ASoC: cs35l35: Add additional delay for reset
[sfrench/cifs-2.6.git] / fs / btrfs / extent-tree.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include "hash.h"
30 #include "tree-log.h"
31 #include "disk-io.h"
32 #include "print-tree.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "free-space-tree.h"
38 #include "math.h"
39 #include "sysfs.h"
40 #include "qgroup.h"
41
42 #undef SCRAMBLE_DELAYED_REFS
43
44 /*
45  * control flags for do_chunk_alloc's force field
46  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
47  * if we really need one.
48  *
49  * CHUNK_ALLOC_LIMITED means to only try and allocate one
50  * if we have very few chunks already allocated.  This is
51  * used as part of the clustering code to help make sure
52  * we have a good pool of storage to cluster in, without
53  * filling the FS with empty chunks
54  *
55  * CHUNK_ALLOC_FORCE means it must try to allocate one
56  *
57  */
58 enum {
59         CHUNK_ALLOC_NO_FORCE = 0,
60         CHUNK_ALLOC_LIMITED = 1,
61         CHUNK_ALLOC_FORCE = 2,
62 };
63
64 static int update_block_group(struct btrfs_trans_handle *trans,
65                               struct btrfs_fs_info *fs_info, u64 bytenr,
66                               u64 num_bytes, int alloc);
67 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
68                                struct btrfs_fs_info *fs_info,
69                                 struct btrfs_delayed_ref_node *node, u64 parent,
70                                 u64 root_objectid, u64 owner_objectid,
71                                 u64 owner_offset, int refs_to_drop,
72                                 struct btrfs_delayed_extent_op *extra_op);
73 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
74                                     struct extent_buffer *leaf,
75                                     struct btrfs_extent_item *ei);
76 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
77                                       struct btrfs_fs_info *fs_info,
78                                       u64 parent, u64 root_objectid,
79                                       u64 flags, u64 owner, u64 offset,
80                                       struct btrfs_key *ins, int ref_mod);
81 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
82                                      struct btrfs_fs_info *fs_info,
83                                      u64 parent, u64 root_objectid,
84                                      u64 flags, struct btrfs_disk_key *key,
85                                      int level, struct btrfs_key *ins);
86 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
87                           struct btrfs_fs_info *fs_info, u64 flags,
88                           int force);
89 static int find_next_key(struct btrfs_path *path, int level,
90                          struct btrfs_key *key);
91 static void dump_space_info(struct btrfs_fs_info *fs_info,
92                             struct btrfs_space_info *info, u64 bytes,
93                             int dump_block_groups);
94 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
95                                     u64 ram_bytes, u64 num_bytes, int delalloc);
96 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
97                                      u64 num_bytes, int delalloc);
98 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
99                                u64 num_bytes);
100 static int __reserve_metadata_bytes(struct btrfs_root *root,
101                                     struct btrfs_space_info *space_info,
102                                     u64 orig_bytes,
103                                     enum btrfs_reserve_flush_enum flush);
104 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
105                                      struct btrfs_space_info *space_info,
106                                      u64 num_bytes);
107 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
108                                      struct btrfs_space_info *space_info,
109                                      u64 num_bytes);
110
111 static noinline int
112 block_group_cache_done(struct btrfs_block_group_cache *cache)
113 {
114         smp_mb();
115         return cache->cached == BTRFS_CACHE_FINISHED ||
116                 cache->cached == BTRFS_CACHE_ERROR;
117 }
118
119 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
120 {
121         return (cache->flags & bits) == bits;
122 }
123
124 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
125 {
126         atomic_inc(&cache->count);
127 }
128
129 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
130 {
131         if (atomic_dec_and_test(&cache->count)) {
132                 WARN_ON(cache->pinned > 0);
133                 WARN_ON(cache->reserved > 0);
134
135                 /*
136                  * If not empty, someone is still holding mutex of
137                  * full_stripe_lock, which can only be released by caller.
138                  * And it will definitely cause use-after-free when caller
139                  * tries to release full stripe lock.
140                  *
141                  * No better way to resolve, but only to warn.
142                  */
143                 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
144                 kfree(cache->free_space_ctl);
145                 kfree(cache);
146         }
147 }
148
149 /*
150  * this adds the block group to the fs_info rb tree for the block group
151  * cache
152  */
153 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
154                                 struct btrfs_block_group_cache *block_group)
155 {
156         struct rb_node **p;
157         struct rb_node *parent = NULL;
158         struct btrfs_block_group_cache *cache;
159
160         spin_lock(&info->block_group_cache_lock);
161         p = &info->block_group_cache_tree.rb_node;
162
163         while (*p) {
164                 parent = *p;
165                 cache = rb_entry(parent, struct btrfs_block_group_cache,
166                                  cache_node);
167                 if (block_group->key.objectid < cache->key.objectid) {
168                         p = &(*p)->rb_left;
169                 } else if (block_group->key.objectid > cache->key.objectid) {
170                         p = &(*p)->rb_right;
171                 } else {
172                         spin_unlock(&info->block_group_cache_lock);
173                         return -EEXIST;
174                 }
175         }
176
177         rb_link_node(&block_group->cache_node, parent, p);
178         rb_insert_color(&block_group->cache_node,
179                         &info->block_group_cache_tree);
180
181         if (info->first_logical_byte > block_group->key.objectid)
182                 info->first_logical_byte = block_group->key.objectid;
183
184         spin_unlock(&info->block_group_cache_lock);
185
186         return 0;
187 }
188
189 /*
190  * This will return the block group at or after bytenr if contains is 0, else
191  * it will return the block group that contains the bytenr
192  */
193 static struct btrfs_block_group_cache *
194 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
195                               int contains)
196 {
197         struct btrfs_block_group_cache *cache, *ret = NULL;
198         struct rb_node *n;
199         u64 end, start;
200
201         spin_lock(&info->block_group_cache_lock);
202         n = info->block_group_cache_tree.rb_node;
203
204         while (n) {
205                 cache = rb_entry(n, struct btrfs_block_group_cache,
206                                  cache_node);
207                 end = cache->key.objectid + cache->key.offset - 1;
208                 start = cache->key.objectid;
209
210                 if (bytenr < start) {
211                         if (!contains && (!ret || start < ret->key.objectid))
212                                 ret = cache;
213                         n = n->rb_left;
214                 } else if (bytenr > start) {
215                         if (contains && bytenr <= end) {
216                                 ret = cache;
217                                 break;
218                         }
219                         n = n->rb_right;
220                 } else {
221                         ret = cache;
222                         break;
223                 }
224         }
225         if (ret) {
226                 btrfs_get_block_group(ret);
227                 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
228                         info->first_logical_byte = ret->key.objectid;
229         }
230         spin_unlock(&info->block_group_cache_lock);
231
232         return ret;
233 }
234
235 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
236                                u64 start, u64 num_bytes)
237 {
238         u64 end = start + num_bytes - 1;
239         set_extent_bits(&fs_info->freed_extents[0],
240                         start, end, EXTENT_UPTODATE);
241         set_extent_bits(&fs_info->freed_extents[1],
242                         start, end, EXTENT_UPTODATE);
243         return 0;
244 }
245
246 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
247                                   struct btrfs_block_group_cache *cache)
248 {
249         u64 start, end;
250
251         start = cache->key.objectid;
252         end = start + cache->key.offset - 1;
253
254         clear_extent_bits(&fs_info->freed_extents[0],
255                           start, end, EXTENT_UPTODATE);
256         clear_extent_bits(&fs_info->freed_extents[1],
257                           start, end, EXTENT_UPTODATE);
258 }
259
260 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
261                                  struct btrfs_block_group_cache *cache)
262 {
263         u64 bytenr;
264         u64 *logical;
265         int stripe_len;
266         int i, nr, ret;
267
268         if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
269                 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
270                 cache->bytes_super += stripe_len;
271                 ret = add_excluded_extent(fs_info, cache->key.objectid,
272                                           stripe_len);
273                 if (ret)
274                         return ret;
275         }
276
277         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
278                 bytenr = btrfs_sb_offset(i);
279                 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
280                                        bytenr, 0, &logical, &nr, &stripe_len);
281                 if (ret)
282                         return ret;
283
284                 while (nr--) {
285                         u64 start, len;
286
287                         if (logical[nr] > cache->key.objectid +
288                             cache->key.offset)
289                                 continue;
290
291                         if (logical[nr] + stripe_len <= cache->key.objectid)
292                                 continue;
293
294                         start = logical[nr];
295                         if (start < cache->key.objectid) {
296                                 start = cache->key.objectid;
297                                 len = (logical[nr] + stripe_len) - start;
298                         } else {
299                                 len = min_t(u64, stripe_len,
300                                             cache->key.objectid +
301                                             cache->key.offset - start);
302                         }
303
304                         cache->bytes_super += len;
305                         ret = add_excluded_extent(fs_info, start, len);
306                         if (ret) {
307                                 kfree(logical);
308                                 return ret;
309                         }
310                 }
311
312                 kfree(logical);
313         }
314         return 0;
315 }
316
317 static struct btrfs_caching_control *
318 get_caching_control(struct btrfs_block_group_cache *cache)
319 {
320         struct btrfs_caching_control *ctl;
321
322         spin_lock(&cache->lock);
323         if (!cache->caching_ctl) {
324                 spin_unlock(&cache->lock);
325                 return NULL;
326         }
327
328         ctl = cache->caching_ctl;
329         refcount_inc(&ctl->count);
330         spin_unlock(&cache->lock);
331         return ctl;
332 }
333
334 static void put_caching_control(struct btrfs_caching_control *ctl)
335 {
336         if (refcount_dec_and_test(&ctl->count))
337                 kfree(ctl);
338 }
339
340 #ifdef CONFIG_BTRFS_DEBUG
341 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
342 {
343         struct btrfs_fs_info *fs_info = block_group->fs_info;
344         u64 start = block_group->key.objectid;
345         u64 len = block_group->key.offset;
346         u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
347                 fs_info->nodesize : fs_info->sectorsize;
348         u64 step = chunk << 1;
349
350         while (len > chunk) {
351                 btrfs_remove_free_space(block_group, start, chunk);
352                 start += step;
353                 if (len < step)
354                         len = 0;
355                 else
356                         len -= step;
357         }
358 }
359 #endif
360
361 /*
362  * this is only called by cache_block_group, since we could have freed extents
363  * we need to check the pinned_extents for any extents that can't be used yet
364  * since their free space will be released as soon as the transaction commits.
365  */
366 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
367                        struct btrfs_fs_info *info, u64 start, u64 end)
368 {
369         u64 extent_start, extent_end, size, total_added = 0;
370         int ret;
371
372         while (start < end) {
373                 ret = find_first_extent_bit(info->pinned_extents, start,
374                                             &extent_start, &extent_end,
375                                             EXTENT_DIRTY | EXTENT_UPTODATE,
376                                             NULL);
377                 if (ret)
378                         break;
379
380                 if (extent_start <= start) {
381                         start = extent_end + 1;
382                 } else if (extent_start > start && extent_start < end) {
383                         size = extent_start - start;
384                         total_added += size;
385                         ret = btrfs_add_free_space(block_group, start,
386                                                    size);
387                         BUG_ON(ret); /* -ENOMEM or logic error */
388                         start = extent_end + 1;
389                 } else {
390                         break;
391                 }
392         }
393
394         if (start < end) {
395                 size = end - start;
396                 total_added += size;
397                 ret = btrfs_add_free_space(block_group, start, size);
398                 BUG_ON(ret); /* -ENOMEM or logic error */
399         }
400
401         return total_added;
402 }
403
404 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
405 {
406         struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
407         struct btrfs_fs_info *fs_info = block_group->fs_info;
408         struct btrfs_root *extent_root = fs_info->extent_root;
409         struct btrfs_path *path;
410         struct extent_buffer *leaf;
411         struct btrfs_key key;
412         u64 total_found = 0;
413         u64 last = 0;
414         u32 nritems;
415         int ret;
416         bool wakeup = true;
417
418         path = btrfs_alloc_path();
419         if (!path)
420                 return -ENOMEM;
421
422         last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
423
424 #ifdef CONFIG_BTRFS_DEBUG
425         /*
426          * If we're fragmenting we don't want to make anybody think we can
427          * allocate from this block group until we've had a chance to fragment
428          * the free space.
429          */
430         if (btrfs_should_fragment_free_space(block_group))
431                 wakeup = false;
432 #endif
433         /*
434          * We don't want to deadlock with somebody trying to allocate a new
435          * extent for the extent root while also trying to search the extent
436          * root to add free space.  So we skip locking and search the commit
437          * root, since its read-only
438          */
439         path->skip_locking = 1;
440         path->search_commit_root = 1;
441         path->reada = READA_FORWARD;
442
443         key.objectid = last;
444         key.offset = 0;
445         key.type = BTRFS_EXTENT_ITEM_KEY;
446
447 next:
448         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
449         if (ret < 0)
450                 goto out;
451
452         leaf = path->nodes[0];
453         nritems = btrfs_header_nritems(leaf);
454
455         while (1) {
456                 if (btrfs_fs_closing(fs_info) > 1) {
457                         last = (u64)-1;
458                         break;
459                 }
460
461                 if (path->slots[0] < nritems) {
462                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
463                 } else {
464                         ret = find_next_key(path, 0, &key);
465                         if (ret)
466                                 break;
467
468                         if (need_resched() ||
469                             rwsem_is_contended(&fs_info->commit_root_sem)) {
470                                 if (wakeup)
471                                         caching_ctl->progress = last;
472                                 btrfs_release_path(path);
473                                 up_read(&fs_info->commit_root_sem);
474                                 mutex_unlock(&caching_ctl->mutex);
475                                 cond_resched();
476                                 mutex_lock(&caching_ctl->mutex);
477                                 down_read(&fs_info->commit_root_sem);
478                                 goto next;
479                         }
480
481                         ret = btrfs_next_leaf(extent_root, path);
482                         if (ret < 0)
483                                 goto out;
484                         if (ret)
485                                 break;
486                         leaf = path->nodes[0];
487                         nritems = btrfs_header_nritems(leaf);
488                         continue;
489                 }
490
491                 if (key.objectid < last) {
492                         key.objectid = last;
493                         key.offset = 0;
494                         key.type = BTRFS_EXTENT_ITEM_KEY;
495
496                         if (wakeup)
497                                 caching_ctl->progress = last;
498                         btrfs_release_path(path);
499                         goto next;
500                 }
501
502                 if (key.objectid < block_group->key.objectid) {
503                         path->slots[0]++;
504                         continue;
505                 }
506
507                 if (key.objectid >= block_group->key.objectid +
508                     block_group->key.offset)
509                         break;
510
511                 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
512                     key.type == BTRFS_METADATA_ITEM_KEY) {
513                         total_found += add_new_free_space(block_group,
514                                                           fs_info, last,
515                                                           key.objectid);
516                         if (key.type == BTRFS_METADATA_ITEM_KEY)
517                                 last = key.objectid +
518                                         fs_info->nodesize;
519                         else
520                                 last = key.objectid + key.offset;
521
522                         if (total_found > CACHING_CTL_WAKE_UP) {
523                                 total_found = 0;
524                                 if (wakeup)
525                                         wake_up(&caching_ctl->wait);
526                         }
527                 }
528                 path->slots[0]++;
529         }
530         ret = 0;
531
532         total_found += add_new_free_space(block_group, fs_info, last,
533                                           block_group->key.objectid +
534                                           block_group->key.offset);
535         caching_ctl->progress = (u64)-1;
536
537 out:
538         btrfs_free_path(path);
539         return ret;
540 }
541
542 static noinline void caching_thread(struct btrfs_work *work)
543 {
544         struct btrfs_block_group_cache *block_group;
545         struct btrfs_fs_info *fs_info;
546         struct btrfs_caching_control *caching_ctl;
547         struct btrfs_root *extent_root;
548         int ret;
549
550         caching_ctl = container_of(work, struct btrfs_caching_control, work);
551         block_group = caching_ctl->block_group;
552         fs_info = block_group->fs_info;
553         extent_root = fs_info->extent_root;
554
555         mutex_lock(&caching_ctl->mutex);
556         down_read(&fs_info->commit_root_sem);
557
558         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
559                 ret = load_free_space_tree(caching_ctl);
560         else
561                 ret = load_extent_tree_free(caching_ctl);
562
563         spin_lock(&block_group->lock);
564         block_group->caching_ctl = NULL;
565         block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
566         spin_unlock(&block_group->lock);
567
568 #ifdef CONFIG_BTRFS_DEBUG
569         if (btrfs_should_fragment_free_space(block_group)) {
570                 u64 bytes_used;
571
572                 spin_lock(&block_group->space_info->lock);
573                 spin_lock(&block_group->lock);
574                 bytes_used = block_group->key.offset -
575                         btrfs_block_group_used(&block_group->item);
576                 block_group->space_info->bytes_used += bytes_used >> 1;
577                 spin_unlock(&block_group->lock);
578                 spin_unlock(&block_group->space_info->lock);
579                 fragment_free_space(block_group);
580         }
581 #endif
582
583         caching_ctl->progress = (u64)-1;
584
585         up_read(&fs_info->commit_root_sem);
586         free_excluded_extents(fs_info, block_group);
587         mutex_unlock(&caching_ctl->mutex);
588
589         wake_up(&caching_ctl->wait);
590
591         put_caching_control(caching_ctl);
592         btrfs_put_block_group(block_group);
593 }
594
595 static int cache_block_group(struct btrfs_block_group_cache *cache,
596                              int load_cache_only)
597 {
598         DEFINE_WAIT(wait);
599         struct btrfs_fs_info *fs_info = cache->fs_info;
600         struct btrfs_caching_control *caching_ctl;
601         int ret = 0;
602
603         caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
604         if (!caching_ctl)
605                 return -ENOMEM;
606
607         INIT_LIST_HEAD(&caching_ctl->list);
608         mutex_init(&caching_ctl->mutex);
609         init_waitqueue_head(&caching_ctl->wait);
610         caching_ctl->block_group = cache;
611         caching_ctl->progress = cache->key.objectid;
612         refcount_set(&caching_ctl->count, 1);
613         btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
614                         caching_thread, NULL, NULL);
615
616         spin_lock(&cache->lock);
617         /*
618          * This should be a rare occasion, but this could happen I think in the
619          * case where one thread starts to load the space cache info, and then
620          * some other thread starts a transaction commit which tries to do an
621          * allocation while the other thread is still loading the space cache
622          * info.  The previous loop should have kept us from choosing this block
623          * group, but if we've moved to the state where we will wait on caching
624          * block groups we need to first check if we're doing a fast load here,
625          * so we can wait for it to finish, otherwise we could end up allocating
626          * from a block group who's cache gets evicted for one reason or
627          * another.
628          */
629         while (cache->cached == BTRFS_CACHE_FAST) {
630                 struct btrfs_caching_control *ctl;
631
632                 ctl = cache->caching_ctl;
633                 refcount_inc(&ctl->count);
634                 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
635                 spin_unlock(&cache->lock);
636
637                 schedule();
638
639                 finish_wait(&ctl->wait, &wait);
640                 put_caching_control(ctl);
641                 spin_lock(&cache->lock);
642         }
643
644         if (cache->cached != BTRFS_CACHE_NO) {
645                 spin_unlock(&cache->lock);
646                 kfree(caching_ctl);
647                 return 0;
648         }
649         WARN_ON(cache->caching_ctl);
650         cache->caching_ctl = caching_ctl;
651         cache->cached = BTRFS_CACHE_FAST;
652         spin_unlock(&cache->lock);
653
654         if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
655                 mutex_lock(&caching_ctl->mutex);
656                 ret = load_free_space_cache(fs_info, cache);
657
658                 spin_lock(&cache->lock);
659                 if (ret == 1) {
660                         cache->caching_ctl = NULL;
661                         cache->cached = BTRFS_CACHE_FINISHED;
662                         cache->last_byte_to_unpin = (u64)-1;
663                         caching_ctl->progress = (u64)-1;
664                 } else {
665                         if (load_cache_only) {
666                                 cache->caching_ctl = NULL;
667                                 cache->cached = BTRFS_CACHE_NO;
668                         } else {
669                                 cache->cached = BTRFS_CACHE_STARTED;
670                                 cache->has_caching_ctl = 1;
671                         }
672                 }
673                 spin_unlock(&cache->lock);
674 #ifdef CONFIG_BTRFS_DEBUG
675                 if (ret == 1 &&
676                     btrfs_should_fragment_free_space(cache)) {
677                         u64 bytes_used;
678
679                         spin_lock(&cache->space_info->lock);
680                         spin_lock(&cache->lock);
681                         bytes_used = cache->key.offset -
682                                 btrfs_block_group_used(&cache->item);
683                         cache->space_info->bytes_used += bytes_used >> 1;
684                         spin_unlock(&cache->lock);
685                         spin_unlock(&cache->space_info->lock);
686                         fragment_free_space(cache);
687                 }
688 #endif
689                 mutex_unlock(&caching_ctl->mutex);
690
691                 wake_up(&caching_ctl->wait);
692                 if (ret == 1) {
693                         put_caching_control(caching_ctl);
694                         free_excluded_extents(fs_info, cache);
695                         return 0;
696                 }
697         } else {
698                 /*
699                  * We're either using the free space tree or no caching at all.
700                  * Set cached to the appropriate value and wakeup any waiters.
701                  */
702                 spin_lock(&cache->lock);
703                 if (load_cache_only) {
704                         cache->caching_ctl = NULL;
705                         cache->cached = BTRFS_CACHE_NO;
706                 } else {
707                         cache->cached = BTRFS_CACHE_STARTED;
708                         cache->has_caching_ctl = 1;
709                 }
710                 spin_unlock(&cache->lock);
711                 wake_up(&caching_ctl->wait);
712         }
713
714         if (load_cache_only) {
715                 put_caching_control(caching_ctl);
716                 return 0;
717         }
718
719         down_write(&fs_info->commit_root_sem);
720         refcount_inc(&caching_ctl->count);
721         list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
722         up_write(&fs_info->commit_root_sem);
723
724         btrfs_get_block_group(cache);
725
726         btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
727
728         return ret;
729 }
730
731 /*
732  * return the block group that starts at or after bytenr
733  */
734 static struct btrfs_block_group_cache *
735 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
736 {
737         return block_group_cache_tree_search(info, bytenr, 0);
738 }
739
740 /*
741  * return the block group that contains the given bytenr
742  */
743 struct btrfs_block_group_cache *btrfs_lookup_block_group(
744                                                  struct btrfs_fs_info *info,
745                                                  u64 bytenr)
746 {
747         return block_group_cache_tree_search(info, bytenr, 1);
748 }
749
750 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
751                                                   u64 flags)
752 {
753         struct list_head *head = &info->space_info;
754         struct btrfs_space_info *found;
755
756         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
757
758         rcu_read_lock();
759         list_for_each_entry_rcu(found, head, list) {
760                 if (found->flags & flags) {
761                         rcu_read_unlock();
762                         return found;
763                 }
764         }
765         rcu_read_unlock();
766         return NULL;
767 }
768
769 /*
770  * after adding space to the filesystem, we need to clear the full flags
771  * on all the space infos.
772  */
773 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
774 {
775         struct list_head *head = &info->space_info;
776         struct btrfs_space_info *found;
777
778         rcu_read_lock();
779         list_for_each_entry_rcu(found, head, list)
780                 found->full = 0;
781         rcu_read_unlock();
782 }
783
784 /* simple helper to search for an existing data extent at a given offset */
785 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
786 {
787         int ret;
788         struct btrfs_key key;
789         struct btrfs_path *path;
790
791         path = btrfs_alloc_path();
792         if (!path)
793                 return -ENOMEM;
794
795         key.objectid = start;
796         key.offset = len;
797         key.type = BTRFS_EXTENT_ITEM_KEY;
798         ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
799         btrfs_free_path(path);
800         return ret;
801 }
802
803 /*
804  * helper function to lookup reference count and flags of a tree block.
805  *
806  * the head node for delayed ref is used to store the sum of all the
807  * reference count modifications queued up in the rbtree. the head
808  * node may also store the extent flags to set. This way you can check
809  * to see what the reference count and extent flags would be if all of
810  * the delayed refs are not processed.
811  */
812 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
813                              struct btrfs_fs_info *fs_info, u64 bytenr,
814                              u64 offset, int metadata, u64 *refs, u64 *flags)
815 {
816         struct btrfs_delayed_ref_head *head;
817         struct btrfs_delayed_ref_root *delayed_refs;
818         struct btrfs_path *path;
819         struct btrfs_extent_item *ei;
820         struct extent_buffer *leaf;
821         struct btrfs_key key;
822         u32 item_size;
823         u64 num_refs;
824         u64 extent_flags;
825         int ret;
826
827         /*
828          * If we don't have skinny metadata, don't bother doing anything
829          * different
830          */
831         if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
832                 offset = fs_info->nodesize;
833                 metadata = 0;
834         }
835
836         path = btrfs_alloc_path();
837         if (!path)
838                 return -ENOMEM;
839
840         if (!trans) {
841                 path->skip_locking = 1;
842                 path->search_commit_root = 1;
843         }
844
845 search_again:
846         key.objectid = bytenr;
847         key.offset = offset;
848         if (metadata)
849                 key.type = BTRFS_METADATA_ITEM_KEY;
850         else
851                 key.type = BTRFS_EXTENT_ITEM_KEY;
852
853         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
854         if (ret < 0)
855                 goto out_free;
856
857         if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
858                 if (path->slots[0]) {
859                         path->slots[0]--;
860                         btrfs_item_key_to_cpu(path->nodes[0], &key,
861                                               path->slots[0]);
862                         if (key.objectid == bytenr &&
863                             key.type == BTRFS_EXTENT_ITEM_KEY &&
864                             key.offset == fs_info->nodesize)
865                                 ret = 0;
866                 }
867         }
868
869         if (ret == 0) {
870                 leaf = path->nodes[0];
871                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
872                 if (item_size >= sizeof(*ei)) {
873                         ei = btrfs_item_ptr(leaf, path->slots[0],
874                                             struct btrfs_extent_item);
875                         num_refs = btrfs_extent_refs(leaf, ei);
876                         extent_flags = btrfs_extent_flags(leaf, ei);
877                 } else {
878 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
879                         struct btrfs_extent_item_v0 *ei0;
880                         BUG_ON(item_size != sizeof(*ei0));
881                         ei0 = btrfs_item_ptr(leaf, path->slots[0],
882                                              struct btrfs_extent_item_v0);
883                         num_refs = btrfs_extent_refs_v0(leaf, ei0);
884                         /* FIXME: this isn't correct for data */
885                         extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
886 #else
887                         BUG();
888 #endif
889                 }
890                 BUG_ON(num_refs == 0);
891         } else {
892                 num_refs = 0;
893                 extent_flags = 0;
894                 ret = 0;
895         }
896
897         if (!trans)
898                 goto out;
899
900         delayed_refs = &trans->transaction->delayed_refs;
901         spin_lock(&delayed_refs->lock);
902         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
903         if (head) {
904                 if (!mutex_trylock(&head->mutex)) {
905                         refcount_inc(&head->node.refs);
906                         spin_unlock(&delayed_refs->lock);
907
908                         btrfs_release_path(path);
909
910                         /*
911                          * Mutex was contended, block until it's released and try
912                          * again
913                          */
914                         mutex_lock(&head->mutex);
915                         mutex_unlock(&head->mutex);
916                         btrfs_put_delayed_ref(&head->node);
917                         goto search_again;
918                 }
919                 spin_lock(&head->lock);
920                 if (head->extent_op && head->extent_op->update_flags)
921                         extent_flags |= head->extent_op->flags_to_set;
922                 else
923                         BUG_ON(num_refs == 0);
924
925                 num_refs += head->node.ref_mod;
926                 spin_unlock(&head->lock);
927                 mutex_unlock(&head->mutex);
928         }
929         spin_unlock(&delayed_refs->lock);
930 out:
931         WARN_ON(num_refs == 0);
932         if (refs)
933                 *refs = num_refs;
934         if (flags)
935                 *flags = extent_flags;
936 out_free:
937         btrfs_free_path(path);
938         return ret;
939 }
940
941 /*
942  * Back reference rules.  Back refs have three main goals:
943  *
944  * 1) differentiate between all holders of references to an extent so that
945  *    when a reference is dropped we can make sure it was a valid reference
946  *    before freeing the extent.
947  *
948  * 2) Provide enough information to quickly find the holders of an extent
949  *    if we notice a given block is corrupted or bad.
950  *
951  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
952  *    maintenance.  This is actually the same as #2, but with a slightly
953  *    different use case.
954  *
955  * There are two kinds of back refs. The implicit back refs is optimized
956  * for pointers in non-shared tree blocks. For a given pointer in a block,
957  * back refs of this kind provide information about the block's owner tree
958  * and the pointer's key. These information allow us to find the block by
959  * b-tree searching. The full back refs is for pointers in tree blocks not
960  * referenced by their owner trees. The location of tree block is recorded
961  * in the back refs. Actually the full back refs is generic, and can be
962  * used in all cases the implicit back refs is used. The major shortcoming
963  * of the full back refs is its overhead. Every time a tree block gets
964  * COWed, we have to update back refs entry for all pointers in it.
965  *
966  * For a newly allocated tree block, we use implicit back refs for
967  * pointers in it. This means most tree related operations only involve
968  * implicit back refs. For a tree block created in old transaction, the
969  * only way to drop a reference to it is COW it. So we can detect the
970  * event that tree block loses its owner tree's reference and do the
971  * back refs conversion.
972  *
973  * When a tree block is COWed through a tree, there are four cases:
974  *
975  * The reference count of the block is one and the tree is the block's
976  * owner tree. Nothing to do in this case.
977  *
978  * The reference count of the block is one and the tree is not the
979  * block's owner tree. In this case, full back refs is used for pointers
980  * in the block. Remove these full back refs, add implicit back refs for
981  * every pointers in the new block.
982  *
983  * The reference count of the block is greater than one and the tree is
984  * the block's owner tree. In this case, implicit back refs is used for
985  * pointers in the block. Add full back refs for every pointers in the
986  * block, increase lower level extents' reference counts. The original
987  * implicit back refs are entailed to the new block.
988  *
989  * The reference count of the block is greater than one and the tree is
990  * not the block's owner tree. Add implicit back refs for every pointer in
991  * the new block, increase lower level extents' reference count.
992  *
993  * Back Reference Key composing:
994  *
995  * The key objectid corresponds to the first byte in the extent,
996  * The key type is used to differentiate between types of back refs.
997  * There are different meanings of the key offset for different types
998  * of back refs.
999  *
1000  * File extents can be referenced by:
1001  *
1002  * - multiple snapshots, subvolumes, or different generations in one subvol
1003  * - different files inside a single subvolume
1004  * - different offsets inside a file (bookend extents in file.c)
1005  *
1006  * The extent ref structure for the implicit back refs has fields for:
1007  *
1008  * - Objectid of the subvolume root
1009  * - objectid of the file holding the reference
1010  * - original offset in the file
1011  * - how many bookend extents
1012  *
1013  * The key offset for the implicit back refs is hash of the first
1014  * three fields.
1015  *
1016  * The extent ref structure for the full back refs has field for:
1017  *
1018  * - number of pointers in the tree leaf
1019  *
1020  * The key offset for the implicit back refs is the first byte of
1021  * the tree leaf
1022  *
1023  * When a file extent is allocated, The implicit back refs is used.
1024  * the fields are filled in:
1025  *
1026  *     (root_key.objectid, inode objectid, offset in file, 1)
1027  *
1028  * When a file extent is removed file truncation, we find the
1029  * corresponding implicit back refs and check the following fields:
1030  *
1031  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1032  *
1033  * Btree extents can be referenced by:
1034  *
1035  * - Different subvolumes
1036  *
1037  * Both the implicit back refs and the full back refs for tree blocks
1038  * only consist of key. The key offset for the implicit back refs is
1039  * objectid of block's owner tree. The key offset for the full back refs
1040  * is the first byte of parent block.
1041  *
1042  * When implicit back refs is used, information about the lowest key and
1043  * level of the tree block are required. These information are stored in
1044  * tree block info structure.
1045  */
1046
1047 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1048 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1049                                   struct btrfs_fs_info *fs_info,
1050                                   struct btrfs_path *path,
1051                                   u64 owner, u32 extra_size)
1052 {
1053         struct btrfs_root *root = fs_info->extent_root;
1054         struct btrfs_extent_item *item;
1055         struct btrfs_extent_item_v0 *ei0;
1056         struct btrfs_extent_ref_v0 *ref0;
1057         struct btrfs_tree_block_info *bi;
1058         struct extent_buffer *leaf;
1059         struct btrfs_key key;
1060         struct btrfs_key found_key;
1061         u32 new_size = sizeof(*item);
1062         u64 refs;
1063         int ret;
1064
1065         leaf = path->nodes[0];
1066         BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1067
1068         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1069         ei0 = btrfs_item_ptr(leaf, path->slots[0],
1070                              struct btrfs_extent_item_v0);
1071         refs = btrfs_extent_refs_v0(leaf, ei0);
1072
1073         if (owner == (u64)-1) {
1074                 while (1) {
1075                         if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1076                                 ret = btrfs_next_leaf(root, path);
1077                                 if (ret < 0)
1078                                         return ret;
1079                                 BUG_ON(ret > 0); /* Corruption */
1080                                 leaf = path->nodes[0];
1081                         }
1082                         btrfs_item_key_to_cpu(leaf, &found_key,
1083                                               path->slots[0]);
1084                         BUG_ON(key.objectid != found_key.objectid);
1085                         if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1086                                 path->slots[0]++;
1087                                 continue;
1088                         }
1089                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1090                                               struct btrfs_extent_ref_v0);
1091                         owner = btrfs_ref_objectid_v0(leaf, ref0);
1092                         break;
1093                 }
1094         }
1095         btrfs_release_path(path);
1096
1097         if (owner < BTRFS_FIRST_FREE_OBJECTID)
1098                 new_size += sizeof(*bi);
1099
1100         new_size -= sizeof(*ei0);
1101         ret = btrfs_search_slot(trans, root, &key, path,
1102                                 new_size + extra_size, 1);
1103         if (ret < 0)
1104                 return ret;
1105         BUG_ON(ret); /* Corruption */
1106
1107         btrfs_extend_item(fs_info, path, new_size);
1108
1109         leaf = path->nodes[0];
1110         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1111         btrfs_set_extent_refs(leaf, item, refs);
1112         /* FIXME: get real generation */
1113         btrfs_set_extent_generation(leaf, item, 0);
1114         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1115                 btrfs_set_extent_flags(leaf, item,
1116                                        BTRFS_EXTENT_FLAG_TREE_BLOCK |
1117                                        BTRFS_BLOCK_FLAG_FULL_BACKREF);
1118                 bi = (struct btrfs_tree_block_info *)(item + 1);
1119                 /* FIXME: get first key of the block */
1120                 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1121                 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1122         } else {
1123                 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1124         }
1125         btrfs_mark_buffer_dirty(leaf);
1126         return 0;
1127 }
1128 #endif
1129
1130 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1131 {
1132         u32 high_crc = ~(u32)0;
1133         u32 low_crc = ~(u32)0;
1134         __le64 lenum;
1135
1136         lenum = cpu_to_le64(root_objectid);
1137         high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1138         lenum = cpu_to_le64(owner);
1139         low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1140         lenum = cpu_to_le64(offset);
1141         low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1142
1143         return ((u64)high_crc << 31) ^ (u64)low_crc;
1144 }
1145
1146 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1147                                      struct btrfs_extent_data_ref *ref)
1148 {
1149         return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1150                                     btrfs_extent_data_ref_objectid(leaf, ref),
1151                                     btrfs_extent_data_ref_offset(leaf, ref));
1152 }
1153
1154 static int match_extent_data_ref(struct extent_buffer *leaf,
1155                                  struct btrfs_extent_data_ref *ref,
1156                                  u64 root_objectid, u64 owner, u64 offset)
1157 {
1158         if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1159             btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1160             btrfs_extent_data_ref_offset(leaf, ref) != offset)
1161                 return 0;
1162         return 1;
1163 }
1164
1165 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1166                                            struct btrfs_fs_info *fs_info,
1167                                            struct btrfs_path *path,
1168                                            u64 bytenr, u64 parent,
1169                                            u64 root_objectid,
1170                                            u64 owner, u64 offset)
1171 {
1172         struct btrfs_root *root = fs_info->extent_root;
1173         struct btrfs_key key;
1174         struct btrfs_extent_data_ref *ref;
1175         struct extent_buffer *leaf;
1176         u32 nritems;
1177         int ret;
1178         int recow;
1179         int err = -ENOENT;
1180
1181         key.objectid = bytenr;
1182         if (parent) {
1183                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1184                 key.offset = parent;
1185         } else {
1186                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1187                 key.offset = hash_extent_data_ref(root_objectid,
1188                                                   owner, offset);
1189         }
1190 again:
1191         recow = 0;
1192         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1193         if (ret < 0) {
1194                 err = ret;
1195                 goto fail;
1196         }
1197
1198         if (parent) {
1199                 if (!ret)
1200                         return 0;
1201 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1202                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1203                 btrfs_release_path(path);
1204                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1205                 if (ret < 0) {
1206                         err = ret;
1207                         goto fail;
1208                 }
1209                 if (!ret)
1210                         return 0;
1211 #endif
1212                 goto fail;
1213         }
1214
1215         leaf = path->nodes[0];
1216         nritems = btrfs_header_nritems(leaf);
1217         while (1) {
1218                 if (path->slots[0] >= nritems) {
1219                         ret = btrfs_next_leaf(root, path);
1220                         if (ret < 0)
1221                                 err = ret;
1222                         if (ret)
1223                                 goto fail;
1224
1225                         leaf = path->nodes[0];
1226                         nritems = btrfs_header_nritems(leaf);
1227                         recow = 1;
1228                 }
1229
1230                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1231                 if (key.objectid != bytenr ||
1232                     key.type != BTRFS_EXTENT_DATA_REF_KEY)
1233                         goto fail;
1234
1235                 ref = btrfs_item_ptr(leaf, path->slots[0],
1236                                      struct btrfs_extent_data_ref);
1237
1238                 if (match_extent_data_ref(leaf, ref, root_objectid,
1239                                           owner, offset)) {
1240                         if (recow) {
1241                                 btrfs_release_path(path);
1242                                 goto again;
1243                         }
1244                         err = 0;
1245                         break;
1246                 }
1247                 path->slots[0]++;
1248         }
1249 fail:
1250         return err;
1251 }
1252
1253 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1254                                            struct btrfs_fs_info *fs_info,
1255                                            struct btrfs_path *path,
1256                                            u64 bytenr, u64 parent,
1257                                            u64 root_objectid, u64 owner,
1258                                            u64 offset, int refs_to_add)
1259 {
1260         struct btrfs_root *root = fs_info->extent_root;
1261         struct btrfs_key key;
1262         struct extent_buffer *leaf;
1263         u32 size;
1264         u32 num_refs;
1265         int ret;
1266
1267         key.objectid = bytenr;
1268         if (parent) {
1269                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1270                 key.offset = parent;
1271                 size = sizeof(struct btrfs_shared_data_ref);
1272         } else {
1273                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1274                 key.offset = hash_extent_data_ref(root_objectid,
1275                                                   owner, offset);
1276                 size = sizeof(struct btrfs_extent_data_ref);
1277         }
1278
1279         ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1280         if (ret && ret != -EEXIST)
1281                 goto fail;
1282
1283         leaf = path->nodes[0];
1284         if (parent) {
1285                 struct btrfs_shared_data_ref *ref;
1286                 ref = btrfs_item_ptr(leaf, path->slots[0],
1287                                      struct btrfs_shared_data_ref);
1288                 if (ret == 0) {
1289                         btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1290                 } else {
1291                         num_refs = btrfs_shared_data_ref_count(leaf, ref);
1292                         num_refs += refs_to_add;
1293                         btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1294                 }
1295         } else {
1296                 struct btrfs_extent_data_ref *ref;
1297                 while (ret == -EEXIST) {
1298                         ref = btrfs_item_ptr(leaf, path->slots[0],
1299                                              struct btrfs_extent_data_ref);
1300                         if (match_extent_data_ref(leaf, ref, root_objectid,
1301                                                   owner, offset))
1302                                 break;
1303                         btrfs_release_path(path);
1304                         key.offset++;
1305                         ret = btrfs_insert_empty_item(trans, root, path, &key,
1306                                                       size);
1307                         if (ret && ret != -EEXIST)
1308                                 goto fail;
1309
1310                         leaf = path->nodes[0];
1311                 }
1312                 ref = btrfs_item_ptr(leaf, path->slots[0],
1313                                      struct btrfs_extent_data_ref);
1314                 if (ret == 0) {
1315                         btrfs_set_extent_data_ref_root(leaf, ref,
1316                                                        root_objectid);
1317                         btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1318                         btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1319                         btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1320                 } else {
1321                         num_refs = btrfs_extent_data_ref_count(leaf, ref);
1322                         num_refs += refs_to_add;
1323                         btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1324                 }
1325         }
1326         btrfs_mark_buffer_dirty(leaf);
1327         ret = 0;
1328 fail:
1329         btrfs_release_path(path);
1330         return ret;
1331 }
1332
1333 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1334                                            struct btrfs_fs_info *fs_info,
1335                                            struct btrfs_path *path,
1336                                            int refs_to_drop, int *last_ref)
1337 {
1338         struct btrfs_key key;
1339         struct btrfs_extent_data_ref *ref1 = NULL;
1340         struct btrfs_shared_data_ref *ref2 = NULL;
1341         struct extent_buffer *leaf;
1342         u32 num_refs = 0;
1343         int ret = 0;
1344
1345         leaf = path->nodes[0];
1346         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1347
1348         if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1349                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1350                                       struct btrfs_extent_data_ref);
1351                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1352         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1353                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1354                                       struct btrfs_shared_data_ref);
1355                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1356 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1357         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1358                 struct btrfs_extent_ref_v0 *ref0;
1359                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1360                                       struct btrfs_extent_ref_v0);
1361                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1362 #endif
1363         } else {
1364                 BUG();
1365         }
1366
1367         BUG_ON(num_refs < refs_to_drop);
1368         num_refs -= refs_to_drop;
1369
1370         if (num_refs == 0) {
1371                 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1372                 *last_ref = 1;
1373         } else {
1374                 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1375                         btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1376                 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1377                         btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1378 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1379                 else {
1380                         struct btrfs_extent_ref_v0 *ref0;
1381                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1382                                         struct btrfs_extent_ref_v0);
1383                         btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1384                 }
1385 #endif
1386                 btrfs_mark_buffer_dirty(leaf);
1387         }
1388         return ret;
1389 }
1390
1391 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1392                                           struct btrfs_extent_inline_ref *iref)
1393 {
1394         struct btrfs_key key;
1395         struct extent_buffer *leaf;
1396         struct btrfs_extent_data_ref *ref1;
1397         struct btrfs_shared_data_ref *ref2;
1398         u32 num_refs = 0;
1399
1400         leaf = path->nodes[0];
1401         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1402         if (iref) {
1403                 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1404                     BTRFS_EXTENT_DATA_REF_KEY) {
1405                         ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1406                         num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1407                 } else {
1408                         ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1409                         num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1410                 }
1411         } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1412                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1413                                       struct btrfs_extent_data_ref);
1414                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1415         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1416                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1417                                       struct btrfs_shared_data_ref);
1418                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1419 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1420         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1421                 struct btrfs_extent_ref_v0 *ref0;
1422                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1423                                       struct btrfs_extent_ref_v0);
1424                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1425 #endif
1426         } else {
1427                 WARN_ON(1);
1428         }
1429         return num_refs;
1430 }
1431
1432 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1433                                           struct btrfs_fs_info *fs_info,
1434                                           struct btrfs_path *path,
1435                                           u64 bytenr, u64 parent,
1436                                           u64 root_objectid)
1437 {
1438         struct btrfs_root *root = fs_info->extent_root;
1439         struct btrfs_key key;
1440         int ret;
1441
1442         key.objectid = bytenr;
1443         if (parent) {
1444                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1445                 key.offset = parent;
1446         } else {
1447                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1448                 key.offset = root_objectid;
1449         }
1450
1451         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1452         if (ret > 0)
1453                 ret = -ENOENT;
1454 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1455         if (ret == -ENOENT && parent) {
1456                 btrfs_release_path(path);
1457                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1458                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1459                 if (ret > 0)
1460                         ret = -ENOENT;
1461         }
1462 #endif
1463         return ret;
1464 }
1465
1466 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1467                                           struct btrfs_fs_info *fs_info,
1468                                           struct btrfs_path *path,
1469                                           u64 bytenr, u64 parent,
1470                                           u64 root_objectid)
1471 {
1472         struct btrfs_key key;
1473         int ret;
1474
1475         key.objectid = bytenr;
1476         if (parent) {
1477                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1478                 key.offset = parent;
1479         } else {
1480                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1481                 key.offset = root_objectid;
1482         }
1483
1484         ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1485                                       path, &key, 0);
1486         btrfs_release_path(path);
1487         return ret;
1488 }
1489
1490 static inline int extent_ref_type(u64 parent, u64 owner)
1491 {
1492         int type;
1493         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1494                 if (parent > 0)
1495                         type = BTRFS_SHARED_BLOCK_REF_KEY;
1496                 else
1497                         type = BTRFS_TREE_BLOCK_REF_KEY;
1498         } else {
1499                 if (parent > 0)
1500                         type = BTRFS_SHARED_DATA_REF_KEY;
1501                 else
1502                         type = BTRFS_EXTENT_DATA_REF_KEY;
1503         }
1504         return type;
1505 }
1506
1507 static int find_next_key(struct btrfs_path *path, int level,
1508                          struct btrfs_key *key)
1509
1510 {
1511         for (; level < BTRFS_MAX_LEVEL; level++) {
1512                 if (!path->nodes[level])
1513                         break;
1514                 if (path->slots[level] + 1 >=
1515                     btrfs_header_nritems(path->nodes[level]))
1516                         continue;
1517                 if (level == 0)
1518                         btrfs_item_key_to_cpu(path->nodes[level], key,
1519                                               path->slots[level] + 1);
1520                 else
1521                         btrfs_node_key_to_cpu(path->nodes[level], key,
1522                                               path->slots[level] + 1);
1523                 return 0;
1524         }
1525         return 1;
1526 }
1527
1528 /*
1529  * look for inline back ref. if back ref is found, *ref_ret is set
1530  * to the address of inline back ref, and 0 is returned.
1531  *
1532  * if back ref isn't found, *ref_ret is set to the address where it
1533  * should be inserted, and -ENOENT is returned.
1534  *
1535  * if insert is true and there are too many inline back refs, the path
1536  * points to the extent item, and -EAGAIN is returned.
1537  *
1538  * NOTE: inline back refs are ordered in the same way that back ref
1539  *       items in the tree are ordered.
1540  */
1541 static noinline_for_stack
1542 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1543                                  struct btrfs_fs_info *fs_info,
1544                                  struct btrfs_path *path,
1545                                  struct btrfs_extent_inline_ref **ref_ret,
1546                                  u64 bytenr, u64 num_bytes,
1547                                  u64 parent, u64 root_objectid,
1548                                  u64 owner, u64 offset, int insert)
1549 {
1550         struct btrfs_root *root = fs_info->extent_root;
1551         struct btrfs_key key;
1552         struct extent_buffer *leaf;
1553         struct btrfs_extent_item *ei;
1554         struct btrfs_extent_inline_ref *iref;
1555         u64 flags;
1556         u64 item_size;
1557         unsigned long ptr;
1558         unsigned long end;
1559         int extra_size;
1560         int type;
1561         int want;
1562         int ret;
1563         int err = 0;
1564         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1565
1566         key.objectid = bytenr;
1567         key.type = BTRFS_EXTENT_ITEM_KEY;
1568         key.offset = num_bytes;
1569
1570         want = extent_ref_type(parent, owner);
1571         if (insert) {
1572                 extra_size = btrfs_extent_inline_ref_size(want);
1573                 path->keep_locks = 1;
1574         } else
1575                 extra_size = -1;
1576
1577         /*
1578          * Owner is our parent level, so we can just add one to get the level
1579          * for the block we are interested in.
1580          */
1581         if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1582                 key.type = BTRFS_METADATA_ITEM_KEY;
1583                 key.offset = owner;
1584         }
1585
1586 again:
1587         ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1588         if (ret < 0) {
1589                 err = ret;
1590                 goto out;
1591         }
1592
1593         /*
1594          * We may be a newly converted file system which still has the old fat
1595          * extent entries for metadata, so try and see if we have one of those.
1596          */
1597         if (ret > 0 && skinny_metadata) {
1598                 skinny_metadata = false;
1599                 if (path->slots[0]) {
1600                         path->slots[0]--;
1601                         btrfs_item_key_to_cpu(path->nodes[0], &key,
1602                                               path->slots[0]);
1603                         if (key.objectid == bytenr &&
1604                             key.type == BTRFS_EXTENT_ITEM_KEY &&
1605                             key.offset == num_bytes)
1606                                 ret = 0;
1607                 }
1608                 if (ret) {
1609                         key.objectid = bytenr;
1610                         key.type = BTRFS_EXTENT_ITEM_KEY;
1611                         key.offset = num_bytes;
1612                         btrfs_release_path(path);
1613                         goto again;
1614                 }
1615         }
1616
1617         if (ret && !insert) {
1618                 err = -ENOENT;
1619                 goto out;
1620         } else if (WARN_ON(ret)) {
1621                 err = -EIO;
1622                 goto out;
1623         }
1624
1625         leaf = path->nodes[0];
1626         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1627 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1628         if (item_size < sizeof(*ei)) {
1629                 if (!insert) {
1630                         err = -ENOENT;
1631                         goto out;
1632                 }
1633                 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1634                                              extra_size);
1635                 if (ret < 0) {
1636                         err = ret;
1637                         goto out;
1638                 }
1639                 leaf = path->nodes[0];
1640                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1641         }
1642 #endif
1643         BUG_ON(item_size < sizeof(*ei));
1644
1645         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1646         flags = btrfs_extent_flags(leaf, ei);
1647
1648         ptr = (unsigned long)(ei + 1);
1649         end = (unsigned long)ei + item_size;
1650
1651         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1652                 ptr += sizeof(struct btrfs_tree_block_info);
1653                 BUG_ON(ptr > end);
1654         }
1655
1656         err = -ENOENT;
1657         while (1) {
1658                 if (ptr >= end) {
1659                         WARN_ON(ptr > end);
1660                         break;
1661                 }
1662                 iref = (struct btrfs_extent_inline_ref *)ptr;
1663                 type = btrfs_extent_inline_ref_type(leaf, iref);
1664                 if (want < type)
1665                         break;
1666                 if (want > type) {
1667                         ptr += btrfs_extent_inline_ref_size(type);
1668                         continue;
1669                 }
1670
1671                 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1672                         struct btrfs_extent_data_ref *dref;
1673                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1674                         if (match_extent_data_ref(leaf, dref, root_objectid,
1675                                                   owner, offset)) {
1676                                 err = 0;
1677                                 break;
1678                         }
1679                         if (hash_extent_data_ref_item(leaf, dref) <
1680                             hash_extent_data_ref(root_objectid, owner, offset))
1681                                 break;
1682                 } else {
1683                         u64 ref_offset;
1684                         ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1685                         if (parent > 0) {
1686                                 if (parent == ref_offset) {
1687                                         err = 0;
1688                                         break;
1689                                 }
1690                                 if (ref_offset < parent)
1691                                         break;
1692                         } else {
1693                                 if (root_objectid == ref_offset) {
1694                                         err = 0;
1695                                         break;
1696                                 }
1697                                 if (ref_offset < root_objectid)
1698                                         break;
1699                         }
1700                 }
1701                 ptr += btrfs_extent_inline_ref_size(type);
1702         }
1703         if (err == -ENOENT && insert) {
1704                 if (item_size + extra_size >=
1705                     BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1706                         err = -EAGAIN;
1707                         goto out;
1708                 }
1709                 /*
1710                  * To add new inline back ref, we have to make sure
1711                  * there is no corresponding back ref item.
1712                  * For simplicity, we just do not add new inline back
1713                  * ref if there is any kind of item for this block
1714                  */
1715                 if (find_next_key(path, 0, &key) == 0 &&
1716                     key.objectid == bytenr &&
1717                     key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1718                         err = -EAGAIN;
1719                         goto out;
1720                 }
1721         }
1722         *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1723 out:
1724         if (insert) {
1725                 path->keep_locks = 0;
1726                 btrfs_unlock_up_safe(path, 1);
1727         }
1728         return err;
1729 }
1730
1731 /*
1732  * helper to add new inline back ref
1733  */
1734 static noinline_for_stack
1735 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1736                                  struct btrfs_path *path,
1737                                  struct btrfs_extent_inline_ref *iref,
1738                                  u64 parent, u64 root_objectid,
1739                                  u64 owner, u64 offset, int refs_to_add,
1740                                  struct btrfs_delayed_extent_op *extent_op)
1741 {
1742         struct extent_buffer *leaf;
1743         struct btrfs_extent_item *ei;
1744         unsigned long ptr;
1745         unsigned long end;
1746         unsigned long item_offset;
1747         u64 refs;
1748         int size;
1749         int type;
1750
1751         leaf = path->nodes[0];
1752         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1753         item_offset = (unsigned long)iref - (unsigned long)ei;
1754
1755         type = extent_ref_type(parent, owner);
1756         size = btrfs_extent_inline_ref_size(type);
1757
1758         btrfs_extend_item(fs_info, path, size);
1759
1760         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1761         refs = btrfs_extent_refs(leaf, ei);
1762         refs += refs_to_add;
1763         btrfs_set_extent_refs(leaf, ei, refs);
1764         if (extent_op)
1765                 __run_delayed_extent_op(extent_op, leaf, ei);
1766
1767         ptr = (unsigned long)ei + item_offset;
1768         end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1769         if (ptr < end - size)
1770                 memmove_extent_buffer(leaf, ptr + size, ptr,
1771                                       end - size - ptr);
1772
1773         iref = (struct btrfs_extent_inline_ref *)ptr;
1774         btrfs_set_extent_inline_ref_type(leaf, iref, type);
1775         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1776                 struct btrfs_extent_data_ref *dref;
1777                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1778                 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1779                 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1780                 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1781                 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1782         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1783                 struct btrfs_shared_data_ref *sref;
1784                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1785                 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1786                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1787         } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1788                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1789         } else {
1790                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1791         }
1792         btrfs_mark_buffer_dirty(leaf);
1793 }
1794
1795 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1796                                  struct btrfs_fs_info *fs_info,
1797                                  struct btrfs_path *path,
1798                                  struct btrfs_extent_inline_ref **ref_ret,
1799                                  u64 bytenr, u64 num_bytes, u64 parent,
1800                                  u64 root_objectid, u64 owner, u64 offset)
1801 {
1802         int ret;
1803
1804         ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1805                                            bytenr, num_bytes, parent,
1806                                            root_objectid, owner, offset, 0);
1807         if (ret != -ENOENT)
1808                 return ret;
1809
1810         btrfs_release_path(path);
1811         *ref_ret = NULL;
1812
1813         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1814                 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1815                                             parent, root_objectid);
1816         } else {
1817                 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1818                                              parent, root_objectid, owner,
1819                                              offset);
1820         }
1821         return ret;
1822 }
1823
1824 /*
1825  * helper to update/remove inline back ref
1826  */
1827 static noinline_for_stack
1828 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1829                                   struct btrfs_path *path,
1830                                   struct btrfs_extent_inline_ref *iref,
1831                                   int refs_to_mod,
1832                                   struct btrfs_delayed_extent_op *extent_op,
1833                                   int *last_ref)
1834 {
1835         struct extent_buffer *leaf;
1836         struct btrfs_extent_item *ei;
1837         struct btrfs_extent_data_ref *dref = NULL;
1838         struct btrfs_shared_data_ref *sref = NULL;
1839         unsigned long ptr;
1840         unsigned long end;
1841         u32 item_size;
1842         int size;
1843         int type;
1844         u64 refs;
1845
1846         leaf = path->nodes[0];
1847         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1848         refs = btrfs_extent_refs(leaf, ei);
1849         WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1850         refs += refs_to_mod;
1851         btrfs_set_extent_refs(leaf, ei, refs);
1852         if (extent_op)
1853                 __run_delayed_extent_op(extent_op, leaf, ei);
1854
1855         type = btrfs_extent_inline_ref_type(leaf, iref);
1856
1857         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1858                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1859                 refs = btrfs_extent_data_ref_count(leaf, dref);
1860         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1861                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1862                 refs = btrfs_shared_data_ref_count(leaf, sref);
1863         } else {
1864                 refs = 1;
1865                 BUG_ON(refs_to_mod != -1);
1866         }
1867
1868         BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1869         refs += refs_to_mod;
1870
1871         if (refs > 0) {
1872                 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1873                         btrfs_set_extent_data_ref_count(leaf, dref, refs);
1874                 else
1875                         btrfs_set_shared_data_ref_count(leaf, sref, refs);
1876         } else {
1877                 *last_ref = 1;
1878                 size =  btrfs_extent_inline_ref_size(type);
1879                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1880                 ptr = (unsigned long)iref;
1881                 end = (unsigned long)ei + item_size;
1882                 if (ptr + size < end)
1883                         memmove_extent_buffer(leaf, ptr, ptr + size,
1884                                               end - ptr - size);
1885                 item_size -= size;
1886                 btrfs_truncate_item(fs_info, path, item_size, 1);
1887         }
1888         btrfs_mark_buffer_dirty(leaf);
1889 }
1890
1891 static noinline_for_stack
1892 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1893                                  struct btrfs_fs_info *fs_info,
1894                                  struct btrfs_path *path,
1895                                  u64 bytenr, u64 num_bytes, u64 parent,
1896                                  u64 root_objectid, u64 owner,
1897                                  u64 offset, int refs_to_add,
1898                                  struct btrfs_delayed_extent_op *extent_op)
1899 {
1900         struct btrfs_extent_inline_ref *iref;
1901         int ret;
1902
1903         ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1904                                            bytenr, num_bytes, parent,
1905                                            root_objectid, owner, offset, 1);
1906         if (ret == 0) {
1907                 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1908                 update_inline_extent_backref(fs_info, path, iref,
1909                                              refs_to_add, extent_op, NULL);
1910         } else if (ret == -ENOENT) {
1911                 setup_inline_extent_backref(fs_info, path, iref, parent,
1912                                             root_objectid, owner, offset,
1913                                             refs_to_add, extent_op);
1914                 ret = 0;
1915         }
1916         return ret;
1917 }
1918
1919 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1920                                  struct btrfs_fs_info *fs_info,
1921                                  struct btrfs_path *path,
1922                                  u64 bytenr, u64 parent, u64 root_objectid,
1923                                  u64 owner, u64 offset, int refs_to_add)
1924 {
1925         int ret;
1926         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1927                 BUG_ON(refs_to_add != 1);
1928                 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
1929                                             parent, root_objectid);
1930         } else {
1931                 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
1932                                              parent, root_objectid,
1933                                              owner, offset, refs_to_add);
1934         }
1935         return ret;
1936 }
1937
1938 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1939                                  struct btrfs_fs_info *fs_info,
1940                                  struct btrfs_path *path,
1941                                  struct btrfs_extent_inline_ref *iref,
1942                                  int refs_to_drop, int is_data, int *last_ref)
1943 {
1944         int ret = 0;
1945
1946         BUG_ON(!is_data && refs_to_drop != 1);
1947         if (iref) {
1948                 update_inline_extent_backref(fs_info, path, iref,
1949                                              -refs_to_drop, NULL, last_ref);
1950         } else if (is_data) {
1951                 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
1952                                              last_ref);
1953         } else {
1954                 *last_ref = 1;
1955                 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1956         }
1957         return ret;
1958 }
1959
1960 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
1961 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1962                                u64 *discarded_bytes)
1963 {
1964         int j, ret = 0;
1965         u64 bytes_left, end;
1966         u64 aligned_start = ALIGN(start, 1 << 9);
1967
1968         if (WARN_ON(start != aligned_start)) {
1969                 len -= aligned_start - start;
1970                 len = round_down(len, 1 << 9);
1971                 start = aligned_start;
1972         }
1973
1974         *discarded_bytes = 0;
1975
1976         if (!len)
1977                 return 0;
1978
1979         end = start + len;
1980         bytes_left = len;
1981
1982         /* Skip any superblocks on this device. */
1983         for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1984                 u64 sb_start = btrfs_sb_offset(j);
1985                 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1986                 u64 size = sb_start - start;
1987
1988                 if (!in_range(sb_start, start, bytes_left) &&
1989                     !in_range(sb_end, start, bytes_left) &&
1990                     !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1991                         continue;
1992
1993                 /*
1994                  * Superblock spans beginning of range.  Adjust start and
1995                  * try again.
1996                  */
1997                 if (sb_start <= start) {
1998                         start += sb_end - start;
1999                         if (start > end) {
2000                                 bytes_left = 0;
2001                                 break;
2002                         }
2003                         bytes_left = end - start;
2004                         continue;
2005                 }
2006
2007                 if (size) {
2008                         ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2009                                                    GFP_NOFS, 0);
2010                         if (!ret)
2011                                 *discarded_bytes += size;
2012                         else if (ret != -EOPNOTSUPP)
2013                                 return ret;
2014                 }
2015
2016                 start = sb_end;
2017                 if (start > end) {
2018                         bytes_left = 0;
2019                         break;
2020                 }
2021                 bytes_left = end - start;
2022         }
2023
2024         if (bytes_left) {
2025                 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2026                                            GFP_NOFS, 0);
2027                 if (!ret)
2028                         *discarded_bytes += bytes_left;
2029         }
2030         return ret;
2031 }
2032
2033 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2034                          u64 num_bytes, u64 *actual_bytes)
2035 {
2036         int ret;
2037         u64 discarded_bytes = 0;
2038         struct btrfs_bio *bbio = NULL;
2039
2040
2041         /*
2042          * Avoid races with device replace and make sure our bbio has devices
2043          * associated to its stripes that don't go away while we are discarding.
2044          */
2045         btrfs_bio_counter_inc_blocked(fs_info);
2046         /* Tell the block device(s) that the sectors can be discarded */
2047         ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2048                               &bbio, 0);
2049         /* Error condition is -ENOMEM */
2050         if (!ret) {
2051                 struct btrfs_bio_stripe *stripe = bbio->stripes;
2052                 int i;
2053
2054
2055                 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2056                         u64 bytes;
2057                         if (!stripe->dev->can_discard)
2058                                 continue;
2059
2060                         ret = btrfs_issue_discard(stripe->dev->bdev,
2061                                                   stripe->physical,
2062                                                   stripe->length,
2063                                                   &bytes);
2064                         if (!ret)
2065                                 discarded_bytes += bytes;
2066                         else if (ret != -EOPNOTSUPP)
2067                                 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2068
2069                         /*
2070                          * Just in case we get back EOPNOTSUPP for some reason,
2071                          * just ignore the return value so we don't screw up
2072                          * people calling discard_extent.
2073                          */
2074                         ret = 0;
2075                 }
2076                 btrfs_put_bbio(bbio);
2077         }
2078         btrfs_bio_counter_dec(fs_info);
2079
2080         if (actual_bytes)
2081                 *actual_bytes = discarded_bytes;
2082
2083
2084         if (ret == -EOPNOTSUPP)
2085                 ret = 0;
2086         return ret;
2087 }
2088
2089 /* Can return -ENOMEM */
2090 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2091                          struct btrfs_fs_info *fs_info,
2092                          u64 bytenr, u64 num_bytes, u64 parent,
2093                          u64 root_objectid, u64 owner, u64 offset)
2094 {
2095         int ret;
2096
2097         BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2098                root_objectid == BTRFS_TREE_LOG_OBJECTID);
2099
2100         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2101                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2102                                         num_bytes,
2103                                         parent, root_objectid, (int)owner,
2104                                         BTRFS_ADD_DELAYED_REF, NULL);
2105         } else {
2106                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2107                                         num_bytes, parent, root_objectid,
2108                                         owner, offset, 0,
2109                                         BTRFS_ADD_DELAYED_REF);
2110         }
2111         return ret;
2112 }
2113
2114 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2115                                   struct btrfs_fs_info *fs_info,
2116                                   struct btrfs_delayed_ref_node *node,
2117                                   u64 parent, u64 root_objectid,
2118                                   u64 owner, u64 offset, int refs_to_add,
2119                                   struct btrfs_delayed_extent_op *extent_op)
2120 {
2121         struct btrfs_path *path;
2122         struct extent_buffer *leaf;
2123         struct btrfs_extent_item *item;
2124         struct btrfs_key key;
2125         u64 bytenr = node->bytenr;
2126         u64 num_bytes = node->num_bytes;
2127         u64 refs;
2128         int ret;
2129
2130         path = btrfs_alloc_path();
2131         if (!path)
2132                 return -ENOMEM;
2133
2134         path->reada = READA_FORWARD;
2135         path->leave_spinning = 1;
2136         /* this will setup the path even if it fails to insert the back ref */
2137         ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2138                                            num_bytes, parent, root_objectid,
2139                                            owner, offset,
2140                                            refs_to_add, extent_op);
2141         if ((ret < 0 && ret != -EAGAIN) || !ret)
2142                 goto out;
2143
2144         /*
2145          * Ok we had -EAGAIN which means we didn't have space to insert and
2146          * inline extent ref, so just update the reference count and add a
2147          * normal backref.
2148          */
2149         leaf = path->nodes[0];
2150         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2151         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2152         refs = btrfs_extent_refs(leaf, item);
2153         btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2154         if (extent_op)
2155                 __run_delayed_extent_op(extent_op, leaf, item);
2156
2157         btrfs_mark_buffer_dirty(leaf);
2158         btrfs_release_path(path);
2159
2160         path->reada = READA_FORWARD;
2161         path->leave_spinning = 1;
2162         /* now insert the actual backref */
2163         ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2164                                     root_objectid, owner, offset, refs_to_add);
2165         if (ret)
2166                 btrfs_abort_transaction(trans, ret);
2167 out:
2168         btrfs_free_path(path);
2169         return ret;
2170 }
2171
2172 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2173                                 struct btrfs_fs_info *fs_info,
2174                                 struct btrfs_delayed_ref_node *node,
2175                                 struct btrfs_delayed_extent_op *extent_op,
2176                                 int insert_reserved)
2177 {
2178         int ret = 0;
2179         struct btrfs_delayed_data_ref *ref;
2180         struct btrfs_key ins;
2181         u64 parent = 0;
2182         u64 ref_root = 0;
2183         u64 flags = 0;
2184
2185         ins.objectid = node->bytenr;
2186         ins.offset = node->num_bytes;
2187         ins.type = BTRFS_EXTENT_ITEM_KEY;
2188
2189         ref = btrfs_delayed_node_to_data_ref(node);
2190         trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2191
2192         if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2193                 parent = ref->parent;
2194         ref_root = ref->root;
2195
2196         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2197                 if (extent_op)
2198                         flags |= extent_op->flags_to_set;
2199                 ret = alloc_reserved_file_extent(trans, fs_info,
2200                                                  parent, ref_root, flags,
2201                                                  ref->objectid, ref->offset,
2202                                                  &ins, node->ref_mod);
2203         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2204                 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2205                                              ref_root, ref->objectid,
2206                                              ref->offset, node->ref_mod,
2207                                              extent_op);
2208         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2209                 ret = __btrfs_free_extent(trans, fs_info, node, parent,
2210                                           ref_root, ref->objectid,
2211                                           ref->offset, node->ref_mod,
2212                                           extent_op);
2213         } else {
2214                 BUG();
2215         }
2216         return ret;
2217 }
2218
2219 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2220                                     struct extent_buffer *leaf,
2221                                     struct btrfs_extent_item *ei)
2222 {
2223         u64 flags = btrfs_extent_flags(leaf, ei);
2224         if (extent_op->update_flags) {
2225                 flags |= extent_op->flags_to_set;
2226                 btrfs_set_extent_flags(leaf, ei, flags);
2227         }
2228
2229         if (extent_op->update_key) {
2230                 struct btrfs_tree_block_info *bi;
2231                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2232                 bi = (struct btrfs_tree_block_info *)(ei + 1);
2233                 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2234         }
2235 }
2236
2237 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2238                                  struct btrfs_fs_info *fs_info,
2239                                  struct btrfs_delayed_ref_node *node,
2240                                  struct btrfs_delayed_extent_op *extent_op)
2241 {
2242         struct btrfs_key key;
2243         struct btrfs_path *path;
2244         struct btrfs_extent_item *ei;
2245         struct extent_buffer *leaf;
2246         u32 item_size;
2247         int ret;
2248         int err = 0;
2249         int metadata = !extent_op->is_data;
2250
2251         if (trans->aborted)
2252                 return 0;
2253
2254         if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2255                 metadata = 0;
2256
2257         path = btrfs_alloc_path();
2258         if (!path)
2259                 return -ENOMEM;
2260
2261         key.objectid = node->bytenr;
2262
2263         if (metadata) {
2264                 key.type = BTRFS_METADATA_ITEM_KEY;
2265                 key.offset = extent_op->level;
2266         } else {
2267                 key.type = BTRFS_EXTENT_ITEM_KEY;
2268                 key.offset = node->num_bytes;
2269         }
2270
2271 again:
2272         path->reada = READA_FORWARD;
2273         path->leave_spinning = 1;
2274         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2275         if (ret < 0) {
2276                 err = ret;
2277                 goto out;
2278         }
2279         if (ret > 0) {
2280                 if (metadata) {
2281                         if (path->slots[0] > 0) {
2282                                 path->slots[0]--;
2283                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
2284                                                       path->slots[0]);
2285                                 if (key.objectid == node->bytenr &&
2286                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
2287                                     key.offset == node->num_bytes)
2288                                         ret = 0;
2289                         }
2290                         if (ret > 0) {
2291                                 btrfs_release_path(path);
2292                                 metadata = 0;
2293
2294                                 key.objectid = node->bytenr;
2295                                 key.offset = node->num_bytes;
2296                                 key.type = BTRFS_EXTENT_ITEM_KEY;
2297                                 goto again;
2298                         }
2299                 } else {
2300                         err = -EIO;
2301                         goto out;
2302                 }
2303         }
2304
2305         leaf = path->nodes[0];
2306         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2307 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2308         if (item_size < sizeof(*ei)) {
2309                 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2310                 if (ret < 0) {
2311                         err = ret;
2312                         goto out;
2313                 }
2314                 leaf = path->nodes[0];
2315                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2316         }
2317 #endif
2318         BUG_ON(item_size < sizeof(*ei));
2319         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2320         __run_delayed_extent_op(extent_op, leaf, ei);
2321
2322         btrfs_mark_buffer_dirty(leaf);
2323 out:
2324         btrfs_free_path(path);
2325         return err;
2326 }
2327
2328 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2329                                 struct btrfs_fs_info *fs_info,
2330                                 struct btrfs_delayed_ref_node *node,
2331                                 struct btrfs_delayed_extent_op *extent_op,
2332                                 int insert_reserved)
2333 {
2334         int ret = 0;
2335         struct btrfs_delayed_tree_ref *ref;
2336         struct btrfs_key ins;
2337         u64 parent = 0;
2338         u64 ref_root = 0;
2339         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2340
2341         ref = btrfs_delayed_node_to_tree_ref(node);
2342         trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2343
2344         if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2345                 parent = ref->parent;
2346         ref_root = ref->root;
2347
2348         ins.objectid = node->bytenr;
2349         if (skinny_metadata) {
2350                 ins.offset = ref->level;
2351                 ins.type = BTRFS_METADATA_ITEM_KEY;
2352         } else {
2353                 ins.offset = node->num_bytes;
2354                 ins.type = BTRFS_EXTENT_ITEM_KEY;
2355         }
2356
2357         if (node->ref_mod != 1) {
2358                 btrfs_err(fs_info,
2359         "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2360                           node->bytenr, node->ref_mod, node->action, ref_root,
2361                           parent);
2362                 return -EIO;
2363         }
2364         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2365                 BUG_ON(!extent_op || !extent_op->update_flags);
2366                 ret = alloc_reserved_tree_block(trans, fs_info,
2367                                                 parent, ref_root,
2368                                                 extent_op->flags_to_set,
2369                                                 &extent_op->key,
2370                                                 ref->level, &ins);
2371         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2372                 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2373                                              parent, ref_root,
2374                                              ref->level, 0, 1,
2375                                              extent_op);
2376         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2377                 ret = __btrfs_free_extent(trans, fs_info, node,
2378                                           parent, ref_root,
2379                                           ref->level, 0, 1, extent_op);
2380         } else {
2381                 BUG();
2382         }
2383         return ret;
2384 }
2385
2386 /* helper function to actually process a single delayed ref entry */
2387 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2388                                struct btrfs_fs_info *fs_info,
2389                                struct btrfs_delayed_ref_node *node,
2390                                struct btrfs_delayed_extent_op *extent_op,
2391                                int insert_reserved)
2392 {
2393         int ret = 0;
2394
2395         if (trans->aborted) {
2396                 if (insert_reserved)
2397                         btrfs_pin_extent(fs_info, node->bytenr,
2398                                          node->num_bytes, 1);
2399                 return 0;
2400         }
2401
2402         if (btrfs_delayed_ref_is_head(node)) {
2403                 struct btrfs_delayed_ref_head *head;
2404                 /*
2405                  * we've hit the end of the chain and we were supposed
2406                  * to insert this extent into the tree.  But, it got
2407                  * deleted before we ever needed to insert it, so all
2408                  * we have to do is clean up the accounting
2409                  */
2410                 BUG_ON(extent_op);
2411                 head = btrfs_delayed_node_to_head(node);
2412                 trace_run_delayed_ref_head(fs_info, node, head, node->action);
2413
2414                 if (insert_reserved) {
2415                         btrfs_pin_extent(fs_info, node->bytenr,
2416                                          node->num_bytes, 1);
2417                         if (head->is_data) {
2418                                 ret = btrfs_del_csums(trans, fs_info,
2419                                                       node->bytenr,
2420                                                       node->num_bytes);
2421                         }
2422                 }
2423
2424                 /* Also free its reserved qgroup space */
2425                 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2426                                               head->qgroup_reserved);
2427                 return ret;
2428         }
2429
2430         if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2431             node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2432                 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2433                                            insert_reserved);
2434         else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2435                  node->type == BTRFS_SHARED_DATA_REF_KEY)
2436                 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2437                                            insert_reserved);
2438         else
2439                 BUG();
2440         return ret;
2441 }
2442
2443 static inline struct btrfs_delayed_ref_node *
2444 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2445 {
2446         struct btrfs_delayed_ref_node *ref;
2447
2448         if (list_empty(&head->ref_list))
2449                 return NULL;
2450
2451         /*
2452          * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2453          * This is to prevent a ref count from going down to zero, which deletes
2454          * the extent item from the extent tree, when there still are references
2455          * to add, which would fail because they would not find the extent item.
2456          */
2457         if (!list_empty(&head->ref_add_list))
2458                 return list_first_entry(&head->ref_add_list,
2459                                 struct btrfs_delayed_ref_node, add_list);
2460
2461         ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
2462                                list);
2463         ASSERT(list_empty(&ref->add_list));
2464         return ref;
2465 }
2466
2467 /*
2468  * Returns 0 on success or if called with an already aborted transaction.
2469  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2470  */
2471 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2472                                              struct btrfs_fs_info *fs_info,
2473                                              unsigned long nr)
2474 {
2475         struct btrfs_delayed_ref_root *delayed_refs;
2476         struct btrfs_delayed_ref_node *ref;
2477         struct btrfs_delayed_ref_head *locked_ref = NULL;
2478         struct btrfs_delayed_extent_op *extent_op;
2479         ktime_t start = ktime_get();
2480         int ret;
2481         unsigned long count = 0;
2482         unsigned long actual_count = 0;
2483         int must_insert_reserved = 0;
2484
2485         delayed_refs = &trans->transaction->delayed_refs;
2486         while (1) {
2487                 if (!locked_ref) {
2488                         if (count >= nr)
2489                                 break;
2490
2491                         spin_lock(&delayed_refs->lock);
2492                         locked_ref = btrfs_select_ref_head(trans);
2493                         if (!locked_ref) {
2494                                 spin_unlock(&delayed_refs->lock);
2495                                 break;
2496                         }
2497
2498                         /* grab the lock that says we are going to process
2499                          * all the refs for this head */
2500                         ret = btrfs_delayed_ref_lock(trans, locked_ref);
2501                         spin_unlock(&delayed_refs->lock);
2502                         /*
2503                          * we may have dropped the spin lock to get the head
2504                          * mutex lock, and that might have given someone else
2505                          * time to free the head.  If that's true, it has been
2506                          * removed from our list and we can move on.
2507                          */
2508                         if (ret == -EAGAIN) {
2509                                 locked_ref = NULL;
2510                                 count++;
2511                                 continue;
2512                         }
2513                 }
2514
2515                 /*
2516                  * We need to try and merge add/drops of the same ref since we
2517                  * can run into issues with relocate dropping the implicit ref
2518                  * and then it being added back again before the drop can
2519                  * finish.  If we merged anything we need to re-loop so we can
2520                  * get a good ref.
2521                  * Or we can get node references of the same type that weren't
2522                  * merged when created due to bumps in the tree mod seq, and
2523                  * we need to merge them to prevent adding an inline extent
2524                  * backref before dropping it (triggering a BUG_ON at
2525                  * insert_inline_extent_backref()).
2526                  */
2527                 spin_lock(&locked_ref->lock);
2528                 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2529                                          locked_ref);
2530
2531                 /*
2532                  * locked_ref is the head node, so we have to go one
2533                  * node back for any delayed ref updates
2534                  */
2535                 ref = select_delayed_ref(locked_ref);
2536
2537                 if (ref && ref->seq &&
2538                     btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2539                         spin_unlock(&locked_ref->lock);
2540                         spin_lock(&delayed_refs->lock);
2541                         locked_ref->processing = 0;
2542                         delayed_refs->num_heads_ready++;
2543                         spin_unlock(&delayed_refs->lock);
2544                         btrfs_delayed_ref_unlock(locked_ref);
2545                         locked_ref = NULL;
2546                         cond_resched();
2547                         count++;
2548                         continue;
2549                 }
2550
2551                 /*
2552                  * record the must insert reserved flag before we
2553                  * drop the spin lock.
2554                  */
2555                 must_insert_reserved = locked_ref->must_insert_reserved;
2556                 locked_ref->must_insert_reserved = 0;
2557
2558                 extent_op = locked_ref->extent_op;
2559                 locked_ref->extent_op = NULL;
2560
2561                 if (!ref) {
2562
2563
2564                         /* All delayed refs have been processed, Go ahead
2565                          * and send the head node to run_one_delayed_ref,
2566                          * so that any accounting fixes can happen
2567                          */
2568                         ref = &locked_ref->node;
2569
2570                         if (extent_op && must_insert_reserved) {
2571                                 btrfs_free_delayed_extent_op(extent_op);
2572                                 extent_op = NULL;
2573                         }
2574
2575                         if (extent_op) {
2576                                 spin_unlock(&locked_ref->lock);
2577                                 ret = run_delayed_extent_op(trans, fs_info,
2578                                                             ref, extent_op);
2579                                 btrfs_free_delayed_extent_op(extent_op);
2580
2581                                 if (ret) {
2582                                         /*
2583                                          * Need to reset must_insert_reserved if
2584                                          * there was an error so the abort stuff
2585                                          * can cleanup the reserved space
2586                                          * properly.
2587                                          */
2588                                         if (must_insert_reserved)
2589                                                 locked_ref->must_insert_reserved = 1;
2590                                         spin_lock(&delayed_refs->lock);
2591                                         locked_ref->processing = 0;
2592                                         delayed_refs->num_heads_ready++;
2593                                         spin_unlock(&delayed_refs->lock);
2594                                         btrfs_debug(fs_info,
2595                                                     "run_delayed_extent_op returned %d",
2596                                                     ret);
2597                                         btrfs_delayed_ref_unlock(locked_ref);
2598                                         return ret;
2599                                 }
2600                                 continue;
2601                         }
2602
2603                         /*
2604                          * Need to drop our head ref lock and re-acquire the
2605                          * delayed ref lock and then re-check to make sure
2606                          * nobody got added.
2607                          */
2608                         spin_unlock(&locked_ref->lock);
2609                         spin_lock(&delayed_refs->lock);
2610                         spin_lock(&locked_ref->lock);
2611                         if (!list_empty(&locked_ref->ref_list) ||
2612                             locked_ref->extent_op) {
2613                                 spin_unlock(&locked_ref->lock);
2614                                 spin_unlock(&delayed_refs->lock);
2615                                 continue;
2616                         }
2617                         ref->in_tree = 0;
2618                         delayed_refs->num_heads--;
2619                         rb_erase(&locked_ref->href_node,
2620                                  &delayed_refs->href_root);
2621                         spin_unlock(&delayed_refs->lock);
2622                 } else {
2623                         actual_count++;
2624                         ref->in_tree = 0;
2625                         list_del(&ref->list);
2626                         if (!list_empty(&ref->add_list))
2627                                 list_del(&ref->add_list);
2628                 }
2629                 atomic_dec(&delayed_refs->num_entries);
2630
2631                 if (!btrfs_delayed_ref_is_head(ref)) {
2632                         /*
2633                          * when we play the delayed ref, also correct the
2634                          * ref_mod on head
2635                          */
2636                         switch (ref->action) {
2637                         case BTRFS_ADD_DELAYED_REF:
2638                         case BTRFS_ADD_DELAYED_EXTENT:
2639                                 locked_ref->node.ref_mod -= ref->ref_mod;
2640                                 break;
2641                         case BTRFS_DROP_DELAYED_REF:
2642                                 locked_ref->node.ref_mod += ref->ref_mod;
2643                                 break;
2644                         default:
2645                                 WARN_ON(1);
2646                         }
2647                 }
2648                 spin_unlock(&locked_ref->lock);
2649
2650                 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2651                                           must_insert_reserved);
2652
2653                 btrfs_free_delayed_extent_op(extent_op);
2654                 if (ret) {
2655                         spin_lock(&delayed_refs->lock);
2656                         locked_ref->processing = 0;
2657                         delayed_refs->num_heads_ready++;
2658                         spin_unlock(&delayed_refs->lock);
2659                         btrfs_delayed_ref_unlock(locked_ref);
2660                         btrfs_put_delayed_ref(ref);
2661                         btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2662                                     ret);
2663                         return ret;
2664                 }
2665
2666                 /*
2667                  * If this node is a head, that means all the refs in this head
2668                  * have been dealt with, and we will pick the next head to deal
2669                  * with, so we must unlock the head and drop it from the cluster
2670                  * list before we release it.
2671                  */
2672                 if (btrfs_delayed_ref_is_head(ref)) {
2673                         if (locked_ref->is_data &&
2674                             locked_ref->total_ref_mod < 0) {
2675                                 spin_lock(&delayed_refs->lock);
2676                                 delayed_refs->pending_csums -= ref->num_bytes;
2677                                 spin_unlock(&delayed_refs->lock);
2678                         }
2679                         btrfs_delayed_ref_unlock(locked_ref);
2680                         locked_ref = NULL;
2681                 }
2682                 btrfs_put_delayed_ref(ref);
2683                 count++;
2684                 cond_resched();
2685         }
2686
2687         /*
2688          * We don't want to include ref heads since we can have empty ref heads
2689          * and those will drastically skew our runtime down since we just do
2690          * accounting, no actual extent tree updates.
2691          */
2692         if (actual_count > 0) {
2693                 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2694                 u64 avg;
2695
2696                 /*
2697                  * We weigh the current average higher than our current runtime
2698                  * to avoid large swings in the average.
2699                  */
2700                 spin_lock(&delayed_refs->lock);
2701                 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2702                 fs_info->avg_delayed_ref_runtime = avg >> 2;    /* div by 4 */
2703                 spin_unlock(&delayed_refs->lock);
2704         }
2705         return 0;
2706 }
2707
2708 #ifdef SCRAMBLE_DELAYED_REFS
2709 /*
2710  * Normally delayed refs get processed in ascending bytenr order. This
2711  * correlates in most cases to the order added. To expose dependencies on this
2712  * order, we start to process the tree in the middle instead of the beginning
2713  */
2714 static u64 find_middle(struct rb_root *root)
2715 {
2716         struct rb_node *n = root->rb_node;
2717         struct btrfs_delayed_ref_node *entry;
2718         int alt = 1;
2719         u64 middle;
2720         u64 first = 0, last = 0;
2721
2722         n = rb_first(root);
2723         if (n) {
2724                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2725                 first = entry->bytenr;
2726         }
2727         n = rb_last(root);
2728         if (n) {
2729                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2730                 last = entry->bytenr;
2731         }
2732         n = root->rb_node;
2733
2734         while (n) {
2735                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2736                 WARN_ON(!entry->in_tree);
2737
2738                 middle = entry->bytenr;
2739
2740                 if (alt)
2741                         n = n->rb_left;
2742                 else
2743                         n = n->rb_right;
2744
2745                 alt = 1 - alt;
2746         }
2747         return middle;
2748 }
2749 #endif
2750
2751 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2752 {
2753         u64 num_bytes;
2754
2755         num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2756                              sizeof(struct btrfs_extent_inline_ref));
2757         if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2758                 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2759
2760         /*
2761          * We don't ever fill up leaves all the way so multiply by 2 just to be
2762          * closer to what we're really going to want to use.
2763          */
2764         return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2765 }
2766
2767 /*
2768  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2769  * would require to store the csums for that many bytes.
2770  */
2771 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2772 {
2773         u64 csum_size;
2774         u64 num_csums_per_leaf;
2775         u64 num_csums;
2776
2777         csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2778         num_csums_per_leaf = div64_u64(csum_size,
2779                         (u64)btrfs_super_csum_size(fs_info->super_copy));
2780         num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2781         num_csums += num_csums_per_leaf - 1;
2782         num_csums = div64_u64(num_csums, num_csums_per_leaf);
2783         return num_csums;
2784 }
2785
2786 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2787                                        struct btrfs_fs_info *fs_info)
2788 {
2789         struct btrfs_block_rsv *global_rsv;
2790         u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2791         u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2792         u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2793         u64 num_bytes, num_dirty_bgs_bytes;
2794         int ret = 0;
2795
2796         num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2797         num_heads = heads_to_leaves(fs_info, num_heads);
2798         if (num_heads > 1)
2799                 num_bytes += (num_heads - 1) * fs_info->nodesize;
2800         num_bytes <<= 1;
2801         num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2802                                                         fs_info->nodesize;
2803         num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2804                                                              num_dirty_bgs);
2805         global_rsv = &fs_info->global_block_rsv;
2806
2807         /*
2808          * If we can't allocate any more chunks lets make sure we have _lots_ of
2809          * wiggle room since running delayed refs can create more delayed refs.
2810          */
2811         if (global_rsv->space_info->full) {
2812                 num_dirty_bgs_bytes <<= 1;
2813                 num_bytes <<= 1;
2814         }
2815
2816         spin_lock(&global_rsv->lock);
2817         if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2818                 ret = 1;
2819         spin_unlock(&global_rsv->lock);
2820         return ret;
2821 }
2822
2823 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2824                                        struct btrfs_fs_info *fs_info)
2825 {
2826         u64 num_entries =
2827                 atomic_read(&trans->transaction->delayed_refs.num_entries);
2828         u64 avg_runtime;
2829         u64 val;
2830
2831         smp_mb();
2832         avg_runtime = fs_info->avg_delayed_ref_runtime;
2833         val = num_entries * avg_runtime;
2834         if (val >= NSEC_PER_SEC)
2835                 return 1;
2836         if (val >= NSEC_PER_SEC / 2)
2837                 return 2;
2838
2839         return btrfs_check_space_for_delayed_refs(trans, fs_info);
2840 }
2841
2842 struct async_delayed_refs {
2843         struct btrfs_root *root;
2844         u64 transid;
2845         int count;
2846         int error;
2847         int sync;
2848         struct completion wait;
2849         struct btrfs_work work;
2850 };
2851
2852 static inline struct async_delayed_refs *
2853 to_async_delayed_refs(struct btrfs_work *work)
2854 {
2855         return container_of(work, struct async_delayed_refs, work);
2856 }
2857
2858 static void delayed_ref_async_start(struct btrfs_work *work)
2859 {
2860         struct async_delayed_refs *async = to_async_delayed_refs(work);
2861         struct btrfs_trans_handle *trans;
2862         struct btrfs_fs_info *fs_info = async->root->fs_info;
2863         int ret;
2864
2865         /* if the commit is already started, we don't need to wait here */
2866         if (btrfs_transaction_blocked(fs_info))
2867                 goto done;
2868
2869         trans = btrfs_join_transaction(async->root);
2870         if (IS_ERR(trans)) {
2871                 async->error = PTR_ERR(trans);
2872                 goto done;
2873         }
2874
2875         /*
2876          * trans->sync means that when we call end_transaction, we won't
2877          * wait on delayed refs
2878          */
2879         trans->sync = true;
2880
2881         /* Don't bother flushing if we got into a different transaction */
2882         if (trans->transid > async->transid)
2883                 goto end;
2884
2885         ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
2886         if (ret)
2887                 async->error = ret;
2888 end:
2889         ret = btrfs_end_transaction(trans);
2890         if (ret && !async->error)
2891                 async->error = ret;
2892 done:
2893         if (async->sync)
2894                 complete(&async->wait);
2895         else
2896                 kfree(async);
2897 }
2898
2899 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2900                                  unsigned long count, u64 transid, int wait)
2901 {
2902         struct async_delayed_refs *async;
2903         int ret;
2904
2905         async = kmalloc(sizeof(*async), GFP_NOFS);
2906         if (!async)
2907                 return -ENOMEM;
2908
2909         async->root = fs_info->tree_root;
2910         async->count = count;
2911         async->error = 0;
2912         async->transid = transid;
2913         if (wait)
2914                 async->sync = 1;
2915         else
2916                 async->sync = 0;
2917         init_completion(&async->wait);
2918
2919         btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2920                         delayed_ref_async_start, NULL, NULL);
2921
2922         btrfs_queue_work(fs_info->extent_workers, &async->work);
2923
2924         if (wait) {
2925                 wait_for_completion(&async->wait);
2926                 ret = async->error;
2927                 kfree(async);
2928                 return ret;
2929         }
2930         return 0;
2931 }
2932
2933 /*
2934  * this starts processing the delayed reference count updates and
2935  * extent insertions we have queued up so far.  count can be
2936  * 0, which means to process everything in the tree at the start
2937  * of the run (but not newly added entries), or it can be some target
2938  * number you'd like to process.
2939  *
2940  * Returns 0 on success or if called with an aborted transaction
2941  * Returns <0 on error and aborts the transaction
2942  */
2943 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2944                            struct btrfs_fs_info *fs_info, unsigned long count)
2945 {
2946         struct rb_node *node;
2947         struct btrfs_delayed_ref_root *delayed_refs;
2948         struct btrfs_delayed_ref_head *head;
2949         int ret;
2950         int run_all = count == (unsigned long)-1;
2951         bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2952
2953         /* We'll clean this up in btrfs_cleanup_transaction */
2954         if (trans->aborted)
2955                 return 0;
2956
2957         if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2958                 return 0;
2959
2960         delayed_refs = &trans->transaction->delayed_refs;
2961         if (count == 0)
2962                 count = atomic_read(&delayed_refs->num_entries) * 2;
2963
2964 again:
2965 #ifdef SCRAMBLE_DELAYED_REFS
2966         delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2967 #endif
2968         trans->can_flush_pending_bgs = false;
2969         ret = __btrfs_run_delayed_refs(trans, fs_info, count);
2970         if (ret < 0) {
2971                 btrfs_abort_transaction(trans, ret);
2972                 return ret;
2973         }
2974
2975         if (run_all) {
2976                 if (!list_empty(&trans->new_bgs))
2977                         btrfs_create_pending_block_groups(trans, fs_info);
2978
2979                 spin_lock(&delayed_refs->lock);
2980                 node = rb_first(&delayed_refs->href_root);
2981                 if (!node) {
2982                         spin_unlock(&delayed_refs->lock);
2983                         goto out;
2984                 }
2985
2986                 while (node) {
2987                         head = rb_entry(node, struct btrfs_delayed_ref_head,
2988                                         href_node);
2989                         if (btrfs_delayed_ref_is_head(&head->node)) {
2990                                 struct btrfs_delayed_ref_node *ref;
2991
2992                                 ref = &head->node;
2993                                 refcount_inc(&ref->refs);
2994
2995                                 spin_unlock(&delayed_refs->lock);
2996                                 /*
2997                                  * Mutex was contended, block until it's
2998                                  * released and try again
2999                                  */
3000                                 mutex_lock(&head->mutex);
3001                                 mutex_unlock(&head->mutex);
3002
3003                                 btrfs_put_delayed_ref(ref);
3004                                 cond_resched();
3005                                 goto again;
3006                         } else {
3007                                 WARN_ON(1);
3008                         }
3009                         node = rb_next(node);
3010                 }
3011                 spin_unlock(&delayed_refs->lock);
3012                 cond_resched();
3013                 goto again;
3014         }
3015 out:
3016         trans->can_flush_pending_bgs = can_flush_pending_bgs;
3017         return 0;
3018 }
3019
3020 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3021                                 struct btrfs_fs_info *fs_info,
3022                                 u64 bytenr, u64 num_bytes, u64 flags,
3023                                 int level, int is_data)
3024 {
3025         struct btrfs_delayed_extent_op *extent_op;
3026         int ret;
3027
3028         extent_op = btrfs_alloc_delayed_extent_op();
3029         if (!extent_op)
3030                 return -ENOMEM;
3031
3032         extent_op->flags_to_set = flags;
3033         extent_op->update_flags = true;
3034         extent_op->update_key = false;
3035         extent_op->is_data = is_data ? true : false;
3036         extent_op->level = level;
3037
3038         ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3039                                           num_bytes, extent_op);
3040         if (ret)
3041                 btrfs_free_delayed_extent_op(extent_op);
3042         return ret;
3043 }
3044
3045 static noinline int check_delayed_ref(struct btrfs_root *root,
3046                                       struct btrfs_path *path,
3047                                       u64 objectid, u64 offset, u64 bytenr)
3048 {
3049         struct btrfs_delayed_ref_head *head;
3050         struct btrfs_delayed_ref_node *ref;
3051         struct btrfs_delayed_data_ref *data_ref;
3052         struct btrfs_delayed_ref_root *delayed_refs;
3053         struct btrfs_transaction *cur_trans;
3054         int ret = 0;
3055
3056         cur_trans = root->fs_info->running_transaction;
3057         if (!cur_trans)
3058                 return 0;
3059
3060         delayed_refs = &cur_trans->delayed_refs;
3061         spin_lock(&delayed_refs->lock);
3062         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3063         if (!head) {
3064                 spin_unlock(&delayed_refs->lock);
3065                 return 0;
3066         }
3067
3068         if (!mutex_trylock(&head->mutex)) {
3069                 refcount_inc(&head->node.refs);
3070                 spin_unlock(&delayed_refs->lock);
3071
3072                 btrfs_release_path(path);
3073
3074                 /*
3075                  * Mutex was contended, block until it's released and let
3076                  * caller try again
3077                  */
3078                 mutex_lock(&head->mutex);
3079                 mutex_unlock(&head->mutex);
3080                 btrfs_put_delayed_ref(&head->node);
3081                 return -EAGAIN;
3082         }
3083         spin_unlock(&delayed_refs->lock);
3084
3085         spin_lock(&head->lock);
3086         list_for_each_entry(ref, &head->ref_list, list) {
3087                 /* If it's a shared ref we know a cross reference exists */
3088                 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3089                         ret = 1;
3090                         break;
3091                 }
3092
3093                 data_ref = btrfs_delayed_node_to_data_ref(ref);
3094
3095                 /*
3096                  * If our ref doesn't match the one we're currently looking at
3097                  * then we have a cross reference.
3098                  */
3099                 if (data_ref->root != root->root_key.objectid ||
3100                     data_ref->objectid != objectid ||
3101                     data_ref->offset != offset) {
3102                         ret = 1;
3103                         break;
3104                 }
3105         }
3106         spin_unlock(&head->lock);
3107         mutex_unlock(&head->mutex);
3108         return ret;
3109 }
3110
3111 static noinline int check_committed_ref(struct btrfs_root *root,
3112                                         struct btrfs_path *path,
3113                                         u64 objectid, u64 offset, u64 bytenr)
3114 {
3115         struct btrfs_fs_info *fs_info = root->fs_info;
3116         struct btrfs_root *extent_root = fs_info->extent_root;
3117         struct extent_buffer *leaf;
3118         struct btrfs_extent_data_ref *ref;
3119         struct btrfs_extent_inline_ref *iref;
3120         struct btrfs_extent_item *ei;
3121         struct btrfs_key key;
3122         u32 item_size;
3123         int ret;
3124
3125         key.objectid = bytenr;
3126         key.offset = (u64)-1;
3127         key.type = BTRFS_EXTENT_ITEM_KEY;
3128
3129         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3130         if (ret < 0)
3131                 goto out;
3132         BUG_ON(ret == 0); /* Corruption */
3133
3134         ret = -ENOENT;
3135         if (path->slots[0] == 0)
3136                 goto out;
3137
3138         path->slots[0]--;
3139         leaf = path->nodes[0];
3140         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3141
3142         if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3143                 goto out;
3144
3145         ret = 1;
3146         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3147 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3148         if (item_size < sizeof(*ei)) {
3149                 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3150                 goto out;
3151         }
3152 #endif
3153         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3154
3155         if (item_size != sizeof(*ei) +
3156             btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3157                 goto out;
3158
3159         if (btrfs_extent_generation(leaf, ei) <=
3160             btrfs_root_last_snapshot(&root->root_item))
3161                 goto out;
3162
3163         iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3164         if (btrfs_extent_inline_ref_type(leaf, iref) !=
3165             BTRFS_EXTENT_DATA_REF_KEY)
3166                 goto out;
3167
3168         ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3169         if (btrfs_extent_refs(leaf, ei) !=
3170             btrfs_extent_data_ref_count(leaf, ref) ||
3171             btrfs_extent_data_ref_root(leaf, ref) !=
3172             root->root_key.objectid ||
3173             btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3174             btrfs_extent_data_ref_offset(leaf, ref) != offset)
3175                 goto out;
3176
3177         ret = 0;
3178 out:
3179         return ret;
3180 }
3181
3182 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3183                           u64 bytenr)
3184 {
3185         struct btrfs_path *path;
3186         int ret;
3187         int ret2;
3188
3189         path = btrfs_alloc_path();
3190         if (!path)
3191                 return -ENOENT;
3192
3193         do {
3194                 ret = check_committed_ref(root, path, objectid,
3195                                           offset, bytenr);
3196                 if (ret && ret != -ENOENT)
3197                         goto out;
3198
3199                 ret2 = check_delayed_ref(root, path, objectid,
3200                                          offset, bytenr);
3201         } while (ret2 == -EAGAIN);
3202
3203         if (ret2 && ret2 != -ENOENT) {
3204                 ret = ret2;
3205                 goto out;
3206         }
3207
3208         if (ret != -ENOENT || ret2 != -ENOENT)
3209                 ret = 0;
3210 out:
3211         btrfs_free_path(path);
3212         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3213                 WARN_ON(ret > 0);
3214         return ret;
3215 }
3216
3217 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3218                            struct btrfs_root *root,
3219                            struct extent_buffer *buf,
3220                            int full_backref, int inc)
3221 {
3222         struct btrfs_fs_info *fs_info = root->fs_info;
3223         u64 bytenr;
3224         u64 num_bytes;
3225         u64 parent;
3226         u64 ref_root;
3227         u32 nritems;
3228         struct btrfs_key key;
3229         struct btrfs_file_extent_item *fi;
3230         int i;
3231         int level;
3232         int ret = 0;
3233         int (*process_func)(struct btrfs_trans_handle *,
3234                             struct btrfs_fs_info *,
3235                             u64, u64, u64, u64, u64, u64);
3236
3237
3238         if (btrfs_is_testing(fs_info))
3239                 return 0;
3240
3241         ref_root = btrfs_header_owner(buf);
3242         nritems = btrfs_header_nritems(buf);
3243         level = btrfs_header_level(buf);
3244
3245         if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3246                 return 0;
3247
3248         if (inc)
3249                 process_func = btrfs_inc_extent_ref;
3250         else
3251                 process_func = btrfs_free_extent;
3252
3253         if (full_backref)
3254                 parent = buf->start;
3255         else
3256                 parent = 0;
3257
3258         for (i = 0; i < nritems; i++) {
3259                 if (level == 0) {
3260                         btrfs_item_key_to_cpu(buf, &key, i);
3261                         if (key.type != BTRFS_EXTENT_DATA_KEY)
3262                                 continue;
3263                         fi = btrfs_item_ptr(buf, i,
3264                                             struct btrfs_file_extent_item);
3265                         if (btrfs_file_extent_type(buf, fi) ==
3266                             BTRFS_FILE_EXTENT_INLINE)
3267                                 continue;
3268                         bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3269                         if (bytenr == 0)
3270                                 continue;
3271
3272                         num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3273                         key.offset -= btrfs_file_extent_offset(buf, fi);
3274                         ret = process_func(trans, fs_info, bytenr, num_bytes,
3275                                            parent, ref_root, key.objectid,
3276                                            key.offset);
3277                         if (ret)
3278                                 goto fail;
3279                 } else {
3280                         bytenr = btrfs_node_blockptr(buf, i);
3281                         num_bytes = fs_info->nodesize;
3282                         ret = process_func(trans, fs_info, bytenr, num_bytes,
3283                                            parent, ref_root, level - 1, 0);
3284                         if (ret)
3285                                 goto fail;
3286                 }
3287         }
3288         return 0;
3289 fail:
3290         return ret;
3291 }
3292
3293 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3294                   struct extent_buffer *buf, int full_backref)
3295 {
3296         return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3297 }
3298
3299 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3300                   struct extent_buffer *buf, int full_backref)
3301 {
3302         return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3303 }
3304
3305 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3306                                  struct btrfs_fs_info *fs_info,
3307                                  struct btrfs_path *path,
3308                                  struct btrfs_block_group_cache *cache)
3309 {
3310         int ret;
3311         struct btrfs_root *extent_root = fs_info->extent_root;
3312         unsigned long bi;
3313         struct extent_buffer *leaf;
3314
3315         ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3316         if (ret) {
3317                 if (ret > 0)
3318                         ret = -ENOENT;
3319                 goto fail;
3320         }
3321
3322         leaf = path->nodes[0];
3323         bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3324         write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3325         btrfs_mark_buffer_dirty(leaf);
3326 fail:
3327         btrfs_release_path(path);
3328         return ret;
3329
3330 }
3331
3332 static struct btrfs_block_group_cache *
3333 next_block_group(struct btrfs_fs_info *fs_info,
3334                  struct btrfs_block_group_cache *cache)
3335 {
3336         struct rb_node *node;
3337
3338         spin_lock(&fs_info->block_group_cache_lock);
3339
3340         /* If our block group was removed, we need a full search. */
3341         if (RB_EMPTY_NODE(&cache->cache_node)) {
3342                 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3343
3344                 spin_unlock(&fs_info->block_group_cache_lock);
3345                 btrfs_put_block_group(cache);
3346                 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3347         }
3348         node = rb_next(&cache->cache_node);
3349         btrfs_put_block_group(cache);
3350         if (node) {
3351                 cache = rb_entry(node, struct btrfs_block_group_cache,
3352                                  cache_node);
3353                 btrfs_get_block_group(cache);
3354         } else
3355                 cache = NULL;
3356         spin_unlock(&fs_info->block_group_cache_lock);
3357         return cache;
3358 }
3359
3360 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3361                             struct btrfs_trans_handle *trans,
3362                             struct btrfs_path *path)
3363 {
3364         struct btrfs_fs_info *fs_info = block_group->fs_info;
3365         struct btrfs_root *root = fs_info->tree_root;
3366         struct inode *inode = NULL;
3367         u64 alloc_hint = 0;
3368         int dcs = BTRFS_DC_ERROR;
3369         u64 num_pages = 0;
3370         int retries = 0;
3371         int ret = 0;
3372
3373         /*
3374          * If this block group is smaller than 100 megs don't bother caching the
3375          * block group.
3376          */
3377         if (block_group->key.offset < (100 * SZ_1M)) {
3378                 spin_lock(&block_group->lock);
3379                 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3380                 spin_unlock(&block_group->lock);
3381                 return 0;
3382         }
3383
3384         if (trans->aborted)
3385                 return 0;
3386 again:
3387         inode = lookup_free_space_inode(fs_info, block_group, path);
3388         if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3389                 ret = PTR_ERR(inode);
3390                 btrfs_release_path(path);
3391                 goto out;
3392         }
3393
3394         if (IS_ERR(inode)) {
3395                 BUG_ON(retries);
3396                 retries++;
3397
3398                 if (block_group->ro)
3399                         goto out_free;
3400
3401                 ret = create_free_space_inode(fs_info, trans, block_group,
3402                                               path);
3403                 if (ret)
3404                         goto out_free;
3405                 goto again;
3406         }
3407
3408         /* We've already setup this transaction, go ahead and exit */
3409         if (block_group->cache_generation == trans->transid &&
3410             i_size_read(inode)) {
3411                 dcs = BTRFS_DC_SETUP;
3412                 goto out_put;
3413         }
3414
3415         /*
3416          * We want to set the generation to 0, that way if anything goes wrong
3417          * from here on out we know not to trust this cache when we load up next
3418          * time.
3419          */
3420         BTRFS_I(inode)->generation = 0;
3421         ret = btrfs_update_inode(trans, root, inode);
3422         if (ret) {
3423                 /*
3424                  * So theoretically we could recover from this, simply set the
3425                  * super cache generation to 0 so we know to invalidate the
3426                  * cache, but then we'd have to keep track of the block groups
3427                  * that fail this way so we know we _have_ to reset this cache
3428                  * before the next commit or risk reading stale cache.  So to
3429                  * limit our exposure to horrible edge cases lets just abort the
3430                  * transaction, this only happens in really bad situations
3431                  * anyway.
3432                  */
3433                 btrfs_abort_transaction(trans, ret);
3434                 goto out_put;
3435         }
3436         WARN_ON(ret);
3437
3438         if (i_size_read(inode) > 0) {
3439                 ret = btrfs_check_trunc_cache_free_space(fs_info,
3440                                         &fs_info->global_block_rsv);
3441                 if (ret)
3442                         goto out_put;
3443
3444                 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3445                 if (ret)
3446                         goto out_put;
3447         }
3448
3449         spin_lock(&block_group->lock);
3450         if (block_group->cached != BTRFS_CACHE_FINISHED ||
3451             !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3452                 /*
3453                  * don't bother trying to write stuff out _if_
3454                  * a) we're not cached,
3455                  * b) we're with nospace_cache mount option,
3456                  * c) we're with v2 space_cache (FREE_SPACE_TREE).
3457                  */
3458                 dcs = BTRFS_DC_WRITTEN;
3459                 spin_unlock(&block_group->lock);
3460                 goto out_put;
3461         }
3462         spin_unlock(&block_group->lock);
3463
3464         /*
3465          * We hit an ENOSPC when setting up the cache in this transaction, just
3466          * skip doing the setup, we've already cleared the cache so we're safe.
3467          */
3468         if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3469                 ret = -ENOSPC;
3470                 goto out_put;
3471         }
3472
3473         /*
3474          * Try to preallocate enough space based on how big the block group is.
3475          * Keep in mind this has to include any pinned space which could end up
3476          * taking up quite a bit since it's not folded into the other space
3477          * cache.
3478          */
3479         num_pages = div_u64(block_group->key.offset, SZ_256M);
3480         if (!num_pages)
3481                 num_pages = 1;
3482
3483         num_pages *= 16;
3484         num_pages *= PAGE_SIZE;
3485
3486         ret = btrfs_check_data_free_space(inode, 0, num_pages);
3487         if (ret)
3488                 goto out_put;
3489
3490         ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3491                                               num_pages, num_pages,
3492                                               &alloc_hint);
3493         /*
3494          * Our cache requires contiguous chunks so that we don't modify a bunch
3495          * of metadata or split extents when writing the cache out, which means
3496          * we can enospc if we are heavily fragmented in addition to just normal
3497          * out of space conditions.  So if we hit this just skip setting up any
3498          * other block groups for this transaction, maybe we'll unpin enough
3499          * space the next time around.
3500          */
3501         if (!ret)
3502                 dcs = BTRFS_DC_SETUP;
3503         else if (ret == -ENOSPC)
3504                 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3505
3506 out_put:
3507         iput(inode);
3508 out_free:
3509         btrfs_release_path(path);
3510 out:
3511         spin_lock(&block_group->lock);
3512         if (!ret && dcs == BTRFS_DC_SETUP)
3513                 block_group->cache_generation = trans->transid;
3514         block_group->disk_cache_state = dcs;
3515         spin_unlock(&block_group->lock);
3516
3517         return ret;
3518 }
3519
3520 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3521                             struct btrfs_fs_info *fs_info)
3522 {
3523         struct btrfs_block_group_cache *cache, *tmp;
3524         struct btrfs_transaction *cur_trans = trans->transaction;
3525         struct btrfs_path *path;
3526
3527         if (list_empty(&cur_trans->dirty_bgs) ||
3528             !btrfs_test_opt(fs_info, SPACE_CACHE))
3529                 return 0;
3530
3531         path = btrfs_alloc_path();
3532         if (!path)
3533                 return -ENOMEM;
3534
3535         /* Could add new block groups, use _safe just in case */
3536         list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3537                                  dirty_list) {
3538                 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3539                         cache_save_setup(cache, trans, path);
3540         }
3541
3542         btrfs_free_path(path);
3543         return 0;
3544 }
3545
3546 /*
3547  * transaction commit does final block group cache writeback during a
3548  * critical section where nothing is allowed to change the FS.  This is
3549  * required in order for the cache to actually match the block group,
3550  * but can introduce a lot of latency into the commit.
3551  *
3552  * So, btrfs_start_dirty_block_groups is here to kick off block group
3553  * cache IO.  There's a chance we'll have to redo some of it if the
3554  * block group changes again during the commit, but it greatly reduces
3555  * the commit latency by getting rid of the easy block groups while
3556  * we're still allowing others to join the commit.
3557  */
3558 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3559                                    struct btrfs_fs_info *fs_info)
3560 {
3561         struct btrfs_block_group_cache *cache;
3562         struct btrfs_transaction *cur_trans = trans->transaction;
3563         int ret = 0;
3564         int should_put;
3565         struct btrfs_path *path = NULL;
3566         LIST_HEAD(dirty);
3567         struct list_head *io = &cur_trans->io_bgs;
3568         int num_started = 0;
3569         int loops = 0;
3570
3571         spin_lock(&cur_trans->dirty_bgs_lock);
3572         if (list_empty(&cur_trans->dirty_bgs)) {
3573                 spin_unlock(&cur_trans->dirty_bgs_lock);
3574                 return 0;
3575         }
3576         list_splice_init(&cur_trans->dirty_bgs, &dirty);
3577         spin_unlock(&cur_trans->dirty_bgs_lock);
3578
3579 again:
3580         /*
3581          * make sure all the block groups on our dirty list actually
3582          * exist
3583          */
3584         btrfs_create_pending_block_groups(trans, fs_info);
3585
3586         if (!path) {
3587                 path = btrfs_alloc_path();
3588                 if (!path)
3589                         return -ENOMEM;
3590         }
3591
3592         /*
3593          * cache_write_mutex is here only to save us from balance or automatic
3594          * removal of empty block groups deleting this block group while we are
3595          * writing out the cache
3596          */
3597         mutex_lock(&trans->transaction->cache_write_mutex);
3598         while (!list_empty(&dirty)) {
3599                 cache = list_first_entry(&dirty,
3600                                          struct btrfs_block_group_cache,
3601                                          dirty_list);
3602                 /*
3603                  * this can happen if something re-dirties a block
3604                  * group that is already under IO.  Just wait for it to
3605                  * finish and then do it all again
3606                  */
3607                 if (!list_empty(&cache->io_list)) {
3608                         list_del_init(&cache->io_list);
3609                         btrfs_wait_cache_io(trans, cache, path);
3610                         btrfs_put_block_group(cache);
3611                 }
3612
3613
3614                 /*
3615                  * btrfs_wait_cache_io uses the cache->dirty_list to decide
3616                  * if it should update the cache_state.  Don't delete
3617                  * until after we wait.
3618                  *
3619                  * Since we're not running in the commit critical section
3620                  * we need the dirty_bgs_lock to protect from update_block_group
3621                  */
3622                 spin_lock(&cur_trans->dirty_bgs_lock);
3623                 list_del_init(&cache->dirty_list);
3624                 spin_unlock(&cur_trans->dirty_bgs_lock);
3625
3626                 should_put = 1;
3627
3628                 cache_save_setup(cache, trans, path);
3629
3630                 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3631                         cache->io_ctl.inode = NULL;
3632                         ret = btrfs_write_out_cache(fs_info, trans,
3633                                                     cache, path);
3634                         if (ret == 0 && cache->io_ctl.inode) {
3635                                 num_started++;
3636                                 should_put = 0;
3637
3638                                 /*
3639                                  * the cache_write_mutex is protecting
3640                                  * the io_list
3641                                  */
3642                                 list_add_tail(&cache->io_list, io);
3643                         } else {
3644                                 /*
3645                                  * if we failed to write the cache, the
3646                                  * generation will be bad and life goes on
3647                                  */
3648                                 ret = 0;
3649                         }
3650                 }
3651                 if (!ret) {
3652                         ret = write_one_cache_group(trans, fs_info,
3653                                                     path, cache);
3654                         /*
3655                          * Our block group might still be attached to the list
3656                          * of new block groups in the transaction handle of some
3657                          * other task (struct btrfs_trans_handle->new_bgs). This
3658                          * means its block group item isn't yet in the extent
3659                          * tree. If this happens ignore the error, as we will
3660                          * try again later in the critical section of the
3661                          * transaction commit.
3662                          */
3663                         if (ret == -ENOENT) {
3664                                 ret = 0;
3665                                 spin_lock(&cur_trans->dirty_bgs_lock);
3666                                 if (list_empty(&cache->dirty_list)) {
3667                                         list_add_tail(&cache->dirty_list,
3668                                                       &cur_trans->dirty_bgs);
3669                                         btrfs_get_block_group(cache);
3670                                 }
3671                                 spin_unlock(&cur_trans->dirty_bgs_lock);
3672                         } else if (ret) {
3673                                 btrfs_abort_transaction(trans, ret);
3674                         }
3675                 }
3676
3677                 /* if its not on the io list, we need to put the block group */
3678                 if (should_put)
3679                         btrfs_put_block_group(cache);
3680
3681                 if (ret)
3682                         break;
3683
3684                 /*
3685                  * Avoid blocking other tasks for too long. It might even save
3686                  * us from writing caches for block groups that are going to be
3687                  * removed.
3688                  */
3689                 mutex_unlock(&trans->transaction->cache_write_mutex);
3690                 mutex_lock(&trans->transaction->cache_write_mutex);
3691         }
3692         mutex_unlock(&trans->transaction->cache_write_mutex);
3693
3694         /*
3695          * go through delayed refs for all the stuff we've just kicked off
3696          * and then loop back (just once)
3697          */
3698         ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3699         if (!ret && loops == 0) {
3700                 loops++;
3701                 spin_lock(&cur_trans->dirty_bgs_lock);
3702                 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3703                 /*
3704                  * dirty_bgs_lock protects us from concurrent block group
3705                  * deletes too (not just cache_write_mutex).
3706                  */
3707                 if (!list_empty(&dirty)) {
3708                         spin_unlock(&cur_trans->dirty_bgs_lock);
3709                         goto again;
3710                 }
3711                 spin_unlock(&cur_trans->dirty_bgs_lock);
3712         } else if (ret < 0) {
3713                 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3714         }
3715
3716         btrfs_free_path(path);
3717         return ret;
3718 }
3719
3720 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3721                                    struct btrfs_fs_info *fs_info)
3722 {
3723         struct btrfs_block_group_cache *cache;
3724         struct btrfs_transaction *cur_trans = trans->transaction;
3725         int ret = 0;
3726         int should_put;
3727         struct btrfs_path *path;
3728         struct list_head *io = &cur_trans->io_bgs;
3729         int num_started = 0;
3730
3731         path = btrfs_alloc_path();
3732         if (!path)
3733                 return -ENOMEM;
3734
3735         /*
3736          * Even though we are in the critical section of the transaction commit,
3737          * we can still have concurrent tasks adding elements to this
3738          * transaction's list of dirty block groups. These tasks correspond to
3739          * endio free space workers started when writeback finishes for a
3740          * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3741          * allocate new block groups as a result of COWing nodes of the root
3742          * tree when updating the free space inode. The writeback for the space
3743          * caches is triggered by an earlier call to
3744          * btrfs_start_dirty_block_groups() and iterations of the following
3745          * loop.
3746          * Also we want to do the cache_save_setup first and then run the
3747          * delayed refs to make sure we have the best chance at doing this all
3748          * in one shot.
3749          */
3750         spin_lock(&cur_trans->dirty_bgs_lock);
3751         while (!list_empty(&cur_trans->dirty_bgs)) {
3752                 cache = list_first_entry(&cur_trans->dirty_bgs,
3753                                          struct btrfs_block_group_cache,
3754                                          dirty_list);
3755
3756                 /*
3757                  * this can happen if cache_save_setup re-dirties a block
3758                  * group that is already under IO.  Just wait for it to
3759                  * finish and then do it all again
3760                  */
3761                 if (!list_empty(&cache->io_list)) {
3762                         spin_unlock(&cur_trans->dirty_bgs_lock);
3763                         list_del_init(&cache->io_list);
3764                         btrfs_wait_cache_io(trans, cache, path);
3765                         btrfs_put_block_group(cache);
3766                         spin_lock(&cur_trans->dirty_bgs_lock);
3767                 }
3768
3769                 /*
3770                  * don't remove from the dirty list until after we've waited
3771                  * on any pending IO
3772                  */
3773                 list_del_init(&cache->dirty_list);
3774                 spin_unlock(&cur_trans->dirty_bgs_lock);
3775                 should_put = 1;
3776
3777                 cache_save_setup(cache, trans, path);
3778
3779                 if (!ret)
3780                         ret = btrfs_run_delayed_refs(trans, fs_info,
3781                                                      (unsigned long) -1);
3782
3783                 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3784                         cache->io_ctl.inode = NULL;
3785                         ret = btrfs_write_out_cache(fs_info, trans,
3786                                                     cache, path);
3787                         if (ret == 0 && cache->io_ctl.inode) {
3788                                 num_started++;
3789                                 should_put = 0;
3790                                 list_add_tail(&cache->io_list, io);
3791                         } else {
3792                                 /*
3793                                  * if we failed to write the cache, the
3794                                  * generation will be bad and life goes on
3795                                  */
3796                                 ret = 0;
3797                         }
3798                 }
3799                 if (!ret) {
3800                         ret = write_one_cache_group(trans, fs_info,
3801                                                     path, cache);
3802                         /*
3803                          * One of the free space endio workers might have
3804                          * created a new block group while updating a free space
3805                          * cache's inode (at inode.c:btrfs_finish_ordered_io())
3806                          * and hasn't released its transaction handle yet, in
3807                          * which case the new block group is still attached to
3808                          * its transaction handle and its creation has not
3809                          * finished yet (no block group item in the extent tree
3810                          * yet, etc). If this is the case, wait for all free
3811                          * space endio workers to finish and retry. This is a
3812                          * a very rare case so no need for a more efficient and
3813                          * complex approach.
3814                          */
3815                         if (ret == -ENOENT) {
3816                                 wait_event(cur_trans->writer_wait,
3817                                    atomic_read(&cur_trans->num_writers) == 1);
3818                                 ret = write_one_cache_group(trans, fs_info,
3819                                                             path, cache);
3820                         }
3821                         if (ret)
3822                                 btrfs_abort_transaction(trans, ret);
3823                 }
3824
3825                 /* if its not on the io list, we need to put the block group */
3826                 if (should_put)
3827                         btrfs_put_block_group(cache);
3828                 spin_lock(&cur_trans->dirty_bgs_lock);
3829         }
3830         spin_unlock(&cur_trans->dirty_bgs_lock);
3831
3832         while (!list_empty(io)) {
3833                 cache = list_first_entry(io, struct btrfs_block_group_cache,
3834                                          io_list);
3835                 list_del_init(&cache->io_list);
3836                 btrfs_wait_cache_io(trans, cache, path);
3837                 btrfs_put_block_group(cache);
3838         }
3839
3840         btrfs_free_path(path);
3841         return ret;
3842 }
3843
3844 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3845 {
3846         struct btrfs_block_group_cache *block_group;
3847         int readonly = 0;
3848
3849         block_group = btrfs_lookup_block_group(fs_info, bytenr);
3850         if (!block_group || block_group->ro)
3851                 readonly = 1;
3852         if (block_group)
3853                 btrfs_put_block_group(block_group);
3854         return readonly;
3855 }
3856
3857 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3858 {
3859         struct btrfs_block_group_cache *bg;
3860         bool ret = true;
3861
3862         bg = btrfs_lookup_block_group(fs_info, bytenr);
3863         if (!bg)
3864                 return false;
3865
3866         spin_lock(&bg->lock);
3867         if (bg->ro)
3868                 ret = false;
3869         else
3870                 atomic_inc(&bg->nocow_writers);
3871         spin_unlock(&bg->lock);
3872
3873         /* no put on block group, done by btrfs_dec_nocow_writers */
3874         if (!ret)
3875                 btrfs_put_block_group(bg);
3876
3877         return ret;
3878
3879 }
3880
3881 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3882 {
3883         struct btrfs_block_group_cache *bg;
3884
3885         bg = btrfs_lookup_block_group(fs_info, bytenr);
3886         ASSERT(bg);
3887         if (atomic_dec_and_test(&bg->nocow_writers))
3888                 wake_up_atomic_t(&bg->nocow_writers);
3889         /*
3890          * Once for our lookup and once for the lookup done by a previous call
3891          * to btrfs_inc_nocow_writers()
3892          */
3893         btrfs_put_block_group(bg);
3894         btrfs_put_block_group(bg);
3895 }
3896
3897 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3898 {
3899         schedule();
3900         return 0;
3901 }
3902
3903 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3904 {
3905         wait_on_atomic_t(&bg->nocow_writers,
3906                          btrfs_wait_nocow_writers_atomic_t,
3907                          TASK_UNINTERRUPTIBLE);
3908 }
3909
3910 static const char *alloc_name(u64 flags)
3911 {
3912         switch (flags) {
3913         case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3914                 return "mixed";
3915         case BTRFS_BLOCK_GROUP_METADATA:
3916                 return "metadata";
3917         case BTRFS_BLOCK_GROUP_DATA:
3918                 return "data";
3919         case BTRFS_BLOCK_GROUP_SYSTEM:
3920                 return "system";
3921         default:
3922                 WARN_ON(1);
3923                 return "invalid-combination";
3924         };
3925 }
3926
3927 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3928                              u64 total_bytes, u64 bytes_used,
3929                              u64 bytes_readonly,
3930                              struct btrfs_space_info **space_info)
3931 {
3932         struct btrfs_space_info *found;
3933         int i;
3934         int factor;
3935         int ret;
3936
3937         if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3938                      BTRFS_BLOCK_GROUP_RAID10))
3939                 factor = 2;
3940         else
3941                 factor = 1;
3942
3943         found = __find_space_info(info, flags);
3944         if (found) {
3945                 spin_lock(&found->lock);
3946                 found->total_bytes += total_bytes;
3947                 found->disk_total += total_bytes * factor;
3948                 found->bytes_used += bytes_used;
3949                 found->disk_used += bytes_used * factor;
3950                 found->bytes_readonly += bytes_readonly;
3951                 if (total_bytes > 0)
3952                         found->full = 0;
3953                 space_info_add_new_bytes(info, found, total_bytes -
3954                                          bytes_used - bytes_readonly);
3955                 spin_unlock(&found->lock);
3956                 *space_info = found;
3957                 return 0;
3958         }
3959         found = kzalloc(sizeof(*found), GFP_NOFS);
3960         if (!found)
3961                 return -ENOMEM;
3962
3963         ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3964         if (ret) {
3965                 kfree(found);
3966                 return ret;
3967         }
3968
3969         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3970                 INIT_LIST_HEAD(&found->block_groups[i]);
3971         init_rwsem(&found->groups_sem);
3972         spin_lock_init(&found->lock);
3973         found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3974         found->total_bytes = total_bytes;
3975         found->disk_total = total_bytes * factor;
3976         found->bytes_used = bytes_used;
3977         found->disk_used = bytes_used * factor;
3978         found->bytes_pinned = 0;
3979         found->bytes_reserved = 0;
3980         found->bytes_readonly = bytes_readonly;
3981         found->bytes_may_use = 0;
3982         found->full = 0;
3983         found->max_extent_size = 0;
3984         found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3985         found->chunk_alloc = 0;
3986         found->flush = 0;
3987         init_waitqueue_head(&found->wait);
3988         INIT_LIST_HEAD(&found->ro_bgs);
3989         INIT_LIST_HEAD(&found->tickets);
3990         INIT_LIST_HEAD(&found->priority_tickets);
3991
3992         ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3993                                     info->space_info_kobj, "%s",
3994                                     alloc_name(found->flags));
3995         if (ret) {
3996                 kfree(found);
3997                 return ret;
3998         }
3999
4000         *space_info = found;
4001         list_add_rcu(&found->list, &info->space_info);
4002         if (flags & BTRFS_BLOCK_GROUP_DATA)
4003                 info->data_sinfo = found;
4004
4005         return ret;
4006 }
4007
4008 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4009 {
4010         u64 extra_flags = chunk_to_extended(flags) &
4011                                 BTRFS_EXTENDED_PROFILE_MASK;
4012
4013         write_seqlock(&fs_info->profiles_lock);
4014         if (flags & BTRFS_BLOCK_GROUP_DATA)
4015                 fs_info->avail_data_alloc_bits |= extra_flags;
4016         if (flags & BTRFS_BLOCK_GROUP_METADATA)
4017                 fs_info->avail_metadata_alloc_bits |= extra_flags;
4018         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4019                 fs_info->avail_system_alloc_bits |= extra_flags;
4020         write_sequnlock(&fs_info->profiles_lock);
4021 }
4022
4023 /*
4024  * returns target flags in extended format or 0 if restripe for this
4025  * chunk_type is not in progress
4026  *
4027  * should be called with either volume_mutex or balance_lock held
4028  */
4029 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4030 {
4031         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4032         u64 target = 0;
4033
4034         if (!bctl)
4035                 return 0;
4036
4037         if (flags & BTRFS_BLOCK_GROUP_DATA &&
4038             bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4039                 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4040         } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4041                    bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4042                 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4043         } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4044                    bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4045                 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4046         }
4047
4048         return target;
4049 }
4050
4051 /*
4052  * @flags: available profiles in extended format (see ctree.h)
4053  *
4054  * Returns reduced profile in chunk format.  If profile changing is in
4055  * progress (either running or paused) picks the target profile (if it's
4056  * already available), otherwise falls back to plain reducing.
4057  */
4058 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4059 {
4060         u64 num_devices = fs_info->fs_devices->rw_devices;
4061         u64 target;
4062         u64 raid_type;
4063         u64 allowed = 0;
4064
4065         /*
4066          * see if restripe for this chunk_type is in progress, if so
4067          * try to reduce to the target profile
4068          */
4069         spin_lock(&fs_info->balance_lock);
4070         target = get_restripe_target(fs_info, flags);
4071         if (target) {
4072                 /* pick target profile only if it's already available */
4073                 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4074                         spin_unlock(&fs_info->balance_lock);
4075                         return extended_to_chunk(target);
4076                 }
4077         }
4078         spin_unlock(&fs_info->balance_lock);
4079
4080         /* First, mask out the RAID levels which aren't possible */
4081         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4082                 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4083                         allowed |= btrfs_raid_group[raid_type];
4084         }
4085         allowed &= flags;
4086
4087         if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4088                 allowed = BTRFS_BLOCK_GROUP_RAID6;
4089         else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4090                 allowed = BTRFS_BLOCK_GROUP_RAID5;
4091         else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4092                 allowed = BTRFS_BLOCK_GROUP_RAID10;
4093         else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4094                 allowed = BTRFS_BLOCK_GROUP_RAID1;
4095         else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4096                 allowed = BTRFS_BLOCK_GROUP_RAID0;
4097
4098         flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4099
4100         return extended_to_chunk(flags | allowed);
4101 }
4102
4103 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4104 {
4105         unsigned seq;
4106         u64 flags;
4107
4108         do {
4109                 flags = orig_flags;
4110                 seq = read_seqbegin(&fs_info->profiles_lock);
4111
4112                 if (flags & BTRFS_BLOCK_GROUP_DATA)
4113                         flags |= fs_info->avail_data_alloc_bits;
4114                 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4115                         flags |= fs_info->avail_system_alloc_bits;
4116                 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4117                         flags |= fs_info->avail_metadata_alloc_bits;
4118         } while (read_seqretry(&fs_info->profiles_lock, seq));
4119
4120         return btrfs_reduce_alloc_profile(fs_info, flags);
4121 }
4122
4123 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4124 {
4125         struct btrfs_fs_info *fs_info = root->fs_info;
4126         u64 flags;
4127         u64 ret;
4128
4129         if (data)
4130                 flags = BTRFS_BLOCK_GROUP_DATA;
4131         else if (root == fs_info->chunk_root)
4132                 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4133         else
4134                 flags = BTRFS_BLOCK_GROUP_METADATA;
4135
4136         ret = get_alloc_profile(fs_info, flags);
4137         return ret;
4138 }
4139
4140 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4141                                  bool may_use_included)
4142 {
4143         ASSERT(s_info);
4144         return s_info->bytes_used + s_info->bytes_reserved +
4145                 s_info->bytes_pinned + s_info->bytes_readonly +
4146                 (may_use_included ? s_info->bytes_may_use : 0);
4147 }
4148
4149 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4150 {
4151         struct btrfs_space_info *data_sinfo;
4152         struct btrfs_root *root = inode->root;
4153         struct btrfs_fs_info *fs_info = root->fs_info;
4154         u64 used;
4155         int ret = 0;
4156         int need_commit = 2;
4157         int have_pinned_space;
4158
4159         /* make sure bytes are sectorsize aligned */
4160         bytes = ALIGN(bytes, fs_info->sectorsize);
4161
4162         if (btrfs_is_free_space_inode(inode)) {
4163                 need_commit = 0;
4164                 ASSERT(current->journal_info);
4165         }
4166
4167         data_sinfo = fs_info->data_sinfo;
4168         if (!data_sinfo)
4169                 goto alloc;
4170
4171 again:
4172         /* make sure we have enough space to handle the data first */
4173         spin_lock(&data_sinfo->lock);
4174         used = btrfs_space_info_used(data_sinfo, true);
4175
4176         if (used + bytes > data_sinfo->total_bytes) {
4177                 struct btrfs_trans_handle *trans;
4178
4179                 /*
4180                  * if we don't have enough free bytes in this space then we need
4181                  * to alloc a new chunk.
4182                  */
4183                 if (!data_sinfo->full) {
4184                         u64 alloc_target;
4185
4186                         data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4187                         spin_unlock(&data_sinfo->lock);
4188 alloc:
4189                         alloc_target = btrfs_get_alloc_profile(root, 1);
4190                         /*
4191                          * It is ugly that we don't call nolock join
4192                          * transaction for the free space inode case here.
4193                          * But it is safe because we only do the data space
4194                          * reservation for the free space cache in the
4195                          * transaction context, the common join transaction
4196                          * just increase the counter of the current transaction
4197                          * handler, doesn't try to acquire the trans_lock of
4198                          * the fs.
4199                          */
4200                         trans = btrfs_join_transaction(root);
4201                         if (IS_ERR(trans))
4202                                 return PTR_ERR(trans);
4203
4204                         ret = do_chunk_alloc(trans, fs_info, alloc_target,
4205                                              CHUNK_ALLOC_NO_FORCE);
4206                         btrfs_end_transaction(trans);
4207                         if (ret < 0) {
4208                                 if (ret != -ENOSPC)
4209                                         return ret;
4210                                 else {
4211                                         have_pinned_space = 1;
4212                                         goto commit_trans;
4213                                 }
4214                         }
4215
4216                         if (!data_sinfo)
4217                                 data_sinfo = fs_info->data_sinfo;
4218
4219                         goto again;
4220                 }
4221
4222                 /*
4223                  * If we don't have enough pinned space to deal with this
4224                  * allocation, and no removed chunk in current transaction,
4225                  * don't bother committing the transaction.
4226                  */
4227                 have_pinned_space = percpu_counter_compare(
4228                         &data_sinfo->total_bytes_pinned,
4229                         used + bytes - data_sinfo->total_bytes);
4230                 spin_unlock(&data_sinfo->lock);
4231
4232                 /* commit the current transaction and try again */
4233 commit_trans:
4234                 if (need_commit &&
4235                     !atomic_read(&fs_info->open_ioctl_trans)) {
4236                         need_commit--;
4237
4238                         if (need_commit > 0) {
4239                                 btrfs_start_delalloc_roots(fs_info, 0, -1);
4240                                 btrfs_wait_ordered_roots(fs_info, -1, 0,
4241                                                          (u64)-1);
4242                         }
4243
4244                         trans = btrfs_join_transaction(root);
4245                         if (IS_ERR(trans))
4246                                 return PTR_ERR(trans);
4247                         if (have_pinned_space >= 0 ||
4248                             test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4249                                      &trans->transaction->flags) ||
4250                             need_commit > 0) {
4251                                 ret = btrfs_commit_transaction(trans);
4252                                 if (ret)
4253                                         return ret;
4254                                 /*
4255                                  * The cleaner kthread might still be doing iput
4256                                  * operations. Wait for it to finish so that
4257                                  * more space is released.
4258                                  */
4259                                 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4260                                 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4261                                 goto again;
4262                         } else {
4263                                 btrfs_end_transaction(trans);
4264                         }
4265                 }
4266
4267                 trace_btrfs_space_reservation(fs_info,
4268                                               "space_info:enospc",
4269                                               data_sinfo->flags, bytes, 1);
4270                 return -ENOSPC;
4271         }
4272         data_sinfo->bytes_may_use += bytes;
4273         trace_btrfs_space_reservation(fs_info, "space_info",
4274                                       data_sinfo->flags, bytes, 1);
4275         spin_unlock(&data_sinfo->lock);
4276
4277         return ret;
4278 }
4279
4280 /*
4281  * New check_data_free_space() with ability for precious data reservation
4282  * Will replace old btrfs_check_data_free_space(), but for patch split,
4283  * add a new function first and then replace it.
4284  */
4285 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4286 {
4287         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4288         int ret;
4289
4290         /* align the range */
4291         len = round_up(start + len, fs_info->sectorsize) -
4292               round_down(start, fs_info->sectorsize);
4293         start = round_down(start, fs_info->sectorsize);
4294
4295         ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4296         if (ret < 0)
4297                 return ret;
4298
4299         /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4300         ret = btrfs_qgroup_reserve_data(inode, start, len);
4301         if (ret)
4302                 btrfs_free_reserved_data_space_noquota(inode, start, len);
4303         return ret;
4304 }
4305
4306 /*
4307  * Called if we need to clear a data reservation for this inode
4308  * Normally in a error case.
4309  *
4310  * This one will *NOT* use accurate qgroup reserved space API, just for case
4311  * which we can't sleep and is sure it won't affect qgroup reserved space.
4312  * Like clear_bit_hook().
4313  */
4314 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4315                                             u64 len)
4316 {
4317         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4318         struct btrfs_space_info *data_sinfo;
4319
4320         /* Make sure the range is aligned to sectorsize */
4321         len = round_up(start + len, fs_info->sectorsize) -
4322               round_down(start, fs_info->sectorsize);
4323         start = round_down(start, fs_info->sectorsize);
4324
4325         data_sinfo = fs_info->data_sinfo;
4326         spin_lock(&data_sinfo->lock);
4327         if (WARN_ON(data_sinfo->bytes_may_use < len))
4328                 data_sinfo->bytes_may_use = 0;
4329         else
4330                 data_sinfo->bytes_may_use -= len;
4331         trace_btrfs_space_reservation(fs_info, "space_info",
4332                                       data_sinfo->flags, len, 0);
4333         spin_unlock(&data_sinfo->lock);
4334 }
4335
4336 /*
4337  * Called if we need to clear a data reservation for this inode
4338  * Normally in a error case.
4339  *
4340  * This one will handle the per-inode data rsv map for accurate reserved
4341  * space framework.
4342  */
4343 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4344 {
4345         struct btrfs_root *root = BTRFS_I(inode)->root;
4346
4347         /* Make sure the range is aligned to sectorsize */
4348         len = round_up(start + len, root->fs_info->sectorsize) -
4349               round_down(start, root->fs_info->sectorsize);
4350         start = round_down(start, root->fs_info->sectorsize);
4351
4352         btrfs_free_reserved_data_space_noquota(inode, start, len);
4353         btrfs_qgroup_free_data(inode, start, len);
4354 }
4355
4356 static void force_metadata_allocation(struct btrfs_fs_info *info)
4357 {
4358         struct list_head *head = &info->space_info;
4359         struct btrfs_space_info *found;
4360
4361         rcu_read_lock();
4362         list_for_each_entry_rcu(found, head, list) {
4363                 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4364                         found->force_alloc = CHUNK_ALLOC_FORCE;
4365         }
4366         rcu_read_unlock();
4367 }
4368
4369 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4370 {
4371         return (global->size << 1);
4372 }
4373
4374 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4375                               struct btrfs_space_info *sinfo, int force)
4376 {
4377         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4378         u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4379         u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4380         u64 thresh;
4381
4382         if (force == CHUNK_ALLOC_FORCE)
4383                 return 1;
4384
4385         /*
4386          * We need to take into account the global rsv because for all intents
4387          * and purposes it's used space.  Don't worry about locking the
4388          * global_rsv, it doesn't change except when the transaction commits.
4389          */
4390         if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4391                 num_allocated += calc_global_rsv_need_space(global_rsv);
4392
4393         /*
4394          * in limited mode, we want to have some free space up to
4395          * about 1% of the FS size.
4396          */
4397         if (force == CHUNK_ALLOC_LIMITED) {
4398                 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4399                 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4400
4401                 if (num_bytes - num_allocated < thresh)
4402                         return 1;
4403         }
4404
4405         if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4406                 return 0;
4407         return 1;
4408 }
4409
4410 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4411 {
4412         u64 num_dev;
4413
4414         if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4415                     BTRFS_BLOCK_GROUP_RAID0 |
4416                     BTRFS_BLOCK_GROUP_RAID5 |
4417                     BTRFS_BLOCK_GROUP_RAID6))
4418                 num_dev = fs_info->fs_devices->rw_devices;
4419         else if (type & BTRFS_BLOCK_GROUP_RAID1)
4420                 num_dev = 2;
4421         else
4422                 num_dev = 1;    /* DUP or single */
4423
4424         return num_dev;
4425 }
4426
4427 /*
4428  * If @is_allocation is true, reserve space in the system space info necessary
4429  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4430  * removing a chunk.
4431  */
4432 void check_system_chunk(struct btrfs_trans_handle *trans,
4433                         struct btrfs_fs_info *fs_info, u64 type)
4434 {
4435         struct btrfs_space_info *info;
4436         u64 left;
4437         u64 thresh;
4438         int ret = 0;
4439         u64 num_devs;
4440
4441         /*
4442          * Needed because we can end up allocating a system chunk and for an
4443          * atomic and race free space reservation in the chunk block reserve.
4444          */
4445         ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4446
4447         info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4448         spin_lock(&info->lock);
4449         left = info->total_bytes - btrfs_space_info_used(info, true);
4450         spin_unlock(&info->lock);
4451
4452         num_devs = get_profile_num_devs(fs_info, type);
4453
4454         /* num_devs device items to update and 1 chunk item to add or remove */
4455         thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4456                 btrfs_calc_trans_metadata_size(fs_info, 1);
4457
4458         if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4459                 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4460                            left, thresh, type);
4461                 dump_space_info(fs_info, info, 0, 0);
4462         }
4463
4464         if (left < thresh) {
4465                 u64 flags;
4466
4467                 flags = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4468                 /*
4469                  * Ignore failure to create system chunk. We might end up not
4470                  * needing it, as we might not need to COW all nodes/leafs from
4471                  * the paths we visit in the chunk tree (they were already COWed
4472                  * or created in the current transaction for example).
4473                  */
4474                 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4475         }
4476
4477         if (!ret) {
4478                 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4479                                           &fs_info->chunk_block_rsv,
4480                                           thresh, BTRFS_RESERVE_NO_FLUSH);
4481                 if (!ret)
4482                         trans->chunk_bytes_reserved += thresh;
4483         }
4484 }
4485
4486 /*
4487  * If force is CHUNK_ALLOC_FORCE:
4488  *    - return 1 if it successfully allocates a chunk,
4489  *    - return errors including -ENOSPC otherwise.
4490  * If force is NOT CHUNK_ALLOC_FORCE:
4491  *    - return 0 if it doesn't need to allocate a new chunk,
4492  *    - return 1 if it successfully allocates a chunk,
4493  *    - return errors including -ENOSPC otherwise.
4494  */
4495 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4496                           struct btrfs_fs_info *fs_info, u64 flags, int force)
4497 {
4498         struct btrfs_space_info *space_info;
4499         int wait_for_alloc = 0;
4500         int ret = 0;
4501
4502         /* Don't re-enter if we're already allocating a chunk */
4503         if (trans->allocating_chunk)
4504                 return -ENOSPC;
4505
4506         space_info = __find_space_info(fs_info, flags);
4507         if (!space_info) {
4508                 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
4509                 BUG_ON(ret); /* -ENOMEM */
4510         }
4511         BUG_ON(!space_info); /* Logic error */
4512
4513 again:
4514         spin_lock(&space_info->lock);
4515         if (force < space_info->force_alloc)
4516                 force = space_info->force_alloc;
4517         if (space_info->full) {
4518                 if (should_alloc_chunk(fs_info, space_info, force))
4519                         ret = -ENOSPC;
4520                 else
4521                         ret = 0;
4522                 spin_unlock(&space_info->lock);
4523                 return ret;
4524         }
4525
4526         if (!should_alloc_chunk(fs_info, space_info, force)) {
4527                 spin_unlock(&space_info->lock);
4528                 return 0;
4529         } else if (space_info->chunk_alloc) {
4530                 wait_for_alloc = 1;
4531         } else {
4532                 space_info->chunk_alloc = 1;
4533         }
4534
4535         spin_unlock(&space_info->lock);
4536
4537         mutex_lock(&fs_info->chunk_mutex);
4538
4539         /*
4540          * The chunk_mutex is held throughout the entirety of a chunk
4541          * allocation, so once we've acquired the chunk_mutex we know that the
4542          * other guy is done and we need to recheck and see if we should
4543          * allocate.
4544          */
4545         if (wait_for_alloc) {
4546                 mutex_unlock(&fs_info->chunk_mutex);
4547                 wait_for_alloc = 0;
4548                 goto again;
4549         }
4550
4551         trans->allocating_chunk = true;
4552
4553         /*
4554          * If we have mixed data/metadata chunks we want to make sure we keep
4555          * allocating mixed chunks instead of individual chunks.
4556          */
4557         if (btrfs_mixed_space_info(space_info))
4558                 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4559
4560         /*
4561          * if we're doing a data chunk, go ahead and make sure that
4562          * we keep a reasonable number of metadata chunks allocated in the
4563          * FS as well.
4564          */
4565         if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4566                 fs_info->data_chunk_allocations++;
4567                 if (!(fs_info->data_chunk_allocations %
4568                       fs_info->metadata_ratio))
4569                         force_metadata_allocation(fs_info);
4570         }
4571
4572         /*
4573          * Check if we have enough space in SYSTEM chunk because we may need
4574          * to update devices.
4575          */
4576         check_system_chunk(trans, fs_info, flags);
4577
4578         ret = btrfs_alloc_chunk(trans, fs_info, flags);
4579         trans->allocating_chunk = false;
4580
4581         spin_lock(&space_info->lock);
4582         if (ret < 0 && ret != -ENOSPC)
4583                 goto out;
4584         if (ret)
4585                 space_info->full = 1;
4586         else
4587                 ret = 1;
4588
4589         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4590 out:
4591         space_info->chunk_alloc = 0;
4592         spin_unlock(&space_info->lock);
4593         mutex_unlock(&fs_info->chunk_mutex);
4594         /*
4595          * When we allocate a new chunk we reserve space in the chunk block
4596          * reserve to make sure we can COW nodes/leafs in the chunk tree or
4597          * add new nodes/leafs to it if we end up needing to do it when
4598          * inserting the chunk item and updating device items as part of the
4599          * second phase of chunk allocation, performed by
4600          * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4601          * large number of new block groups to create in our transaction
4602          * handle's new_bgs list to avoid exhausting the chunk block reserve
4603          * in extreme cases - like having a single transaction create many new
4604          * block groups when starting to write out the free space caches of all
4605          * the block groups that were made dirty during the lifetime of the
4606          * transaction.
4607          */
4608         if (trans->can_flush_pending_bgs &&
4609             trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4610                 btrfs_create_pending_block_groups(trans, fs_info);
4611                 btrfs_trans_release_chunk_metadata(trans);
4612         }
4613         return ret;
4614 }
4615
4616 static int can_overcommit(struct btrfs_root *root,
4617                           struct btrfs_space_info *space_info, u64 bytes,
4618                           enum btrfs_reserve_flush_enum flush)
4619 {
4620         struct btrfs_fs_info *fs_info = root->fs_info;
4621         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4622         u64 profile;
4623         u64 space_size;
4624         u64 avail;
4625         u64 used;
4626
4627         /* Don't overcommit when in mixed mode. */
4628         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4629                 return 0;
4630
4631         profile = btrfs_get_alloc_profile(root, 0);
4632         used = btrfs_space_info_used(space_info, false);
4633
4634         /*
4635          * We only want to allow over committing if we have lots of actual space
4636          * free, but if we don't have enough space to handle the global reserve
4637          * space then we could end up having a real enospc problem when trying
4638          * to allocate a chunk or some other such important allocation.
4639          */
4640         spin_lock(&global_rsv->lock);
4641         space_size = calc_global_rsv_need_space(global_rsv);
4642         spin_unlock(&global_rsv->lock);
4643         if (used + space_size >= space_info->total_bytes)
4644                 return 0;
4645
4646         used += space_info->bytes_may_use;
4647
4648         spin_lock(&fs_info->free_chunk_lock);
4649         avail = fs_info->free_chunk_space;
4650         spin_unlock(&fs_info->free_chunk_lock);
4651
4652         /*
4653          * If we have dup, raid1 or raid10 then only half of the free
4654          * space is actually useable.  For raid56, the space info used
4655          * doesn't include the parity drive, so we don't have to
4656          * change the math
4657          */
4658         if (profile & (BTRFS_BLOCK_GROUP_DUP |
4659                        BTRFS_BLOCK_GROUP_RAID1 |
4660                        BTRFS_BLOCK_GROUP_RAID10))
4661                 avail >>= 1;
4662
4663         /*
4664          * If we aren't flushing all things, let us overcommit up to
4665          * 1/2th of the space. If we can flush, don't let us overcommit
4666          * too much, let it overcommit up to 1/8 of the space.
4667          */
4668         if (flush == BTRFS_RESERVE_FLUSH_ALL)
4669                 avail >>= 3;
4670         else
4671                 avail >>= 1;
4672
4673         if (used + bytes < space_info->total_bytes + avail)
4674                 return 1;
4675         return 0;
4676 }
4677
4678 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4679                                          unsigned long nr_pages, int nr_items)
4680 {
4681         struct super_block *sb = fs_info->sb;
4682
4683         if (down_read_trylock(&sb->s_umount)) {
4684                 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4685                 up_read(&sb->s_umount);
4686         } else {
4687                 /*
4688                  * We needn't worry the filesystem going from r/w to r/o though
4689                  * we don't acquire ->s_umount mutex, because the filesystem
4690                  * should guarantee the delalloc inodes list be empty after
4691                  * the filesystem is readonly(all dirty pages are written to
4692                  * the disk).
4693                  */
4694                 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4695                 if (!current->journal_info)
4696                         btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4697         }
4698 }
4699
4700 static inline int calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4701                                         u64 to_reclaim)
4702 {
4703         u64 bytes;
4704         int nr;
4705
4706         bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4707         nr = (int)div64_u64(to_reclaim, bytes);
4708         if (!nr)
4709                 nr = 1;
4710         return nr;
4711 }
4712
4713 #define EXTENT_SIZE_PER_ITEM    SZ_256K
4714
4715 /*
4716  * shrink metadata reservation for delalloc
4717  */
4718 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4719                             bool wait_ordered)
4720 {
4721         struct btrfs_fs_info *fs_info = root->fs_info;
4722         struct btrfs_block_rsv *block_rsv;
4723         struct btrfs_space_info *space_info;
4724         struct btrfs_trans_handle *trans;
4725         u64 delalloc_bytes;
4726         u64 max_reclaim;
4727         long time_left;
4728         unsigned long nr_pages;
4729         int loops;
4730         int items;
4731         enum btrfs_reserve_flush_enum flush;
4732
4733         /* Calc the number of the pages we need flush for space reservation */
4734         items = calc_reclaim_items_nr(fs_info, to_reclaim);
4735         to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
4736
4737         trans = (struct btrfs_trans_handle *)current->journal_info;
4738         block_rsv = &fs_info->delalloc_block_rsv;
4739         space_info = block_rsv->space_info;
4740
4741         delalloc_bytes = percpu_counter_sum_positive(
4742                                                 &fs_info->delalloc_bytes);
4743         if (delalloc_bytes == 0) {
4744                 if (trans)
4745                         return;
4746                 if (wait_ordered)
4747                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4748                 return;
4749         }
4750
4751         loops = 0;
4752         while (delalloc_bytes && loops < 3) {
4753                 max_reclaim = min(delalloc_bytes, to_reclaim);
4754                 nr_pages = max_reclaim >> PAGE_SHIFT;
4755                 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4756                 /*
4757                  * We need to wait for the async pages to actually start before
4758                  * we do anything.
4759                  */
4760                 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4761                 if (!max_reclaim)
4762                         goto skip_async;
4763
4764                 if (max_reclaim <= nr_pages)
4765                         max_reclaim = 0;
4766                 else
4767                         max_reclaim -= nr_pages;
4768
4769                 wait_event(fs_info->async_submit_wait,
4770                            atomic_read(&fs_info->async_delalloc_pages) <=
4771                            (int)max_reclaim);
4772 skip_async:
4773                 if (!trans)
4774                         flush = BTRFS_RESERVE_FLUSH_ALL;
4775                 else
4776                         flush = BTRFS_RESERVE_NO_FLUSH;
4777                 spin_lock(&space_info->lock);
4778                 if (can_overcommit(root, space_info, orig, flush)) {
4779                         spin_unlock(&space_info->lock);
4780                         break;
4781                 }
4782                 if (list_empty(&space_info->tickets) &&
4783                     list_empty(&space_info->priority_tickets)) {
4784                         spin_unlock(&space_info->lock);
4785                         break;
4786                 }
4787                 spin_unlock(&space_info->lock);
4788
4789                 loops++;
4790                 if (wait_ordered && !trans) {
4791                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4792                 } else {
4793                         time_left = schedule_timeout_killable(1);
4794                         if (time_left)
4795                                 break;
4796                 }
4797                 delalloc_bytes = percpu_counter_sum_positive(
4798                                                 &fs_info->delalloc_bytes);
4799         }
4800 }
4801
4802 /**
4803  * maybe_commit_transaction - possibly commit the transaction if its ok to
4804  * @root - the root we're allocating for
4805  * @bytes - the number of bytes we want to reserve
4806  * @force - force the commit
4807  *
4808  * This will check to make sure that committing the transaction will actually
4809  * get us somewhere and then commit the transaction if it does.  Otherwise it
4810  * will return -ENOSPC.
4811  */
4812 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4813                                   struct btrfs_space_info *space_info,
4814                                   u64 bytes, int force)
4815 {
4816         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4817         struct btrfs_trans_handle *trans;
4818
4819         trans = (struct btrfs_trans_handle *)current->journal_info;
4820         if (trans)
4821                 return -EAGAIN;
4822
4823         if (force)
4824                 goto commit;
4825
4826         /* See if there is enough pinned space to make this reservation */
4827         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4828                                    bytes) >= 0)
4829                 goto commit;
4830
4831         /*
4832          * See if there is some space in the delayed insertion reservation for
4833          * this reservation.
4834          */
4835         if (space_info != delayed_rsv->space_info)
4836                 return -ENOSPC;
4837
4838         spin_lock(&delayed_rsv->lock);
4839         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4840                                    bytes - delayed_rsv->size) >= 0) {
4841                 spin_unlock(&delayed_rsv->lock);
4842                 return -ENOSPC;
4843         }
4844         spin_unlock(&delayed_rsv->lock);
4845
4846 commit:
4847         trans = btrfs_join_transaction(fs_info->fs_root);
4848         if (IS_ERR(trans))
4849                 return -ENOSPC;
4850
4851         return btrfs_commit_transaction(trans);
4852 }
4853
4854 struct reserve_ticket {
4855         u64 bytes;
4856         int error;
4857         struct list_head list;
4858         wait_queue_head_t wait;
4859 };
4860
4861 static int flush_space(struct btrfs_fs_info *fs_info,
4862                        struct btrfs_space_info *space_info, u64 num_bytes,
4863                        u64 orig_bytes, int state)
4864 {
4865         struct btrfs_root *root = fs_info->fs_root;
4866         struct btrfs_trans_handle *trans;
4867         int nr;
4868         int ret = 0;
4869
4870         switch (state) {
4871         case FLUSH_DELAYED_ITEMS_NR:
4872         case FLUSH_DELAYED_ITEMS:
4873                 if (state == FLUSH_DELAYED_ITEMS_NR)
4874                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4875                 else
4876                         nr = -1;
4877
4878                 trans = btrfs_join_transaction(root);
4879                 if (IS_ERR(trans)) {
4880                         ret = PTR_ERR(trans);
4881                         break;
4882                 }
4883                 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
4884                 btrfs_end_transaction(trans);
4885                 break;
4886         case FLUSH_DELALLOC:
4887         case FLUSH_DELALLOC_WAIT:
4888                 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4889                                 state == FLUSH_DELALLOC_WAIT);
4890                 break;
4891         case ALLOC_CHUNK:
4892                 trans = btrfs_join_transaction(root);
4893                 if (IS_ERR(trans)) {
4894                         ret = PTR_ERR(trans);
4895                         break;
4896                 }
4897                 ret = do_chunk_alloc(trans, fs_info,
4898                                      btrfs_get_alloc_profile(root, 0),
4899                                      CHUNK_ALLOC_NO_FORCE);
4900                 btrfs_end_transaction(trans);
4901                 if (ret > 0 || ret == -ENOSPC)
4902                         ret = 0;
4903                 break;
4904         case COMMIT_TRANS:
4905                 ret = may_commit_transaction(fs_info, space_info,
4906                                              orig_bytes, 0);
4907                 break;
4908         default:
4909                 ret = -ENOSPC;
4910                 break;
4911         }
4912
4913         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes,
4914                                 orig_bytes, state, ret);
4915         return ret;
4916 }
4917
4918 static inline u64
4919 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4920                                  struct btrfs_space_info *space_info)
4921 {
4922         struct reserve_ticket *ticket;
4923         u64 used;
4924         u64 expected;
4925         u64 to_reclaim = 0;
4926
4927         list_for_each_entry(ticket, &space_info->tickets, list)
4928                 to_reclaim += ticket->bytes;
4929         list_for_each_entry(ticket, &space_info->priority_tickets, list)
4930                 to_reclaim += ticket->bytes;
4931         if (to_reclaim)
4932                 return to_reclaim;
4933
4934         to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4935         if (can_overcommit(root, space_info, to_reclaim,
4936                            BTRFS_RESERVE_FLUSH_ALL))
4937                 return 0;
4938
4939         used = space_info->bytes_used + space_info->bytes_reserved +
4940                space_info->bytes_pinned + space_info->bytes_readonly +
4941                space_info->bytes_may_use;
4942         if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4943                 expected = div_factor_fine(space_info->total_bytes, 95);
4944         else
4945                 expected = div_factor_fine(space_info->total_bytes, 90);
4946
4947         if (used > expected)
4948                 to_reclaim = used - expected;
4949         else
4950                 to_reclaim = 0;
4951         to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4952                                      space_info->bytes_reserved);
4953         return to_reclaim;
4954 }
4955
4956 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4957                                         struct btrfs_root *root, u64 used)
4958 {
4959         struct btrfs_fs_info *fs_info = root->fs_info;
4960         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4961
4962         /* If we're just plain full then async reclaim just slows us down. */
4963         if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4964                 return 0;
4965
4966         if (!btrfs_calc_reclaim_metadata_size(root, space_info))
4967                 return 0;
4968
4969         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4970                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4971 }
4972
4973 static void wake_all_tickets(struct list_head *head)
4974 {
4975         struct reserve_ticket *ticket;
4976
4977         while (!list_empty(head)) {
4978                 ticket = list_first_entry(head, struct reserve_ticket, list);
4979                 list_del_init(&ticket->list);
4980                 ticket->error = -ENOSPC;
4981                 wake_up(&ticket->wait);
4982         }
4983 }
4984
4985 /*
4986  * This is for normal flushers, we can wait all goddamned day if we want to.  We
4987  * will loop and continuously try to flush as long as we are making progress.
4988  * We count progress as clearing off tickets each time we have to loop.
4989  */
4990 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4991 {
4992         struct btrfs_fs_info *fs_info;
4993         struct btrfs_space_info *space_info;
4994         u64 to_reclaim;
4995         int flush_state;
4996         int commit_cycles = 0;
4997         u64 last_tickets_id;
4998
4999         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5000         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5001
5002         spin_lock(&space_info->lock);
5003         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5004                                                       space_info);
5005         if (!to_reclaim) {
5006                 space_info->flush = 0;
5007                 spin_unlock(&space_info->lock);
5008                 return;
5009         }
5010         last_tickets_id = space_info->tickets_id;
5011         spin_unlock(&space_info->lock);
5012
5013         flush_state = FLUSH_DELAYED_ITEMS_NR;
5014         do {
5015                 struct reserve_ticket *ticket;
5016                 int ret;
5017
5018                 ret = flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5019                                   flush_state);
5020                 spin_lock(&space_info->lock);
5021                 if (list_empty(&space_info->tickets)) {
5022                         space_info->flush = 0;
5023                         spin_unlock(&space_info->lock);
5024                         return;
5025                 }
5026                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5027                                                               space_info);
5028                 ticket = list_first_entry(&space_info->tickets,
5029                                           struct reserve_ticket, list);
5030                 if (last_tickets_id == space_info->tickets_id) {
5031                         flush_state++;
5032                 } else {
5033                         last_tickets_id = space_info->tickets_id;
5034                         flush_state = FLUSH_DELAYED_ITEMS_NR;
5035                         if (commit_cycles)
5036                                 commit_cycles--;
5037                 }
5038
5039                 if (flush_state > COMMIT_TRANS) {
5040                         commit_cycles++;
5041                         if (commit_cycles > 2) {
5042                                 wake_all_tickets(&space_info->tickets);
5043                                 space_info->flush = 0;
5044                         } else {
5045                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
5046                         }
5047                 }
5048                 spin_unlock(&space_info->lock);
5049         } while (flush_state <= COMMIT_TRANS);
5050 }
5051
5052 void btrfs_init_async_reclaim_work(struct work_struct *work)
5053 {
5054         INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5055 }
5056
5057 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5058                                             struct btrfs_space_info *space_info,
5059                                             struct reserve_ticket *ticket)
5060 {
5061         u64 to_reclaim;
5062         int flush_state = FLUSH_DELAYED_ITEMS_NR;
5063
5064         spin_lock(&space_info->lock);
5065         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5066                                                       space_info);
5067         if (!to_reclaim) {
5068                 spin_unlock(&space_info->lock);
5069                 return;
5070         }
5071         spin_unlock(&space_info->lock);
5072
5073         do {
5074                 flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5075                             flush_state);
5076                 flush_state++;
5077                 spin_lock(&space_info->lock);
5078                 if (ticket->bytes == 0) {
5079                         spin_unlock(&space_info->lock);
5080                         return;
5081                 }
5082                 spin_unlock(&space_info->lock);
5083
5084                 /*
5085                  * Priority flushers can't wait on delalloc without
5086                  * deadlocking.
5087                  */
5088                 if (flush_state == FLUSH_DELALLOC ||
5089                     flush_state == FLUSH_DELALLOC_WAIT)
5090                         flush_state = ALLOC_CHUNK;
5091         } while (flush_state < COMMIT_TRANS);
5092 }
5093
5094 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5095                                struct btrfs_space_info *space_info,
5096                                struct reserve_ticket *ticket, u64 orig_bytes)
5097
5098 {
5099         DEFINE_WAIT(wait);
5100         int ret = 0;
5101
5102         spin_lock(&space_info->lock);
5103         while (ticket->bytes > 0 && ticket->error == 0) {
5104                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5105                 if (ret) {
5106                         ret = -EINTR;
5107                         break;
5108                 }
5109                 spin_unlock(&space_info->lock);
5110
5111                 schedule();
5112
5113                 finish_wait(&ticket->wait, &wait);
5114                 spin_lock(&space_info->lock);
5115         }
5116         if (!ret)
5117                 ret = ticket->error;
5118         if (!list_empty(&ticket->list))
5119                 list_del_init(&ticket->list);
5120         if (ticket->bytes && ticket->bytes < orig_bytes) {
5121                 u64 num_bytes = orig_bytes - ticket->bytes;
5122                 space_info->bytes_may_use -= num_bytes;
5123                 trace_btrfs_space_reservation(fs_info, "space_info",
5124                                               space_info->flags, num_bytes, 0);
5125         }
5126         spin_unlock(&space_info->lock);
5127
5128         return ret;
5129 }
5130
5131 /**
5132  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5133  * @root - the root we're allocating for
5134  * @space_info - the space info we want to allocate from
5135  * @orig_bytes - the number of bytes we want
5136  * @flush - whether or not we can flush to make our reservation
5137  *
5138  * This will reserve orig_bytes number of bytes from the space info associated
5139  * with the block_rsv.  If there is not enough space it will make an attempt to
5140  * flush out space to make room.  It will do this by flushing delalloc if
5141  * possible or committing the transaction.  If flush is 0 then no attempts to
5142  * regain reservations will be made and this will fail if there is not enough
5143  * space already.
5144  */
5145 static int __reserve_metadata_bytes(struct btrfs_root *root,
5146                                     struct btrfs_space_info *space_info,
5147                                     u64 orig_bytes,
5148                                     enum btrfs_reserve_flush_enum flush)
5149 {
5150         struct btrfs_fs_info *fs_info = root->fs_info;
5151         struct reserve_ticket ticket;
5152         u64 used;
5153         int ret = 0;
5154
5155         ASSERT(orig_bytes);
5156         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5157
5158         spin_lock(&space_info->lock);
5159         ret = -ENOSPC;
5160         used = btrfs_space_info_used(space_info, true);
5161
5162         /*
5163          * If we have enough space then hooray, make our reservation and carry
5164          * on.  If not see if we can overcommit, and if we can, hooray carry on.
5165          * If not things get more complicated.
5166          */
5167         if (used + orig_bytes <= space_info->total_bytes) {
5168                 space_info->bytes_may_use += orig_bytes;
5169                 trace_btrfs_space_reservation(fs_info, "space_info",
5170                                               space_info->flags, orig_bytes, 1);
5171                 ret = 0;
5172         } else if (can_overcommit(root, space_info, orig_bytes, flush)) {
5173                 space_info->bytes_may_use += orig_bytes;
5174                 trace_btrfs_space_reservation(fs_info, "space_info",
5175                                               space_info->flags, orig_bytes, 1);
5176                 ret = 0;
5177         }
5178
5179         /*
5180          * If we couldn't make a reservation then setup our reservation ticket
5181          * and kick the async worker if it's not already running.
5182          *
5183          * If we are a priority flusher then we just need to add our ticket to
5184          * the list and we will do our own flushing further down.
5185          */
5186         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5187                 ticket.bytes = orig_bytes;
5188                 ticket.error = 0;
5189                 init_waitqueue_head(&ticket.wait);
5190                 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5191                         list_add_tail(&ticket.list, &space_info->tickets);
5192                         if (!space_info->flush) {
5193                                 space_info->flush = 1;
5194                                 trace_btrfs_trigger_flush(fs_info,
5195                                                           space_info->flags,
5196                                                           orig_bytes, flush,
5197                                                           "enospc");
5198                                 queue_work(system_unbound_wq,
5199                                            &root->fs_info->async_reclaim_work);
5200                         }
5201                 } else {
5202                         list_add_tail(&ticket.list,
5203                                       &space_info->priority_tickets);
5204                 }
5205         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5206                 used += orig_bytes;
5207                 /*
5208                  * We will do the space reservation dance during log replay,
5209                  * which means we won't have fs_info->fs_root set, so don't do
5210                  * the async reclaim as we will panic.
5211                  */
5212                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5213                     need_do_async_reclaim(space_info, root, used) &&
5214                     !work_busy(&fs_info->async_reclaim_work)) {
5215                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
5216                                                   orig_bytes, flush, "preempt");
5217                         queue_work(system_unbound_wq,
5218                                    &fs_info->async_reclaim_work);
5219                 }
5220         }
5221         spin_unlock(&space_info->lock);
5222         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5223                 return ret;
5224
5225         if (flush == BTRFS_RESERVE_FLUSH_ALL)
5226                 return wait_reserve_ticket(fs_info, space_info, &ticket,
5227                                            orig_bytes);
5228
5229         ret = 0;
5230         priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5231         spin_lock(&space_info->lock);
5232         if (ticket.bytes) {
5233                 if (ticket.bytes < orig_bytes) {
5234                         u64 num_bytes = orig_bytes - ticket.bytes;
5235                         space_info->bytes_may_use -= num_bytes;
5236                         trace_btrfs_space_reservation(fs_info, "space_info",
5237                                                       space_info->flags,
5238                                                       num_bytes, 0);
5239
5240                 }
5241                 list_del_init(&ticket.list);
5242                 ret = -ENOSPC;
5243         }
5244         spin_unlock(&space_info->lock);
5245         ASSERT(list_empty(&ticket.list));
5246         return ret;
5247 }
5248
5249 /**
5250  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5251  * @root - the root we're allocating for
5252  * @block_rsv - the block_rsv we're allocating for
5253  * @orig_bytes - the number of bytes we want
5254  * @flush - whether or not we can flush to make our reservation
5255  *
5256  * This will reserve orgi_bytes number of bytes from the space info associated
5257  * with the block_rsv.  If there is not enough space it will make an attempt to
5258  * flush out space to make room.  It will do this by flushing delalloc if
5259  * possible or committing the transaction.  If flush is 0 then no attempts to
5260  * regain reservations will be made and this will fail if there is not enough
5261  * space already.
5262  */
5263 static int reserve_metadata_bytes(struct btrfs_root *root,
5264                                   struct btrfs_block_rsv *block_rsv,
5265                                   u64 orig_bytes,
5266                                   enum btrfs_reserve_flush_enum flush)
5267 {
5268         struct btrfs_fs_info *fs_info = root->fs_info;
5269         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5270         int ret;
5271
5272         ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5273                                        flush);
5274         if (ret == -ENOSPC &&
5275             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5276                 if (block_rsv != global_rsv &&
5277                     !block_rsv_use_bytes(global_rsv, orig_bytes))
5278                         ret = 0;
5279         }
5280         if (ret == -ENOSPC)
5281                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5282                                               block_rsv->space_info->flags,
5283                                               orig_bytes, 1);
5284         return ret;
5285 }
5286
5287 static struct btrfs_block_rsv *get_block_rsv(
5288                                         const struct btrfs_trans_handle *trans,
5289                                         const struct btrfs_root *root)
5290 {
5291         struct btrfs_fs_info *fs_info = root->fs_info;
5292         struct btrfs_block_rsv *block_rsv = NULL;
5293
5294         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5295             (root == fs_info->csum_root && trans->adding_csums) ||
5296             (root == fs_info->uuid_root))
5297                 block_rsv = trans->block_rsv;
5298
5299         if (!block_rsv)
5300                 block_rsv = root->block_rsv;
5301
5302         if (!block_rsv)
5303                 block_rsv = &fs_info->empty_block_rsv;
5304
5305         return block_rsv;
5306 }
5307
5308 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5309                                u64 num_bytes)
5310 {
5311         int ret = -ENOSPC;
5312         spin_lock(&block_rsv->lock);
5313         if (block_rsv->reserved >= num_bytes) {
5314                 block_rsv->reserved -= num_bytes;
5315                 if (block_rsv->reserved < block_rsv->size)
5316                         block_rsv->full = 0;
5317                 ret = 0;
5318         }
5319         spin_unlock(&block_rsv->lock);
5320         return ret;
5321 }
5322
5323 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5324                                 u64 num_bytes, int update_size)
5325 {
5326         spin_lock(&block_rsv->lock);
5327         block_rsv->reserved += num_bytes;
5328         if (update_size)
5329                 block_rsv->size += num_bytes;
5330         else if (block_rsv->reserved >= block_rsv->size)
5331                 block_rsv->full = 1;
5332         spin_unlock(&block_rsv->lock);
5333 }
5334
5335 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5336                              struct btrfs_block_rsv *dest, u64 num_bytes,
5337                              int min_factor)
5338 {
5339         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5340         u64 min_bytes;
5341
5342         if (global_rsv->space_info != dest->space_info)
5343                 return -ENOSPC;
5344
5345         spin_lock(&global_rsv->lock);
5346         min_bytes = div_factor(global_rsv->size, min_factor);
5347         if (global_rsv->reserved < min_bytes + num_bytes) {
5348                 spin_unlock(&global_rsv->lock);
5349                 return -ENOSPC;
5350         }
5351         global_rsv->reserved -= num_bytes;
5352         if (global_rsv->reserved < global_rsv->size)
5353                 global_rsv->full = 0;
5354         spin_unlock(&global_rsv->lock);
5355
5356         block_rsv_add_bytes(dest, num_bytes, 1);
5357         return 0;
5358 }
5359
5360 /*
5361  * This is for space we already have accounted in space_info->bytes_may_use, so
5362  * basically when we're returning space from block_rsv's.
5363  */
5364 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5365                                      struct btrfs_space_info *space_info,
5366                                      u64 num_bytes)
5367 {
5368         struct reserve_ticket *ticket;
5369         struct list_head *head;
5370         u64 used;
5371         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5372         bool check_overcommit = false;
5373
5374         spin_lock(&space_info->lock);
5375         head = &space_info->priority_tickets;
5376
5377         /*
5378          * If we are over our limit then we need to check and see if we can
5379          * overcommit, and if we can't then we just need to free up our space
5380          * and not satisfy any requests.
5381          */
5382         used = space_info->bytes_used + space_info->bytes_reserved +
5383                 space_info->bytes_pinned + space_info->bytes_readonly +
5384                 space_info->bytes_may_use;
5385         if (used - num_bytes >= space_info->total_bytes)
5386                 check_overcommit = true;
5387 again:
5388         while (!list_empty(head) && num_bytes) {
5389                 ticket = list_first_entry(head, struct reserve_ticket,
5390                                           list);
5391                 /*
5392                  * We use 0 bytes because this space is already reserved, so
5393                  * adding the ticket space would be a double count.
5394                  */
5395                 if (check_overcommit &&
5396                     !can_overcommit(fs_info->extent_root, space_info, 0,
5397                                     flush))
5398                         break;
5399                 if (num_bytes >= ticket->bytes) {
5400                         list_del_init(&ticket->list);
5401                         num_bytes -= ticket->bytes;
5402                         ticket->bytes = 0;
5403                         space_info->tickets_id++;
5404                         wake_up(&ticket->wait);
5405                 } else {
5406                         ticket->bytes -= num_bytes;
5407                         num_bytes = 0;
5408                 }
5409         }
5410
5411         if (num_bytes && head == &space_info->priority_tickets) {
5412                 head = &space_info->tickets;
5413                 flush = BTRFS_RESERVE_FLUSH_ALL;
5414                 goto again;
5415         }
5416         space_info->bytes_may_use -= num_bytes;
5417         trace_btrfs_space_reservation(fs_info, "space_info",
5418                                       space_info->flags, num_bytes, 0);
5419         spin_unlock(&space_info->lock);
5420 }
5421
5422 /*
5423  * This is for newly allocated space that isn't accounted in
5424  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5425  * we use this helper.
5426  */
5427 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5428                                      struct btrfs_space_info *space_info,
5429                                      u64 num_bytes)
5430 {
5431         struct reserve_ticket *ticket;
5432         struct list_head *head = &space_info->priority_tickets;
5433
5434 again:
5435         while (!list_empty(head) && num_bytes) {
5436                 ticket = list_first_entry(head, struct reserve_ticket,
5437                                           list);
5438                 if (num_bytes >= ticket->bytes) {
5439                         trace_btrfs_space_reservation(fs_info, "space_info",
5440                                                       space_info->flags,
5441                                                       ticket->bytes, 1);
5442                         list_del_init(&ticket->list);
5443                         num_bytes -= ticket->bytes;
5444                         space_info->bytes_may_use += ticket->bytes;
5445                         ticket->bytes = 0;
5446                         space_info->tickets_id++;
5447                         wake_up(&ticket->wait);
5448                 } else {
5449                         trace_btrfs_space_reservation(fs_info, "space_info",
5450                                                       space_info->flags,
5451                                                       num_bytes, 1);
5452                         space_info->bytes_may_use += num_bytes;
5453                         ticket->bytes -= num_bytes;
5454                         num_bytes = 0;
5455                 }
5456         }
5457
5458         if (num_bytes && head == &space_info->priority_tickets) {
5459                 head = &space_info->tickets;
5460                 goto again;
5461         }
5462 }
5463
5464 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5465                                     struct btrfs_block_rsv *block_rsv,
5466                                     struct btrfs_block_rsv *dest, u64 num_bytes)
5467 {
5468         struct btrfs_space_info *space_info = block_rsv->space_info;
5469
5470         spin_lock(&block_rsv->lock);
5471         if (num_bytes == (u64)-1)
5472                 num_bytes = block_rsv->size;
5473         block_rsv->size -= num_bytes;
5474         if (block_rsv->reserved >= block_rsv->size) {
5475                 num_bytes = block_rsv->reserved - block_rsv->size;
5476                 block_rsv->reserved = block_rsv->size;
5477                 block_rsv->full = 1;
5478         } else {
5479                 num_bytes = 0;
5480         }
5481         spin_unlock(&block_rsv->lock);
5482
5483         if (num_bytes > 0) {
5484                 if (dest) {
5485                         spin_lock(&dest->lock);
5486                         if (!dest->full) {
5487                                 u64 bytes_to_add;
5488
5489                                 bytes_to_add = dest->size - dest->reserved;
5490                                 bytes_to_add = min(num_bytes, bytes_to_add);
5491                                 dest->reserved += bytes_to_add;
5492                                 if (dest->reserved >= dest->size)
5493                                         dest->full = 1;
5494                                 num_bytes -= bytes_to_add;
5495                         }
5496                         spin_unlock(&dest->lock);
5497                 }
5498                 if (num_bytes)
5499                         space_info_add_old_bytes(fs_info, space_info,
5500                                                  num_bytes);
5501         }
5502 }
5503
5504 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5505                             struct btrfs_block_rsv *dst, u64 num_bytes,
5506                             int update_size)
5507 {
5508         int ret;
5509
5510         ret = block_rsv_use_bytes(src, num_bytes);
5511         if (ret)
5512                 return ret;
5513
5514         block_rsv_add_bytes(dst, num_bytes, update_size);
5515         return 0;
5516 }
5517
5518 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5519 {
5520         memset(rsv, 0, sizeof(*rsv));
5521         spin_lock_init(&rsv->lock);
5522         rsv->type = type;
5523 }
5524
5525 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5526                                               unsigned short type)
5527 {
5528         struct btrfs_block_rsv *block_rsv;
5529
5530         block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5531         if (!block_rsv)
5532                 return NULL;
5533
5534         btrfs_init_block_rsv(block_rsv, type);
5535         block_rsv->space_info = __find_space_info(fs_info,
5536                                                   BTRFS_BLOCK_GROUP_METADATA);
5537         return block_rsv;
5538 }
5539
5540 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5541                           struct btrfs_block_rsv *rsv)
5542 {
5543         if (!rsv)
5544                 return;
5545         btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5546         kfree(rsv);
5547 }
5548
5549 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5550 {
5551         kfree(rsv);
5552 }
5553
5554 int btrfs_block_rsv_add(struct btrfs_root *root,
5555                         struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5556                         enum btrfs_reserve_flush_enum flush)
5557 {
5558         int ret;
5559
5560         if (num_bytes == 0)
5561                 return 0;
5562
5563         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5564         if (!ret) {
5565                 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5566                 return 0;
5567         }
5568
5569         return ret;
5570 }
5571
5572 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5573 {
5574         u64 num_bytes = 0;
5575         int ret = -ENOSPC;
5576
5577         if (!block_rsv)
5578                 return 0;
5579
5580         spin_lock(&block_rsv->lock);
5581         num_bytes = div_factor(block_rsv->size, min_factor);
5582         if (block_rsv->reserved >= num_bytes)
5583                 ret = 0;
5584         spin_unlock(&block_rsv->lock);
5585
5586         return ret;
5587 }
5588
5589 int btrfs_block_rsv_refill(struct btrfs_root *root,
5590                            struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5591                            enum btrfs_reserve_flush_enum flush)
5592 {
5593         u64 num_bytes = 0;
5594         int ret = -ENOSPC;
5595
5596         if (!block_rsv)
5597                 return 0;
5598
5599         spin_lock(&block_rsv->lock);
5600         num_bytes = min_reserved;
5601         if (block_rsv->reserved >= num_bytes)
5602                 ret = 0;
5603         else
5604                 num_bytes -= block_rsv->reserved;
5605         spin_unlock(&block_rsv->lock);
5606
5607         if (!ret)
5608                 return 0;
5609
5610         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5611         if (!ret) {
5612                 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5613                 return 0;
5614         }
5615
5616         return ret;
5617 }
5618
5619 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5620                              struct btrfs_block_rsv *block_rsv,
5621                              u64 num_bytes)
5622 {
5623         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5624
5625         if (global_rsv == block_rsv ||
5626             block_rsv->space_info != global_rsv->space_info)
5627                 global_rsv = NULL;
5628         block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5629 }
5630
5631 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5632 {
5633         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5634         struct btrfs_space_info *sinfo = block_rsv->space_info;
5635         u64 num_bytes;
5636
5637         /*
5638          * The global block rsv is based on the size of the extent tree, the
5639          * checksum tree and the root tree.  If the fs is empty we want to set
5640          * it to a minimal amount for safety.
5641          */
5642         num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5643                 btrfs_root_used(&fs_info->csum_root->root_item) +
5644                 btrfs_root_used(&fs_info->tree_root->root_item);
5645         num_bytes = max_t(u64, num_bytes, SZ_16M);
5646
5647         spin_lock(&sinfo->lock);
5648         spin_lock(&block_rsv->lock);
5649
5650         block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5651
5652         if (block_rsv->reserved < block_rsv->size) {
5653                 num_bytes = btrfs_space_info_used(sinfo, true);
5654                 if (sinfo->total_bytes > num_bytes) {
5655                         num_bytes = sinfo->total_bytes - num_bytes;
5656                         num_bytes = min(num_bytes,
5657                                         block_rsv->size - block_rsv->reserved);
5658                         block_rsv->reserved += num_bytes;
5659                         sinfo->bytes_may_use += num_bytes;
5660                         trace_btrfs_space_reservation(fs_info, "space_info",
5661                                                       sinfo->flags, num_bytes,
5662                                                       1);
5663                 }
5664         } else if (block_rsv->reserved > block_rsv->size) {
5665                 num_bytes = block_rsv->reserved - block_rsv->size;
5666                 sinfo->bytes_may_use -= num_bytes;
5667                 trace_btrfs_space_reservation(fs_info, "space_info",
5668                                       sinfo->flags, num_bytes, 0);
5669                 block_rsv->reserved = block_rsv->size;
5670         }
5671
5672         if (block_rsv->reserved == block_rsv->size)
5673                 block_rsv->full = 1;
5674         else
5675                 block_rsv->full = 0;
5676
5677         spin_unlock(&block_rsv->lock);
5678         spin_unlock(&sinfo->lock);
5679 }
5680
5681 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5682 {
5683         struct btrfs_space_info *space_info;
5684
5685         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5686         fs_info->chunk_block_rsv.space_info = space_info;
5687
5688         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5689         fs_info->global_block_rsv.space_info = space_info;
5690         fs_info->delalloc_block_rsv.space_info = space_info;
5691         fs_info->trans_block_rsv.space_info = space_info;
5692         fs_info->empty_block_rsv.space_info = space_info;
5693         fs_info->delayed_block_rsv.space_info = space_info;
5694
5695         fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5696         fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5697         fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5698         fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5699         if (fs_info->quota_root)
5700                 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5701         fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5702
5703         update_global_block_rsv(fs_info);
5704 }
5705
5706 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5707 {
5708         block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5709                                 (u64)-1);
5710         WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5711         WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5712         WARN_ON(fs_info->trans_block_rsv.size > 0);
5713         WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5714         WARN_ON(fs_info->chunk_block_rsv.size > 0);
5715         WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5716         WARN_ON(fs_info->delayed_block_rsv.size > 0);
5717         WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5718 }
5719
5720 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5721                                   struct btrfs_fs_info *fs_info)
5722 {
5723         if (!trans->block_rsv)
5724                 return;
5725
5726         if (!trans->bytes_reserved)
5727                 return;
5728
5729         trace_btrfs_space_reservation(fs_info, "transaction",
5730                                       trans->transid, trans->bytes_reserved, 0);
5731         btrfs_block_rsv_release(fs_info, trans->block_rsv,
5732                                 trans->bytes_reserved);
5733         trans->bytes_reserved = 0;
5734 }
5735
5736 /*
5737  * To be called after all the new block groups attached to the transaction
5738  * handle have been created (btrfs_create_pending_block_groups()).
5739  */
5740 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5741 {
5742         struct btrfs_fs_info *fs_info = trans->fs_info;
5743
5744         if (!trans->chunk_bytes_reserved)
5745                 return;
5746
5747         WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5748
5749         block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5750                                 trans->chunk_bytes_reserved);
5751         trans->chunk_bytes_reserved = 0;
5752 }
5753
5754 /* Can only return 0 or -ENOSPC */
5755 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5756                                   struct btrfs_inode *inode)
5757 {
5758         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5759         struct btrfs_root *root = inode->root;
5760         /*
5761          * We always use trans->block_rsv here as we will have reserved space
5762          * for our orphan when starting the transaction, using get_block_rsv()
5763          * here will sometimes make us choose the wrong block rsv as we could be
5764          * doing a reloc inode for a non refcounted root.
5765          */
5766         struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5767         struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5768
5769         /*
5770          * We need to hold space in order to delete our orphan item once we've
5771          * added it, so this takes the reservation so we can release it later
5772          * when we are truly done with the orphan item.
5773          */
5774         u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5775
5776         trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 
5777                         num_bytes, 1);
5778         return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5779 }
5780
5781 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5782 {
5783         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5784         struct btrfs_root *root = inode->root;
5785         u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5786
5787         trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5788                         num_bytes, 0);
5789         btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5790 }
5791
5792 /*
5793  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5794  * root: the root of the parent directory
5795  * rsv: block reservation
5796  * items: the number of items that we need do reservation
5797  * qgroup_reserved: used to return the reserved size in qgroup
5798  *
5799  * This function is used to reserve the space for snapshot/subvolume
5800  * creation and deletion. Those operations are different with the
5801  * common file/directory operations, they change two fs/file trees
5802  * and root tree, the number of items that the qgroup reserves is
5803  * different with the free space reservation. So we can not use
5804  * the space reservation mechanism in start_transaction().
5805  */
5806 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5807                                      struct btrfs_block_rsv *rsv,
5808                                      int items,
5809                                      u64 *qgroup_reserved,
5810                                      bool use_global_rsv)
5811 {
5812         u64 num_bytes;
5813         int ret;
5814         struct btrfs_fs_info *fs_info = root->fs_info;
5815         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5816
5817         if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5818                 /* One for parent inode, two for dir entries */
5819                 num_bytes = 3 * fs_info->nodesize;
5820                 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
5821                 if (ret)
5822                         return ret;
5823         } else {
5824                 num_bytes = 0;
5825         }
5826
5827         *qgroup_reserved = num_bytes;
5828
5829         num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5830         rsv->space_info = __find_space_info(fs_info,
5831                                             BTRFS_BLOCK_GROUP_METADATA);
5832         ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5833                                   BTRFS_RESERVE_FLUSH_ALL);
5834
5835         if (ret == -ENOSPC && use_global_rsv)
5836                 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5837
5838         if (ret && *qgroup_reserved)
5839                 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5840
5841         return ret;
5842 }
5843
5844 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5845                                       struct btrfs_block_rsv *rsv)
5846 {
5847         btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5848 }
5849
5850 /**
5851  * drop_outstanding_extent - drop an outstanding extent
5852  * @inode: the inode we're dropping the extent for
5853  * @num_bytes: the number of bytes we're releasing.
5854  *
5855  * This is called when we are freeing up an outstanding extent, either called
5856  * after an error or after an extent is written.  This will return the number of
5857  * reserved extents that need to be freed.  This must be called with
5858  * BTRFS_I(inode)->lock held.
5859  */
5860 static unsigned drop_outstanding_extent(struct btrfs_inode *inode,
5861                 u64 num_bytes)
5862 {
5863         unsigned drop_inode_space = 0;
5864         unsigned dropped_extents = 0;
5865         unsigned num_extents;
5866
5867         num_extents = count_max_extents(num_bytes);
5868         ASSERT(num_extents);
5869         ASSERT(inode->outstanding_extents >= num_extents);
5870         inode->outstanding_extents -= num_extents;
5871
5872         if (inode->outstanding_extents == 0 &&
5873             test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5874                                &inode->runtime_flags))
5875                 drop_inode_space = 1;
5876
5877         /*
5878          * If we have more or the same amount of outstanding extents than we have
5879          * reserved then we need to leave the reserved extents count alone.
5880          */
5881         if (inode->outstanding_extents >= inode->reserved_extents)
5882                 return drop_inode_space;
5883
5884         dropped_extents = inode->reserved_extents - inode->outstanding_extents;
5885         inode->reserved_extents -= dropped_extents;
5886         return dropped_extents + drop_inode_space;
5887 }
5888
5889 /**
5890  * calc_csum_metadata_size - return the amount of metadata space that must be
5891  *      reserved/freed for the given bytes.
5892  * @inode: the inode we're manipulating
5893  * @num_bytes: the number of bytes in question
5894  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5895  *
5896  * This adjusts the number of csum_bytes in the inode and then returns the
5897  * correct amount of metadata that must either be reserved or freed.  We
5898  * calculate how many checksums we can fit into one leaf and then divide the
5899  * number of bytes that will need to be checksumed by this value to figure out
5900  * how many checksums will be required.  If we are adding bytes then the number
5901  * may go up and we will return the number of additional bytes that must be
5902  * reserved.  If it is going down we will return the number of bytes that must
5903  * be freed.
5904  *
5905  * This must be called with BTRFS_I(inode)->lock held.
5906  */
5907 static u64 calc_csum_metadata_size(struct btrfs_inode *inode, u64 num_bytes,
5908                                    int reserve)
5909 {
5910         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5911         u64 old_csums, num_csums;
5912
5913         if (inode->flags & BTRFS_INODE_NODATASUM && inode->csum_bytes == 0)
5914                 return 0;
5915
5916         old_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
5917         if (reserve)
5918                 inode->csum_bytes += num_bytes;
5919         else
5920                 inode->csum_bytes -= num_bytes;
5921         num_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
5922
5923         /* No change, no need to reserve more */
5924         if (old_csums == num_csums)
5925                 return 0;
5926
5927         if (reserve)
5928                 return btrfs_calc_trans_metadata_size(fs_info,
5929                                                       num_csums - old_csums);
5930
5931         return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums);
5932 }
5933
5934 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
5935 {
5936         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5937         struct btrfs_root *root = inode->root;
5938         struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv;
5939         u64 to_reserve = 0;
5940         u64 csum_bytes;
5941         unsigned nr_extents;
5942         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5943         int ret = 0;
5944         bool delalloc_lock = true;
5945         u64 to_free = 0;
5946         unsigned dropped;
5947         bool release_extra = false;
5948
5949         /* If we are a free space inode we need to not flush since we will be in
5950          * the middle of a transaction commit.  We also don't need the delalloc
5951          * mutex since we won't race with anybody.  We need this mostly to make
5952          * lockdep shut its filthy mouth.
5953          *
5954          * If we have a transaction open (can happen if we call truncate_block
5955          * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5956          */
5957         if (btrfs_is_free_space_inode(inode)) {
5958                 flush = BTRFS_RESERVE_NO_FLUSH;
5959                 delalloc_lock = false;
5960         } else if (current->journal_info) {
5961                 flush = BTRFS_RESERVE_FLUSH_LIMIT;
5962         }
5963
5964         if (flush != BTRFS_RESERVE_NO_FLUSH &&
5965             btrfs_transaction_in_commit(fs_info))
5966                 schedule_timeout(1);
5967
5968         if (delalloc_lock)
5969                 mutex_lock(&inode->delalloc_mutex);
5970
5971         num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
5972
5973         spin_lock(&inode->lock);
5974         nr_extents = count_max_extents(num_bytes);
5975         inode->outstanding_extents += nr_extents;
5976
5977         nr_extents = 0;
5978         if (inode->outstanding_extents > inode->reserved_extents)
5979                 nr_extents += inode->outstanding_extents -
5980                         inode->reserved_extents;
5981
5982         /* We always want to reserve a slot for updating the inode. */
5983         to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1);
5984         to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5985         csum_bytes = inode->csum_bytes;
5986         spin_unlock(&inode->lock);
5987
5988         if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5989                 ret = btrfs_qgroup_reserve_meta(root,
5990                                 nr_extents * fs_info->nodesize, true);
5991                 if (ret)
5992                         goto out_fail;
5993         }
5994
5995         ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
5996         if (unlikely(ret)) {
5997                 btrfs_qgroup_free_meta(root,
5998                                        nr_extents * fs_info->nodesize);
5999                 goto out_fail;
6000         }
6001
6002         spin_lock(&inode->lock);
6003         if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
6004                              &inode->runtime_flags)) {
6005                 to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1);
6006                 release_extra = true;
6007         }
6008         inode->reserved_extents += nr_extents;
6009         spin_unlock(&inode->lock);
6010
6011         if (delalloc_lock)
6012                 mutex_unlock(&inode->delalloc_mutex);
6013
6014         if (to_reserve)
6015                 trace_btrfs_space_reservation(fs_info, "delalloc",
6016                                               btrfs_ino(inode), to_reserve, 1);
6017         if (release_extra)
6018                 btrfs_block_rsv_release(fs_info, block_rsv,
6019                                 btrfs_calc_trans_metadata_size(fs_info, 1));
6020         return 0;
6021
6022 out_fail:
6023         spin_lock(&inode->lock);
6024         dropped = drop_outstanding_extent(inode, num_bytes);
6025         /*
6026          * If the inodes csum_bytes is the same as the original
6027          * csum_bytes then we know we haven't raced with any free()ers
6028          * so we can just reduce our inodes csum bytes and carry on.
6029          */
6030         if (inode->csum_bytes == csum_bytes) {
6031                 calc_csum_metadata_size(inode, num_bytes, 0);
6032         } else {
6033                 u64 orig_csum_bytes = inode->csum_bytes;
6034                 u64 bytes;
6035
6036                 /*
6037                  * This is tricky, but first we need to figure out how much we
6038                  * freed from any free-ers that occurred during this
6039                  * reservation, so we reset ->csum_bytes to the csum_bytes
6040                  * before we dropped our lock, and then call the free for the
6041                  * number of bytes that were freed while we were trying our
6042                  * reservation.
6043                  */
6044                 bytes = csum_bytes - inode->csum_bytes;
6045                 inode->csum_bytes = csum_bytes;
6046                 to_free = calc_csum_metadata_size(inode, bytes, 0);
6047
6048
6049                 /*
6050                  * Now we need to see how much we would have freed had we not
6051                  * been making this reservation and our ->csum_bytes were not
6052                  * artificially inflated.
6053                  */
6054                 inode->csum_bytes = csum_bytes - num_bytes;
6055                 bytes = csum_bytes - orig_csum_bytes;
6056                 bytes = calc_csum_metadata_size(inode, bytes, 0);
6057
6058                 /*
6059                  * Now reset ->csum_bytes to what it should be.  If bytes is
6060                  * more than to_free then we would have freed more space had we
6061                  * not had an artificially high ->csum_bytes, so we need to free
6062                  * the remainder.  If bytes is the same or less then we don't
6063                  * need to do anything, the other free-ers did the correct
6064                  * thing.
6065                  */
6066                 inode->csum_bytes = orig_csum_bytes - num_bytes;
6067                 if (bytes > to_free)
6068                         to_free = bytes - to_free;
6069                 else
6070                         to_free = 0;
6071         }
6072         spin_unlock(&inode->lock);
6073         if (dropped)
6074                 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6075
6076         if (to_free) {
6077                 btrfs_block_rsv_release(fs_info, block_rsv, to_free);
6078                 trace_btrfs_space_reservation(fs_info, "delalloc",
6079                                               btrfs_ino(inode), to_free, 0);
6080         }
6081         if (delalloc_lock)
6082                 mutex_unlock(&inode->delalloc_mutex);
6083         return ret;
6084 }
6085
6086 /**
6087  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6088  * @inode: the inode to release the reservation for
6089  * @num_bytes: the number of bytes we're releasing
6090  *
6091  * This will release the metadata reservation for an inode.  This can be called
6092  * once we complete IO for a given set of bytes to release their metadata
6093  * reservations.
6094  */
6095 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
6096 {
6097         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6098         u64 to_free = 0;
6099         unsigned dropped;
6100
6101         num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6102         spin_lock(&inode->lock);
6103         dropped = drop_outstanding_extent(inode, num_bytes);
6104
6105         if (num_bytes)
6106                 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
6107         spin_unlock(&inode->lock);
6108         if (dropped > 0)
6109                 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6110
6111         if (btrfs_is_testing(fs_info))
6112                 return;
6113
6114         trace_btrfs_space_reservation(fs_info, "delalloc", btrfs_ino(inode),
6115                                       to_free, 0);
6116
6117         btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free);
6118 }
6119
6120 /**
6121  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6122  * delalloc
6123  * @inode: inode we're writing to
6124  * @start: start range we are writing to
6125  * @len: how long the range we are writing to
6126  *
6127  * This will do the following things
6128  *
6129  * o reserve space in data space info for num bytes
6130  *   and reserve precious corresponding qgroup space
6131  *   (Done in check_data_free_space)
6132  *
6133  * o reserve space for metadata space, based on the number of outstanding
6134  *   extents and how much csums will be needed
6135  *   also reserve metadata space in a per root over-reserve method.
6136  * o add to the inodes->delalloc_bytes
6137  * o add it to the fs_info's delalloc inodes list.
6138  *   (Above 3 all done in delalloc_reserve_metadata)
6139  *
6140  * Return 0 for success
6141  * Return <0 for error(-ENOSPC or -EQUOT)
6142  */
6143 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
6144 {
6145         int ret;
6146
6147         ret = btrfs_check_data_free_space(inode, start, len);
6148         if (ret < 0)
6149                 return ret;
6150         ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6151         if (ret < 0)
6152                 btrfs_free_reserved_data_space(inode, start, len);
6153         return ret;
6154 }
6155
6156 /**
6157  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6158  * @inode: inode we're releasing space for
6159  * @start: start position of the space already reserved
6160  * @len: the len of the space already reserved
6161  *
6162  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
6163  * called in the case that we don't need the metadata AND data reservations
6164  * anymore.  So if there is an error or we insert an inline extent.
6165  *
6166  * This function will release the metadata space that was not used and will
6167  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6168  * list if there are no delalloc bytes left.
6169  * Also it will handle the qgroup reserved space.
6170  */
6171 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
6172 {
6173         btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
6174         btrfs_free_reserved_data_space(inode, start, len);
6175 }
6176
6177 static int update_block_group(struct btrfs_trans_handle *trans,
6178                               struct btrfs_fs_info *info, u64 bytenr,
6179                               u64 num_bytes, int alloc)
6180 {
6181         struct btrfs_block_group_cache *cache = NULL;
6182         u64 total = num_bytes;
6183         u64 old_val;
6184         u64 byte_in_group;
6185         int factor;
6186
6187         /* block accounting for super block */
6188         spin_lock(&info->delalloc_root_lock);
6189         old_val = btrfs_super_bytes_used(info->super_copy);
6190         if (alloc)
6191                 old_val += num_bytes;
6192         else
6193                 old_val -= num_bytes;
6194         btrfs_set_super_bytes_used(info->super_copy, old_val);
6195         spin_unlock(&info->delalloc_root_lock);
6196
6197         while (total) {
6198                 cache = btrfs_lookup_block_group(info, bytenr);
6199                 if (!cache)
6200                         return -ENOENT;
6201                 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6202                                     BTRFS_BLOCK_GROUP_RAID1 |
6203                                     BTRFS_BLOCK_GROUP_RAID10))
6204                         factor = 2;
6205                 else
6206                         factor = 1;
6207                 /*
6208                  * If this block group has free space cache written out, we
6209                  * need to make sure to load it if we are removing space.  This
6210                  * is because we need the unpinning stage to actually add the
6211                  * space back to the block group, otherwise we will leak space.
6212                  */
6213                 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6214                         cache_block_group(cache, 1);
6215
6216                 byte_in_group = bytenr - cache->key.objectid;
6217                 WARN_ON(byte_in_group > cache->key.offset);
6218
6219                 spin_lock(&cache->space_info->lock);
6220                 spin_lock(&cache->lock);
6221
6222                 if (btrfs_test_opt(info, SPACE_CACHE) &&
6223                     cache->disk_cache_state < BTRFS_DC_CLEAR)
6224                         cache->disk_cache_state = BTRFS_DC_CLEAR;
6225
6226                 old_val = btrfs_block_group_used(&cache->item);
6227                 num_bytes = min(total, cache->key.offset - byte_in_group);
6228                 if (alloc) {
6229                         old_val += num_bytes;
6230                         btrfs_set_block_group_used(&cache->item, old_val);
6231                         cache->reserved -= num_bytes;
6232                         cache->space_info->bytes_reserved -= num_bytes;
6233                         cache->space_info->bytes_used += num_bytes;
6234                         cache->space_info->disk_used += num_bytes * factor;
6235                         spin_unlock(&cache->lock);
6236                         spin_unlock(&cache->space_info->lock);
6237                 } else {
6238                         old_val -= num_bytes;
6239                         btrfs_set_block_group_used(&cache->item, old_val);
6240                         cache->pinned += num_bytes;
6241                         cache->space_info->bytes_pinned += num_bytes;
6242                         cache->space_info->bytes_used -= num_bytes;
6243                         cache->space_info->disk_used -= num_bytes * factor;
6244                         spin_unlock(&cache->lock);
6245                         spin_unlock(&cache->space_info->lock);
6246
6247                         trace_btrfs_space_reservation(info, "pinned",
6248                                                       cache->space_info->flags,
6249                                                       num_bytes, 1);
6250                         set_extent_dirty(info->pinned_extents,
6251                                          bytenr, bytenr + num_bytes - 1,
6252                                          GFP_NOFS | __GFP_NOFAIL);
6253                 }
6254
6255                 spin_lock(&trans->transaction->dirty_bgs_lock);
6256                 if (list_empty(&cache->dirty_list)) {
6257                         list_add_tail(&cache->dirty_list,
6258                                       &trans->transaction->dirty_bgs);
6259                                 trans->transaction->num_dirty_bgs++;
6260                         btrfs_get_block_group(cache);
6261                 }
6262                 spin_unlock(&trans->transaction->dirty_bgs_lock);
6263
6264                 /*
6265                  * No longer have used bytes in this block group, queue it for
6266                  * deletion. We do this after adding the block group to the
6267                  * dirty list to avoid races between cleaner kthread and space
6268                  * cache writeout.
6269                  */
6270                 if (!alloc && old_val == 0) {
6271                         spin_lock(&info->unused_bgs_lock);
6272                         if (list_empty(&cache->bg_list)) {
6273                                 btrfs_get_block_group(cache);
6274                                 list_add_tail(&cache->bg_list,
6275                                               &info->unused_bgs);
6276                         }
6277                         spin_unlock(&info->unused_bgs_lock);
6278                 }
6279
6280                 btrfs_put_block_group(cache);
6281                 total -= num_bytes;
6282                 bytenr += num_bytes;
6283         }
6284         return 0;
6285 }
6286
6287 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6288 {
6289         struct btrfs_block_group_cache *cache;
6290         u64 bytenr;
6291
6292         spin_lock(&fs_info->block_group_cache_lock);
6293         bytenr = fs_info->first_logical_byte;
6294         spin_unlock(&fs_info->block_group_cache_lock);
6295
6296         if (bytenr < (u64)-1)
6297                 return bytenr;
6298
6299         cache = btrfs_lookup_first_block_group(fs_info, search_start);
6300         if (!cache)
6301                 return 0;
6302
6303         bytenr = cache->key.objectid;
6304         btrfs_put_block_group(cache);
6305
6306         return bytenr;
6307 }
6308
6309 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6310                            struct btrfs_block_group_cache *cache,
6311                            u64 bytenr, u64 num_bytes, int reserved)
6312 {
6313         spin_lock(&cache->space_info->lock);
6314         spin_lock(&cache->lock);
6315         cache->pinned += num_bytes;
6316         cache->space_info->bytes_pinned += num_bytes;
6317         if (reserved) {
6318                 cache->reserved -= num_bytes;
6319                 cache->space_info->bytes_reserved -= num_bytes;
6320         }
6321         spin_unlock(&cache->lock);
6322         spin_unlock(&cache->space_info->lock);
6323
6324         trace_btrfs_space_reservation(fs_info, "pinned",
6325                                       cache->space_info->flags, num_bytes, 1);
6326         set_extent_dirty(fs_info->pinned_extents, bytenr,
6327                          bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6328         return 0;
6329 }
6330
6331 /*
6332  * this function must be called within transaction
6333  */
6334 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6335                      u64 bytenr, u64 num_bytes, int reserved)
6336 {
6337         struct btrfs_block_group_cache *cache;
6338
6339         cache = btrfs_lookup_block_group(fs_info, bytenr);
6340         BUG_ON(!cache); /* Logic error */
6341
6342         pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6343
6344         btrfs_put_block_group(cache);
6345         return 0;
6346 }
6347
6348 /*
6349  * this function must be called within transaction
6350  */
6351 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6352                                     u64 bytenr, u64 num_bytes)
6353 {
6354         struct btrfs_block_group_cache *cache;
6355         int ret;
6356
6357         cache = btrfs_lookup_block_group(fs_info, bytenr);
6358         if (!cache)
6359                 return -EINVAL;
6360
6361         /*
6362          * pull in the free space cache (if any) so that our pin
6363          * removes the free space from the cache.  We have load_only set
6364          * to one because the slow code to read in the free extents does check
6365          * the pinned extents.
6366          */
6367         cache_block_group(cache, 1);
6368
6369         pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6370
6371         /* remove us from the free space cache (if we're there at all) */
6372         ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6373         btrfs_put_block_group(cache);
6374         return ret;
6375 }
6376
6377 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6378                                    u64 start, u64 num_bytes)
6379 {
6380         int ret;
6381         struct btrfs_block_group_cache *block_group;
6382         struct btrfs_caching_control *caching_ctl;
6383
6384         block_group = btrfs_lookup_block_group(fs_info, start);
6385         if (!block_group)
6386                 return -EINVAL;
6387
6388         cache_block_group(block_group, 0);
6389         caching_ctl = get_caching_control(block_group);
6390
6391         if (!caching_ctl) {
6392                 /* Logic error */
6393                 BUG_ON(!block_group_cache_done(block_group));
6394                 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6395         } else {
6396                 mutex_lock(&caching_ctl->mutex);
6397
6398                 if (start >= caching_ctl->progress) {
6399                         ret = add_excluded_extent(fs_info, start, num_bytes);
6400                 } else if (start + num_bytes <= caching_ctl->progress) {
6401                         ret = btrfs_remove_free_space(block_group,
6402                                                       start, num_bytes);
6403                 } else {
6404                         num_bytes = caching_ctl->progress - start;
6405                         ret = btrfs_remove_free_space(block_group,
6406                                                       start, num_bytes);
6407                         if (ret)
6408                                 goto out_lock;
6409
6410                         num_bytes = (start + num_bytes) -
6411                                 caching_ctl->progress;
6412                         start = caching_ctl->progress;
6413                         ret = add_excluded_extent(fs_info, start, num_bytes);
6414                 }
6415 out_lock:
6416                 mutex_unlock(&caching_ctl->mutex);
6417                 put_caching_control(caching_ctl);
6418         }
6419         btrfs_put_block_group(block_group);
6420         return ret;
6421 }
6422
6423 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6424                                  struct extent_buffer *eb)
6425 {
6426         struct btrfs_file_extent_item *item;
6427         struct btrfs_key key;
6428         int found_type;
6429         int i;
6430
6431         if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6432                 return 0;
6433
6434         for (i = 0; i < btrfs_header_nritems(eb); i++) {
6435                 btrfs_item_key_to_cpu(eb, &key, i);
6436                 if (key.type != BTRFS_EXTENT_DATA_KEY)
6437                         continue;
6438                 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6439                 found_type = btrfs_file_extent_type(eb, item);
6440                 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6441                         continue;
6442                 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6443                         continue;
6444                 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6445                 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6446                 __exclude_logged_extent(fs_info, key.objectid, key.offset);
6447         }
6448
6449         return 0;
6450 }
6451
6452 static void
6453 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6454 {
6455         atomic_inc(&bg->reservations);
6456 }
6457
6458 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6459                                         const u64 start)
6460 {
6461         struct btrfs_block_group_cache *bg;
6462
6463         bg = btrfs_lookup_block_group(fs_info, start);
6464         ASSERT(bg);
6465         if (atomic_dec_and_test(&bg->reservations))
6466                 wake_up_atomic_t(&bg->reservations);
6467         btrfs_put_block_group(bg);
6468 }
6469
6470 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6471 {
6472         schedule();
6473         return 0;
6474 }
6475
6476 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6477 {
6478         struct btrfs_space_info *space_info = bg->space_info;
6479
6480         ASSERT(bg->ro);
6481
6482         if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6483                 return;
6484
6485         /*
6486          * Our block group is read only but before we set it to read only,
6487          * some task might have had allocated an extent from it already, but it
6488          * has not yet created a respective ordered extent (and added it to a
6489          * root's list of ordered extents).
6490          * Therefore wait for any task currently allocating extents, since the
6491          * block group's reservations counter is incremented while a read lock
6492          * on the groups' semaphore is held and decremented after releasing
6493          * the read access on that semaphore and creating the ordered extent.
6494          */
6495         down_write(&space_info->groups_sem);
6496         up_write(&space_info->groups_sem);
6497
6498         wait_on_atomic_t(&bg->reservations,
6499                          btrfs_wait_bg_reservations_atomic_t,
6500                          TASK_UNINTERRUPTIBLE);
6501 }
6502
6503 /**
6504  * btrfs_add_reserved_bytes - update the block_group and space info counters
6505  * @cache:      The cache we are manipulating
6506  * @ram_bytes:  The number of bytes of file content, and will be same to
6507  *              @num_bytes except for the compress path.
6508  * @num_bytes:  The number of bytes in question
6509  * @delalloc:   The blocks are allocated for the delalloc write
6510  *
6511  * This is called by the allocator when it reserves space. If this is a
6512  * reservation and the block group has become read only we cannot make the
6513  * reservation and return -EAGAIN, otherwise this function always succeeds.
6514  */
6515 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6516                                     u64 ram_bytes, u64 num_bytes, int delalloc)
6517 {
6518         struct btrfs_space_info *space_info = cache->space_info;
6519         int ret = 0;
6520
6521         spin_lock(&space_info->lock);
6522         spin_lock(&cache->lock);
6523         if (cache->ro) {
6524                 ret = -EAGAIN;
6525         } else {
6526                 cache->reserved += num_bytes;
6527                 space_info->bytes_reserved += num_bytes;
6528
6529                 trace_btrfs_space_reservation(cache->fs_info,
6530                                 "space_info", space_info->flags,
6531                                 ram_bytes, 0);
6532                 space_info->bytes_may_use -= ram_bytes;
6533                 if (delalloc)
6534                         cache->delalloc_bytes += num_bytes;
6535         }
6536         spin_unlock(&cache->lock);
6537         spin_unlock(&space_info->lock);
6538         return ret;
6539 }
6540
6541 /**
6542  * btrfs_free_reserved_bytes - update the block_group and space info counters
6543  * @cache:      The cache we are manipulating
6544  * @num_bytes:  The number of bytes in question
6545  * @delalloc:   The blocks are allocated for the delalloc write
6546  *
6547  * This is called by somebody who is freeing space that was never actually used
6548  * on disk.  For example if you reserve some space for a new leaf in transaction
6549  * A and before transaction A commits you free that leaf, you call this with
6550  * reserve set to 0 in order to clear the reservation.
6551  */
6552
6553 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6554                                      u64 num_bytes, int delalloc)
6555 {
6556         struct btrfs_space_info *space_info = cache->space_info;
6557         int ret = 0;
6558
6559         spin_lock(&space_info->lock);
6560         spin_lock(&cache->lock);
6561         if (cache->ro)
6562                 space_info->bytes_readonly += num_bytes;
6563         cache->reserved -= num_bytes;
6564         space_info->bytes_reserved -= num_bytes;
6565
6566         if (delalloc)
6567                 cache->delalloc_bytes -= num_bytes;
6568         spin_unlock(&cache->lock);
6569         spin_unlock(&space_info->lock);
6570         return ret;
6571 }
6572 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6573 {
6574         struct btrfs_caching_control *next;
6575         struct btrfs_caching_control *caching_ctl;
6576         struct btrfs_block_group_cache *cache;
6577
6578         down_write(&fs_info->commit_root_sem);
6579
6580         list_for_each_entry_safe(caching_ctl, next,
6581                                  &fs_info->caching_block_groups, list) {
6582                 cache = caching_ctl->block_group;
6583                 if (block_group_cache_done(cache)) {
6584                         cache->last_byte_to_unpin = (u64)-1;
6585                         list_del_init(&caching_ctl->list);
6586                         put_caching_control(caching_ctl);
6587                 } else {
6588                         cache->last_byte_to_unpin = caching_ctl->progress;
6589                 }
6590         }
6591
6592         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6593                 fs_info->pinned_extents = &fs_info->freed_extents[1];
6594         else
6595                 fs_info->pinned_extents = &fs_info->freed_extents[0];
6596
6597         up_write(&fs_info->commit_root_sem);
6598
6599         update_global_block_rsv(fs_info);
6600 }
6601
6602 /*
6603  * Returns the free cluster for the given space info and sets empty_cluster to
6604  * what it should be based on the mount options.
6605  */
6606 static struct btrfs_free_cluster *
6607 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6608                    struct btrfs_space_info *space_info, u64 *empty_cluster)
6609 {
6610         struct btrfs_free_cluster *ret = NULL;
6611         bool ssd = btrfs_test_opt(fs_info, SSD);
6612
6613         *empty_cluster = 0;
6614         if (btrfs_mixed_space_info(space_info))
6615                 return ret;
6616
6617         if (ssd)
6618                 *empty_cluster = SZ_2M;
6619         if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6620                 ret = &fs_info->meta_alloc_cluster;
6621                 if (!ssd)
6622                         *empty_cluster = SZ_64K;
6623         } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6624                 ret = &fs_info->data_alloc_cluster;
6625         }
6626
6627         return ret;
6628 }
6629
6630 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6631                               u64 start, u64 end,
6632                               const bool return_free_space)
6633 {
6634         struct btrfs_block_group_cache *cache = NULL;
6635         struct btrfs_space_info *space_info;
6636         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6637         struct btrfs_free_cluster *cluster = NULL;
6638         u64 len;
6639         u64 total_unpinned = 0;
6640         u64 empty_cluster = 0;
6641         bool readonly;
6642
6643         while (start <= end) {
6644                 readonly = false;
6645                 if (!cache ||
6646                     start >= cache->key.objectid + cache->key.offset) {
6647                         if (cache)
6648                                 btrfs_put_block_group(cache);
6649                         total_unpinned = 0;
6650                         cache = btrfs_lookup_block_group(fs_info, start);
6651                         BUG_ON(!cache); /* Logic error */
6652
6653                         cluster = fetch_cluster_info(fs_info,
6654                                                      cache->space_info,
6655                                                      &empty_cluster);
6656                         empty_cluster <<= 1;
6657                 }
6658
6659                 len = cache->key.objectid + cache->key.offset - start;
6660                 len = min(len, end + 1 - start);
6661
6662                 if (start < cache->last_byte_to_unpin) {
6663                         len = min(len, cache->last_byte_to_unpin - start);
6664                         if (return_free_space)
6665                                 btrfs_add_free_space(cache, start, len);
6666                 }
6667
6668                 start += len;
6669                 total_unpinned += len;
6670                 space_info = cache->space_info;
6671
6672                 /*
6673                  * If this space cluster has been marked as fragmented and we've
6674                  * unpinned enough in this block group to potentially allow a
6675                  * cluster to be created inside of it go ahead and clear the
6676                  * fragmented check.
6677                  */
6678                 if (cluster && cluster->fragmented &&
6679                     total_unpinned > empty_cluster) {
6680                         spin_lock(&cluster->lock);
6681                         cluster->fragmented = 0;
6682                         spin_unlock(&cluster->lock);
6683                 }
6684
6685                 spin_lock(&space_info->lock);
6686                 spin_lock(&cache->lock);
6687                 cache->pinned -= len;
6688                 space_info->bytes_pinned -= len;
6689
6690                 trace_btrfs_space_reservation(fs_info, "pinned",
6691                                               space_info->flags, len, 0);
6692                 space_info->max_extent_size = 0;
6693                 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6694                 if (cache->ro) {
6695                         space_info->bytes_readonly += len;
6696                         readonly = true;
6697                 }
6698                 spin_unlock(&cache->lock);
6699                 if (!readonly && return_free_space &&
6700                     global_rsv->space_info == space_info) {
6701                         u64 to_add = len;
6702                         WARN_ON(!return_free_space);
6703                         spin_lock(&global_rsv->lock);
6704                         if (!global_rsv->full) {
6705                                 to_add = min(len, global_rsv->size -
6706                                              global_rsv->reserved);
6707                                 global_rsv->reserved += to_add;
6708                                 space_info->bytes_may_use += to_add;
6709                                 if (global_rsv->reserved >= global_rsv->size)
6710                                         global_rsv->full = 1;
6711                                 trace_btrfs_space_reservation(fs_info,
6712                                                               "space_info",
6713                                                               space_info->flags,
6714                                                               to_add, 1);
6715                                 len -= to_add;
6716                         }
6717                         spin_unlock(&global_rsv->lock);
6718                         /* Add to any tickets we may have */
6719                         if (len)
6720                                 space_info_add_new_bytes(fs_info, space_info,
6721                                                          len);
6722                 }
6723                 spin_unlock(&space_info->lock);
6724         }
6725
6726         if (cache)
6727                 btrfs_put_block_group(cache);
6728         return 0;
6729 }
6730
6731 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6732                                struct btrfs_fs_info *fs_info)
6733 {
6734         struct btrfs_block_group_cache *block_group, *tmp;
6735         struct list_head *deleted_bgs;
6736         struct extent_io_tree *unpin;
6737         u64 start;
6738         u64 end;
6739         int ret;
6740
6741         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6742                 unpin = &fs_info->freed_extents[1];
6743         else
6744                 unpin = &fs_info->freed_extents[0];
6745
6746         while (!trans->aborted) {
6747                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6748                 ret = find_first_extent_bit(unpin, 0, &start, &end,
6749                                             EXTENT_DIRTY, NULL);
6750                 if (ret) {
6751                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6752                         break;
6753                 }
6754
6755                 if (btrfs_test_opt(fs_info, DISCARD))
6756                         ret = btrfs_discard_extent(fs_info, start,
6757                                                    end + 1 - start, NULL);
6758
6759                 clear_extent_dirty(unpin, start, end);
6760                 unpin_extent_range(fs_info, start, end, true);
6761                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6762                 cond_resched();
6763         }
6764
6765         /*
6766          * Transaction is finished.  We don't need the lock anymore.  We
6767          * do need to clean up the block groups in case of a transaction
6768          * abort.
6769          */
6770         deleted_bgs = &trans->transaction->deleted_bgs;
6771         list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6772                 u64 trimmed = 0;
6773
6774                 ret = -EROFS;
6775                 if (!trans->aborted)
6776                         ret = btrfs_discard_extent(fs_info,
6777                                                    block_group->key.objectid,
6778                                                    block_group->key.offset,
6779                                                    &trimmed);
6780
6781                 list_del_init(&block_group->bg_list);
6782                 btrfs_put_block_group_trimming(block_group);
6783                 btrfs_put_block_group(block_group);
6784
6785                 if (ret) {
6786                         const char *errstr = btrfs_decode_error(ret);
6787                         btrfs_warn(fs_info,
6788                                    "Discard failed while removing blockgroup: errno=%d %s\n",
6789                                    ret, errstr);
6790                 }
6791         }
6792
6793         return 0;
6794 }
6795
6796 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6797                              u64 owner, u64 root_objectid)
6798 {
6799         struct btrfs_space_info *space_info;
6800         u64 flags;
6801
6802         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6803                 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6804                         flags = BTRFS_BLOCK_GROUP_SYSTEM;
6805                 else
6806                         flags = BTRFS_BLOCK_GROUP_METADATA;
6807         } else {
6808                 flags = BTRFS_BLOCK_GROUP_DATA;
6809         }
6810
6811         space_info = __find_space_info(fs_info, flags);
6812         BUG_ON(!space_info); /* Logic bug */
6813         percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6814 }
6815
6816
6817 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6818                                 struct btrfs_fs_info *info,
6819                                 struct btrfs_delayed_ref_node *node, u64 parent,
6820                                 u64 root_objectid, u64 owner_objectid,
6821                                 u64 owner_offset, int refs_to_drop,
6822                                 struct btrfs_delayed_extent_op *extent_op)
6823 {
6824         struct btrfs_key key;
6825         struct btrfs_path *path;
6826         struct btrfs_root *extent_root = info->extent_root;
6827         struct extent_buffer *leaf;
6828         struct btrfs_extent_item *ei;
6829         struct btrfs_extent_inline_ref *iref;
6830         int ret;
6831         int is_data;
6832         int extent_slot = 0;
6833         int found_extent = 0;
6834         int num_to_del = 1;
6835         u32 item_size;
6836         u64 refs;
6837         u64 bytenr = node->bytenr;
6838         u64 num_bytes = node->num_bytes;
6839         int last_ref = 0;
6840         bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6841
6842         path = btrfs_alloc_path();
6843         if (!path)
6844                 return -ENOMEM;
6845
6846         path->reada = READA_FORWARD;
6847         path->leave_spinning = 1;
6848
6849         is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6850         BUG_ON(!is_data && refs_to_drop != 1);
6851
6852         if (is_data)
6853                 skinny_metadata = 0;
6854
6855         ret = lookup_extent_backref(trans, info, path, &iref,
6856                                     bytenr, num_bytes, parent,
6857                                     root_objectid, owner_objectid,
6858                                     owner_offset);
6859         if (ret == 0) {
6860                 extent_slot = path->slots[0];
6861                 while (extent_slot >= 0) {
6862                         btrfs_item_key_to_cpu(path->nodes[0], &key,
6863                                               extent_slot);
6864                         if (key.objectid != bytenr)
6865                                 break;
6866                         if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6867                             key.offset == num_bytes) {
6868                                 found_extent = 1;
6869                                 break;
6870                         }
6871                         if (key.type == BTRFS_METADATA_ITEM_KEY &&
6872                             key.offset == owner_objectid) {
6873                                 found_extent = 1;
6874                                 break;
6875                         }
6876                         if (path->slots[0] - extent_slot > 5)
6877                                 break;
6878                         extent_slot--;
6879                 }
6880 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6881                 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6882                 if (found_extent && item_size < sizeof(*ei))
6883                         found_extent = 0;
6884 #endif
6885                 if (!found_extent) {
6886                         BUG_ON(iref);
6887                         ret = remove_extent_backref(trans, info, path, NULL,
6888                                                     refs_to_drop,
6889                                                     is_data, &last_ref);
6890                         if (ret) {
6891                                 btrfs_abort_transaction(trans, ret);
6892                                 goto out;
6893                         }
6894                         btrfs_release_path(path);
6895                         path->leave_spinning = 1;
6896
6897                         key.objectid = bytenr;
6898                         key.type = BTRFS_EXTENT_ITEM_KEY;
6899                         key.offset = num_bytes;
6900
6901                         if (!is_data && skinny_metadata) {
6902                                 key.type = BTRFS_METADATA_ITEM_KEY;
6903                                 key.offset = owner_objectid;
6904                         }
6905
6906                         ret = btrfs_search_slot(trans, extent_root,
6907                                                 &key, path, -1, 1);
6908                         if (ret > 0 && skinny_metadata && path->slots[0]) {
6909                                 /*
6910                                  * Couldn't find our skinny metadata item,
6911                                  * see if we have ye olde extent item.
6912                                  */
6913                                 path->slots[0]--;
6914                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
6915                                                       path->slots[0]);
6916                                 if (key.objectid == bytenr &&
6917                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
6918                                     key.offset == num_bytes)
6919                                         ret = 0;
6920                         }
6921
6922                         if (ret > 0 && skinny_metadata) {
6923                                 skinny_metadata = false;
6924                                 key.objectid = bytenr;
6925                                 key.type = BTRFS_EXTENT_ITEM_KEY;
6926                                 key.offset = num_bytes;
6927                                 btrfs_release_path(path);
6928                                 ret = btrfs_search_slot(trans, extent_root,
6929                                                         &key, path, -1, 1);
6930                         }
6931
6932                         if (ret) {
6933                                 btrfs_err(info,
6934                                           "umm, got %d back from search, was looking for %llu",
6935                                           ret, bytenr);
6936                                 if (ret > 0)
6937                                         btrfs_print_leaf(info, path->nodes[0]);
6938                         }
6939                         if (ret < 0) {
6940                                 btrfs_abort_transaction(trans, ret);
6941                                 goto out;
6942                         }
6943                         extent_slot = path->slots[0];
6944                 }
6945         } else if (WARN_ON(ret == -ENOENT)) {
6946                 btrfs_print_leaf(info, path->nodes[0]);
6947                 btrfs_err(info,
6948                         "unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6949                         bytenr, parent, root_objectid, owner_objectid,
6950                         owner_offset);
6951                 btrfs_abort_transaction(trans, ret);
6952                 goto out;
6953         } else {
6954                 btrfs_abort_transaction(trans, ret);
6955                 goto out;
6956         }
6957
6958         leaf = path->nodes[0];
6959         item_size = btrfs_item_size_nr(leaf, extent_slot);
6960 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6961         if (item_size < sizeof(*ei)) {
6962                 BUG_ON(found_extent || extent_slot != path->slots[0]);
6963                 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6964                                              0);
6965                 if (ret < 0) {
6966                         btrfs_abort_transaction(trans, ret);
6967                         goto out;
6968                 }
6969
6970                 btrfs_release_path(path);
6971                 path->leave_spinning = 1;
6972
6973                 key.objectid = bytenr;
6974                 key.type = BTRFS_EXTENT_ITEM_KEY;
6975                 key.offset = num_bytes;
6976
6977                 ret = btrfs_search_slot(trans, extent_root, &key, path,
6978                                         -1, 1);
6979                 if (ret) {
6980                         btrfs_err(info,
6981                                   "umm, got %d back from search, was looking for %llu",
6982                                 ret, bytenr);
6983                         btrfs_print_leaf(info, path->nodes[0]);
6984                 }
6985                 if (ret < 0) {
6986                         btrfs_abort_transaction(trans, ret);
6987                         goto out;
6988                 }
6989
6990                 extent_slot = path->slots[0];
6991                 leaf = path->nodes[0];
6992                 item_size = btrfs_item_size_nr(leaf, extent_slot);
6993         }
6994 #endif
6995         BUG_ON(item_size < sizeof(*ei));
6996         ei = btrfs_item_ptr(leaf, extent_slot,
6997                             struct btrfs_extent_item);
6998         if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6999             key.type == BTRFS_EXTENT_ITEM_KEY) {
7000                 struct btrfs_tree_block_info *bi;
7001                 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7002                 bi = (struct btrfs_tree_block_info *)(ei + 1);
7003                 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7004         }
7005
7006         refs = btrfs_extent_refs(leaf, ei);
7007         if (refs < refs_to_drop) {
7008                 btrfs_err(info,
7009                           "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7010                           refs_to_drop, refs, bytenr);
7011                 ret = -EINVAL;
7012                 btrfs_abort_transaction(trans, ret);
7013                 goto out;
7014         }
7015         refs -= refs_to_drop;
7016
7017         if (refs > 0) {
7018                 if (extent_op)
7019                         __run_delayed_extent_op(extent_op, leaf, ei);
7020                 /*
7021                  * In the case of inline back ref, reference count will
7022                  * be updated by remove_extent_backref
7023                  */
7024                 if (iref) {
7025                         BUG_ON(!found_extent);
7026                 } else {
7027                         btrfs_set_extent_refs(leaf, ei, refs);
7028                         btrfs_mark_buffer_dirty(leaf);
7029                 }
7030                 if (found_extent) {
7031                         ret = remove_extent_backref(trans, info, path,
7032                                                     iref, refs_to_drop,
7033                                                     is_data, &last_ref);
7034                         if (ret) {
7035                                 btrfs_abort_transaction(trans, ret);
7036                                 goto out;
7037                         }
7038                 }
7039                 add_pinned_bytes(info, -num_bytes, owner_objectid,
7040                                  root_objectid);
7041         } else {
7042                 if (found_extent) {
7043                         BUG_ON(is_data && refs_to_drop !=
7044                                extent_data_ref_count(path, iref));
7045                         if (iref) {
7046                                 BUG_ON(path->slots[0] != extent_slot);
7047                         } else {
7048                                 BUG_ON(path->slots[0] != extent_slot + 1);
7049                                 path->slots[0] = extent_slot;
7050                                 num_to_del = 2;
7051                         }
7052                 }
7053
7054                 last_ref = 1;
7055                 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7056                                       num_to_del);
7057                 if (ret) {
7058                         btrfs_abort_transaction(trans, ret);
7059                         goto out;
7060                 }
7061                 btrfs_release_path(path);
7062
7063                 if (is_data) {
7064                         ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7065                         if (ret) {
7066                                 btrfs_abort_transaction(trans, ret);
7067                                 goto out;
7068                         }
7069                 }
7070
7071                 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7072                 if (ret) {
7073                         btrfs_abort_transaction(trans, ret);
7074                         goto out;
7075                 }
7076
7077                 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7078                 if (ret) {
7079                         btrfs_abort_transaction(trans, ret);
7080                         goto out;
7081                 }
7082         }
7083         btrfs_release_path(path);
7084
7085 out:
7086         btrfs_free_path(path);
7087         return ret;
7088 }
7089
7090 /*
7091  * when we free an block, it is possible (and likely) that we free the last
7092  * delayed ref for that extent as well.  This searches the delayed ref tree for
7093  * a given extent, and if there are no other delayed refs to be processed, it
7094  * removes it from the tree.
7095  */
7096 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7097                                       u64 bytenr)
7098 {
7099         struct btrfs_delayed_ref_head *head;
7100         struct btrfs_delayed_ref_root *delayed_refs;
7101         int ret = 0;
7102
7103         delayed_refs = &trans->transaction->delayed_refs;
7104         spin_lock(&delayed_refs->lock);
7105         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7106         if (!head)
7107                 goto out_delayed_unlock;
7108
7109         spin_lock(&head->lock);
7110         if (!list_empty(&head->ref_list))
7111                 goto out;
7112
7113         if (head->extent_op) {
7114                 if (!head->must_insert_reserved)
7115                         goto out;
7116                 btrfs_free_delayed_extent_op(head->extent_op);
7117                 head->extent_op = NULL;
7118         }
7119
7120         /*
7121          * waiting for the lock here would deadlock.  If someone else has it
7122          * locked they are already in the process of dropping it anyway
7123          */
7124         if (!mutex_trylock(&head->mutex))
7125                 goto out;
7126
7127         /*
7128          * at this point we have a head with no other entries.  Go
7129          * ahead and process it.
7130          */
7131         head->node.in_tree = 0;
7132         rb_erase(&head->href_node, &delayed_refs->href_root);
7133
7134         atomic_dec(&delayed_refs->num_entries);
7135
7136         /*
7137          * we don't take a ref on the node because we're removing it from the
7138          * tree, so we just steal the ref the tree was holding.
7139          */
7140         delayed_refs->num_heads--;
7141         if (head->processing == 0)
7142                 delayed_refs->num_heads_ready--;
7143         head->processing = 0;
7144         spin_unlock(&head->lock);
7145         spin_unlock(&delayed_refs->lock);
7146
7147         BUG_ON(head->extent_op);
7148         if (head->must_insert_reserved)
7149                 ret = 1;
7150
7151         mutex_unlock(&head->mutex);
7152         btrfs_put_delayed_ref(&head->node);
7153         return ret;
7154 out:
7155         spin_unlock(&head->lock);
7156
7157 out_delayed_unlock:
7158         spin_unlock(&delayed_refs->lock);
7159         return 0;
7160 }
7161
7162 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7163                            struct btrfs_root *root,
7164                            struct extent_buffer *buf,
7165                            u64 parent, int last_ref)
7166 {
7167         struct btrfs_fs_info *fs_info = root->fs_info;
7168         int pin = 1;
7169         int ret;
7170
7171         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7172                 ret = btrfs_add_delayed_tree_ref(fs_info, trans,
7173                                                  buf->start, buf->len,
7174                                                  parent,
7175                                                  root->root_key.objectid,
7176                                                  btrfs_header_level(buf),
7177                                                  BTRFS_DROP_DELAYED_REF, NULL);
7178                 BUG_ON(ret); /* -ENOMEM */
7179         }
7180
7181         if (!last_ref)
7182                 return;
7183
7184         if (btrfs_header_generation(buf) == trans->transid) {
7185                 struct btrfs_block_group_cache *cache;
7186
7187                 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7188                         ret = check_ref_cleanup(trans, buf->start);
7189                         if (!ret)
7190                                 goto out;
7191                 }
7192
7193                 cache = btrfs_lookup_block_group(fs_info, buf->start);
7194
7195                 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7196                         pin_down_extent(fs_info, cache, buf->start,
7197                                         buf->len, 1);
7198                         btrfs_put_block_group(cache);
7199                         goto out;
7200                 }
7201
7202                 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7203
7204                 btrfs_add_free_space(cache, buf->start, buf->len);
7205                 btrfs_free_reserved_bytes(cache, buf->len, 0);
7206                 btrfs_put_block_group(cache);
7207                 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7208                 pin = 0;
7209         }
7210 out:
7211         if (pin)
7212                 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7213                                  root->root_key.objectid);
7214
7215         /*
7216          * Deleting the buffer, clear the corrupt flag since it doesn't matter
7217          * anymore.
7218          */
7219         clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7220 }
7221
7222 /* Can return -ENOMEM */
7223 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7224                       struct btrfs_fs_info *fs_info,
7225                       u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7226                       u64 owner, u64 offset)
7227 {
7228         int ret;
7229
7230         if (btrfs_is_testing(fs_info))
7231                 return 0;
7232
7233         add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7234
7235         /*
7236          * tree log blocks never actually go into the extent allocation
7237          * tree, just update pinning info and exit early.
7238          */
7239         if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7240                 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7241                 /* unlocks the pinned mutex */
7242                 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7243                 ret = 0;
7244         } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7245                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7246                                         num_bytes,
7247                                         parent, root_objectid, (int)owner,
7248                                         BTRFS_DROP_DELAYED_REF, NULL);
7249         } else {
7250                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7251                                                 num_bytes,
7252                                                 parent, root_objectid, owner,
7253                                                 offset, 0,
7254                                                 BTRFS_DROP_DELAYED_REF);
7255         }
7256         return ret;
7257 }
7258
7259 /*
7260  * when we wait for progress in the block group caching, its because
7261  * our allocation attempt failed at least once.  So, we must sleep
7262  * and let some progress happen before we try again.
7263  *
7264  * This function will sleep at least once waiting for new free space to
7265  * show up, and then it will check the block group free space numbers
7266  * for our min num_bytes.  Another option is to have it go ahead
7267  * and look in the rbtree for a free extent of a given size, but this
7268  * is a good start.
7269  *
7270  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7271  * any of the information in this block group.
7272  */
7273 static noinline void
7274 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7275                                 u64 num_bytes)
7276 {
7277         struct btrfs_caching_control *caching_ctl;
7278
7279         caching_ctl = get_caching_control(cache);
7280         if (!caching_ctl)
7281                 return;
7282
7283         wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7284                    (cache->free_space_ctl->free_space >= num_bytes));
7285
7286         put_caching_control(caching_ctl);
7287 }
7288
7289 static noinline int
7290 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7291 {
7292         struct btrfs_caching_control *caching_ctl;
7293         int ret = 0;
7294
7295         caching_ctl = get_caching_control(cache);
7296         if (!caching_ctl)
7297                 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7298
7299         wait_event(caching_ctl->wait, block_group_cache_done(cache));
7300         if (cache->cached == BTRFS_CACHE_ERROR)
7301                 ret = -EIO;
7302         put_caching_control(caching_ctl);
7303         return ret;
7304 }
7305
7306 int __get_raid_index(u64 flags)
7307 {
7308         if (flags & BTRFS_BLOCK_GROUP_RAID10)
7309                 return BTRFS_RAID_RAID10;
7310         else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7311                 return BTRFS_RAID_RAID1;
7312         else if (flags & BTRFS_BLOCK_GROUP_DUP)
7313                 return BTRFS_RAID_DUP;
7314         else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7315                 return BTRFS_RAID_RAID0;
7316         else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7317                 return BTRFS_RAID_RAID5;
7318         else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7319                 return BTRFS_RAID_RAID6;
7320
7321         return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7322 }
7323
7324 int get_block_group_index(struct btrfs_block_group_cache *cache)
7325 {
7326         return __get_raid_index(cache->flags);
7327 }
7328
7329 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7330         [BTRFS_RAID_RAID10]     = "raid10",
7331         [BTRFS_RAID_RAID1]      = "raid1",
7332         [BTRFS_RAID_DUP]        = "dup",
7333         [BTRFS_RAID_RAID0]      = "raid0",
7334         [BTRFS_RAID_SINGLE]     = "single",
7335         [BTRFS_RAID_RAID5]      = "raid5",
7336         [BTRFS_RAID_RAID6]      = "raid6",
7337 };
7338
7339 static const char *get_raid_name(enum btrfs_raid_types type)
7340 {
7341         if (type >= BTRFS_NR_RAID_TYPES)
7342                 return NULL;
7343
7344         return btrfs_raid_type_names[type];
7345 }
7346
7347 enum btrfs_loop_type {
7348         LOOP_CACHING_NOWAIT = 0,
7349         LOOP_CACHING_WAIT = 1,
7350         LOOP_ALLOC_CHUNK = 2,
7351         LOOP_NO_EMPTY_SIZE = 3,
7352 };
7353
7354 static inline void
7355 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7356                        int delalloc)
7357 {
7358         if (delalloc)
7359                 down_read(&cache->data_rwsem);
7360 }
7361
7362 static inline void
7363 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7364                        int delalloc)
7365 {
7366         btrfs_get_block_group(cache);
7367         if (delalloc)
7368                 down_read(&cache->data_rwsem);
7369 }
7370
7371 static struct btrfs_block_group_cache *
7372 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7373                    struct btrfs_free_cluster *cluster,
7374                    int delalloc)
7375 {
7376         struct btrfs_block_group_cache *used_bg = NULL;
7377
7378         spin_lock(&cluster->refill_lock);
7379         while (1) {
7380                 used_bg = cluster->block_group;
7381                 if (!used_bg)
7382                         return NULL;
7383
7384                 if (used_bg == block_group)
7385                         return used_bg;
7386
7387                 btrfs_get_block_group(used_bg);
7388
7389                 if (!delalloc)
7390                         return used_bg;
7391
7392                 if (down_read_trylock(&used_bg->data_rwsem))
7393                         return used_bg;
7394
7395                 spin_unlock(&cluster->refill_lock);
7396
7397                 /* We should only have one-level nested. */
7398                 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7399
7400                 spin_lock(&cluster->refill_lock);
7401                 if (used_bg == cluster->block_group)
7402                         return used_bg;
7403
7404                 up_read(&used_bg->data_rwsem);
7405                 btrfs_put_block_group(used_bg);
7406         }
7407 }
7408
7409 static inline void
7410 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7411                          int delalloc)
7412 {
7413         if (delalloc)
7414                 up_read(&cache->data_rwsem);
7415         btrfs_put_block_group(cache);
7416 }
7417
7418 /*
7419  * walks the btree of allocated extents and find a hole of a given size.
7420  * The key ins is changed to record the hole:
7421  * ins->objectid == start position
7422  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7423  * ins->offset == the size of the hole.
7424  * Any available blocks before search_start are skipped.
7425  *
7426  * If there is no suitable free space, we will record the max size of
7427  * the free space extent currently.
7428  */
7429 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7430                                 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7431                                 u64 hint_byte, struct btrfs_key *ins,
7432                                 u64 flags, int delalloc)
7433 {
7434         int ret = 0;
7435         struct btrfs_root *root = fs_info->extent_root;
7436         struct btrfs_free_cluster *last_ptr = NULL;
7437         struct btrfs_block_group_cache *block_group = NULL;
7438         u64 search_start = 0;
7439         u64 max_extent_size = 0;
7440         u64 empty_cluster = 0;
7441         struct btrfs_space_info *space_info;
7442         int loop = 0;
7443         int index = __get_raid_index(flags);
7444         bool failed_cluster_refill = false;
7445         bool failed_alloc = false;
7446         bool use_cluster = true;
7447         bool have_caching_bg = false;
7448         bool orig_have_caching_bg = false;
7449         bool full_search = false;
7450
7451         WARN_ON(num_bytes < fs_info->sectorsize);
7452         ins->type = BTRFS_EXTENT_ITEM_KEY;
7453         ins->objectid = 0;
7454         ins->offset = 0;
7455
7456         trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7457
7458         space_info = __find_space_info(fs_info, flags);
7459         if (!space_info) {
7460                 btrfs_err(fs_info, "No space info for %llu", flags);
7461                 return -ENOSPC;
7462         }
7463
7464         /*
7465          * If our free space is heavily fragmented we may not be able to make
7466          * big contiguous allocations, so instead of doing the expensive search
7467          * for free space, simply return ENOSPC with our max_extent_size so we
7468          * can go ahead and search for a more manageable chunk.
7469          *
7470          * If our max_extent_size is large enough for our allocation simply
7471          * disable clustering since we will likely not be able to find enough
7472          * space to create a cluster and induce latency trying.
7473          */
7474         if (unlikely(space_info->max_extent_size)) {
7475                 spin_lock(&space_info->lock);
7476                 if (space_info->max_extent_size &&
7477                     num_bytes > space_info->max_extent_size) {
7478                         ins->offset = space_info->max_extent_size;
7479                         spin_unlock(&space_info->lock);
7480                         return -ENOSPC;
7481                 } else if (space_info->max_extent_size) {
7482                         use_cluster = false;
7483                 }
7484                 spin_unlock(&space_info->lock);
7485         }
7486
7487         last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7488         if (last_ptr) {
7489                 spin_lock(&last_ptr->lock);
7490                 if (last_ptr->block_group)
7491                         hint_byte = last_ptr->window_start;
7492                 if (last_ptr->fragmented) {
7493                         /*
7494                          * We still set window_start so we can keep track of the
7495                          * last place we found an allocation to try and save
7496                          * some time.
7497                          */
7498                         hint_byte = last_ptr->window_start;
7499                         use_cluster = false;
7500                 }
7501                 spin_unlock(&last_ptr->lock);
7502         }
7503
7504         search_start = max(search_start, first_logical_byte(fs_info, 0));
7505         search_start = max(search_start, hint_byte);
7506         if (search_start == hint_byte) {
7507                 block_group = btrfs_lookup_block_group(fs_info, search_start);
7508                 /*
7509                  * we don't want to use the block group if it doesn't match our
7510                  * allocation bits, or if its not cached.
7511                  *
7512                  * However if we are re-searching with an ideal block group
7513                  * picked out then we don't care that the block group is cached.
7514                  */
7515                 if (block_group && block_group_bits(block_group, flags) &&
7516                     block_group->cached != BTRFS_CACHE_NO) {
7517                         down_read(&space_info->groups_sem);
7518                         if (list_empty(&block_group->list) ||
7519                             block_group->ro) {
7520                                 /*
7521                                  * someone is removing this block group,
7522                                  * we can't jump into the have_block_group
7523                                  * target because our list pointers are not
7524                                  * valid
7525                                  */
7526                                 btrfs_put_block_group(block_group);
7527                                 up_read(&space_info->groups_sem);
7528                         } else {
7529                                 index = get_block_group_index(block_group);
7530                                 btrfs_lock_block_group(block_group, delalloc);
7531                                 goto have_block_group;
7532                         }
7533                 } else if (block_group) {
7534                         btrfs_put_block_group(block_group);
7535                 }
7536         }
7537 search:
7538         have_caching_bg = false;
7539         if (index == 0 || index == __get_raid_index(flags))
7540                 full_search = true;
7541         down_read(&space_info->groups_sem);
7542         list_for_each_entry(block_group, &space_info->block_groups[index],
7543                             list) {
7544                 u64 offset;
7545                 int cached;
7546
7547                 btrfs_grab_block_group(block_group, delalloc);
7548                 search_start = block_group->key.objectid;
7549
7550                 /*
7551                  * this can happen if we end up cycling through all the
7552                  * raid types, but we want to make sure we only allocate
7553                  * for the proper type.
7554                  */
7555                 if (!block_group_bits(block_group, flags)) {
7556                     u64 extra = BTRFS_BLOCK_GROUP_DUP |
7557                                 BTRFS_BLOCK_GROUP_RAID1 |
7558                                 BTRFS_BLOCK_GROUP_RAID5 |
7559                                 BTRFS_BLOCK_GROUP_RAID6 |
7560                                 BTRFS_BLOCK_GROUP_RAID10;
7561
7562                         /*
7563                          * if they asked for extra copies and this block group
7564                          * doesn't provide them, bail.  This does allow us to
7565                          * fill raid0 from raid1.
7566                          */
7567                         if ((flags & extra) && !(block_group->flags & extra))
7568                                 goto loop;
7569                 }
7570
7571 have_block_group:
7572                 cached = block_group_cache_done(block_group);
7573                 if (unlikely(!cached)) {
7574                         have_caching_bg = true;
7575                         ret = cache_block_group(block_group, 0);
7576                         BUG_ON(ret < 0);
7577                         ret = 0;
7578                 }
7579
7580                 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7581                         goto loop;
7582                 if (unlikely(block_group->ro))
7583                         goto loop;
7584
7585                 /*
7586                  * Ok we want to try and use the cluster allocator, so
7587                  * lets look there
7588                  */
7589                 if (last_ptr && use_cluster) {
7590                         struct btrfs_block_group_cache *used_block_group;
7591                         unsigned long aligned_cluster;
7592                         /*
7593                          * the refill lock keeps out other
7594                          * people trying to start a new cluster
7595                          */
7596                         used_block_group = btrfs_lock_cluster(block_group,
7597                                                               last_ptr,
7598                                                               delalloc);
7599                         if (!used_block_group)
7600                                 goto refill_cluster;
7601
7602                         if (used_block_group != block_group &&
7603                             (used_block_group->ro ||
7604                              !block_group_bits(used_block_group, flags)))
7605                                 goto release_cluster;
7606
7607                         offset = btrfs_alloc_from_cluster(used_block_group,
7608                                                 last_ptr,
7609                                                 num_bytes,
7610                                                 used_block_group->key.objectid,
7611                                                 &max_extent_size);
7612                         if (offset) {
7613                                 /* we have a block, we're done */
7614                                 spin_unlock(&last_ptr->refill_lock);
7615                                 trace_btrfs_reserve_extent_cluster(fs_info,
7616                                                 used_block_group,
7617                                                 search_start, num_bytes);
7618                                 if (used_block_group != block_group) {
7619                                         btrfs_release_block_group(block_group,
7620                                                                   delalloc);
7621                                         block_group = used_block_group;
7622                                 }
7623                                 goto checks;
7624                         }
7625
7626                         WARN_ON(last_ptr->block_group != used_block_group);
7627 release_cluster:
7628                         /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7629                          * set up a new clusters, so lets just skip it
7630                          * and let the allocator find whatever block
7631                          * it can find.  If we reach this point, we
7632                          * will have tried the cluster allocator
7633                          * plenty of times and not have found
7634                          * anything, so we are likely way too
7635                          * fragmented for the clustering stuff to find
7636                          * anything.
7637                          *
7638                          * However, if the cluster is taken from the
7639                          * current block group, release the cluster
7640                          * first, so that we stand a better chance of
7641                          * succeeding in the unclustered
7642                          * allocation.  */
7643                         if (loop >= LOOP_NO_EMPTY_SIZE &&
7644                             used_block_group != block_group) {
7645                                 spin_unlock(&last_ptr->refill_lock);
7646                                 btrfs_release_block_group(used_block_group,
7647                                                           delalloc);
7648                                 goto unclustered_alloc;
7649                         }
7650
7651                         /*
7652                          * this cluster didn't work out, free it and
7653                          * start over
7654                          */
7655                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7656
7657                         if (used_block_group != block_group)
7658                                 btrfs_release_block_group(used_block_group,
7659                                                           delalloc);
7660 refill_cluster:
7661                         if (loop >= LOOP_NO_EMPTY_SIZE) {
7662                                 spin_unlock(&last_ptr->refill_lock);
7663                                 goto unclustered_alloc;
7664                         }
7665
7666                         aligned_cluster = max_t(unsigned long,
7667                                                 empty_cluster + empty_size,
7668                                               block_group->full_stripe_len);
7669
7670                         /* allocate a cluster in this block group */
7671                         ret = btrfs_find_space_cluster(fs_info, block_group,
7672                                                        last_ptr, search_start,
7673                                                        num_bytes,
7674                                                        aligned_cluster);
7675                         if (ret == 0) {
7676                                 /*
7677                                  * now pull our allocation out of this
7678                                  * cluster
7679                                  */
7680                                 offset = btrfs_alloc_from_cluster(block_group,
7681                                                         last_ptr,
7682                                                         num_bytes,
7683                                                         search_start,
7684                                                         &max_extent_size);
7685                                 if (offset) {
7686                                         /* we found one, proceed */
7687                                         spin_unlock(&last_ptr->refill_lock);
7688                                         trace_btrfs_reserve_extent_cluster(fs_info,
7689                                                 block_group, search_start,
7690                                                 num_bytes);
7691                                         goto checks;
7692                                 }
7693                         } else if (!cached && loop > LOOP_CACHING_NOWAIT
7694                                    && !failed_cluster_refill) {
7695                                 spin_unlock(&last_ptr->refill_lock);
7696
7697                                 failed_cluster_refill = true;
7698                                 wait_block_group_cache_progress(block_group,
7699                                        num_bytes + empty_cluster + empty_size);
7700                                 goto have_block_group;
7701                         }
7702
7703                         /*
7704                          * at this point we either didn't find a cluster
7705                          * or we weren't able to allocate a block from our
7706                          * cluster.  Free the cluster we've been trying
7707                          * to use, and go to the next block group
7708                          */
7709                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7710                         spin_unlock(&last_ptr->refill_lock);
7711                         goto loop;
7712                 }
7713
7714 unclustered_alloc:
7715                 /*
7716                  * We are doing an unclustered alloc, set the fragmented flag so
7717                  * we don't bother trying to setup a cluster again until we get
7718                  * more space.
7719                  */
7720                 if (unlikely(last_ptr)) {
7721                         spin_lock(&last_ptr->lock);
7722                         last_ptr->fragmented = 1;
7723                         spin_unlock(&last_ptr->lock);
7724                 }
7725                 if (cached) {
7726                         struct btrfs_free_space_ctl *ctl =
7727                                 block_group->free_space_ctl;
7728
7729                         spin_lock(&ctl->tree_lock);
7730                         if (ctl->free_space <
7731                             num_bytes + empty_cluster + empty_size) {
7732                                 if (ctl->free_space > max_extent_size)
7733                                         max_extent_size = ctl->free_space;
7734                                 spin_unlock(&ctl->tree_lock);
7735                                 goto loop;
7736                         }
7737                         spin_unlock(&ctl->tree_lock);
7738                 }
7739
7740                 offset = btrfs_find_space_for_alloc(block_group, search_start,
7741                                                     num_bytes, empty_size,
7742                                                     &max_extent_size);
7743                 /*
7744                  * If we didn't find a chunk, and we haven't failed on this
7745                  * block group before, and this block group is in the middle of
7746                  * caching and we are ok with waiting, then go ahead and wait
7747                  * for progress to be made, and set failed_alloc to true.
7748                  *
7749                  * If failed_alloc is true then we've already waited on this
7750                  * block group once and should move on to the next block group.
7751                  */
7752                 if (!offset && !failed_alloc && !cached &&
7753                     loop > LOOP_CACHING_NOWAIT) {
7754                         wait_block_group_cache_progress(block_group,
7755                                                 num_bytes + empty_size);
7756                         failed_alloc = true;
7757                         goto have_block_group;
7758                 } else if (!offset) {
7759                         goto loop;
7760                 }
7761 checks:
7762                 search_start = ALIGN(offset, fs_info->stripesize);
7763
7764                 /* move on to the next group */
7765                 if (search_start + num_bytes >
7766                     block_group->key.objectid + block_group->key.offset) {
7767                         btrfs_add_free_space(block_group, offset, num_bytes);
7768                         goto loop;
7769                 }
7770
7771                 if (offset < search_start)
7772                         btrfs_add_free_space(block_group, offset,
7773                                              search_start - offset);
7774                 BUG_ON(offset > search_start);
7775
7776                 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7777                                 num_bytes, delalloc);
7778                 if (ret == -EAGAIN) {
7779                         btrfs_add_free_space(block_group, offset, num_bytes);
7780                         goto loop;
7781                 }
7782                 btrfs_inc_block_group_reservations(block_group);
7783
7784                 /* we are all good, lets return */
7785                 ins->objectid = search_start;
7786                 ins->offset = num_bytes;
7787
7788                 trace_btrfs_reserve_extent(fs_info, block_group,
7789                                            search_start, num_bytes);
7790                 btrfs_release_block_group(block_group, delalloc);
7791                 break;
7792 loop:
7793                 failed_cluster_refill = false;
7794                 failed_alloc = false;
7795                 BUG_ON(index != get_block_group_index(block_group));
7796                 btrfs_release_block_group(block_group, delalloc);
7797         }
7798         up_read(&space_info->groups_sem);
7799
7800         if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7801                 && !orig_have_caching_bg)
7802                 orig_have_caching_bg = true;
7803
7804         if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7805                 goto search;
7806
7807         if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7808                 goto search;
7809
7810         /*
7811          * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7812          *                      caching kthreads as we move along
7813          * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7814          * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7815          * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7816          *                      again
7817          */
7818         if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7819                 index = 0;
7820                 if (loop == LOOP_CACHING_NOWAIT) {
7821                         /*
7822                          * We want to skip the LOOP_CACHING_WAIT step if we
7823                          * don't have any uncached bgs and we've already done a
7824                          * full search through.
7825                          */
7826                         if (orig_have_caching_bg || !full_search)
7827                                 loop = LOOP_CACHING_WAIT;
7828                         else
7829                                 loop = LOOP_ALLOC_CHUNK;
7830                 } else {
7831                         loop++;
7832                 }
7833
7834                 if (loop == LOOP_ALLOC_CHUNK) {
7835                         struct btrfs_trans_handle *trans;
7836                         int exist = 0;
7837
7838                         trans = current->journal_info;
7839                         if (trans)
7840                                 exist = 1;
7841                         else
7842                                 trans = btrfs_join_transaction(root);
7843
7844                         if (IS_ERR(trans)) {
7845                                 ret = PTR_ERR(trans);
7846                                 goto out;
7847                         }
7848
7849                         ret = do_chunk_alloc(trans, fs_info, flags,
7850                                              CHUNK_ALLOC_FORCE);
7851
7852                         /*
7853                          * If we can't allocate a new chunk we've already looped
7854                          * through at least once, move on to the NO_EMPTY_SIZE
7855                          * case.
7856                          */
7857                         if (ret == -ENOSPC)
7858                                 loop = LOOP_NO_EMPTY_SIZE;
7859
7860                         /*
7861                          * Do not bail out on ENOSPC since we
7862                          * can do more things.
7863                          */
7864                         if (ret < 0 && ret != -ENOSPC)
7865                                 btrfs_abort_transaction(trans, ret);
7866                         else
7867                                 ret = 0;
7868                         if (!exist)
7869                                 btrfs_end_transaction(trans);
7870                         if (ret)
7871                                 goto out;
7872                 }
7873
7874                 if (loop == LOOP_NO_EMPTY_SIZE) {
7875                         /*
7876                          * Don't loop again if we already have no empty_size and
7877                          * no empty_cluster.
7878                          */
7879                         if (empty_size == 0 &&
7880                             empty_cluster == 0) {
7881                                 ret = -ENOSPC;
7882                                 goto out;
7883                         }
7884                         empty_size = 0;
7885                         empty_cluster = 0;
7886                 }
7887
7888                 goto search;
7889         } else if (!ins->objectid) {
7890                 ret = -ENOSPC;
7891         } else if (ins->objectid) {
7892                 if (!use_cluster && last_ptr) {
7893                         spin_lock(&last_ptr->lock);
7894                         last_ptr->window_start = ins->objectid;
7895                         spin_unlock(&last_ptr->lock);
7896                 }
7897                 ret = 0;
7898         }
7899 out:
7900         if (ret == -ENOSPC) {
7901                 spin_lock(&space_info->lock);
7902                 space_info->max_extent_size = max_extent_size;
7903                 spin_unlock(&space_info->lock);
7904                 ins->offset = max_extent_size;
7905         }
7906         return ret;
7907 }
7908
7909 static void dump_space_info(struct btrfs_fs_info *fs_info,
7910                             struct btrfs_space_info *info, u64 bytes,
7911                             int dump_block_groups)
7912 {
7913         struct btrfs_block_group_cache *cache;
7914         int index = 0;
7915
7916         spin_lock(&info->lock);
7917         btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7918                    info->flags,
7919                    info->total_bytes - btrfs_space_info_used(info, true),
7920                    info->full ? "" : "not ");
7921         btrfs_info(fs_info,
7922                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7923                 info->total_bytes, info->bytes_used, info->bytes_pinned,
7924                 info->bytes_reserved, info->bytes_may_use,
7925                 info->bytes_readonly);
7926         spin_unlock(&info->lock);
7927
7928         if (!dump_block_groups)
7929                 return;
7930
7931         down_read(&info->groups_sem);
7932 again:
7933         list_for_each_entry(cache, &info->block_groups[index], list) {
7934                 spin_lock(&cache->lock);
7935                 btrfs_info(fs_info,
7936                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7937                         cache->key.objectid, cache->key.offset,
7938                         btrfs_block_group_used(&cache->item), cache->pinned,
7939                         cache->reserved, cache->ro ? "[readonly]" : "");
7940                 btrfs_dump_free_space(cache, bytes);
7941                 spin_unlock(&cache->lock);
7942         }
7943         if (++index < BTRFS_NR_RAID_TYPES)
7944                 goto again;
7945         up_read(&info->groups_sem);
7946 }
7947
7948 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7949                          u64 num_bytes, u64 min_alloc_size,
7950                          u64 empty_size, u64 hint_byte,
7951                          struct btrfs_key *ins, int is_data, int delalloc)
7952 {
7953         struct btrfs_fs_info *fs_info = root->fs_info;
7954         bool final_tried = num_bytes == min_alloc_size;
7955         u64 flags;
7956         int ret;
7957
7958         flags = btrfs_get_alloc_profile(root, is_data);
7959 again:
7960         WARN_ON(num_bytes < fs_info->sectorsize);
7961         ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
7962                                hint_byte, ins, flags, delalloc);
7963         if (!ret && !is_data) {
7964                 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
7965         } else if (ret == -ENOSPC) {
7966                 if (!final_tried && ins->offset) {
7967                         num_bytes = min(num_bytes >> 1, ins->offset);
7968                         num_bytes = round_down(num_bytes,
7969                                                fs_info->sectorsize);
7970                         num_bytes = max(num_bytes, min_alloc_size);
7971                         ram_bytes = num_bytes;
7972                         if (num_bytes == min_alloc_size)
7973                                 final_tried = true;
7974                         goto again;
7975                 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
7976                         struct btrfs_space_info *sinfo;
7977
7978                         sinfo = __find_space_info(fs_info, flags);
7979                         btrfs_err(fs_info,
7980                                   "allocation failed flags %llu, wanted %llu",
7981                                   flags, num_bytes);
7982                         if (sinfo)
7983                                 dump_space_info(fs_info, sinfo, num_bytes, 1);
7984                 }
7985         }
7986
7987         return ret;
7988 }
7989
7990 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
7991                                         u64 start, u64 len,
7992                                         int pin, int delalloc)
7993 {
7994         struct btrfs_block_group_cache *cache;
7995         int ret = 0;
7996
7997         cache = btrfs_lookup_block_group(fs_info, start);
7998         if (!cache) {
7999                 btrfs_err(fs_info, "Unable to find block group for %llu",
8000                           start);
8001                 return -ENOSPC;
8002         }
8003
8004         if (pin)
8005                 pin_down_extent(fs_info, cache, start, len, 1);
8006         else {
8007                 if (btrfs_test_opt(fs_info, DISCARD))
8008                         ret = btrfs_discard_extent(fs_info, start, len, NULL);
8009                 btrfs_add_free_space(cache, start, len);
8010                 btrfs_free_reserved_bytes(cache, len, delalloc);
8011                 trace_btrfs_reserved_extent_free(fs_info, start, len);
8012         }
8013
8014         btrfs_put_block_group(cache);
8015         return ret;
8016 }
8017
8018 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8019                                u64 start, u64 len, int delalloc)
8020 {
8021         return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8022 }
8023
8024 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8025                                        u64 start, u64 len)
8026 {
8027         return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8028 }
8029
8030 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8031                                       struct btrfs_fs_info *fs_info,
8032                                       u64 parent, u64 root_objectid,
8033                                       u64 flags, u64 owner, u64 offset,
8034                                       struct btrfs_key *ins, int ref_mod)
8035 {
8036         int ret;
8037         struct btrfs_extent_item *extent_item;
8038         struct btrfs_extent_inline_ref *iref;
8039         struct btrfs_path *path;
8040         struct extent_buffer *leaf;
8041         int type;
8042         u32 size;
8043
8044         if (parent > 0)
8045                 type = BTRFS_SHARED_DATA_REF_KEY;
8046         else
8047                 type = BTRFS_EXTENT_DATA_REF_KEY;
8048
8049         size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8050
8051         path = btrfs_alloc_path();
8052         if (!path)
8053                 return -ENOMEM;
8054
8055         path->leave_spinning = 1;
8056         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8057                                       ins, size);
8058         if (ret) {
8059                 btrfs_free_path(path);
8060                 return ret;
8061         }
8062
8063         leaf = path->nodes[0];
8064         extent_item = btrfs_item_ptr(leaf, path->slots[0],
8065                                      struct btrfs_extent_item);
8066         btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8067         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8068         btrfs_set_extent_flags(leaf, extent_item,
8069                                flags | BTRFS_EXTENT_FLAG_DATA);
8070
8071         iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8072         btrfs_set_extent_inline_ref_type(leaf, iref, type);
8073         if (parent > 0) {
8074                 struct btrfs_shared_data_ref *ref;
8075                 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8076                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8077                 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8078         } else {
8079                 struct btrfs_extent_data_ref *ref;
8080                 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8081                 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8082                 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8083                 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8084                 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8085         }
8086
8087         btrfs_mark_buffer_dirty(path->nodes[0]);
8088         btrfs_free_path(path);
8089
8090         ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8091                                           ins->offset);
8092         if (ret)
8093                 return ret;
8094
8095         ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8096         if (ret) { /* -ENOENT, logic error */
8097                 btrfs_err(fs_info, "update block group failed for %llu %llu",
8098                         ins->objectid, ins->offset);
8099                 BUG();
8100         }
8101         trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8102         return ret;
8103 }
8104
8105 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8106                                      struct btrfs_fs_info *fs_info,
8107                                      u64 parent, u64 root_objectid,
8108                                      u64 flags, struct btrfs_disk_key *key,
8109                                      int level, struct btrfs_key *ins)
8110 {
8111         int ret;
8112         struct btrfs_extent_item *extent_item;
8113         struct btrfs_tree_block_info *block_info;
8114         struct btrfs_extent_inline_ref *iref;
8115         struct btrfs_path *path;
8116         struct extent_buffer *leaf;
8117         u32 size = sizeof(*extent_item) + sizeof(*iref);
8118         u64 num_bytes = ins->offset;
8119         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8120
8121         if (!skinny_metadata)
8122                 size += sizeof(*block_info);
8123
8124         path = btrfs_alloc_path();
8125         if (!path) {
8126                 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8127                                                    fs_info->nodesize);
8128                 return -ENOMEM;
8129         }
8130
8131         path->leave_spinning = 1;
8132         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8133                                       ins, size);
8134         if (ret) {
8135                 btrfs_free_path(path);
8136                 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8137                                                    fs_info->nodesize);
8138                 return ret;
8139         }
8140
8141         leaf = path->nodes[0];
8142         extent_item = btrfs_item_ptr(leaf, path->slots[0],
8143                                      struct btrfs_extent_item);
8144         btrfs_set_extent_refs(leaf, extent_item, 1);
8145         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8146         btrfs_set_extent_flags(leaf, extent_item,
8147                                flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8148
8149         if (skinny_metadata) {
8150                 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8151                 num_bytes = fs_info->nodesize;
8152         } else {
8153                 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8154                 btrfs_set_tree_block_key(leaf, block_info, key);
8155                 btrfs_set_tree_block_level(leaf, block_info, level);
8156                 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8157         }
8158
8159         if (parent > 0) {
8160                 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8161                 btrfs_set_extent_inline_ref_type(leaf, iref,
8162                                                  BTRFS_SHARED_BLOCK_REF_KEY);
8163                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8164         } else {
8165                 btrfs_set_extent_inline_ref_type(leaf, iref,
8166                                                  BTRFS_TREE_BLOCK_REF_KEY);
8167                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8168         }
8169
8170         btrfs_mark_buffer_dirty(leaf);
8171         btrfs_free_path(path);
8172
8173         ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8174                                           num_bytes);
8175         if (ret)
8176                 return ret;
8177
8178         ret = update_block_group(trans, fs_info, ins->objectid,
8179                                  fs_info->nodesize, 1);
8180         if (ret) { /* -ENOENT, logic error */
8181                 btrfs_err(fs_info, "update block group failed for %llu %llu",
8182                         ins->objectid, ins->offset);
8183                 BUG();
8184         }
8185
8186         trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8187                                           fs_info->nodesize);
8188         return ret;
8189 }
8190
8191 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8192                                      u64 root_objectid, u64 owner,
8193                                      u64 offset, u64 ram_bytes,
8194                                      struct btrfs_key *ins)
8195 {
8196         struct btrfs_fs_info *fs_info = trans->fs_info;
8197         int ret;
8198
8199         BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8200
8201         ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8202                                          ins->offset, 0,
8203                                          root_objectid, owner, offset,
8204                                          ram_bytes, BTRFS_ADD_DELAYED_EXTENT);
8205         return ret;
8206 }
8207
8208 /*
8209  * this is used by the tree logging recovery code.  It records that
8210  * an extent has been allocated and makes sure to clear the free
8211  * space cache bits as well
8212  */
8213 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8214                                    struct btrfs_fs_info *fs_info,
8215                                    u64 root_objectid, u64 owner, u64 offset,
8216                                    struct btrfs_key *ins)
8217 {
8218         int ret;
8219         struct btrfs_block_group_cache *block_group;
8220         struct btrfs_space_info *space_info;
8221
8222         /*
8223          * Mixed block groups will exclude before processing the log so we only
8224          * need to do the exclude dance if this fs isn't mixed.
8225          */
8226         if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8227                 ret = __exclude_logged_extent(fs_info, ins->objectid,
8228                                               ins->offset);
8229                 if (ret)
8230                         return ret;
8231         }
8232
8233         block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8234         if (!block_group)
8235                 return -EINVAL;
8236
8237         space_info = block_group->space_info;
8238         spin_lock(&space_info->lock);
8239         spin_lock(&block_group->lock);
8240         space_info->bytes_reserved += ins->offset;
8241         block_group->reserved += ins->offset;
8242         spin_unlock(&block_group->lock);
8243         spin_unlock(&space_info->lock);
8244
8245         ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8246                                          0, owner, offset, ins, 1);
8247         btrfs_put_block_group(block_group);
8248         return ret;
8249 }
8250
8251 static struct extent_buffer *
8252 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8253                       u64 bytenr, int level)
8254 {
8255         struct btrfs_fs_info *fs_info = root->fs_info;
8256         struct extent_buffer *buf;
8257
8258         buf = btrfs_find_create_tree_block(fs_info, bytenr);
8259         if (IS_ERR(buf))
8260                 return buf;
8261
8262         btrfs_set_header_generation(buf, trans->transid);
8263         btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8264         btrfs_tree_lock(buf);
8265         clean_tree_block(fs_info, buf);
8266         clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8267
8268         btrfs_set_lock_blocking(buf);
8269         set_extent_buffer_uptodate(buf);
8270
8271         if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8272                 buf->log_index = root->log_transid % 2;
8273                 /*
8274                  * we allow two log transactions at a time, use different
8275                  * EXENT bit to differentiate dirty pages.
8276                  */
8277                 if (buf->log_index == 0)
8278                         set_extent_dirty(&root->dirty_log_pages, buf->start,
8279                                         buf->start + buf->len - 1, GFP_NOFS);
8280                 else
8281                         set_extent_new(&root->dirty_log_pages, buf->start,
8282                                         buf->start + buf->len - 1);
8283         } else {
8284                 buf->log_index = -1;
8285                 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8286                          buf->start + buf->len - 1, GFP_NOFS);
8287         }
8288         trans->dirty = true;
8289         /* this returns a buffer locked for blocking */
8290         return buf;
8291 }
8292
8293 static struct btrfs_block_rsv *
8294 use_block_rsv(struct btrfs_trans_handle *trans,
8295               struct btrfs_root *root, u32 blocksize)
8296 {
8297         struct btrfs_fs_info *fs_info = root->fs_info;
8298         struct btrfs_block_rsv *block_rsv;
8299         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8300         int ret;
8301         bool global_updated = false;
8302
8303         block_rsv = get_block_rsv(trans, root);
8304
8305         if (unlikely(block_rsv->size == 0))
8306                 goto try_reserve;
8307 again:
8308         ret = block_rsv_use_bytes(block_rsv, blocksize);
8309         if (!ret)
8310                 return block_rsv;
8311
8312         if (block_rsv->failfast)
8313                 return ERR_PTR(ret);
8314
8315         if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8316                 global_updated = true;
8317                 update_global_block_rsv(fs_info);
8318                 goto again;
8319         }
8320
8321         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8322                 static DEFINE_RATELIMIT_STATE(_rs,
8323                                 DEFAULT_RATELIMIT_INTERVAL * 10,
8324                                 /*DEFAULT_RATELIMIT_BURST*/ 1);
8325                 if (__ratelimit(&_rs))
8326                         WARN(1, KERN_DEBUG
8327                                 "BTRFS: block rsv returned %d\n", ret);
8328         }
8329 try_reserve:
8330         ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8331                                      BTRFS_RESERVE_NO_FLUSH);
8332         if (!ret)
8333                 return block_rsv;
8334         /*
8335          * If we couldn't reserve metadata bytes try and use some from
8336          * the global reserve if its space type is the same as the global
8337          * reservation.
8338          */
8339         if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8340             block_rsv->space_info == global_rsv->space_info) {
8341                 ret = block_rsv_use_bytes(global_rsv, blocksize);
8342                 if (!ret)
8343                         return global_rsv;
8344         }
8345         return ERR_PTR(ret);
8346 }
8347
8348 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8349                             struct btrfs_block_rsv *block_rsv, u32 blocksize)
8350 {
8351         block_rsv_add_bytes(block_rsv, blocksize, 0);
8352         block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8353 }
8354
8355 /*
8356  * finds a free extent and does all the dirty work required for allocation
8357  * returns the tree buffer or an ERR_PTR on error.
8358  */
8359 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8360                                              struct btrfs_root *root,
8361                                              u64 parent, u64 root_objectid,
8362                                              const struct btrfs_disk_key *key,
8363                                              int level, u64 hint,
8364                                              u64 empty_size)
8365 {
8366         struct btrfs_fs_info *fs_info = root->fs_info;
8367         struct btrfs_key ins;
8368         struct btrfs_block_rsv *block_rsv;
8369         struct extent_buffer *buf;
8370         struct btrfs_delayed_extent_op *extent_op;
8371         u64 flags = 0;
8372         int ret;
8373         u32 blocksize = fs_info->nodesize;
8374         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8375
8376 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8377         if (btrfs_is_testing(fs_info)) {
8378                 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8379                                             level);
8380                 if (!IS_ERR(buf))
8381                         root->alloc_bytenr += blocksize;
8382                 return buf;
8383         }
8384 #endif
8385
8386         block_rsv = use_block_rsv(trans, root, blocksize);
8387         if (IS_ERR(block_rsv))
8388                 return ERR_CAST(block_rsv);
8389
8390         ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8391                                    empty_size, hint, &ins, 0, 0);
8392         if (ret)
8393                 goto out_unuse;
8394
8395         buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8396         if (IS_ERR(buf)) {
8397                 ret = PTR_ERR(buf);
8398                 goto out_free_reserved;
8399         }
8400
8401         if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8402                 if (parent == 0)
8403                         parent = ins.objectid;
8404                 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8405         } else
8406                 BUG_ON(parent > 0);
8407
8408         if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8409                 extent_op = btrfs_alloc_delayed_extent_op();
8410                 if (!extent_op) {
8411                         ret = -ENOMEM;
8412                         goto out_free_buf;
8413                 }
8414                 if (key)
8415                         memcpy(&extent_op->key, key, sizeof(extent_op->key));
8416                 else
8417                         memset(&extent_op->key, 0, sizeof(extent_op->key));
8418                 extent_op->flags_to_set = flags;
8419                 extent_op->update_key = skinny_metadata ? false : true;
8420                 extent_op->update_flags = true;
8421                 extent_op->is_data = false;
8422                 extent_op->level = level;
8423
8424                 ret = btrfs_add_delayed_tree_ref(fs_info, trans,
8425                                                  ins.objectid, ins.offset,
8426                                                  parent, root_objectid, level,
8427                                                  BTRFS_ADD_DELAYED_EXTENT,
8428                                                  extent_op);
8429                 if (ret)
8430                         goto out_free_delayed;
8431         }
8432         return buf;
8433
8434 out_free_delayed:
8435         btrfs_free_delayed_extent_op(extent_op);
8436 out_free_buf:
8437         free_extent_buffer(buf);
8438 out_free_reserved:
8439         btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8440 out_unuse:
8441         unuse_block_rsv(fs_info, block_rsv, blocksize);
8442         return ERR_PTR(ret);
8443 }
8444
8445 struct walk_control {
8446         u64 refs[BTRFS_MAX_LEVEL];
8447         u64 flags[BTRFS_MAX_LEVEL];
8448         struct btrfs_key update_progress;
8449         int stage;
8450         int level;
8451         int shared_level;
8452         int update_ref;
8453         int keep_locks;
8454         int reada_slot;
8455         int reada_count;
8456         int for_reloc;
8457 };
8458
8459 #define DROP_REFERENCE  1
8460 #define UPDATE_BACKREF  2
8461
8462 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8463                                      struct btrfs_root *root,
8464                                      struct walk_control *wc,
8465                                      struct btrfs_path *path)
8466 {
8467         struct btrfs_fs_info *fs_info = root->fs_info;
8468         u64 bytenr;
8469         u64 generation;
8470         u64 refs;
8471         u64 flags;
8472         u32 nritems;
8473         struct btrfs_key key;
8474         struct extent_buffer *eb;
8475         int ret;
8476         int slot;
8477         int nread = 0;
8478
8479         if (path->slots[wc->level] < wc->reada_slot) {
8480                 wc->reada_count = wc->reada_count * 2 / 3;
8481                 wc->reada_count = max(wc->reada_count, 2);
8482         } else {
8483                 wc->reada_count = wc->reada_count * 3 / 2;
8484                 wc->reada_count = min_t(int, wc->reada_count,
8485                                         BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8486         }
8487
8488         eb = path->nodes[wc->level];
8489         nritems = btrfs_header_nritems(eb);
8490
8491         for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8492                 if (nread >= wc->reada_count)
8493                         break;
8494
8495                 cond_resched();
8496                 bytenr = btrfs_node_blockptr(eb, slot);
8497                 generation = btrfs_node_ptr_generation(eb, slot);
8498
8499                 if (slot == path->slots[wc->level])
8500                         goto reada;
8501
8502                 if (wc->stage == UPDATE_BACKREF &&
8503                     generation <= root->root_key.offset)
8504                         continue;
8505
8506                 /* We don't lock the tree block, it's OK to be racy here */
8507                 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8508                                                wc->level - 1, 1, &refs,
8509                                                &flags);
8510                 /* We don't care about errors in readahead. */
8511                 if (ret < 0)
8512                         continue;
8513                 BUG_ON(refs == 0);
8514
8515                 if (wc->stage == DROP_REFERENCE) {
8516                         if (refs == 1)
8517                                 goto reada;
8518
8519                         if (wc->level == 1 &&
8520                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8521                                 continue;
8522                         if (!wc->update_ref ||
8523                             generation <= root->root_key.offset)
8524                                 continue;
8525                         btrfs_node_key_to_cpu(eb, &key, slot);
8526                         ret = btrfs_comp_cpu_keys(&key,
8527                                                   &wc->update_progress);
8528                         if (ret < 0)
8529                                 continue;
8530                 } else {
8531                         if (wc->level == 1 &&
8532                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8533                                 continue;
8534                 }
8535 reada:
8536                 readahead_tree_block(fs_info, bytenr);
8537                 nread++;
8538         }
8539         wc->reada_slot = slot;
8540 }
8541
8542 /*
8543  * helper to process tree block while walking down the tree.
8544  *
8545  * when wc->stage == UPDATE_BACKREF, this function updates
8546  * back refs for pointers in the block.
8547  *
8548  * NOTE: return value 1 means we should stop walking down.
8549  */
8550 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8551                                    struct btrfs_root *root,
8552                                    struct btrfs_path *path,
8553                                    struct walk_control *wc, int lookup_info)
8554 {
8555         struct btrfs_fs_info *fs_info = root->fs_info;
8556         int level = wc->level;
8557         struct extent_buffer *eb = path->nodes[level];
8558         u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8559         int ret;
8560
8561         if (wc->stage == UPDATE_BACKREF &&
8562             btrfs_header_owner(eb) != root->root_key.objectid)
8563                 return 1;
8564
8565         /*
8566          * when reference count of tree block is 1, it won't increase
8567          * again. once full backref flag is set, we never clear it.
8568          */
8569         if (lookup_info &&
8570             ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8571              (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8572                 BUG_ON(!path->locks[level]);
8573                 ret = btrfs_lookup_extent_info(trans, fs_info,
8574                                                eb->start, level, 1,
8575                                                &wc->refs[level],
8576                                                &wc->flags[level]);
8577                 BUG_ON(ret == -ENOMEM);
8578                 if (ret)
8579                         return ret;
8580                 BUG_ON(wc->refs[level] == 0);
8581         }
8582
8583         if (wc->stage == DROP_REFERENCE) {
8584                 if (wc->refs[level] > 1)
8585                         return 1;
8586
8587                 if (path->locks[level] && !wc->keep_locks) {
8588                         btrfs_tree_unlock_rw(eb, path->locks[level]);
8589                         path->locks[level] = 0;
8590                 }
8591                 return 0;
8592         }
8593
8594         /* wc->stage == UPDATE_BACKREF */
8595         if (!(wc->flags[level] & flag)) {
8596                 BUG_ON(!path->locks[level]);
8597                 ret = btrfs_inc_ref(trans, root, eb, 1);
8598                 BUG_ON(ret); /* -ENOMEM */
8599                 ret = btrfs_dec_ref(trans, root, eb, 0);
8600                 BUG_ON(ret); /* -ENOMEM */
8601                 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8602                                                   eb->len, flag,
8603                                                   btrfs_header_level(eb), 0);
8604                 BUG_ON(ret); /* -ENOMEM */
8605                 wc->flags[level] |= flag;
8606         }
8607
8608         /*
8609          * the block is shared by multiple trees, so it's not good to
8610          * keep the tree lock
8611          */
8612         if (path->locks[level] && level > 0) {
8613                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8614                 path->locks[level] = 0;
8615         }
8616         return 0;
8617 }
8618
8619 /*
8620  * helper to process tree block pointer.
8621  *
8622  * when wc->stage == DROP_REFERENCE, this function checks
8623  * reference count of the block pointed to. if the block
8624  * is shared and we need update back refs for the subtree
8625  * rooted at the block, this function changes wc->stage to
8626  * UPDATE_BACKREF. if the block is shared and there is no
8627  * need to update back, this function drops the reference
8628  * to the block.
8629  *
8630  * NOTE: return value 1 means we should stop walking down.
8631  */
8632 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8633                                  struct btrfs_root *root,
8634                                  struct btrfs_path *path,
8635                                  struct walk_control *wc, int *lookup_info)
8636 {
8637         struct btrfs_fs_info *fs_info = root->fs_info;
8638         u64 bytenr;
8639         u64 generation;
8640         u64 parent;
8641         u32 blocksize;
8642         struct btrfs_key key;
8643         struct extent_buffer *next;
8644         int level = wc->level;
8645         int reada = 0;
8646         int ret = 0;
8647         bool need_account = false;
8648
8649         generation = btrfs_node_ptr_generation(path->nodes[level],
8650                                                path->slots[level]);
8651         /*
8652          * if the lower level block was created before the snapshot
8653          * was created, we know there is no need to update back refs
8654          * for the subtree
8655          */
8656         if (wc->stage == UPDATE_BACKREF &&
8657             generation <= root->root_key.offset) {
8658                 *lookup_info = 1;
8659                 return 1;
8660         }
8661
8662         bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8663         blocksize = fs_info->nodesize;
8664
8665         next = find_extent_buffer(fs_info, bytenr);
8666         if (!next) {
8667                 next = btrfs_find_create_tree_block(fs_info, bytenr);
8668                 if (IS_ERR(next))
8669                         return PTR_ERR(next);
8670
8671                 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8672                                                level - 1);
8673                 reada = 1;
8674         }
8675         btrfs_tree_lock(next);
8676         btrfs_set_lock_blocking(next);
8677
8678         ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8679                                        &wc->refs[level - 1],
8680                                        &wc->flags[level - 1]);
8681         if (ret < 0)
8682                 goto out_unlock;
8683
8684         if (unlikely(wc->refs[level - 1] == 0)) {
8685                 btrfs_err(fs_info, "Missing references.");
8686                 ret = -EIO;
8687                 goto out_unlock;
8688         }
8689         *lookup_info = 0;
8690
8691         if (wc->stage == DROP_REFERENCE) {
8692                 if (wc->refs[level - 1] > 1) {
8693                         need_account = true;
8694                         if (level == 1 &&
8695                             (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8696                                 goto skip;
8697
8698                         if (!wc->update_ref ||
8699                             generation <= root->root_key.offset)
8700                                 goto skip;
8701
8702                         btrfs_node_key_to_cpu(path->nodes[level], &key,
8703                                               path->slots[level]);
8704                         ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8705                         if (ret < 0)
8706                                 goto skip;
8707
8708                         wc->stage = UPDATE_BACKREF;
8709                         wc->shared_level = level - 1;
8710                 }
8711         } else {
8712                 if (level == 1 &&
8713                     (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8714                         goto skip;
8715         }
8716
8717         if (!btrfs_buffer_uptodate(next, generation, 0)) {
8718                 btrfs_tree_unlock(next);
8719                 free_extent_buffer(next);
8720                 next = NULL;
8721                 *lookup_info = 1;
8722         }
8723
8724         if (!next) {
8725                 if (reada && level == 1)
8726                         reada_walk_down(trans, root, wc, path);
8727                 next = read_tree_block(fs_info, bytenr, generation);
8728                 if (IS_ERR(next)) {
8729                         return PTR_ERR(next);
8730                 } else if (!extent_buffer_uptodate(next)) {
8731                         free_extent_buffer(next);
8732                         return -EIO;
8733                 }
8734                 btrfs_tree_lock(next);
8735                 btrfs_set_lock_blocking(next);
8736         }
8737
8738         level--;
8739         ASSERT(level == btrfs_header_level(next));
8740         if (level != btrfs_header_level(next)) {
8741                 btrfs_err(root->fs_info, "mismatched level");
8742                 ret = -EIO;
8743                 goto out_unlock;
8744         }
8745         path->nodes[level] = next;
8746         path->slots[level] = 0;
8747         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8748         wc->level = level;
8749         if (wc->level == 1)
8750                 wc->reada_slot = 0;
8751         return 0;
8752 skip:
8753         wc->refs[level - 1] = 0;
8754         wc->flags[level - 1] = 0;
8755         if (wc->stage == DROP_REFERENCE) {
8756                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8757                         parent = path->nodes[level]->start;
8758                 } else {
8759                         ASSERT(root->root_key.objectid ==
8760                                btrfs_header_owner(path->nodes[level]));
8761                         if (root->root_key.objectid !=
8762                             btrfs_header_owner(path->nodes[level])) {
8763                                 btrfs_err(root->fs_info,
8764                                                 "mismatched block owner");
8765                                 ret = -EIO;
8766                                 goto out_unlock;
8767                         }
8768                         parent = 0;
8769                 }
8770
8771                 if (need_account) {
8772                         ret = btrfs_qgroup_trace_subtree(trans, root, next,
8773                                                          generation, level - 1);
8774                         if (ret) {
8775                                 btrfs_err_rl(fs_info,
8776                                              "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8777                                              ret);
8778                         }
8779                 }
8780                 ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize,
8781                                         parent, root->root_key.objectid,
8782                                         level - 1, 0);
8783                 if (ret)
8784                         goto out_unlock;
8785         }
8786
8787         *lookup_info = 1;
8788         ret = 1;
8789
8790 out_unlock:
8791         btrfs_tree_unlock(next);
8792         free_extent_buffer(next);
8793
8794         return ret;
8795 }
8796
8797 /*
8798  * helper to process tree block while walking up the tree.
8799  *
8800  * when wc->stage == DROP_REFERENCE, this function drops
8801  * reference count on the block.
8802  *
8803  * when wc->stage == UPDATE_BACKREF, this function changes
8804  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8805  * to UPDATE_BACKREF previously while processing the block.
8806  *
8807  * NOTE: return value 1 means we should stop walking up.
8808  */
8809 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8810                                  struct btrfs_root *root,
8811                                  struct btrfs_path *path,
8812                                  struct walk_control *wc)
8813 {
8814         struct btrfs_fs_info *fs_info = root->fs_info;
8815         int ret;
8816         int level = wc->level;
8817         struct extent_buffer *eb = path->nodes[level];
8818         u64 parent = 0;
8819
8820         if (wc->stage == UPDATE_BACKREF) {
8821                 BUG_ON(wc->shared_level < level);
8822                 if (level < wc->shared_level)
8823                         goto out;
8824
8825                 ret = find_next_key(path, level + 1, &wc->update_progress);
8826                 if (ret > 0)
8827                         wc->update_ref = 0;
8828
8829                 wc->stage = DROP_REFERENCE;
8830                 wc->shared_level = -1;
8831                 path->slots[level] = 0;
8832
8833                 /*
8834                  * check reference count again if the block isn't locked.
8835                  * we should start walking down the tree again if reference
8836                  * count is one.
8837                  */
8838                 if (!path->locks[level]) {
8839                         BUG_ON(level == 0);
8840                         btrfs_tree_lock(eb);
8841                         btrfs_set_lock_blocking(eb);
8842                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8843
8844                         ret = btrfs_lookup_extent_info(trans, fs_info,
8845                                                        eb->start, level, 1,
8846                                                        &wc->refs[level],
8847                                                        &wc->flags[level]);
8848                         if (ret < 0) {
8849                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8850                                 path->locks[level] = 0;
8851                                 return ret;
8852                         }
8853                         BUG_ON(wc->refs[level] == 0);
8854                         if (wc->refs[level] == 1) {
8855                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8856                                 path->locks[level] = 0;
8857                                 return 1;
8858                         }
8859                 }
8860         }
8861
8862         /* wc->stage == DROP_REFERENCE */
8863         BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8864
8865         if (wc->refs[level] == 1) {
8866                 if (level == 0) {
8867                         if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8868                                 ret = btrfs_dec_ref(trans, root, eb, 1);
8869                         else
8870                                 ret = btrfs_dec_ref(trans, root, eb, 0);
8871                         BUG_ON(ret); /* -ENOMEM */
8872                         ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8873                         if (ret) {
8874                                 btrfs_err_rl(fs_info,
8875                                              "error %d accounting leaf items. Quota is out of sync, rescan required.",
8876                                              ret);
8877                         }
8878                 }
8879                 /* make block locked assertion in clean_tree_block happy */
8880                 if (!path->locks[level] &&
8881                     btrfs_header_generation(eb) == trans->transid) {
8882                         btrfs_tree_lock(eb);
8883                         btrfs_set_lock_blocking(eb);
8884                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8885                 }
8886                 clean_tree_block(fs_info, eb);
8887         }
8888
8889         if (eb == root->node) {
8890                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8891                         parent = eb->start;
8892                 else
8893                         BUG_ON(root->root_key.objectid !=
8894                                btrfs_header_owner(eb));
8895         } else {
8896                 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8897                         parent = path->nodes[level + 1]->start;
8898                 else
8899                         BUG_ON(root->root_key.objectid !=
8900                                btrfs_header_owner(path->nodes[level + 1]));
8901         }
8902
8903         btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8904 out:
8905         wc->refs[level] = 0;
8906         wc->flags[level] = 0;
8907         return 0;
8908 }
8909
8910 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8911                                    struct btrfs_root *root,
8912                                    struct btrfs_path *path,
8913                                    struct walk_control *wc)
8914 {
8915         int level = wc->level;
8916         int lookup_info = 1;
8917         int ret;
8918
8919         while (level >= 0) {
8920                 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8921                 if (ret > 0)
8922                         break;
8923
8924                 if (level == 0)
8925                         break;
8926
8927                 if (path->slots[level] >=
8928                     btrfs_header_nritems(path->nodes[level]))
8929                         break;
8930
8931                 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8932                 if (ret > 0) {
8933                         path->slots[level]++;
8934                         continue;
8935                 } else if (ret < 0)
8936                         return ret;
8937                 level = wc->level;
8938         }
8939         return 0;
8940 }
8941
8942 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8943                                  struct btrfs_root *root,
8944                                  struct btrfs_path *path,
8945                                  struct walk_control *wc, int max_level)
8946 {
8947         int level = wc->level;
8948         int ret;
8949
8950         path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8951         while (level < max_level && path->nodes[level]) {
8952                 wc->level = level;
8953                 if (path->slots[level] + 1 <
8954                     btrfs_header_nritems(path->nodes[level])) {
8955                         path->slots[level]++;
8956                         return 0;
8957                 } else {
8958                         ret = walk_up_proc(trans, root, path, wc);
8959                         if (ret > 0)
8960                                 return 0;
8961
8962                         if (path->locks[level]) {
8963                                 btrfs_tree_unlock_rw(path->nodes[level],
8964                                                      path->locks[level]);
8965                                 path->locks[level] = 0;
8966                         }
8967                         free_extent_buffer(path->nodes[level]);
8968                         path->nodes[level] = NULL;
8969                         level++;
8970                 }
8971         }
8972         return 1;
8973 }
8974
8975 /*
8976  * drop a subvolume tree.
8977  *
8978  * this function traverses the tree freeing any blocks that only
8979  * referenced by the tree.
8980  *
8981  * when a shared tree block is found. this function decreases its
8982  * reference count by one. if update_ref is true, this function
8983  * also make sure backrefs for the shared block and all lower level
8984  * blocks are properly updated.
8985  *
8986  * If called with for_reloc == 0, may exit early with -EAGAIN
8987  */
8988 int btrfs_drop_snapshot(struct btrfs_root *root,
8989                          struct btrfs_block_rsv *block_rsv, int update_ref,
8990                          int for_reloc)
8991 {
8992         struct btrfs_fs_info *fs_info = root->fs_info;
8993         struct btrfs_path *path;
8994         struct btrfs_trans_handle *trans;
8995         struct btrfs_root *tree_root = fs_info->tree_root;
8996         struct btrfs_root_item *root_item = &root->root_item;
8997         struct walk_control *wc;
8998         struct btrfs_key key;
8999         int err = 0;
9000         int ret;
9001         int level;
9002         bool root_dropped = false;
9003
9004         btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9005
9006         path = btrfs_alloc_path();
9007         if (!path) {
9008                 err = -ENOMEM;
9009                 goto out;
9010         }
9011
9012         wc = kzalloc(sizeof(*wc), GFP_NOFS);
9013         if (!wc) {
9014                 btrfs_free_path(path);
9015                 err = -ENOMEM;
9016                 goto out;
9017         }
9018
9019         trans = btrfs_start_transaction(tree_root, 0);
9020         if (IS_ERR(trans)) {
9021                 err = PTR_ERR(trans);
9022                 goto out_free;
9023         }
9024
9025         if (block_rsv)
9026                 trans->block_rsv = block_rsv;
9027
9028         if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9029                 level = btrfs_header_level(root->node);
9030                 path->nodes[level] = btrfs_lock_root_node(root);
9031                 btrfs_set_lock_blocking(path->nodes[level]);
9032                 path->slots[level] = 0;
9033                 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9034                 memset(&wc->update_progress, 0,
9035                        sizeof(wc->update_progress));
9036         } else {
9037                 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9038                 memcpy(&wc->update_progress, &key,
9039                        sizeof(wc->update_progress));
9040
9041                 level = root_item->drop_level;
9042                 BUG_ON(level == 0);
9043                 path->lowest_level = level;
9044                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9045                 path->lowest_level = 0;
9046                 if (ret < 0) {
9047                         err = ret;
9048                         goto out_end_trans;
9049                 }
9050                 WARN_ON(ret > 0);
9051
9052                 /*
9053                  * unlock our path, this is safe because only this
9054                  * function is allowed to delete this snapshot
9055                  */
9056                 btrfs_unlock_up_safe(path, 0);
9057
9058                 level = btrfs_header_level(root->node);
9059                 while (1) {
9060                         btrfs_tree_lock(path->nodes[level]);
9061                         btrfs_set_lock_blocking(path->nodes[level]);
9062                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9063
9064                         ret = btrfs_lookup_extent_info(trans, fs_info,
9065                                                 path->nodes[level]->start,
9066                                                 level, 1, &wc->refs[level],
9067                                                 &wc->flags[level]);
9068                         if (ret < 0) {
9069                                 err = ret;
9070                                 goto out_end_trans;
9071                         }
9072                         BUG_ON(wc->refs[level] == 0);
9073
9074                         if (level == root_item->drop_level)
9075                                 break;
9076
9077                         btrfs_tree_unlock(path->nodes[level]);
9078                         path->locks[level] = 0;
9079                         WARN_ON(wc->refs[level] != 1);
9080                         level--;
9081                 }
9082         }
9083
9084         wc->level = level;
9085         wc->shared_level = -1;
9086         wc->stage = DROP_REFERENCE;
9087         wc->update_ref = update_ref;
9088         wc->keep_locks = 0;
9089         wc->for_reloc = for_reloc;
9090         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9091
9092         while (1) {
9093
9094                 ret = walk_down_tree(trans, root, path, wc);
9095                 if (ret < 0) {
9096                         err = ret;
9097                         break;
9098                 }
9099
9100                 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9101                 if (ret < 0) {
9102                         err = ret;
9103                         break;
9104                 }
9105
9106                 if (ret > 0) {
9107                         BUG_ON(wc->stage != DROP_REFERENCE);
9108                         break;
9109                 }
9110
9111                 if (wc->stage == DROP_REFERENCE) {
9112                         level = wc->level;
9113                         btrfs_node_key(path->nodes[level],
9114                                        &root_item->drop_progress,
9115                                        path->slots[level]);
9116                         root_item->drop_level = level;
9117                 }
9118
9119                 BUG_ON(wc->level == 0);
9120                 if (btrfs_should_end_transaction(trans) ||
9121                     (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9122                         ret = btrfs_update_root(trans, tree_root,
9123                                                 &root->root_key,
9124                                                 root_item);
9125                         if (ret) {
9126                                 btrfs_abort_transaction(trans, ret);
9127                                 err = ret;
9128                                 goto out_end_trans;
9129                         }
9130
9131                         btrfs_end_transaction_throttle(trans);
9132                         if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9133                                 btrfs_debug(fs_info,
9134                                             "drop snapshot early exit");
9135                                 err = -EAGAIN;
9136                                 goto out_free;
9137                         }
9138
9139                         trans = btrfs_start_transaction(tree_root, 0);
9140                         if (IS_ERR(trans)) {
9141                                 err = PTR_ERR(trans);
9142                                 goto out_free;
9143                         }
9144                         if (block_rsv)
9145                                 trans->block_rsv = block_rsv;
9146                 }
9147         }
9148         btrfs_release_path(path);
9149         if (err)
9150                 goto out_end_trans;
9151
9152         ret = btrfs_del_root(trans, tree_root, &root->root_key);
9153         if (ret) {
9154                 btrfs_abort_transaction(trans, ret);
9155                 goto out_end_trans;
9156         }
9157
9158         if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9159                 ret = btrfs_find_root(tree_root, &root->root_key, path,
9160                                       NULL, NULL);
9161                 if (ret < 0) {
9162                         btrfs_abort_transaction(trans, ret);
9163                         err = ret;
9164                         goto out_end_trans;
9165                 } else if (ret > 0) {
9166                         /* if we fail to delete the orphan item this time
9167                          * around, it'll get picked up the next time.
9168                          *
9169                          * The most common failure here is just -ENOENT.
9170                          */
9171                         btrfs_del_orphan_item(trans, tree_root,
9172                                               root->root_key.objectid);
9173                 }
9174         }
9175
9176         if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9177                 btrfs_add_dropped_root(trans, root);
9178         } else {
9179                 free_extent_buffer(root->node);
9180                 free_extent_buffer(root->commit_root);
9181                 btrfs_put_fs_root(root);
9182         }
9183         root_dropped = true;
9184 out_end_trans:
9185         btrfs_end_transaction_throttle(trans);
9186 out_free:
9187         kfree(wc);
9188         btrfs_free_path(path);
9189 out:
9190         /*
9191          * So if we need to stop dropping the snapshot for whatever reason we
9192          * need to make sure to add it back to the dead root list so that we
9193          * keep trying to do the work later.  This also cleans up roots if we
9194          * don't have it in the radix (like when we recover after a power fail
9195          * or unmount) so we don't leak memory.
9196          */
9197         if (!for_reloc && root_dropped == false)
9198                 btrfs_add_dead_root(root);
9199         if (err && err != -EAGAIN)
9200                 btrfs_handle_fs_error(fs_info, err, NULL);
9201         return err;
9202 }
9203
9204 /*
9205  * drop subtree rooted at tree block 'node'.
9206  *
9207  * NOTE: this function will unlock and release tree block 'node'
9208  * only used by relocation code
9209  */
9210 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9211                         struct btrfs_root *root,
9212                         struct extent_buffer *node,
9213                         struct extent_buffer *parent)
9214 {
9215         struct btrfs_fs_info *fs_info = root->fs_info;
9216         struct btrfs_path *path;
9217         struct walk_control *wc;
9218         int level;
9219         int parent_level;
9220         int ret = 0;
9221         int wret;
9222
9223         BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9224
9225         path = btrfs_alloc_path();
9226         if (!path)
9227                 return -ENOMEM;
9228
9229         wc = kzalloc(sizeof(*wc), GFP_NOFS);
9230         if (!wc) {
9231                 btrfs_free_path(path);
9232                 return -ENOMEM;
9233         }
9234
9235         btrfs_assert_tree_locked(parent);
9236         parent_level = btrfs_header_level(parent);
9237         extent_buffer_get(parent);
9238         path->nodes[parent_level] = parent;
9239         path->slots[parent_level] = btrfs_header_nritems(parent);
9240
9241         btrfs_assert_tree_locked(node);
9242         level = btrfs_header_level(node);
9243         path->nodes[level] = node;
9244         path->slots[level] = 0;
9245         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9246
9247         wc->refs[parent_level] = 1;
9248         wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9249         wc->level = level;
9250         wc->shared_level = -1;
9251         wc->stage = DROP_REFERENCE;
9252         wc->update_ref = 0;
9253         wc->keep_locks = 1;
9254         wc->for_reloc = 1;
9255         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9256
9257         while (1) {
9258                 wret = walk_down_tree(trans, root, path, wc);
9259                 if (wret < 0) {
9260                         ret = wret;
9261                         break;
9262                 }
9263
9264                 wret = walk_up_tree(trans, root, path, wc, parent_level);
9265                 if (wret < 0)
9266                         ret = wret;
9267                 if (wret != 0)
9268                         break;
9269         }
9270
9271         kfree(wc);
9272         btrfs_free_path(path);
9273         return ret;
9274 }
9275
9276 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9277 {
9278         u64 num_devices;
9279         u64 stripped;
9280
9281         /*
9282          * if restripe for this chunk_type is on pick target profile and
9283          * return, otherwise do the usual balance
9284          */
9285         stripped = get_restripe_target(fs_info, flags);
9286         if (stripped)
9287                 return extended_to_chunk(stripped);
9288
9289         num_devices = fs_info->fs_devices->rw_devices;
9290
9291         stripped = BTRFS_BLOCK_GROUP_RAID0 |
9292                 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9293                 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9294
9295         if (num_devices == 1) {
9296                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9297                 stripped = flags & ~stripped;
9298
9299                 /* turn raid0 into single device chunks */
9300                 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9301                         return stripped;
9302
9303                 /* turn mirroring into duplication */
9304                 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9305                              BTRFS_BLOCK_GROUP_RAID10))
9306                         return stripped | BTRFS_BLOCK_GROUP_DUP;
9307         } else {
9308                 /* they already had raid on here, just return */
9309                 if (flags & stripped)
9310                         return flags;
9311
9312                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9313                 stripped = flags & ~stripped;
9314
9315                 /* switch duplicated blocks with raid1 */
9316                 if (flags & BTRFS_BLOCK_GROUP_DUP)
9317                         return stripped | BTRFS_BLOCK_GROUP_RAID1;
9318
9319                 /* this is drive concat, leave it alone */
9320         }
9321
9322         return flags;
9323 }
9324
9325 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9326 {
9327         struct btrfs_space_info *sinfo = cache->space_info;
9328         u64 num_bytes;
9329         u64 min_allocable_bytes;
9330         int ret = -ENOSPC;
9331
9332         /*
9333          * We need some metadata space and system metadata space for
9334          * allocating chunks in some corner cases until we force to set
9335          * it to be readonly.
9336          */
9337         if ((sinfo->flags &
9338              (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9339             !force)
9340                 min_allocable_bytes = SZ_1M;
9341         else
9342                 min_allocable_bytes = 0;
9343
9344         spin_lock(&sinfo->lock);
9345         spin_lock(&cache->lock);
9346
9347         if (cache->ro) {
9348                 cache->ro++;
9349                 ret = 0;
9350                 goto out;
9351         }
9352
9353         num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9354                     cache->bytes_super - btrfs_block_group_used(&cache->item);
9355
9356         if (btrfs_space_info_used(sinfo, true) + num_bytes +
9357             min_allocable_bytes <= sinfo->total_bytes) {
9358                 sinfo->bytes_readonly += num_bytes;
9359                 cache->ro++;
9360                 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9361                 ret = 0;
9362         }
9363 out:
9364         spin_unlock(&cache->lock);
9365         spin_unlock(&sinfo->lock);
9366         return ret;
9367 }
9368
9369 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9370                              struct btrfs_block_group_cache *cache)
9371
9372 {
9373         struct btrfs_trans_handle *trans;
9374         u64 alloc_flags;
9375         int ret;
9376
9377 again:
9378         trans = btrfs_join_transaction(fs_info->extent_root);
9379         if (IS_ERR(trans))
9380                 return PTR_ERR(trans);
9381
9382         /*
9383          * we're not allowed to set block groups readonly after the dirty
9384          * block groups cache has started writing.  If it already started,
9385          * back off and let this transaction commit
9386          */
9387         mutex_lock(&fs_info->ro_block_group_mutex);
9388         if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9389                 u64 transid = trans->transid;
9390
9391                 mutex_unlock(&fs_info->ro_block_group_mutex);
9392                 btrfs_end_transaction(trans);
9393
9394                 ret = btrfs_wait_for_commit(fs_info, transid);
9395                 if (ret)
9396                         return ret;
9397                 goto again;
9398         }
9399
9400         /*
9401          * if we are changing raid levels, try to allocate a corresponding
9402          * block group with the new raid level.
9403          */
9404         alloc_flags = update_block_group_flags(fs_info, cache->flags);
9405         if (alloc_flags != cache->flags) {
9406                 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9407                                      CHUNK_ALLOC_FORCE);
9408                 /*
9409                  * ENOSPC is allowed here, we may have enough space
9410                  * already allocated at the new raid level to
9411                  * carry on
9412                  */
9413                 if (ret == -ENOSPC)
9414                         ret = 0;
9415                 if (ret < 0)
9416                         goto out;
9417         }
9418
9419         ret = inc_block_group_ro(cache, 0);
9420         if (!ret)
9421                 goto out;
9422         alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9423         ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9424                              CHUNK_ALLOC_FORCE);
9425         if (ret < 0)
9426                 goto out;
9427         ret = inc_block_group_ro(cache, 0);
9428 out:
9429         if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9430                 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9431                 mutex_lock(&fs_info->chunk_mutex);
9432                 check_system_chunk(trans, fs_info, alloc_flags);
9433                 mutex_unlock(&fs_info->chunk_mutex);
9434         }
9435         mutex_unlock(&fs_info->ro_block_group_mutex);
9436
9437         btrfs_end_transaction(trans);
9438         return ret;
9439 }
9440
9441 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9442                             struct btrfs_fs_info *fs_info, u64 type)
9443 {
9444         u64 alloc_flags = get_alloc_profile(fs_info, type);
9445
9446         return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9447 }
9448
9449 /*
9450  * helper to account the unused space of all the readonly block group in the
9451  * space_info. takes mirrors into account.
9452  */
9453 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9454 {
9455         struct btrfs_block_group_cache *block_group;
9456         u64 free_bytes = 0;
9457         int factor;
9458
9459         /* It's df, we don't care if it's racy */
9460         if (list_empty(&sinfo->ro_bgs))
9461                 return 0;
9462
9463         spin_lock(&sinfo->lock);
9464         list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9465                 spin_lock(&block_group->lock);
9466
9467                 if (!block_group->ro) {
9468                         spin_unlock(&block_group->lock);
9469                         continue;
9470                 }
9471
9472                 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9473                                           BTRFS_BLOCK_GROUP_RAID10 |
9474                                           BTRFS_BLOCK_GROUP_DUP))
9475                         factor = 2;
9476                 else
9477                         factor = 1;
9478
9479                 free_bytes += (block_group->key.offset -
9480                                btrfs_block_group_used(&block_group->item)) *
9481                                factor;
9482
9483                 spin_unlock(&block_group->lock);
9484         }
9485         spin_unlock(&sinfo->lock);
9486
9487         return free_bytes;
9488 }
9489
9490 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9491 {
9492         struct btrfs_space_info *sinfo = cache->space_info;
9493         u64 num_bytes;
9494
9495         BUG_ON(!cache->ro);
9496
9497         spin_lock(&sinfo->lock);
9498         spin_lock(&cache->lock);
9499         if (!--cache->ro) {
9500                 num_bytes = cache->key.offset - cache->reserved -
9501                             cache->pinned - cache->bytes_super -
9502                             btrfs_block_group_used(&cache->item);
9503                 sinfo->bytes_readonly -= num_bytes;
9504                 list_del_init(&cache->ro_list);
9505         }
9506         spin_unlock(&cache->lock);
9507         spin_unlock(&sinfo->lock);
9508 }
9509
9510 /*
9511  * checks to see if its even possible to relocate this block group.
9512  *
9513  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9514  * ok to go ahead and try.
9515  */
9516 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9517 {
9518         struct btrfs_root *root = fs_info->extent_root;
9519         struct btrfs_block_group_cache *block_group;
9520         struct btrfs_space_info *space_info;
9521         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9522         struct btrfs_device *device;
9523         struct btrfs_trans_handle *trans;
9524         u64 min_free;
9525         u64 dev_min = 1;
9526         u64 dev_nr = 0;
9527         u64 target;
9528         int debug;
9529         int index;
9530         int full = 0;
9531         int ret = 0;
9532
9533         debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9534
9535         block_group = btrfs_lookup_block_group(fs_info, bytenr);
9536
9537         /* odd, couldn't find the block group, leave it alone */
9538         if (!block_group) {
9539                 if (debug)
9540                         btrfs_warn(fs_info,
9541                                    "can't find block group for bytenr %llu",
9542                                    bytenr);
9543                 return -1;
9544         }
9545
9546         min_free = btrfs_block_group_used(&block_group->item);
9547
9548         /* no bytes used, we're good */
9549         if (!min_free)
9550                 goto out;
9551
9552         space_info = block_group->space_info;
9553         spin_lock(&space_info->lock);
9554
9555         full = space_info->full;
9556
9557         /*
9558          * if this is the last block group we have in this space, we can't
9559          * relocate it unless we're able to allocate a new chunk below.
9560          *
9561          * Otherwise, we need to make sure we have room in the space to handle
9562          * all of the extents from this block group.  If we can, we're good
9563          */
9564         if ((space_info->total_bytes != block_group->key.offset) &&
9565             (btrfs_space_info_used(space_info, false) + min_free <
9566              space_info->total_bytes)) {
9567                 spin_unlock(&space_info->lock);
9568                 goto out;
9569         }
9570         spin_unlock(&space_info->lock);
9571
9572         /*
9573          * ok we don't have enough space, but maybe we have free space on our
9574          * devices to allocate new chunks for relocation, so loop through our
9575          * alloc devices and guess if we have enough space.  if this block
9576          * group is going to be restriped, run checks against the target
9577          * profile instead of the current one.
9578          */
9579         ret = -1;
9580
9581         /*
9582          * index:
9583          *      0: raid10
9584          *      1: raid1
9585          *      2: dup
9586          *      3: raid0
9587          *      4: single
9588          */
9589         target = get_restripe_target(fs_info, block_group->flags);
9590         if (target) {
9591                 index = __get_raid_index(extended_to_chunk(target));
9592         } else {
9593                 /*
9594                  * this is just a balance, so if we were marked as full
9595                  * we know there is no space for a new chunk
9596                  */
9597                 if (full) {
9598                         if (debug)
9599                                 btrfs_warn(fs_info,
9600                                            "no space to alloc new chunk for block group %llu",
9601                                            block_group->key.objectid);
9602                         goto out;
9603                 }
9604
9605                 index = get_block_group_index(block_group);
9606         }
9607
9608         if (index == BTRFS_RAID_RAID10) {
9609                 dev_min = 4;
9610                 /* Divide by 2 */
9611                 min_free >>= 1;
9612         } else if (index == BTRFS_RAID_RAID1) {
9613                 dev_min = 2;
9614         } else if (index == BTRFS_RAID_DUP) {
9615                 /* Multiply by 2 */
9616                 min_free <<= 1;
9617         } else if (index == BTRFS_RAID_RAID0) {
9618                 dev_min = fs_devices->rw_devices;
9619                 min_free = div64_u64(min_free, dev_min);
9620         }
9621
9622         /* We need to do this so that we can look at pending chunks */
9623         trans = btrfs_join_transaction(root);
9624         if (IS_ERR(trans)) {
9625                 ret = PTR_ERR(trans);
9626                 goto out;
9627         }
9628
9629         mutex_lock(&fs_info->chunk_mutex);
9630         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9631                 u64 dev_offset;
9632
9633                 /*
9634                  * check to make sure we can actually find a chunk with enough
9635                  * space to fit our block group in.
9636                  */
9637                 if (device->total_bytes > device->bytes_used + min_free &&
9638                     !device->is_tgtdev_for_dev_replace) {
9639                         ret = find_free_dev_extent(trans, device, min_free,
9640                                                    &dev_offset, NULL);
9641                         if (!ret)
9642                                 dev_nr++;
9643
9644                         if (dev_nr >= dev_min)
9645                                 break;
9646
9647                         ret = -1;
9648                 }
9649         }
9650         if (debug && ret == -1)
9651                 btrfs_warn(fs_info,
9652                            "no space to allocate a new chunk for block group %llu",
9653                            block_group->key.objectid);
9654         mutex_unlock(&fs_info->chunk_mutex);
9655         btrfs_end_transaction(trans);
9656 out:
9657         btrfs_put_block_group(block_group);
9658         return ret;
9659 }
9660
9661 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9662                                   struct btrfs_path *path,
9663                                   struct btrfs_key *key)
9664 {
9665         struct btrfs_root *root = fs_info->extent_root;
9666         int ret = 0;
9667         struct btrfs_key found_key;
9668         struct extent_buffer *leaf;
9669         int slot;
9670
9671         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9672         if (ret < 0)
9673                 goto out;
9674
9675         while (1) {
9676                 slot = path->slots[0];
9677                 leaf = path->nodes[0];
9678                 if (slot >= btrfs_header_nritems(leaf)) {
9679                         ret = btrfs_next_leaf(root, path);
9680                         if (ret == 0)
9681                                 continue;
9682                         if (ret < 0)
9683                                 goto out;
9684                         break;
9685                 }
9686                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9687
9688                 if (found_key.objectid >= key->objectid &&
9689                     found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9690                         struct extent_map_tree *em_tree;
9691                         struct extent_map *em;
9692
9693                         em_tree = &root->fs_info->mapping_tree.map_tree;
9694                         read_lock(&em_tree->lock);
9695                         em = lookup_extent_mapping(em_tree, found_key.objectid,
9696                                                    found_key.offset);
9697                         read_unlock(&em_tree->lock);
9698                         if (!em) {
9699                                 btrfs_err(fs_info,
9700                         "logical %llu len %llu found bg but no related chunk",
9701                                           found_key.objectid, found_key.offset);
9702                                 ret = -ENOENT;
9703                         } else {
9704                                 ret = 0;
9705                         }
9706                         free_extent_map(em);
9707                         goto out;
9708                 }
9709                 path->slots[0]++;
9710         }
9711 out:
9712         return ret;
9713 }
9714
9715 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9716 {
9717         struct btrfs_block_group_cache *block_group;
9718         u64 last = 0;
9719
9720         while (1) {
9721                 struct inode *inode;
9722
9723                 block_group = btrfs_lookup_first_block_group(info, last);
9724                 while (block_group) {
9725                         spin_lock(&block_group->lock);
9726                         if (block_group->iref)
9727                                 break;
9728                         spin_unlock(&block_group->lock);
9729                         block_group = next_block_group(info, block_group);
9730                 }
9731                 if (!block_group) {
9732                         if (last == 0)
9733                                 break;
9734                         last = 0;
9735                         continue;
9736                 }
9737
9738                 inode = block_group->inode;
9739                 block_group->iref = 0;
9740                 block_group->inode = NULL;
9741                 spin_unlock(&block_group->lock);
9742                 ASSERT(block_group->io_ctl.inode == NULL);
9743                 iput(inode);
9744                 last = block_group->key.objectid + block_group->key.offset;
9745                 btrfs_put_block_group(block_group);
9746         }
9747 }
9748
9749 /*
9750  * Must be called only after stopping all workers, since we could have block
9751  * group caching kthreads running, and therefore they could race with us if we
9752  * freed the block groups before stopping them.
9753  */
9754 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9755 {
9756         struct btrfs_block_group_cache *block_group;
9757         struct btrfs_space_info *space_info;
9758         struct btrfs_caching_control *caching_ctl;
9759         struct rb_node *n;
9760
9761         down_write(&info->commit_root_sem);
9762         while (!list_empty(&info->caching_block_groups)) {
9763                 caching_ctl = list_entry(info->caching_block_groups.next,
9764                                          struct btrfs_caching_control, list);
9765                 list_del(&caching_ctl->list);
9766                 put_caching_control(caching_ctl);
9767         }
9768         up_write(&info->commit_root_sem);
9769
9770         spin_lock(&info->unused_bgs_lock);
9771         while (!list_empty(&info->unused_bgs)) {
9772                 block_group = list_first_entry(&info->unused_bgs,
9773                                                struct btrfs_block_group_cache,
9774                                                bg_list);
9775                 list_del_init(&block_group->bg_list);
9776                 btrfs_put_block_group(block_group);
9777         }
9778         spin_unlock(&info->unused_bgs_lock);
9779
9780         spin_lock(&info->block_group_cache_lock);
9781         while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9782                 block_group = rb_entry(n, struct btrfs_block_group_cache,
9783                                        cache_node);
9784                 rb_erase(&block_group->cache_node,
9785                          &info->block_group_cache_tree);
9786                 RB_CLEAR_NODE(&block_group->cache_node);
9787                 spin_unlock(&info->block_group_cache_lock);
9788
9789                 down_write(&block_group->space_info->groups_sem);
9790                 list_del(&block_group->list);
9791                 up_write(&block_group->space_info->groups_sem);
9792
9793                 /*
9794                  * We haven't cached this block group, which means we could
9795                  * possibly have excluded extents on this block group.
9796                  */
9797                 if (block_group->cached == BTRFS_CACHE_NO ||
9798                     block_group->cached == BTRFS_CACHE_ERROR)
9799                         free_excluded_extents(info, block_group);
9800
9801                 btrfs_remove_free_space_cache(block_group);
9802                 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9803                 ASSERT(list_empty(&block_group->dirty_list));
9804                 ASSERT(list_empty(&block_group->io_list));
9805                 ASSERT(list_empty(&block_group->bg_list));
9806                 ASSERT(atomic_read(&block_group->count) == 1);
9807                 btrfs_put_block_group(block_group);
9808
9809                 spin_lock(&info->block_group_cache_lock);
9810         }
9811         spin_unlock(&info->block_group_cache_lock);
9812
9813         /* now that all the block groups are freed, go through and
9814          * free all the space_info structs.  This is only called during
9815          * the final stages of unmount, and so we know nobody is
9816          * using them.  We call synchronize_rcu() once before we start,
9817          * just to be on the safe side.
9818          */
9819         synchronize_rcu();
9820
9821         release_global_block_rsv(info);
9822
9823         while (!list_empty(&info->space_info)) {
9824                 int i;
9825
9826                 space_info = list_entry(info->space_info.next,
9827                                         struct btrfs_space_info,
9828                                         list);
9829
9830                 /*
9831                  * Do not hide this behind enospc_debug, this is actually
9832                  * important and indicates a real bug if this happens.
9833                  */
9834                 if (WARN_ON(space_info->bytes_pinned > 0 ||
9835                             space_info->bytes_reserved > 0 ||
9836                             space_info->bytes_may_use > 0))
9837                         dump_space_info(info, space_info, 0, 0);
9838                 list_del(&space_info->list);
9839                 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9840                         struct kobject *kobj;
9841                         kobj = space_info->block_group_kobjs[i];
9842                         space_info->block_group_kobjs[i] = NULL;
9843                         if (kobj) {
9844                                 kobject_del(kobj);
9845                                 kobject_put(kobj);
9846                         }
9847                 }
9848                 kobject_del(&space_info->kobj);
9849                 kobject_put(&space_info->kobj);
9850         }
9851         return 0;
9852 }
9853
9854 static void __link_block_group(struct btrfs_space_info *space_info,
9855                                struct btrfs_block_group_cache *cache)
9856 {
9857         int index = get_block_group_index(cache);
9858         bool first = false;
9859
9860         down_write(&space_info->groups_sem);
9861         if (list_empty(&space_info->block_groups[index]))
9862                 first = true;
9863         list_add_tail(&cache->list, &space_info->block_groups[index]);
9864         up_write(&space_info->groups_sem);
9865
9866         if (first) {
9867                 struct raid_kobject *rkobj;
9868                 int ret;
9869
9870                 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9871                 if (!rkobj)
9872                         goto out_err;
9873                 rkobj->raid_type = index;
9874                 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9875                 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9876                                   "%s", get_raid_name(index));
9877                 if (ret) {
9878                         kobject_put(&rkobj->kobj);
9879                         goto out_err;
9880                 }
9881                 space_info->block_group_kobjs[index] = &rkobj->kobj;
9882         }
9883
9884         return;
9885 out_err:
9886         btrfs_warn(cache->fs_info,
9887                    "failed to add kobject for block cache, ignoring");
9888 }
9889
9890 static struct btrfs_block_group_cache *
9891 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9892                                u64 start, u64 size)
9893 {
9894         struct btrfs_block_group_cache *cache;
9895
9896         cache = kzalloc(sizeof(*cache), GFP_NOFS);
9897         if (!cache)
9898                 return NULL;
9899
9900         cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9901                                         GFP_NOFS);
9902         if (!cache->free_space_ctl) {
9903                 kfree(cache);
9904                 return NULL;
9905         }
9906
9907         cache->key.objectid = start;
9908         cache->key.offset = size;
9909         cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9910
9911         cache->sectorsize = fs_info->sectorsize;
9912         cache->fs_info = fs_info;
9913         cache->full_stripe_len = btrfs_full_stripe_len(fs_info,
9914                                                        &fs_info->mapping_tree,
9915                                                        start);
9916         set_free_space_tree_thresholds(cache);
9917
9918         atomic_set(&cache->count, 1);
9919         spin_lock_init(&cache->lock);
9920         init_rwsem(&cache->data_rwsem);
9921         INIT_LIST_HEAD(&cache->list);
9922         INIT_LIST_HEAD(&cache->cluster_list);
9923         INIT_LIST_HEAD(&cache->bg_list);
9924         INIT_LIST_HEAD(&cache->ro_list);
9925         INIT_LIST_HEAD(&cache->dirty_list);
9926         INIT_LIST_HEAD(&cache->io_list);
9927         btrfs_init_free_space_ctl(cache);
9928         atomic_set(&cache->trimming, 0);
9929         mutex_init(&cache->free_space_lock);
9930         btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9931
9932         return cache;
9933 }
9934
9935 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9936 {
9937         struct btrfs_path *path;
9938         int ret;
9939         struct btrfs_block_group_cache *cache;
9940         struct btrfs_space_info *space_info;
9941         struct btrfs_key key;
9942         struct btrfs_key found_key;
9943         struct extent_buffer *leaf;
9944         int need_clear = 0;
9945         u64 cache_gen;
9946         u64 feature;
9947         int mixed;
9948
9949         feature = btrfs_super_incompat_flags(info->super_copy);
9950         mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
9951
9952         key.objectid = 0;
9953         key.offset = 0;
9954         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9955         path = btrfs_alloc_path();
9956         if (!path)
9957                 return -ENOMEM;
9958         path->reada = READA_FORWARD;
9959
9960         cache_gen = btrfs_super_cache_generation(info->super_copy);
9961         if (btrfs_test_opt(info, SPACE_CACHE) &&
9962             btrfs_super_generation(info->super_copy) != cache_gen)
9963                 need_clear = 1;
9964         if (btrfs_test_opt(info, CLEAR_CACHE))
9965                 need_clear = 1;
9966
9967         while (1) {
9968                 ret = find_first_block_group(info, path, &key);
9969                 if (ret > 0)
9970                         break;
9971                 if (ret != 0)
9972                         goto error;
9973
9974                 leaf = path->nodes[0];
9975                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9976
9977                 cache = btrfs_create_block_group_cache(info, found_key.objectid,
9978                                                        found_key.offset);
9979                 if (!cache) {
9980                         ret = -ENOMEM;
9981                         goto error;
9982                 }
9983
9984                 if (need_clear) {
9985                         /*
9986                          * When we mount with old space cache, we need to
9987                          * set BTRFS_DC_CLEAR and set dirty flag.
9988                          *
9989                          * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9990                          *    truncate the old free space cache inode and
9991                          *    setup a new one.
9992                          * b) Setting 'dirty flag' makes sure that we flush
9993                          *    the new space cache info onto disk.
9994                          */
9995                         if (btrfs_test_opt(info, SPACE_CACHE))
9996                                 cache->disk_cache_state = BTRFS_DC_CLEAR;
9997                 }
9998
9999                 read_extent_buffer(leaf, &cache->item,
10000                                    btrfs_item_ptr_offset(leaf, path->slots[0]),
10001                                    sizeof(cache->item));
10002                 cache->flags = btrfs_block_group_flags(&cache->item);
10003                 if (!mixed &&
10004                     ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10005                     (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10006                         btrfs_err(info,
10007 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10008                                   cache->key.objectid);
10009                         ret = -EINVAL;
10010                         goto error;
10011                 }
10012
10013                 key.objectid = found_key.objectid + found_key.offset;
10014                 btrfs_release_path(path);
10015
10016                 /*
10017                  * We need to exclude the super stripes now so that the space
10018                  * info has super bytes accounted for, otherwise we'll think
10019                  * we have more space than we actually do.
10020                  */
10021                 ret = exclude_super_stripes(info, cache);
10022                 if (ret) {
10023                         /*
10024                          * We may have excluded something, so call this just in
10025                          * case.
10026                          */
10027                         free_excluded_extents(info, cache);
10028                         btrfs_put_block_group(cache);
10029                         goto error;
10030                 }
10031
10032                 /*
10033                  * check for two cases, either we are full, and therefore
10034                  * don't need to bother with the caching work since we won't
10035                  * find any space, or we are empty, and we can just add all
10036                  * the space in and be done with it.  This saves us _alot_ of
10037                  * time, particularly in the full case.
10038                  */
10039                 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10040                         cache->last_byte_to_unpin = (u64)-1;
10041                         cache->cached = BTRFS_CACHE_FINISHED;
10042                         free_excluded_extents(info, cache);
10043                 } else if (btrfs_block_group_used(&cache->item) == 0) {
10044                         cache->last_byte_to_unpin = (u64)-1;
10045                         cache->cached = BTRFS_CACHE_FINISHED;
10046                         add_new_free_space(cache, info,
10047                                            found_key.objectid,
10048                                            found_key.objectid +
10049                                            found_key.offset);
10050                         free_excluded_extents(info, cache);
10051                 }
10052
10053                 ret = btrfs_add_block_group_cache(info, cache);
10054                 if (ret) {
10055                         btrfs_remove_free_space_cache(cache);
10056                         btrfs_put_block_group(cache);
10057                         goto error;
10058                 }
10059
10060                 trace_btrfs_add_block_group(info, cache, 0);
10061                 ret = update_space_info(info, cache->flags, found_key.offset,
10062                                         btrfs_block_group_used(&cache->item),
10063                                         cache->bytes_super, &space_info);
10064                 if (ret) {
10065                         btrfs_remove_free_space_cache(cache);
10066                         spin_lock(&info->block_group_cache_lock);
10067                         rb_erase(&cache->cache_node,
10068                                  &info->block_group_cache_tree);
10069                         RB_CLEAR_NODE(&cache->cache_node);
10070                         spin_unlock(&info->block_group_cache_lock);
10071                         btrfs_put_block_group(cache);
10072                         goto error;
10073                 }
10074
10075                 cache->space_info = space_info;
10076
10077                 __link_block_group(space_info, cache);
10078
10079                 set_avail_alloc_bits(info, cache->flags);
10080                 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10081                         inc_block_group_ro(cache, 1);
10082                 } else if (btrfs_block_group_used(&cache->item) == 0) {
10083                         spin_lock(&info->unused_bgs_lock);
10084                         /* Should always be true but just in case. */
10085                         if (list_empty(&cache->bg_list)) {
10086                                 btrfs_get_block_group(cache);
10087                                 list_add_tail(&cache->bg_list,
10088                                               &info->unused_bgs);
10089                         }
10090                         spin_unlock(&info->unused_bgs_lock);
10091                 }
10092         }
10093
10094         list_for_each_entry_rcu(space_info, &info->space_info, list) {
10095                 if (!(get_alloc_profile(info, space_info->flags) &
10096                       (BTRFS_BLOCK_GROUP_RAID10 |
10097                        BTRFS_BLOCK_GROUP_RAID1 |
10098                        BTRFS_BLOCK_GROUP_RAID5 |
10099                        BTRFS_BLOCK_GROUP_RAID6 |
10100                        BTRFS_BLOCK_GROUP_DUP)))
10101                         continue;
10102                 /*
10103                  * avoid allocating from un-mirrored block group if there are
10104                  * mirrored block groups.
10105                  */
10106                 list_for_each_entry(cache,
10107                                 &space_info->block_groups[BTRFS_RAID_RAID0],
10108                                 list)
10109                         inc_block_group_ro(cache, 1);
10110                 list_for_each_entry(cache,
10111                                 &space_info->block_groups[BTRFS_RAID_SINGLE],
10112                                 list)
10113                         inc_block_group_ro(cache, 1);
10114         }
10115
10116         init_global_block_rsv(info);
10117         ret = 0;
10118 error:
10119         btrfs_free_path(path);
10120         return ret;
10121 }
10122
10123 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10124                                        struct btrfs_fs_info *fs_info)
10125 {
10126         struct btrfs_block_group_cache *block_group, *tmp;
10127         struct btrfs_root *extent_root = fs_info->extent_root;
10128         struct btrfs_block_group_item item;
10129         struct btrfs_key key;
10130         int ret = 0;
10131         bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10132
10133         trans->can_flush_pending_bgs = false;
10134         list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10135                 if (ret)
10136                         goto next;
10137
10138                 spin_lock(&block_group->lock);
10139                 memcpy(&item, &block_group->item, sizeof(item));
10140                 memcpy(&key, &block_group->key, sizeof(key));
10141                 spin_unlock(&block_group->lock);
10142
10143                 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10144                                         sizeof(item));
10145                 if (ret)
10146                         btrfs_abort_transaction(trans, ret);
10147                 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10148                                                key.offset);
10149                 if (ret)
10150                         btrfs_abort_transaction(trans, ret);
10151                 add_block_group_free_space(trans, fs_info, block_group);
10152                 /* already aborted the transaction if it failed. */
10153 next:
10154                 list_del_init(&block_group->bg_list);
10155         }
10156         trans->can_flush_pending_bgs = can_flush_pending_bgs;
10157 }
10158
10159 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10160                            struct btrfs_fs_info *fs_info, u64 bytes_used,
10161                            u64 type, u64 chunk_objectid, u64 chunk_offset,
10162                            u64 size)
10163 {
10164         struct btrfs_block_group_cache *cache;
10165         int ret;
10166
10167         btrfs_set_log_full_commit(fs_info, trans);
10168
10169         cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10170         if (!cache)
10171                 return -ENOMEM;
10172
10173         btrfs_set_block_group_used(&cache->item, bytes_used);
10174         btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10175         btrfs_set_block_group_flags(&cache->item, type);
10176
10177         cache->flags = type;
10178         cache->last_byte_to_unpin = (u64)-1;
10179         cache->cached = BTRFS_CACHE_FINISHED;
10180         cache->needs_free_space = 1;
10181         ret = exclude_super_stripes(fs_info, cache);
10182         if (ret) {
10183                 /*
10184                  * We may have excluded something, so call this just in
10185                  * case.
10186                  */
10187                 free_excluded_extents(fs_info, cache);
10188                 btrfs_put_block_group(cache);
10189                 return ret;
10190         }
10191
10192         add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10193
10194         free_excluded_extents(fs_info, cache);
10195
10196 #ifdef CONFIG_BTRFS_DEBUG
10197         if (btrfs_should_fragment_free_space(cache)) {
10198                 u64 new_bytes_used = size - bytes_used;
10199
10200                 bytes_used += new_bytes_used >> 1;
10201                 fragment_free_space(cache);
10202         }
10203 #endif
10204         /*
10205          * Call to ensure the corresponding space_info object is created and
10206          * assigned to our block group, but don't update its counters just yet.
10207          * We want our bg to be added to the rbtree with its ->space_info set.
10208          */
10209         ret = update_space_info(fs_info, cache->flags, 0, 0, 0,
10210                                 &cache->space_info);
10211         if (ret) {
10212                 btrfs_remove_free_space_cache(cache);
10213                 btrfs_put_block_group(cache);
10214                 return ret;
10215         }
10216
10217         ret = btrfs_add_block_group_cache(fs_info, cache);
10218         if (ret) {
10219                 btrfs_remove_free_space_cache(cache);
10220                 btrfs_put_block_group(cache);
10221                 return ret;
10222         }
10223
10224         /*
10225          * Now that our block group has its ->space_info set and is inserted in
10226          * the rbtree, update the space info's counters.
10227          */
10228         trace_btrfs_add_block_group(fs_info, cache, 1);
10229         ret = update_space_info(fs_info, cache->flags, size, bytes_used,
10230                                 cache->bytes_super, &cache->space_info);
10231         if (ret) {
10232                 btrfs_remove_free_space_cache(cache);
10233                 spin_lock(&fs_info->block_group_cache_lock);
10234                 rb_erase(&cache->cache_node,
10235                          &fs_info->block_group_cache_tree);
10236                 RB_CLEAR_NODE(&cache->cache_node);
10237                 spin_unlock(&fs_info->block_group_cache_lock);
10238                 btrfs_put_block_group(cache);
10239                 return ret;
10240         }
10241         update_global_block_rsv(fs_info);
10242
10243         __link_block_group(cache->space_info, cache);
10244
10245         list_add_tail(&cache->bg_list, &trans->new_bgs);
10246
10247         set_avail_alloc_bits(fs_info, type);
10248         return 0;
10249 }
10250
10251 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10252 {
10253         u64 extra_flags = chunk_to_extended(flags) &
10254                                 BTRFS_EXTENDED_PROFILE_MASK;
10255
10256         write_seqlock(&fs_info->profiles_lock);
10257         if (flags & BTRFS_BLOCK_GROUP_DATA)
10258                 fs_info->avail_data_alloc_bits &= ~extra_flags;
10259         if (flags & BTRFS_BLOCK_GROUP_METADATA)
10260                 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10261         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10262                 fs_info->avail_system_alloc_bits &= ~extra_flags;
10263         write_sequnlock(&fs_info->profiles_lock);
10264 }
10265
10266 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10267                              struct btrfs_fs_info *fs_info, u64 group_start,
10268                              struct extent_map *em)
10269 {
10270         struct btrfs_root *root = fs_info->extent_root;
10271         struct btrfs_path *path;
10272         struct btrfs_block_group_cache *block_group;
10273         struct btrfs_free_cluster *cluster;
10274         struct btrfs_root *tree_root = fs_info->tree_root;
10275         struct btrfs_key key;
10276         struct inode *inode;
10277         struct kobject *kobj = NULL;
10278         int ret;
10279         int index;
10280         int factor;
10281         struct btrfs_caching_control *caching_ctl = NULL;
10282         bool remove_em;
10283
10284         block_group = btrfs_lookup_block_group(fs_info, group_start);
10285         BUG_ON(!block_group);
10286         BUG_ON(!block_group->ro);
10287
10288         /*
10289          * Free the reserved super bytes from this block group before
10290          * remove it.
10291          */
10292         free_excluded_extents(fs_info, block_group);
10293
10294         memcpy(&key, &block_group->key, sizeof(key));
10295         index = get_block_group_index(block_group);
10296         if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10297                                   BTRFS_BLOCK_GROUP_RAID1 |
10298                                   BTRFS_BLOCK_GROUP_RAID10))
10299                 factor = 2;
10300         else
10301                 factor = 1;
10302
10303         /* make sure this block group isn't part of an allocation cluster */
10304         cluster = &fs_info->data_alloc_cluster;
10305         spin_lock(&cluster->refill_lock);
10306         btrfs_return_cluster_to_free_space(block_group, cluster);
10307         spin_unlock(&cluster->refill_lock);
10308
10309         /*
10310          * make sure this block group isn't part of a metadata
10311          * allocation cluster
10312          */
10313         cluster = &fs_info->meta_alloc_cluster;
10314         spin_lock(&cluster->refill_lock);
10315         btrfs_return_cluster_to_free_space(block_group, cluster);
10316         spin_unlock(&cluster->refill_lock);
10317
10318         path = btrfs_alloc_path();
10319         if (!path) {
10320                 ret = -ENOMEM;
10321                 goto out;
10322         }
10323
10324         /*
10325          * get the inode first so any iput calls done for the io_list
10326          * aren't the final iput (no unlinks allowed now)
10327          */
10328         inode = lookup_free_space_inode(fs_info, block_group, path);
10329
10330         mutex_lock(&trans->transaction->cache_write_mutex);
10331         /*
10332          * make sure our free spache cache IO is done before remove the
10333          * free space inode
10334          */
10335         spin_lock(&trans->transaction->dirty_bgs_lock);
10336         if (!list_empty(&block_group->io_list)) {
10337                 list_del_init(&block_group->io_list);
10338
10339                 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10340
10341                 spin_unlock(&trans->transaction->dirty_bgs_lock);
10342                 btrfs_wait_cache_io(trans, block_group, path);
10343                 btrfs_put_block_group(block_group);
10344                 spin_lock(&trans->transaction->dirty_bgs_lock);
10345         }
10346
10347         if (!list_empty(&block_group->dirty_list)) {
10348                 list_del_init(&block_group->dirty_list);
10349                 btrfs_put_block_group(block_group);
10350         }
10351         spin_unlock(&trans->transaction->dirty_bgs_lock);
10352         mutex_unlock(&trans->transaction->cache_write_mutex);
10353
10354         if (!IS_ERR(inode)) {
10355                 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10356                 if (ret) {
10357                         btrfs_add_delayed_iput(inode);
10358                         goto out;
10359                 }
10360                 clear_nlink(inode);
10361                 /* One for the block groups ref */
10362                 spin_lock(&block_group->lock);
10363                 if (block_group->iref) {
10364                         block_group->iref = 0;
10365                         block_group->inode = NULL;
10366                         spin_unlock(&block_group->lock);
10367                         iput(inode);
10368                 } else {
10369                         spin_unlock(&block_group->lock);
10370                 }
10371                 /* One for our lookup ref */
10372                 btrfs_add_delayed_iput(inode);
10373         }
10374
10375         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10376         key.offset = block_group->key.objectid;
10377         key.type = 0;
10378
10379         ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10380         if (ret < 0)
10381                 goto out;
10382         if (ret > 0)
10383                 btrfs_release_path(path);
10384         if (ret == 0) {
10385                 ret = btrfs_del_item(trans, tree_root, path);
10386                 if (ret)
10387                         goto out;
10388                 btrfs_release_path(path);
10389         }
10390
10391         spin_lock(&fs_info->block_group_cache_lock);
10392         rb_erase(&block_group->cache_node,
10393                  &fs_info->block_group_cache_tree);
10394         RB_CLEAR_NODE(&block_group->cache_node);
10395
10396         if (fs_info->first_logical_byte == block_group->key.objectid)
10397                 fs_info->first_logical_byte = (u64)-1;
10398         spin_unlock(&fs_info->block_group_cache_lock);
10399
10400         down_write(&block_group->space_info->groups_sem);
10401         /*
10402          * we must use list_del_init so people can check to see if they
10403          * are still on the list after taking the semaphore
10404          */
10405         list_del_init(&block_group->list);
10406         if (list_empty(&block_group->space_info->block_groups[index])) {
10407                 kobj = block_group->space_info->block_group_kobjs[index];
10408                 block_group->space_info->block_group_kobjs[index] = NULL;
10409                 clear_avail_alloc_bits(fs_info, block_group->flags);
10410         }
10411         up_write(&block_group->space_info->groups_sem);
10412         if (kobj) {
10413                 kobject_del(kobj);
10414                 kobject_put(kobj);
10415         }
10416
10417         if (block_group->has_caching_ctl)
10418                 caching_ctl = get_caching_control(block_group);
10419         if (block_group->cached == BTRFS_CACHE_STARTED)
10420                 wait_block_group_cache_done(block_group);
10421         if (block_group->has_caching_ctl) {
10422                 down_write(&fs_info->commit_root_sem);
10423                 if (!caching_ctl) {
10424                         struct btrfs_caching_control *ctl;
10425
10426                         list_for_each_entry(ctl,
10427                                     &fs_info->caching_block_groups, list)
10428                                 if (ctl->block_group == block_group) {
10429                                         caching_ctl = ctl;
10430                                         refcount_inc(&caching_ctl->count);
10431                                         break;
10432                                 }
10433                 }
10434                 if (caching_ctl)
10435                         list_del_init(&caching_ctl->list);
10436                 up_write(&fs_info->commit_root_sem);
10437                 if (caching_ctl) {
10438                         /* Once for the caching bgs list and once for us. */
10439                         put_caching_control(caching_ctl);
10440                         put_caching_control(caching_ctl);
10441                 }
10442         }
10443
10444         spin_lock(&trans->transaction->dirty_bgs_lock);
10445         if (!list_empty(&block_group->dirty_list)) {
10446                 WARN_ON(1);
10447         }
10448         if (!list_empty(&block_group->io_list)) {
10449                 WARN_ON(1);
10450         }
10451         spin_unlock(&trans->transaction->dirty_bgs_lock);
10452         btrfs_remove_free_space_cache(block_group);
10453
10454         spin_lock(&block_group->space_info->lock);
10455         list_del_init(&block_group->ro_list);
10456
10457         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10458                 WARN_ON(block_group->space_info->total_bytes
10459                         < block_group->key.offset);
10460                 WARN_ON(block_group->space_info->bytes_readonly
10461                         < block_group->key.offset);
10462                 WARN_ON(block_group->space_info->disk_total
10463                         < block_group->key.offset * factor);
10464         }
10465         block_group->space_info->total_bytes -= block_group->key.offset;
10466         block_group->space_info->bytes_readonly -= block_group->key.offset;
10467         block_group->space_info->disk_total -= block_group->key.offset * factor;
10468
10469         spin_unlock(&block_group->space_info->lock);
10470
10471         memcpy(&key, &block_group->key, sizeof(key));
10472
10473         mutex_lock(&fs_info->chunk_mutex);
10474         if (!list_empty(&em->list)) {
10475                 /* We're in the transaction->pending_chunks list. */
10476                 free_extent_map(em);
10477         }
10478         spin_lock(&block_group->lock);
10479         block_group->removed = 1;
10480         /*
10481          * At this point trimming can't start on this block group, because we
10482          * removed the block group from the tree fs_info->block_group_cache_tree
10483          * so no one can't find it anymore and even if someone already got this
10484          * block group before we removed it from the rbtree, they have already
10485          * incremented block_group->trimming - if they didn't, they won't find
10486          * any free space entries because we already removed them all when we
10487          * called btrfs_remove_free_space_cache().
10488          *
10489          * And we must not remove the extent map from the fs_info->mapping_tree
10490          * to prevent the same logical address range and physical device space
10491          * ranges from being reused for a new block group. This is because our
10492          * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10493          * completely transactionless, so while it is trimming a range the
10494          * currently running transaction might finish and a new one start,
10495          * allowing for new block groups to be created that can reuse the same
10496          * physical device locations unless we take this special care.
10497          *
10498          * There may also be an implicit trim operation if the file system
10499          * is mounted with -odiscard. The same protections must remain
10500          * in place until the extents have been discarded completely when
10501          * the transaction commit has completed.
10502          */
10503         remove_em = (atomic_read(&block_group->trimming) == 0);
10504         /*
10505          * Make sure a trimmer task always sees the em in the pinned_chunks list
10506          * if it sees block_group->removed == 1 (needs to lock block_group->lock
10507          * before checking block_group->removed).
10508          */
10509         if (!remove_em) {
10510                 /*
10511                  * Our em might be in trans->transaction->pending_chunks which
10512                  * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10513                  * and so is the fs_info->pinned_chunks list.
10514                  *
10515                  * So at this point we must be holding the chunk_mutex to avoid
10516                  * any races with chunk allocation (more specifically at
10517                  * volumes.c:contains_pending_extent()), to ensure it always
10518                  * sees the em, either in the pending_chunks list or in the
10519                  * pinned_chunks list.
10520                  */
10521                 list_move_tail(&em->list, &fs_info->pinned_chunks);
10522         }
10523         spin_unlock(&block_group->lock);
10524
10525         if (remove_em) {
10526                 struct extent_map_tree *em_tree;
10527
10528                 em_tree = &fs_info->mapping_tree.map_tree;
10529                 write_lock(&em_tree->lock);
10530                 /*
10531                  * The em might be in the pending_chunks list, so make sure the
10532                  * chunk mutex is locked, since remove_extent_mapping() will
10533                  * delete us from that list.
10534                  */
10535                 remove_extent_mapping(em_tree, em);
10536                 write_unlock(&em_tree->lock);
10537                 /* once for the tree */
10538                 free_extent_map(em);
10539         }
10540
10541         mutex_unlock(&fs_info->chunk_mutex);
10542
10543         ret = remove_block_group_free_space(trans, fs_info, block_group);
10544         if (ret)
10545                 goto out;
10546
10547         btrfs_put_block_group(block_group);
10548         btrfs_put_block_group(block_group);
10549
10550         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10551         if (ret > 0)
10552                 ret = -EIO;
10553         if (ret < 0)
10554                 goto out;
10555
10556         ret = btrfs_del_item(trans, root, path);
10557 out:
10558         btrfs_free_path(path);
10559         return ret;
10560 }
10561
10562 struct btrfs_trans_handle *
10563 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10564                                      const u64 chunk_offset)
10565 {
10566         struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10567         struct extent_map *em;
10568         struct map_lookup *map;
10569         unsigned int num_items;
10570
10571         read_lock(&em_tree->lock);
10572         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10573         read_unlock(&em_tree->lock);
10574         ASSERT(em && em->start == chunk_offset);
10575
10576         /*
10577          * We need to reserve 3 + N units from the metadata space info in order
10578          * to remove a block group (done at btrfs_remove_chunk() and at
10579          * btrfs_remove_block_group()), which are used for:
10580          *
10581          * 1 unit for adding the free space inode's orphan (located in the tree
10582          * of tree roots).
10583          * 1 unit for deleting the block group item (located in the extent
10584          * tree).
10585          * 1 unit for deleting the free space item (located in tree of tree
10586          * roots).
10587          * N units for deleting N device extent items corresponding to each
10588          * stripe (located in the device tree).
10589          *
10590          * In order to remove a block group we also need to reserve units in the
10591          * system space info in order to update the chunk tree (update one or
10592          * more device items and remove one chunk item), but this is done at
10593          * btrfs_remove_chunk() through a call to check_system_chunk().
10594          */
10595         map = em->map_lookup;
10596         num_items = 3 + map->num_stripes;
10597         free_extent_map(em);
10598
10599         return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10600                                                            num_items, 1);
10601 }
10602
10603 /*
10604  * Process the unused_bgs list and remove any that don't have any allocated
10605  * space inside of them.
10606  */
10607 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10608 {
10609         struct btrfs_block_group_cache *block_group;
10610         struct btrfs_space_info *space_info;
10611         struct btrfs_trans_handle *trans;
10612         int ret = 0;
10613
10614         if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10615                 return;
10616
10617         spin_lock(&fs_info->unused_bgs_lock);
10618         while (!list_empty(&fs_info->unused_bgs)) {
10619                 u64 start, end;
10620                 int trimming;
10621
10622                 block_group = list_first_entry(&fs_info->unused_bgs,
10623                                                struct btrfs_block_group_cache,
10624                                                bg_list);
10625                 list_del_init(&block_group->bg_list);
10626
10627                 space_info = block_group->space_info;
10628
10629                 if (ret || btrfs_mixed_space_info(space_info)) {
10630                         btrfs_put_block_group(block_group);
10631                         continue;
10632                 }
10633                 spin_unlock(&fs_info->unused_bgs_lock);
10634
10635                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10636
10637                 /* Don't want to race with allocators so take the groups_sem */
10638                 down_write(&space_info->groups_sem);
10639                 spin_lock(&block_group->lock);
10640                 if (block_group->reserved ||
10641                     btrfs_block_group_used(&block_group->item) ||
10642                     block_group->ro ||
10643                     list_is_singular(&block_group->list)) {
10644                         /*
10645                          * We want to bail if we made new allocations or have
10646                          * outstanding allocations in this block group.  We do
10647                          * the ro check in case balance is currently acting on
10648                          * this block group.
10649                          */
10650                         spin_unlock(&block_group->lock);
10651                         up_write(&space_info->groups_sem);
10652                         goto next;
10653                 }
10654                 spin_unlock(&block_group->lock);
10655
10656                 /* We don't want to force the issue, only flip if it's ok. */
10657                 ret = inc_block_group_ro(block_group, 0);
10658                 up_write(&space_info->groups_sem);
10659                 if (ret < 0) {
10660                         ret = 0;
10661                         goto next;
10662                 }
10663
10664                 /*
10665                  * Want to do this before we do anything else so we can recover
10666                  * properly if we fail to join the transaction.
10667                  */
10668                 trans = btrfs_start_trans_remove_block_group(fs_info,
10669                                                      block_group->key.objectid);
10670                 if (IS_ERR(trans)) {
10671                         btrfs_dec_block_group_ro(block_group);
10672                         ret = PTR_ERR(trans);
10673                         goto next;
10674                 }
10675
10676                 /*
10677                  * We could have pending pinned extents for this block group,
10678                  * just delete them, we don't care about them anymore.
10679                  */
10680                 start = block_group->key.objectid;
10681                 end = start + block_group->key.offset - 1;
10682                 /*
10683                  * Hold the unused_bg_unpin_mutex lock to avoid racing with
10684                  * btrfs_finish_extent_commit(). If we are at transaction N,
10685                  * another task might be running finish_extent_commit() for the
10686                  * previous transaction N - 1, and have seen a range belonging
10687                  * to the block group in freed_extents[] before we were able to
10688                  * clear the whole block group range from freed_extents[]. This
10689                  * means that task can lookup for the block group after we
10690                  * unpinned it from freed_extents[] and removed it, leading to
10691                  * a BUG_ON() at btrfs_unpin_extent_range().
10692                  */
10693                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10694                 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10695                                   EXTENT_DIRTY);
10696                 if (ret) {
10697                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10698                         btrfs_dec_block_group_ro(block_group);
10699                         goto end_trans;
10700                 }
10701                 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10702                                   EXTENT_DIRTY);
10703                 if (ret) {
10704                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10705                         btrfs_dec_block_group_ro(block_group);
10706                         goto end_trans;
10707                 }
10708                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10709
10710                 /* Reset pinned so btrfs_put_block_group doesn't complain */
10711                 spin_lock(&space_info->lock);
10712                 spin_lock(&block_group->lock);
10713
10714                 space_info->bytes_pinned -= block_group->pinned;
10715                 space_info->bytes_readonly += block_group->pinned;
10716                 percpu_counter_add(&space_info->total_bytes_pinned,
10717                                    -block_group->pinned);
10718                 block_group->pinned = 0;
10719
10720                 spin_unlock(&block_group->lock);
10721                 spin_unlock(&space_info->lock);
10722
10723                 /* DISCARD can flip during remount */
10724                 trimming = btrfs_test_opt(fs_info, DISCARD);
10725
10726                 /* Implicit trim during transaction commit. */
10727                 if (trimming)
10728                         btrfs_get_block_group_trimming(block_group);
10729
10730                 /*
10731                  * Btrfs_remove_chunk will abort the transaction if things go
10732                  * horribly wrong.
10733                  */
10734                 ret = btrfs_remove_chunk(trans, fs_info,
10735                                          block_group->key.objectid);
10736
10737                 if (ret) {
10738                         if (trimming)
10739                                 btrfs_put_block_group_trimming(block_group);
10740                         goto end_trans;
10741                 }
10742
10743                 /*
10744                  * If we're not mounted with -odiscard, we can just forget
10745                  * about this block group. Otherwise we'll need to wait
10746                  * until transaction commit to do the actual discard.
10747                  */
10748                 if (trimming) {
10749                         spin_lock(&fs_info->unused_bgs_lock);
10750                         /*
10751                          * A concurrent scrub might have added us to the list
10752                          * fs_info->unused_bgs, so use a list_move operation
10753                          * to add the block group to the deleted_bgs list.
10754                          */
10755                         list_move(&block_group->bg_list,
10756                                   &trans->transaction->deleted_bgs);
10757                         spin_unlock(&fs_info->unused_bgs_lock);
10758                         btrfs_get_block_group(block_group);
10759                 }
10760 end_trans:
10761                 btrfs_end_transaction(trans);
10762 next:
10763                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10764                 btrfs_put_block_group(block_group);
10765                 spin_lock(&fs_info->unused_bgs_lock);
10766         }
10767         spin_unlock(&fs_info->unused_bgs_lock);
10768 }
10769
10770 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10771 {
10772         struct btrfs_space_info *space_info;
10773         struct btrfs_super_block *disk_super;
10774         u64 features;
10775         u64 flags;
10776         int mixed = 0;
10777         int ret;
10778
10779         disk_super = fs_info->super_copy;
10780         if (!btrfs_super_root(disk_super))
10781                 return -EINVAL;
10782
10783         features = btrfs_super_incompat_flags(disk_super);
10784         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10785                 mixed = 1;
10786
10787         flags = BTRFS_BLOCK_GROUP_SYSTEM;
10788         ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10789         if (ret)
10790                 goto out;
10791
10792         if (mixed) {
10793                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10794                 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10795         } else {
10796                 flags = BTRFS_BLOCK_GROUP_METADATA;
10797                 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10798                 if (ret)
10799                         goto out;
10800
10801                 flags = BTRFS_BLOCK_GROUP_DATA;
10802                 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10803         }
10804 out:
10805         return ret;
10806 }
10807
10808 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10809                                    u64 start, u64 end)
10810 {
10811         return unpin_extent_range(fs_info, start, end, false);
10812 }
10813
10814 /*
10815  * It used to be that old block groups would be left around forever.
10816  * Iterating over them would be enough to trim unused space.  Since we
10817  * now automatically remove them, we also need to iterate over unallocated
10818  * space.
10819  *
10820  * We don't want a transaction for this since the discard may take a
10821  * substantial amount of time.  We don't require that a transaction be
10822  * running, but we do need to take a running transaction into account
10823  * to ensure that we're not discarding chunks that were released in
10824  * the current transaction.
10825  *
10826  * Holding the chunks lock will prevent other threads from allocating
10827  * or releasing chunks, but it won't prevent a running transaction
10828  * from committing and releasing the memory that the pending chunks
10829  * list head uses.  For that, we need to take a reference to the
10830  * transaction.
10831  */
10832 static int btrfs_trim_free_extents(struct btrfs_device *device,
10833                                    u64 minlen, u64 *trimmed)
10834 {
10835         u64 start = 0, len = 0;
10836         int ret;
10837
10838         *trimmed = 0;
10839
10840         /* Not writeable = nothing to do. */
10841         if (!device->writeable)
10842                 return 0;
10843
10844         /* No free space = nothing to do. */
10845         if (device->total_bytes <= device->bytes_used)
10846                 return 0;
10847
10848         ret = 0;
10849
10850         while (1) {
10851                 struct btrfs_fs_info *fs_info = device->fs_info;
10852                 struct btrfs_transaction *trans;
10853                 u64 bytes;
10854
10855                 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10856                 if (ret)
10857                         return ret;
10858
10859                 down_read(&fs_info->commit_root_sem);
10860
10861                 spin_lock(&fs_info->trans_lock);
10862                 trans = fs_info->running_transaction;
10863                 if (trans)
10864                         refcount_inc(&trans->use_count);
10865                 spin_unlock(&fs_info->trans_lock);
10866
10867                 ret = find_free_dev_extent_start(trans, device, minlen, start,
10868                                                  &start, &len);
10869                 if (trans)
10870                         btrfs_put_transaction(trans);
10871
10872                 if (ret) {
10873                         up_read(&fs_info->commit_root_sem);
10874                         mutex_unlock(&fs_info->chunk_mutex);
10875                         if (ret == -ENOSPC)
10876                                 ret = 0;
10877                         break;
10878                 }
10879
10880                 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10881                 up_read(&fs_info->commit_root_sem);
10882                 mutex_unlock(&fs_info->chunk_mutex);
10883
10884                 if (ret)
10885                         break;
10886
10887                 start += len;
10888                 *trimmed += bytes;
10889
10890                 if (fatal_signal_pending(current)) {
10891                         ret = -ERESTARTSYS;
10892                         break;
10893                 }
10894
10895                 cond_resched();
10896         }
10897
10898         return ret;
10899 }
10900
10901 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10902 {
10903         struct btrfs_block_group_cache *cache = NULL;
10904         struct btrfs_device *device;
10905         struct list_head *devices;
10906         u64 group_trimmed;
10907         u64 start;
10908         u64 end;
10909         u64 trimmed = 0;
10910         u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10911         int ret = 0;
10912
10913         /*
10914          * try to trim all FS space, our block group may start from non-zero.
10915          */
10916         if (range->len == total_bytes)
10917                 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10918         else
10919                 cache = btrfs_lookup_block_group(fs_info, range->start);
10920
10921         while (cache) {
10922                 if (cache->key.objectid >= (range->start + range->len)) {
10923                         btrfs_put_block_group(cache);
10924                         break;
10925                 }
10926
10927                 start = max(range->start, cache->key.objectid);
10928                 end = min(range->start + range->len,
10929                                 cache->key.objectid + cache->key.offset);
10930
10931                 if (end - start >= range->minlen) {
10932                         if (!block_group_cache_done(cache)) {
10933                                 ret = cache_block_group(cache, 0);
10934                                 if (ret) {
10935                                         btrfs_put_block_group(cache);
10936                                         break;
10937                                 }
10938                                 ret = wait_block_group_cache_done(cache);
10939                                 if (ret) {
10940                                         btrfs_put_block_group(cache);
10941                                         break;
10942                                 }
10943                         }
10944                         ret = btrfs_trim_block_group(cache,
10945                                                      &group_trimmed,
10946                                                      start,
10947                                                      end,
10948                                                      range->minlen);
10949
10950                         trimmed += group_trimmed;
10951                         if (ret) {
10952                                 btrfs_put_block_group(cache);
10953                                 break;
10954                         }
10955                 }
10956
10957                 cache = next_block_group(fs_info, cache);
10958         }
10959
10960         mutex_lock(&fs_info->fs_devices->device_list_mutex);
10961         devices = &fs_info->fs_devices->alloc_list;
10962         list_for_each_entry(device, devices, dev_alloc_list) {
10963                 ret = btrfs_trim_free_extents(device, range->minlen,
10964                                               &group_trimmed);
10965                 if (ret)
10966                         break;
10967
10968                 trimmed += group_trimmed;
10969         }
10970         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
10971
10972         range->len = trimmed;
10973         return ret;
10974 }
10975
10976 /*
10977  * btrfs_{start,end}_write_no_snapshoting() are similar to
10978  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10979  * data into the page cache through nocow before the subvolume is snapshoted,
10980  * but flush the data into disk after the snapshot creation, or to prevent
10981  * operations while snapshoting is ongoing and that cause the snapshot to be
10982  * inconsistent (writes followed by expanding truncates for example).
10983  */
10984 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10985 {
10986         percpu_counter_dec(&root->subv_writers->counter);
10987         /*
10988          * Make sure counter is updated before we wake up waiters.
10989          */
10990         smp_mb();
10991         if (waitqueue_active(&root->subv_writers->wait))
10992                 wake_up(&root->subv_writers->wait);
10993 }
10994
10995 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10996 {
10997         if (atomic_read(&root->will_be_snapshoted))
10998                 return 0;
10999
11000         percpu_counter_inc(&root->subv_writers->counter);
11001         /*
11002          * Make sure counter is updated before we check for snapshot creation.
11003          */
11004         smp_mb();
11005         if (atomic_read(&root->will_be_snapshoted)) {
11006                 btrfs_end_write_no_snapshoting(root);
11007                 return 0;
11008         }
11009         return 1;
11010 }
11011
11012 static int wait_snapshoting_atomic_t(atomic_t *a)
11013 {
11014         schedule();
11015         return 0;
11016 }
11017
11018 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11019 {
11020         while (true) {
11021                 int ret;
11022
11023                 ret = btrfs_start_write_no_snapshoting(root);
11024                 if (ret)
11025                         break;
11026                 wait_on_atomic_t(&root->will_be_snapshoted,
11027                                  wait_snapshoting_atomic_t,
11028                                  TASK_UNINTERRUPTIBLE);
11029         }
11030 }