Merge remote-tracking branch 'asoc/topic/core' into asoc-next
[sfrench/cifs-2.6.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52 #include "qgroup.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 static struct extent_io_ops btree_extent_io_ops;
59 static void end_workqueue_fn(struct btrfs_work *work);
60 static void free_fs_root(struct btrfs_root *root);
61 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
62                                     int read_only);
63 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
64                                              struct btrfs_root *root);
65 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
66 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
67                                       struct btrfs_root *root);
68 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
69 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
70                                         struct extent_io_tree *dirty_pages,
71                                         int mark);
72 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
73                                        struct extent_io_tree *pinned_extents);
74 static int btrfs_cleanup_transaction(struct btrfs_root *root);
75 static void btrfs_error_commit_super(struct btrfs_root *root);
76
77 /*
78  * end_io_wq structs are used to do processing in task context when an IO is
79  * complete.  This is used during reads to verify checksums, and it is used
80  * by writes to insert metadata for new file extents after IO is complete.
81  */
82 struct end_io_wq {
83         struct bio *bio;
84         bio_end_io_t *end_io;
85         void *private;
86         struct btrfs_fs_info *info;
87         int error;
88         int metadata;
89         struct list_head list;
90         struct btrfs_work work;
91 };
92
93 /*
94  * async submit bios are used to offload expensive checksumming
95  * onto the worker threads.  They checksum file and metadata bios
96  * just before they are sent down the IO stack.
97  */
98 struct async_submit_bio {
99         struct inode *inode;
100         struct bio *bio;
101         struct list_head list;
102         extent_submit_bio_hook_t *submit_bio_start;
103         extent_submit_bio_hook_t *submit_bio_done;
104         int rw;
105         int mirror_num;
106         unsigned long bio_flags;
107         /*
108          * bio_offset is optional, can be used if the pages in the bio
109          * can't tell us where in the file the bio should go
110          */
111         u64 bio_offset;
112         struct btrfs_work work;
113         int error;
114 };
115
116 /*
117  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
118  * eb, the lockdep key is determined by the btrfs_root it belongs to and
119  * the level the eb occupies in the tree.
120  *
121  * Different roots are used for different purposes and may nest inside each
122  * other and they require separate keysets.  As lockdep keys should be
123  * static, assign keysets according to the purpose of the root as indicated
124  * by btrfs_root->objectid.  This ensures that all special purpose roots
125  * have separate keysets.
126  *
127  * Lock-nesting across peer nodes is always done with the immediate parent
128  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
129  * subclass to avoid triggering lockdep warning in such cases.
130  *
131  * The key is set by the readpage_end_io_hook after the buffer has passed
132  * csum validation but before the pages are unlocked.  It is also set by
133  * btrfs_init_new_buffer on freshly allocated blocks.
134  *
135  * We also add a check to make sure the highest level of the tree is the
136  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
137  * needs update as well.
138  */
139 #ifdef CONFIG_DEBUG_LOCK_ALLOC
140 # if BTRFS_MAX_LEVEL != 8
141 #  error
142 # endif
143
144 static struct btrfs_lockdep_keyset {
145         u64                     id;             /* root objectid */
146         const char              *name_stem;     /* lock name stem */
147         char                    names[BTRFS_MAX_LEVEL + 1][20];
148         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
149 } btrfs_lockdep_keysets[] = {
150         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
151         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
152         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
153         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
154         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
155         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
156         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
157         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
158         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
159         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
160         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
161         { .id = 0,                              .name_stem = "tree"     },
162 };
163
164 void __init btrfs_init_lockdep(void)
165 {
166         int i, j;
167
168         /* initialize lockdep class names */
169         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
170                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
171
172                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
173                         snprintf(ks->names[j], sizeof(ks->names[j]),
174                                  "btrfs-%s-%02d", ks->name_stem, j);
175         }
176 }
177
178 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
179                                     int level)
180 {
181         struct btrfs_lockdep_keyset *ks;
182
183         BUG_ON(level >= ARRAY_SIZE(ks->keys));
184
185         /* find the matching keyset, id 0 is the default entry */
186         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
187                 if (ks->id == objectid)
188                         break;
189
190         lockdep_set_class_and_name(&eb->lock,
191                                    &ks->keys[level], ks->names[level]);
192 }
193
194 #endif
195
196 /*
197  * extents on the btree inode are pretty simple, there's one extent
198  * that covers the entire device
199  */
200 static struct extent_map *btree_get_extent(struct inode *inode,
201                 struct page *page, size_t pg_offset, u64 start, u64 len,
202                 int create)
203 {
204         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
205         struct extent_map *em;
206         int ret;
207
208         read_lock(&em_tree->lock);
209         em = lookup_extent_mapping(em_tree, start, len);
210         if (em) {
211                 em->bdev =
212                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
213                 read_unlock(&em_tree->lock);
214                 goto out;
215         }
216         read_unlock(&em_tree->lock);
217
218         em = alloc_extent_map();
219         if (!em) {
220                 em = ERR_PTR(-ENOMEM);
221                 goto out;
222         }
223         em->start = 0;
224         em->len = (u64)-1;
225         em->block_len = (u64)-1;
226         em->block_start = 0;
227         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
228
229         write_lock(&em_tree->lock);
230         ret = add_extent_mapping(em_tree, em, 0);
231         if (ret == -EEXIST) {
232                 free_extent_map(em);
233                 em = lookup_extent_mapping(em_tree, start, len);
234                 if (!em)
235                         em = ERR_PTR(-EIO);
236         } else if (ret) {
237                 free_extent_map(em);
238                 em = ERR_PTR(ret);
239         }
240         write_unlock(&em_tree->lock);
241
242 out:
243         return em;
244 }
245
246 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
247 {
248         return btrfs_crc32c(seed, data, len);
249 }
250
251 void btrfs_csum_final(u32 crc, char *result)
252 {
253         put_unaligned_le32(~crc, result);
254 }
255
256 /*
257  * compute the csum for a btree block, and either verify it or write it
258  * into the csum field of the block.
259  */
260 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
261                            int verify)
262 {
263         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
264         char *result = NULL;
265         unsigned long len;
266         unsigned long cur_len;
267         unsigned long offset = BTRFS_CSUM_SIZE;
268         char *kaddr;
269         unsigned long map_start;
270         unsigned long map_len;
271         int err;
272         u32 crc = ~(u32)0;
273         unsigned long inline_result;
274
275         len = buf->len - offset;
276         while (len > 0) {
277                 err = map_private_extent_buffer(buf, offset, 32,
278                                         &kaddr, &map_start, &map_len);
279                 if (err)
280                         return 1;
281                 cur_len = min(len, map_len - (offset - map_start));
282                 crc = btrfs_csum_data(kaddr + offset - map_start,
283                                       crc, cur_len);
284                 len -= cur_len;
285                 offset += cur_len;
286         }
287         if (csum_size > sizeof(inline_result)) {
288                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
289                 if (!result)
290                         return 1;
291         } else {
292                 result = (char *)&inline_result;
293         }
294
295         btrfs_csum_final(crc, result);
296
297         if (verify) {
298                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
299                         u32 val;
300                         u32 found = 0;
301                         memcpy(&found, result, csum_size);
302
303                         read_extent_buffer(buf, &val, 0, csum_size);
304                         printk_ratelimited(KERN_INFO
305                                 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
306                                 "level %d\n",
307                                 root->fs_info->sb->s_id, buf->start,
308                                 val, found, btrfs_header_level(buf));
309                         if (result != (char *)&inline_result)
310                                 kfree(result);
311                         return 1;
312                 }
313         } else {
314                 write_extent_buffer(buf, result, 0, csum_size);
315         }
316         if (result != (char *)&inline_result)
317                 kfree(result);
318         return 0;
319 }
320
321 /*
322  * we can't consider a given block up to date unless the transid of the
323  * block matches the transid in the parent node's pointer.  This is how we
324  * detect blocks that either didn't get written at all or got written
325  * in the wrong place.
326  */
327 static int verify_parent_transid(struct extent_io_tree *io_tree,
328                                  struct extent_buffer *eb, u64 parent_transid,
329                                  int atomic)
330 {
331         struct extent_state *cached_state = NULL;
332         int ret;
333         bool need_lock = (current->journal_info ==
334                           (void *)BTRFS_SEND_TRANS_STUB);
335
336         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
337                 return 0;
338
339         if (atomic)
340                 return -EAGAIN;
341
342         if (need_lock) {
343                 btrfs_tree_read_lock(eb);
344                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
345         }
346
347         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
348                          0, &cached_state);
349         if (extent_buffer_uptodate(eb) &&
350             btrfs_header_generation(eb) == parent_transid) {
351                 ret = 0;
352                 goto out;
353         }
354         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
355                        "found %llu\n",
356                        eb->start, parent_transid, btrfs_header_generation(eb));
357         ret = 1;
358
359         /*
360          * Things reading via commit roots that don't have normal protection,
361          * like send, can have a really old block in cache that may point at a
362          * block that has been free'd and re-allocated.  So don't clear uptodate
363          * if we find an eb that is under IO (dirty/writeback) because we could
364          * end up reading in the stale data and then writing it back out and
365          * making everybody very sad.
366          */
367         if (!extent_buffer_under_io(eb))
368                 clear_extent_buffer_uptodate(eb);
369 out:
370         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
371                              &cached_state, GFP_NOFS);
372         if (need_lock)
373                 btrfs_tree_read_unlock_blocking(eb);
374         return ret;
375 }
376
377 /*
378  * Return 0 if the superblock checksum type matches the checksum value of that
379  * algorithm. Pass the raw disk superblock data.
380  */
381 static int btrfs_check_super_csum(char *raw_disk_sb)
382 {
383         struct btrfs_super_block *disk_sb =
384                 (struct btrfs_super_block *)raw_disk_sb;
385         u16 csum_type = btrfs_super_csum_type(disk_sb);
386         int ret = 0;
387
388         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
389                 u32 crc = ~(u32)0;
390                 const int csum_size = sizeof(crc);
391                 char result[csum_size];
392
393                 /*
394                  * The super_block structure does not span the whole
395                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
396                  * is filled with zeros and is included in the checkum.
397                  */
398                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
399                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
400                 btrfs_csum_final(crc, result);
401
402                 if (memcmp(raw_disk_sb, result, csum_size))
403                         ret = 1;
404
405                 if (ret && btrfs_super_generation(disk_sb) < 10) {
406                         printk(KERN_WARNING
407                                 "BTRFS: super block crcs don't match, older mkfs detected\n");
408                         ret = 0;
409                 }
410         }
411
412         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
413                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
414                                 csum_type);
415                 ret = 1;
416         }
417
418         return ret;
419 }
420
421 /*
422  * helper to read a given tree block, doing retries as required when
423  * the checksums don't match and we have alternate mirrors to try.
424  */
425 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
426                                           struct extent_buffer *eb,
427                                           u64 start, u64 parent_transid)
428 {
429         struct extent_io_tree *io_tree;
430         int failed = 0;
431         int ret;
432         int num_copies = 0;
433         int mirror_num = 0;
434         int failed_mirror = 0;
435
436         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
437         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
438         while (1) {
439                 ret = read_extent_buffer_pages(io_tree, eb, start,
440                                                WAIT_COMPLETE,
441                                                btree_get_extent, mirror_num);
442                 if (!ret) {
443                         if (!verify_parent_transid(io_tree, eb,
444                                                    parent_transid, 0))
445                                 break;
446                         else
447                                 ret = -EIO;
448                 }
449
450                 /*
451                  * This buffer's crc is fine, but its contents are corrupted, so
452                  * there is no reason to read the other copies, they won't be
453                  * any less wrong.
454                  */
455                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
456                         break;
457
458                 num_copies = btrfs_num_copies(root->fs_info,
459                                               eb->start, eb->len);
460                 if (num_copies == 1)
461                         break;
462
463                 if (!failed_mirror) {
464                         failed = 1;
465                         failed_mirror = eb->read_mirror;
466                 }
467
468                 mirror_num++;
469                 if (mirror_num == failed_mirror)
470                         mirror_num++;
471
472                 if (mirror_num > num_copies)
473                         break;
474         }
475
476         if (failed && !ret && failed_mirror)
477                 repair_eb_io_failure(root, eb, failed_mirror);
478
479         return ret;
480 }
481
482 /*
483  * checksum a dirty tree block before IO.  This has extra checks to make sure
484  * we only fill in the checksum field in the first page of a multi-page block
485  */
486
487 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
488 {
489         u64 start = page_offset(page);
490         u64 found_start;
491         struct extent_buffer *eb;
492
493         eb = (struct extent_buffer *)page->private;
494         if (page != eb->pages[0])
495                 return 0;
496         found_start = btrfs_header_bytenr(eb);
497         if (WARN_ON(found_start != start || !PageUptodate(page)))
498                 return 0;
499         csum_tree_block(root, eb, 0);
500         return 0;
501 }
502
503 static int check_tree_block_fsid(struct btrfs_root *root,
504                                  struct extent_buffer *eb)
505 {
506         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
507         u8 fsid[BTRFS_UUID_SIZE];
508         int ret = 1;
509
510         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
511         while (fs_devices) {
512                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
513                         ret = 0;
514                         break;
515                 }
516                 fs_devices = fs_devices->seed;
517         }
518         return ret;
519 }
520
521 #define CORRUPT(reason, eb, root, slot)                         \
522         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
523                    "root=%llu, slot=%d", reason,                        \
524                btrfs_header_bytenr(eb), root->objectid, slot)
525
526 static noinline int check_leaf(struct btrfs_root *root,
527                                struct extent_buffer *leaf)
528 {
529         struct btrfs_key key;
530         struct btrfs_key leaf_key;
531         u32 nritems = btrfs_header_nritems(leaf);
532         int slot;
533
534         if (nritems == 0)
535                 return 0;
536
537         /* Check the 0 item */
538         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
539             BTRFS_LEAF_DATA_SIZE(root)) {
540                 CORRUPT("invalid item offset size pair", leaf, root, 0);
541                 return -EIO;
542         }
543
544         /*
545          * Check to make sure each items keys are in the correct order and their
546          * offsets make sense.  We only have to loop through nritems-1 because
547          * we check the current slot against the next slot, which verifies the
548          * next slot's offset+size makes sense and that the current's slot
549          * offset is correct.
550          */
551         for (slot = 0; slot < nritems - 1; slot++) {
552                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
553                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
554
555                 /* Make sure the keys are in the right order */
556                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
557                         CORRUPT("bad key order", leaf, root, slot);
558                         return -EIO;
559                 }
560
561                 /*
562                  * Make sure the offset and ends are right, remember that the
563                  * item data starts at the end of the leaf and grows towards the
564                  * front.
565                  */
566                 if (btrfs_item_offset_nr(leaf, slot) !=
567                         btrfs_item_end_nr(leaf, slot + 1)) {
568                         CORRUPT("slot offset bad", leaf, root, slot);
569                         return -EIO;
570                 }
571
572                 /*
573                  * Check to make sure that we don't point outside of the leaf,
574                  * just incase all the items are consistent to eachother, but
575                  * all point outside of the leaf.
576                  */
577                 if (btrfs_item_end_nr(leaf, slot) >
578                     BTRFS_LEAF_DATA_SIZE(root)) {
579                         CORRUPT("slot end outside of leaf", leaf, root, slot);
580                         return -EIO;
581                 }
582         }
583
584         return 0;
585 }
586
587 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
588                                       u64 phy_offset, struct page *page,
589                                       u64 start, u64 end, int mirror)
590 {
591         u64 found_start;
592         int found_level;
593         struct extent_buffer *eb;
594         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
595         int ret = 0;
596         int reads_done;
597
598         if (!page->private)
599                 goto out;
600
601         eb = (struct extent_buffer *)page->private;
602
603         /* the pending IO might have been the only thing that kept this buffer
604          * in memory.  Make sure we have a ref for all this other checks
605          */
606         extent_buffer_get(eb);
607
608         reads_done = atomic_dec_and_test(&eb->io_pages);
609         if (!reads_done)
610                 goto err;
611
612         eb->read_mirror = mirror;
613         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
614                 ret = -EIO;
615                 goto err;
616         }
617
618         found_start = btrfs_header_bytenr(eb);
619         if (found_start != eb->start) {
620                 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
621                                "%llu %llu\n",
622                                found_start, eb->start);
623                 ret = -EIO;
624                 goto err;
625         }
626         if (check_tree_block_fsid(root, eb)) {
627                 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
628                                eb->start);
629                 ret = -EIO;
630                 goto err;
631         }
632         found_level = btrfs_header_level(eb);
633         if (found_level >= BTRFS_MAX_LEVEL) {
634                 btrfs_info(root->fs_info, "bad tree block level %d",
635                            (int)btrfs_header_level(eb));
636                 ret = -EIO;
637                 goto err;
638         }
639
640         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
641                                        eb, found_level);
642
643         ret = csum_tree_block(root, eb, 1);
644         if (ret) {
645                 ret = -EIO;
646                 goto err;
647         }
648
649         /*
650          * If this is a leaf block and it is corrupt, set the corrupt bit so
651          * that we don't try and read the other copies of this block, just
652          * return -EIO.
653          */
654         if (found_level == 0 && check_leaf(root, eb)) {
655                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
656                 ret = -EIO;
657         }
658
659         if (!ret)
660                 set_extent_buffer_uptodate(eb);
661 err:
662         if (reads_done &&
663             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
664                 btree_readahead_hook(root, eb, eb->start, ret);
665
666         if (ret) {
667                 /*
668                  * our io error hook is going to dec the io pages
669                  * again, we have to make sure it has something
670                  * to decrement
671                  */
672                 atomic_inc(&eb->io_pages);
673                 clear_extent_buffer_uptodate(eb);
674         }
675         free_extent_buffer(eb);
676 out:
677         return ret;
678 }
679
680 static int btree_io_failed_hook(struct page *page, int failed_mirror)
681 {
682         struct extent_buffer *eb;
683         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
684
685         eb = (struct extent_buffer *)page->private;
686         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
687         eb->read_mirror = failed_mirror;
688         atomic_dec(&eb->io_pages);
689         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
690                 btree_readahead_hook(root, eb, eb->start, -EIO);
691         return -EIO;    /* we fixed nothing */
692 }
693
694 static void end_workqueue_bio(struct bio *bio, int err)
695 {
696         struct end_io_wq *end_io_wq = bio->bi_private;
697         struct btrfs_fs_info *fs_info;
698
699         fs_info = end_io_wq->info;
700         end_io_wq->error = err;
701         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
702
703         if (bio->bi_rw & REQ_WRITE) {
704                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
705                         btrfs_queue_work(fs_info->endio_meta_write_workers,
706                                          &end_io_wq->work);
707                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
708                         btrfs_queue_work(fs_info->endio_freespace_worker,
709                                          &end_io_wq->work);
710                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
711                         btrfs_queue_work(fs_info->endio_raid56_workers,
712                                          &end_io_wq->work);
713                 else
714                         btrfs_queue_work(fs_info->endio_write_workers,
715                                          &end_io_wq->work);
716         } else {
717                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
718                         btrfs_queue_work(fs_info->endio_raid56_workers,
719                                          &end_io_wq->work);
720                 else if (end_io_wq->metadata)
721                         btrfs_queue_work(fs_info->endio_meta_workers,
722                                          &end_io_wq->work);
723                 else
724                         btrfs_queue_work(fs_info->endio_workers,
725                                          &end_io_wq->work);
726         }
727 }
728
729 /*
730  * For the metadata arg you want
731  *
732  * 0 - if data
733  * 1 - if normal metadta
734  * 2 - if writing to the free space cache area
735  * 3 - raid parity work
736  */
737 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
738                         int metadata)
739 {
740         struct end_io_wq *end_io_wq;
741         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
742         if (!end_io_wq)
743                 return -ENOMEM;
744
745         end_io_wq->private = bio->bi_private;
746         end_io_wq->end_io = bio->bi_end_io;
747         end_io_wq->info = info;
748         end_io_wq->error = 0;
749         end_io_wq->bio = bio;
750         end_io_wq->metadata = metadata;
751
752         bio->bi_private = end_io_wq;
753         bio->bi_end_io = end_workqueue_bio;
754         return 0;
755 }
756
757 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
758 {
759         unsigned long limit = min_t(unsigned long,
760                                     info->thread_pool_size,
761                                     info->fs_devices->open_devices);
762         return 256 * limit;
763 }
764
765 static void run_one_async_start(struct btrfs_work *work)
766 {
767         struct async_submit_bio *async;
768         int ret;
769
770         async = container_of(work, struct  async_submit_bio, work);
771         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
772                                       async->mirror_num, async->bio_flags,
773                                       async->bio_offset);
774         if (ret)
775                 async->error = ret;
776 }
777
778 static void run_one_async_done(struct btrfs_work *work)
779 {
780         struct btrfs_fs_info *fs_info;
781         struct async_submit_bio *async;
782         int limit;
783
784         async = container_of(work, struct  async_submit_bio, work);
785         fs_info = BTRFS_I(async->inode)->root->fs_info;
786
787         limit = btrfs_async_submit_limit(fs_info);
788         limit = limit * 2 / 3;
789
790         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
791             waitqueue_active(&fs_info->async_submit_wait))
792                 wake_up(&fs_info->async_submit_wait);
793
794         /* If an error occured we just want to clean up the bio and move on */
795         if (async->error) {
796                 bio_endio(async->bio, async->error);
797                 return;
798         }
799
800         async->submit_bio_done(async->inode, async->rw, async->bio,
801                                async->mirror_num, async->bio_flags,
802                                async->bio_offset);
803 }
804
805 static void run_one_async_free(struct btrfs_work *work)
806 {
807         struct async_submit_bio *async;
808
809         async = container_of(work, struct  async_submit_bio, work);
810         kfree(async);
811 }
812
813 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
814                         int rw, struct bio *bio, int mirror_num,
815                         unsigned long bio_flags,
816                         u64 bio_offset,
817                         extent_submit_bio_hook_t *submit_bio_start,
818                         extent_submit_bio_hook_t *submit_bio_done)
819 {
820         struct async_submit_bio *async;
821
822         async = kmalloc(sizeof(*async), GFP_NOFS);
823         if (!async)
824                 return -ENOMEM;
825
826         async->inode = inode;
827         async->rw = rw;
828         async->bio = bio;
829         async->mirror_num = mirror_num;
830         async->submit_bio_start = submit_bio_start;
831         async->submit_bio_done = submit_bio_done;
832
833         btrfs_init_work(&async->work, run_one_async_start,
834                         run_one_async_done, run_one_async_free);
835
836         async->bio_flags = bio_flags;
837         async->bio_offset = bio_offset;
838
839         async->error = 0;
840
841         atomic_inc(&fs_info->nr_async_submits);
842
843         if (rw & REQ_SYNC)
844                 btrfs_set_work_high_priority(&async->work);
845
846         btrfs_queue_work(fs_info->workers, &async->work);
847
848         while (atomic_read(&fs_info->async_submit_draining) &&
849               atomic_read(&fs_info->nr_async_submits)) {
850                 wait_event(fs_info->async_submit_wait,
851                            (atomic_read(&fs_info->nr_async_submits) == 0));
852         }
853
854         return 0;
855 }
856
857 static int btree_csum_one_bio(struct bio *bio)
858 {
859         struct bio_vec *bvec;
860         struct btrfs_root *root;
861         int i, ret = 0;
862
863         bio_for_each_segment_all(bvec, bio, i) {
864                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
865                 ret = csum_dirty_buffer(root, bvec->bv_page);
866                 if (ret)
867                         break;
868         }
869
870         return ret;
871 }
872
873 static int __btree_submit_bio_start(struct inode *inode, int rw,
874                                     struct bio *bio, int mirror_num,
875                                     unsigned long bio_flags,
876                                     u64 bio_offset)
877 {
878         /*
879          * when we're called for a write, we're already in the async
880          * submission context.  Just jump into btrfs_map_bio
881          */
882         return btree_csum_one_bio(bio);
883 }
884
885 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
886                                  int mirror_num, unsigned long bio_flags,
887                                  u64 bio_offset)
888 {
889         int ret;
890
891         /*
892          * when we're called for a write, we're already in the async
893          * submission context.  Just jump into btrfs_map_bio
894          */
895         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
896         if (ret)
897                 bio_endio(bio, ret);
898         return ret;
899 }
900
901 static int check_async_write(struct inode *inode, unsigned long bio_flags)
902 {
903         if (bio_flags & EXTENT_BIO_TREE_LOG)
904                 return 0;
905 #ifdef CONFIG_X86
906         if (cpu_has_xmm4_2)
907                 return 0;
908 #endif
909         return 1;
910 }
911
912 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
913                                  int mirror_num, unsigned long bio_flags,
914                                  u64 bio_offset)
915 {
916         int async = check_async_write(inode, bio_flags);
917         int ret;
918
919         if (!(rw & REQ_WRITE)) {
920                 /*
921                  * called for a read, do the setup so that checksum validation
922                  * can happen in the async kernel threads
923                  */
924                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
925                                           bio, 1);
926                 if (ret)
927                         goto out_w_error;
928                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
929                                     mirror_num, 0);
930         } else if (!async) {
931                 ret = btree_csum_one_bio(bio);
932                 if (ret)
933                         goto out_w_error;
934                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
935                                     mirror_num, 0);
936         } else {
937                 /*
938                  * kthread helpers are used to submit writes so that
939                  * checksumming can happen in parallel across all CPUs
940                  */
941                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
942                                           inode, rw, bio, mirror_num, 0,
943                                           bio_offset,
944                                           __btree_submit_bio_start,
945                                           __btree_submit_bio_done);
946         }
947
948         if (ret) {
949 out_w_error:
950                 bio_endio(bio, ret);
951         }
952         return ret;
953 }
954
955 #ifdef CONFIG_MIGRATION
956 static int btree_migratepage(struct address_space *mapping,
957                         struct page *newpage, struct page *page,
958                         enum migrate_mode mode)
959 {
960         /*
961          * we can't safely write a btree page from here,
962          * we haven't done the locking hook
963          */
964         if (PageDirty(page))
965                 return -EAGAIN;
966         /*
967          * Buffers may be managed in a filesystem specific way.
968          * We must have no buffers or drop them.
969          */
970         if (page_has_private(page) &&
971             !try_to_release_page(page, GFP_KERNEL))
972                 return -EAGAIN;
973         return migrate_page(mapping, newpage, page, mode);
974 }
975 #endif
976
977
978 static int btree_writepages(struct address_space *mapping,
979                             struct writeback_control *wbc)
980 {
981         struct btrfs_fs_info *fs_info;
982         int ret;
983
984         if (wbc->sync_mode == WB_SYNC_NONE) {
985
986                 if (wbc->for_kupdate)
987                         return 0;
988
989                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
990                 /* this is a bit racy, but that's ok */
991                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
992                                              BTRFS_DIRTY_METADATA_THRESH);
993                 if (ret < 0)
994                         return 0;
995         }
996         return btree_write_cache_pages(mapping, wbc);
997 }
998
999 static int btree_readpage(struct file *file, struct page *page)
1000 {
1001         struct extent_io_tree *tree;
1002         tree = &BTRFS_I(page->mapping->host)->io_tree;
1003         return extent_read_full_page(tree, page, btree_get_extent, 0);
1004 }
1005
1006 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1007 {
1008         if (PageWriteback(page) || PageDirty(page))
1009                 return 0;
1010
1011         return try_release_extent_buffer(page);
1012 }
1013
1014 static void btree_invalidatepage(struct page *page, unsigned int offset,
1015                                  unsigned int length)
1016 {
1017         struct extent_io_tree *tree;
1018         tree = &BTRFS_I(page->mapping->host)->io_tree;
1019         extent_invalidatepage(tree, page, offset);
1020         btree_releasepage(page, GFP_NOFS);
1021         if (PagePrivate(page)) {
1022                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1023                            "page private not zero on page %llu",
1024                            (unsigned long long)page_offset(page));
1025                 ClearPagePrivate(page);
1026                 set_page_private(page, 0);
1027                 page_cache_release(page);
1028         }
1029 }
1030
1031 static int btree_set_page_dirty(struct page *page)
1032 {
1033 #ifdef DEBUG
1034         struct extent_buffer *eb;
1035
1036         BUG_ON(!PagePrivate(page));
1037         eb = (struct extent_buffer *)page->private;
1038         BUG_ON(!eb);
1039         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1040         BUG_ON(!atomic_read(&eb->refs));
1041         btrfs_assert_tree_locked(eb);
1042 #endif
1043         return __set_page_dirty_nobuffers(page);
1044 }
1045
1046 static const struct address_space_operations btree_aops = {
1047         .readpage       = btree_readpage,
1048         .writepages     = btree_writepages,
1049         .releasepage    = btree_releasepage,
1050         .invalidatepage = btree_invalidatepage,
1051 #ifdef CONFIG_MIGRATION
1052         .migratepage    = btree_migratepage,
1053 #endif
1054         .set_page_dirty = btree_set_page_dirty,
1055 };
1056
1057 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1058                          u64 parent_transid)
1059 {
1060         struct extent_buffer *buf = NULL;
1061         struct inode *btree_inode = root->fs_info->btree_inode;
1062         int ret = 0;
1063
1064         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1065         if (!buf)
1066                 return 0;
1067         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1068                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1069         free_extent_buffer(buf);
1070         return ret;
1071 }
1072
1073 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1074                          int mirror_num, struct extent_buffer **eb)
1075 {
1076         struct extent_buffer *buf = NULL;
1077         struct inode *btree_inode = root->fs_info->btree_inode;
1078         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1079         int ret;
1080
1081         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1082         if (!buf)
1083                 return 0;
1084
1085         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1086
1087         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1088                                        btree_get_extent, mirror_num);
1089         if (ret) {
1090                 free_extent_buffer(buf);
1091                 return ret;
1092         }
1093
1094         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1095                 free_extent_buffer(buf);
1096                 return -EIO;
1097         } else if (extent_buffer_uptodate(buf)) {
1098                 *eb = buf;
1099         } else {
1100                 free_extent_buffer(buf);
1101         }
1102         return 0;
1103 }
1104
1105 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1106                                             u64 bytenr, u32 blocksize)
1107 {
1108         return find_extent_buffer(root->fs_info, bytenr);
1109 }
1110
1111 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1112                                                  u64 bytenr, u32 blocksize)
1113 {
1114 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1115         if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
1116                 return alloc_test_extent_buffer(root->fs_info, bytenr,
1117                                                 blocksize);
1118 #endif
1119         return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1120 }
1121
1122
1123 int btrfs_write_tree_block(struct extent_buffer *buf)
1124 {
1125         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1126                                         buf->start + buf->len - 1);
1127 }
1128
1129 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1130 {
1131         return filemap_fdatawait_range(buf->pages[0]->mapping,
1132                                        buf->start, buf->start + buf->len - 1);
1133 }
1134
1135 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1136                                       u32 blocksize, u64 parent_transid)
1137 {
1138         struct extent_buffer *buf = NULL;
1139         int ret;
1140
1141         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1142         if (!buf)
1143                 return NULL;
1144
1145         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1146         if (ret) {
1147                 free_extent_buffer(buf);
1148                 return NULL;
1149         }
1150         return buf;
1151
1152 }
1153
1154 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1155                       struct extent_buffer *buf)
1156 {
1157         struct btrfs_fs_info *fs_info = root->fs_info;
1158
1159         if (btrfs_header_generation(buf) ==
1160             fs_info->running_transaction->transid) {
1161                 btrfs_assert_tree_locked(buf);
1162
1163                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1164                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1165                                              -buf->len,
1166                                              fs_info->dirty_metadata_batch);
1167                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1168                         btrfs_set_lock_blocking(buf);
1169                         clear_extent_buffer_dirty(buf);
1170                 }
1171         }
1172 }
1173
1174 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1175 {
1176         struct btrfs_subvolume_writers *writers;
1177         int ret;
1178
1179         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1180         if (!writers)
1181                 return ERR_PTR(-ENOMEM);
1182
1183         ret = percpu_counter_init(&writers->counter, 0);
1184         if (ret < 0) {
1185                 kfree(writers);
1186                 return ERR_PTR(ret);
1187         }
1188
1189         init_waitqueue_head(&writers->wait);
1190         return writers;
1191 }
1192
1193 static void
1194 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1195 {
1196         percpu_counter_destroy(&writers->counter);
1197         kfree(writers);
1198 }
1199
1200 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1201                          u32 stripesize, struct btrfs_root *root,
1202                          struct btrfs_fs_info *fs_info,
1203                          u64 objectid)
1204 {
1205         root->node = NULL;
1206         root->commit_root = NULL;
1207         root->sectorsize = sectorsize;
1208         root->nodesize = nodesize;
1209         root->leafsize = leafsize;
1210         root->stripesize = stripesize;
1211         root->state = 0;
1212         root->orphan_cleanup_state = 0;
1213
1214         root->objectid = objectid;
1215         root->last_trans = 0;
1216         root->highest_objectid = 0;
1217         root->nr_delalloc_inodes = 0;
1218         root->nr_ordered_extents = 0;
1219         root->name = NULL;
1220         root->inode_tree = RB_ROOT;
1221         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1222         root->block_rsv = NULL;
1223         root->orphan_block_rsv = NULL;
1224
1225         INIT_LIST_HEAD(&root->dirty_list);
1226         INIT_LIST_HEAD(&root->root_list);
1227         INIT_LIST_HEAD(&root->delalloc_inodes);
1228         INIT_LIST_HEAD(&root->delalloc_root);
1229         INIT_LIST_HEAD(&root->ordered_extents);
1230         INIT_LIST_HEAD(&root->ordered_root);
1231         INIT_LIST_HEAD(&root->logged_list[0]);
1232         INIT_LIST_HEAD(&root->logged_list[1]);
1233         spin_lock_init(&root->orphan_lock);
1234         spin_lock_init(&root->inode_lock);
1235         spin_lock_init(&root->delalloc_lock);
1236         spin_lock_init(&root->ordered_extent_lock);
1237         spin_lock_init(&root->accounting_lock);
1238         spin_lock_init(&root->log_extents_lock[0]);
1239         spin_lock_init(&root->log_extents_lock[1]);
1240         mutex_init(&root->objectid_mutex);
1241         mutex_init(&root->log_mutex);
1242         mutex_init(&root->ordered_extent_mutex);
1243         mutex_init(&root->delalloc_mutex);
1244         init_waitqueue_head(&root->log_writer_wait);
1245         init_waitqueue_head(&root->log_commit_wait[0]);
1246         init_waitqueue_head(&root->log_commit_wait[1]);
1247         INIT_LIST_HEAD(&root->log_ctxs[0]);
1248         INIT_LIST_HEAD(&root->log_ctxs[1]);
1249         atomic_set(&root->log_commit[0], 0);
1250         atomic_set(&root->log_commit[1], 0);
1251         atomic_set(&root->log_writers, 0);
1252         atomic_set(&root->log_batch, 0);
1253         atomic_set(&root->orphan_inodes, 0);
1254         atomic_set(&root->refs, 1);
1255         atomic_set(&root->will_be_snapshoted, 0);
1256         root->log_transid = 0;
1257         root->log_transid_committed = -1;
1258         root->last_log_commit = 0;
1259         if (fs_info)
1260                 extent_io_tree_init(&root->dirty_log_pages,
1261                                      fs_info->btree_inode->i_mapping);
1262
1263         memset(&root->root_key, 0, sizeof(root->root_key));
1264         memset(&root->root_item, 0, sizeof(root->root_item));
1265         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1266         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1267         if (fs_info)
1268                 root->defrag_trans_start = fs_info->generation;
1269         else
1270                 root->defrag_trans_start = 0;
1271         init_completion(&root->kobj_unregister);
1272         root->root_key.objectid = objectid;
1273         root->anon_dev = 0;
1274
1275         spin_lock_init(&root->root_item_lock);
1276 }
1277
1278 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1279 {
1280         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1281         if (root)
1282                 root->fs_info = fs_info;
1283         return root;
1284 }
1285
1286 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1287 /* Should only be used by the testing infrastructure */
1288 struct btrfs_root *btrfs_alloc_dummy_root(void)
1289 {
1290         struct btrfs_root *root;
1291
1292         root = btrfs_alloc_root(NULL);
1293         if (!root)
1294                 return ERR_PTR(-ENOMEM);
1295         __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1296         set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1297         root->alloc_bytenr = 0;
1298
1299         return root;
1300 }
1301 #endif
1302
1303 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1304                                      struct btrfs_fs_info *fs_info,
1305                                      u64 objectid)
1306 {
1307         struct extent_buffer *leaf;
1308         struct btrfs_root *tree_root = fs_info->tree_root;
1309         struct btrfs_root *root;
1310         struct btrfs_key key;
1311         int ret = 0;
1312         uuid_le uuid;
1313
1314         root = btrfs_alloc_root(fs_info);
1315         if (!root)
1316                 return ERR_PTR(-ENOMEM);
1317
1318         __setup_root(tree_root->nodesize, tree_root->leafsize,
1319                      tree_root->sectorsize, tree_root->stripesize,
1320                      root, fs_info, objectid);
1321         root->root_key.objectid = objectid;
1322         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1323         root->root_key.offset = 0;
1324
1325         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1326                                       0, objectid, NULL, 0, 0, 0);
1327         if (IS_ERR(leaf)) {
1328                 ret = PTR_ERR(leaf);
1329                 leaf = NULL;
1330                 goto fail;
1331         }
1332
1333         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1334         btrfs_set_header_bytenr(leaf, leaf->start);
1335         btrfs_set_header_generation(leaf, trans->transid);
1336         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1337         btrfs_set_header_owner(leaf, objectid);
1338         root->node = leaf;
1339
1340         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1341                             BTRFS_FSID_SIZE);
1342         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1343                             btrfs_header_chunk_tree_uuid(leaf),
1344                             BTRFS_UUID_SIZE);
1345         btrfs_mark_buffer_dirty(leaf);
1346
1347         root->commit_root = btrfs_root_node(root);
1348         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1349
1350         root->root_item.flags = 0;
1351         root->root_item.byte_limit = 0;
1352         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1353         btrfs_set_root_generation(&root->root_item, trans->transid);
1354         btrfs_set_root_level(&root->root_item, 0);
1355         btrfs_set_root_refs(&root->root_item, 1);
1356         btrfs_set_root_used(&root->root_item, leaf->len);
1357         btrfs_set_root_last_snapshot(&root->root_item, 0);
1358         btrfs_set_root_dirid(&root->root_item, 0);
1359         uuid_le_gen(&uuid);
1360         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1361         root->root_item.drop_level = 0;
1362
1363         key.objectid = objectid;
1364         key.type = BTRFS_ROOT_ITEM_KEY;
1365         key.offset = 0;
1366         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1367         if (ret)
1368                 goto fail;
1369
1370         btrfs_tree_unlock(leaf);
1371
1372         return root;
1373
1374 fail:
1375         if (leaf) {
1376                 btrfs_tree_unlock(leaf);
1377                 free_extent_buffer(root->commit_root);
1378                 free_extent_buffer(leaf);
1379         }
1380         kfree(root);
1381
1382         return ERR_PTR(ret);
1383 }
1384
1385 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1386                                          struct btrfs_fs_info *fs_info)
1387 {
1388         struct btrfs_root *root;
1389         struct btrfs_root *tree_root = fs_info->tree_root;
1390         struct extent_buffer *leaf;
1391
1392         root = btrfs_alloc_root(fs_info);
1393         if (!root)
1394                 return ERR_PTR(-ENOMEM);
1395
1396         __setup_root(tree_root->nodesize, tree_root->leafsize,
1397                      tree_root->sectorsize, tree_root->stripesize,
1398                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1399
1400         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1401         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1402         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1403
1404         /*
1405          * DON'T set REF_COWS for log trees
1406          *
1407          * log trees do not get reference counted because they go away
1408          * before a real commit is actually done.  They do store pointers
1409          * to file data extents, and those reference counts still get
1410          * updated (along with back refs to the log tree).
1411          */
1412
1413         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1414                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1415                                       0, 0, 0);
1416         if (IS_ERR(leaf)) {
1417                 kfree(root);
1418                 return ERR_CAST(leaf);
1419         }
1420
1421         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1422         btrfs_set_header_bytenr(leaf, leaf->start);
1423         btrfs_set_header_generation(leaf, trans->transid);
1424         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1425         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1426         root->node = leaf;
1427
1428         write_extent_buffer(root->node, root->fs_info->fsid,
1429                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1430         btrfs_mark_buffer_dirty(root->node);
1431         btrfs_tree_unlock(root->node);
1432         return root;
1433 }
1434
1435 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1436                              struct btrfs_fs_info *fs_info)
1437 {
1438         struct btrfs_root *log_root;
1439
1440         log_root = alloc_log_tree(trans, fs_info);
1441         if (IS_ERR(log_root))
1442                 return PTR_ERR(log_root);
1443         WARN_ON(fs_info->log_root_tree);
1444         fs_info->log_root_tree = log_root;
1445         return 0;
1446 }
1447
1448 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1449                        struct btrfs_root *root)
1450 {
1451         struct btrfs_root *log_root;
1452         struct btrfs_inode_item *inode_item;
1453
1454         log_root = alloc_log_tree(trans, root->fs_info);
1455         if (IS_ERR(log_root))
1456                 return PTR_ERR(log_root);
1457
1458         log_root->last_trans = trans->transid;
1459         log_root->root_key.offset = root->root_key.objectid;
1460
1461         inode_item = &log_root->root_item.inode;
1462         btrfs_set_stack_inode_generation(inode_item, 1);
1463         btrfs_set_stack_inode_size(inode_item, 3);
1464         btrfs_set_stack_inode_nlink(inode_item, 1);
1465         btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1466         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1467
1468         btrfs_set_root_node(&log_root->root_item, log_root->node);
1469
1470         WARN_ON(root->log_root);
1471         root->log_root = log_root;
1472         root->log_transid = 0;
1473         root->log_transid_committed = -1;
1474         root->last_log_commit = 0;
1475         return 0;
1476 }
1477
1478 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1479                                                struct btrfs_key *key)
1480 {
1481         struct btrfs_root *root;
1482         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1483         struct btrfs_path *path;
1484         u64 generation;
1485         u32 blocksize;
1486         int ret;
1487
1488         path = btrfs_alloc_path();
1489         if (!path)
1490                 return ERR_PTR(-ENOMEM);
1491
1492         root = btrfs_alloc_root(fs_info);
1493         if (!root) {
1494                 ret = -ENOMEM;
1495                 goto alloc_fail;
1496         }
1497
1498         __setup_root(tree_root->nodesize, tree_root->leafsize,
1499                      tree_root->sectorsize, tree_root->stripesize,
1500                      root, fs_info, key->objectid);
1501
1502         ret = btrfs_find_root(tree_root, key, path,
1503                               &root->root_item, &root->root_key);
1504         if (ret) {
1505                 if (ret > 0)
1506                         ret = -ENOENT;
1507                 goto find_fail;
1508         }
1509
1510         generation = btrfs_root_generation(&root->root_item);
1511         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1512         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1513                                      blocksize, generation);
1514         if (!root->node) {
1515                 ret = -ENOMEM;
1516                 goto find_fail;
1517         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1518                 ret = -EIO;
1519                 goto read_fail;
1520         }
1521         root->commit_root = btrfs_root_node(root);
1522 out:
1523         btrfs_free_path(path);
1524         return root;
1525
1526 read_fail:
1527         free_extent_buffer(root->node);
1528 find_fail:
1529         kfree(root);
1530 alloc_fail:
1531         root = ERR_PTR(ret);
1532         goto out;
1533 }
1534
1535 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1536                                       struct btrfs_key *location)
1537 {
1538         struct btrfs_root *root;
1539
1540         root = btrfs_read_tree_root(tree_root, location);
1541         if (IS_ERR(root))
1542                 return root;
1543
1544         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1545                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1546                 btrfs_check_and_init_root_item(&root->root_item);
1547         }
1548
1549         return root;
1550 }
1551
1552 int btrfs_init_fs_root(struct btrfs_root *root)
1553 {
1554         int ret;
1555         struct btrfs_subvolume_writers *writers;
1556
1557         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1558         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1559                                         GFP_NOFS);
1560         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1561                 ret = -ENOMEM;
1562                 goto fail;
1563         }
1564
1565         writers = btrfs_alloc_subvolume_writers();
1566         if (IS_ERR(writers)) {
1567                 ret = PTR_ERR(writers);
1568                 goto fail;
1569         }
1570         root->subv_writers = writers;
1571
1572         btrfs_init_free_ino_ctl(root);
1573         spin_lock_init(&root->cache_lock);
1574         init_waitqueue_head(&root->cache_wait);
1575
1576         ret = get_anon_bdev(&root->anon_dev);
1577         if (ret)
1578                 goto free_writers;
1579         return 0;
1580
1581 free_writers:
1582         btrfs_free_subvolume_writers(root->subv_writers);
1583 fail:
1584         kfree(root->free_ino_ctl);
1585         kfree(root->free_ino_pinned);
1586         return ret;
1587 }
1588
1589 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1590                                                u64 root_id)
1591 {
1592         struct btrfs_root *root;
1593
1594         spin_lock(&fs_info->fs_roots_radix_lock);
1595         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1596                                  (unsigned long)root_id);
1597         spin_unlock(&fs_info->fs_roots_radix_lock);
1598         return root;
1599 }
1600
1601 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1602                          struct btrfs_root *root)
1603 {
1604         int ret;
1605
1606         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1607         if (ret)
1608                 return ret;
1609
1610         spin_lock(&fs_info->fs_roots_radix_lock);
1611         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1612                                 (unsigned long)root->root_key.objectid,
1613                                 root);
1614         if (ret == 0)
1615                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1616         spin_unlock(&fs_info->fs_roots_radix_lock);
1617         radix_tree_preload_end();
1618
1619         return ret;
1620 }
1621
1622 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1623                                      struct btrfs_key *location,
1624                                      bool check_ref)
1625 {
1626         struct btrfs_root *root;
1627         int ret;
1628
1629         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1630                 return fs_info->tree_root;
1631         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1632                 return fs_info->extent_root;
1633         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1634                 return fs_info->chunk_root;
1635         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1636                 return fs_info->dev_root;
1637         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1638                 return fs_info->csum_root;
1639         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1640                 return fs_info->quota_root ? fs_info->quota_root :
1641                                              ERR_PTR(-ENOENT);
1642         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1643                 return fs_info->uuid_root ? fs_info->uuid_root :
1644                                             ERR_PTR(-ENOENT);
1645 again:
1646         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1647         if (root) {
1648                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1649                         return ERR_PTR(-ENOENT);
1650                 return root;
1651         }
1652
1653         root = btrfs_read_fs_root(fs_info->tree_root, location);
1654         if (IS_ERR(root))
1655                 return root;
1656
1657         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1658                 ret = -ENOENT;
1659                 goto fail;
1660         }
1661
1662         ret = btrfs_init_fs_root(root);
1663         if (ret)
1664                 goto fail;
1665
1666         ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1667                         location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1668         if (ret < 0)
1669                 goto fail;
1670         if (ret == 0)
1671                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1672
1673         ret = btrfs_insert_fs_root(fs_info, root);
1674         if (ret) {
1675                 if (ret == -EEXIST) {
1676                         free_fs_root(root);
1677                         goto again;
1678                 }
1679                 goto fail;
1680         }
1681         return root;
1682 fail:
1683         free_fs_root(root);
1684         return ERR_PTR(ret);
1685 }
1686
1687 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1688 {
1689         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1690         int ret = 0;
1691         struct btrfs_device *device;
1692         struct backing_dev_info *bdi;
1693
1694         rcu_read_lock();
1695         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1696                 if (!device->bdev)
1697                         continue;
1698                 bdi = blk_get_backing_dev_info(device->bdev);
1699                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1700                         ret = 1;
1701                         break;
1702                 }
1703         }
1704         rcu_read_unlock();
1705         return ret;
1706 }
1707
1708 /*
1709  * If this fails, caller must call bdi_destroy() to get rid of the
1710  * bdi again.
1711  */
1712 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1713 {
1714         int err;
1715
1716         bdi->capabilities = BDI_CAP_MAP_COPY;
1717         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1718         if (err)
1719                 return err;
1720
1721         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1722         bdi->congested_fn       = btrfs_congested_fn;
1723         bdi->congested_data     = info;
1724         return 0;
1725 }
1726
1727 /*
1728  * called by the kthread helper functions to finally call the bio end_io
1729  * functions.  This is where read checksum verification actually happens
1730  */
1731 static void end_workqueue_fn(struct btrfs_work *work)
1732 {
1733         struct bio *bio;
1734         struct end_io_wq *end_io_wq;
1735         int error;
1736
1737         end_io_wq = container_of(work, struct end_io_wq, work);
1738         bio = end_io_wq->bio;
1739
1740         error = end_io_wq->error;
1741         bio->bi_private = end_io_wq->private;
1742         bio->bi_end_io = end_io_wq->end_io;
1743         kfree(end_io_wq);
1744         bio_endio_nodec(bio, error);
1745 }
1746
1747 static int cleaner_kthread(void *arg)
1748 {
1749         struct btrfs_root *root = arg;
1750         int again;
1751
1752         do {
1753                 again = 0;
1754
1755                 /* Make the cleaner go to sleep early. */
1756                 if (btrfs_need_cleaner_sleep(root))
1757                         goto sleep;
1758
1759                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1760                         goto sleep;
1761
1762                 /*
1763                  * Avoid the problem that we change the status of the fs
1764                  * during the above check and trylock.
1765                  */
1766                 if (btrfs_need_cleaner_sleep(root)) {
1767                         mutex_unlock(&root->fs_info->cleaner_mutex);
1768                         goto sleep;
1769                 }
1770
1771                 btrfs_run_delayed_iputs(root);
1772                 again = btrfs_clean_one_deleted_snapshot(root);
1773                 mutex_unlock(&root->fs_info->cleaner_mutex);
1774
1775                 /*
1776                  * The defragger has dealt with the R/O remount and umount,
1777                  * needn't do anything special here.
1778                  */
1779                 btrfs_run_defrag_inodes(root->fs_info);
1780 sleep:
1781                 if (!try_to_freeze() && !again) {
1782                         set_current_state(TASK_INTERRUPTIBLE);
1783                         if (!kthread_should_stop())
1784                                 schedule();
1785                         __set_current_state(TASK_RUNNING);
1786                 }
1787         } while (!kthread_should_stop());
1788         return 0;
1789 }
1790
1791 static int transaction_kthread(void *arg)
1792 {
1793         struct btrfs_root *root = arg;
1794         struct btrfs_trans_handle *trans;
1795         struct btrfs_transaction *cur;
1796         u64 transid;
1797         unsigned long now;
1798         unsigned long delay;
1799         bool cannot_commit;
1800
1801         do {
1802                 cannot_commit = false;
1803                 delay = HZ * root->fs_info->commit_interval;
1804                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1805
1806                 spin_lock(&root->fs_info->trans_lock);
1807                 cur = root->fs_info->running_transaction;
1808                 if (!cur) {
1809                         spin_unlock(&root->fs_info->trans_lock);
1810                         goto sleep;
1811                 }
1812
1813                 now = get_seconds();
1814                 if (cur->state < TRANS_STATE_BLOCKED &&
1815                     (now < cur->start_time ||
1816                      now - cur->start_time < root->fs_info->commit_interval)) {
1817                         spin_unlock(&root->fs_info->trans_lock);
1818                         delay = HZ * 5;
1819                         goto sleep;
1820                 }
1821                 transid = cur->transid;
1822                 spin_unlock(&root->fs_info->trans_lock);
1823
1824                 /* If the file system is aborted, this will always fail. */
1825                 trans = btrfs_attach_transaction(root);
1826                 if (IS_ERR(trans)) {
1827                         if (PTR_ERR(trans) != -ENOENT)
1828                                 cannot_commit = true;
1829                         goto sleep;
1830                 }
1831                 if (transid == trans->transid) {
1832                         btrfs_commit_transaction(trans, root);
1833                 } else {
1834                         btrfs_end_transaction(trans, root);
1835                 }
1836 sleep:
1837                 wake_up_process(root->fs_info->cleaner_kthread);
1838                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1839
1840                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1841                                       &root->fs_info->fs_state)))
1842                         btrfs_cleanup_transaction(root);
1843                 if (!try_to_freeze()) {
1844                         set_current_state(TASK_INTERRUPTIBLE);
1845                         if (!kthread_should_stop() &&
1846                             (!btrfs_transaction_blocked(root->fs_info) ||
1847                              cannot_commit))
1848                                 schedule_timeout(delay);
1849                         __set_current_state(TASK_RUNNING);
1850                 }
1851         } while (!kthread_should_stop());
1852         return 0;
1853 }
1854
1855 /*
1856  * this will find the highest generation in the array of
1857  * root backups.  The index of the highest array is returned,
1858  * or -1 if we can't find anything.
1859  *
1860  * We check to make sure the array is valid by comparing the
1861  * generation of the latest  root in the array with the generation
1862  * in the super block.  If they don't match we pitch it.
1863  */
1864 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1865 {
1866         u64 cur;
1867         int newest_index = -1;
1868         struct btrfs_root_backup *root_backup;
1869         int i;
1870
1871         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1872                 root_backup = info->super_copy->super_roots + i;
1873                 cur = btrfs_backup_tree_root_gen(root_backup);
1874                 if (cur == newest_gen)
1875                         newest_index = i;
1876         }
1877
1878         /* check to see if we actually wrapped around */
1879         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1880                 root_backup = info->super_copy->super_roots;
1881                 cur = btrfs_backup_tree_root_gen(root_backup);
1882                 if (cur == newest_gen)
1883                         newest_index = 0;
1884         }
1885         return newest_index;
1886 }
1887
1888
1889 /*
1890  * find the oldest backup so we know where to store new entries
1891  * in the backup array.  This will set the backup_root_index
1892  * field in the fs_info struct
1893  */
1894 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1895                                      u64 newest_gen)
1896 {
1897         int newest_index = -1;
1898
1899         newest_index = find_newest_super_backup(info, newest_gen);
1900         /* if there was garbage in there, just move along */
1901         if (newest_index == -1) {
1902                 info->backup_root_index = 0;
1903         } else {
1904                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1905         }
1906 }
1907
1908 /*
1909  * copy all the root pointers into the super backup array.
1910  * this will bump the backup pointer by one when it is
1911  * done
1912  */
1913 static void backup_super_roots(struct btrfs_fs_info *info)
1914 {
1915         int next_backup;
1916         struct btrfs_root_backup *root_backup;
1917         int last_backup;
1918
1919         next_backup = info->backup_root_index;
1920         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1921                 BTRFS_NUM_BACKUP_ROOTS;
1922
1923         /*
1924          * just overwrite the last backup if we're at the same generation
1925          * this happens only at umount
1926          */
1927         root_backup = info->super_for_commit->super_roots + last_backup;
1928         if (btrfs_backup_tree_root_gen(root_backup) ==
1929             btrfs_header_generation(info->tree_root->node))
1930                 next_backup = last_backup;
1931
1932         root_backup = info->super_for_commit->super_roots + next_backup;
1933
1934         /*
1935          * make sure all of our padding and empty slots get zero filled
1936          * regardless of which ones we use today
1937          */
1938         memset(root_backup, 0, sizeof(*root_backup));
1939
1940         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1941
1942         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1943         btrfs_set_backup_tree_root_gen(root_backup,
1944                                btrfs_header_generation(info->tree_root->node));
1945
1946         btrfs_set_backup_tree_root_level(root_backup,
1947                                btrfs_header_level(info->tree_root->node));
1948
1949         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1950         btrfs_set_backup_chunk_root_gen(root_backup,
1951                                btrfs_header_generation(info->chunk_root->node));
1952         btrfs_set_backup_chunk_root_level(root_backup,
1953                                btrfs_header_level(info->chunk_root->node));
1954
1955         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1956         btrfs_set_backup_extent_root_gen(root_backup,
1957                                btrfs_header_generation(info->extent_root->node));
1958         btrfs_set_backup_extent_root_level(root_backup,
1959                                btrfs_header_level(info->extent_root->node));
1960
1961         /*
1962          * we might commit during log recovery, which happens before we set
1963          * the fs_root.  Make sure it is valid before we fill it in.
1964          */
1965         if (info->fs_root && info->fs_root->node) {
1966                 btrfs_set_backup_fs_root(root_backup,
1967                                          info->fs_root->node->start);
1968                 btrfs_set_backup_fs_root_gen(root_backup,
1969                                btrfs_header_generation(info->fs_root->node));
1970                 btrfs_set_backup_fs_root_level(root_backup,
1971                                btrfs_header_level(info->fs_root->node));
1972         }
1973
1974         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1975         btrfs_set_backup_dev_root_gen(root_backup,
1976                                btrfs_header_generation(info->dev_root->node));
1977         btrfs_set_backup_dev_root_level(root_backup,
1978                                        btrfs_header_level(info->dev_root->node));
1979
1980         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1981         btrfs_set_backup_csum_root_gen(root_backup,
1982                                btrfs_header_generation(info->csum_root->node));
1983         btrfs_set_backup_csum_root_level(root_backup,
1984                                btrfs_header_level(info->csum_root->node));
1985
1986         btrfs_set_backup_total_bytes(root_backup,
1987                              btrfs_super_total_bytes(info->super_copy));
1988         btrfs_set_backup_bytes_used(root_backup,
1989                              btrfs_super_bytes_used(info->super_copy));
1990         btrfs_set_backup_num_devices(root_backup,
1991                              btrfs_super_num_devices(info->super_copy));
1992
1993         /*
1994          * if we don't copy this out to the super_copy, it won't get remembered
1995          * for the next commit
1996          */
1997         memcpy(&info->super_copy->super_roots,
1998                &info->super_for_commit->super_roots,
1999                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2000 }
2001
2002 /*
2003  * this copies info out of the root backup array and back into
2004  * the in-memory super block.  It is meant to help iterate through
2005  * the array, so you send it the number of backups you've already
2006  * tried and the last backup index you used.
2007  *
2008  * this returns -1 when it has tried all the backups
2009  */
2010 static noinline int next_root_backup(struct btrfs_fs_info *info,
2011                                      struct btrfs_super_block *super,
2012                                      int *num_backups_tried, int *backup_index)
2013 {
2014         struct btrfs_root_backup *root_backup;
2015         int newest = *backup_index;
2016
2017         if (*num_backups_tried == 0) {
2018                 u64 gen = btrfs_super_generation(super);
2019
2020                 newest = find_newest_super_backup(info, gen);
2021                 if (newest == -1)
2022                         return -1;
2023
2024                 *backup_index = newest;
2025                 *num_backups_tried = 1;
2026         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2027                 /* we've tried all the backups, all done */
2028                 return -1;
2029         } else {
2030                 /* jump to the next oldest backup */
2031                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2032                         BTRFS_NUM_BACKUP_ROOTS;
2033                 *backup_index = newest;
2034                 *num_backups_tried += 1;
2035         }
2036         root_backup = super->super_roots + newest;
2037
2038         btrfs_set_super_generation(super,
2039                                    btrfs_backup_tree_root_gen(root_backup));
2040         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2041         btrfs_set_super_root_level(super,
2042                                    btrfs_backup_tree_root_level(root_backup));
2043         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2044
2045         /*
2046          * fixme: the total bytes and num_devices need to match or we should
2047          * need a fsck
2048          */
2049         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2050         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2051         return 0;
2052 }
2053
2054 /* helper to cleanup workers */
2055 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2056 {
2057         btrfs_destroy_workqueue(fs_info->fixup_workers);
2058         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2059         btrfs_destroy_workqueue(fs_info->workers);
2060         btrfs_destroy_workqueue(fs_info->endio_workers);
2061         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2062         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2063         btrfs_destroy_workqueue(fs_info->rmw_workers);
2064         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2065         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2066         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2067         btrfs_destroy_workqueue(fs_info->submit_workers);
2068         btrfs_destroy_workqueue(fs_info->delayed_workers);
2069         btrfs_destroy_workqueue(fs_info->caching_workers);
2070         btrfs_destroy_workqueue(fs_info->readahead_workers);
2071         btrfs_destroy_workqueue(fs_info->flush_workers);
2072         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2073         btrfs_destroy_workqueue(fs_info->extent_workers);
2074 }
2075
2076 static void free_root_extent_buffers(struct btrfs_root *root)
2077 {
2078         if (root) {
2079                 free_extent_buffer(root->node);
2080                 free_extent_buffer(root->commit_root);
2081                 root->node = NULL;
2082                 root->commit_root = NULL;
2083         }
2084 }
2085
2086 /* helper to cleanup tree roots */
2087 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2088 {
2089         free_root_extent_buffers(info->tree_root);
2090
2091         free_root_extent_buffers(info->dev_root);
2092         free_root_extent_buffers(info->extent_root);
2093         free_root_extent_buffers(info->csum_root);
2094         free_root_extent_buffers(info->quota_root);
2095         free_root_extent_buffers(info->uuid_root);
2096         if (chunk_root)
2097                 free_root_extent_buffers(info->chunk_root);
2098 }
2099
2100 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2101 {
2102         int ret;
2103         struct btrfs_root *gang[8];
2104         int i;
2105
2106         while (!list_empty(&fs_info->dead_roots)) {
2107                 gang[0] = list_entry(fs_info->dead_roots.next,
2108                                      struct btrfs_root, root_list);
2109                 list_del(&gang[0]->root_list);
2110
2111                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2112                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2113                 } else {
2114                         free_extent_buffer(gang[0]->node);
2115                         free_extent_buffer(gang[0]->commit_root);
2116                         btrfs_put_fs_root(gang[0]);
2117                 }
2118         }
2119
2120         while (1) {
2121                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2122                                              (void **)gang, 0,
2123                                              ARRAY_SIZE(gang));
2124                 if (!ret)
2125                         break;
2126                 for (i = 0; i < ret; i++)
2127                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2128         }
2129
2130         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2131                 btrfs_free_log_root_tree(NULL, fs_info);
2132                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2133                                             fs_info->pinned_extents);
2134         }
2135 }
2136
2137 int open_ctree(struct super_block *sb,
2138                struct btrfs_fs_devices *fs_devices,
2139                char *options)
2140 {
2141         u32 sectorsize;
2142         u32 nodesize;
2143         u32 leafsize;
2144         u32 blocksize;
2145         u32 stripesize;
2146         u64 generation;
2147         u64 features;
2148         struct btrfs_key location;
2149         struct buffer_head *bh;
2150         struct btrfs_super_block *disk_super;
2151         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2152         struct btrfs_root *tree_root;
2153         struct btrfs_root *extent_root;
2154         struct btrfs_root *csum_root;
2155         struct btrfs_root *chunk_root;
2156         struct btrfs_root *dev_root;
2157         struct btrfs_root *quota_root;
2158         struct btrfs_root *uuid_root;
2159         struct btrfs_root *log_tree_root;
2160         int ret;
2161         int err = -EINVAL;
2162         int num_backups_tried = 0;
2163         int backup_index = 0;
2164         int max_active;
2165         int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2166         bool create_uuid_tree;
2167         bool check_uuid_tree;
2168
2169         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2170         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2171         if (!tree_root || !chunk_root) {
2172                 err = -ENOMEM;
2173                 goto fail;
2174         }
2175
2176         ret = init_srcu_struct(&fs_info->subvol_srcu);
2177         if (ret) {
2178                 err = ret;
2179                 goto fail;
2180         }
2181
2182         ret = setup_bdi(fs_info, &fs_info->bdi);
2183         if (ret) {
2184                 err = ret;
2185                 goto fail_srcu;
2186         }
2187
2188         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2189         if (ret) {
2190                 err = ret;
2191                 goto fail_bdi;
2192         }
2193         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2194                                         (1 + ilog2(nr_cpu_ids));
2195
2196         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2197         if (ret) {
2198                 err = ret;
2199                 goto fail_dirty_metadata_bytes;
2200         }
2201
2202         ret = percpu_counter_init(&fs_info->bio_counter, 0);
2203         if (ret) {
2204                 err = ret;
2205                 goto fail_delalloc_bytes;
2206         }
2207
2208         fs_info->btree_inode = new_inode(sb);
2209         if (!fs_info->btree_inode) {
2210                 err = -ENOMEM;
2211                 goto fail_bio_counter;
2212         }
2213
2214         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2215
2216         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2217         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2218         INIT_LIST_HEAD(&fs_info->trans_list);
2219         INIT_LIST_HEAD(&fs_info->dead_roots);
2220         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2221         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2222         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2223         spin_lock_init(&fs_info->delalloc_root_lock);
2224         spin_lock_init(&fs_info->trans_lock);
2225         spin_lock_init(&fs_info->fs_roots_radix_lock);
2226         spin_lock_init(&fs_info->delayed_iput_lock);
2227         spin_lock_init(&fs_info->defrag_inodes_lock);
2228         spin_lock_init(&fs_info->free_chunk_lock);
2229         spin_lock_init(&fs_info->tree_mod_seq_lock);
2230         spin_lock_init(&fs_info->super_lock);
2231         spin_lock_init(&fs_info->qgroup_op_lock);
2232         spin_lock_init(&fs_info->buffer_lock);
2233         rwlock_init(&fs_info->tree_mod_log_lock);
2234         mutex_init(&fs_info->reloc_mutex);
2235         mutex_init(&fs_info->delalloc_root_mutex);
2236         seqlock_init(&fs_info->profiles_lock);
2237
2238         init_completion(&fs_info->kobj_unregister);
2239         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2240         INIT_LIST_HEAD(&fs_info->space_info);
2241         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2242         btrfs_mapping_init(&fs_info->mapping_tree);
2243         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2244                              BTRFS_BLOCK_RSV_GLOBAL);
2245         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2246                              BTRFS_BLOCK_RSV_DELALLOC);
2247         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2248         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2249         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2250         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2251                              BTRFS_BLOCK_RSV_DELOPS);
2252         atomic_set(&fs_info->nr_async_submits, 0);
2253         atomic_set(&fs_info->async_delalloc_pages, 0);
2254         atomic_set(&fs_info->async_submit_draining, 0);
2255         atomic_set(&fs_info->nr_async_bios, 0);
2256         atomic_set(&fs_info->defrag_running, 0);
2257         atomic_set(&fs_info->qgroup_op_seq, 0);
2258         atomic64_set(&fs_info->tree_mod_seq, 0);
2259         fs_info->sb = sb;
2260         fs_info->max_inline = 8192 * 1024;
2261         fs_info->metadata_ratio = 0;
2262         fs_info->defrag_inodes = RB_ROOT;
2263         fs_info->free_chunk_space = 0;
2264         fs_info->tree_mod_log = RB_ROOT;
2265         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2266         fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2267         /* readahead state */
2268         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2269         spin_lock_init(&fs_info->reada_lock);
2270
2271         fs_info->thread_pool_size = min_t(unsigned long,
2272                                           num_online_cpus() + 2, 8);
2273
2274         INIT_LIST_HEAD(&fs_info->ordered_roots);
2275         spin_lock_init(&fs_info->ordered_root_lock);
2276         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2277                                         GFP_NOFS);
2278         if (!fs_info->delayed_root) {
2279                 err = -ENOMEM;
2280                 goto fail_iput;
2281         }
2282         btrfs_init_delayed_root(fs_info->delayed_root);
2283
2284         mutex_init(&fs_info->scrub_lock);
2285         atomic_set(&fs_info->scrubs_running, 0);
2286         atomic_set(&fs_info->scrub_pause_req, 0);
2287         atomic_set(&fs_info->scrubs_paused, 0);
2288         atomic_set(&fs_info->scrub_cancel_req, 0);
2289         init_waitqueue_head(&fs_info->replace_wait);
2290         init_waitqueue_head(&fs_info->scrub_pause_wait);
2291         fs_info->scrub_workers_refcnt = 0;
2292 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2293         fs_info->check_integrity_print_mask = 0;
2294 #endif
2295
2296         spin_lock_init(&fs_info->balance_lock);
2297         mutex_init(&fs_info->balance_mutex);
2298         atomic_set(&fs_info->balance_running, 0);
2299         atomic_set(&fs_info->balance_pause_req, 0);
2300         atomic_set(&fs_info->balance_cancel_req, 0);
2301         fs_info->balance_ctl = NULL;
2302         init_waitqueue_head(&fs_info->balance_wait_q);
2303         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2304
2305         sb->s_blocksize = 4096;
2306         sb->s_blocksize_bits = blksize_bits(4096);
2307         sb->s_bdi = &fs_info->bdi;
2308
2309         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2310         set_nlink(fs_info->btree_inode, 1);
2311         /*
2312          * we set the i_size on the btree inode to the max possible int.
2313          * the real end of the address space is determined by all of
2314          * the devices in the system
2315          */
2316         fs_info->btree_inode->i_size = OFFSET_MAX;
2317         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2318         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2319
2320         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2321         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2322                              fs_info->btree_inode->i_mapping);
2323         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2324         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2325
2326         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2327
2328         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2329         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2330                sizeof(struct btrfs_key));
2331         set_bit(BTRFS_INODE_DUMMY,
2332                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2333         btrfs_insert_inode_hash(fs_info->btree_inode);
2334
2335         spin_lock_init(&fs_info->block_group_cache_lock);
2336         fs_info->block_group_cache_tree = RB_ROOT;
2337         fs_info->first_logical_byte = (u64)-1;
2338
2339         extent_io_tree_init(&fs_info->freed_extents[0],
2340                              fs_info->btree_inode->i_mapping);
2341         extent_io_tree_init(&fs_info->freed_extents[1],
2342                              fs_info->btree_inode->i_mapping);
2343         fs_info->pinned_extents = &fs_info->freed_extents[0];
2344         fs_info->do_barriers = 1;
2345
2346
2347         mutex_init(&fs_info->ordered_operations_mutex);
2348         mutex_init(&fs_info->ordered_extent_flush_mutex);
2349         mutex_init(&fs_info->tree_log_mutex);
2350         mutex_init(&fs_info->chunk_mutex);
2351         mutex_init(&fs_info->transaction_kthread_mutex);
2352         mutex_init(&fs_info->cleaner_mutex);
2353         mutex_init(&fs_info->volume_mutex);
2354         init_rwsem(&fs_info->commit_root_sem);
2355         init_rwsem(&fs_info->cleanup_work_sem);
2356         init_rwsem(&fs_info->subvol_sem);
2357         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2358         fs_info->dev_replace.lock_owner = 0;
2359         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2360         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2361         mutex_init(&fs_info->dev_replace.lock_management_lock);
2362         mutex_init(&fs_info->dev_replace.lock);
2363
2364         spin_lock_init(&fs_info->qgroup_lock);
2365         mutex_init(&fs_info->qgroup_ioctl_lock);
2366         fs_info->qgroup_tree = RB_ROOT;
2367         fs_info->qgroup_op_tree = RB_ROOT;
2368         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2369         fs_info->qgroup_seq = 1;
2370         fs_info->quota_enabled = 0;
2371         fs_info->pending_quota_state = 0;
2372         fs_info->qgroup_ulist = NULL;
2373         mutex_init(&fs_info->qgroup_rescan_lock);
2374
2375         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2376         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2377
2378         init_waitqueue_head(&fs_info->transaction_throttle);
2379         init_waitqueue_head(&fs_info->transaction_wait);
2380         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2381         init_waitqueue_head(&fs_info->async_submit_wait);
2382
2383         ret = btrfs_alloc_stripe_hash_table(fs_info);
2384         if (ret) {
2385                 err = ret;
2386                 goto fail_alloc;
2387         }
2388
2389         __setup_root(4096, 4096, 4096, 4096, tree_root,
2390                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2391
2392         invalidate_bdev(fs_devices->latest_bdev);
2393
2394         /*
2395          * Read super block and check the signature bytes only
2396          */
2397         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2398         if (!bh) {
2399                 err = -EINVAL;
2400                 goto fail_alloc;
2401         }
2402
2403         /*
2404          * We want to check superblock checksum, the type is stored inside.
2405          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2406          */
2407         if (btrfs_check_super_csum(bh->b_data)) {
2408                 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2409                 err = -EINVAL;
2410                 goto fail_alloc;
2411         }
2412
2413         /*
2414          * super_copy is zeroed at allocation time and we never touch the
2415          * following bytes up to INFO_SIZE, the checksum is calculated from
2416          * the whole block of INFO_SIZE
2417          */
2418         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2419         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2420                sizeof(*fs_info->super_for_commit));
2421         brelse(bh);
2422
2423         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2424
2425         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2426         if (ret) {
2427                 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2428                 err = -EINVAL;
2429                 goto fail_alloc;
2430         }
2431
2432         disk_super = fs_info->super_copy;
2433         if (!btrfs_super_root(disk_super))
2434                 goto fail_alloc;
2435
2436         /* check FS state, whether FS is broken. */
2437         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2438                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2439
2440         /*
2441          * run through our array of backup supers and setup
2442          * our ring pointer to the oldest one
2443          */
2444         generation = btrfs_super_generation(disk_super);
2445         find_oldest_super_backup(fs_info, generation);
2446
2447         /*
2448          * In the long term, we'll store the compression type in the super
2449          * block, and it'll be used for per file compression control.
2450          */
2451         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2452
2453         ret = btrfs_parse_options(tree_root, options);
2454         if (ret) {
2455                 err = ret;
2456                 goto fail_alloc;
2457         }
2458
2459         features = btrfs_super_incompat_flags(disk_super) &
2460                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2461         if (features) {
2462                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2463                        "unsupported optional features (%Lx).\n",
2464                        features);
2465                 err = -EINVAL;
2466                 goto fail_alloc;
2467         }
2468
2469         if (btrfs_super_leafsize(disk_super) !=
2470             btrfs_super_nodesize(disk_super)) {
2471                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2472                        "blocksizes don't match.  node %d leaf %d\n",
2473                        btrfs_super_nodesize(disk_super),
2474                        btrfs_super_leafsize(disk_super));
2475                 err = -EINVAL;
2476                 goto fail_alloc;
2477         }
2478         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2479                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2480                        "blocksize (%d) was too large\n",
2481                        btrfs_super_leafsize(disk_super));
2482                 err = -EINVAL;
2483                 goto fail_alloc;
2484         }
2485
2486         features = btrfs_super_incompat_flags(disk_super);
2487         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2488         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2489                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2490
2491         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2492                 printk(KERN_ERR "BTRFS: has skinny extents\n");
2493
2494         /*
2495          * flag our filesystem as having big metadata blocks if
2496          * they are bigger than the page size
2497          */
2498         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2499                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2500                         printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2501                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2502         }
2503
2504         nodesize = btrfs_super_nodesize(disk_super);
2505         leafsize = btrfs_super_leafsize(disk_super);
2506         sectorsize = btrfs_super_sectorsize(disk_super);
2507         stripesize = btrfs_super_stripesize(disk_super);
2508         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2509         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2510
2511         /*
2512          * mixed block groups end up with duplicate but slightly offset
2513          * extent buffers for the same range.  It leads to corruptions
2514          */
2515         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2516             (sectorsize != leafsize)) {
2517                 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2518                                 "are not allowed for mixed block groups on %s\n",
2519                                 sb->s_id);
2520                 goto fail_alloc;
2521         }
2522
2523         /*
2524          * Needn't use the lock because there is no other task which will
2525          * update the flag.
2526          */
2527         btrfs_set_super_incompat_flags(disk_super, features);
2528
2529         features = btrfs_super_compat_ro_flags(disk_super) &
2530                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2531         if (!(sb->s_flags & MS_RDONLY) && features) {
2532                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2533                        "unsupported option features (%Lx).\n",
2534                        features);
2535                 err = -EINVAL;
2536                 goto fail_alloc;
2537         }
2538
2539         max_active = fs_info->thread_pool_size;
2540
2541         fs_info->workers =
2542                 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2543                                       max_active, 16);
2544
2545         fs_info->delalloc_workers =
2546                 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2547
2548         fs_info->flush_workers =
2549                 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2550
2551         fs_info->caching_workers =
2552                 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2553
2554         /*
2555          * a higher idle thresh on the submit workers makes it much more
2556          * likely that bios will be send down in a sane order to the
2557          * devices
2558          */
2559         fs_info->submit_workers =
2560                 btrfs_alloc_workqueue("submit", flags,
2561                                       min_t(u64, fs_devices->num_devices,
2562                                             max_active), 64);
2563
2564         fs_info->fixup_workers =
2565                 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2566
2567         /*
2568          * endios are largely parallel and should have a very
2569          * low idle thresh
2570          */
2571         fs_info->endio_workers =
2572                 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2573         fs_info->endio_meta_workers =
2574                 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2575         fs_info->endio_meta_write_workers =
2576                 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2577         fs_info->endio_raid56_workers =
2578                 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2579         fs_info->rmw_workers =
2580                 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2581         fs_info->endio_write_workers =
2582                 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2583         fs_info->endio_freespace_worker =
2584                 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2585         fs_info->delayed_workers =
2586                 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2587         fs_info->readahead_workers =
2588                 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2589         fs_info->qgroup_rescan_workers =
2590                 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2591         fs_info->extent_workers =
2592                 btrfs_alloc_workqueue("extent-refs", flags,
2593                                       min_t(u64, fs_devices->num_devices,
2594                                             max_active), 8);
2595
2596         if (!(fs_info->workers && fs_info->delalloc_workers &&
2597               fs_info->submit_workers && fs_info->flush_workers &&
2598               fs_info->endio_workers && fs_info->endio_meta_workers &&
2599               fs_info->endio_meta_write_workers &&
2600               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2601               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2602               fs_info->caching_workers && fs_info->readahead_workers &&
2603               fs_info->fixup_workers && fs_info->delayed_workers &&
2604               fs_info->fixup_workers && fs_info->extent_workers &&
2605               fs_info->qgroup_rescan_workers)) {
2606                 err = -ENOMEM;
2607                 goto fail_sb_buffer;
2608         }
2609
2610         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2611         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2612                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2613
2614         tree_root->nodesize = nodesize;
2615         tree_root->leafsize = leafsize;
2616         tree_root->sectorsize = sectorsize;
2617         tree_root->stripesize = stripesize;
2618
2619         sb->s_blocksize = sectorsize;
2620         sb->s_blocksize_bits = blksize_bits(sectorsize);
2621
2622         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2623                 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2624                 goto fail_sb_buffer;
2625         }
2626
2627         if (sectorsize != PAGE_SIZE) {
2628                 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2629                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2630                 goto fail_sb_buffer;
2631         }
2632
2633         mutex_lock(&fs_info->chunk_mutex);
2634         ret = btrfs_read_sys_array(tree_root);
2635         mutex_unlock(&fs_info->chunk_mutex);
2636         if (ret) {
2637                 printk(KERN_WARNING "BTRFS: failed to read the system "
2638                        "array on %s\n", sb->s_id);
2639                 goto fail_sb_buffer;
2640         }
2641
2642         blocksize = btrfs_level_size(tree_root,
2643                                      btrfs_super_chunk_root_level(disk_super));
2644         generation = btrfs_super_chunk_root_generation(disk_super);
2645
2646         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2647                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2648
2649         chunk_root->node = read_tree_block(chunk_root,
2650                                            btrfs_super_chunk_root(disk_super),
2651                                            blocksize, generation);
2652         if (!chunk_root->node ||
2653             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2654                 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2655                        sb->s_id);
2656                 goto fail_tree_roots;
2657         }
2658         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2659         chunk_root->commit_root = btrfs_root_node(chunk_root);
2660
2661         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2662            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2663
2664         ret = btrfs_read_chunk_tree(chunk_root);
2665         if (ret) {
2666                 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2667                        sb->s_id);
2668                 goto fail_tree_roots;
2669         }
2670
2671         /*
2672          * keep the device that is marked to be the target device for the
2673          * dev_replace procedure
2674          */
2675         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2676
2677         if (!fs_devices->latest_bdev) {
2678                 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2679                        sb->s_id);
2680                 goto fail_tree_roots;
2681         }
2682
2683 retry_root_backup:
2684         blocksize = btrfs_level_size(tree_root,
2685                                      btrfs_super_root_level(disk_super));
2686         generation = btrfs_super_generation(disk_super);
2687
2688         tree_root->node = read_tree_block(tree_root,
2689                                           btrfs_super_root(disk_super),
2690                                           blocksize, generation);
2691         if (!tree_root->node ||
2692             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2693                 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2694                        sb->s_id);
2695
2696                 goto recovery_tree_root;
2697         }
2698
2699         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2700         tree_root->commit_root = btrfs_root_node(tree_root);
2701         btrfs_set_root_refs(&tree_root->root_item, 1);
2702
2703         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2704         location.type = BTRFS_ROOT_ITEM_KEY;
2705         location.offset = 0;
2706
2707         extent_root = btrfs_read_tree_root(tree_root, &location);
2708         if (IS_ERR(extent_root)) {
2709                 ret = PTR_ERR(extent_root);
2710                 goto recovery_tree_root;
2711         }
2712         set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
2713         fs_info->extent_root = extent_root;
2714
2715         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2716         dev_root = btrfs_read_tree_root(tree_root, &location);
2717         if (IS_ERR(dev_root)) {
2718                 ret = PTR_ERR(dev_root);
2719                 goto recovery_tree_root;
2720         }
2721         set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
2722         fs_info->dev_root = dev_root;
2723         btrfs_init_devices_late(fs_info);
2724
2725         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2726         csum_root = btrfs_read_tree_root(tree_root, &location);
2727         if (IS_ERR(csum_root)) {
2728                 ret = PTR_ERR(csum_root);
2729                 goto recovery_tree_root;
2730         }
2731         set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
2732         fs_info->csum_root = csum_root;
2733
2734         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2735         quota_root = btrfs_read_tree_root(tree_root, &location);
2736         if (!IS_ERR(quota_root)) {
2737                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
2738                 fs_info->quota_enabled = 1;
2739                 fs_info->pending_quota_state = 1;
2740                 fs_info->quota_root = quota_root;
2741         }
2742
2743         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2744         uuid_root = btrfs_read_tree_root(tree_root, &location);
2745         if (IS_ERR(uuid_root)) {
2746                 ret = PTR_ERR(uuid_root);
2747                 if (ret != -ENOENT)
2748                         goto recovery_tree_root;
2749                 create_uuid_tree = true;
2750                 check_uuid_tree = false;
2751         } else {
2752                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
2753                 fs_info->uuid_root = uuid_root;
2754                 create_uuid_tree = false;
2755                 check_uuid_tree =
2756                     generation != btrfs_super_uuid_tree_generation(disk_super);
2757         }
2758
2759         fs_info->generation = generation;
2760         fs_info->last_trans_committed = generation;
2761
2762         ret = btrfs_recover_balance(fs_info);
2763         if (ret) {
2764                 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2765                 goto fail_block_groups;
2766         }
2767
2768         ret = btrfs_init_dev_stats(fs_info);
2769         if (ret) {
2770                 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2771                        ret);
2772                 goto fail_block_groups;
2773         }
2774
2775         ret = btrfs_init_dev_replace(fs_info);
2776         if (ret) {
2777                 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2778                 goto fail_block_groups;
2779         }
2780
2781         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2782
2783         ret = btrfs_sysfs_add_one(fs_info);
2784         if (ret) {
2785                 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2786                 goto fail_block_groups;
2787         }
2788
2789         ret = btrfs_init_space_info(fs_info);
2790         if (ret) {
2791                 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2792                 goto fail_sysfs;
2793         }
2794
2795         ret = btrfs_read_block_groups(extent_root);
2796         if (ret) {
2797                 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2798                 goto fail_sysfs;
2799         }
2800         fs_info->num_tolerated_disk_barrier_failures =
2801                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2802         if (fs_info->fs_devices->missing_devices >
2803              fs_info->num_tolerated_disk_barrier_failures &&
2804             !(sb->s_flags & MS_RDONLY)) {
2805                 printk(KERN_WARNING "BTRFS: "
2806                         "too many missing devices, writeable mount is not allowed\n");
2807                 goto fail_sysfs;
2808         }
2809
2810         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2811                                                "btrfs-cleaner");
2812         if (IS_ERR(fs_info->cleaner_kthread))
2813                 goto fail_sysfs;
2814
2815         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2816                                                    tree_root,
2817                                                    "btrfs-transaction");
2818         if (IS_ERR(fs_info->transaction_kthread))
2819                 goto fail_cleaner;
2820
2821         if (!btrfs_test_opt(tree_root, SSD) &&
2822             !btrfs_test_opt(tree_root, NOSSD) &&
2823             !fs_info->fs_devices->rotating) {
2824                 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2825                        "mode\n");
2826                 btrfs_set_opt(fs_info->mount_opt, SSD);
2827         }
2828
2829         /* Set the real inode map cache flag */
2830         if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2831                 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2832
2833 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2834         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2835                 ret = btrfsic_mount(tree_root, fs_devices,
2836                                     btrfs_test_opt(tree_root,
2837                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2838                                     1 : 0,
2839                                     fs_info->check_integrity_print_mask);
2840                 if (ret)
2841                         printk(KERN_WARNING "BTRFS: failed to initialize"
2842                                " integrity check module %s\n", sb->s_id);
2843         }
2844 #endif
2845         ret = btrfs_read_qgroup_config(fs_info);
2846         if (ret)
2847                 goto fail_trans_kthread;
2848
2849         /* do not make disk changes in broken FS */
2850         if (btrfs_super_log_root(disk_super) != 0) {
2851                 u64 bytenr = btrfs_super_log_root(disk_super);
2852
2853                 if (fs_devices->rw_devices == 0) {
2854                         printk(KERN_WARNING "BTRFS: log replay required "
2855                                "on RO media\n");
2856                         err = -EIO;
2857                         goto fail_qgroup;
2858                 }
2859                 blocksize =
2860                      btrfs_level_size(tree_root,
2861                                       btrfs_super_log_root_level(disk_super));
2862
2863                 log_tree_root = btrfs_alloc_root(fs_info);
2864                 if (!log_tree_root) {
2865                         err = -ENOMEM;
2866                         goto fail_qgroup;
2867                 }
2868
2869                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2870                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2871
2872                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2873                                                       blocksize,
2874                                                       generation + 1);
2875                 if (!log_tree_root->node ||
2876                     !extent_buffer_uptodate(log_tree_root->node)) {
2877                         printk(KERN_ERR "BTRFS: failed to read log tree\n");
2878                         free_extent_buffer(log_tree_root->node);
2879                         kfree(log_tree_root);
2880                         goto fail_qgroup;
2881                 }
2882                 /* returns with log_tree_root freed on success */
2883                 ret = btrfs_recover_log_trees(log_tree_root);
2884                 if (ret) {
2885                         btrfs_error(tree_root->fs_info, ret,
2886                                     "Failed to recover log tree");
2887                         free_extent_buffer(log_tree_root->node);
2888                         kfree(log_tree_root);
2889                         goto fail_qgroup;
2890                 }
2891
2892                 if (sb->s_flags & MS_RDONLY) {
2893                         ret = btrfs_commit_super(tree_root);
2894                         if (ret)
2895                                 goto fail_qgroup;
2896                 }
2897         }
2898
2899         ret = btrfs_find_orphan_roots(tree_root);
2900         if (ret)
2901                 goto fail_qgroup;
2902
2903         if (!(sb->s_flags & MS_RDONLY)) {
2904                 ret = btrfs_cleanup_fs_roots(fs_info);
2905                 if (ret)
2906                         goto fail_qgroup;
2907
2908                 mutex_lock(&fs_info->cleaner_mutex);
2909                 ret = btrfs_recover_relocation(tree_root);
2910                 mutex_unlock(&fs_info->cleaner_mutex);
2911                 if (ret < 0) {
2912                         printk(KERN_WARNING
2913                                "BTRFS: failed to recover relocation\n");
2914                         err = -EINVAL;
2915                         goto fail_qgroup;
2916                 }
2917         }
2918
2919         location.objectid = BTRFS_FS_TREE_OBJECTID;
2920         location.type = BTRFS_ROOT_ITEM_KEY;
2921         location.offset = 0;
2922
2923         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2924         if (IS_ERR(fs_info->fs_root)) {
2925                 err = PTR_ERR(fs_info->fs_root);
2926                 goto fail_qgroup;
2927         }
2928
2929         if (sb->s_flags & MS_RDONLY)
2930                 return 0;
2931
2932         down_read(&fs_info->cleanup_work_sem);
2933         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2934             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2935                 up_read(&fs_info->cleanup_work_sem);
2936                 close_ctree(tree_root);
2937                 return ret;
2938         }
2939         up_read(&fs_info->cleanup_work_sem);
2940
2941         ret = btrfs_resume_balance_async(fs_info);
2942         if (ret) {
2943                 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2944                 close_ctree(tree_root);
2945                 return ret;
2946         }
2947
2948         ret = btrfs_resume_dev_replace_async(fs_info);
2949         if (ret) {
2950                 pr_warn("BTRFS: failed to resume dev_replace\n");
2951                 close_ctree(tree_root);
2952                 return ret;
2953         }
2954
2955         btrfs_qgroup_rescan_resume(fs_info);
2956
2957         if (create_uuid_tree) {
2958                 pr_info("BTRFS: creating UUID tree\n");
2959                 ret = btrfs_create_uuid_tree(fs_info);
2960                 if (ret) {
2961                         pr_warn("BTRFS: failed to create the UUID tree %d\n",
2962                                 ret);
2963                         close_ctree(tree_root);
2964                         return ret;
2965                 }
2966         } else if (check_uuid_tree ||
2967                    btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2968                 pr_info("BTRFS: checking UUID tree\n");
2969                 ret = btrfs_check_uuid_tree(fs_info);
2970                 if (ret) {
2971                         pr_warn("BTRFS: failed to check the UUID tree %d\n",
2972                                 ret);
2973                         close_ctree(tree_root);
2974                         return ret;
2975                 }
2976         } else {
2977                 fs_info->update_uuid_tree_gen = 1;
2978         }
2979
2980         return 0;
2981
2982 fail_qgroup:
2983         btrfs_free_qgroup_config(fs_info);
2984 fail_trans_kthread:
2985         kthread_stop(fs_info->transaction_kthread);
2986         btrfs_cleanup_transaction(fs_info->tree_root);
2987         btrfs_free_fs_roots(fs_info);
2988 fail_cleaner:
2989         kthread_stop(fs_info->cleaner_kthread);
2990
2991         /*
2992          * make sure we're done with the btree inode before we stop our
2993          * kthreads
2994          */
2995         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2996
2997 fail_sysfs:
2998         btrfs_sysfs_remove_one(fs_info);
2999
3000 fail_block_groups:
3001         btrfs_put_block_group_cache(fs_info);
3002         btrfs_free_block_groups(fs_info);
3003
3004 fail_tree_roots:
3005         free_root_pointers(fs_info, 1);
3006         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3007
3008 fail_sb_buffer:
3009         btrfs_stop_all_workers(fs_info);
3010 fail_alloc:
3011 fail_iput:
3012         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3013
3014         iput(fs_info->btree_inode);
3015 fail_bio_counter:
3016         percpu_counter_destroy(&fs_info->bio_counter);
3017 fail_delalloc_bytes:
3018         percpu_counter_destroy(&fs_info->delalloc_bytes);
3019 fail_dirty_metadata_bytes:
3020         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3021 fail_bdi:
3022         bdi_destroy(&fs_info->bdi);
3023 fail_srcu:
3024         cleanup_srcu_struct(&fs_info->subvol_srcu);
3025 fail:
3026         btrfs_free_stripe_hash_table(fs_info);
3027         btrfs_close_devices(fs_info->fs_devices);
3028         return err;
3029
3030 recovery_tree_root:
3031         if (!btrfs_test_opt(tree_root, RECOVERY))
3032                 goto fail_tree_roots;
3033
3034         free_root_pointers(fs_info, 0);
3035
3036         /* don't use the log in recovery mode, it won't be valid */
3037         btrfs_set_super_log_root(disk_super, 0);
3038
3039         /* we can't trust the free space cache either */
3040         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3041
3042         ret = next_root_backup(fs_info, fs_info->super_copy,
3043                                &num_backups_tried, &backup_index);
3044         if (ret == -1)
3045                 goto fail_block_groups;
3046         goto retry_root_backup;
3047 }
3048
3049 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3050 {
3051         if (uptodate) {
3052                 set_buffer_uptodate(bh);
3053         } else {
3054                 struct btrfs_device *device = (struct btrfs_device *)
3055                         bh->b_private;
3056
3057                 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3058                                           "I/O error on %s\n",
3059                                           rcu_str_deref(device->name));
3060                 /* note, we dont' set_buffer_write_io_error because we have
3061                  * our own ways of dealing with the IO errors
3062                  */
3063                 clear_buffer_uptodate(bh);
3064                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3065         }
3066         unlock_buffer(bh);
3067         put_bh(bh);
3068 }
3069
3070 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3071 {
3072         struct buffer_head *bh;
3073         struct buffer_head *latest = NULL;
3074         struct btrfs_super_block *super;
3075         int i;
3076         u64 transid = 0;
3077         u64 bytenr;
3078
3079         /* we would like to check all the supers, but that would make
3080          * a btrfs mount succeed after a mkfs from a different FS.
3081          * So, we need to add a special mount option to scan for
3082          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3083          */
3084         for (i = 0; i < 1; i++) {
3085                 bytenr = btrfs_sb_offset(i);
3086                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3087                                         i_size_read(bdev->bd_inode))
3088                         break;
3089                 bh = __bread(bdev, bytenr / 4096,
3090                                         BTRFS_SUPER_INFO_SIZE);
3091                 if (!bh)
3092                         continue;
3093
3094                 super = (struct btrfs_super_block *)bh->b_data;
3095                 if (btrfs_super_bytenr(super) != bytenr ||
3096                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3097                         brelse(bh);
3098                         continue;
3099                 }
3100
3101                 if (!latest || btrfs_super_generation(super) > transid) {
3102                         brelse(latest);
3103                         latest = bh;
3104                         transid = btrfs_super_generation(super);
3105                 } else {
3106                         brelse(bh);
3107                 }
3108         }
3109         return latest;
3110 }
3111
3112 /*
3113  * this should be called twice, once with wait == 0 and
3114  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3115  * we write are pinned.
3116  *
3117  * They are released when wait == 1 is done.
3118  * max_mirrors must be the same for both runs, and it indicates how
3119  * many supers on this one device should be written.
3120  *
3121  * max_mirrors == 0 means to write them all.
3122  */
3123 static int write_dev_supers(struct btrfs_device *device,
3124                             struct btrfs_super_block *sb,
3125                             int do_barriers, int wait, int max_mirrors)
3126 {
3127         struct buffer_head *bh;
3128         int i;
3129         int ret;
3130         int errors = 0;
3131         u32 crc;
3132         u64 bytenr;
3133
3134         if (max_mirrors == 0)
3135                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3136
3137         for (i = 0; i < max_mirrors; i++) {
3138                 bytenr = btrfs_sb_offset(i);
3139                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3140                         break;
3141
3142                 if (wait) {
3143                         bh = __find_get_block(device->bdev, bytenr / 4096,
3144                                               BTRFS_SUPER_INFO_SIZE);
3145                         if (!bh) {
3146                                 errors++;
3147                                 continue;
3148                         }
3149                         wait_on_buffer(bh);
3150                         if (!buffer_uptodate(bh))
3151                                 errors++;
3152
3153                         /* drop our reference */
3154                         brelse(bh);
3155
3156                         /* drop the reference from the wait == 0 run */
3157                         brelse(bh);
3158                         continue;
3159                 } else {
3160                         btrfs_set_super_bytenr(sb, bytenr);
3161
3162                         crc = ~(u32)0;
3163                         crc = btrfs_csum_data((char *)sb +
3164                                               BTRFS_CSUM_SIZE, crc,
3165                                               BTRFS_SUPER_INFO_SIZE -
3166                                               BTRFS_CSUM_SIZE);
3167                         btrfs_csum_final(crc, sb->csum);
3168
3169                         /*
3170                          * one reference for us, and we leave it for the
3171                          * caller
3172                          */
3173                         bh = __getblk(device->bdev, bytenr / 4096,
3174                                       BTRFS_SUPER_INFO_SIZE);
3175                         if (!bh) {
3176                                 printk(KERN_ERR "BTRFS: couldn't get super "
3177                                        "buffer head for bytenr %Lu\n", bytenr);
3178                                 errors++;
3179                                 continue;
3180                         }
3181
3182                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3183
3184                         /* one reference for submit_bh */
3185                         get_bh(bh);
3186
3187                         set_buffer_uptodate(bh);
3188                         lock_buffer(bh);
3189                         bh->b_end_io = btrfs_end_buffer_write_sync;
3190                         bh->b_private = device;
3191                 }
3192
3193                 /*
3194                  * we fua the first super.  The others we allow
3195                  * to go down lazy.
3196                  */
3197                 if (i == 0)
3198                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3199                 else
3200                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3201                 if (ret)
3202                         errors++;
3203         }
3204         return errors < i ? 0 : -1;
3205 }
3206
3207 /*
3208  * endio for the write_dev_flush, this will wake anyone waiting
3209  * for the barrier when it is done
3210  */
3211 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3212 {
3213         if (err) {
3214                 if (err == -EOPNOTSUPP)
3215                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3216                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3217         }
3218         if (bio->bi_private)
3219                 complete(bio->bi_private);
3220         bio_put(bio);
3221 }
3222
3223 /*
3224  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3225  * sent down.  With wait == 1, it waits for the previous flush.
3226  *
3227  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3228  * capable
3229  */
3230 static int write_dev_flush(struct btrfs_device *device, int wait)
3231 {
3232         struct bio *bio;
3233         int ret = 0;
3234
3235         if (device->nobarriers)
3236                 return 0;
3237
3238         if (wait) {
3239                 bio = device->flush_bio;
3240                 if (!bio)
3241                         return 0;
3242
3243                 wait_for_completion(&device->flush_wait);
3244
3245                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3246                         printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3247                                       rcu_str_deref(device->name));
3248                         device->nobarriers = 1;
3249                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3250                         ret = -EIO;
3251                         btrfs_dev_stat_inc_and_print(device,
3252                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3253                 }
3254
3255                 /* drop the reference from the wait == 0 run */
3256                 bio_put(bio);
3257                 device->flush_bio = NULL;
3258
3259                 return ret;
3260         }
3261
3262         /*
3263          * one reference for us, and we leave it for the
3264          * caller
3265          */
3266         device->flush_bio = NULL;
3267         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3268         if (!bio)
3269                 return -ENOMEM;
3270
3271         bio->bi_end_io = btrfs_end_empty_barrier;
3272         bio->bi_bdev = device->bdev;
3273         init_completion(&device->flush_wait);
3274         bio->bi_private = &device->flush_wait;
3275         device->flush_bio = bio;
3276
3277         bio_get(bio);
3278         btrfsic_submit_bio(WRITE_FLUSH, bio);
3279
3280         return 0;
3281 }
3282
3283 /*
3284  * send an empty flush down to each device in parallel,
3285  * then wait for them
3286  */
3287 static int barrier_all_devices(struct btrfs_fs_info *info)
3288 {
3289         struct list_head *head;
3290         struct btrfs_device *dev;
3291         int errors_send = 0;
3292         int errors_wait = 0;
3293         int ret;
3294
3295         /* send down all the barriers */
3296         head = &info->fs_devices->devices;
3297         list_for_each_entry_rcu(dev, head, dev_list) {
3298                 if (dev->missing)
3299                         continue;
3300                 if (!dev->bdev) {
3301                         errors_send++;
3302                         continue;
3303                 }
3304                 if (!dev->in_fs_metadata || !dev->writeable)
3305                         continue;
3306
3307                 ret = write_dev_flush(dev, 0);
3308                 if (ret)
3309                         errors_send++;
3310         }
3311
3312         /* wait for all the barriers */
3313         list_for_each_entry_rcu(dev, head, dev_list) {
3314                 if (dev->missing)
3315                         continue;
3316                 if (!dev->bdev) {
3317                         errors_wait++;
3318                         continue;
3319                 }
3320                 if (!dev->in_fs_metadata || !dev->writeable)
3321                         continue;
3322
3323                 ret = write_dev_flush(dev, 1);
3324                 if (ret)
3325                         errors_wait++;
3326         }
3327         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3328             errors_wait > info->num_tolerated_disk_barrier_failures)
3329                 return -EIO;
3330         return 0;
3331 }
3332
3333 int btrfs_calc_num_tolerated_disk_barrier_failures(
3334         struct btrfs_fs_info *fs_info)
3335 {
3336         struct btrfs_ioctl_space_info space;
3337         struct btrfs_space_info *sinfo;
3338         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3339                        BTRFS_BLOCK_GROUP_SYSTEM,
3340                        BTRFS_BLOCK_GROUP_METADATA,
3341                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3342         int num_types = 4;
3343         int i;
3344         int c;
3345         int num_tolerated_disk_barrier_failures =
3346                 (int)fs_info->fs_devices->num_devices;
3347
3348         for (i = 0; i < num_types; i++) {
3349                 struct btrfs_space_info *tmp;
3350
3351                 sinfo = NULL;
3352                 rcu_read_lock();
3353                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3354                         if (tmp->flags == types[i]) {
3355                                 sinfo = tmp;
3356                                 break;
3357                         }
3358                 }
3359                 rcu_read_unlock();
3360
3361                 if (!sinfo)
3362                         continue;
3363
3364                 down_read(&sinfo->groups_sem);
3365                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3366                         if (!list_empty(&sinfo->block_groups[c])) {
3367                                 u64 flags;
3368
3369                                 btrfs_get_block_group_info(
3370                                         &sinfo->block_groups[c], &space);
3371                                 if (space.total_bytes == 0 ||
3372                                     space.used_bytes == 0)
3373                                         continue;
3374                                 flags = space.flags;
3375                                 /*
3376                                  * return
3377                                  * 0: if dup, single or RAID0 is configured for
3378                                  *    any of metadata, system or data, else
3379                                  * 1: if RAID5 is configured, or if RAID1 or
3380                                  *    RAID10 is configured and only two mirrors
3381                                  *    are used, else
3382                                  * 2: if RAID6 is configured, else
3383                                  * num_mirrors - 1: if RAID1 or RAID10 is
3384                                  *                  configured and more than
3385                                  *                  2 mirrors are used.
3386                                  */
3387                                 if (num_tolerated_disk_barrier_failures > 0 &&
3388                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3389                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3390                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3391                                       == 0)))
3392                                         num_tolerated_disk_barrier_failures = 0;
3393                                 else if (num_tolerated_disk_barrier_failures > 1) {
3394                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3395                                             BTRFS_BLOCK_GROUP_RAID5 |
3396                                             BTRFS_BLOCK_GROUP_RAID10)) {
3397                                                 num_tolerated_disk_barrier_failures = 1;
3398                                         } else if (flags &
3399                                                    BTRFS_BLOCK_GROUP_RAID6) {
3400                                                 num_tolerated_disk_barrier_failures = 2;
3401                                         }
3402                                 }
3403                         }
3404                 }
3405                 up_read(&sinfo->groups_sem);
3406         }
3407
3408         return num_tolerated_disk_barrier_failures;
3409 }
3410
3411 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3412 {
3413         struct list_head *head;
3414         struct btrfs_device *dev;
3415         struct btrfs_super_block *sb;
3416         struct btrfs_dev_item *dev_item;
3417         int ret;
3418         int do_barriers;
3419         int max_errors;
3420         int total_errors = 0;
3421         u64 flags;
3422
3423         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3424         backup_super_roots(root->fs_info);
3425
3426         sb = root->fs_info->super_for_commit;
3427         dev_item = &sb->dev_item;
3428
3429         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3430         head = &root->fs_info->fs_devices->devices;
3431         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3432
3433         if (do_barriers) {
3434                 ret = barrier_all_devices(root->fs_info);
3435                 if (ret) {
3436                         mutex_unlock(
3437                                 &root->fs_info->fs_devices->device_list_mutex);
3438                         btrfs_error(root->fs_info, ret,
3439                                     "errors while submitting device barriers.");
3440                         return ret;
3441                 }
3442         }
3443
3444         list_for_each_entry_rcu(dev, head, dev_list) {
3445                 if (!dev->bdev) {
3446                         total_errors++;
3447                         continue;
3448                 }
3449                 if (!dev->in_fs_metadata || !dev->writeable)
3450                         continue;
3451
3452                 btrfs_set_stack_device_generation(dev_item, 0);
3453                 btrfs_set_stack_device_type(dev_item, dev->type);
3454                 btrfs_set_stack_device_id(dev_item, dev->devid);
3455                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3456                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3457                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3458                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3459                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3460                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3461                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3462
3463                 flags = btrfs_super_flags(sb);
3464                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3465
3466                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3467                 if (ret)
3468                         total_errors++;
3469         }
3470         if (total_errors > max_errors) {
3471                 btrfs_err(root->fs_info, "%d errors while writing supers",
3472                        total_errors);
3473                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3474
3475                 /* FUA is masked off if unsupported and can't be the reason */
3476                 btrfs_error(root->fs_info, -EIO,
3477                             "%d errors while writing supers", total_errors);
3478                 return -EIO;
3479         }
3480
3481         total_errors = 0;
3482         list_for_each_entry_rcu(dev, head, dev_list) {
3483                 if (!dev->bdev)
3484                         continue;
3485                 if (!dev->in_fs_metadata || !dev->writeable)
3486                         continue;
3487
3488                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3489                 if (ret)
3490                         total_errors++;
3491         }
3492         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3493         if (total_errors > max_errors) {
3494                 btrfs_error(root->fs_info, -EIO,
3495                             "%d errors while writing supers", total_errors);
3496                 return -EIO;
3497         }
3498         return 0;
3499 }
3500
3501 int write_ctree_super(struct btrfs_trans_handle *trans,
3502                       struct btrfs_root *root, int max_mirrors)
3503 {
3504         return write_all_supers(root, max_mirrors);
3505 }
3506
3507 /* Drop a fs root from the radix tree and free it. */
3508 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3509                                   struct btrfs_root *root)
3510 {
3511         spin_lock(&fs_info->fs_roots_radix_lock);
3512         radix_tree_delete(&fs_info->fs_roots_radix,
3513                           (unsigned long)root->root_key.objectid);
3514         spin_unlock(&fs_info->fs_roots_radix_lock);
3515
3516         if (btrfs_root_refs(&root->root_item) == 0)
3517                 synchronize_srcu(&fs_info->subvol_srcu);
3518
3519         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3520                 btrfs_free_log(NULL, root);
3521
3522         if (root->free_ino_pinned)
3523                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3524         if (root->free_ino_ctl)
3525                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3526         free_fs_root(root);
3527 }
3528
3529 static void free_fs_root(struct btrfs_root *root)
3530 {
3531         iput(root->cache_inode);
3532         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3533         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3534         root->orphan_block_rsv = NULL;
3535         if (root->anon_dev)
3536                 free_anon_bdev(root->anon_dev);
3537         if (root->subv_writers)
3538                 btrfs_free_subvolume_writers(root->subv_writers);
3539         free_extent_buffer(root->node);
3540         free_extent_buffer(root->commit_root);
3541         kfree(root->free_ino_ctl);
3542         kfree(root->free_ino_pinned);
3543         kfree(root->name);
3544         btrfs_put_fs_root(root);
3545 }
3546
3547 void btrfs_free_fs_root(struct btrfs_root *root)
3548 {
3549         free_fs_root(root);
3550 }
3551
3552 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3553 {
3554         u64 root_objectid = 0;
3555         struct btrfs_root *gang[8];
3556         int i = 0;
3557         int err = 0;
3558         unsigned int ret = 0;
3559         int index;
3560
3561         while (1) {
3562                 index = srcu_read_lock(&fs_info->subvol_srcu);
3563                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3564                                              (void **)gang, root_objectid,
3565                                              ARRAY_SIZE(gang));
3566                 if (!ret) {
3567                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3568                         break;
3569                 }
3570                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3571
3572                 for (i = 0; i < ret; i++) {
3573                         /* Avoid to grab roots in dead_roots */
3574                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3575                                 gang[i] = NULL;
3576                                 continue;
3577                         }
3578                         /* grab all the search result for later use */
3579                         gang[i] = btrfs_grab_fs_root(gang[i]);
3580                 }
3581                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3582
3583                 for (i = 0; i < ret; i++) {
3584                         if (!gang[i])
3585                                 continue;
3586                         root_objectid = gang[i]->root_key.objectid;
3587                         err = btrfs_orphan_cleanup(gang[i]);
3588                         if (err)
3589                                 break;
3590                         btrfs_put_fs_root(gang[i]);
3591                 }
3592                 root_objectid++;
3593         }
3594
3595         /* release the uncleaned roots due to error */
3596         for (; i < ret; i++) {
3597                 if (gang[i])
3598                         btrfs_put_fs_root(gang[i]);
3599         }
3600         return err;
3601 }
3602
3603 int btrfs_commit_super(struct btrfs_root *root)
3604 {
3605         struct btrfs_trans_handle *trans;
3606
3607         mutex_lock(&root->fs_info->cleaner_mutex);
3608         btrfs_run_delayed_iputs(root);
3609         mutex_unlock(&root->fs_info->cleaner_mutex);
3610         wake_up_process(root->fs_info->cleaner_kthread);
3611
3612         /* wait until ongoing cleanup work done */
3613         down_write(&root->fs_info->cleanup_work_sem);
3614         up_write(&root->fs_info->cleanup_work_sem);
3615
3616         trans = btrfs_join_transaction(root);
3617         if (IS_ERR(trans))
3618                 return PTR_ERR(trans);
3619         return btrfs_commit_transaction(trans, root);
3620 }
3621
3622 int close_ctree(struct btrfs_root *root)
3623 {
3624         struct btrfs_fs_info *fs_info = root->fs_info;
3625         int ret;
3626
3627         fs_info->closing = 1;
3628         smp_mb();
3629
3630         /* wait for the uuid_scan task to finish */
3631         down(&fs_info->uuid_tree_rescan_sem);
3632         /* avoid complains from lockdep et al., set sem back to initial state */
3633         up(&fs_info->uuid_tree_rescan_sem);
3634
3635         /* pause restriper - we want to resume on mount */
3636         btrfs_pause_balance(fs_info);
3637
3638         btrfs_dev_replace_suspend_for_unmount(fs_info);
3639
3640         btrfs_scrub_cancel(fs_info);
3641
3642         /* wait for any defraggers to finish */
3643         wait_event(fs_info->transaction_wait,
3644                    (atomic_read(&fs_info->defrag_running) == 0));
3645
3646         /* clear out the rbtree of defraggable inodes */
3647         btrfs_cleanup_defrag_inodes(fs_info);
3648
3649         cancel_work_sync(&fs_info->async_reclaim_work);
3650
3651         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3652                 ret = btrfs_commit_super(root);
3653                 if (ret)
3654                         btrfs_err(root->fs_info, "commit super ret %d", ret);
3655         }
3656
3657         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3658                 btrfs_error_commit_super(root);
3659
3660         kthread_stop(fs_info->transaction_kthread);
3661         kthread_stop(fs_info->cleaner_kthread);
3662
3663         fs_info->closing = 2;
3664         smp_mb();
3665
3666         btrfs_free_qgroup_config(root->fs_info);
3667
3668         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3669                 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3670                        percpu_counter_sum(&fs_info->delalloc_bytes));
3671         }
3672
3673         btrfs_sysfs_remove_one(fs_info);
3674
3675         btrfs_free_fs_roots(fs_info);
3676
3677         btrfs_put_block_group_cache(fs_info);
3678
3679         btrfs_free_block_groups(fs_info);
3680
3681         /*
3682          * we must make sure there is not any read request to
3683          * submit after we stopping all workers.
3684          */
3685         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3686         btrfs_stop_all_workers(fs_info);
3687
3688         free_root_pointers(fs_info, 1);
3689
3690         iput(fs_info->btree_inode);
3691
3692 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3693         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3694                 btrfsic_unmount(root, fs_info->fs_devices);
3695 #endif
3696
3697         btrfs_close_devices(fs_info->fs_devices);
3698         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3699
3700         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3701         percpu_counter_destroy(&fs_info->delalloc_bytes);
3702         percpu_counter_destroy(&fs_info->bio_counter);
3703         bdi_destroy(&fs_info->bdi);
3704         cleanup_srcu_struct(&fs_info->subvol_srcu);
3705
3706         btrfs_free_stripe_hash_table(fs_info);
3707
3708         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3709         root->orphan_block_rsv = NULL;
3710
3711         return 0;
3712 }
3713
3714 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3715                           int atomic)
3716 {
3717         int ret;
3718         struct inode *btree_inode = buf->pages[0]->mapping->host;
3719
3720         ret = extent_buffer_uptodate(buf);
3721         if (!ret)
3722                 return ret;
3723
3724         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3725                                     parent_transid, atomic);
3726         if (ret == -EAGAIN)
3727                 return ret;
3728         return !ret;
3729 }
3730
3731 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3732 {
3733         return set_extent_buffer_uptodate(buf);
3734 }
3735
3736 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3737 {
3738         struct btrfs_root *root;
3739         u64 transid = btrfs_header_generation(buf);
3740         int was_dirty;
3741
3742 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3743         /*
3744          * This is a fast path so only do this check if we have sanity tests
3745          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3746          * outside of the sanity tests.
3747          */
3748         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3749                 return;
3750 #endif
3751         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3752         btrfs_assert_tree_locked(buf);
3753         if (transid != root->fs_info->generation)
3754                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3755                        "found %llu running %llu\n",
3756                         buf->start, transid, root->fs_info->generation);
3757         was_dirty = set_extent_buffer_dirty(buf);
3758         if (!was_dirty)
3759                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3760                                      buf->len,
3761                                      root->fs_info->dirty_metadata_batch);
3762 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3763         if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3764                 btrfs_print_leaf(root, buf);
3765                 ASSERT(0);
3766         }
3767 #endif
3768 }
3769
3770 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3771                                         int flush_delayed)
3772 {
3773         /*
3774          * looks as though older kernels can get into trouble with
3775          * this code, they end up stuck in balance_dirty_pages forever
3776          */
3777         int ret;
3778
3779         if (current->flags & PF_MEMALLOC)
3780                 return;
3781
3782         if (flush_delayed)
3783                 btrfs_balance_delayed_items(root);
3784
3785         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3786                                      BTRFS_DIRTY_METADATA_THRESH);
3787         if (ret > 0) {
3788                 balance_dirty_pages_ratelimited(
3789                                    root->fs_info->btree_inode->i_mapping);
3790         }
3791         return;
3792 }
3793
3794 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3795 {
3796         __btrfs_btree_balance_dirty(root, 1);
3797 }
3798
3799 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3800 {
3801         __btrfs_btree_balance_dirty(root, 0);
3802 }
3803
3804 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3805 {
3806         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3807         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3808 }
3809
3810 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3811                               int read_only)
3812 {
3813         /*
3814          * Placeholder for checks
3815          */
3816         return 0;
3817 }
3818
3819 static void btrfs_error_commit_super(struct btrfs_root *root)
3820 {
3821         mutex_lock(&root->fs_info->cleaner_mutex);
3822         btrfs_run_delayed_iputs(root);
3823         mutex_unlock(&root->fs_info->cleaner_mutex);
3824
3825         down_write(&root->fs_info->cleanup_work_sem);
3826         up_write(&root->fs_info->cleanup_work_sem);
3827
3828         /* cleanup FS via transaction */
3829         btrfs_cleanup_transaction(root);
3830 }
3831
3832 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3833                                              struct btrfs_root *root)
3834 {
3835         struct btrfs_inode *btrfs_inode;
3836         struct list_head splice;
3837
3838         INIT_LIST_HEAD(&splice);
3839
3840         mutex_lock(&root->fs_info->ordered_operations_mutex);
3841         spin_lock(&root->fs_info->ordered_root_lock);
3842
3843         list_splice_init(&t->ordered_operations, &splice);
3844         while (!list_empty(&splice)) {
3845                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3846                                          ordered_operations);
3847
3848                 list_del_init(&btrfs_inode->ordered_operations);
3849                 spin_unlock(&root->fs_info->ordered_root_lock);
3850
3851                 btrfs_invalidate_inodes(btrfs_inode->root);
3852
3853                 spin_lock(&root->fs_info->ordered_root_lock);
3854         }
3855
3856         spin_unlock(&root->fs_info->ordered_root_lock);
3857         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3858 }
3859
3860 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3861 {
3862         struct btrfs_ordered_extent *ordered;
3863
3864         spin_lock(&root->ordered_extent_lock);
3865         /*
3866          * This will just short circuit the ordered completion stuff which will
3867          * make sure the ordered extent gets properly cleaned up.
3868          */
3869         list_for_each_entry(ordered, &root->ordered_extents,
3870                             root_extent_list)
3871                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3872         spin_unlock(&root->ordered_extent_lock);
3873 }
3874
3875 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3876 {
3877         struct btrfs_root *root;
3878         struct list_head splice;
3879
3880         INIT_LIST_HEAD(&splice);
3881
3882         spin_lock(&fs_info->ordered_root_lock);
3883         list_splice_init(&fs_info->ordered_roots, &splice);
3884         while (!list_empty(&splice)) {
3885                 root = list_first_entry(&splice, struct btrfs_root,
3886                                         ordered_root);
3887                 list_move_tail(&root->ordered_root,
3888                                &fs_info->ordered_roots);
3889
3890                 spin_unlock(&fs_info->ordered_root_lock);
3891                 btrfs_destroy_ordered_extents(root);
3892
3893                 cond_resched();
3894                 spin_lock(&fs_info->ordered_root_lock);
3895         }
3896         spin_unlock(&fs_info->ordered_root_lock);
3897 }
3898
3899 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3900                                       struct btrfs_root *root)
3901 {
3902         struct rb_node *node;
3903         struct btrfs_delayed_ref_root *delayed_refs;
3904         struct btrfs_delayed_ref_node *ref;
3905         int ret = 0;
3906
3907         delayed_refs = &trans->delayed_refs;
3908
3909         spin_lock(&delayed_refs->lock);
3910         if (atomic_read(&delayed_refs->num_entries) == 0) {
3911                 spin_unlock(&delayed_refs->lock);
3912                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
3913                 return ret;
3914         }
3915
3916         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3917                 struct btrfs_delayed_ref_head *head;
3918                 bool pin_bytes = false;
3919
3920                 head = rb_entry(node, struct btrfs_delayed_ref_head,
3921                                 href_node);
3922                 if (!mutex_trylock(&head->mutex)) {
3923                         atomic_inc(&head->node.refs);
3924                         spin_unlock(&delayed_refs->lock);
3925
3926                         mutex_lock(&head->mutex);
3927                         mutex_unlock(&head->mutex);
3928                         btrfs_put_delayed_ref(&head->node);
3929                         spin_lock(&delayed_refs->lock);
3930                         continue;
3931                 }
3932                 spin_lock(&head->lock);
3933                 while ((node = rb_first(&head->ref_root)) != NULL) {
3934                         ref = rb_entry(node, struct btrfs_delayed_ref_node,
3935                                        rb_node);
3936                         ref->in_tree = 0;
3937                         rb_erase(&ref->rb_node, &head->ref_root);
3938                         atomic_dec(&delayed_refs->num_entries);
3939                         btrfs_put_delayed_ref(ref);
3940                 }
3941                 if (head->must_insert_reserved)
3942                         pin_bytes = true;
3943                 btrfs_free_delayed_extent_op(head->extent_op);
3944                 delayed_refs->num_heads--;
3945                 if (head->processing == 0)
3946                         delayed_refs->num_heads_ready--;
3947                 atomic_dec(&delayed_refs->num_entries);
3948                 head->node.in_tree = 0;
3949                 rb_erase(&head->href_node, &delayed_refs->href_root);
3950                 spin_unlock(&head->lock);
3951                 spin_unlock(&delayed_refs->lock);
3952                 mutex_unlock(&head->mutex);
3953
3954                 if (pin_bytes)
3955                         btrfs_pin_extent(root, head->node.bytenr,
3956                                          head->node.num_bytes, 1);
3957                 btrfs_put_delayed_ref(&head->node);
3958                 cond_resched();
3959                 spin_lock(&delayed_refs->lock);
3960         }
3961
3962         spin_unlock(&delayed_refs->lock);
3963
3964         return ret;
3965 }
3966
3967 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3968 {
3969         struct btrfs_inode *btrfs_inode;
3970         struct list_head splice;
3971
3972         INIT_LIST_HEAD(&splice);
3973
3974         spin_lock(&root->delalloc_lock);
3975         list_splice_init(&root->delalloc_inodes, &splice);
3976
3977         while (!list_empty(&splice)) {
3978                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3979                                                delalloc_inodes);
3980
3981                 list_del_init(&btrfs_inode->delalloc_inodes);
3982                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3983                           &btrfs_inode->runtime_flags);
3984                 spin_unlock(&root->delalloc_lock);
3985
3986                 btrfs_invalidate_inodes(btrfs_inode->root);
3987
3988                 spin_lock(&root->delalloc_lock);
3989         }
3990
3991         spin_unlock(&root->delalloc_lock);
3992 }
3993
3994 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3995 {
3996         struct btrfs_root *root;
3997         struct list_head splice;
3998
3999         INIT_LIST_HEAD(&splice);
4000
4001         spin_lock(&fs_info->delalloc_root_lock);
4002         list_splice_init(&fs_info->delalloc_roots, &splice);
4003         while (!list_empty(&splice)) {
4004                 root = list_first_entry(&splice, struct btrfs_root,
4005                                          delalloc_root);
4006                 list_del_init(&root->delalloc_root);
4007                 root = btrfs_grab_fs_root(root);
4008                 BUG_ON(!root);
4009                 spin_unlock(&fs_info->delalloc_root_lock);
4010
4011                 btrfs_destroy_delalloc_inodes(root);
4012                 btrfs_put_fs_root(root);
4013
4014                 spin_lock(&fs_info->delalloc_root_lock);
4015         }
4016         spin_unlock(&fs_info->delalloc_root_lock);
4017 }
4018
4019 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4020                                         struct extent_io_tree *dirty_pages,
4021                                         int mark)
4022 {
4023         int ret;
4024         struct extent_buffer *eb;
4025         u64 start = 0;
4026         u64 end;
4027
4028         while (1) {
4029                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4030                                             mark, NULL);
4031                 if (ret)
4032                         break;
4033
4034                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4035                 while (start <= end) {
4036                         eb = btrfs_find_tree_block(root, start,
4037                                                    root->leafsize);
4038                         start += root->leafsize;
4039                         if (!eb)
4040                                 continue;
4041                         wait_on_extent_buffer_writeback(eb);
4042
4043                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4044                                                &eb->bflags))
4045                                 clear_extent_buffer_dirty(eb);
4046                         free_extent_buffer_stale(eb);
4047                 }
4048         }
4049
4050         return ret;
4051 }
4052
4053 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4054                                        struct extent_io_tree *pinned_extents)
4055 {
4056         struct extent_io_tree *unpin;
4057         u64 start;
4058         u64 end;
4059         int ret;
4060         bool loop = true;
4061
4062         unpin = pinned_extents;
4063 again:
4064         while (1) {
4065                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4066                                             EXTENT_DIRTY, NULL);
4067                 if (ret)
4068                         break;
4069
4070                 /* opt_discard */
4071                 if (btrfs_test_opt(root, DISCARD))
4072                         ret = btrfs_error_discard_extent(root, start,
4073                                                          end + 1 - start,
4074                                                          NULL);
4075
4076                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4077                 btrfs_error_unpin_extent_range(root, start, end);
4078                 cond_resched();
4079         }
4080
4081         if (loop) {
4082                 if (unpin == &root->fs_info->freed_extents[0])
4083                         unpin = &root->fs_info->freed_extents[1];
4084                 else
4085                         unpin = &root->fs_info->freed_extents[0];
4086                 loop = false;
4087                 goto again;
4088         }
4089
4090         return 0;
4091 }
4092
4093 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4094                                    struct btrfs_root *root)
4095 {
4096         btrfs_destroy_ordered_operations(cur_trans, root);
4097
4098         btrfs_destroy_delayed_refs(cur_trans, root);
4099
4100         cur_trans->state = TRANS_STATE_COMMIT_START;
4101         wake_up(&root->fs_info->transaction_blocked_wait);
4102
4103         cur_trans->state = TRANS_STATE_UNBLOCKED;
4104         wake_up(&root->fs_info->transaction_wait);
4105
4106         btrfs_destroy_delayed_inodes(root);
4107         btrfs_assert_delayed_root_empty(root);
4108
4109         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4110                                      EXTENT_DIRTY);
4111         btrfs_destroy_pinned_extent(root,
4112                                     root->fs_info->pinned_extents);
4113
4114         cur_trans->state =TRANS_STATE_COMPLETED;
4115         wake_up(&cur_trans->commit_wait);
4116
4117         /*
4118         memset(cur_trans, 0, sizeof(*cur_trans));
4119         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4120         */
4121 }
4122
4123 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4124 {
4125         struct btrfs_transaction *t;
4126
4127         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4128
4129         spin_lock(&root->fs_info->trans_lock);
4130         while (!list_empty(&root->fs_info->trans_list)) {
4131                 t = list_first_entry(&root->fs_info->trans_list,
4132                                      struct btrfs_transaction, list);
4133                 if (t->state >= TRANS_STATE_COMMIT_START) {
4134                         atomic_inc(&t->use_count);
4135                         spin_unlock(&root->fs_info->trans_lock);
4136                         btrfs_wait_for_commit(root, t->transid);
4137                         btrfs_put_transaction(t);
4138                         spin_lock(&root->fs_info->trans_lock);
4139                         continue;
4140                 }
4141                 if (t == root->fs_info->running_transaction) {
4142                         t->state = TRANS_STATE_COMMIT_DOING;
4143                         spin_unlock(&root->fs_info->trans_lock);
4144                         /*
4145                          * We wait for 0 num_writers since we don't hold a trans
4146                          * handle open currently for this transaction.
4147                          */
4148                         wait_event(t->writer_wait,
4149                                    atomic_read(&t->num_writers) == 0);
4150                 } else {
4151                         spin_unlock(&root->fs_info->trans_lock);
4152                 }
4153                 btrfs_cleanup_one_transaction(t, root);
4154
4155                 spin_lock(&root->fs_info->trans_lock);
4156                 if (t == root->fs_info->running_transaction)
4157                         root->fs_info->running_transaction = NULL;
4158                 list_del_init(&t->list);
4159                 spin_unlock(&root->fs_info->trans_lock);
4160
4161                 btrfs_put_transaction(t);
4162                 trace_btrfs_transaction_commit(root);
4163                 spin_lock(&root->fs_info->trans_lock);
4164         }
4165         spin_unlock(&root->fs_info->trans_lock);
4166         btrfs_destroy_all_ordered_extents(root->fs_info);
4167         btrfs_destroy_delayed_inodes(root);
4168         btrfs_assert_delayed_root_empty(root);
4169         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4170         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4171         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4172
4173         return 0;
4174 }
4175
4176 static struct extent_io_ops btree_extent_io_ops = {
4177         .readpage_end_io_hook = btree_readpage_end_io_hook,
4178         .readpage_io_failed_hook = btree_io_failed_hook,
4179         .submit_bio_hook = btree_submit_bio_hook,
4180         /* note we're sharing with inode.c for the merge bio hook */
4181         .merge_bio_hook = btrfs_merge_bio_hook,
4182 };