continue;
9742                         if (ret < 0)
9743                                 goto out;
9744                         break;
9745                 }
9746                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9747
9748                 if (found_key.objectid >= key->objectid &&
9749                     found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9750                         struct extent_map_tree *em_tree;
9751                         struct extent_map *em;
9752
9753                         em_tree = &root->fs_info->mapping_tree.map_tree;
9754                         read_lock(&em_tree->lock);
9755                         em = lookup_extent_mapping(em_tree, found_key.objectid,
9756                                                    found_key.offset);
9757                         read_unlock(&em_tree->lock);
9758                         if (!em) {
9759                                 btrfs_err(fs_info,
9760                         "logical %llu len %llu found bg but no related chunk",
9761                                           found_key.objectid, found_key.offset);
9762                                 ret = -ENOENT;
9763                         } else {
9764                                 ret = 0;
9765                         }
9766                         free_extent_map(em);
9767                         goto out;
9768                 }
9769                 path->slots[0]++;
9770         }
9771 out:
9772         return ret;
9773 }
9774
9775 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9776 {
9777         struct btrfs_block_group_cache *block_group;
9778         u64 last = 0;
9779
9780         while (1) {
9781                 struct inode *inode;
9782
9783                 block_group = btrfs_lookup_first_block_group(info, last);
9784                 while (block_group) {
9785                         spin_lock(&block_group->lock);
9786                         if (block_group->iref)
9787                                 break;
9788                         spin_unlock(&block_group->lock);
9789                         block_group = next_block_group(info, block_group);
9790                 }
9791                 if (!block_group) {
9792                         if (last == 0)
9793                                 break;
9794                         last = 0;
9795                         continue;
9796                 }
9797
9798                 inode = block_group->inode;
9799                 block_group->iref = 0;
9800                 block_group->inode = NULL;
9801                 spin_unlock(&block_group->lock);
9802                 ASSERT(block_group->io_ctl.inode == NULL);
9803                 iput(inode);
9804                 last = block_group->key.objectid + block_group->key.offset;
9805                 btrfs_put_block_group(block_group);
9806         }
9807 }
9808
9809 /*
9810  * Must be called only after stopping all workers, since we could have block
9811  * group caching kthreads running, and therefore they could race with us if we
9812  * freed the block groups before stopping them.
9813  */
9814 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9815 {
9816         struct btrfs_block_group_cache *block_group;
9817         struct btrfs_space_info *space_info;
9818         struct btrfs_caching_control *caching_ctl;
9819         struct rb_node *n;
9820
9821         down_write(&info->commit_root_sem);
9822         while (!list_empty(&info->caching_block_groups)) {
9823                 caching_ctl = list_entry(info->caching_block_groups.next,
9824                                          struct btrfs_caching_control, list);
9825                 list_del(&caching_ctl->list);
9826                 put_caching_control(caching_ctl);
9827         }
9828         up_write(&info->commit_root_sem);
9829
9830         spin_lock(&info->unused_bgs_lock);
9831         while (!list_empty(&info->unused_bgs)) {
9832                 block_group = list_first_entry(&info->unused_bgs,
9833                                                struct btrfs_block_group_cache,
9834                                                bg_list);
9835                 list_del_init(&block_group->bg_list);
9836                 btrfs_put_block_group(block_group);
9837         }
9838         spin_unlock(&info->unused_bgs_lock);
9839
9840         spin_lock(&info->block_group_cache_lock);
9841         while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9842                 block_group = rb_entry(n, struct btrfs_block_group_cache,
9843                                        cache_node);
9844                 rb_erase(&block_group->cache_node,
9845                          &info->block_group_cache_tree);
9846                 RB_CLEAR_NODE(&block_group->cache_node);
9847                 spin_unlock(&info->block_group_cache_lock);
9848
9849                 down_write(&block_group->space_info->groups_sem);
9850                 list_del(&block_group->list);
9851                 up_write(&block_group->space_info->groups_sem);
9852
9853                 /*
9854                  * We haven't cached this block group, which means we could
9855                  * possibly have excluded extents on this block group.
9856                  */
9857                 if (block_group->cached == BTRFS_CACHE_NO ||
9858                     block_group->cached == BTRFS_CACHE_ERROR)
9859                         free_excluded_extents(info, block_group);
9860
9861                 btrfs_remove_free_space_cache(block_group);
9862                 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9863                 ASSERT(list_empty(&block_group->dirty_list));
9864                 ASSERT(list_empty(&block_group->io_list));
9865                 ASSERT(list_empty(&block_group->bg_list));
9866                 ASSERT(atomic_read(&block_group->count) == 1);
9867                 btrfs_put_block_group(block_group);
9868
9869                 spin_lock(&info->block_group_cache_lock);
9870         }
9871         spin_unlock(&info->block_group_cache_lock);
9872
9873         /* now that all the block groups are freed, go through and
9874          * free all the space_info structs.  This is only called during
9875          * the final stages of unmount, and so we know nobody is
9876          * using them.  We call synchronize_rcu() once before we start,
9877          * just to be on the safe side.
9878          */
9879         synchronize_rcu();
9880
9881         release_global_block_rsv(info);
9882
9883         while (!list_empty(&info->space_info)) {
9884                 int i;
9885
9886                 space_info = list_entry(info->space_info.next,
9887                                         struct btrfs_space_info,
9888                                         list);
9889
9890                 /*
9891                  * Do not hide this behind enospc_debug, this is actually
9892                  * important and indicates a real bug if this happens.
9893                  */
9894                 if (WARN_ON(space_info->bytes_pinned > 0 ||
9895                             space_info->bytes_reserved > 0 ||
9896                             space_info->bytes_may_use > 0))
9897                         dump_space_info(info, space_info, 0, 0);
9898                 list_del(&space_info->list);
9899                 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9900                         struct kobject *kobj;
9901                         kobj = space_info->block_group_kobjs[i];
9902                         space_info->block_group_kobjs[i] = NULL;
9903                         if (kobj) {
9904                                 kobject_del(kobj);
9905                                 kobject_put(kobj);
9906                         }
9907                 }
9908                 kobject_del(&space_info->kobj);
9909                 kobject_put(&space_info->kobj);
9910         }
9911         return 0;
9912 }
9913
9914 static void link_block_group(struct btrfs_block_group_cache *cache)
9915 {
9916         struct btrfs_space_info *space_info = cache->space_info;
9917         int index = get_block_group_index(cache);
9918         bool first = false;
9919
9920         down_write(&space_info->groups_sem);
9921         if (list_empty(&space_info->block_groups[index]))
9922                 first = true;
9923         list_add_tail(&cache->list, &space_info->block_groups[index]);
9924         up_write(&space_info->groups_sem);
9925
9926         if (first) {
9927                 struct raid_kobject *rkobj;
9928                 int ret;
9929
9930                 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9931                 if (!rkobj)
9932                         goto out_err;
9933                 rkobj->raid_type = index;
9934                 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9935                 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9936                                   "%s", get_raid_name(index));
9937                 if (ret) {
9938                         kobject_put(&rkobj->kobj);
9939                         goto out_err;
9940                 }
9941                 space_info->block_group_kobjs[index] = &rkobj->kobj;
9942         }
9943
9944         return;
9945 out_err:
9946         btrfs_warn(cache->fs_info,
9947                    "failed to add kobject for block cache, ignoring");
9948 }
9949
9950 static struct btrfs_block_group_cache *
9951 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9952                                u64 start, u64 size)
9953 {
9954         struct btrfs_block_group_cache *cache;
9955
9956         cache = kzalloc(sizeof(*cache), GFP_NOFS);
9957         if (!cache)
9958                 return NULL;
9959
9960         cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9961                                         GFP_NOFS);
9962         if (!cache->free_space_ctl) {
9963                 kfree(cache);
9964                 return NULL;
9965         }
9966
9967         cache->key.objectid = start;
9968         cache->key.offset = size;
9969         cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9970
9971         cache->fs_info = fs_info;
9972         cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
9973         set_free_space_tree_thresholds(cache);
9974
9975         atomic_set(&cache->count, 1);
9976         spin_lock_init(&cache->lock);
9977         init_rwsem(&cache->data_rwsem);
9978         INIT_LIST_HEAD(&cache->list);
9979         INIT_LIST_HEAD(&cache->cluster_list);
9980         INIT_LIST_HEAD(&cache->bg_list);
9981         INIT_LIST_HEAD(&cache->ro_list);
9982         INIT_LIST_HEAD(&cache->dirty_list);
9983         INIT_LIST_HEAD(&cache->io_list);
9984         btrfs_init_free_space_ctl(cache);
9985         atomic_set(&cache->trimming, 0);
9986         mutex_init(&cache->free_space_lock);
9987         btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9988
9989         return cache;
9990 }
9991
9992 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9993 {
9994         struct btrfs_path *path;
9995         int ret;
9996         struct btrfs_block_group_cache *cache;
9997         struct btrfs_space_info *space_info;
9998         struct btrfs_key key;
9999         struct btrfs_key found_key;
10000         struct extent_buffer *leaf;
10001         int need_clear = 0;
10002         u64 cache_gen;
10003         u64 feature;
10004         int mixed;
10005
10006         feature = btrfs_super_incompat_flags(info->super_copy);
10007         mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10008
10009         key.objectid = 0;
10010         key.offset = 0;
10011         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10012         path = btrfs_alloc_path();
10013         if (!path)
10014                 return -ENOMEM;
10015         path->reada = READA_FORWARD;
10016
10017         cache_gen = btrfs_super_cache_generation(info->super_copy);
10018         if (btrfs_test_opt(info, SPACE_CACHE) &&
10019             btrfs_super_generation(info->super_copy) != cache_gen)
10020                 need_clear = 1;
10021         if (btrfs_test_opt(info, CLEAR_CACHE))
10022                 need_clear = 1;
10023
10024         while (1) {
10025                 ret = find_first_block_group(info, path, &key);
10026                 if (ret > 0)
10027                         break;
10028                 if (ret != 0)
10029                         goto error;
10030
10031                 leaf = path->nodes[0];
10032                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10033
10034                 cache = btrfs_create_block_group_cache(info, found_key.objectid,
10035                                                        found_key.offset);
10036                 if (!cache) {
10037                         ret = -ENOMEM;
10038                         goto error;
10039                 }
10040
10041                 if (need_clear) {
10042                         /*
10043                          * When we mount with old space cache, we need to
10044                          * set BTRFS_DC_CLEAR and set dirty flag.
10045                          *
10046                          * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10047                          *    truncate the old free space cache inode and
10048                          *    setup a new one.
10049                          * b) Setting 'dirty flag' makes sure that we flush
10050                          *    the new space cache info onto disk.
10051                          */
10052                         if (btrfs_test_opt(info, SPACE_CACHE))
10053                                 cache->disk_cache_state = BTRFS_DC_CLEAR;
10054                 }
10055
10056                 read_extent_buffer(leaf, &cache->item,
10057                                    btrfs_item_ptr_offset(leaf, path->slots[0]),
10058                                    sizeof(cache->item));
10059                 cache->flags = btrfs_block_group_flags(&cache->item);
10060                 if (!mixed &&
10061                     ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10062                     (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10063                         btrfs_err(info,
10064 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10065                                   cache->key.objectid);
10066                         ret = -EINVAL;
10067                         goto error;
10068                 }
10069
10070                 key.objectid = found_key.objectid + found_key.offset;
10071                 btrfs_release_path(path);
10072
10073                 /*
10074                  * We need to exclude the super stripes now so that the space
10075                  * info has super bytes accounted for, otherwise we'll think
10076                  * we have more space than we actually do.
10077                  */
10078                 ret = exclude_super_stripes(info, cache);
10079                 if (ret) {
10080                         /*
10081                          * We may have excluded something, so call this just in
10082                          * case.
10083                          */
10084                         free_excluded_extents(info, cache);
10085                         btrfs_put_block_group(cache);
10086                         goto error;
10087                 }
10088
10089                 /*
10090                  * check for two cases, either we are full, and therefore
10091                  * don't need to bother with the caching work since we won't
10092                  * find any space, or we are empty, and we can just add all
10093                  * the space in and be done with it.  This saves us _alot_ of
10094                  * time, particularly in the full case.
10095                  */
10096                 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10097                         cache->last_byte_to_unpin = (u64)-1;
10098                         cache->cached = BTRFS_CACHE_FINISHED;
10099                         free_excluded_extents(info, cache);
10100                 } else if (btrfs_block_group_used(&cache->item) == 0) {
10101                         cache->last_byte_to_unpin = (u64)-1;
10102                         cache->cached = BTRFS_CACHE_FINISHED;
10103                         add_new_free_space(cache, info,
10104                                            found_key.objectid,
10105                                            found_key.objectid +
10106                                            found_key.offset);
10107                         free_excluded_extents(info, cache);
10108                 }
10109
10110                 ret = btrfs_add_block_group_cache(info, cache);
10111                 if (ret) {
10112                         btrfs_remove_free_space_cache(cache);
10113                         btrfs_put_block_group(cache);
10114                         goto error;
10115                 }
10116
10117                 trace_btrfs_add_block_group(info, cache, 0);
10118                 update_space_info(info, cache->flags, found_key.offset,
10119                                   btrfs_block_group_used(&cache->item),
10120                                   cache->bytes_super, &space_info);
10121
10122                 cache->space_info = space_info;
10123
10124                 link_block_group(cache);
10125
10126                 set_avail_alloc_bits(info, cache->flags);
10127                 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10128                         inc_block_group_ro(cache, 1);
10129                 } else if (btrfs_block_group_used(&cache->item) == 0) {
10130                         spin_lock(&info->unused_bgs_lock);
10131                         /* Should always be true but just in case. */
10132                         if (list_empty(&cache->bg_list)) {
10133                                 btrfs_get_block_group(cache);
10134                                 list_add_tail(&cache->bg_list,
10135                                               &info->unused_bgs);
10136                         }
10137                         spin_unlock(&info->unused_bgs_lock);
10138                 }
10139         }
10140
10141         list_for_each_entry_rcu(space_info, &info->space_info, list) {
10142                 if (!(get_alloc_profile(info, space_info->flags) &
10143                       (BTRFS_BLOCK_GROUP_RAID10 |
10144                        BTRFS_BLOCK_GROUP_RAID1 |
10145                        BTRFS_BLOCK_GROUP_RAID5 |
10146                        BTRFS_BLOCK_GROUP_RAID6 |
10147                        BTRFS_BLOCK_GROUP_DUP)))
10148                         continue;
10149                 /*
10150                  * avoid allocating from un-mirrored block group if there are
10151                  * mirrored block groups.
10152                  */
10153                 list_for_each_entry(cache,
10154                                 &space_info->block_groups[BTRFS_RAID_RAID0],
10155                                 list)
10156                         inc_block_group_ro(cache, 1);
10157                 list_for_each_entry(cache,
10158                                 &space_info->block_groups[BTRFS_RAID_SINGLE],
10159                                 list)
10160                         inc_block_group_ro(cache, 1);
10161         }
10162
10163         init_global_block_rsv(info);
10164         ret = 0;
10165 error:
10166         btrfs_free_path(path);
10167         return ret;
10168 }
10169
10170 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10171                                        struct btrfs_fs_info *fs_info)
10172 {
10173         struct btrfs_block_group_cache *block_group, *tmp;
10174         struct btrfs_root *extent_root = fs_info->extent_root;
10175         struct btrfs_block_group_item item;
10176         struct btrfs_key key;
10177         int ret = 0;
10178         bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10179
10180         trans->can_flush_pending_bgs = false;
10181         list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10182                 if (ret)
10183                         goto next;
10184
10185                 spin_lock(&block_group->lock);
10186                 memcpy(&item, &block_group->item, sizeof(item));
10187                 memcpy(&key, &block_group->key, sizeof(key));
10188                 spin_unlock(&block_group->lock);
10189
10190                 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10191                                         sizeof(item));
10192                 if (ret)
10193                         btrfs_abort_transaction(trans, ret);
10194                 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10195                                                key.offset);
10196                 if (ret)
10197                         btrfs_abort_transaction(trans, ret);
10198                 add_block_group_free_space(trans, fs_info, block_group);
10199                 /* already aborted the transaction if it failed. */
10200 next:
10201                 list_del_init(&block_group->bg_list);
10202         }
10203         trans->can_flush_pending_bgs = can_flush_pending_bgs;
10204 }
10205
10206 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10207                            struct btrfs_fs_info *fs_info, u64 bytes_used,
10208                            u64 type, u64 chunk_offset, u64 size)
10209 {
10210         struct btrfs_block_group_cache *cache;
10211         int ret;
10212
10213         btrfs_set_log_full_commit(fs_info, trans);
10214
10215         cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10216         if (!cache)
10217                 return -ENOMEM;
10218
10219         btrfs_set_block_group_used(&cache->item, bytes_used);
10220         btrfs_set_block_group_chunk_objectid(&cache->item,
10221                                              BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10222         btrfs_set_block_group_flags(&cache->item, type);
10223
10224         cache->flags = type;
10225         cache->last_byte_to_unpin = (u64)-1;
10226         cache->cached = BTRFS_CACHE_FINISHED;
10227         cache->needs_free_space = 1;
10228         ret = exclude_super_stripes(fs_info, cache);
10229         if (ret) {
10230                 /*
10231                  * We may have excluded something, so call this just in
10232                  * case.
10233                  */
10234                 free_excluded_extents(fs_info, cache);
10235                 btrfs_put_block_group(cache);
10236                 return ret;
10237         }
10238
10239         add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10240
10241         free_excluded_extents(fs_info, cache);
10242
10243 #ifdef CONFIG_BTRFS_DEBUG
10244         if (btrfs_should_fragment_free_space(cache)) {
10245                 u64 new_bytes_used = size - bytes_used;
10246
10247                 bytes_used += new_bytes_used >> 1;
10248                 fragment_free_space(cache);
10249         }
10250 #endif
10251         /*
10252          * Ensure the corresponding space_info object is created and
10253          * assigned to our block group. We want our bg to be added to the rbtree
10254          * with its ->space_info set.
10255          */
10256         cache->space_info = __find_space_info(fs_info, cache->flags);
10257         if (!cache->space_info) {
10258                 ret = create_space_info(fs_info, cache->flags,
10259                                        &cache->space_info);
10260                 if (ret) {
10261                         btrfs_remove_free_space_cache(cache);
10262                         btrfs_put_block_group(cache);
10263                         return ret;
10264                 }
10265         }
10266
10267         ret = btrfs_add_block_group_cache(fs_info, cache);
10268         if (ret) {
10269                 btrfs_remove_free_space_cache(cache);
10270                 btrfs_put_block_group(cache);
10271                 return ret;
10272         }
10273
10274         /*
10275          * Now that our block group has its ->space_info set and is inserted in
10276          * the rbtree, update the space info's counters.
10277          */
10278         trace_btrfs_add_block_group(fs_info, cache, 1);
10279         update_space_info(fs_info, cache->flags, size, bytes_used,
10280                                 cache->bytes_super, &cache->space_info);
10281         update_global_block_rsv(fs_info);
10282
10283         link_block_group(cache);
10284
10285         list_add_tail(&cache->bg_list, &trans->new_bgs);
10286
10287         set_avail_alloc_bits(fs_info, type);
10288         return 0;
10289 }
10290
10291 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10292 {
10293         u64 extra_flags = chunk_to_extended(flags) &
10294                                 BTRFS_EXTENDED_PROFILE_MASK;
10295
10296         write_seqlock(&fs_info->profiles_lock);
10297         if (flags & BTRFS_BLOCK_GROUP_DATA)
10298                 fs_info->avail_data_alloc_bits &= ~extra_flags;
10299         if (flags & BTRFS_BLOCK_GROUP_METADATA)
10300                 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10301         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10302                 fs_info->avail_system_alloc_bits &= ~extra_flags;
10303         write_sequnlock(&fs_info->profiles_lock);
10304 }
10305
10306 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10307                              struct btrfs_fs_info *fs_info, u64 group_start,
10308                              struct extent_map *em)
10309 {
10310         struct btrfs_root *root = fs_info->extent_root;
10311         struct btrfs_path *path;
10312         struct btrfs_block_group_cache *block_group;
10313         struct btrfs_free_cluster *cluster;
10314         struct btrfs_root *tree_root = fs_info->tree_root;
10315         struct btrfs_key key;
10316         struct inode *inode;
10317         struct kobject *kobj = NULL;
10318         int ret;
10319         int index;
10320         int factor;
10321         struct btrfs_caching_control *caching_ctl = NULL;
10322         bool remove_em;
10323
10324         block_group = btrfs_lookup_block_group(fs_info, group_start);
10325         BUG_ON(!block_group);
10326         BUG_ON(!block_group->ro);
10327
10328         /*
10329          * Free the reserved super bytes from this block group before
10330          * remove it.
10331          */
10332         free_excluded_extents(fs_info, block_group);
10333         btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10334                                   block_group->key.offset);
10335
10336         memcpy(&key, &block_group->key, sizeof(key));
10337         index = get_block_group_index(block_group);
10338         if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10339                                   BTRFS_BLOCK_GROUP_RAID1 |
10340                                   BTRFS_BLOCK_GROUP_RAID10))
10341                 factor = 2;
10342         else
10343                 factor = 1;
10344
10345         /* make sure this block group isn't part of an allocation cluster */
10346         cluster = &fs_info->data_alloc_cluster;
10347         spin_lock(&cluster->refill_lock);
10348         btrfs_return_cluster_to_free_space(block_group, cluster);
10349         spin_unlock(&cluster->refill_lock);
10350
10351         /*
10352          * make sure this block group isn't part of a metadata
10353          * allocation cluster
10354          */
10355         cluster = &fs_info->meta_alloc_cluster;
10356         spin_lock(&cluster->refill_lock);
10357         btrfs_return_cluster_to_free_space(block_group, cluster);
10358         spin_unlock(&cluster->refill_lock);
10359
10360         path = btrfs_alloc_path();
10361         if (!path) {
10362                 ret = -ENOMEM;
10363                 goto out;
10364         }
10365
10366         /*
10367          * get the inode first so any iput calls done for the io_list
10368          * aren't the final iput (no unlinks allowed now)
10369          */
10370         inode = lookup_free_space_inode(fs_info, block_group, path);
10371
10372         mutex_lock(&trans->transaction->cache_write_mutex);
10373         /*
10374          * make sure our free spache cache IO is done before remove the
10375          * free space inode
10376          */
10377         spin_lock(&trans->transaction->dirty_bgs_lock);
10378         if (!list_empty(&block_group->io_list)) {
10379                 list_del_init(&block_group->io_list);
10380
10381                 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10382
10383                 spin_unlock(&trans->transaction->dirty_bgs_lock);
10384                 btrfs_wait_cache_io(trans, block_group, path);
10385                 btrfs_put_block_group(block_group);
10386                 spin_lock(&trans->transaction->dirty_bgs_lock);
10387         }
10388
10389         if (!list_empty(&block_group->dirty_list)) {
10390                 list_del_init(&block_group->dirty_list);
10391                 btrfs_put_block_group(block_group);
10392         }
10393         spin_unlock(&trans->transaction->dirty_bgs_lock);
10394         mutex_unlock(&trans->transaction->cache_write_mutex);
10395
10396         if (!IS_ERR(inode)) {
10397                 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10398                 if (ret) {
10399                         btrfs_add_delayed_iput(inode);
10400                         goto out;
10401                 }
10402                 clear_nlink(inode);
10403                 /* One for the block groups ref */
10404                 spin_lock(&block_group->lock);
10405                 if (block_group->iref) {
10406                         block_group->iref = 0;
10407                         block_group->inode = NULL;
10408                         spin_unlock(&block_group->lock);
10409                         iput(inode);
10410                 } else {
10411                         spin_unlock(&block_group->lock);
10412                 }
10413                 /* One for our lookup ref */
10414                 btrfs_add_delayed_iput(inode);
10415         }
10416
10417         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10418         key.offset = block_group->key.objectid;
10419         key.type = 0;
10420
10421         ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10422         if (ret < 0)
10423                 goto out;
10424         if (ret > 0)
10425                 btrfs_release_path(path);
10426         if (ret == 0) {
10427                 ret = btrfs_del_item(trans, tree_root, path);
10428                 if (ret)
10429                         goto out;
10430                 btrfs_release_path(path);
10431         }
10432
10433         spin_lock(&fs_info->block_group_cache_lock);
10434         rb_erase(&block_group->cache_node,
10435                  &fs_info->block_group_cache_tree);
10436         RB_CLEAR_NODE(&block_group->cache_node);
10437
10438         if (fs_info->first_logical_byte == block_group->key.objectid)
10439                 fs_info->first_logical_byte = (u64)-1;
10440         spin_unlock(&fs_info->block_group_cache_lock);
10441
10442         down_write(&block_group->space_info->groups_sem);
10443         /*
10444          * we must use list_del_init so people can check to see if they
10445          * are still on the list after taking the semaphore
10446          */
10447         list_del_init(&block_group->list);
10448         if (list_empty(&block_group->space_info->block_groups[index])) {
10449                 kobj = block_group->space_info->block_group_kobjs[index];
10450                 block_group->space_info->block_group_kobjs[index] = NULL;
10451                 clear_avail_alloc_bits(fs_info, block_group->flags);
10452         }
10453         up_write(&block_group->space_info->groups_sem);
10454         if (kobj) {
10455                 kobject_del(kobj);
10456                 kobject_put(kobj);
10457         }
10458
10459         if (block_group->has_caching_ctl)
10460                 caching_ctl = get_caching_control(block_group);
10461         if (block_group->cached == BTRFS_CACHE_STARTED)
10462                 wait_block_group_cache_done(block_group);
10463         if (block_group->has_caching_ctl) {
10464                 down_write(&fs_info->commit_root_sem);
10465                 if (!caching_ctl) {
10466                         struct btrfs_caching_control *ctl;
10467
10468                         list_for_each_entry(ctl,
10469                                     &fs_info->caching_block_groups, list)
10470                                 if (ctl->block_group == block_group) {
10471                                         caching_ctl = ctl;
10472                                         refcount_inc(&caching_ctl->count);
10473                                         break;
10474                                 }
10475                 }
10476                 if (caching_ctl)
10477                         list_del_init(&caching_ctl->list);
10478                 up_write(&fs_info->commit_root_sem);
10479                 if (caching_ctl) {
10480                         /* Once for the caching bgs list and once for us. */
10481                         put_caching_control(caching_ctl);
10482                         put_caching_control(caching_ctl);
10483                 }
10484         }
10485
10486         spin_lock(&trans->transaction->dirty_bgs_lock);
10487         if (!list_empty(&block_group->dirty_list)) {
10488                 WARN_ON(1);
10489         }
10490         if (!list_empty(&block_group->io_list)) {
10491                 WARN_ON(1);
10492         }
10493         spin_unlock(&trans->transaction->dirty_bgs_lock);
10494         btrfs_remove_free_space_cache(block_group);
10495
10496         spin_lock(&block_group->space_info->lock);
10497         list_del_init(&block_group->ro_list);
10498
10499         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10500                 WARN_ON(block_group->space_info->total_bytes
10501                         < block_group->key.offset);
10502                 WARN_ON(block_group->space_info->bytes_readonly
10503                         < block_group->key.offset);
10504                 WARN_ON(block_group->space_info->disk_total
10505                         < block_group->key.offset * factor);
10506         }
10507         block_group->space_info->total_bytes -= block_group->key.offset;
10508         block_group->space_info->bytes_readonly -= block_group->key.offset;
10509         block_group->space_info->disk_total -= block_group->key.offset * factor;
10510
10511         spin_unlock(&block_group->space_info->lock);
10512
10513         memcpy(&key, &block_group->key, sizeof(key));
10514
10515         mutex_lock(&fs_info->chunk_mutex);
10516         if (!list_empty(&em->list)) {
10517                 /* We're in the transaction->pending_chunks list. */
10518                 free_extent_map(em);
10519         }
10520         spin_lock(&block_group->lock);
10521         block_group->removed = 1;
10522         /*
10523          * At this point trimming can't start on this block group, because we
10524          * removed the block group from the tree fs_info->block_group_cache_tree
10525          * so no one can't find it anymore and even if someone already got this
10526          * block group before we removed it from the rbtree, they have already
10527          * incremented block_group->trimming - if they didn't, they won't find
10528          * any free space entries because we already removed them all when we
10529          * called btrfs_remove_free_space_cache().
10530          *
10531          * And we must not remove the extent map from the fs_info->mapping_tree
10532          * to prevent the same logical address range and physical device space
10533          * ranges from being reused for a new block group. This is because our
10534          * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10535          * completely transactionless, so while it is trimming a range the
10536          * currently running transaction might finish and a new one start,
10537          * allowing for new block groups to be created that can reuse the same
10538          * physical device locations unless we take this special care.
10539          *
10540          * There may also be an implicit trim operation if the file system
10541          * is mounted with -odiscard. The same protections must remain
10542          * in place until the extents have been discarded completely when
10543          * the transaction commit has completed.
10544          */
10545         remove_em = (atomic_read(&block_group->trimming) == 0);
10546         /*
10547          * Make sure a trimmer task always sees the em in the pinned_chunks list
10548          * if it sees block_group->removed == 1 (needs to lock block_group->lock
10549          * before checking block_group->removed).
10550          */
10551         if (!remove_em) {
10552                 /*
10553                  * Our em might be in trans->transaction->pending_chunks which
10554                  * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10555                  * and so is the fs_info->pinned_chunks list.
10556                  *
10557                  * So at this point we must be holding the chunk_mutex to avoid
10558                  * any races with chunk allocation (more specifically at
10559                  * volumes.c:contains_pending_extent()), to ensure it always
10560                  * sees the em, either in the pending_chunks list or in the
10561                  * pinned_chunks list.
10562                  */
10563                 list_move_tail(&em->list, &fs_info->pinned_chunks);
10564         }
10565         spin_unlock(&block_group->lock);
10566
10567         if (remove_em) {
10568                 struct extent_map_tree *em_tree;
10569
10570                 em_tree = &fs_info->mapping_tree.map_tree;
10571                 write_lock(&em_tree->lock);
10572                 /*
10573                  * The em might be in the pending_chunks list, so make sure the
10574                  * chunk mutex is locked, since remove_extent_mapping() will
10575                  * delete us from that list.
10576                  */
10577                 remove_extent_mapping(em_tree, em);
10578                 write_unlock(&em_tree->lock);
10579                 /* once for the tree */
10580                 free_extent_map(em);
10581         }
10582
10583         mutex_unlock(&fs_info->chunk_mutex);
10584
10585         ret = remove_block_group_free_space(trans, fs_info, block_group);
10586         if (ret)
10587                 goto out;
10588
10589         btrfs_put_block_group(block_group);
10590         btrfs_put_block_group(block_group);
10591
10592         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10593         if (ret > 0)
10594                 ret = -EIO;
10595         if (ret < 0)
10596                 goto out;
10597
10598         ret = btrfs_del_item(trans, root, path);
10599 out:
10600         btrfs_free_path(path);
10601         return ret;
10602 }
10603
10604 struct btrfs_trans_handle *
10605 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10606                                      const u64 chunk_offset)
10607 {
10608         struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10609         struct extent_map *em;
10610         struct map_lookup *map;
10611         unsigned int num_items;
10612
10613         read_lock(&em_tree->lock);
10614         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10615         read_unlock(&em_tree->lock);
10616         ASSERT(em && em->start == chunk_offset);
10617
10618         /*
10619          * We need to reserve 3 + N units from the metadata space info in order
10620          * to remove a block group (done at btrfs_remove_chunk() and at
10621          * btrfs_remove_block_group()), which are used for:
10622          *
10623          * 1 unit for adding the free space inode's orphan (located in the tree
10624          * of tree roots).
10625          * 1 unit for deleting the block group item (located in the extent
10626          * tree).
10627          * 1 unit for deleting the free space item (located in tree of tree
10628          * roots).
10629          * N units for deleting N device extent items corresponding to each
10630          * stripe (located in the device tree).
10631          *
10632          * In order to remove a block group we also need to reserve units in the
10633          * system space info in order to update the chunk tree (update one or
10634          * more device items and remove one chunk item), but this is done at
10635          * btrfs_remove_chunk() through a call to check_system_chunk().
10636          */
10637         map = em->map_lookup;
10638         num_items = 3 + map->num_stripes;
10639         free_extent_map(em);
10640
10641         return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10642                                                            num_items, 1);
10643 }
10644
10645 /*
10646  * Process the unused_bgs list and remove any that don't have any allocated
10647  * space inside of them.
10648  */
10649 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10650 {
10651         struct btrfs_block_group_cache *block_group;
10652         struct btrfs_space_info *space_info;
10653         struct btrfs_trans_handle *trans;
10654         int ret = 0;
10655
10656         if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10657                 return;
10658
10659         spin_lock(&fs_info->unused_bgs_lock);
10660         while (!list_empty(&fs_info->unused_bgs)) {
10661                 u64 start, end;
10662                 int trimming;
10663
10664                 block_group = list_first_entry(&fs_info->unused_bgs,
10665                                                struct btrfs_block_group_cache,
10666                                                bg_list);
10667                 list_del_init(&block_group->bg_list);
10668
10669                 space_info = block_group->space_info;
10670
10671                 if (ret || btrfs_mixed_space_info(space_info)) {
10672                         btrfs_put_block_group(block_group);
10673                         continue;
10674                 }
10675                 spin_unlock(&fs_info->unused_bgs_lock);
10676
10677                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10678
10679                 /* Don't want to race with allocators so take the groups_sem */
10680                 down_write(&space_info->groups_sem);
10681                 spin_lock(&block_group->lock);
10682                 if (block_group->reserved ||
10683                     btrfs_block_group_used(&block_group->item) ||
10684                     block_group->ro ||
10685                     list_is_singular(&block_group->list)) {
10686                         /*
10687                          * We want to bail if we made new allocations or have
10688                          * outstanding allocations in this block group.  We do
10689                          * the ro check in case balance is currently acting on
10690                          * this block group.
10691                          */
10692                         spin_unlock(&block_group->lock);
10693                         up_write(&space_info->groups_sem);
10694                         goto next;
10695                 }
10696                 spin_unlock(&block_group->lock);
10697
10698                 /* We don't want to force the issue, only flip if it's ok. */
10699                 ret = inc_block_group_ro(block_group, 0);
10700                 up_write(&space_info->groups_sem);
10701                 if (ret < 0) {
10702                         ret = 0;
10703                         goto next;
10704                 }
10705
10706                 /*
10707                  * Want to do this before we do anything else so we can recover
10708                  * properly if we fail to join the transaction.
10709                  */
10710                 trans = btrfs_start_trans_remove_block_group(fs_info,
10711                                                      block_group->key.objectid);
10712                 if (IS_ERR(trans)) {
10713                         btrfs_dec_block_group_ro(block_group);
10714                         ret = PTR_ERR(trans);
10715                         goto next;
10716                 }
10717
10718                 /*
10719                  * We could have pending pinned extents for this block group,
10720                  * just delete them, we don't care about them anymore.
10721                  */
10722                 start = block_group->key.objectid;
10723                 end = start + block_group->key.offset - 1;
10724                 /*
10725                  * Hold the unused_bg_unpin_mutex lock to avoid racing with
10726                  * btrfs_finish_extent_commit(). If we are at transaction N,
10727                  * another task might be running finish_extent_commit() for the
10728                  * previous transaction N - 1, and have seen a range belonging
10729                  * to the block group in freed_extents[] before we were able to
10730                  * clear the whole block group range from freed_extents[]. This
10731                  * means that task can lookup for the block group after we
10732                  * unpinned it from freed_extents[] and removed it, leading to
10733                  * a BUG_ON() at btrfs_unpin_extent_range().
10734                  */
10735                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10736                 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10737                                   EXTENT_DIRTY);
10738                 if (ret) {
10739                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10740                         btrfs_dec_block_group_ro(block_group);
10741                         goto end_trans;
10742                 }
10743                 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10744                                   EXTENT_DIRTY);
10745                 if (ret) {
10746                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10747                         btrfs_dec_block_group_ro(block_group);
10748                         goto end_trans;
10749                 }
10750                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10751
10752                 /* Reset pinned so btrfs_put_block_group doesn't complain */
10753                 spin_lock(&space_info->lock);
10754                 spin_lock(&block_group->lock);
10755
10756                 space_info->bytes_pinned -= block_group->pinned;
10757                 space_info->bytes_readonly += block_group->pinned;
10758                 percpu_counter_add(&space_info->total_bytes_pinned,
10759                                    -block_group->pinned);
10760                 block_group->pinned = 0;
10761
10762                 spin_unlock(&block_group->lock);
10763                 spin_unlock(&space_info->lock);
10764
10765                 /* DISCARD can flip during remount */
10766                 trimming = btrfs_test_opt(fs_info, DISCARD);
10767
10768                 /* Implicit trim during transaction commit. */
10769                 if (trimming)
10770                         btrfs_get_block_group_trimming(block_group);
10771
10772                 /*
10773                  * Btrfs_remove_chunk will abort the transaction if things go
10774                  * horribly wrong.
10775                  */
10776                 ret = btrfs_remove_chunk(trans, fs_info,
10777                                          block_group->key.objectid);
10778
10779                 if (ret) {
10780                         if (trimming)
10781                                 btrfs_put_block_group_trimming(block_group);
10782                         goto end_trans;
10783                 }
10784
10785                 /*
10786                  * If we're not mounted with -odiscard, we can just forget
10787                  * about this block group. Otherwise we'll need to wait
10788                  * until transaction commit to do the actual discard.
10789                  */
10790                 if (trimming) {
10791                         spin_lock(&fs_info->unused_bgs_lock);
10792                         /*
10793                          * A concurrent scrub might have added us to the list
10794                          * fs_info->unused_bgs, so use a list_move operation
10795                          * to add the block group to the deleted_bgs list.
10796                          */
10797                         list_move(&block_group->bg_list,
10798                                   &trans->transaction->deleted_bgs);
10799                         spin_unlock(&fs_info->unused_bgs_lock);
10800                         btrfs_get_block_group(block_group);
10801                 }
10802 end_trans:
10803                 btrfs_end_transaction(trans);
10804 next:
10805                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10806                 btrfs_put_block_group(block_group);
10807                 spin_lock(&fs_info->unused_bgs_lock);
10808         }
10809         spin_unlock(&fs_info->unused_bgs_lock);
10810 }
10811
10812 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10813 {
10814         struct btrfs_space_info *space_info;
10815         struct btrfs_super_block *disk_super;
10816         u64 features;
10817         u64 flags;
10818         int mixed = 0;
10819         int ret;
10820
10821         disk_super = fs_info->super_copy;
10822         if (!btrfs_super_root(disk_super))
10823                 return -EINVAL;
10824
10825         features = btrfs_super_incompat_flags(disk_super);
10826         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10827                 mixed = 1;
10828
10829         flags = BTRFS_BLOCK_GROUP_SYSTEM;
10830         ret = create_space_info(fs_info, flags, &space_info);
10831         if (ret)
10832                 goto out;
10833
10834         if (mixed) {
10835                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10836                 ret = create_space_info(fs_info, flags, &space_info);
10837         } else {
10838                 flags = BTRFS_BLOCK_GROUP_METADATA;
10839                 ret = create_space_info(fs_info, flags, &space_info);
10840                 if (ret)
10841                         goto out;
10842
10843                 flags = BTRFS_BLOCK_GROUP_DATA;
10844                 ret = create_space_info(fs_info, flags, &space_info);
10845         }
10846 out:
10847         return ret;
10848 }
10849
10850 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10851                                    u64 start, u64 end)
10852 {
10853         return unpin_extent_range(fs_info, start, end, false);
10854 }
10855
10856 /*
10857  * It used to be that old block groups would be left around forever.
10858  * Iterating over them would be enough to trim unused space.  Since we
10859  * now automatically remove them, we also need to iterate over unallocated
10860  * space.
10861  *
10862  * We don't want a transaction for this since the discard may take a
10863  * substantial amount of time.  We don't require that a transaction be
10864  * running, but we do need to take a running transaction into account
10865  * to ensure that we're not discarding chunks that were released in
10866  * the current transaction.
10867  *
10868  * Holding the chunks lock will prevent other threads from allocating
10869  * or releasing chunks, but it won't prevent a running transaction
10870  * from committing and releasing the memory that the pending chunks
10871  * list head uses.  For that, we need to take a reference to the
10872  * transaction.
10873  */
10874 static int btrfs_trim_free_extents(struct btrfs_device *device,
10875                                    u64 minlen, u64 *trimmed)
10876 {
10877         u64 start = 0, len = 0;
10878         int ret;
10879
10880         *trimmed = 0;
10881
10882         /* Not writeable = nothing to do. */
10883         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
10884                 return 0;
10885
10886         /* No free space = nothing to do. */
10887         if (device->total_bytes <= device->bytes_used)
10888                 return 0;
10889
10890         ret = 0;
10891
10892         while (1) {
10893                 struct btrfs_fs_info *fs_info = device->fs_info;
10894                 struct btrfs_transaction *trans;
10895                 u64 bytes;
10896
10897                 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10898                 if (ret)
10899                         return ret;
10900
10901                 down_read(&fs_info->commit_root_sem);
10902
10903                 spin_lock(&fs_info->trans_lock);
10904                 trans = fs_info->running_transaction;
10905                 if (trans)
10906                         refcount_inc(&trans->use_count);
10907                 spin_unlock(&fs_info->trans_lock);
10908
10909                 ret = find_free_dev_extent_start(trans, device, minlen, start,
10910                                                  &start, &len);
10911                 if (trans)
10912                         btrfs_put_transaction(trans);
10913
10914                 if (ret) {
10915                         up_read(&fs_info->commit_root_sem);
10916                         mutex_unlock(&fs_info->chunk_mutex);
10917                         if (ret == -ENOSPC)
10918                                 ret = 0;
10919                         break;
10920                 }
10921
10922                 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10923                 up_read(&fs_info->commit_root_sem);
10924                 mutex_unlock(&fs_info->chunk_mutex);
10925
10926                 if (ret)
10927                         break;
10928
10929                 start += len;
10930                 *trimmed += bytes;
10931
10932                 if (fatal_signal_pending(current)) {
10933                         ret = -ERESTARTSYS;
10934                         break;
10935                 }
10936
10937                 cond_resched();
10938         }
10939
10940         return ret;
10941 }
10942
10943 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10944 {
10945         struct btrfs_block_group_cache *cache = NULL;
10946         struct btrfs_device *device;
10947         struct list_head *devices;
10948         u64 group_trimmed;
10949         u64 start;
10950         u64 end;
10951         u64 trimmed = 0;
10952         u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10953         int ret = 0;
10954
10955         /*
10956          * try to trim all FS space, our block group may start from non-zero.
10957          */
10958         if (range->len == total_bytes)
10959                 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10960         else
10961                 cache = btrfs_lookup_block_group(fs_info, range->start);
10962
10963         while (cache) {
10964                 if (cache->key.objectid >= (range->start + range->len)) {
10965                         btrfs_put_block_group(cache);
10966                         break;
10967                 }
10968
10969                 start = max(range->start, cache->key.objectid);
10970                 end = min(range->start + range->len,
10971                                 cache->key.objectid + cache->key.offset);
10972
10973                 if (end - start >= range->minlen) {
10974                         if (!block_group_cache_done(cache)) {
10975                                 ret = cache_block_group(cache, 0);
10976                                 if (ret) {
10977                                         btrfs_put_block_group(cache);
10978                                         break;
10979                                 }
10980                                 ret = wait_block_group_cache_done(cache);
10981                                 if (ret) {
10982                                         btrfs_put_block_group(cache);
10983                                         break;
10984                                 }
10985                         }
10986                         ret = btrfs_trim_block_group(cache,
10987                                                      &group_trimmed,
10988                                                      start,
10989                                                      end,
10990                                                      range->minlen);
10991
10992                         trimmed += group_trimmed;
10993                         if (ret) {
10994                                 btrfs_put_block_group(cache);
10995                                 break;
10996                         }
10997                 }
10998
10999                 cache = next_block_group(fs_info, cache);
11000         }
11001
11002         mutex_lock(&fs_info->fs_devices->device_list_mutex);
11003         devices = &fs_info->fs_devices->alloc_list;
11004         list_for_each_entry(device, devices, dev_alloc_list) {
11005                 ret = btrfs_trim_free_extents(device, range->minlen,
11006                                               &group_trimmed);
11007                 if (ret)
11008                         break;
11009
11010                 trimmed += group_trimmed;
11011         }
11012         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
11013
11014         range->len = trimmed;
11015         return ret;
11016 }
11017
11018 /*
11019  * btrfs_{start,end}_write_no_snapshotting() are similar to
11020  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11021  * data into the page cache through nocow before the subvolume is snapshoted,
11022  * but flush the data into disk after the snapshot creation, or to prevent
11023  * operations while snapshotting is ongoing and that cause the snapshot to be
11024  * inconsistent (writes followed by expanding truncates for example).
11025  */
11026 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11027 {
11028         percpu_counter_dec(&root->subv_writers->counter);
11029         /*
11030          * Make sure counter is updated before we wake up waiters.
11031          */
11032         smp_mb();
11033         if (waitqueue_active(&root->subv_writers->wait))
11034                 wake_up(&root->subv_writers->wait);
11035 }
11036
11037 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11038 {
11039         if (atomic_read(&root->will_be_snapshotted))
11040                 return 0;
11041
11042         percpu_counter_inc(&root->subv_writers->counter);
11043         /*
11044          * Make sure counter is updated before we check for snapshot creation.
11045          */
11046         smp_mb();
11047         if (atomic_read(&root->will_be_snapshotted)) {
11048                 btrfs_end_write_no_snapshotting(root);
11049                 return 0;
11050         }
11051         return 1;
11052 }
11053
11054 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11055 {
11056         while (true) {
11057                 int ret;
11058
11059                 ret = btrfs_start_write_no_snapshotting(root);
11060                 if (ret)
11061                         break;
11062                 wait_var_event(&root->will_be_snapshotted,
11063                                !atomic_read(&root->will_be_snapshotted));
11064         }
11065 }