Merge branches 'samsung/cleanup', 'samsung/exynos-clk' and 'samsung/exynos-clk2'...
[sfrench/cifs-2.6.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61                                     int read_only);
62 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63                                              struct btrfs_root *root);
64 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
65 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66                                       struct btrfs_root *root);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69                                         struct extent_io_tree *dirty_pages,
70                                         int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72                                        struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75
76 /*
77  * end_io_wq structs are used to do processing in task context when an IO is
78  * complete.  This is used during reads to verify checksums, and it is used
79  * by writes to insert metadata for new file extents after IO is complete.
80  */
81 struct end_io_wq {
82         struct bio *bio;
83         bio_end_io_t *end_io;
84         void *private;
85         struct btrfs_fs_info *info;
86         int error;
87         int metadata;
88         struct list_head list;
89         struct btrfs_work work;
90 };
91
92 /*
93  * async submit bios are used to offload expensive checksumming
94  * onto the worker threads.  They checksum file and metadata bios
95  * just before they are sent down the IO stack.
96  */
97 struct async_submit_bio {
98         struct inode *inode;
99         struct bio *bio;
100         struct list_head list;
101         extent_submit_bio_hook_t *submit_bio_start;
102         extent_submit_bio_hook_t *submit_bio_done;
103         int rw;
104         int mirror_num;
105         unsigned long bio_flags;
106         /*
107          * bio_offset is optional, can be used if the pages in the bio
108          * can't tell us where in the file the bio should go
109          */
110         u64 bio_offset;
111         struct btrfs_work work;
112         int error;
113 };
114
115 /*
116  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
117  * eb, the lockdep key is determined by the btrfs_root it belongs to and
118  * the level the eb occupies in the tree.
119  *
120  * Different roots are used for different purposes and may nest inside each
121  * other and they require separate keysets.  As lockdep keys should be
122  * static, assign keysets according to the purpose of the root as indicated
123  * by btrfs_root->objectid.  This ensures that all special purpose roots
124  * have separate keysets.
125  *
126  * Lock-nesting across peer nodes is always done with the immediate parent
127  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
128  * subclass to avoid triggering lockdep warning in such cases.
129  *
130  * The key is set by the readpage_end_io_hook after the buffer has passed
131  * csum validation but before the pages are unlocked.  It is also set by
132  * btrfs_init_new_buffer on freshly allocated blocks.
133  *
134  * We also add a check to make sure the highest level of the tree is the
135  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
136  * needs update as well.
137  */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 #  error
141 # endif
142
143 static struct btrfs_lockdep_keyset {
144         u64                     id;             /* root objectid */
145         const char              *name_stem;     /* lock name stem */
146         char                    names[BTRFS_MAX_LEVEL + 1][20];
147         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
150         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
151         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
152         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
153         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
154         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
155         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
156         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
157         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
158         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
159         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
160         { .id = 0,                              .name_stem = "tree"     },
161 };
162
163 void __init btrfs_init_lockdep(void)
164 {
165         int i, j;
166
167         /* initialize lockdep class names */
168         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170
171                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172                         snprintf(ks->names[j], sizeof(ks->names[j]),
173                                  "btrfs-%s-%02d", ks->name_stem, j);
174         }
175 }
176
177 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178                                     int level)
179 {
180         struct btrfs_lockdep_keyset *ks;
181
182         BUG_ON(level >= ARRAY_SIZE(ks->keys));
183
184         /* find the matching keyset, id 0 is the default entry */
185         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186                 if (ks->id == objectid)
187                         break;
188
189         lockdep_set_class_and_name(&eb->lock,
190                                    &ks->keys[level], ks->names[level]);
191 }
192
193 #endif
194
195 /*
196  * extents on the btree inode are pretty simple, there's one extent
197  * that covers the entire device
198  */
199 static struct extent_map *btree_get_extent(struct inode *inode,
200                 struct page *page, size_t pg_offset, u64 start, u64 len,
201                 int create)
202 {
203         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204         struct extent_map *em;
205         int ret;
206
207         read_lock(&em_tree->lock);
208         em = lookup_extent_mapping(em_tree, start, len);
209         if (em) {
210                 em->bdev =
211                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
212                 read_unlock(&em_tree->lock);
213                 goto out;
214         }
215         read_unlock(&em_tree->lock);
216
217         em = alloc_extent_map();
218         if (!em) {
219                 em = ERR_PTR(-ENOMEM);
220                 goto out;
221         }
222         em->start = 0;
223         em->len = (u64)-1;
224         em->block_len = (u64)-1;
225         em->block_start = 0;
226         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
227
228         write_lock(&em_tree->lock);
229         ret = add_extent_mapping(em_tree, em, 0);
230         if (ret == -EEXIST) {
231                 free_extent_map(em);
232                 em = lookup_extent_mapping(em_tree, start, len);
233                 if (!em)
234                         em = ERR_PTR(-EIO);
235         } else if (ret) {
236                 free_extent_map(em);
237                 em = ERR_PTR(ret);
238         }
239         write_unlock(&em_tree->lock);
240
241 out:
242         return em;
243 }
244
245 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
246 {
247         return btrfs_crc32c(seed, data, len);
248 }
249
250 void btrfs_csum_final(u32 crc, char *result)
251 {
252         put_unaligned_le32(~crc, result);
253 }
254
255 /*
256  * compute the csum for a btree block, and either verify it or write it
257  * into the csum field of the block.
258  */
259 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260                            int verify)
261 {
262         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
263         char *result = NULL;
264         unsigned long len;
265         unsigned long cur_len;
266         unsigned long offset = BTRFS_CSUM_SIZE;
267         char *kaddr;
268         unsigned long map_start;
269         unsigned long map_len;
270         int err;
271         u32 crc = ~(u32)0;
272         unsigned long inline_result;
273
274         len = buf->len - offset;
275         while (len > 0) {
276                 err = map_private_extent_buffer(buf, offset, 32,
277                                         &kaddr, &map_start, &map_len);
278                 if (err)
279                         return 1;
280                 cur_len = min(len, map_len - (offset - map_start));
281                 crc = btrfs_csum_data(kaddr + offset - map_start,
282                                       crc, cur_len);
283                 len -= cur_len;
284                 offset += cur_len;
285         }
286         if (csum_size > sizeof(inline_result)) {
287                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288                 if (!result)
289                         return 1;
290         } else {
291                 result = (char *)&inline_result;
292         }
293
294         btrfs_csum_final(crc, result);
295
296         if (verify) {
297                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
298                         u32 val;
299                         u32 found = 0;
300                         memcpy(&found, result, csum_size);
301
302                         read_extent_buffer(buf, &val, 0, csum_size);
303                         printk_ratelimited(KERN_INFO
304                                 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
305                                 "level %d\n",
306                                 root->fs_info->sb->s_id, buf->start,
307                                 val, found, btrfs_header_level(buf));
308                         if (result != (char *)&inline_result)
309                                 kfree(result);
310                         return 1;
311                 }
312         } else {
313                 write_extent_buffer(buf, result, 0, csum_size);
314         }
315         if (result != (char *)&inline_result)
316                 kfree(result);
317         return 0;
318 }
319
320 /*
321  * we can't consider a given block up to date unless the transid of the
322  * block matches the transid in the parent node's pointer.  This is how we
323  * detect blocks that either didn't get written at all or got written
324  * in the wrong place.
325  */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327                                  struct extent_buffer *eb, u64 parent_transid,
328                                  int atomic)
329 {
330         struct extent_state *cached_state = NULL;
331         int ret;
332
333         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334                 return 0;
335
336         if (atomic)
337                 return -EAGAIN;
338
339         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340                          0, &cached_state);
341         if (extent_buffer_uptodate(eb) &&
342             btrfs_header_generation(eb) == parent_transid) {
343                 ret = 0;
344                 goto out;
345         }
346         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347                        "found %llu\n",
348                        eb->start, parent_transid, btrfs_header_generation(eb));
349         ret = 1;
350         clear_extent_buffer_uptodate(eb);
351 out:
352         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
353                              &cached_state, GFP_NOFS);
354         return ret;
355 }
356
357 /*
358  * Return 0 if the superblock checksum type matches the checksum value of that
359  * algorithm. Pass the raw disk superblock data.
360  */
361 static int btrfs_check_super_csum(char *raw_disk_sb)
362 {
363         struct btrfs_super_block *disk_sb =
364                 (struct btrfs_super_block *)raw_disk_sb;
365         u16 csum_type = btrfs_super_csum_type(disk_sb);
366         int ret = 0;
367
368         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
369                 u32 crc = ~(u32)0;
370                 const int csum_size = sizeof(crc);
371                 char result[csum_size];
372
373                 /*
374                  * The super_block structure does not span the whole
375                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
376                  * is filled with zeros and is included in the checkum.
377                  */
378                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
379                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
380                 btrfs_csum_final(crc, result);
381
382                 if (memcmp(raw_disk_sb, result, csum_size))
383                         ret = 1;
384
385                 if (ret && btrfs_super_generation(disk_sb) < 10) {
386                         printk(KERN_WARNING
387                                 "BTRFS: super block crcs don't match, older mkfs detected\n");
388                         ret = 0;
389                 }
390         }
391
392         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
393                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
394                                 csum_type);
395                 ret = 1;
396         }
397
398         return ret;
399 }
400
401 /*
402  * helper to read a given tree block, doing retries as required when
403  * the checksums don't match and we have alternate mirrors to try.
404  */
405 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
406                                           struct extent_buffer *eb,
407                                           u64 start, u64 parent_transid)
408 {
409         struct extent_io_tree *io_tree;
410         int failed = 0;
411         int ret;
412         int num_copies = 0;
413         int mirror_num = 0;
414         int failed_mirror = 0;
415
416         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
417         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
418         while (1) {
419                 ret = read_extent_buffer_pages(io_tree, eb, start,
420                                                WAIT_COMPLETE,
421                                                btree_get_extent, mirror_num);
422                 if (!ret) {
423                         if (!verify_parent_transid(io_tree, eb,
424                                                    parent_transid, 0))
425                                 break;
426                         else
427                                 ret = -EIO;
428                 }
429
430                 /*
431                  * This buffer's crc is fine, but its contents are corrupted, so
432                  * there is no reason to read the other copies, they won't be
433                  * any less wrong.
434                  */
435                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
436                         break;
437
438                 num_copies = btrfs_num_copies(root->fs_info,
439                                               eb->start, eb->len);
440                 if (num_copies == 1)
441                         break;
442
443                 if (!failed_mirror) {
444                         failed = 1;
445                         failed_mirror = eb->read_mirror;
446                 }
447
448                 mirror_num++;
449                 if (mirror_num == failed_mirror)
450                         mirror_num++;
451
452                 if (mirror_num > num_copies)
453                         break;
454         }
455
456         if (failed && !ret && failed_mirror)
457                 repair_eb_io_failure(root, eb, failed_mirror);
458
459         return ret;
460 }
461
462 /*
463  * checksum a dirty tree block before IO.  This has extra checks to make sure
464  * we only fill in the checksum field in the first page of a multi-page block
465  */
466
467 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
468 {
469         u64 start = page_offset(page);
470         u64 found_start;
471         struct extent_buffer *eb;
472
473         eb = (struct extent_buffer *)page->private;
474         if (page != eb->pages[0])
475                 return 0;
476         found_start = btrfs_header_bytenr(eb);
477         if (WARN_ON(found_start != start || !PageUptodate(page)))
478                 return 0;
479         csum_tree_block(root, eb, 0);
480         return 0;
481 }
482
483 static int check_tree_block_fsid(struct btrfs_root *root,
484                                  struct extent_buffer *eb)
485 {
486         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
487         u8 fsid[BTRFS_UUID_SIZE];
488         int ret = 1;
489
490         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
491         while (fs_devices) {
492                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
493                         ret = 0;
494                         break;
495                 }
496                 fs_devices = fs_devices->seed;
497         }
498         return ret;
499 }
500
501 #define CORRUPT(reason, eb, root, slot)                         \
502         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
503                    "root=%llu, slot=%d", reason,                        \
504                btrfs_header_bytenr(eb), root->objectid, slot)
505
506 static noinline int check_leaf(struct btrfs_root *root,
507                                struct extent_buffer *leaf)
508 {
509         struct btrfs_key key;
510         struct btrfs_key leaf_key;
511         u32 nritems = btrfs_header_nritems(leaf);
512         int slot;
513
514         if (nritems == 0)
515                 return 0;
516
517         /* Check the 0 item */
518         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
519             BTRFS_LEAF_DATA_SIZE(root)) {
520                 CORRUPT("invalid item offset size pair", leaf, root, 0);
521                 return -EIO;
522         }
523
524         /*
525          * Check to make sure each items keys are in the correct order and their
526          * offsets make sense.  We only have to loop through nritems-1 because
527          * we check the current slot against the next slot, which verifies the
528          * next slot's offset+size makes sense and that the current's slot
529          * offset is correct.
530          */
531         for (slot = 0; slot < nritems - 1; slot++) {
532                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
533                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
534
535                 /* Make sure the keys are in the right order */
536                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
537                         CORRUPT("bad key order", leaf, root, slot);
538                         return -EIO;
539                 }
540
541                 /*
542                  * Make sure the offset and ends are right, remember that the
543                  * item data starts at the end of the leaf and grows towards the
544                  * front.
545                  */
546                 if (btrfs_item_offset_nr(leaf, slot) !=
547                         btrfs_item_end_nr(leaf, slot + 1)) {
548                         CORRUPT("slot offset bad", leaf, root, slot);
549                         return -EIO;
550                 }
551
552                 /*
553                  * Check to make sure that we don't point outside of the leaf,
554                  * just incase all the items are consistent to eachother, but
555                  * all point outside of the leaf.
556                  */
557                 if (btrfs_item_end_nr(leaf, slot) >
558                     BTRFS_LEAF_DATA_SIZE(root)) {
559                         CORRUPT("slot end outside of leaf", leaf, root, slot);
560                         return -EIO;
561                 }
562         }
563
564         return 0;
565 }
566
567 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
568                                       u64 phy_offset, struct page *page,
569                                       u64 start, u64 end, int mirror)
570 {
571         u64 found_start;
572         int found_level;
573         struct extent_buffer *eb;
574         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
575         int ret = 0;
576         int reads_done;
577
578         if (!page->private)
579                 goto out;
580
581         eb = (struct extent_buffer *)page->private;
582
583         /* the pending IO might have been the only thing that kept this buffer
584          * in memory.  Make sure we have a ref for all this other checks
585          */
586         extent_buffer_get(eb);
587
588         reads_done = atomic_dec_and_test(&eb->io_pages);
589         if (!reads_done)
590                 goto err;
591
592         eb->read_mirror = mirror;
593         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
594                 ret = -EIO;
595                 goto err;
596         }
597
598         found_start = btrfs_header_bytenr(eb);
599         if (found_start != eb->start) {
600                 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
601                                "%llu %llu\n",
602                                found_start, eb->start);
603                 ret = -EIO;
604                 goto err;
605         }
606         if (check_tree_block_fsid(root, eb)) {
607                 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
608                                eb->start);
609                 ret = -EIO;
610                 goto err;
611         }
612         found_level = btrfs_header_level(eb);
613         if (found_level >= BTRFS_MAX_LEVEL) {
614                 btrfs_info(root->fs_info, "bad tree block level %d",
615                            (int)btrfs_header_level(eb));
616                 ret = -EIO;
617                 goto err;
618         }
619
620         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
621                                        eb, found_level);
622
623         ret = csum_tree_block(root, eb, 1);
624         if (ret) {
625                 ret = -EIO;
626                 goto err;
627         }
628
629         /*
630          * If this is a leaf block and it is corrupt, set the corrupt bit so
631          * that we don't try and read the other copies of this block, just
632          * return -EIO.
633          */
634         if (found_level == 0 && check_leaf(root, eb)) {
635                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636                 ret = -EIO;
637         }
638
639         if (!ret)
640                 set_extent_buffer_uptodate(eb);
641 err:
642         if (reads_done &&
643             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
644                 btree_readahead_hook(root, eb, eb->start, ret);
645
646         if (ret) {
647                 /*
648                  * our io error hook is going to dec the io pages
649                  * again, we have to make sure it has something
650                  * to decrement
651                  */
652                 atomic_inc(&eb->io_pages);
653                 clear_extent_buffer_uptodate(eb);
654         }
655         free_extent_buffer(eb);
656 out:
657         return ret;
658 }
659
660 static int btree_io_failed_hook(struct page *page, int failed_mirror)
661 {
662         struct extent_buffer *eb;
663         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
664
665         eb = (struct extent_buffer *)page->private;
666         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
667         eb->read_mirror = failed_mirror;
668         atomic_dec(&eb->io_pages);
669         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
670                 btree_readahead_hook(root, eb, eb->start, -EIO);
671         return -EIO;    /* we fixed nothing */
672 }
673
674 static void end_workqueue_bio(struct bio *bio, int err)
675 {
676         struct end_io_wq *end_io_wq = bio->bi_private;
677         struct btrfs_fs_info *fs_info;
678
679         fs_info = end_io_wq->info;
680         end_io_wq->error = err;
681         end_io_wq->work.func = end_workqueue_fn;
682         end_io_wq->work.flags = 0;
683
684         if (bio->bi_rw & REQ_WRITE) {
685                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
686                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
687                                            &end_io_wq->work);
688                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
689                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
690                                            &end_io_wq->work);
691                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
692                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
693                                            &end_io_wq->work);
694                 else
695                         btrfs_queue_worker(&fs_info->endio_write_workers,
696                                            &end_io_wq->work);
697         } else {
698                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
699                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
700                                            &end_io_wq->work);
701                 else if (end_io_wq->metadata)
702                         btrfs_queue_worker(&fs_info->endio_meta_workers,
703                                            &end_io_wq->work);
704                 else
705                         btrfs_queue_worker(&fs_info->endio_workers,
706                                            &end_io_wq->work);
707         }
708 }
709
710 /*
711  * For the metadata arg you want
712  *
713  * 0 - if data
714  * 1 - if normal metadta
715  * 2 - if writing to the free space cache area
716  * 3 - raid parity work
717  */
718 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
719                         int metadata)
720 {
721         struct end_io_wq *end_io_wq;
722         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
723         if (!end_io_wq)
724                 return -ENOMEM;
725
726         end_io_wq->private = bio->bi_private;
727         end_io_wq->end_io = bio->bi_end_io;
728         end_io_wq->info = info;
729         end_io_wq->error = 0;
730         end_io_wq->bio = bio;
731         end_io_wq->metadata = metadata;
732
733         bio->bi_private = end_io_wq;
734         bio->bi_end_io = end_workqueue_bio;
735         return 0;
736 }
737
738 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
739 {
740         unsigned long limit = min_t(unsigned long,
741                                     info->workers.max_workers,
742                                     info->fs_devices->open_devices);
743         return 256 * limit;
744 }
745
746 static void run_one_async_start(struct btrfs_work *work)
747 {
748         struct async_submit_bio *async;
749         int ret;
750
751         async = container_of(work, struct  async_submit_bio, work);
752         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
753                                       async->mirror_num, async->bio_flags,
754                                       async->bio_offset);
755         if (ret)
756                 async->error = ret;
757 }
758
759 static void run_one_async_done(struct btrfs_work *work)
760 {
761         struct btrfs_fs_info *fs_info;
762         struct async_submit_bio *async;
763         int limit;
764
765         async = container_of(work, struct  async_submit_bio, work);
766         fs_info = BTRFS_I(async->inode)->root->fs_info;
767
768         limit = btrfs_async_submit_limit(fs_info);
769         limit = limit * 2 / 3;
770
771         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
772             waitqueue_active(&fs_info->async_submit_wait))
773                 wake_up(&fs_info->async_submit_wait);
774
775         /* If an error occured we just want to clean up the bio and move on */
776         if (async->error) {
777                 bio_endio(async->bio, async->error);
778                 return;
779         }
780
781         async->submit_bio_done(async->inode, async->rw, async->bio,
782                                async->mirror_num, async->bio_flags,
783                                async->bio_offset);
784 }
785
786 static void run_one_async_free(struct btrfs_work *work)
787 {
788         struct async_submit_bio *async;
789
790         async = container_of(work, struct  async_submit_bio, work);
791         kfree(async);
792 }
793
794 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
795                         int rw, struct bio *bio, int mirror_num,
796                         unsigned long bio_flags,
797                         u64 bio_offset,
798                         extent_submit_bio_hook_t *submit_bio_start,
799                         extent_submit_bio_hook_t *submit_bio_done)
800 {
801         struct async_submit_bio *async;
802
803         async = kmalloc(sizeof(*async), GFP_NOFS);
804         if (!async)
805                 return -ENOMEM;
806
807         async->inode = inode;
808         async->rw = rw;
809         async->bio = bio;
810         async->mirror_num = mirror_num;
811         async->submit_bio_start = submit_bio_start;
812         async->submit_bio_done = submit_bio_done;
813
814         async->work.func = run_one_async_start;
815         async->work.ordered_func = run_one_async_done;
816         async->work.ordered_free = run_one_async_free;
817
818         async->work.flags = 0;
819         async->bio_flags = bio_flags;
820         async->bio_offset = bio_offset;
821
822         async->error = 0;
823
824         atomic_inc(&fs_info->nr_async_submits);
825
826         if (rw & REQ_SYNC)
827                 btrfs_set_work_high_prio(&async->work);
828
829         btrfs_queue_worker(&fs_info->workers, &async->work);
830
831         while (atomic_read(&fs_info->async_submit_draining) &&
832               atomic_read(&fs_info->nr_async_submits)) {
833                 wait_event(fs_info->async_submit_wait,
834                            (atomic_read(&fs_info->nr_async_submits) == 0));
835         }
836
837         return 0;
838 }
839
840 static int btree_csum_one_bio(struct bio *bio)
841 {
842         struct bio_vec *bvec;
843         struct btrfs_root *root;
844         int i, ret = 0;
845
846         bio_for_each_segment_all(bvec, bio, i) {
847                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
848                 ret = csum_dirty_buffer(root, bvec->bv_page);
849                 if (ret)
850                         break;
851         }
852
853         return ret;
854 }
855
856 static int __btree_submit_bio_start(struct inode *inode, int rw,
857                                     struct bio *bio, int mirror_num,
858                                     unsigned long bio_flags,
859                                     u64 bio_offset)
860 {
861         /*
862          * when we're called for a write, we're already in the async
863          * submission context.  Just jump into btrfs_map_bio
864          */
865         return btree_csum_one_bio(bio);
866 }
867
868 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
869                                  int mirror_num, unsigned long bio_flags,
870                                  u64 bio_offset)
871 {
872         int ret;
873
874         /*
875          * when we're called for a write, we're already in the async
876          * submission context.  Just jump into btrfs_map_bio
877          */
878         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
879         if (ret)
880                 bio_endio(bio, ret);
881         return ret;
882 }
883
884 static int check_async_write(struct inode *inode, unsigned long bio_flags)
885 {
886         if (bio_flags & EXTENT_BIO_TREE_LOG)
887                 return 0;
888 #ifdef CONFIG_X86
889         if (cpu_has_xmm4_2)
890                 return 0;
891 #endif
892         return 1;
893 }
894
895 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
896                                  int mirror_num, unsigned long bio_flags,
897                                  u64 bio_offset)
898 {
899         int async = check_async_write(inode, bio_flags);
900         int ret;
901
902         if (!(rw & REQ_WRITE)) {
903                 /*
904                  * called for a read, do the setup so that checksum validation
905                  * can happen in the async kernel threads
906                  */
907                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
908                                           bio, 1);
909                 if (ret)
910                         goto out_w_error;
911                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
912                                     mirror_num, 0);
913         } else if (!async) {
914                 ret = btree_csum_one_bio(bio);
915                 if (ret)
916                         goto out_w_error;
917                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
918                                     mirror_num, 0);
919         } else {
920                 /*
921                  * kthread helpers are used to submit writes so that
922                  * checksumming can happen in parallel across all CPUs
923                  */
924                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
925                                           inode, rw, bio, mirror_num, 0,
926                                           bio_offset,
927                                           __btree_submit_bio_start,
928                                           __btree_submit_bio_done);
929         }
930
931         if (ret) {
932 out_w_error:
933                 bio_endio(bio, ret);
934         }
935         return ret;
936 }
937
938 #ifdef CONFIG_MIGRATION
939 static int btree_migratepage(struct address_space *mapping,
940                         struct page *newpage, struct page *page,
941                         enum migrate_mode mode)
942 {
943         /*
944          * we can't safely write a btree page from here,
945          * we haven't done the locking hook
946          */
947         if (PageDirty(page))
948                 return -EAGAIN;
949         /*
950          * Buffers may be managed in a filesystem specific way.
951          * We must have no buffers or drop them.
952          */
953         if (page_has_private(page) &&
954             !try_to_release_page(page, GFP_KERNEL))
955                 return -EAGAIN;
956         return migrate_page(mapping, newpage, page, mode);
957 }
958 #endif
959
960
961 static int btree_writepages(struct address_space *mapping,
962                             struct writeback_control *wbc)
963 {
964         struct btrfs_fs_info *fs_info;
965         int ret;
966
967         if (wbc->sync_mode == WB_SYNC_NONE) {
968
969                 if (wbc->for_kupdate)
970                         return 0;
971
972                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
973                 /* this is a bit racy, but that's ok */
974                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
975                                              BTRFS_DIRTY_METADATA_THRESH);
976                 if (ret < 0)
977                         return 0;
978         }
979         return btree_write_cache_pages(mapping, wbc);
980 }
981
982 static int btree_readpage(struct file *file, struct page *page)
983 {
984         struct extent_io_tree *tree;
985         tree = &BTRFS_I(page->mapping->host)->io_tree;
986         return extent_read_full_page(tree, page, btree_get_extent, 0);
987 }
988
989 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
990 {
991         if (PageWriteback(page) || PageDirty(page))
992                 return 0;
993
994         return try_release_extent_buffer(page);
995 }
996
997 static void btree_invalidatepage(struct page *page, unsigned int offset,
998                                  unsigned int length)
999 {
1000         struct extent_io_tree *tree;
1001         tree = &BTRFS_I(page->mapping->host)->io_tree;
1002         extent_invalidatepage(tree, page, offset);
1003         btree_releasepage(page, GFP_NOFS);
1004         if (PagePrivate(page)) {
1005                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1006                            "page private not zero on page %llu",
1007                            (unsigned long long)page_offset(page));
1008                 ClearPagePrivate(page);
1009                 set_page_private(page, 0);
1010                 page_cache_release(page);
1011         }
1012 }
1013
1014 static int btree_set_page_dirty(struct page *page)
1015 {
1016 #ifdef DEBUG
1017         struct extent_buffer *eb;
1018
1019         BUG_ON(!PagePrivate(page));
1020         eb = (struct extent_buffer *)page->private;
1021         BUG_ON(!eb);
1022         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1023         BUG_ON(!atomic_read(&eb->refs));
1024         btrfs_assert_tree_locked(eb);
1025 #endif
1026         return __set_page_dirty_nobuffers(page);
1027 }
1028
1029 static const struct address_space_operations btree_aops = {
1030         .readpage       = btree_readpage,
1031         .writepages     = btree_writepages,
1032         .releasepage    = btree_releasepage,
1033         .invalidatepage = btree_invalidatepage,
1034 #ifdef CONFIG_MIGRATION
1035         .migratepage    = btree_migratepage,
1036 #endif
1037         .set_page_dirty = btree_set_page_dirty,
1038 };
1039
1040 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1041                          u64 parent_transid)
1042 {
1043         struct extent_buffer *buf = NULL;
1044         struct inode *btree_inode = root->fs_info->btree_inode;
1045         int ret = 0;
1046
1047         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1048         if (!buf)
1049                 return 0;
1050         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1051                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1052         free_extent_buffer(buf);
1053         return ret;
1054 }
1055
1056 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1057                          int mirror_num, struct extent_buffer **eb)
1058 {
1059         struct extent_buffer *buf = NULL;
1060         struct inode *btree_inode = root->fs_info->btree_inode;
1061         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1062         int ret;
1063
1064         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1065         if (!buf)
1066                 return 0;
1067
1068         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1069
1070         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1071                                        btree_get_extent, mirror_num);
1072         if (ret) {
1073                 free_extent_buffer(buf);
1074                 return ret;
1075         }
1076
1077         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1078                 free_extent_buffer(buf);
1079                 return -EIO;
1080         } else if (extent_buffer_uptodate(buf)) {
1081                 *eb = buf;
1082         } else {
1083                 free_extent_buffer(buf);
1084         }
1085         return 0;
1086 }
1087
1088 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1089                                             u64 bytenr, u32 blocksize)
1090 {
1091         return find_extent_buffer(root->fs_info, bytenr);
1092 }
1093
1094 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1095                                                  u64 bytenr, u32 blocksize)
1096 {
1097         return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1098 }
1099
1100
1101 int btrfs_write_tree_block(struct extent_buffer *buf)
1102 {
1103         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1104                                         buf->start + buf->len - 1);
1105 }
1106
1107 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1108 {
1109         return filemap_fdatawait_range(buf->pages[0]->mapping,
1110                                        buf->start, buf->start + buf->len - 1);
1111 }
1112
1113 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1114                                       u32 blocksize, u64 parent_transid)
1115 {
1116         struct extent_buffer *buf = NULL;
1117         int ret;
1118
1119         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1120         if (!buf)
1121                 return NULL;
1122
1123         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1124         if (ret) {
1125                 free_extent_buffer(buf);
1126                 return NULL;
1127         }
1128         return buf;
1129
1130 }
1131
1132 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1133                       struct extent_buffer *buf)
1134 {
1135         struct btrfs_fs_info *fs_info = root->fs_info;
1136
1137         if (btrfs_header_generation(buf) ==
1138             fs_info->running_transaction->transid) {
1139                 btrfs_assert_tree_locked(buf);
1140
1141                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1142                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1143                                              -buf->len,
1144                                              fs_info->dirty_metadata_batch);
1145                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1146                         btrfs_set_lock_blocking(buf);
1147                         clear_extent_buffer_dirty(buf);
1148                 }
1149         }
1150 }
1151
1152 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1153                          u32 stripesize, struct btrfs_root *root,
1154                          struct btrfs_fs_info *fs_info,
1155                          u64 objectid)
1156 {
1157         root->node = NULL;
1158         root->commit_root = NULL;
1159         root->sectorsize = sectorsize;
1160         root->nodesize = nodesize;
1161         root->leafsize = leafsize;
1162         root->stripesize = stripesize;
1163         root->ref_cows = 0;
1164         root->track_dirty = 0;
1165         root->in_radix = 0;
1166         root->orphan_item_inserted = 0;
1167         root->orphan_cleanup_state = 0;
1168
1169         root->objectid = objectid;
1170         root->last_trans = 0;
1171         root->highest_objectid = 0;
1172         root->nr_delalloc_inodes = 0;
1173         root->nr_ordered_extents = 0;
1174         root->name = NULL;
1175         root->inode_tree = RB_ROOT;
1176         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1177         root->block_rsv = NULL;
1178         root->orphan_block_rsv = NULL;
1179
1180         INIT_LIST_HEAD(&root->dirty_list);
1181         INIT_LIST_HEAD(&root->root_list);
1182         INIT_LIST_HEAD(&root->delalloc_inodes);
1183         INIT_LIST_HEAD(&root->delalloc_root);
1184         INIT_LIST_HEAD(&root->ordered_extents);
1185         INIT_LIST_HEAD(&root->ordered_root);
1186         INIT_LIST_HEAD(&root->logged_list[0]);
1187         INIT_LIST_HEAD(&root->logged_list[1]);
1188         spin_lock_init(&root->orphan_lock);
1189         spin_lock_init(&root->inode_lock);
1190         spin_lock_init(&root->delalloc_lock);
1191         spin_lock_init(&root->ordered_extent_lock);
1192         spin_lock_init(&root->accounting_lock);
1193         spin_lock_init(&root->log_extents_lock[0]);
1194         spin_lock_init(&root->log_extents_lock[1]);
1195         mutex_init(&root->objectid_mutex);
1196         mutex_init(&root->log_mutex);
1197         init_waitqueue_head(&root->log_writer_wait);
1198         init_waitqueue_head(&root->log_commit_wait[0]);
1199         init_waitqueue_head(&root->log_commit_wait[1]);
1200         atomic_set(&root->log_commit[0], 0);
1201         atomic_set(&root->log_commit[1], 0);
1202         atomic_set(&root->log_writers, 0);
1203         atomic_set(&root->log_batch, 0);
1204         atomic_set(&root->orphan_inodes, 0);
1205         atomic_set(&root->refs, 1);
1206         root->log_transid = 0;
1207         root->last_log_commit = 0;
1208         if (fs_info)
1209                 extent_io_tree_init(&root->dirty_log_pages,
1210                                      fs_info->btree_inode->i_mapping);
1211
1212         memset(&root->root_key, 0, sizeof(root->root_key));
1213         memset(&root->root_item, 0, sizeof(root->root_item));
1214         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1215         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1216         if (fs_info)
1217                 root->defrag_trans_start = fs_info->generation;
1218         else
1219                 root->defrag_trans_start = 0;
1220         init_completion(&root->kobj_unregister);
1221         root->defrag_running = 0;
1222         root->root_key.objectid = objectid;
1223         root->anon_dev = 0;
1224
1225         spin_lock_init(&root->root_item_lock);
1226 }
1227
1228 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1229 {
1230         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1231         if (root)
1232                 root->fs_info = fs_info;
1233         return root;
1234 }
1235
1236 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1237 /* Should only be used by the testing infrastructure */
1238 struct btrfs_root *btrfs_alloc_dummy_root(void)
1239 {
1240         struct btrfs_root *root;
1241
1242         root = btrfs_alloc_root(NULL);
1243         if (!root)
1244                 return ERR_PTR(-ENOMEM);
1245         __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1246         root->dummy_root = 1;
1247
1248         return root;
1249 }
1250 #endif
1251
1252 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1253                                      struct btrfs_fs_info *fs_info,
1254                                      u64 objectid)
1255 {
1256         struct extent_buffer *leaf;
1257         struct btrfs_root *tree_root = fs_info->tree_root;
1258         struct btrfs_root *root;
1259         struct btrfs_key key;
1260         int ret = 0;
1261         uuid_le uuid;
1262
1263         root = btrfs_alloc_root(fs_info);
1264         if (!root)
1265                 return ERR_PTR(-ENOMEM);
1266
1267         __setup_root(tree_root->nodesize, tree_root->leafsize,
1268                      tree_root->sectorsize, tree_root->stripesize,
1269                      root, fs_info, objectid);
1270         root->root_key.objectid = objectid;
1271         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1272         root->root_key.offset = 0;
1273
1274         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1275                                       0, objectid, NULL, 0, 0, 0);
1276         if (IS_ERR(leaf)) {
1277                 ret = PTR_ERR(leaf);
1278                 leaf = NULL;
1279                 goto fail;
1280         }
1281
1282         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1283         btrfs_set_header_bytenr(leaf, leaf->start);
1284         btrfs_set_header_generation(leaf, trans->transid);
1285         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1286         btrfs_set_header_owner(leaf, objectid);
1287         root->node = leaf;
1288
1289         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1290                             BTRFS_FSID_SIZE);
1291         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1292                             btrfs_header_chunk_tree_uuid(leaf),
1293                             BTRFS_UUID_SIZE);
1294         btrfs_mark_buffer_dirty(leaf);
1295
1296         root->commit_root = btrfs_root_node(root);
1297         root->track_dirty = 1;
1298
1299
1300         root->root_item.flags = 0;
1301         root->root_item.byte_limit = 0;
1302         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1303         btrfs_set_root_generation(&root->root_item, trans->transid);
1304         btrfs_set_root_level(&root->root_item, 0);
1305         btrfs_set_root_refs(&root->root_item, 1);
1306         btrfs_set_root_used(&root->root_item, leaf->len);
1307         btrfs_set_root_last_snapshot(&root->root_item, 0);
1308         btrfs_set_root_dirid(&root->root_item, 0);
1309         uuid_le_gen(&uuid);
1310         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1311         root->root_item.drop_level = 0;
1312
1313         key.objectid = objectid;
1314         key.type = BTRFS_ROOT_ITEM_KEY;
1315         key.offset = 0;
1316         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1317         if (ret)
1318                 goto fail;
1319
1320         btrfs_tree_unlock(leaf);
1321
1322         return root;
1323
1324 fail:
1325         if (leaf) {
1326                 btrfs_tree_unlock(leaf);
1327                 free_extent_buffer(leaf);
1328         }
1329         kfree(root);
1330
1331         return ERR_PTR(ret);
1332 }
1333
1334 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1335                                          struct btrfs_fs_info *fs_info)
1336 {
1337         struct btrfs_root *root;
1338         struct btrfs_root *tree_root = fs_info->tree_root;
1339         struct extent_buffer *leaf;
1340
1341         root = btrfs_alloc_root(fs_info);
1342         if (!root)
1343                 return ERR_PTR(-ENOMEM);
1344
1345         __setup_root(tree_root->nodesize, tree_root->leafsize,
1346                      tree_root->sectorsize, tree_root->stripesize,
1347                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1348
1349         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1350         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1351         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1352         /*
1353          * log trees do not get reference counted because they go away
1354          * before a real commit is actually done.  They do store pointers
1355          * to file data extents, and those reference counts still get
1356          * updated (along with back refs to the log tree).
1357          */
1358         root->ref_cows = 0;
1359
1360         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1361                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1362                                       0, 0, 0);
1363         if (IS_ERR(leaf)) {
1364                 kfree(root);
1365                 return ERR_CAST(leaf);
1366         }
1367
1368         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1369         btrfs_set_header_bytenr(leaf, leaf->start);
1370         btrfs_set_header_generation(leaf, trans->transid);
1371         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1372         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1373         root->node = leaf;
1374
1375         write_extent_buffer(root->node, root->fs_info->fsid,
1376                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1377         btrfs_mark_buffer_dirty(root->node);
1378         btrfs_tree_unlock(root->node);
1379         return root;
1380 }
1381
1382 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1383                              struct btrfs_fs_info *fs_info)
1384 {
1385         struct btrfs_root *log_root;
1386
1387         log_root = alloc_log_tree(trans, fs_info);
1388         if (IS_ERR(log_root))
1389                 return PTR_ERR(log_root);
1390         WARN_ON(fs_info->log_root_tree);
1391         fs_info->log_root_tree = log_root;
1392         return 0;
1393 }
1394
1395 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1396                        struct btrfs_root *root)
1397 {
1398         struct btrfs_root *log_root;
1399         struct btrfs_inode_item *inode_item;
1400
1401         log_root = alloc_log_tree(trans, root->fs_info);
1402         if (IS_ERR(log_root))
1403                 return PTR_ERR(log_root);
1404
1405         log_root->last_trans = trans->transid;
1406         log_root->root_key.offset = root->root_key.objectid;
1407
1408         inode_item = &log_root->root_item.inode;
1409         btrfs_set_stack_inode_generation(inode_item, 1);
1410         btrfs_set_stack_inode_size(inode_item, 3);
1411         btrfs_set_stack_inode_nlink(inode_item, 1);
1412         btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1413         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1414
1415         btrfs_set_root_node(&log_root->root_item, log_root->node);
1416
1417         WARN_ON(root->log_root);
1418         root->log_root = log_root;
1419         root->log_transid = 0;
1420         root->last_log_commit = 0;
1421         return 0;
1422 }
1423
1424 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1425                                                struct btrfs_key *key)
1426 {
1427         struct btrfs_root *root;
1428         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1429         struct btrfs_path *path;
1430         u64 generation;
1431         u32 blocksize;
1432         int ret;
1433
1434         path = btrfs_alloc_path();
1435         if (!path)
1436                 return ERR_PTR(-ENOMEM);
1437
1438         root = btrfs_alloc_root(fs_info);
1439         if (!root) {
1440                 ret = -ENOMEM;
1441                 goto alloc_fail;
1442         }
1443
1444         __setup_root(tree_root->nodesize, tree_root->leafsize,
1445                      tree_root->sectorsize, tree_root->stripesize,
1446                      root, fs_info, key->objectid);
1447
1448         ret = btrfs_find_root(tree_root, key, path,
1449                               &root->root_item, &root->root_key);
1450         if (ret) {
1451                 if (ret > 0)
1452                         ret = -ENOENT;
1453                 goto find_fail;
1454         }
1455
1456         generation = btrfs_root_generation(&root->root_item);
1457         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1458         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1459                                      blocksize, generation);
1460         if (!root->node) {
1461                 ret = -ENOMEM;
1462                 goto find_fail;
1463         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1464                 ret = -EIO;
1465                 goto read_fail;
1466         }
1467         root->commit_root = btrfs_root_node(root);
1468 out:
1469         btrfs_free_path(path);
1470         return root;
1471
1472 read_fail:
1473         free_extent_buffer(root->node);
1474 find_fail:
1475         kfree(root);
1476 alloc_fail:
1477         root = ERR_PTR(ret);
1478         goto out;
1479 }
1480
1481 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1482                                       struct btrfs_key *location)
1483 {
1484         struct btrfs_root *root;
1485
1486         root = btrfs_read_tree_root(tree_root, location);
1487         if (IS_ERR(root))
1488                 return root;
1489
1490         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1491                 root->ref_cows = 1;
1492                 btrfs_check_and_init_root_item(&root->root_item);
1493         }
1494
1495         return root;
1496 }
1497
1498 int btrfs_init_fs_root(struct btrfs_root *root)
1499 {
1500         int ret;
1501
1502         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1503         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1504                                         GFP_NOFS);
1505         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1506                 ret = -ENOMEM;
1507                 goto fail;
1508         }
1509
1510         btrfs_init_free_ino_ctl(root);
1511         mutex_init(&root->fs_commit_mutex);
1512         spin_lock_init(&root->cache_lock);
1513         init_waitqueue_head(&root->cache_wait);
1514
1515         ret = get_anon_bdev(&root->anon_dev);
1516         if (ret)
1517                 goto fail;
1518         return 0;
1519 fail:
1520         kfree(root->free_ino_ctl);
1521         kfree(root->free_ino_pinned);
1522         return ret;
1523 }
1524
1525 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1526                                                u64 root_id)
1527 {
1528         struct btrfs_root *root;
1529
1530         spin_lock(&fs_info->fs_roots_radix_lock);
1531         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1532                                  (unsigned long)root_id);
1533         spin_unlock(&fs_info->fs_roots_radix_lock);
1534         return root;
1535 }
1536
1537 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1538                          struct btrfs_root *root)
1539 {
1540         int ret;
1541
1542         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1543         if (ret)
1544                 return ret;
1545
1546         spin_lock(&fs_info->fs_roots_radix_lock);
1547         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1548                                 (unsigned long)root->root_key.objectid,
1549                                 root);
1550         if (ret == 0)
1551                 root->in_radix = 1;
1552         spin_unlock(&fs_info->fs_roots_radix_lock);
1553         radix_tree_preload_end();
1554
1555         return ret;
1556 }
1557
1558 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1559                                      struct btrfs_key *location,
1560                                      bool check_ref)
1561 {
1562         struct btrfs_root *root;
1563         int ret;
1564
1565         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1566                 return fs_info->tree_root;
1567         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1568                 return fs_info->extent_root;
1569         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1570                 return fs_info->chunk_root;
1571         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1572                 return fs_info->dev_root;
1573         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1574                 return fs_info->csum_root;
1575         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1576                 return fs_info->quota_root ? fs_info->quota_root :
1577                                              ERR_PTR(-ENOENT);
1578         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1579                 return fs_info->uuid_root ? fs_info->uuid_root :
1580                                             ERR_PTR(-ENOENT);
1581 again:
1582         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1583         if (root) {
1584                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1585                         return ERR_PTR(-ENOENT);
1586                 return root;
1587         }
1588
1589         root = btrfs_read_fs_root(fs_info->tree_root, location);
1590         if (IS_ERR(root))
1591                 return root;
1592
1593         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1594                 ret = -ENOENT;
1595                 goto fail;
1596         }
1597
1598         ret = btrfs_init_fs_root(root);
1599         if (ret)
1600                 goto fail;
1601
1602         ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1603                         location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1604         if (ret < 0)
1605                 goto fail;
1606         if (ret == 0)
1607                 root->orphan_item_inserted = 1;
1608
1609         ret = btrfs_insert_fs_root(fs_info, root);
1610         if (ret) {
1611                 if (ret == -EEXIST) {
1612                         free_fs_root(root);
1613                         goto again;
1614                 }
1615                 goto fail;
1616         }
1617         return root;
1618 fail:
1619         free_fs_root(root);
1620         return ERR_PTR(ret);
1621 }
1622
1623 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1624 {
1625         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1626         int ret = 0;
1627         struct btrfs_device *device;
1628         struct backing_dev_info *bdi;
1629
1630         rcu_read_lock();
1631         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1632                 if (!device->bdev)
1633                         continue;
1634                 bdi = blk_get_backing_dev_info(device->bdev);
1635                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1636                         ret = 1;
1637                         break;
1638                 }
1639         }
1640         rcu_read_unlock();
1641         return ret;
1642 }
1643
1644 /*
1645  * If this fails, caller must call bdi_destroy() to get rid of the
1646  * bdi again.
1647  */
1648 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1649 {
1650         int err;
1651
1652         bdi->capabilities = BDI_CAP_MAP_COPY;
1653         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1654         if (err)
1655                 return err;
1656
1657         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1658         bdi->congested_fn       = btrfs_congested_fn;
1659         bdi->congested_data     = info;
1660         return 0;
1661 }
1662
1663 /*
1664  * called by the kthread helper functions to finally call the bio end_io
1665  * functions.  This is where read checksum verification actually happens
1666  */
1667 static void end_workqueue_fn(struct btrfs_work *work)
1668 {
1669         struct bio *bio;
1670         struct end_io_wq *end_io_wq;
1671         int error;
1672
1673         end_io_wq = container_of(work, struct end_io_wq, work);
1674         bio = end_io_wq->bio;
1675
1676         error = end_io_wq->error;
1677         bio->bi_private = end_io_wq->private;
1678         bio->bi_end_io = end_io_wq->end_io;
1679         kfree(end_io_wq);
1680         bio_endio_nodec(bio, error);
1681 }
1682
1683 static int cleaner_kthread(void *arg)
1684 {
1685         struct btrfs_root *root = arg;
1686         int again;
1687
1688         do {
1689                 again = 0;
1690
1691                 /* Make the cleaner go to sleep early. */
1692                 if (btrfs_need_cleaner_sleep(root))
1693                         goto sleep;
1694
1695                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1696                         goto sleep;
1697
1698                 /*
1699                  * Avoid the problem that we change the status of the fs
1700                  * during the above check and trylock.
1701                  */
1702                 if (btrfs_need_cleaner_sleep(root)) {
1703                         mutex_unlock(&root->fs_info->cleaner_mutex);
1704                         goto sleep;
1705                 }
1706
1707                 btrfs_run_delayed_iputs(root);
1708                 again = btrfs_clean_one_deleted_snapshot(root);
1709                 mutex_unlock(&root->fs_info->cleaner_mutex);
1710
1711                 /*
1712                  * The defragger has dealt with the R/O remount and umount,
1713                  * needn't do anything special here.
1714                  */
1715                 btrfs_run_defrag_inodes(root->fs_info);
1716 sleep:
1717                 if (!try_to_freeze() && !again) {
1718                         set_current_state(TASK_INTERRUPTIBLE);
1719                         if (!kthread_should_stop())
1720                                 schedule();
1721                         __set_current_state(TASK_RUNNING);
1722                 }
1723         } while (!kthread_should_stop());
1724         return 0;
1725 }
1726
1727 static int transaction_kthread(void *arg)
1728 {
1729         struct btrfs_root *root = arg;
1730         struct btrfs_trans_handle *trans;
1731         struct btrfs_transaction *cur;
1732         u64 transid;
1733         unsigned long now;
1734         unsigned long delay;
1735         bool cannot_commit;
1736
1737         do {
1738                 cannot_commit = false;
1739                 delay = HZ * root->fs_info->commit_interval;
1740                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1741
1742                 spin_lock(&root->fs_info->trans_lock);
1743                 cur = root->fs_info->running_transaction;
1744                 if (!cur) {
1745                         spin_unlock(&root->fs_info->trans_lock);
1746                         goto sleep;
1747                 }
1748
1749                 now = get_seconds();
1750                 if (cur->state < TRANS_STATE_BLOCKED &&
1751                     (now < cur->start_time ||
1752                      now - cur->start_time < root->fs_info->commit_interval)) {
1753                         spin_unlock(&root->fs_info->trans_lock);
1754                         delay = HZ * 5;
1755                         goto sleep;
1756                 }
1757                 transid = cur->transid;
1758                 spin_unlock(&root->fs_info->trans_lock);
1759
1760                 /* If the file system is aborted, this will always fail. */
1761                 trans = btrfs_attach_transaction(root);
1762                 if (IS_ERR(trans)) {
1763                         if (PTR_ERR(trans) != -ENOENT)
1764                                 cannot_commit = true;
1765                         goto sleep;
1766                 }
1767                 if (transid == trans->transid) {
1768                         btrfs_commit_transaction(trans, root);
1769                 } else {
1770                         btrfs_end_transaction(trans, root);
1771                 }
1772 sleep:
1773                 wake_up_process(root->fs_info->cleaner_kthread);
1774                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1775
1776                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1777                                       &root->fs_info->fs_state)))
1778                         btrfs_cleanup_transaction(root);
1779                 if (!try_to_freeze()) {
1780                         set_current_state(TASK_INTERRUPTIBLE);
1781                         if (!kthread_should_stop() &&
1782                             (!btrfs_transaction_blocked(root->fs_info) ||
1783                              cannot_commit))
1784                                 schedule_timeout(delay);
1785                         __set_current_state(TASK_RUNNING);
1786                 }
1787         } while (!kthread_should_stop());
1788         return 0;
1789 }
1790
1791 /*
1792  * this will find the highest generation in the array of
1793  * root backups.  The index of the highest array is returned,
1794  * or -1 if we can't find anything.
1795  *
1796  * We check to make sure the array is valid by comparing the
1797  * generation of the latest  root in the array with the generation
1798  * in the super block.  If they don't match we pitch it.
1799  */
1800 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1801 {
1802         u64 cur;
1803         int newest_index = -1;
1804         struct btrfs_root_backup *root_backup;
1805         int i;
1806
1807         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1808                 root_backup = info->super_copy->super_roots + i;
1809                 cur = btrfs_backup_tree_root_gen(root_backup);
1810                 if (cur == newest_gen)
1811                         newest_index = i;
1812         }
1813
1814         /* check to see if we actually wrapped around */
1815         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1816                 root_backup = info->super_copy->super_roots;
1817                 cur = btrfs_backup_tree_root_gen(root_backup);
1818                 if (cur == newest_gen)
1819                         newest_index = 0;
1820         }
1821         return newest_index;
1822 }
1823
1824
1825 /*
1826  * find the oldest backup so we know where to store new entries
1827  * in the backup array.  This will set the backup_root_index
1828  * field in the fs_info struct
1829  */
1830 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1831                                      u64 newest_gen)
1832 {
1833         int newest_index = -1;
1834
1835         newest_index = find_newest_super_backup(info, newest_gen);
1836         /* if there was garbage in there, just move along */
1837         if (newest_index == -1) {
1838                 info->backup_root_index = 0;
1839         } else {
1840                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1841         }
1842 }
1843
1844 /*
1845  * copy all the root pointers into the super backup array.
1846  * this will bump the backup pointer by one when it is
1847  * done
1848  */
1849 static void backup_super_roots(struct btrfs_fs_info *info)
1850 {
1851         int next_backup;
1852         struct btrfs_root_backup *root_backup;
1853         int last_backup;
1854
1855         next_backup = info->backup_root_index;
1856         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1857                 BTRFS_NUM_BACKUP_ROOTS;
1858
1859         /*
1860          * just overwrite the last backup if we're at the same generation
1861          * this happens only at umount
1862          */
1863         root_backup = info->super_for_commit->super_roots + last_backup;
1864         if (btrfs_backup_tree_root_gen(root_backup) ==
1865             btrfs_header_generation(info->tree_root->node))
1866                 next_backup = last_backup;
1867
1868         root_backup = info->super_for_commit->super_roots + next_backup;
1869
1870         /*
1871          * make sure all of our padding and empty slots get zero filled
1872          * regardless of which ones we use today
1873          */
1874         memset(root_backup, 0, sizeof(*root_backup));
1875
1876         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1877
1878         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1879         btrfs_set_backup_tree_root_gen(root_backup,
1880                                btrfs_header_generation(info->tree_root->node));
1881
1882         btrfs_set_backup_tree_root_level(root_backup,
1883                                btrfs_header_level(info->tree_root->node));
1884
1885         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1886         btrfs_set_backup_chunk_root_gen(root_backup,
1887                                btrfs_header_generation(info->chunk_root->node));
1888         btrfs_set_backup_chunk_root_level(root_backup,
1889                                btrfs_header_level(info->chunk_root->node));
1890
1891         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1892         btrfs_set_backup_extent_root_gen(root_backup,
1893                                btrfs_header_generation(info->extent_root->node));
1894         btrfs_set_backup_extent_root_level(root_backup,
1895                                btrfs_header_level(info->extent_root->node));
1896
1897         /*
1898          * we might commit during log recovery, which happens before we set
1899          * the fs_root.  Make sure it is valid before we fill it in.
1900          */
1901         if (info->fs_root && info->fs_root->node) {
1902                 btrfs_set_backup_fs_root(root_backup,
1903                                          info->fs_root->node->start);
1904                 btrfs_set_backup_fs_root_gen(root_backup,
1905                                btrfs_header_generation(info->fs_root->node));
1906                 btrfs_set_backup_fs_root_level(root_backup,
1907                                btrfs_header_level(info->fs_root->node));
1908         }
1909
1910         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1911         btrfs_set_backup_dev_root_gen(root_backup,
1912                                btrfs_header_generation(info->dev_root->node));
1913         btrfs_set_backup_dev_root_level(root_backup,
1914                                        btrfs_header_level(info->dev_root->node));
1915
1916         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1917         btrfs_set_backup_csum_root_gen(root_backup,
1918                                btrfs_header_generation(info->csum_root->node));
1919         btrfs_set_backup_csum_root_level(root_backup,
1920                                btrfs_header_level(info->csum_root->node));
1921
1922         btrfs_set_backup_total_bytes(root_backup,
1923                              btrfs_super_total_bytes(info->super_copy));
1924         btrfs_set_backup_bytes_used(root_backup,
1925                              btrfs_super_bytes_used(info->super_copy));
1926         btrfs_set_backup_num_devices(root_backup,
1927                              btrfs_super_num_devices(info->super_copy));
1928
1929         /*
1930          * if we don't copy this out to the super_copy, it won't get remembered
1931          * for the next commit
1932          */
1933         memcpy(&info->super_copy->super_roots,
1934                &info->super_for_commit->super_roots,
1935                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1936 }
1937
1938 /*
1939  * this copies info out of the root backup array and back into
1940  * the in-memory super block.  It is meant to help iterate through
1941  * the array, so you send it the number of backups you've already
1942  * tried and the last backup index you used.
1943  *
1944  * this returns -1 when it has tried all the backups
1945  */
1946 static noinline int next_root_backup(struct btrfs_fs_info *info,
1947                                      struct btrfs_super_block *super,
1948                                      int *num_backups_tried, int *backup_index)
1949 {
1950         struct btrfs_root_backup *root_backup;
1951         int newest = *backup_index;
1952
1953         if (*num_backups_tried == 0) {
1954                 u64 gen = btrfs_super_generation(super);
1955
1956                 newest = find_newest_super_backup(info, gen);
1957                 if (newest == -1)
1958                         return -1;
1959
1960                 *backup_index = newest;
1961                 *num_backups_tried = 1;
1962         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1963                 /* we've tried all the backups, all done */
1964                 return -1;
1965         } else {
1966                 /* jump to the next oldest backup */
1967                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1968                         BTRFS_NUM_BACKUP_ROOTS;
1969                 *backup_index = newest;
1970                 *num_backups_tried += 1;
1971         }
1972         root_backup = super->super_roots + newest;
1973
1974         btrfs_set_super_generation(super,
1975                                    btrfs_backup_tree_root_gen(root_backup));
1976         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1977         btrfs_set_super_root_level(super,
1978                                    btrfs_backup_tree_root_level(root_backup));
1979         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1980
1981         /*
1982          * fixme: the total bytes and num_devices need to match or we should
1983          * need a fsck
1984          */
1985         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1986         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1987         return 0;
1988 }
1989
1990 /* helper to cleanup workers */
1991 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1992 {
1993         btrfs_stop_workers(&fs_info->generic_worker);
1994         btrfs_stop_workers(&fs_info->fixup_workers);
1995         btrfs_stop_workers(&fs_info->delalloc_workers);
1996         btrfs_stop_workers(&fs_info->workers);
1997         btrfs_stop_workers(&fs_info->endio_workers);
1998         btrfs_stop_workers(&fs_info->endio_meta_workers);
1999         btrfs_stop_workers(&fs_info->endio_raid56_workers);
2000         btrfs_stop_workers(&fs_info->rmw_workers);
2001         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2002         btrfs_stop_workers(&fs_info->endio_write_workers);
2003         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2004         btrfs_stop_workers(&fs_info->submit_workers);
2005         btrfs_stop_workers(&fs_info->delayed_workers);
2006         btrfs_stop_workers(&fs_info->caching_workers);
2007         btrfs_stop_workers(&fs_info->readahead_workers);
2008         btrfs_stop_workers(&fs_info->flush_workers);
2009         btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
2010 }
2011
2012 static void free_root_extent_buffers(struct btrfs_root *root)
2013 {
2014         if (root) {
2015                 free_extent_buffer(root->node);
2016                 free_extent_buffer(root->commit_root);
2017                 root->node = NULL;
2018                 root->commit_root = NULL;
2019         }
2020 }
2021
2022 /* helper to cleanup tree roots */
2023 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2024 {
2025         free_root_extent_buffers(info->tree_root);
2026
2027         free_root_extent_buffers(info->dev_root);
2028         free_root_extent_buffers(info->extent_root);
2029         free_root_extent_buffers(info->csum_root);
2030         free_root_extent_buffers(info->quota_root);
2031         free_root_extent_buffers(info->uuid_root);
2032         if (chunk_root)
2033                 free_root_extent_buffers(info->chunk_root);
2034 }
2035
2036 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2037 {
2038         int ret;
2039         struct btrfs_root *gang[8];
2040         int i;
2041
2042         while (!list_empty(&fs_info->dead_roots)) {
2043                 gang[0] = list_entry(fs_info->dead_roots.next,
2044                                      struct btrfs_root, root_list);
2045                 list_del(&gang[0]->root_list);
2046
2047                 if (gang[0]->in_radix) {
2048                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2049                 } else {
2050                         free_extent_buffer(gang[0]->node);
2051                         free_extent_buffer(gang[0]->commit_root);
2052                         btrfs_put_fs_root(gang[0]);
2053                 }
2054         }
2055
2056         while (1) {
2057                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2058                                              (void **)gang, 0,
2059                                              ARRAY_SIZE(gang));
2060                 if (!ret)
2061                         break;
2062                 for (i = 0; i < ret; i++)
2063                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2064         }
2065
2066         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2067                 btrfs_free_log_root_tree(NULL, fs_info);
2068                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2069                                             fs_info->pinned_extents);
2070         }
2071 }
2072
2073 int open_ctree(struct super_block *sb,
2074                struct btrfs_fs_devices *fs_devices,
2075                char *options)
2076 {
2077         u32 sectorsize;
2078         u32 nodesize;
2079         u32 leafsize;
2080         u32 blocksize;
2081         u32 stripesize;
2082         u64 generation;
2083         u64 features;
2084         struct btrfs_key location;
2085         struct buffer_head *bh;
2086         struct btrfs_super_block *disk_super;
2087         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2088         struct btrfs_root *tree_root;
2089         struct btrfs_root *extent_root;
2090         struct btrfs_root *csum_root;
2091         struct btrfs_root *chunk_root;
2092         struct btrfs_root *dev_root;
2093         struct btrfs_root *quota_root;
2094         struct btrfs_root *uuid_root;
2095         struct btrfs_root *log_tree_root;
2096         int ret;
2097         int err = -EINVAL;
2098         int num_backups_tried = 0;
2099         int backup_index = 0;
2100         bool create_uuid_tree;
2101         bool check_uuid_tree;
2102
2103         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2104         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2105         if (!tree_root || !chunk_root) {
2106                 err = -ENOMEM;
2107                 goto fail;
2108         }
2109
2110         ret = init_srcu_struct(&fs_info->subvol_srcu);
2111         if (ret) {
2112                 err = ret;
2113                 goto fail;
2114         }
2115
2116         ret = setup_bdi(fs_info, &fs_info->bdi);
2117         if (ret) {
2118                 err = ret;
2119                 goto fail_srcu;
2120         }
2121
2122         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2123         if (ret) {
2124                 err = ret;
2125                 goto fail_bdi;
2126         }
2127         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2128                                         (1 + ilog2(nr_cpu_ids));
2129
2130         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2131         if (ret) {
2132                 err = ret;
2133                 goto fail_dirty_metadata_bytes;
2134         }
2135
2136         fs_info->btree_inode = new_inode(sb);
2137         if (!fs_info->btree_inode) {
2138                 err = -ENOMEM;
2139                 goto fail_delalloc_bytes;
2140         }
2141
2142         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2143
2144         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2145         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2146         INIT_LIST_HEAD(&fs_info->trans_list);
2147         INIT_LIST_HEAD(&fs_info->dead_roots);
2148         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2149         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2150         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2151         spin_lock_init(&fs_info->delalloc_root_lock);
2152         spin_lock_init(&fs_info->trans_lock);
2153         spin_lock_init(&fs_info->fs_roots_radix_lock);
2154         spin_lock_init(&fs_info->delayed_iput_lock);
2155         spin_lock_init(&fs_info->defrag_inodes_lock);
2156         spin_lock_init(&fs_info->free_chunk_lock);
2157         spin_lock_init(&fs_info->tree_mod_seq_lock);
2158         spin_lock_init(&fs_info->super_lock);
2159         spin_lock_init(&fs_info->buffer_lock);
2160         rwlock_init(&fs_info->tree_mod_log_lock);
2161         mutex_init(&fs_info->reloc_mutex);
2162         seqlock_init(&fs_info->profiles_lock);
2163
2164         init_completion(&fs_info->kobj_unregister);
2165         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2166         INIT_LIST_HEAD(&fs_info->space_info);
2167         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2168         btrfs_mapping_init(&fs_info->mapping_tree);
2169         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2170                              BTRFS_BLOCK_RSV_GLOBAL);
2171         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2172                              BTRFS_BLOCK_RSV_DELALLOC);
2173         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2174         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2175         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2176         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2177                              BTRFS_BLOCK_RSV_DELOPS);
2178         atomic_set(&fs_info->nr_async_submits, 0);
2179         atomic_set(&fs_info->async_delalloc_pages, 0);
2180         atomic_set(&fs_info->async_submit_draining, 0);
2181         atomic_set(&fs_info->nr_async_bios, 0);
2182         atomic_set(&fs_info->defrag_running, 0);
2183         atomic64_set(&fs_info->tree_mod_seq, 0);
2184         fs_info->sb = sb;
2185         fs_info->max_inline = 8192 * 1024;
2186         fs_info->metadata_ratio = 0;
2187         fs_info->defrag_inodes = RB_ROOT;
2188         fs_info->free_chunk_space = 0;
2189         fs_info->tree_mod_log = RB_ROOT;
2190         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2191         fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2192         /* readahead state */
2193         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2194         spin_lock_init(&fs_info->reada_lock);
2195
2196         fs_info->thread_pool_size = min_t(unsigned long,
2197                                           num_online_cpus() + 2, 8);
2198
2199         INIT_LIST_HEAD(&fs_info->ordered_roots);
2200         spin_lock_init(&fs_info->ordered_root_lock);
2201         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2202                                         GFP_NOFS);
2203         if (!fs_info->delayed_root) {
2204                 err = -ENOMEM;
2205                 goto fail_iput;
2206         }
2207         btrfs_init_delayed_root(fs_info->delayed_root);
2208
2209         mutex_init(&fs_info->scrub_lock);
2210         atomic_set(&fs_info->scrubs_running, 0);
2211         atomic_set(&fs_info->scrub_pause_req, 0);
2212         atomic_set(&fs_info->scrubs_paused, 0);
2213         atomic_set(&fs_info->scrub_cancel_req, 0);
2214         init_waitqueue_head(&fs_info->scrub_pause_wait);
2215         fs_info->scrub_workers_refcnt = 0;
2216 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2217         fs_info->check_integrity_print_mask = 0;
2218 #endif
2219
2220         spin_lock_init(&fs_info->balance_lock);
2221         mutex_init(&fs_info->balance_mutex);
2222         atomic_set(&fs_info->balance_running, 0);
2223         atomic_set(&fs_info->balance_pause_req, 0);
2224         atomic_set(&fs_info->balance_cancel_req, 0);
2225         fs_info->balance_ctl = NULL;
2226         init_waitqueue_head(&fs_info->balance_wait_q);
2227
2228         sb->s_blocksize = 4096;
2229         sb->s_blocksize_bits = blksize_bits(4096);
2230         sb->s_bdi = &fs_info->bdi;
2231
2232         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2233         set_nlink(fs_info->btree_inode, 1);
2234         /*
2235          * we set the i_size on the btree inode to the max possible int.
2236          * the real end of the address space is determined by all of
2237          * the devices in the system
2238          */
2239         fs_info->btree_inode->i_size = OFFSET_MAX;
2240         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2241         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2242
2243         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2244         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2245                              fs_info->btree_inode->i_mapping);
2246         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2247         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2248
2249         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2250
2251         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2252         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2253                sizeof(struct btrfs_key));
2254         set_bit(BTRFS_INODE_DUMMY,
2255                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2256         btrfs_insert_inode_hash(fs_info->btree_inode);
2257
2258         spin_lock_init(&fs_info->block_group_cache_lock);
2259         fs_info->block_group_cache_tree = RB_ROOT;
2260         fs_info->first_logical_byte = (u64)-1;
2261
2262         extent_io_tree_init(&fs_info->freed_extents[0],
2263                              fs_info->btree_inode->i_mapping);
2264         extent_io_tree_init(&fs_info->freed_extents[1],
2265                              fs_info->btree_inode->i_mapping);
2266         fs_info->pinned_extents = &fs_info->freed_extents[0];
2267         fs_info->do_barriers = 1;
2268
2269
2270         mutex_init(&fs_info->ordered_operations_mutex);
2271         mutex_init(&fs_info->ordered_extent_flush_mutex);
2272         mutex_init(&fs_info->tree_log_mutex);
2273         mutex_init(&fs_info->chunk_mutex);
2274         mutex_init(&fs_info->transaction_kthread_mutex);
2275         mutex_init(&fs_info->cleaner_mutex);
2276         mutex_init(&fs_info->volume_mutex);
2277         init_rwsem(&fs_info->extent_commit_sem);
2278         init_rwsem(&fs_info->cleanup_work_sem);
2279         init_rwsem(&fs_info->subvol_sem);
2280         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2281         fs_info->dev_replace.lock_owner = 0;
2282         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2283         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2284         mutex_init(&fs_info->dev_replace.lock_management_lock);
2285         mutex_init(&fs_info->dev_replace.lock);
2286
2287         spin_lock_init(&fs_info->qgroup_lock);
2288         mutex_init(&fs_info->qgroup_ioctl_lock);
2289         fs_info->qgroup_tree = RB_ROOT;
2290         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2291         fs_info->qgroup_seq = 1;
2292         fs_info->quota_enabled = 0;
2293         fs_info->pending_quota_state = 0;
2294         fs_info->qgroup_ulist = NULL;
2295         mutex_init(&fs_info->qgroup_rescan_lock);
2296
2297         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2298         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2299
2300         init_waitqueue_head(&fs_info->transaction_throttle);
2301         init_waitqueue_head(&fs_info->transaction_wait);
2302         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2303         init_waitqueue_head(&fs_info->async_submit_wait);
2304
2305         ret = btrfs_alloc_stripe_hash_table(fs_info);
2306         if (ret) {
2307                 err = ret;
2308                 goto fail_alloc;
2309         }
2310
2311         __setup_root(4096, 4096, 4096, 4096, tree_root,
2312                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2313
2314         invalidate_bdev(fs_devices->latest_bdev);
2315
2316         /*
2317          * Read super block and check the signature bytes only
2318          */
2319         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2320         if (!bh) {
2321                 err = -EINVAL;
2322                 goto fail_alloc;
2323         }
2324
2325         /*
2326          * We want to check superblock checksum, the type is stored inside.
2327          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2328          */
2329         if (btrfs_check_super_csum(bh->b_data)) {
2330                 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2331                 err = -EINVAL;
2332                 goto fail_alloc;
2333         }
2334
2335         /*
2336          * super_copy is zeroed at allocation time and we never touch the
2337          * following bytes up to INFO_SIZE, the checksum is calculated from
2338          * the whole block of INFO_SIZE
2339          */
2340         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2341         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2342                sizeof(*fs_info->super_for_commit));
2343         brelse(bh);
2344
2345         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2346
2347         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2348         if (ret) {
2349                 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2350                 err = -EINVAL;
2351                 goto fail_alloc;
2352         }
2353
2354         disk_super = fs_info->super_copy;
2355         if (!btrfs_super_root(disk_super))
2356                 goto fail_alloc;
2357
2358         /* check FS state, whether FS is broken. */
2359         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2360                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2361
2362         /*
2363          * run through our array of backup supers and setup
2364          * our ring pointer to the oldest one
2365          */
2366         generation = btrfs_super_generation(disk_super);
2367         find_oldest_super_backup(fs_info, generation);
2368
2369         /*
2370          * In the long term, we'll store the compression type in the super
2371          * block, and it'll be used for per file compression control.
2372          */
2373         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2374
2375         ret = btrfs_parse_options(tree_root, options);
2376         if (ret) {
2377                 err = ret;
2378                 goto fail_alloc;
2379         }
2380
2381         features = btrfs_super_incompat_flags(disk_super) &
2382                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2383         if (features) {
2384                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2385                        "unsupported optional features (%Lx).\n",
2386                        features);
2387                 err = -EINVAL;
2388                 goto fail_alloc;
2389         }
2390
2391         if (btrfs_super_leafsize(disk_super) !=
2392             btrfs_super_nodesize(disk_super)) {
2393                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2394                        "blocksizes don't match.  node %d leaf %d\n",
2395                        btrfs_super_nodesize(disk_super),
2396                        btrfs_super_leafsize(disk_super));
2397                 err = -EINVAL;
2398                 goto fail_alloc;
2399         }
2400         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2401                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2402                        "blocksize (%d) was too large\n",
2403                        btrfs_super_leafsize(disk_super));
2404                 err = -EINVAL;
2405                 goto fail_alloc;
2406         }
2407
2408         features = btrfs_super_incompat_flags(disk_super);
2409         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2410         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2411                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2412
2413         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2414                 printk(KERN_ERR "BTRFS: has skinny extents\n");
2415
2416         /*
2417          * flag our filesystem as having big metadata blocks if
2418          * they are bigger than the page size
2419          */
2420         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2421                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2422                         printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2423                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2424         }
2425
2426         nodesize = btrfs_super_nodesize(disk_super);
2427         leafsize = btrfs_super_leafsize(disk_super);
2428         sectorsize = btrfs_super_sectorsize(disk_super);
2429         stripesize = btrfs_super_stripesize(disk_super);
2430         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2431         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2432
2433         /*
2434          * mixed block groups end up with duplicate but slightly offset
2435          * extent buffers for the same range.  It leads to corruptions
2436          */
2437         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2438             (sectorsize != leafsize)) {
2439                 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2440                                 "are not allowed for mixed block groups on %s\n",
2441                                 sb->s_id);
2442                 goto fail_alloc;
2443         }
2444
2445         /*
2446          * Needn't use the lock because there is no other task which will
2447          * update the flag.
2448          */
2449         btrfs_set_super_incompat_flags(disk_super, features);
2450
2451         features = btrfs_super_compat_ro_flags(disk_super) &
2452                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2453         if (!(sb->s_flags & MS_RDONLY) && features) {
2454                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2455                        "unsupported option features (%Lx).\n",
2456                        features);
2457                 err = -EINVAL;
2458                 goto fail_alloc;
2459         }
2460
2461         btrfs_init_workers(&fs_info->generic_worker,
2462                            "genwork", 1, NULL);
2463
2464         btrfs_init_workers(&fs_info->workers, "worker",
2465                            fs_info->thread_pool_size,
2466                            &fs_info->generic_worker);
2467
2468         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2469                            fs_info->thread_pool_size, NULL);
2470
2471         btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2472                            fs_info->thread_pool_size, NULL);
2473
2474         btrfs_init_workers(&fs_info->submit_workers, "submit",
2475                            min_t(u64, fs_devices->num_devices,
2476                            fs_info->thread_pool_size), NULL);
2477
2478         btrfs_init_workers(&fs_info->caching_workers, "cache",
2479                            fs_info->thread_pool_size, NULL);
2480
2481         /* a higher idle thresh on the submit workers makes it much more
2482          * likely that bios will be send down in a sane order to the
2483          * devices
2484          */
2485         fs_info->submit_workers.idle_thresh = 64;
2486
2487         fs_info->workers.idle_thresh = 16;
2488         fs_info->workers.ordered = 1;
2489
2490         fs_info->delalloc_workers.idle_thresh = 2;
2491         fs_info->delalloc_workers.ordered = 1;
2492
2493         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2494                            &fs_info->generic_worker);
2495         btrfs_init_workers(&fs_info->endio_workers, "endio",
2496                            fs_info->thread_pool_size,
2497                            &fs_info->generic_worker);
2498         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2499                            fs_info->thread_pool_size,
2500                            &fs_info->generic_worker);
2501         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2502                            "endio-meta-write", fs_info->thread_pool_size,
2503                            &fs_info->generic_worker);
2504         btrfs_init_workers(&fs_info->endio_raid56_workers,
2505                            "endio-raid56", fs_info->thread_pool_size,
2506                            &fs_info->generic_worker);
2507         btrfs_init_workers(&fs_info->rmw_workers,
2508                            "rmw", fs_info->thread_pool_size,
2509                            &fs_info->generic_worker);
2510         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2511                            fs_info->thread_pool_size,
2512                            &fs_info->generic_worker);
2513         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2514                            1, &fs_info->generic_worker);
2515         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2516                            fs_info->thread_pool_size,
2517                            &fs_info->generic_worker);
2518         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2519                            fs_info->thread_pool_size,
2520                            &fs_info->generic_worker);
2521         btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2522                            &fs_info->generic_worker);
2523
2524         /*
2525          * endios are largely parallel and should have a very
2526          * low idle thresh
2527          */
2528         fs_info->endio_workers.idle_thresh = 4;
2529         fs_info->endio_meta_workers.idle_thresh = 4;
2530         fs_info->endio_raid56_workers.idle_thresh = 4;
2531         fs_info->rmw_workers.idle_thresh = 2;
2532
2533         fs_info->endio_write_workers.idle_thresh = 2;
2534         fs_info->endio_meta_write_workers.idle_thresh = 2;
2535         fs_info->readahead_workers.idle_thresh = 2;
2536
2537         /*
2538          * btrfs_start_workers can really only fail because of ENOMEM so just
2539          * return -ENOMEM if any of these fail.
2540          */
2541         ret = btrfs_start_workers(&fs_info->workers);
2542         ret |= btrfs_start_workers(&fs_info->generic_worker);
2543         ret |= btrfs_start_workers(&fs_info->submit_workers);
2544         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2545         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2546         ret |= btrfs_start_workers(&fs_info->endio_workers);
2547         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2548         ret |= btrfs_start_workers(&fs_info->rmw_workers);
2549         ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2550         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2551         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2552         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2553         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2554         ret |= btrfs_start_workers(&fs_info->caching_workers);
2555         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2556         ret |= btrfs_start_workers(&fs_info->flush_workers);
2557         ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2558         if (ret) {
2559                 err = -ENOMEM;
2560                 goto fail_sb_buffer;
2561         }
2562
2563         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2564         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2565                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2566
2567         tree_root->nodesize = nodesize;
2568         tree_root->leafsize = leafsize;
2569         tree_root->sectorsize = sectorsize;
2570         tree_root->stripesize = stripesize;
2571
2572         sb->s_blocksize = sectorsize;
2573         sb->s_blocksize_bits = blksize_bits(sectorsize);
2574
2575         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2576                 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2577                 goto fail_sb_buffer;
2578         }
2579
2580         if (sectorsize != PAGE_SIZE) {
2581                 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2582                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2583                 goto fail_sb_buffer;
2584         }
2585
2586         mutex_lock(&fs_info->chunk_mutex);
2587         ret = btrfs_read_sys_array(tree_root);
2588         mutex_unlock(&fs_info->chunk_mutex);
2589         if (ret) {
2590                 printk(KERN_WARNING "BTRFS: failed to read the system "
2591                        "array on %s\n", sb->s_id);
2592                 goto fail_sb_buffer;
2593         }
2594
2595         blocksize = btrfs_level_size(tree_root,
2596                                      btrfs_super_chunk_root_level(disk_super));
2597         generation = btrfs_super_chunk_root_generation(disk_super);
2598
2599         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2600                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2601
2602         chunk_root->node = read_tree_block(chunk_root,
2603                                            btrfs_super_chunk_root(disk_super),
2604                                            blocksize, generation);
2605         if (!chunk_root->node ||
2606             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2607                 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2608                        sb->s_id);
2609                 goto fail_tree_roots;
2610         }
2611         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2612         chunk_root->commit_root = btrfs_root_node(chunk_root);
2613
2614         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2615            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2616
2617         ret = btrfs_read_chunk_tree(chunk_root);
2618         if (ret) {
2619                 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2620                        sb->s_id);
2621                 goto fail_tree_roots;
2622         }
2623
2624         /*
2625          * keep the device that is marked to be the target device for the
2626          * dev_replace procedure
2627          */
2628         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2629
2630         if (!fs_devices->latest_bdev) {
2631                 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2632                        sb->s_id);
2633                 goto fail_tree_roots;
2634         }
2635
2636 retry_root_backup:
2637         blocksize = btrfs_level_size(tree_root,
2638                                      btrfs_super_root_level(disk_super));
2639         generation = btrfs_super_generation(disk_super);
2640
2641         tree_root->node = read_tree_block(tree_root,
2642                                           btrfs_super_root(disk_super),
2643                                           blocksize, generation);
2644         if (!tree_root->node ||
2645             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2646                 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2647                        sb->s_id);
2648
2649                 goto recovery_tree_root;
2650         }
2651
2652         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2653         tree_root->commit_root = btrfs_root_node(tree_root);
2654         btrfs_set_root_refs(&tree_root->root_item, 1);
2655
2656         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2657         location.type = BTRFS_ROOT_ITEM_KEY;
2658         location.offset = 0;
2659
2660         extent_root = btrfs_read_tree_root(tree_root, &location);
2661         if (IS_ERR(extent_root)) {
2662                 ret = PTR_ERR(extent_root);
2663                 goto recovery_tree_root;
2664         }
2665         extent_root->track_dirty = 1;
2666         fs_info->extent_root = extent_root;
2667
2668         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2669         dev_root = btrfs_read_tree_root(tree_root, &location);
2670         if (IS_ERR(dev_root)) {
2671                 ret = PTR_ERR(dev_root);
2672                 goto recovery_tree_root;
2673         }
2674         dev_root->track_dirty = 1;
2675         fs_info->dev_root = dev_root;
2676         btrfs_init_devices_late(fs_info);
2677
2678         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2679         csum_root = btrfs_read_tree_root(tree_root, &location);
2680         if (IS_ERR(csum_root)) {
2681                 ret = PTR_ERR(csum_root);
2682                 goto recovery_tree_root;
2683         }
2684         csum_root->track_dirty = 1;
2685         fs_info->csum_root = csum_root;
2686
2687         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2688         quota_root = btrfs_read_tree_root(tree_root, &location);
2689         if (!IS_ERR(quota_root)) {
2690                 quota_root->track_dirty = 1;
2691                 fs_info->quota_enabled = 1;
2692                 fs_info->pending_quota_state = 1;
2693                 fs_info->quota_root = quota_root;
2694         }
2695
2696         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2697         uuid_root = btrfs_read_tree_root(tree_root, &location);
2698         if (IS_ERR(uuid_root)) {
2699                 ret = PTR_ERR(uuid_root);
2700                 if (ret != -ENOENT)
2701                         goto recovery_tree_root;
2702                 create_uuid_tree = true;
2703                 check_uuid_tree = false;
2704         } else {
2705                 uuid_root->track_dirty = 1;
2706                 fs_info->uuid_root = uuid_root;
2707                 create_uuid_tree = false;
2708                 check_uuid_tree =
2709                     generation != btrfs_super_uuid_tree_generation(disk_super);
2710         }
2711
2712         fs_info->generation = generation;
2713         fs_info->last_trans_committed = generation;
2714
2715         ret = btrfs_recover_balance(fs_info);
2716         if (ret) {
2717                 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2718                 goto fail_block_groups;
2719         }
2720
2721         ret = btrfs_init_dev_stats(fs_info);
2722         if (ret) {
2723                 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2724                        ret);
2725                 goto fail_block_groups;
2726         }
2727
2728         ret = btrfs_init_dev_replace(fs_info);
2729         if (ret) {
2730                 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2731                 goto fail_block_groups;
2732         }
2733
2734         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2735
2736         ret = btrfs_sysfs_add_one(fs_info);
2737         if (ret) {
2738                 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2739                 goto fail_block_groups;
2740         }
2741
2742         ret = btrfs_init_space_info(fs_info);
2743         if (ret) {
2744                 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2745                 goto fail_sysfs;
2746         }
2747
2748         ret = btrfs_read_block_groups(extent_root);
2749         if (ret) {
2750                 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2751                 goto fail_sysfs;
2752         }
2753         fs_info->num_tolerated_disk_barrier_failures =
2754                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2755         if (fs_info->fs_devices->missing_devices >
2756              fs_info->num_tolerated_disk_barrier_failures &&
2757             !(sb->s_flags & MS_RDONLY)) {
2758                 printk(KERN_WARNING "BTRFS: "
2759                         "too many missing devices, writeable mount is not allowed\n");
2760                 goto fail_sysfs;
2761         }
2762
2763         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2764                                                "btrfs-cleaner");
2765         if (IS_ERR(fs_info->cleaner_kthread))
2766                 goto fail_sysfs;
2767
2768         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2769                                                    tree_root,
2770                                                    "btrfs-transaction");
2771         if (IS_ERR(fs_info->transaction_kthread))
2772                 goto fail_cleaner;
2773
2774         if (!btrfs_test_opt(tree_root, SSD) &&
2775             !btrfs_test_opt(tree_root, NOSSD) &&
2776             !fs_info->fs_devices->rotating) {
2777                 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2778                        "mode\n");
2779                 btrfs_set_opt(fs_info->mount_opt, SSD);
2780         }
2781
2782         /* Set the real inode map cache flag */
2783         if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2784                 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2785
2786 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2787         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2788                 ret = btrfsic_mount(tree_root, fs_devices,
2789                                     btrfs_test_opt(tree_root,
2790                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2791                                     1 : 0,
2792                                     fs_info->check_integrity_print_mask);
2793                 if (ret)
2794                         printk(KERN_WARNING "BTRFS: failed to initialize"
2795                                " integrity check module %s\n", sb->s_id);
2796         }
2797 #endif
2798         ret = btrfs_read_qgroup_config(fs_info);
2799         if (ret)
2800                 goto fail_trans_kthread;
2801
2802         /* do not make disk changes in broken FS */
2803         if (btrfs_super_log_root(disk_super) != 0) {
2804                 u64 bytenr = btrfs_super_log_root(disk_super);
2805
2806                 if (fs_devices->rw_devices == 0) {
2807                         printk(KERN_WARNING "BTRFS: log replay required "
2808                                "on RO media\n");
2809                         err = -EIO;
2810                         goto fail_qgroup;
2811                 }
2812                 blocksize =
2813                      btrfs_level_size(tree_root,
2814                                       btrfs_super_log_root_level(disk_super));
2815
2816                 log_tree_root = btrfs_alloc_root(fs_info);
2817                 if (!log_tree_root) {
2818                         err = -ENOMEM;
2819                         goto fail_qgroup;
2820                 }
2821
2822                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2823                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2824
2825                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2826                                                       blocksize,
2827                                                       generation + 1);
2828                 if (!log_tree_root->node ||
2829                     !extent_buffer_uptodate(log_tree_root->node)) {
2830                         printk(KERN_ERR "BTRFS: failed to read log tree\n");
2831                         free_extent_buffer(log_tree_root->node);
2832                         kfree(log_tree_root);
2833                         goto fail_trans_kthread;
2834                 }
2835                 /* returns with log_tree_root freed on success */
2836                 ret = btrfs_recover_log_trees(log_tree_root);
2837                 if (ret) {
2838                         btrfs_error(tree_root->fs_info, ret,
2839                                     "Failed to recover log tree");
2840                         free_extent_buffer(log_tree_root->node);
2841                         kfree(log_tree_root);
2842                         goto fail_trans_kthread;
2843                 }
2844
2845                 if (sb->s_flags & MS_RDONLY) {
2846                         ret = btrfs_commit_super(tree_root);
2847                         if (ret)
2848                                 goto fail_trans_kthread;
2849                 }
2850         }
2851
2852         ret = btrfs_find_orphan_roots(tree_root);
2853         if (ret)
2854                 goto fail_trans_kthread;
2855
2856         if (!(sb->s_flags & MS_RDONLY)) {
2857                 ret = btrfs_cleanup_fs_roots(fs_info);
2858                 if (ret)
2859                         goto fail_trans_kthread;
2860
2861                 ret = btrfs_recover_relocation(tree_root);
2862                 if (ret < 0) {
2863                         printk(KERN_WARNING
2864                                "BTRFS: failed to recover relocation\n");
2865                         err = -EINVAL;
2866                         goto fail_qgroup;
2867                 }
2868         }
2869
2870         location.objectid = BTRFS_FS_TREE_OBJECTID;
2871         location.type = BTRFS_ROOT_ITEM_KEY;
2872         location.offset = 0;
2873
2874         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2875         if (IS_ERR(fs_info->fs_root)) {
2876                 err = PTR_ERR(fs_info->fs_root);
2877                 goto fail_qgroup;
2878         }
2879
2880         if (sb->s_flags & MS_RDONLY)
2881                 return 0;
2882
2883         down_read(&fs_info->cleanup_work_sem);
2884         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2885             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2886                 up_read(&fs_info->cleanup_work_sem);
2887                 close_ctree(tree_root);
2888                 return ret;
2889         }
2890         up_read(&fs_info->cleanup_work_sem);
2891
2892         ret = btrfs_resume_balance_async(fs_info);
2893         if (ret) {
2894                 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2895                 close_ctree(tree_root);
2896                 return ret;
2897         }
2898
2899         ret = btrfs_resume_dev_replace_async(fs_info);
2900         if (ret) {
2901                 pr_warn("BTRFS: failed to resume dev_replace\n");
2902                 close_ctree(tree_root);
2903                 return ret;
2904         }
2905
2906         btrfs_qgroup_rescan_resume(fs_info);
2907
2908         if (create_uuid_tree) {
2909                 pr_info("BTRFS: creating UUID tree\n");
2910                 ret = btrfs_create_uuid_tree(fs_info);
2911                 if (ret) {
2912                         pr_warn("BTRFS: failed to create the UUID tree %d\n",
2913                                 ret);
2914                         close_ctree(tree_root);
2915                         return ret;
2916                 }
2917         } else if (check_uuid_tree ||
2918                    btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2919                 pr_info("BTRFS: checking UUID tree\n");
2920                 ret = btrfs_check_uuid_tree(fs_info);
2921                 if (ret) {
2922                         pr_warn("BTRFS: failed to check the UUID tree %d\n",
2923                                 ret);
2924                         close_ctree(tree_root);
2925                         return ret;
2926                 }
2927         } else {
2928                 fs_info->update_uuid_tree_gen = 1;
2929         }
2930
2931         return 0;
2932
2933 fail_qgroup:
2934         btrfs_free_qgroup_config(fs_info);
2935 fail_trans_kthread:
2936         kthread_stop(fs_info->transaction_kthread);
2937         btrfs_cleanup_transaction(fs_info->tree_root);
2938         del_fs_roots(fs_info);
2939 fail_cleaner:
2940         kthread_stop(fs_info->cleaner_kthread);
2941
2942         /*
2943          * make sure we're done with the btree inode before we stop our
2944          * kthreads
2945          */
2946         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2947
2948 fail_sysfs:
2949         btrfs_sysfs_remove_one(fs_info);
2950
2951 fail_block_groups:
2952         btrfs_put_block_group_cache(fs_info);
2953         btrfs_free_block_groups(fs_info);
2954
2955 fail_tree_roots:
2956         free_root_pointers(fs_info, 1);
2957         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2958
2959 fail_sb_buffer:
2960         btrfs_stop_all_workers(fs_info);
2961 fail_alloc:
2962 fail_iput:
2963         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2964
2965         iput(fs_info->btree_inode);
2966 fail_delalloc_bytes:
2967         percpu_counter_destroy(&fs_info->delalloc_bytes);
2968 fail_dirty_metadata_bytes:
2969         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2970 fail_bdi:
2971         bdi_destroy(&fs_info->bdi);
2972 fail_srcu:
2973         cleanup_srcu_struct(&fs_info->subvol_srcu);
2974 fail:
2975         btrfs_free_stripe_hash_table(fs_info);
2976         btrfs_close_devices(fs_info->fs_devices);
2977         return err;
2978
2979 recovery_tree_root:
2980         if (!btrfs_test_opt(tree_root, RECOVERY))
2981                 goto fail_tree_roots;
2982
2983         free_root_pointers(fs_info, 0);
2984
2985         /* don't use the log in recovery mode, it won't be valid */
2986         btrfs_set_super_log_root(disk_super, 0);
2987
2988         /* we can't trust the free space cache either */
2989         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2990
2991         ret = next_root_backup(fs_info, fs_info->super_copy,
2992                                &num_backups_tried, &backup_index);
2993         if (ret == -1)
2994                 goto fail_block_groups;
2995         goto retry_root_backup;
2996 }
2997
2998 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2999 {
3000         if (uptodate) {
3001                 set_buffer_uptodate(bh);
3002         } else {
3003                 struct btrfs_device *device = (struct btrfs_device *)
3004                         bh->b_private;
3005
3006                 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3007                                           "I/O error on %s\n",
3008                                           rcu_str_deref(device->name));
3009                 /* note, we dont' set_buffer_write_io_error because we have
3010                  * our own ways of dealing with the IO errors
3011                  */
3012                 clear_buffer_uptodate(bh);
3013                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3014         }
3015         unlock_buffer(bh);
3016         put_bh(bh);
3017 }
3018
3019 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3020 {
3021         struct buffer_head *bh;
3022         struct buffer_head *latest = NULL;
3023         struct btrfs_super_block *super;
3024         int i;
3025         u64 transid = 0;
3026         u64 bytenr;
3027
3028         /* we would like to check all the supers, but that would make
3029          * a btrfs mount succeed after a mkfs from a different FS.
3030          * So, we need to add a special mount option to scan for
3031          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3032          */
3033         for (i = 0; i < 1; i++) {
3034                 bytenr = btrfs_sb_offset(i);
3035                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3036                                         i_size_read(bdev->bd_inode))
3037                         break;
3038                 bh = __bread(bdev, bytenr / 4096,
3039                                         BTRFS_SUPER_INFO_SIZE);
3040                 if (!bh)
3041                         continue;
3042
3043                 super = (struct btrfs_super_block *)bh->b_data;
3044                 if (btrfs_super_bytenr(super) != bytenr ||
3045                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3046                         brelse(bh);
3047                         continue;
3048                 }
3049
3050                 if (!latest || btrfs_super_generation(super) > transid) {
3051                         brelse(latest);
3052                         latest = bh;
3053                         transid = btrfs_super_generation(super);
3054                 } else {
3055                         brelse(bh);
3056                 }
3057         }
3058         return latest;
3059 }
3060
3061 /*
3062  * this should be called twice, once with wait == 0 and
3063  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3064  * we write are pinned.
3065  *
3066  * They are released when wait == 1 is done.
3067  * max_mirrors must be the same for both runs, and it indicates how
3068  * many supers on this one device should be written.
3069  *
3070  * max_mirrors == 0 means to write them all.
3071  */
3072 static int write_dev_supers(struct btrfs_device *device,
3073                             struct btrfs_super_block *sb,
3074                             int do_barriers, int wait, int max_mirrors)
3075 {
3076         struct buffer_head *bh;
3077         int i;
3078         int ret;
3079         int errors = 0;
3080         u32 crc;
3081         u64 bytenr;
3082
3083         if (max_mirrors == 0)
3084                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3085
3086         for (i = 0; i < max_mirrors; i++) {
3087                 bytenr = btrfs_sb_offset(i);
3088                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3089                         break;
3090
3091                 if (wait) {
3092                         bh = __find_get_block(device->bdev, bytenr / 4096,
3093                                               BTRFS_SUPER_INFO_SIZE);
3094                         if (!bh) {
3095                                 errors++;
3096                                 continue;
3097                         }
3098                         wait_on_buffer(bh);
3099                         if (!buffer_uptodate(bh))
3100                                 errors++;
3101
3102                         /* drop our reference */
3103                         brelse(bh);
3104
3105                         /* drop the reference from the wait == 0 run */
3106                         brelse(bh);
3107                         continue;
3108                 } else {
3109                         btrfs_set_super_bytenr(sb, bytenr);
3110
3111                         crc = ~(u32)0;
3112                         crc = btrfs_csum_data((char *)sb +
3113                                               BTRFS_CSUM_SIZE, crc,
3114                                               BTRFS_SUPER_INFO_SIZE -
3115                                               BTRFS_CSUM_SIZE);
3116                         btrfs_csum_final(crc, sb->csum);
3117
3118                         /*
3119                          * one reference for us, and we leave it for the
3120                          * caller
3121                          */
3122                         bh = __getblk(device->bdev, bytenr / 4096,
3123                                       BTRFS_SUPER_INFO_SIZE);
3124                         if (!bh) {
3125                                 printk(KERN_ERR "BTRFS: couldn't get super "
3126                                        "buffer head for bytenr %Lu\n", bytenr);
3127                                 errors++;
3128                                 continue;
3129                         }
3130
3131                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3132
3133                         /* one reference for submit_bh */
3134                         get_bh(bh);
3135
3136                         set_buffer_uptodate(bh);
3137                         lock_buffer(bh);
3138                         bh->b_end_io = btrfs_end_buffer_write_sync;
3139                         bh->b_private = device;
3140                 }
3141
3142                 /*
3143                  * we fua the first super.  The others we allow
3144                  * to go down lazy.
3145                  */
3146                 if (i == 0)
3147                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3148                 else
3149                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3150                 if (ret)
3151                         errors++;
3152         }
3153         return errors < i ? 0 : -1;
3154 }
3155
3156 /*
3157  * endio for the write_dev_flush, this will wake anyone waiting
3158  * for the barrier when it is done
3159  */
3160 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3161 {
3162         if (err) {
3163                 if (err == -EOPNOTSUPP)
3164                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3165                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3166         }
3167         if (bio->bi_private)
3168                 complete(bio->bi_private);
3169         bio_put(bio);
3170 }
3171
3172 /*
3173  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3174  * sent down.  With wait == 1, it waits for the previous flush.
3175  *
3176  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3177  * capable
3178  */
3179 static int write_dev_flush(struct btrfs_device *device, int wait)
3180 {
3181         struct bio *bio;
3182         int ret = 0;
3183
3184         if (device->nobarriers)
3185                 return 0;
3186
3187         if (wait) {
3188                 bio = device->flush_bio;
3189                 if (!bio)
3190                         return 0;
3191
3192                 wait_for_completion(&device->flush_wait);
3193
3194                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3195                         printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3196                                       rcu_str_deref(device->name));
3197                         device->nobarriers = 1;
3198                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3199                         ret = -EIO;
3200                         btrfs_dev_stat_inc_and_print(device,
3201                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3202                 }
3203
3204                 /* drop the reference from the wait == 0 run */
3205                 bio_put(bio);
3206                 device->flush_bio = NULL;
3207
3208                 return ret;
3209         }
3210
3211         /*
3212          * one reference for us, and we leave it for the
3213          * caller
3214          */
3215         device->flush_bio = NULL;
3216         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3217         if (!bio)
3218                 return -ENOMEM;
3219
3220         bio->bi_end_io = btrfs_end_empty_barrier;
3221         bio->bi_bdev = device->bdev;
3222         init_completion(&device->flush_wait);
3223         bio->bi_private = &device->flush_wait;
3224         device->flush_bio = bio;
3225
3226         bio_get(bio);
3227         btrfsic_submit_bio(WRITE_FLUSH, bio);
3228
3229         return 0;
3230 }
3231
3232 /*
3233  * send an empty flush down to each device in parallel,
3234  * then wait for them
3235  */
3236 static int barrier_all_devices(struct btrfs_fs_info *info)
3237 {
3238         struct list_head *head;
3239         struct btrfs_device *dev;
3240         int errors_send = 0;
3241         int errors_wait = 0;
3242         int ret;
3243
3244         /* send down all the barriers */
3245         head = &info->fs_devices->devices;
3246         list_for_each_entry_rcu(dev, head, dev_list) {
3247                 if (!dev->bdev) {
3248                         errors_send++;
3249                         continue;
3250                 }
3251                 if (!dev->in_fs_metadata || !dev->writeable)
3252                         continue;
3253
3254                 ret = write_dev_flush(dev, 0);
3255                 if (ret)
3256                         errors_send++;
3257         }
3258
3259         /* wait for all the barriers */
3260         list_for_each_entry_rcu(dev, head, dev_list) {
3261                 if (!dev->bdev) {
3262                         errors_wait++;
3263                         continue;
3264                 }
3265                 if (!dev->in_fs_metadata || !dev->writeable)
3266                         continue;
3267
3268                 ret = write_dev_flush(dev, 1);
3269                 if (ret)
3270                         errors_wait++;
3271         }
3272         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3273             errors_wait > info->num_tolerated_disk_barrier_failures)
3274                 return -EIO;
3275         return 0;
3276 }
3277
3278 int btrfs_calc_num_tolerated_disk_barrier_failures(
3279         struct btrfs_fs_info *fs_info)
3280 {
3281         struct btrfs_ioctl_space_info space;
3282         struct btrfs_space_info *sinfo;
3283         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3284                        BTRFS_BLOCK_GROUP_SYSTEM,
3285                        BTRFS_BLOCK_GROUP_METADATA,
3286                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3287         int num_types = 4;
3288         int i;
3289         int c;
3290         int num_tolerated_disk_barrier_failures =
3291                 (int)fs_info->fs_devices->num_devices;
3292
3293         for (i = 0; i < num_types; i++) {
3294                 struct btrfs_space_info *tmp;
3295
3296                 sinfo = NULL;
3297                 rcu_read_lock();
3298                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3299                         if (tmp->flags == types[i]) {
3300                                 sinfo = tmp;
3301                                 break;
3302                         }
3303                 }
3304                 rcu_read_unlock();
3305
3306                 if (!sinfo)
3307                         continue;
3308
3309                 down_read(&sinfo->groups_sem);
3310                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3311                         if (!list_empty(&sinfo->block_groups[c])) {
3312                                 u64 flags;
3313
3314                                 btrfs_get_block_group_info(
3315                                         &sinfo->block_groups[c], &space);
3316                                 if (space.total_bytes == 0 ||
3317                                     space.used_bytes == 0)
3318                                         continue;
3319                                 flags = space.flags;
3320                                 /*
3321                                  * return
3322                                  * 0: if dup, single or RAID0 is configured for
3323                                  *    any of metadata, system or data, else
3324                                  * 1: if RAID5 is configured, or if RAID1 or
3325                                  *    RAID10 is configured and only two mirrors
3326                                  *    are used, else
3327                                  * 2: if RAID6 is configured, else
3328                                  * num_mirrors - 1: if RAID1 or RAID10 is
3329                                  *                  configured and more than
3330                                  *                  2 mirrors are used.
3331                                  */
3332                                 if (num_tolerated_disk_barrier_failures > 0 &&
3333                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3334                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3335                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3336                                       == 0)))
3337                                         num_tolerated_disk_barrier_failures = 0;
3338                                 else if (num_tolerated_disk_barrier_failures > 1) {
3339                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3340                                             BTRFS_BLOCK_GROUP_RAID5 |
3341                                             BTRFS_BLOCK_GROUP_RAID10)) {
3342                                                 num_tolerated_disk_barrier_failures = 1;
3343                                         } else if (flags &
3344                                                    BTRFS_BLOCK_GROUP_RAID6) {
3345                                                 num_tolerated_disk_barrier_failures = 2;
3346                                         }
3347                                 }
3348                         }
3349                 }
3350                 up_read(&sinfo->groups_sem);
3351         }
3352
3353         return num_tolerated_disk_barrier_failures;
3354 }
3355
3356 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3357 {
3358         struct list_head *head;
3359         struct btrfs_device *dev;
3360         struct btrfs_super_block *sb;
3361         struct btrfs_dev_item *dev_item;
3362         int ret;
3363         int do_barriers;
3364         int max_errors;
3365         int total_errors = 0;
3366         u64 flags;
3367
3368         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3369         backup_super_roots(root->fs_info);
3370
3371         sb = root->fs_info->super_for_commit;
3372         dev_item = &sb->dev_item;
3373
3374         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3375         head = &root->fs_info->fs_devices->devices;
3376         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3377
3378         if (do_barriers) {
3379                 ret = barrier_all_devices(root->fs_info);
3380                 if (ret) {
3381                         mutex_unlock(
3382                                 &root->fs_info->fs_devices->device_list_mutex);
3383                         btrfs_error(root->fs_info, ret,
3384                                     "errors while submitting device barriers.");
3385                         return ret;
3386                 }
3387         }
3388
3389         list_for_each_entry_rcu(dev, head, dev_list) {
3390                 if (!dev->bdev) {
3391                         total_errors++;
3392                         continue;
3393                 }
3394                 if (!dev->in_fs_metadata || !dev->writeable)
3395                         continue;
3396
3397                 btrfs_set_stack_device_generation(dev_item, 0);
3398                 btrfs_set_stack_device_type(dev_item, dev->type);
3399                 btrfs_set_stack_device_id(dev_item, dev->devid);
3400                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3401                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3402                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3403                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3404                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3405                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3406                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3407
3408                 flags = btrfs_super_flags(sb);
3409                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3410
3411                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3412                 if (ret)
3413                         total_errors++;
3414         }
3415         if (total_errors > max_errors) {
3416                 btrfs_err(root->fs_info, "%d errors while writing supers",
3417                        total_errors);
3418                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3419
3420                 /* FUA is masked off if unsupported and can't be the reason */
3421                 btrfs_error(root->fs_info, -EIO,
3422                             "%d errors while writing supers", total_errors);
3423                 return -EIO;
3424         }
3425
3426         total_errors = 0;
3427         list_for_each_entry_rcu(dev, head, dev_list) {
3428                 if (!dev->bdev)
3429                         continue;
3430                 if (!dev->in_fs_metadata || !dev->writeable)
3431                         continue;
3432
3433                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3434                 if (ret)
3435                         total_errors++;
3436         }
3437         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3438         if (total_errors > max_errors) {
3439                 btrfs_error(root->fs_info, -EIO,
3440                             "%d errors while writing supers", total_errors);
3441                 return -EIO;
3442         }
3443         return 0;
3444 }
3445
3446 int write_ctree_super(struct btrfs_trans_handle *trans,
3447                       struct btrfs_root *root, int max_mirrors)
3448 {
3449         return write_all_supers(root, max_mirrors);
3450 }
3451
3452 /* Drop a fs root from the radix tree and free it. */
3453 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3454                                   struct btrfs_root *root)
3455 {
3456         spin_lock(&fs_info->fs_roots_radix_lock);
3457         radix_tree_delete(&fs_info->fs_roots_radix,
3458                           (unsigned long)root->root_key.objectid);
3459         spin_unlock(&fs_info->fs_roots_radix_lock);
3460
3461         if (btrfs_root_refs(&root->root_item) == 0)
3462                 synchronize_srcu(&fs_info->subvol_srcu);
3463
3464         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3465                 btrfs_free_log(NULL, root);
3466
3467         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3468         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3469         free_fs_root(root);
3470 }
3471
3472 static void free_fs_root(struct btrfs_root *root)
3473 {
3474         iput(root->cache_inode);
3475         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3476         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3477         root->orphan_block_rsv = NULL;
3478         if (root->anon_dev)
3479                 free_anon_bdev(root->anon_dev);
3480         free_extent_buffer(root->node);
3481         free_extent_buffer(root->commit_root);
3482         kfree(root->free_ino_ctl);
3483         kfree(root->free_ino_pinned);
3484         kfree(root->name);
3485         btrfs_put_fs_root(root);
3486 }
3487
3488 void btrfs_free_fs_root(struct btrfs_root *root)
3489 {
3490         free_fs_root(root);
3491 }
3492
3493 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3494 {
3495         u64 root_objectid = 0;
3496         struct btrfs_root *gang[8];
3497         int i;
3498         int ret;
3499
3500         while (1) {
3501                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3502                                              (void **)gang, root_objectid,
3503                                              ARRAY_SIZE(gang));
3504                 if (!ret)
3505                         break;
3506
3507                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3508                 for (i = 0; i < ret; i++) {
3509                         int err;
3510
3511                         root_objectid = gang[i]->root_key.objectid;
3512                         err = btrfs_orphan_cleanup(gang[i]);
3513                         if (err)
3514                                 return err;
3515                 }
3516                 root_objectid++;
3517         }
3518         return 0;
3519 }
3520
3521 int btrfs_commit_super(struct btrfs_root *root)
3522 {
3523         struct btrfs_trans_handle *trans;
3524
3525         mutex_lock(&root->fs_info->cleaner_mutex);
3526         btrfs_run_delayed_iputs(root);
3527         mutex_unlock(&root->fs_info->cleaner_mutex);
3528         wake_up_process(root->fs_info->cleaner_kthread);
3529
3530         /* wait until ongoing cleanup work done */
3531         down_write(&root->fs_info->cleanup_work_sem);
3532         up_write(&root->fs_info->cleanup_work_sem);
3533
3534         trans = btrfs_join_transaction(root);
3535         if (IS_ERR(trans))
3536                 return PTR_ERR(trans);
3537         return btrfs_commit_transaction(trans, root);
3538 }
3539
3540 int close_ctree(struct btrfs_root *root)
3541 {
3542         struct btrfs_fs_info *fs_info = root->fs_info;
3543         int ret;
3544
3545         fs_info->closing = 1;
3546         smp_mb();
3547
3548         /* wait for the uuid_scan task to finish */
3549         down(&fs_info->uuid_tree_rescan_sem);
3550         /* avoid complains from lockdep et al., set sem back to initial state */
3551         up(&fs_info->uuid_tree_rescan_sem);
3552
3553         /* pause restriper - we want to resume on mount */
3554         btrfs_pause_balance(fs_info);
3555
3556         btrfs_dev_replace_suspend_for_unmount(fs_info);
3557
3558         btrfs_scrub_cancel(fs_info);
3559
3560         /* wait for any defraggers to finish */
3561         wait_event(fs_info->transaction_wait,
3562                    (atomic_read(&fs_info->defrag_running) == 0));
3563
3564         /* clear out the rbtree of defraggable inodes */
3565         btrfs_cleanup_defrag_inodes(fs_info);
3566
3567         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3568                 ret = btrfs_commit_super(root);
3569                 if (ret)
3570                         btrfs_err(root->fs_info, "commit super ret %d", ret);
3571         }
3572
3573         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3574                 btrfs_error_commit_super(root);
3575
3576         kthread_stop(fs_info->transaction_kthread);
3577         kthread_stop(fs_info->cleaner_kthread);
3578
3579         fs_info->closing = 2;
3580         smp_mb();
3581
3582         btrfs_free_qgroup_config(root->fs_info);
3583
3584         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3585                 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3586                        percpu_counter_sum(&fs_info->delalloc_bytes));
3587         }
3588
3589         btrfs_sysfs_remove_one(fs_info);
3590
3591         del_fs_roots(fs_info);
3592
3593         btrfs_put_block_group_cache(fs_info);
3594
3595         btrfs_free_block_groups(fs_info);
3596
3597         btrfs_stop_all_workers(fs_info);
3598
3599         free_root_pointers(fs_info, 1);
3600
3601         iput(fs_info->btree_inode);
3602
3603 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3604         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3605                 btrfsic_unmount(root, fs_info->fs_devices);
3606 #endif
3607
3608         btrfs_close_devices(fs_info->fs_devices);
3609         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3610
3611         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3612         percpu_counter_destroy(&fs_info->delalloc_bytes);
3613         bdi_destroy(&fs_info->bdi);
3614         cleanup_srcu_struct(&fs_info->subvol_srcu);
3615
3616         btrfs_free_stripe_hash_table(fs_info);
3617
3618         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3619         root->orphan_block_rsv = NULL;
3620
3621         return 0;
3622 }
3623
3624 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3625                           int atomic)
3626 {
3627         int ret;
3628         struct inode *btree_inode = buf->pages[0]->mapping->host;
3629
3630         ret = extent_buffer_uptodate(buf);
3631         if (!ret)
3632                 return ret;
3633
3634         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3635                                     parent_transid, atomic);
3636         if (ret == -EAGAIN)
3637                 return ret;
3638         return !ret;
3639 }
3640
3641 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3642 {
3643         return set_extent_buffer_uptodate(buf);
3644 }
3645
3646 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3647 {
3648         struct btrfs_root *root;
3649         u64 transid = btrfs_header_generation(buf);
3650         int was_dirty;
3651
3652 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3653         /*
3654          * This is a fast path so only do this check if we have sanity tests
3655          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3656          * outside of the sanity tests.
3657          */
3658         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3659                 return;
3660 #endif
3661         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3662         btrfs_assert_tree_locked(buf);
3663         if (transid != root->fs_info->generation)
3664                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3665                        "found %llu running %llu\n",
3666                         buf->start, transid, root->fs_info->generation);
3667         was_dirty = set_extent_buffer_dirty(buf);
3668         if (!was_dirty)
3669                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3670                                      buf->len,
3671                                      root->fs_info->dirty_metadata_batch);
3672 }
3673
3674 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3675                                         int flush_delayed)
3676 {
3677         /*
3678          * looks as though older kernels can get into trouble with
3679          * this code, they end up stuck in balance_dirty_pages forever
3680          */
3681         int ret;
3682
3683         if (current->flags & PF_MEMALLOC)
3684                 return;
3685
3686         if (flush_delayed)
3687                 btrfs_balance_delayed_items(root);
3688
3689         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3690                                      BTRFS_DIRTY_METADATA_THRESH);
3691         if (ret > 0) {
3692                 balance_dirty_pages_ratelimited(
3693                                    root->fs_info->btree_inode->i_mapping);
3694         }
3695         return;
3696 }
3697
3698 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3699 {
3700         __btrfs_btree_balance_dirty(root, 1);
3701 }
3702
3703 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3704 {
3705         __btrfs_btree_balance_dirty(root, 0);
3706 }
3707
3708 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3709 {
3710         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3711         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3712 }
3713
3714 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3715                               int read_only)
3716 {
3717         /*
3718          * Placeholder for checks
3719          */
3720         return 0;
3721 }
3722
3723 static void btrfs_error_commit_super(struct btrfs_root *root)
3724 {
3725         mutex_lock(&root->fs_info->cleaner_mutex);
3726         btrfs_run_delayed_iputs(root);
3727         mutex_unlock(&root->fs_info->cleaner_mutex);
3728
3729         down_write(&root->fs_info->cleanup_work_sem);
3730         up_write(&root->fs_info->cleanup_work_sem);
3731
3732         /* cleanup FS via transaction */
3733         btrfs_cleanup_transaction(root);
3734 }
3735
3736 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3737                                              struct btrfs_root *root)
3738 {
3739         struct btrfs_inode *btrfs_inode;
3740         struct list_head splice;
3741
3742         INIT_LIST_HEAD(&splice);
3743
3744         mutex_lock(&root->fs_info->ordered_operations_mutex);
3745         spin_lock(&root->fs_info->ordered_root_lock);
3746
3747         list_splice_init(&t->ordered_operations, &splice);
3748         while (!list_empty(&splice)) {
3749                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3750                                          ordered_operations);
3751
3752                 list_del_init(&btrfs_inode->ordered_operations);
3753                 spin_unlock(&root->fs_info->ordered_root_lock);
3754
3755                 btrfs_invalidate_inodes(btrfs_inode->root);
3756
3757                 spin_lock(&root->fs_info->ordered_root_lock);
3758         }
3759
3760         spin_unlock(&root->fs_info->ordered_root_lock);
3761         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3762 }
3763
3764 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3765 {
3766         struct btrfs_ordered_extent *ordered;
3767
3768         spin_lock(&root->ordered_extent_lock);
3769         /*
3770          * This will just short circuit the ordered completion stuff which will
3771          * make sure the ordered extent gets properly cleaned up.
3772          */
3773         list_for_each_entry(ordered, &root->ordered_extents,
3774                             root_extent_list)
3775                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3776         spin_unlock(&root->ordered_extent_lock);
3777 }
3778
3779 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3780 {
3781         struct btrfs_root *root;
3782         struct list_head splice;
3783
3784         INIT_LIST_HEAD(&splice);
3785
3786         spin_lock(&fs_info->ordered_root_lock);
3787         list_splice_init(&fs_info->ordered_roots, &splice);
3788         while (!list_empty(&splice)) {
3789                 root = list_first_entry(&splice, struct btrfs_root,
3790                                         ordered_root);
3791                 list_move_tail(&root->ordered_root,
3792                                &fs_info->ordered_roots);
3793
3794                 btrfs_destroy_ordered_extents(root);
3795
3796                 cond_resched_lock(&fs_info->ordered_root_lock);
3797         }
3798         spin_unlock(&fs_info->ordered_root_lock);
3799 }
3800
3801 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3802                                       struct btrfs_root *root)
3803 {
3804         struct rb_node *node;
3805         struct btrfs_delayed_ref_root *delayed_refs;
3806         struct btrfs_delayed_ref_node *ref;
3807         int ret = 0;
3808
3809         delayed_refs = &trans->delayed_refs;
3810
3811         spin_lock(&delayed_refs->lock);
3812         if (atomic_read(&delayed_refs->num_entries) == 0) {
3813                 spin_unlock(&delayed_refs->lock);
3814                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
3815                 return ret;
3816         }
3817
3818         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3819                 struct btrfs_delayed_ref_head *head;
3820                 bool pin_bytes = false;
3821
3822                 head = rb_entry(node, struct btrfs_delayed_ref_head,
3823                                 href_node);
3824                 if (!mutex_trylock(&head->mutex)) {
3825                         atomic_inc(&head->node.refs);
3826                         spin_unlock(&delayed_refs->lock);
3827
3828                         mutex_lock(&head->mutex);
3829                         mutex_unlock(&head->mutex);
3830                         btrfs_put_delayed_ref(&head->node);
3831                         spin_lock(&delayed_refs->lock);
3832                         continue;
3833                 }
3834                 spin_lock(&head->lock);
3835                 while ((node = rb_first(&head->ref_root)) != NULL) {
3836                         ref = rb_entry(node, struct btrfs_delayed_ref_node,
3837                                        rb_node);
3838                         ref->in_tree = 0;
3839                         rb_erase(&ref->rb_node, &head->ref_root);
3840                         atomic_dec(&delayed_refs->num_entries);
3841                         btrfs_put_delayed_ref(ref);
3842                 }
3843                 if (head->must_insert_reserved)
3844                         pin_bytes = true;
3845                 btrfs_free_delayed_extent_op(head->extent_op);
3846                 delayed_refs->num_heads--;
3847                 if (head->processing == 0)
3848                         delayed_refs->num_heads_ready--;
3849                 atomic_dec(&delayed_refs->num_entries);
3850                 head->node.in_tree = 0;
3851                 rb_erase(&head->href_node, &delayed_refs->href_root);
3852                 spin_unlock(&head->lock);
3853                 spin_unlock(&delayed_refs->lock);
3854                 mutex_unlock(&head->mutex);
3855
3856                 if (pin_bytes)
3857                         btrfs_pin_extent(root, head->node.bytenr,
3858                                          head->node.num_bytes, 1);
3859                 btrfs_put_delayed_ref(&head->node);
3860                 cond_resched();
3861                 spin_lock(&delayed_refs->lock);
3862         }
3863
3864         spin_unlock(&delayed_refs->lock);
3865
3866         return ret;
3867 }
3868
3869 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3870 {
3871         struct btrfs_inode *btrfs_inode;
3872         struct list_head splice;
3873
3874         INIT_LIST_HEAD(&splice);
3875
3876         spin_lock(&root->delalloc_lock);
3877         list_splice_init(&root->delalloc_inodes, &splice);
3878
3879         while (!list_empty(&splice)) {
3880                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3881                                                delalloc_inodes);
3882
3883                 list_del_init(&btrfs_inode->delalloc_inodes);
3884                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3885                           &btrfs_inode->runtime_flags);
3886                 spin_unlock(&root->delalloc_lock);
3887
3888                 btrfs_invalidate_inodes(btrfs_inode->root);
3889
3890                 spin_lock(&root->delalloc_lock);
3891         }
3892
3893         spin_unlock(&root->delalloc_lock);
3894 }
3895
3896 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3897 {
3898         struct btrfs_root *root;
3899         struct list_head splice;
3900
3901         INIT_LIST_HEAD(&splice);
3902
3903         spin_lock(&fs_info->delalloc_root_lock);
3904         list_splice_init(&fs_info->delalloc_roots, &splice);
3905         while (!list_empty(&splice)) {
3906                 root = list_first_entry(&splice, struct btrfs_root,
3907                                          delalloc_root);
3908                 list_del_init(&root->delalloc_root);
3909                 root = btrfs_grab_fs_root(root);
3910                 BUG_ON(!root);
3911                 spin_unlock(&fs_info->delalloc_root_lock);
3912
3913                 btrfs_destroy_delalloc_inodes(root);
3914                 btrfs_put_fs_root(root);
3915
3916                 spin_lock(&fs_info->delalloc_root_lock);
3917         }
3918         spin_unlock(&fs_info->delalloc_root_lock);
3919 }
3920
3921 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3922                                         struct extent_io_tree *dirty_pages,
3923                                         int mark)
3924 {
3925         int ret;
3926         struct extent_buffer *eb;
3927         u64 start = 0;
3928         u64 end;
3929
3930         while (1) {
3931                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3932                                             mark, NULL);
3933                 if (ret)
3934                         break;
3935
3936                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3937                 while (start <= end) {
3938                         eb = btrfs_find_tree_block(root, start,
3939                                                    root->leafsize);
3940                         start += root->leafsize;
3941                         if (!eb)
3942                                 continue;
3943                         wait_on_extent_buffer_writeback(eb);
3944
3945                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3946                                                &eb->bflags))
3947                                 clear_extent_buffer_dirty(eb);
3948                         free_extent_buffer_stale(eb);
3949                 }
3950         }
3951
3952         return ret;
3953 }
3954
3955 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3956                                        struct extent_io_tree *pinned_extents)
3957 {
3958         struct extent_io_tree *unpin;
3959         u64 start;
3960         u64 end;
3961         int ret;
3962         bool loop = true;
3963
3964         unpin = pinned_extents;
3965 again:
3966         while (1) {
3967                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3968                                             EXTENT_DIRTY, NULL);
3969                 if (ret)
3970                         break;
3971
3972                 /* opt_discard */
3973                 if (btrfs_test_opt(root, DISCARD))
3974                         ret = btrfs_error_discard_extent(root, start,
3975                                                          end + 1 - start,
3976                                                          NULL);
3977
3978                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3979                 btrfs_error_unpin_extent_range(root, start, end);
3980                 cond_resched();
3981         }
3982
3983         if (loop) {
3984                 if (unpin == &root->fs_info->freed_extents[0])
3985                         unpin = &root->fs_info->freed_extents[1];
3986                 else
3987                         unpin = &root->fs_info->freed_extents[0];
3988                 loop = false;
3989                 goto again;
3990         }
3991
3992         return 0;
3993 }
3994
3995 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3996                                    struct btrfs_root *root)
3997 {
3998         btrfs_destroy_ordered_operations(cur_trans, root);
3999
4000         btrfs_destroy_delayed_refs(cur_trans, root);
4001
4002         cur_trans->state = TRANS_STATE_COMMIT_START;
4003         wake_up(&root->fs_info->transaction_blocked_wait);
4004
4005         cur_trans->state = TRANS_STATE_UNBLOCKED;
4006         wake_up(&root->fs_info->transaction_wait);
4007
4008         btrfs_destroy_delayed_inodes(root);
4009         btrfs_assert_delayed_root_empty(root);
4010
4011         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4012                                      EXTENT_DIRTY);
4013         btrfs_destroy_pinned_extent(root,
4014                                     root->fs_info->pinned_extents);
4015
4016         cur_trans->state =TRANS_STATE_COMPLETED;
4017         wake_up(&cur_trans->commit_wait);
4018
4019         /*
4020         memset(cur_trans, 0, sizeof(*cur_trans));
4021         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4022         */
4023 }
4024
4025 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4026 {
4027         struct btrfs_transaction *t;
4028
4029         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4030
4031         spin_lock(&root->fs_info->trans_lock);
4032         while (!list_empty(&root->fs_info->trans_list)) {
4033                 t = list_first_entry(&root->fs_info->trans_list,
4034                                      struct btrfs_transaction, list);
4035                 if (t->state >= TRANS_STATE_COMMIT_START) {
4036                         atomic_inc(&t->use_count);
4037                         spin_unlock(&root->fs_info->trans_lock);
4038                         btrfs_wait_for_commit(root, t->transid);
4039                         btrfs_put_transaction(t);
4040                         spin_lock(&root->fs_info->trans_lock);
4041                         continue;
4042                 }
4043                 if (t == root->fs_info->running_transaction) {
4044                         t->state = TRANS_STATE_COMMIT_DOING;
4045                         spin_unlock(&root->fs_info->trans_lock);
4046                         /*
4047                          * We wait for 0 num_writers since we don't hold a trans
4048                          * handle open currently for this transaction.
4049                          */
4050                         wait_event(t->writer_wait,
4051                                    atomic_read(&t->num_writers) == 0);
4052                 } else {
4053                         spin_unlock(&root->fs_info->trans_lock);
4054                 }
4055                 btrfs_cleanup_one_transaction(t, root);
4056
4057                 spin_lock(&root->fs_info->trans_lock);
4058                 if (t == root->fs_info->running_transaction)
4059                         root->fs_info->running_transaction = NULL;
4060                 list_del_init(&t->list);
4061                 spin_unlock(&root->fs_info->trans_lock);
4062
4063                 btrfs_put_transaction(t);
4064                 trace_btrfs_transaction_commit(root);
4065                 spin_lock(&root->fs_info->trans_lock);
4066         }
4067         spin_unlock(&root->fs_info->trans_lock);
4068         btrfs_destroy_all_ordered_extents(root->fs_info);
4069         btrfs_destroy_delayed_inodes(root);
4070         btrfs_assert_delayed_root_empty(root);
4071         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4072         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4073         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4074
4075         return 0;
4076 }
4077
4078 static struct extent_io_ops btree_extent_io_ops = {
4079         .readpage_end_io_hook = btree_readpage_end_io_hook,
4080         .readpage_io_failed_hook = btree_io_failed_hook,
4081         .submit_bio_hook = btree_submit_bio_hook,
4082         /* note we're sharing with inode.c for the merge bio hook */
4083         .merge_bio_hook = btrfs_merge_bio_hook,
4084 };