Merge tag 'for-linus-20181109' of git://git.kernel.dk/linux-block
[sfrench/cifs-2.6.git] / fs / afs / rxrpc.c
1 /* Maintain an RxRPC server socket to do AFS communications through
2  *
3  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14
15 #include <net/sock.h>
16 #include <net/af_rxrpc.h>
17 #include "internal.h"
18 #include "afs_cm.h"
19 #include "protocol_yfs.h"
20
21 struct workqueue_struct *afs_async_calls;
22
23 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
24 static long afs_wait_for_call_to_complete(struct afs_call *, struct afs_addr_cursor *);
25 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
26 static void afs_process_async_call(struct work_struct *);
27 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
28 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
29 static int afs_deliver_cm_op_id(struct afs_call *);
30
31 /* asynchronous incoming call initial processing */
32 static const struct afs_call_type afs_RXCMxxxx = {
33         .name           = "CB.xxxx",
34         .deliver        = afs_deliver_cm_op_id,
35 };
36
37 /*
38  * open an RxRPC socket and bind it to be a server for callback notifications
39  * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
40  */
41 int afs_open_socket(struct afs_net *net)
42 {
43         struct sockaddr_rxrpc srx;
44         struct socket *socket;
45         unsigned int min_level;
46         int ret;
47
48         _enter("");
49
50         ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
51         if (ret < 0)
52                 goto error_1;
53
54         socket->sk->sk_allocation = GFP_NOFS;
55
56         /* bind the callback manager's address to make this a server socket */
57         memset(&srx, 0, sizeof(srx));
58         srx.srx_family                  = AF_RXRPC;
59         srx.srx_service                 = CM_SERVICE;
60         srx.transport_type              = SOCK_DGRAM;
61         srx.transport_len               = sizeof(srx.transport.sin6);
62         srx.transport.sin6.sin6_family  = AF_INET6;
63         srx.transport.sin6.sin6_port    = htons(AFS_CM_PORT);
64
65         min_level = RXRPC_SECURITY_ENCRYPT;
66         ret = kernel_setsockopt(socket, SOL_RXRPC, RXRPC_MIN_SECURITY_LEVEL,
67                                 (void *)&min_level, sizeof(min_level));
68         if (ret < 0)
69                 goto error_2;
70
71         ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
72         if (ret == -EADDRINUSE) {
73                 srx.transport.sin6.sin6_port = 0;
74                 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
75         }
76         if (ret < 0)
77                 goto error_2;
78
79         srx.srx_service = YFS_CM_SERVICE;
80         ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
81         if (ret < 0)
82                 goto error_2;
83
84         /* Ideally, we'd turn on service upgrade here, but we can't because
85          * OpenAFS is buggy and leaks the userStatus field from packet to
86          * packet and between FS packets and CB packets - so if we try to do an
87          * upgrade on an FS packet, OpenAFS will leak that into the CB packet
88          * it sends back to us.
89          */
90
91         rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
92                                            afs_rx_discard_new_call);
93
94         ret = kernel_listen(socket, INT_MAX);
95         if (ret < 0)
96                 goto error_2;
97
98         net->socket = socket;
99         afs_charge_preallocation(&net->charge_preallocation_work);
100         _leave(" = 0");
101         return 0;
102
103 error_2:
104         sock_release(socket);
105 error_1:
106         _leave(" = %d", ret);
107         return ret;
108 }
109
110 /*
111  * close the RxRPC socket AFS was using
112  */
113 void afs_close_socket(struct afs_net *net)
114 {
115         _enter("");
116
117         kernel_listen(net->socket, 0);
118         flush_workqueue(afs_async_calls);
119
120         if (net->spare_incoming_call) {
121                 afs_put_call(net->spare_incoming_call);
122                 net->spare_incoming_call = NULL;
123         }
124
125         _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
126         wait_var_event(&net->nr_outstanding_calls,
127                        !atomic_read(&net->nr_outstanding_calls));
128         _debug("no outstanding calls");
129
130         kernel_sock_shutdown(net->socket, SHUT_RDWR);
131         flush_workqueue(afs_async_calls);
132         sock_release(net->socket);
133
134         _debug("dework");
135         _leave("");
136 }
137
138 /*
139  * Allocate a call.
140  */
141 static struct afs_call *afs_alloc_call(struct afs_net *net,
142                                        const struct afs_call_type *type,
143                                        gfp_t gfp)
144 {
145         struct afs_call *call;
146         int o;
147
148         call = kzalloc(sizeof(*call), gfp);
149         if (!call)
150                 return NULL;
151
152         call->type = type;
153         call->net = net;
154         call->debug_id = atomic_inc_return(&rxrpc_debug_id);
155         atomic_set(&call->usage, 1);
156         INIT_WORK(&call->async_work, afs_process_async_call);
157         init_waitqueue_head(&call->waitq);
158         spin_lock_init(&call->state_lock);
159         call->_iter = &call->iter;
160
161         o = atomic_inc_return(&net->nr_outstanding_calls);
162         trace_afs_call(call, afs_call_trace_alloc, 1, o,
163                        __builtin_return_address(0));
164         return call;
165 }
166
167 /*
168  * Dispose of a reference on a call.
169  */
170 void afs_put_call(struct afs_call *call)
171 {
172         struct afs_net *net = call->net;
173         int n = atomic_dec_return(&call->usage);
174         int o = atomic_read(&net->nr_outstanding_calls);
175
176         trace_afs_call(call, afs_call_trace_put, n + 1, o,
177                        __builtin_return_address(0));
178
179         ASSERTCMP(n, >=, 0);
180         if (n == 0) {
181                 ASSERT(!work_pending(&call->async_work));
182                 ASSERT(call->type->name != NULL);
183
184                 if (call->rxcall) {
185                         rxrpc_kernel_end_call(net->socket, call->rxcall);
186                         call->rxcall = NULL;
187                 }
188                 if (call->type->destructor)
189                         call->type->destructor(call);
190
191                 afs_put_server(call->net, call->cm_server);
192                 afs_put_cb_interest(call->net, call->cbi);
193                 afs_put_addrlist(call->alist);
194                 kfree(call->request);
195
196                 trace_afs_call(call, afs_call_trace_free, 0, o,
197                                __builtin_return_address(0));
198                 kfree(call);
199
200                 o = atomic_dec_return(&net->nr_outstanding_calls);
201                 if (o == 0)
202                         wake_up_var(&net->nr_outstanding_calls);
203         }
204 }
205
206 /*
207  * Queue the call for actual work.
208  */
209 static void afs_queue_call_work(struct afs_call *call)
210 {
211         if (call->type->work) {
212                 int u = atomic_inc_return(&call->usage);
213
214                 trace_afs_call(call, afs_call_trace_work, u,
215                                atomic_read(&call->net->nr_outstanding_calls),
216                                __builtin_return_address(0));
217
218                 INIT_WORK(&call->work, call->type->work);
219
220                 if (!queue_work(afs_wq, &call->work))
221                         afs_put_call(call);
222         }
223 }
224
225 /*
226  * allocate a call with flat request and reply buffers
227  */
228 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
229                                      const struct afs_call_type *type,
230                                      size_t request_size, size_t reply_max)
231 {
232         struct afs_call *call;
233
234         call = afs_alloc_call(net, type, GFP_NOFS);
235         if (!call)
236                 goto nomem_call;
237
238         if (request_size) {
239                 call->request_size = request_size;
240                 call->request = kmalloc(request_size, GFP_NOFS);
241                 if (!call->request)
242                         goto nomem_free;
243         }
244
245         if (reply_max) {
246                 call->reply_max = reply_max;
247                 call->buffer = kmalloc(reply_max, GFP_NOFS);
248                 if (!call->buffer)
249                         goto nomem_free;
250         }
251
252         afs_extract_to_buf(call, call->reply_max);
253         call->operation_ID = type->op;
254         init_waitqueue_head(&call->waitq);
255         return call;
256
257 nomem_free:
258         afs_put_call(call);
259 nomem_call:
260         return NULL;
261 }
262
263 /*
264  * clean up a call with flat buffer
265  */
266 void afs_flat_call_destructor(struct afs_call *call)
267 {
268         _enter("");
269
270         kfree(call->request);
271         call->request = NULL;
272         kfree(call->buffer);
273         call->buffer = NULL;
274 }
275
276 #define AFS_BVEC_MAX 8
277
278 /*
279  * Load the given bvec with the next few pages.
280  */
281 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
282                           struct bio_vec *bv, pgoff_t first, pgoff_t last,
283                           unsigned offset)
284 {
285         struct page *pages[AFS_BVEC_MAX];
286         unsigned int nr, n, i, to, bytes = 0;
287
288         nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
289         n = find_get_pages_contig(call->mapping, first, nr, pages);
290         ASSERTCMP(n, ==, nr);
291
292         msg->msg_flags |= MSG_MORE;
293         for (i = 0; i < nr; i++) {
294                 to = PAGE_SIZE;
295                 if (first + i >= last) {
296                         to = call->last_to;
297                         msg->msg_flags &= ~MSG_MORE;
298                 }
299                 bv[i].bv_page = pages[i];
300                 bv[i].bv_len = to - offset;
301                 bv[i].bv_offset = offset;
302                 bytes += to - offset;
303                 offset = 0;
304         }
305
306         iov_iter_bvec(&msg->msg_iter, WRITE, bv, nr, bytes);
307 }
308
309 /*
310  * Advance the AFS call state when the RxRPC call ends the transmit phase.
311  */
312 static void afs_notify_end_request_tx(struct sock *sock,
313                                       struct rxrpc_call *rxcall,
314                                       unsigned long call_user_ID)
315 {
316         struct afs_call *call = (struct afs_call *)call_user_ID;
317
318         afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
319 }
320
321 /*
322  * attach the data from a bunch of pages on an inode to a call
323  */
324 static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
325 {
326         struct bio_vec bv[AFS_BVEC_MAX];
327         unsigned int bytes, nr, loop, offset;
328         pgoff_t first = call->first, last = call->last;
329         int ret;
330
331         offset = call->first_offset;
332         call->first_offset = 0;
333
334         do {
335                 afs_load_bvec(call, msg, bv, first, last, offset);
336                 trace_afs_send_pages(call, msg, first, last, offset);
337
338                 offset = 0;
339                 bytes = msg->msg_iter.count;
340                 nr = msg->msg_iter.nr_segs;
341
342                 ret = rxrpc_kernel_send_data(call->net->socket, call->rxcall, msg,
343                                              bytes, afs_notify_end_request_tx);
344                 for (loop = 0; loop < nr; loop++)
345                         put_page(bv[loop].bv_page);
346                 if (ret < 0)
347                         break;
348
349                 first += nr;
350         } while (first <= last);
351
352         trace_afs_sent_pages(call, call->first, last, first, ret);
353         return ret;
354 }
355
356 /*
357  * initiate a call
358  */
359 long afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call,
360                    gfp_t gfp, bool async)
361 {
362         struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index];
363         struct rxrpc_call *rxcall;
364         struct msghdr msg;
365         struct kvec iov[1];
366         s64 tx_total_len;
367         int ret;
368
369         _enter(",{%pISp},", &srx->transport);
370
371         ASSERT(call->type != NULL);
372         ASSERT(call->type->name != NULL);
373
374         _debug("____MAKE %p{%s,%x} [%d]____",
375                call, call->type->name, key_serial(call->key),
376                atomic_read(&call->net->nr_outstanding_calls));
377
378         call->async = async;
379         call->addr_ix = ac->index;
380         call->alist = afs_get_addrlist(ac->alist);
381
382         /* Work out the length we're going to transmit.  This is awkward for
383          * calls such as FS.StoreData where there's an extra injection of data
384          * after the initial fixed part.
385          */
386         tx_total_len = call->request_size;
387         if (call->send_pages) {
388                 if (call->last == call->first) {
389                         tx_total_len += call->last_to - call->first_offset;
390                 } else {
391                         /* It looks mathematically like you should be able to
392                          * combine the following lines with the ones above, but
393                          * unsigned arithmetic is fun when it wraps...
394                          */
395                         tx_total_len += PAGE_SIZE - call->first_offset;
396                         tx_total_len += call->last_to;
397                         tx_total_len += (call->last - call->first - 1) * PAGE_SIZE;
398                 }
399         }
400
401         /* create a call */
402         rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
403                                          (unsigned long)call,
404                                          tx_total_len, gfp,
405                                          (async ?
406                                           afs_wake_up_async_call :
407                                           afs_wake_up_call_waiter),
408                                          call->upgrade,
409                                          call->debug_id);
410         if (IS_ERR(rxcall)) {
411                 ret = PTR_ERR(rxcall);
412                 call->error = ret;
413                 goto error_kill_call;
414         }
415
416         call->rxcall = rxcall;
417
418         /* send the request */
419         iov[0].iov_base = call->request;
420         iov[0].iov_len  = call->request_size;
421
422         msg.msg_name            = NULL;
423         msg.msg_namelen         = 0;
424         iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, call->request_size);
425         msg.msg_control         = NULL;
426         msg.msg_controllen      = 0;
427         msg.msg_flags           = MSG_WAITALL | (call->send_pages ? MSG_MORE : 0);
428
429         ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
430                                      &msg, call->request_size,
431                                      afs_notify_end_request_tx);
432         if (ret < 0)
433                 goto error_do_abort;
434
435         if (call->send_pages) {
436                 ret = afs_send_pages(call, &msg);
437                 if (ret < 0)
438                         goto error_do_abort;
439         }
440
441         /* at this point, an async call may no longer exist as it may have
442          * already completed */
443         if (call->async)
444                 return -EINPROGRESS;
445
446         return afs_wait_for_call_to_complete(call, ac);
447
448 error_do_abort:
449         call->state = AFS_CALL_COMPLETE;
450         if (ret != -ECONNABORTED) {
451                 rxrpc_kernel_abort_call(call->net->socket, rxcall,
452                                         RX_USER_ABORT, ret, "KSD");
453         } else {
454                 iov_iter_kvec(&msg.msg_iter, READ, NULL, 0, 0);
455                 rxrpc_kernel_recv_data(call->net->socket, rxcall,
456                                        &msg.msg_iter, false,
457                                        &call->abort_code, &call->service_id);
458                 ac->abort_code = call->abort_code;
459                 ac->responded = true;
460         }
461         call->error = ret;
462         trace_afs_call_done(call);
463 error_kill_call:
464         if (call->type->done)
465                 call->type->done(call);
466         afs_put_call(call);
467         ac->error = ret;
468         _leave(" = %d", ret);
469         return ret;
470 }
471
472 /*
473  * deliver messages to a call
474  */
475 static void afs_deliver_to_call(struct afs_call *call)
476 {
477         enum afs_call_state state;
478         u32 abort_code, remote_abort = 0;
479         int ret;
480
481         _enter("%s", call->type->name);
482
483         while (state = READ_ONCE(call->state),
484                state == AFS_CALL_CL_AWAIT_REPLY ||
485                state == AFS_CALL_SV_AWAIT_OP_ID ||
486                state == AFS_CALL_SV_AWAIT_REQUEST ||
487                state == AFS_CALL_SV_AWAIT_ACK
488                ) {
489                 if (state == AFS_CALL_SV_AWAIT_ACK) {
490                         iov_iter_kvec(&call->iter, READ, NULL, 0, 0);
491                         ret = rxrpc_kernel_recv_data(call->net->socket,
492                                                      call->rxcall, &call->iter,
493                                                      false, &remote_abort,
494                                                      &call->service_id);
495                         trace_afs_receive_data(call, &call->iter, false, ret);
496
497                         if (ret == -EINPROGRESS || ret == -EAGAIN)
498                                 return;
499                         if (ret < 0 || ret == 1) {
500                                 if (ret == 1)
501                                         ret = 0;
502                                 goto call_complete;
503                         }
504                         return;
505                 }
506
507                 if (call->want_reply_time &&
508                     rxrpc_kernel_get_reply_time(call->net->socket,
509                                                 call->rxcall,
510                                                 &call->reply_time))
511                         call->want_reply_time = false;
512
513                 ret = call->type->deliver(call);
514                 state = READ_ONCE(call->state);
515                 switch (ret) {
516                 case 0:
517                         afs_queue_call_work(call);
518                         if (state == AFS_CALL_CL_PROC_REPLY) {
519                                 if (call->cbi)
520                                         set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
521                                                 &call->cbi->server->flags);
522                                 goto call_complete;
523                         }
524                         ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
525                         goto done;
526                 case -EINPROGRESS:
527                 case -EAGAIN:
528                         goto out;
529                 case -ECONNABORTED:
530                         ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
531                         goto done;
532                 case -ENOTSUPP:
533                         abort_code = RXGEN_OPCODE;
534                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
535                                                 abort_code, ret, "KIV");
536                         goto local_abort;
537                 case -EIO:
538                         pr_err("kAFS: Call %u in bad state %u\n",
539                                call->debug_id, state);
540                         /* Fall through */
541                 case -ENODATA:
542                 case -EBADMSG:
543                 case -EMSGSIZE:
544                 default:
545                         abort_code = RXGEN_CC_UNMARSHAL;
546                         if (state != AFS_CALL_CL_AWAIT_REPLY)
547                                 abort_code = RXGEN_SS_UNMARSHAL;
548                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
549                                                 abort_code, ret, "KUM");
550                         goto local_abort;
551                 }
552         }
553
554 done:
555         if (call->type->done)
556                 call->type->done(call);
557         if (state == AFS_CALL_COMPLETE && call->incoming)
558                 afs_put_call(call);
559 out:
560         _leave("");
561         return;
562
563 local_abort:
564         abort_code = 0;
565 call_complete:
566         afs_set_call_complete(call, ret, remote_abort);
567         state = AFS_CALL_COMPLETE;
568         goto done;
569 }
570
571 /*
572  * wait synchronously for a call to complete
573  */
574 static long afs_wait_for_call_to_complete(struct afs_call *call,
575                                           struct afs_addr_cursor *ac)
576 {
577         signed long rtt2, timeout;
578         long ret;
579         u64 rtt;
580         u32 life, last_life;
581
582         DECLARE_WAITQUEUE(myself, current);
583
584         _enter("");
585
586         rtt = rxrpc_kernel_get_rtt(call->net->socket, call->rxcall);
587         rtt2 = nsecs_to_jiffies64(rtt) * 2;
588         if (rtt2 < 2)
589                 rtt2 = 2;
590
591         timeout = rtt2;
592         last_life = rxrpc_kernel_check_life(call->net->socket, call->rxcall);
593
594         add_wait_queue(&call->waitq, &myself);
595         for (;;) {
596                 set_current_state(TASK_UNINTERRUPTIBLE);
597
598                 /* deliver any messages that are in the queue */
599                 if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
600                     call->need_attention) {
601                         call->need_attention = false;
602                         __set_current_state(TASK_RUNNING);
603                         afs_deliver_to_call(call);
604                         continue;
605                 }
606
607                 if (afs_check_call_state(call, AFS_CALL_COMPLETE))
608                         break;
609
610                 life = rxrpc_kernel_check_life(call->net->socket, call->rxcall);
611                 if (timeout == 0 &&
612                     life == last_life && signal_pending(current))
613                                 break;
614
615                 if (life != last_life) {
616                         timeout = rtt2;
617                         last_life = life;
618                 }
619
620                 timeout = schedule_timeout(timeout);
621         }
622
623         remove_wait_queue(&call->waitq, &myself);
624         __set_current_state(TASK_RUNNING);
625
626         /* Kill off the call if it's still live. */
627         if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
628                 _debug("call interrupted");
629                 if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
630                                             RX_USER_ABORT, -EINTR, "KWI"))
631                         afs_set_call_complete(call, -EINTR, 0);
632         }
633
634         spin_lock_bh(&call->state_lock);
635         ac->abort_code = call->abort_code;
636         ac->error = call->error;
637         spin_unlock_bh(&call->state_lock);
638
639         ret = ac->error;
640         switch (ret) {
641         case 0:
642                 if (call->ret_reply0) {
643                         ret = (long)call->reply[0];
644                         call->reply[0] = NULL;
645                 }
646                 /* Fall through */
647         case -ECONNABORTED:
648                 ac->responded = true;
649                 break;
650         }
651
652         _debug("call complete");
653         afs_put_call(call);
654         _leave(" = %p", (void *)ret);
655         return ret;
656 }
657
658 /*
659  * wake up a waiting call
660  */
661 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
662                                     unsigned long call_user_ID)
663 {
664         struct afs_call *call = (struct afs_call *)call_user_ID;
665
666         call->need_attention = true;
667         wake_up(&call->waitq);
668 }
669
670 /*
671  * wake up an asynchronous call
672  */
673 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
674                                    unsigned long call_user_ID)
675 {
676         struct afs_call *call = (struct afs_call *)call_user_ID;
677         int u;
678
679         trace_afs_notify_call(rxcall, call);
680         call->need_attention = true;
681
682         u = atomic_fetch_add_unless(&call->usage, 1, 0);
683         if (u != 0) {
684                 trace_afs_call(call, afs_call_trace_wake, u,
685                                atomic_read(&call->net->nr_outstanding_calls),
686                                __builtin_return_address(0));
687
688                 if (!queue_work(afs_async_calls, &call->async_work))
689                         afs_put_call(call);
690         }
691 }
692
693 /*
694  * Delete an asynchronous call.  The work item carries a ref to the call struct
695  * that we need to release.
696  */
697 static void afs_delete_async_call(struct work_struct *work)
698 {
699         struct afs_call *call = container_of(work, struct afs_call, async_work);
700
701         _enter("");
702
703         afs_put_call(call);
704
705         _leave("");
706 }
707
708 /*
709  * Perform I/O processing on an asynchronous call.  The work item carries a ref
710  * to the call struct that we either need to release or to pass on.
711  */
712 static void afs_process_async_call(struct work_struct *work)
713 {
714         struct afs_call *call = container_of(work, struct afs_call, async_work);
715
716         _enter("");
717
718         if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
719                 call->need_attention = false;
720                 afs_deliver_to_call(call);
721         }
722
723         if (call->state == AFS_CALL_COMPLETE) {
724                 /* We have two refs to release - one from the alloc and one
725                  * queued with the work item - and we can't just deallocate the
726                  * call because the work item may be queued again.
727                  */
728                 call->async_work.func = afs_delete_async_call;
729                 if (!queue_work(afs_async_calls, &call->async_work))
730                         afs_put_call(call);
731         }
732
733         afs_put_call(call);
734         _leave("");
735 }
736
737 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
738 {
739         struct afs_call *call = (struct afs_call *)user_call_ID;
740
741         call->rxcall = rxcall;
742 }
743
744 /*
745  * Charge the incoming call preallocation.
746  */
747 void afs_charge_preallocation(struct work_struct *work)
748 {
749         struct afs_net *net =
750                 container_of(work, struct afs_net, charge_preallocation_work);
751         struct afs_call *call = net->spare_incoming_call;
752
753         for (;;) {
754                 if (!call) {
755                         call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
756                         if (!call)
757                                 break;
758
759                         call->async = true;
760                         call->state = AFS_CALL_SV_AWAIT_OP_ID;
761                         init_waitqueue_head(&call->waitq);
762                         afs_extract_to_tmp(call);
763                 }
764
765                 if (rxrpc_kernel_charge_accept(net->socket,
766                                                afs_wake_up_async_call,
767                                                afs_rx_attach,
768                                                (unsigned long)call,
769                                                GFP_KERNEL,
770                                                call->debug_id) < 0)
771                         break;
772                 call = NULL;
773         }
774         net->spare_incoming_call = call;
775 }
776
777 /*
778  * Discard a preallocated call when a socket is shut down.
779  */
780 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
781                                     unsigned long user_call_ID)
782 {
783         struct afs_call *call = (struct afs_call *)user_call_ID;
784
785         call->rxcall = NULL;
786         afs_put_call(call);
787 }
788
789 /*
790  * Notification of an incoming call.
791  */
792 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
793                             unsigned long user_call_ID)
794 {
795         struct afs_net *net = afs_sock2net(sk);
796
797         queue_work(afs_wq, &net->charge_preallocation_work);
798 }
799
800 /*
801  * Grab the operation ID from an incoming cache manager call.  The socket
802  * buffer is discarded on error or if we don't yet have sufficient data.
803  */
804 static int afs_deliver_cm_op_id(struct afs_call *call)
805 {
806         int ret;
807
808         _enter("{%zu}", iov_iter_count(call->_iter));
809
810         /* the operation ID forms the first four bytes of the request data */
811         ret = afs_extract_data(call, true);
812         if (ret < 0)
813                 return ret;
814
815         call->operation_ID = ntohl(call->tmp);
816         afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
817
818         /* ask the cache manager to route the call (it'll change the call type
819          * if successful) */
820         if (!afs_cm_incoming_call(call))
821                 return -ENOTSUPP;
822
823         trace_afs_cb_call(call);
824
825         /* pass responsibility for the remainer of this message off to the
826          * cache manager op */
827         return call->type->deliver(call);
828 }
829
830 /*
831  * Advance the AFS call state when an RxRPC service call ends the transmit
832  * phase.
833  */
834 static void afs_notify_end_reply_tx(struct sock *sock,
835                                     struct rxrpc_call *rxcall,
836                                     unsigned long call_user_ID)
837 {
838         struct afs_call *call = (struct afs_call *)call_user_ID;
839
840         afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
841 }
842
843 /*
844  * send an empty reply
845  */
846 void afs_send_empty_reply(struct afs_call *call)
847 {
848         struct afs_net *net = call->net;
849         struct msghdr msg;
850
851         _enter("");
852
853         rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
854
855         msg.msg_name            = NULL;
856         msg.msg_namelen         = 0;
857         iov_iter_kvec(&msg.msg_iter, WRITE, NULL, 0, 0);
858         msg.msg_control         = NULL;
859         msg.msg_controllen      = 0;
860         msg.msg_flags           = 0;
861
862         switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
863                                        afs_notify_end_reply_tx)) {
864         case 0:
865                 _leave(" [replied]");
866                 return;
867
868         case -ENOMEM:
869                 _debug("oom");
870                 rxrpc_kernel_abort_call(net->socket, call->rxcall,
871                                         RX_USER_ABORT, -ENOMEM, "KOO");
872         default:
873                 _leave(" [error]");
874                 return;
875         }
876 }
877
878 /*
879  * send a simple reply
880  */
881 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
882 {
883         struct afs_net *net = call->net;
884         struct msghdr msg;
885         struct kvec iov[1];
886         int n;
887
888         _enter("");
889
890         rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
891
892         iov[0].iov_base         = (void *) buf;
893         iov[0].iov_len          = len;
894         msg.msg_name            = NULL;
895         msg.msg_namelen         = 0;
896         iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, len);
897         msg.msg_control         = NULL;
898         msg.msg_controllen      = 0;
899         msg.msg_flags           = 0;
900
901         n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
902                                    afs_notify_end_reply_tx);
903         if (n >= 0) {
904                 /* Success */
905                 _leave(" [replied]");
906                 return;
907         }
908
909         if (n == -ENOMEM) {
910                 _debug("oom");
911                 rxrpc_kernel_abort_call(net->socket, call->rxcall,
912                                         RX_USER_ABORT, -ENOMEM, "KOO");
913         }
914         _leave(" [error]");
915 }
916
917 /*
918  * Extract a piece of data from the received data socket buffers.
919  */
920 int afs_extract_data(struct afs_call *call, bool want_more)
921 {
922         struct afs_net *net = call->net;
923         struct iov_iter *iter = call->_iter;
924         enum afs_call_state state;
925         u32 remote_abort = 0;
926         int ret;
927
928         _enter("{%s,%zu},%d", call->type->name, iov_iter_count(iter), want_more);
929
930         ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
931                                      want_more, &remote_abort,
932                                      &call->service_id);
933         if (ret == 0 || ret == -EAGAIN)
934                 return ret;
935
936         state = READ_ONCE(call->state);
937         if (ret == 1) {
938                 switch (state) {
939                 case AFS_CALL_CL_AWAIT_REPLY:
940                         afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
941                         break;
942                 case AFS_CALL_SV_AWAIT_REQUEST:
943                         afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
944                         break;
945                 case AFS_CALL_COMPLETE:
946                         kdebug("prem complete %d", call->error);
947                         return afs_io_error(call, afs_io_error_extract);
948                 default:
949                         break;
950                 }
951                 return 0;
952         }
953
954         afs_set_call_complete(call, ret, remote_abort);
955         return ret;
956 }
957
958 /*
959  * Log protocol error production.
960  */
961 noinline int afs_protocol_error(struct afs_call *call, int error,
962                                 enum afs_eproto_cause cause)
963 {
964         trace_afs_protocol_error(call, error, cause);
965         return error;
966 }