Merge tag 'rpmsg-v4.20' of git://github.com/andersson/remoteproc
[sfrench/cifs-2.6.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/log2.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/slab.h>
17 #include <linux/dmi.h>
18 #include <linux/dma-mapping.h>
19
20 #include "xhci.h"
21 #include "xhci-trace.h"
22 #include "xhci-mtk.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42         struct xhci_segment *seg = ring->first_seg;
43
44         if (!td || !td->start_seg)
45                 return false;
46         do {
47                 if (seg == td->start_seg)
48                         return true;
49                 seg = seg->next;
50         } while (seg && seg != ring->first_seg);
51
52         return false;
53 }
54
55 /* TODO: copied from ehci-hcd.c - can this be refactored? */
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71         u32     result;
72
73         do {
74                 result = readl(ptr);
75                 if (result == ~(u32)0)          /* card removed */
76                         return -ENODEV;
77                 result &= mask;
78                 if (result == done)
79                         return 0;
80                 udelay(1);
81                 usec--;
82         } while (usec > 0);
83         return -ETIMEDOUT;
84 }
85
86 /*
87  * Disable interrupts and begin the xHCI halting process.
88  */
89 void xhci_quiesce(struct xhci_hcd *xhci)
90 {
91         u32 halted;
92         u32 cmd;
93         u32 mask;
94
95         mask = ~(XHCI_IRQS);
96         halted = readl(&xhci->op_regs->status) & STS_HALT;
97         if (!halted)
98                 mask &= ~CMD_RUN;
99
100         cmd = readl(&xhci->op_regs->command);
101         cmd &= mask;
102         writel(cmd, &xhci->op_regs->command);
103 }
104
105 /*
106  * Force HC into halt state.
107  *
108  * Disable any IRQs and clear the run/stop bit.
109  * HC will complete any current and actively pipelined transactions, and
110  * should halt within 16 ms of the run/stop bit being cleared.
111  * Read HC Halted bit in the status register to see when the HC is finished.
112  */
113 int xhci_halt(struct xhci_hcd *xhci)
114 {
115         int ret;
116         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
117         xhci_quiesce(xhci);
118
119         ret = xhci_handshake(&xhci->op_regs->status,
120                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
121         if (ret) {
122                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
123                 return ret;
124         }
125         xhci->xhc_state |= XHCI_STATE_HALTED;
126         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
127         return ret;
128 }
129
130 /*
131  * Set the run bit and wait for the host to be running.
132  */
133 int xhci_start(struct xhci_hcd *xhci)
134 {
135         u32 temp;
136         int ret;
137
138         temp = readl(&xhci->op_regs->command);
139         temp |= (CMD_RUN);
140         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
141                         temp);
142         writel(temp, &xhci->op_regs->command);
143
144         /*
145          * Wait for the HCHalted Status bit to be 0 to indicate the host is
146          * running.
147          */
148         ret = xhci_handshake(&xhci->op_regs->status,
149                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
150         if (ret == -ETIMEDOUT)
151                 xhci_err(xhci, "Host took too long to start, "
152                                 "waited %u microseconds.\n",
153                                 XHCI_MAX_HALT_USEC);
154         if (!ret)
155                 /* clear state flags. Including dying, halted or removing */
156                 xhci->xhc_state = 0;
157
158         return ret;
159 }
160
161 /*
162  * Reset a halted HC.
163  *
164  * This resets pipelines, timers, counters, state machines, etc.
165  * Transactions will be terminated immediately, and operational registers
166  * will be set to their defaults.
167  */
168 int xhci_reset(struct xhci_hcd *xhci)
169 {
170         u32 command;
171         u32 state;
172         int ret, i;
173
174         state = readl(&xhci->op_regs->status);
175
176         if (state == ~(u32)0) {
177                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
178                 return -ENODEV;
179         }
180
181         if ((state & STS_HALT) == 0) {
182                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
183                 return 0;
184         }
185
186         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
187         command = readl(&xhci->op_regs->command);
188         command |= CMD_RESET;
189         writel(command, &xhci->op_regs->command);
190
191         /* Existing Intel xHCI controllers require a delay of 1 mS,
192          * after setting the CMD_RESET bit, and before accessing any
193          * HC registers. This allows the HC to complete the
194          * reset operation and be ready for HC register access.
195          * Without this delay, the subsequent HC register access,
196          * may result in a system hang very rarely.
197          */
198         if (xhci->quirks & XHCI_INTEL_HOST)
199                 udelay(1000);
200
201         ret = xhci_handshake(&xhci->op_regs->command,
202                         CMD_RESET, 0, 10 * 1000 * 1000);
203         if (ret)
204                 return ret;
205
206         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
207                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
208
209         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
210                          "Wait for controller to be ready for doorbell rings");
211         /*
212          * xHCI cannot write to any doorbells or operational registers other
213          * than status until the "Controller Not Ready" flag is cleared.
214          */
215         ret = xhci_handshake(&xhci->op_regs->status,
216                         STS_CNR, 0, 10 * 1000 * 1000);
217
218         for (i = 0; i < 2; i++) {
219                 xhci->bus_state[i].port_c_suspend = 0;
220                 xhci->bus_state[i].suspended_ports = 0;
221                 xhci->bus_state[i].resuming_ports = 0;
222         }
223
224         return ret;
225 }
226
227 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
228 {
229         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
230         int err, i;
231         u64 val;
232
233         /*
234          * Some Renesas controllers get into a weird state if they are
235          * reset while programmed with 64bit addresses (they will preserve
236          * the top half of the address in internal, non visible
237          * registers). You end up with half the address coming from the
238          * kernel, and the other half coming from the firmware. Also,
239          * changing the programming leads to extra accesses even if the
240          * controller is supposed to be halted. The controller ends up with
241          * a fatal fault, and is then ripe for being properly reset.
242          *
243          * Special care is taken to only apply this if the device is behind
244          * an iommu. Doing anything when there is no iommu is definitely
245          * unsafe...
246          */
247         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !dev->iommu_group)
248                 return;
249
250         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
251
252         /* Clear HSEIE so that faults do not get signaled */
253         val = readl(&xhci->op_regs->command);
254         val &= ~CMD_HSEIE;
255         writel(val, &xhci->op_regs->command);
256
257         /* Clear HSE (aka FATAL) */
258         val = readl(&xhci->op_regs->status);
259         val |= STS_FATAL;
260         writel(val, &xhci->op_regs->status);
261
262         /* Now zero the registers, and brace for impact */
263         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
264         if (upper_32_bits(val))
265                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
266         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
267         if (upper_32_bits(val))
268                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
269
270         for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
271                 struct xhci_intr_reg __iomem *ir;
272
273                 ir = &xhci->run_regs->ir_set[i];
274                 val = xhci_read_64(xhci, &ir->erst_base);
275                 if (upper_32_bits(val))
276                         xhci_write_64(xhci, 0, &ir->erst_base);
277                 val= xhci_read_64(xhci, &ir->erst_dequeue);
278                 if (upper_32_bits(val))
279                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
280         }
281
282         /* Wait for the fault to appear. It will be cleared on reset */
283         err = xhci_handshake(&xhci->op_regs->status,
284                              STS_FATAL, STS_FATAL,
285                              XHCI_MAX_HALT_USEC);
286         if (!err)
287                 xhci_info(xhci, "Fault detected\n");
288 }
289
290 #ifdef CONFIG_USB_PCI
291 /*
292  * Set up MSI
293  */
294 static int xhci_setup_msi(struct xhci_hcd *xhci)
295 {
296         int ret;
297         /*
298          * TODO:Check with MSI Soc for sysdev
299          */
300         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
301
302         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
303         if (ret < 0) {
304                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
305                                 "failed to allocate MSI entry");
306                 return ret;
307         }
308
309         ret = request_irq(pdev->irq, xhci_msi_irq,
310                                 0, "xhci_hcd", xhci_to_hcd(xhci));
311         if (ret) {
312                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
313                                 "disable MSI interrupt");
314                 pci_free_irq_vectors(pdev);
315         }
316
317         return ret;
318 }
319
320 /*
321  * Set up MSI-X
322  */
323 static int xhci_setup_msix(struct xhci_hcd *xhci)
324 {
325         int i, ret = 0;
326         struct usb_hcd *hcd = xhci_to_hcd(xhci);
327         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
328
329         /*
330          * calculate number of msi-x vectors supported.
331          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
332          *   with max number of interrupters based on the xhci HCSPARAMS1.
333          * - num_online_cpus: maximum msi-x vectors per CPUs core.
334          *   Add additional 1 vector to ensure always available interrupt.
335          */
336         xhci->msix_count = min(num_online_cpus() + 1,
337                                 HCS_MAX_INTRS(xhci->hcs_params1));
338
339         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
340                         PCI_IRQ_MSIX);
341         if (ret < 0) {
342                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
343                                 "Failed to enable MSI-X");
344                 return ret;
345         }
346
347         for (i = 0; i < xhci->msix_count; i++) {
348                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
349                                 "xhci_hcd", xhci_to_hcd(xhci));
350                 if (ret)
351                         goto disable_msix;
352         }
353
354         hcd->msix_enabled = 1;
355         return ret;
356
357 disable_msix:
358         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
359         while (--i >= 0)
360                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
361         pci_free_irq_vectors(pdev);
362         return ret;
363 }
364
365 /* Free any IRQs and disable MSI-X */
366 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
367 {
368         struct usb_hcd *hcd = xhci_to_hcd(xhci);
369         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
370
371         if (xhci->quirks & XHCI_PLAT)
372                 return;
373
374         /* return if using legacy interrupt */
375         if (hcd->irq > 0)
376                 return;
377
378         if (hcd->msix_enabled) {
379                 int i;
380
381                 for (i = 0; i < xhci->msix_count; i++)
382                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
383         } else {
384                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
385         }
386
387         pci_free_irq_vectors(pdev);
388         hcd->msix_enabled = 0;
389 }
390
391 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
392 {
393         struct usb_hcd *hcd = xhci_to_hcd(xhci);
394
395         if (hcd->msix_enabled) {
396                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
397                 int i;
398
399                 for (i = 0; i < xhci->msix_count; i++)
400                         synchronize_irq(pci_irq_vector(pdev, i));
401         }
402 }
403
404 static int xhci_try_enable_msi(struct usb_hcd *hcd)
405 {
406         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
407         struct pci_dev  *pdev;
408         int ret;
409
410         /* The xhci platform device has set up IRQs through usb_add_hcd. */
411         if (xhci->quirks & XHCI_PLAT)
412                 return 0;
413
414         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
415         /*
416          * Some Fresco Logic host controllers advertise MSI, but fail to
417          * generate interrupts.  Don't even try to enable MSI.
418          */
419         if (xhci->quirks & XHCI_BROKEN_MSI)
420                 goto legacy_irq;
421
422         /* unregister the legacy interrupt */
423         if (hcd->irq)
424                 free_irq(hcd->irq, hcd);
425         hcd->irq = 0;
426
427         ret = xhci_setup_msix(xhci);
428         if (ret)
429                 /* fall back to msi*/
430                 ret = xhci_setup_msi(xhci);
431
432         if (!ret) {
433                 hcd->msi_enabled = 1;
434                 return 0;
435         }
436
437         if (!pdev->irq) {
438                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
439                 return -EINVAL;
440         }
441
442  legacy_irq:
443         if (!strlen(hcd->irq_descr))
444                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
445                          hcd->driver->description, hcd->self.busnum);
446
447         /* fall back to legacy interrupt*/
448         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
449                         hcd->irq_descr, hcd);
450         if (ret) {
451                 xhci_err(xhci, "request interrupt %d failed\n",
452                                 pdev->irq);
453                 return ret;
454         }
455         hcd->irq = pdev->irq;
456         return 0;
457 }
458
459 #else
460
461 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
462 {
463         return 0;
464 }
465
466 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
467 {
468 }
469
470 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
471 {
472 }
473
474 #endif
475
476 static void compliance_mode_recovery(struct timer_list *t)
477 {
478         struct xhci_hcd *xhci;
479         struct usb_hcd *hcd;
480         struct xhci_hub *rhub;
481         u32 temp;
482         int i;
483
484         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
485         rhub = &xhci->usb3_rhub;
486
487         for (i = 0; i < rhub->num_ports; i++) {
488                 temp = readl(rhub->ports[i]->addr);
489                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
490                         /*
491                          * Compliance Mode Detected. Letting USB Core
492                          * handle the Warm Reset
493                          */
494                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
495                                         "Compliance mode detected->port %d",
496                                         i + 1);
497                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
498                                         "Attempting compliance mode recovery");
499                         hcd = xhci->shared_hcd;
500
501                         if (hcd->state == HC_STATE_SUSPENDED)
502                                 usb_hcd_resume_root_hub(hcd);
503
504                         usb_hcd_poll_rh_status(hcd);
505                 }
506         }
507
508         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
509                 mod_timer(&xhci->comp_mode_recovery_timer,
510                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
511 }
512
513 /*
514  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
515  * that causes ports behind that hardware to enter compliance mode sometimes.
516  * The quirk creates a timer that polls every 2 seconds the link state of
517  * each host controller's port and recovers it by issuing a Warm reset
518  * if Compliance mode is detected, otherwise the port will become "dead" (no
519  * device connections or disconnections will be detected anymore). Becasue no
520  * status event is generated when entering compliance mode (per xhci spec),
521  * this quirk is needed on systems that have the failing hardware installed.
522  */
523 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
524 {
525         xhci->port_status_u0 = 0;
526         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
527                     0);
528         xhci->comp_mode_recovery_timer.expires = jiffies +
529                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
530
531         add_timer(&xhci->comp_mode_recovery_timer);
532         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
533                         "Compliance mode recovery timer initialized");
534 }
535
536 /*
537  * This function identifies the systems that have installed the SN65LVPE502CP
538  * USB3.0 re-driver and that need the Compliance Mode Quirk.
539  * Systems:
540  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
541  */
542 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
543 {
544         const char *dmi_product_name, *dmi_sys_vendor;
545
546         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
547         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
548         if (!dmi_product_name || !dmi_sys_vendor)
549                 return false;
550
551         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
552                 return false;
553
554         if (strstr(dmi_product_name, "Z420") ||
555                         strstr(dmi_product_name, "Z620") ||
556                         strstr(dmi_product_name, "Z820") ||
557                         strstr(dmi_product_name, "Z1 Workstation"))
558                 return true;
559
560         return false;
561 }
562
563 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
564 {
565         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
566 }
567
568
569 /*
570  * Initialize memory for HCD and xHC (one-time init).
571  *
572  * Program the PAGESIZE register, initialize the device context array, create
573  * device contexts (?), set up a command ring segment (or two?), create event
574  * ring (one for now).
575  */
576 static int xhci_init(struct usb_hcd *hcd)
577 {
578         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
579         int retval = 0;
580
581         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
582         spin_lock_init(&xhci->lock);
583         if (xhci->hci_version == 0x95 && link_quirk) {
584                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
585                                 "QUIRK: Not clearing Link TRB chain bits.");
586                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
587         } else {
588                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
589                                 "xHCI doesn't need link TRB QUIRK");
590         }
591         retval = xhci_mem_init(xhci, GFP_KERNEL);
592         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
593
594         /* Initializing Compliance Mode Recovery Data If Needed */
595         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
596                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
597                 compliance_mode_recovery_timer_init(xhci);
598         }
599
600         return retval;
601 }
602
603 /*-------------------------------------------------------------------------*/
604
605
606 static int xhci_run_finished(struct xhci_hcd *xhci)
607 {
608         if (xhci_start(xhci)) {
609                 xhci_halt(xhci);
610                 return -ENODEV;
611         }
612         xhci->shared_hcd->state = HC_STATE_RUNNING;
613         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
614
615         if (xhci->quirks & XHCI_NEC_HOST)
616                 xhci_ring_cmd_db(xhci);
617
618         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
619                         "Finished xhci_run for USB3 roothub");
620         return 0;
621 }
622
623 /*
624  * Start the HC after it was halted.
625  *
626  * This function is called by the USB core when the HC driver is added.
627  * Its opposite is xhci_stop().
628  *
629  * xhci_init() must be called once before this function can be called.
630  * Reset the HC, enable device slot contexts, program DCBAAP, and
631  * set command ring pointer and event ring pointer.
632  *
633  * Setup MSI-X vectors and enable interrupts.
634  */
635 int xhci_run(struct usb_hcd *hcd)
636 {
637         u32 temp;
638         u64 temp_64;
639         int ret;
640         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
641
642         /* Start the xHCI host controller running only after the USB 2.0 roothub
643          * is setup.
644          */
645
646         hcd->uses_new_polling = 1;
647         if (!usb_hcd_is_primary_hcd(hcd))
648                 return xhci_run_finished(xhci);
649
650         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
651
652         ret = xhci_try_enable_msi(hcd);
653         if (ret)
654                 return ret;
655
656         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
657         temp_64 &= ~ERST_PTR_MASK;
658         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
659                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
660
661         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
662                         "// Set the interrupt modulation register");
663         temp = readl(&xhci->ir_set->irq_control);
664         temp &= ~ER_IRQ_INTERVAL_MASK;
665         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
666         writel(temp, &xhci->ir_set->irq_control);
667
668         /* Set the HCD state before we enable the irqs */
669         temp = readl(&xhci->op_regs->command);
670         temp |= (CMD_EIE);
671         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
672                         "// Enable interrupts, cmd = 0x%x.", temp);
673         writel(temp, &xhci->op_regs->command);
674
675         temp = readl(&xhci->ir_set->irq_pending);
676         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
677                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
678                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
679         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
680
681         if (xhci->quirks & XHCI_NEC_HOST) {
682                 struct xhci_command *command;
683
684                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
685                 if (!command)
686                         return -ENOMEM;
687
688                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
689                                 TRB_TYPE(TRB_NEC_GET_FW));
690                 if (ret)
691                         xhci_free_command(xhci, command);
692         }
693         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
694                         "Finished xhci_run for USB2 roothub");
695
696         xhci_dbc_init(xhci);
697
698         xhci_debugfs_init(xhci);
699
700         return 0;
701 }
702 EXPORT_SYMBOL_GPL(xhci_run);
703
704 /*
705  * Stop xHCI driver.
706  *
707  * This function is called by the USB core when the HC driver is removed.
708  * Its opposite is xhci_run().
709  *
710  * Disable device contexts, disable IRQs, and quiesce the HC.
711  * Reset the HC, finish any completed transactions, and cleanup memory.
712  */
713 static void xhci_stop(struct usb_hcd *hcd)
714 {
715         u32 temp;
716         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
717
718         mutex_lock(&xhci->mutex);
719
720         /* Only halt host and free memory after both hcds are removed */
721         if (!usb_hcd_is_primary_hcd(hcd)) {
722                 /* usb core will free this hcd shortly, unset pointer */
723                 xhci->shared_hcd = NULL;
724                 mutex_unlock(&xhci->mutex);
725                 return;
726         }
727
728         xhci_dbc_exit(xhci);
729
730         spin_lock_irq(&xhci->lock);
731         xhci->xhc_state |= XHCI_STATE_HALTED;
732         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
733         xhci_halt(xhci);
734         xhci_reset(xhci);
735         spin_unlock_irq(&xhci->lock);
736
737         xhci_cleanup_msix(xhci);
738
739         /* Deleting Compliance Mode Recovery Timer */
740         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
741                         (!(xhci_all_ports_seen_u0(xhci)))) {
742                 del_timer_sync(&xhci->comp_mode_recovery_timer);
743                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
744                                 "%s: compliance mode recovery timer deleted",
745                                 __func__);
746         }
747
748         if (xhci->quirks & XHCI_AMD_PLL_FIX)
749                 usb_amd_dev_put();
750
751         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
752                         "// Disabling event ring interrupts");
753         temp = readl(&xhci->op_regs->status);
754         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
755         temp = readl(&xhci->ir_set->irq_pending);
756         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
757
758         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
759         xhci_mem_cleanup(xhci);
760         xhci_debugfs_exit(xhci);
761         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
762                         "xhci_stop completed - status = %x",
763                         readl(&xhci->op_regs->status));
764         mutex_unlock(&xhci->mutex);
765 }
766
767 /*
768  * Shutdown HC (not bus-specific)
769  *
770  * This is called when the machine is rebooting or halting.  We assume that the
771  * machine will be powered off, and the HC's internal state will be reset.
772  * Don't bother to free memory.
773  *
774  * This will only ever be called with the main usb_hcd (the USB3 roothub).
775  */
776 static void xhci_shutdown(struct usb_hcd *hcd)
777 {
778         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
779
780         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
781                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
782
783         spin_lock_irq(&xhci->lock);
784         xhci_halt(xhci);
785         /* Workaround for spurious wakeups at shutdown with HSW */
786         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
787                 xhci_reset(xhci);
788         spin_unlock_irq(&xhci->lock);
789
790         xhci_cleanup_msix(xhci);
791
792         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
793                         "xhci_shutdown completed - status = %x",
794                         readl(&xhci->op_regs->status));
795
796         /* Yet another workaround for spurious wakeups at shutdown with HSW */
797         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
798                 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
799 }
800
801 #ifdef CONFIG_PM
802 static void xhci_save_registers(struct xhci_hcd *xhci)
803 {
804         xhci->s3.command = readl(&xhci->op_regs->command);
805         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
806         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
807         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
808         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
809         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
810         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
811         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
812         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
813 }
814
815 static void xhci_restore_registers(struct xhci_hcd *xhci)
816 {
817         writel(xhci->s3.command, &xhci->op_regs->command);
818         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
819         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
820         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
821         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
822         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
823         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
824         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
825         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
826 }
827
828 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
829 {
830         u64     val_64;
831
832         /* step 2: initialize command ring buffer */
833         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
834         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
835                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
836                                       xhci->cmd_ring->dequeue) &
837                  (u64) ~CMD_RING_RSVD_BITS) |
838                 xhci->cmd_ring->cycle_state;
839         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
840                         "// Setting command ring address to 0x%llx",
841                         (long unsigned long) val_64);
842         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
843 }
844
845 /*
846  * The whole command ring must be cleared to zero when we suspend the host.
847  *
848  * The host doesn't save the command ring pointer in the suspend well, so we
849  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
850  * aligned, because of the reserved bits in the command ring dequeue pointer
851  * register.  Therefore, we can't just set the dequeue pointer back in the
852  * middle of the ring (TRBs are 16-byte aligned).
853  */
854 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
855 {
856         struct xhci_ring *ring;
857         struct xhci_segment *seg;
858
859         ring = xhci->cmd_ring;
860         seg = ring->deq_seg;
861         do {
862                 memset(seg->trbs, 0,
863                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
864                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
865                         cpu_to_le32(~TRB_CYCLE);
866                 seg = seg->next;
867         } while (seg != ring->deq_seg);
868
869         /* Reset the software enqueue and dequeue pointers */
870         ring->deq_seg = ring->first_seg;
871         ring->dequeue = ring->first_seg->trbs;
872         ring->enq_seg = ring->deq_seg;
873         ring->enqueue = ring->dequeue;
874
875         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
876         /*
877          * Ring is now zeroed, so the HW should look for change of ownership
878          * when the cycle bit is set to 1.
879          */
880         ring->cycle_state = 1;
881
882         /*
883          * Reset the hardware dequeue pointer.
884          * Yes, this will need to be re-written after resume, but we're paranoid
885          * and want to make sure the hardware doesn't access bogus memory
886          * because, say, the BIOS or an SMI started the host without changing
887          * the command ring pointers.
888          */
889         xhci_set_cmd_ring_deq(xhci);
890 }
891
892 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
893 {
894         struct xhci_port **ports;
895         int port_index;
896         unsigned long flags;
897         u32 t1, t2;
898
899         spin_lock_irqsave(&xhci->lock, flags);
900
901         /* disable usb3 ports Wake bits */
902         port_index = xhci->usb3_rhub.num_ports;
903         ports = xhci->usb3_rhub.ports;
904         while (port_index--) {
905                 t1 = readl(ports[port_index]->addr);
906                 t1 = xhci_port_state_to_neutral(t1);
907                 t2 = t1 & ~PORT_WAKE_BITS;
908                 if (t1 != t2)
909                         writel(t2, ports[port_index]->addr);
910         }
911
912         /* disable usb2 ports Wake bits */
913         port_index = xhci->usb2_rhub.num_ports;
914         ports = xhci->usb2_rhub.ports;
915         while (port_index--) {
916                 t1 = readl(ports[port_index]->addr);
917                 t1 = xhci_port_state_to_neutral(t1);
918                 t2 = t1 & ~PORT_WAKE_BITS;
919                 if (t1 != t2)
920                         writel(t2, ports[port_index]->addr);
921         }
922
923         spin_unlock_irqrestore(&xhci->lock, flags);
924 }
925
926 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
927 {
928         struct xhci_port        **ports;
929         int                     port_index;
930         u32                     status;
931         u32                     portsc;
932
933         status = readl(&xhci->op_regs->status);
934         if (status & STS_EINT)
935                 return true;
936         /*
937          * Checking STS_EINT is not enough as there is a lag between a change
938          * bit being set and the Port Status Change Event that it generated
939          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
940          */
941
942         port_index = xhci->usb2_rhub.num_ports;
943         ports = xhci->usb2_rhub.ports;
944         while (port_index--) {
945                 portsc = readl(ports[port_index]->addr);
946                 if (portsc & PORT_CHANGE_MASK ||
947                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
948                         return true;
949         }
950         port_index = xhci->usb3_rhub.num_ports;
951         ports = xhci->usb3_rhub.ports;
952         while (port_index--) {
953                 portsc = readl(ports[port_index]->addr);
954                 if (portsc & PORT_CHANGE_MASK ||
955                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
956                         return true;
957         }
958         return false;
959 }
960
961 /*
962  * Stop HC (not bus-specific)
963  *
964  * This is called when the machine transition into S3/S4 mode.
965  *
966  */
967 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
968 {
969         int                     rc = 0;
970         unsigned int            delay = XHCI_MAX_HALT_USEC;
971         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
972         u32                     command;
973
974         if (!hcd->state)
975                 return 0;
976
977         if (hcd->state != HC_STATE_SUSPENDED ||
978                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
979                 return -EINVAL;
980
981         xhci_dbc_suspend(xhci);
982
983         /* Clear root port wake on bits if wakeup not allowed. */
984         if (!do_wakeup)
985                 xhci_disable_port_wake_on_bits(xhci);
986
987         /* Don't poll the roothubs on bus suspend. */
988         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
989         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
990         del_timer_sync(&hcd->rh_timer);
991         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
992         del_timer_sync(&xhci->shared_hcd->rh_timer);
993
994         if (xhci->quirks & XHCI_SUSPEND_DELAY)
995                 usleep_range(1000, 1500);
996
997         spin_lock_irq(&xhci->lock);
998         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
999         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1000         /* step 1: stop endpoint */
1001         /* skipped assuming that port suspend has done */
1002
1003         /* step 2: clear Run/Stop bit */
1004         command = readl(&xhci->op_regs->command);
1005         command &= ~CMD_RUN;
1006         writel(command, &xhci->op_regs->command);
1007
1008         /* Some chips from Fresco Logic need an extraordinary delay */
1009         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1010
1011         if (xhci_handshake(&xhci->op_regs->status,
1012                       STS_HALT, STS_HALT, delay)) {
1013                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1014                 spin_unlock_irq(&xhci->lock);
1015                 return -ETIMEDOUT;
1016         }
1017         xhci_clear_command_ring(xhci);
1018
1019         /* step 3: save registers */
1020         xhci_save_registers(xhci);
1021
1022         /* step 4: set CSS flag */
1023         command = readl(&xhci->op_regs->command);
1024         command |= CMD_CSS;
1025         writel(command, &xhci->op_regs->command);
1026         if (xhci_handshake(&xhci->op_regs->status,
1027                                 STS_SAVE, 0, 10 * 1000)) {
1028                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
1029                 spin_unlock_irq(&xhci->lock);
1030                 return -ETIMEDOUT;
1031         }
1032         spin_unlock_irq(&xhci->lock);
1033
1034         /*
1035          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1036          * is about to be suspended.
1037          */
1038         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1039                         (!(xhci_all_ports_seen_u0(xhci)))) {
1040                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1041                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1042                                 "%s: compliance mode recovery timer deleted",
1043                                 __func__);
1044         }
1045
1046         /* step 5: remove core well power */
1047         /* synchronize irq when using MSI-X */
1048         xhci_msix_sync_irqs(xhci);
1049
1050         return rc;
1051 }
1052 EXPORT_SYMBOL_GPL(xhci_suspend);
1053
1054 /*
1055  * start xHC (not bus-specific)
1056  *
1057  * This is called when the machine transition from S3/S4 mode.
1058  *
1059  */
1060 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1061 {
1062         u32                     command, temp = 0;
1063         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1064         struct usb_hcd          *secondary_hcd;
1065         int                     retval = 0;
1066         bool                    comp_timer_running = false;
1067
1068         if (!hcd->state)
1069                 return 0;
1070
1071         /* Wait a bit if either of the roothubs need to settle from the
1072          * transition into bus suspend.
1073          */
1074         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1075                         time_before(jiffies,
1076                                 xhci->bus_state[1].next_statechange))
1077                 msleep(100);
1078
1079         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1080         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1081
1082         spin_lock_irq(&xhci->lock);
1083         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1084                 hibernated = true;
1085
1086         if (!hibernated) {
1087                 /* step 1: restore register */
1088                 xhci_restore_registers(xhci);
1089                 /* step 2: initialize command ring buffer */
1090                 xhci_set_cmd_ring_deq(xhci);
1091                 /* step 3: restore state and start state*/
1092                 /* step 3: set CRS flag */
1093                 command = readl(&xhci->op_regs->command);
1094                 command |= CMD_CRS;
1095                 writel(command, &xhci->op_regs->command);
1096                 /*
1097                  * Some controllers take up to 55+ ms to complete the controller
1098                  * restore so setting the timeout to 100ms. Xhci specification
1099                  * doesn't mention any timeout value.
1100                  */
1101                 if (xhci_handshake(&xhci->op_regs->status,
1102                               STS_RESTORE, 0, 100 * 1000)) {
1103                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1104                         spin_unlock_irq(&xhci->lock);
1105                         return -ETIMEDOUT;
1106                 }
1107                 temp = readl(&xhci->op_regs->status);
1108         }
1109
1110         /* If restore operation fails, re-initialize the HC during resume */
1111         if ((temp & STS_SRE) || hibernated) {
1112
1113                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1114                                 !(xhci_all_ports_seen_u0(xhci))) {
1115                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1116                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1117                                 "Compliance Mode Recovery Timer deleted!");
1118                 }
1119
1120                 /* Let the USB core know _both_ roothubs lost power. */
1121                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1122                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1123
1124                 xhci_dbg(xhci, "Stop HCD\n");
1125                 xhci_halt(xhci);
1126                 xhci_zero_64b_regs(xhci);
1127                 xhci_reset(xhci);
1128                 spin_unlock_irq(&xhci->lock);
1129                 xhci_cleanup_msix(xhci);
1130
1131                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1132                 temp = readl(&xhci->op_regs->status);
1133                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1134                 temp = readl(&xhci->ir_set->irq_pending);
1135                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1136
1137                 xhci_dbg(xhci, "cleaning up memory\n");
1138                 xhci_mem_cleanup(xhci);
1139                 xhci_debugfs_exit(xhci);
1140                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1141                             readl(&xhci->op_regs->status));
1142
1143                 /* USB core calls the PCI reinit and start functions twice:
1144                  * first with the primary HCD, and then with the secondary HCD.
1145                  * If we don't do the same, the host will never be started.
1146                  */
1147                 if (!usb_hcd_is_primary_hcd(hcd))
1148                         secondary_hcd = hcd;
1149                 else
1150                         secondary_hcd = xhci->shared_hcd;
1151
1152                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1153                 retval = xhci_init(hcd->primary_hcd);
1154                 if (retval)
1155                         return retval;
1156                 comp_timer_running = true;
1157
1158                 xhci_dbg(xhci, "Start the primary HCD\n");
1159                 retval = xhci_run(hcd->primary_hcd);
1160                 if (!retval) {
1161                         xhci_dbg(xhci, "Start the secondary HCD\n");
1162                         retval = xhci_run(secondary_hcd);
1163                 }
1164                 hcd->state = HC_STATE_SUSPENDED;
1165                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1166                 goto done;
1167         }
1168
1169         /* step 4: set Run/Stop bit */
1170         command = readl(&xhci->op_regs->command);
1171         command |= CMD_RUN;
1172         writel(command, &xhci->op_regs->command);
1173         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1174                   0, 250 * 1000);
1175
1176         /* step 5: walk topology and initialize portsc,
1177          * portpmsc and portli
1178          */
1179         /* this is done in bus_resume */
1180
1181         /* step 6: restart each of the previously
1182          * Running endpoints by ringing their doorbells
1183          */
1184
1185         spin_unlock_irq(&xhci->lock);
1186
1187         xhci_dbc_resume(xhci);
1188
1189  done:
1190         if (retval == 0) {
1191                 /* Resume root hubs only when have pending events. */
1192                 if (xhci_pending_portevent(xhci)) {
1193                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1194                         usb_hcd_resume_root_hub(hcd);
1195                 }
1196         }
1197
1198         /*
1199          * If system is subject to the Quirk, Compliance Mode Timer needs to
1200          * be re-initialized Always after a system resume. Ports are subject
1201          * to suffer the Compliance Mode issue again. It doesn't matter if
1202          * ports have entered previously to U0 before system's suspension.
1203          */
1204         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1205                 compliance_mode_recovery_timer_init(xhci);
1206
1207         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1208                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1209
1210         /* Re-enable port polling. */
1211         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1212         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1213         usb_hcd_poll_rh_status(xhci->shared_hcd);
1214         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1215         usb_hcd_poll_rh_status(hcd);
1216
1217         return retval;
1218 }
1219 EXPORT_SYMBOL_GPL(xhci_resume);
1220 #endif  /* CONFIG_PM */
1221
1222 /*-------------------------------------------------------------------------*/
1223
1224 /**
1225  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1226  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1227  * value to right shift 1 for the bitmask.
1228  *
1229  * Index  = (epnum * 2) + direction - 1,
1230  * where direction = 0 for OUT, 1 for IN.
1231  * For control endpoints, the IN index is used (OUT index is unused), so
1232  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1233  */
1234 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1235 {
1236         unsigned int index;
1237         if (usb_endpoint_xfer_control(desc))
1238                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1239         else
1240                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1241                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1242         return index;
1243 }
1244
1245 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1246  * address from the XHCI endpoint index.
1247  */
1248 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1249 {
1250         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1251         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1252         return direction | number;
1253 }
1254
1255 /* Find the flag for this endpoint (for use in the control context).  Use the
1256  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1257  * bit 1, etc.
1258  */
1259 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1260 {
1261         return 1 << (xhci_get_endpoint_index(desc) + 1);
1262 }
1263
1264 /* Find the flag for this endpoint (for use in the control context).  Use the
1265  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1266  * bit 1, etc.
1267  */
1268 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1269 {
1270         return 1 << (ep_index + 1);
1271 }
1272
1273 /* Compute the last valid endpoint context index.  Basically, this is the
1274  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1275  * we find the most significant bit set in the added contexts flags.
1276  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1277  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1278  */
1279 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1280 {
1281         return fls(added_ctxs) - 1;
1282 }
1283
1284 /* Returns 1 if the arguments are OK;
1285  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1286  */
1287 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1288                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1289                 const char *func) {
1290         struct xhci_hcd *xhci;
1291         struct xhci_virt_device *virt_dev;
1292
1293         if (!hcd || (check_ep && !ep) || !udev) {
1294                 pr_debug("xHCI %s called with invalid args\n", func);
1295                 return -EINVAL;
1296         }
1297         if (!udev->parent) {
1298                 pr_debug("xHCI %s called for root hub\n", func);
1299                 return 0;
1300         }
1301
1302         xhci = hcd_to_xhci(hcd);
1303         if (check_virt_dev) {
1304                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1305                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1306                                         func);
1307                         return -EINVAL;
1308                 }
1309
1310                 virt_dev = xhci->devs[udev->slot_id];
1311                 if (virt_dev->udev != udev) {
1312                         xhci_dbg(xhci, "xHCI %s called with udev and "
1313                                           "virt_dev does not match\n", func);
1314                         return -EINVAL;
1315                 }
1316         }
1317
1318         if (xhci->xhc_state & XHCI_STATE_HALTED)
1319                 return -ENODEV;
1320
1321         return 1;
1322 }
1323
1324 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1325                 struct usb_device *udev, struct xhci_command *command,
1326                 bool ctx_change, bool must_succeed);
1327
1328 /*
1329  * Full speed devices may have a max packet size greater than 8 bytes, but the
1330  * USB core doesn't know that until it reads the first 8 bytes of the
1331  * descriptor.  If the usb_device's max packet size changes after that point,
1332  * we need to issue an evaluate context command and wait on it.
1333  */
1334 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1335                 unsigned int ep_index, struct urb *urb)
1336 {
1337         struct xhci_container_ctx *out_ctx;
1338         struct xhci_input_control_ctx *ctrl_ctx;
1339         struct xhci_ep_ctx *ep_ctx;
1340         struct xhci_command *command;
1341         int max_packet_size;
1342         int hw_max_packet_size;
1343         int ret = 0;
1344
1345         out_ctx = xhci->devs[slot_id]->out_ctx;
1346         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1347         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1348         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1349         if (hw_max_packet_size != max_packet_size) {
1350                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1351                                 "Max Packet Size for ep 0 changed.");
1352                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1353                                 "Max packet size in usb_device = %d",
1354                                 max_packet_size);
1355                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1356                                 "Max packet size in xHCI HW = %d",
1357                                 hw_max_packet_size);
1358                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1359                                 "Issuing evaluate context command.");
1360
1361                 /* Set up the input context flags for the command */
1362                 /* FIXME: This won't work if a non-default control endpoint
1363                  * changes max packet sizes.
1364                  */
1365
1366                 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1367                 if (!command)
1368                         return -ENOMEM;
1369
1370                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1371                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1372                 if (!ctrl_ctx) {
1373                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1374                                         __func__);
1375                         ret = -ENOMEM;
1376                         goto command_cleanup;
1377                 }
1378                 /* Set up the modified control endpoint 0 */
1379                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1380                                 xhci->devs[slot_id]->out_ctx, ep_index);
1381
1382                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1383                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1384                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1385
1386                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1387                 ctrl_ctx->drop_flags = 0;
1388
1389                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1390                                 true, false);
1391
1392                 /* Clean up the input context for later use by bandwidth
1393                  * functions.
1394                  */
1395                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1396 command_cleanup:
1397                 kfree(command->completion);
1398                 kfree(command);
1399         }
1400         return ret;
1401 }
1402
1403 /*
1404  * non-error returns are a promise to giveback() the urb later
1405  * we drop ownership so next owner (or urb unlink) can get it
1406  */
1407 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1408 {
1409         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1410         unsigned long flags;
1411         int ret = 0;
1412         unsigned int slot_id, ep_index;
1413         unsigned int *ep_state;
1414         struct urb_priv *urb_priv;
1415         int num_tds;
1416
1417         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1418                                         true, true, __func__) <= 0)
1419                 return -EINVAL;
1420
1421         slot_id = urb->dev->slot_id;
1422         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1423         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1424
1425         if (!HCD_HW_ACCESSIBLE(hcd)) {
1426                 if (!in_interrupt())
1427                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1428                 return -ESHUTDOWN;
1429         }
1430
1431         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1432                 num_tds = urb->number_of_packets;
1433         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1434             urb->transfer_buffer_length > 0 &&
1435             urb->transfer_flags & URB_ZERO_PACKET &&
1436             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1437                 num_tds = 2;
1438         else
1439                 num_tds = 1;
1440
1441         urb_priv = kzalloc(sizeof(struct urb_priv) +
1442                            num_tds * sizeof(struct xhci_td), mem_flags);
1443         if (!urb_priv)
1444                 return -ENOMEM;
1445
1446         urb_priv->num_tds = num_tds;
1447         urb_priv->num_tds_done = 0;
1448         urb->hcpriv = urb_priv;
1449
1450         trace_xhci_urb_enqueue(urb);
1451
1452         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1453                 /* Check to see if the max packet size for the default control
1454                  * endpoint changed during FS device enumeration
1455                  */
1456                 if (urb->dev->speed == USB_SPEED_FULL) {
1457                         ret = xhci_check_maxpacket(xhci, slot_id,
1458                                         ep_index, urb);
1459                         if (ret < 0) {
1460                                 xhci_urb_free_priv(urb_priv);
1461                                 urb->hcpriv = NULL;
1462                                 return ret;
1463                         }
1464                 }
1465         }
1466
1467         spin_lock_irqsave(&xhci->lock, flags);
1468
1469         if (xhci->xhc_state & XHCI_STATE_DYING) {
1470                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1471                          urb->ep->desc.bEndpointAddress, urb);
1472                 ret = -ESHUTDOWN;
1473                 goto free_priv;
1474         }
1475         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1476                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1477                           *ep_state);
1478                 ret = -EINVAL;
1479                 goto free_priv;
1480         }
1481         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1482                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1483                 ret = -EINVAL;
1484                 goto free_priv;
1485         }
1486
1487         switch (usb_endpoint_type(&urb->ep->desc)) {
1488
1489         case USB_ENDPOINT_XFER_CONTROL:
1490                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1491                                          slot_id, ep_index);
1492                 break;
1493         case USB_ENDPOINT_XFER_BULK:
1494                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1495                                          slot_id, ep_index);
1496                 break;
1497         case USB_ENDPOINT_XFER_INT:
1498                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1499                                 slot_id, ep_index);
1500                 break;
1501         case USB_ENDPOINT_XFER_ISOC:
1502                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1503                                 slot_id, ep_index);
1504         }
1505
1506         if (ret) {
1507 free_priv:
1508                 xhci_urb_free_priv(urb_priv);
1509                 urb->hcpriv = NULL;
1510         }
1511         spin_unlock_irqrestore(&xhci->lock, flags);
1512         return ret;
1513 }
1514
1515 /*
1516  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1517  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1518  * should pick up where it left off in the TD, unless a Set Transfer Ring
1519  * Dequeue Pointer is issued.
1520  *
1521  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1522  * the ring.  Since the ring is a contiguous structure, they can't be physically
1523  * removed.  Instead, there are two options:
1524  *
1525  *  1) If the HC is in the middle of processing the URB to be canceled, we
1526  *     simply move the ring's dequeue pointer past those TRBs using the Set
1527  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1528  *     when drivers timeout on the last submitted URB and attempt to cancel.
1529  *
1530  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1531  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1532  *     HC will need to invalidate the any TRBs it has cached after the stop
1533  *     endpoint command, as noted in the xHCI 0.95 errata.
1534  *
1535  *  3) The TD may have completed by the time the Stop Endpoint Command
1536  *     completes, so software needs to handle that case too.
1537  *
1538  * This function should protect against the TD enqueueing code ringing the
1539  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1540  * It also needs to account for multiple cancellations on happening at the same
1541  * time for the same endpoint.
1542  *
1543  * Note that this function can be called in any context, or so says
1544  * usb_hcd_unlink_urb()
1545  */
1546 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1547 {
1548         unsigned long flags;
1549         int ret, i;
1550         u32 temp;
1551         struct xhci_hcd *xhci;
1552         struct urb_priv *urb_priv;
1553         struct xhci_td *td;
1554         unsigned int ep_index;
1555         struct xhci_ring *ep_ring;
1556         struct xhci_virt_ep *ep;
1557         struct xhci_command *command;
1558         struct xhci_virt_device *vdev;
1559
1560         xhci = hcd_to_xhci(hcd);
1561         spin_lock_irqsave(&xhci->lock, flags);
1562
1563         trace_xhci_urb_dequeue(urb);
1564
1565         /* Make sure the URB hasn't completed or been unlinked already */
1566         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1567         if (ret)
1568                 goto done;
1569
1570         /* give back URB now if we can't queue it for cancel */
1571         vdev = xhci->devs[urb->dev->slot_id];
1572         urb_priv = urb->hcpriv;
1573         if (!vdev || !urb_priv)
1574                 goto err_giveback;
1575
1576         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1577         ep = &vdev->eps[ep_index];
1578         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1579         if (!ep || !ep_ring)
1580                 goto err_giveback;
1581
1582         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1583         temp = readl(&xhci->op_regs->status);
1584         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1585                 xhci_hc_died(xhci);
1586                 goto done;
1587         }
1588
1589         /*
1590          * check ring is not re-allocated since URB was enqueued. If it is, then
1591          * make sure none of the ring related pointers in this URB private data
1592          * are touched, such as td_list, otherwise we overwrite freed data
1593          */
1594         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1595                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1596                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1597                         td = &urb_priv->td[i];
1598                         if (!list_empty(&td->cancelled_td_list))
1599                                 list_del_init(&td->cancelled_td_list);
1600                 }
1601                 goto err_giveback;
1602         }
1603
1604         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1605                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1606                                 "HC halted, freeing TD manually.");
1607                 for (i = urb_priv->num_tds_done;
1608                      i < urb_priv->num_tds;
1609                      i++) {
1610                         td = &urb_priv->td[i];
1611                         if (!list_empty(&td->td_list))
1612                                 list_del_init(&td->td_list);
1613                         if (!list_empty(&td->cancelled_td_list))
1614                                 list_del_init(&td->cancelled_td_list);
1615                 }
1616                 goto err_giveback;
1617         }
1618
1619         i = urb_priv->num_tds_done;
1620         if (i < urb_priv->num_tds)
1621                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1622                                 "Cancel URB %p, dev %s, ep 0x%x, "
1623                                 "starting at offset 0x%llx",
1624                                 urb, urb->dev->devpath,
1625                                 urb->ep->desc.bEndpointAddress,
1626                                 (unsigned long long) xhci_trb_virt_to_dma(
1627                                         urb_priv->td[i].start_seg,
1628                                         urb_priv->td[i].first_trb));
1629
1630         for (; i < urb_priv->num_tds; i++) {
1631                 td = &urb_priv->td[i];
1632                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1633         }
1634
1635         /* Queue a stop endpoint command, but only if this is
1636          * the first cancellation to be handled.
1637          */
1638         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1639                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1640                 if (!command) {
1641                         ret = -ENOMEM;
1642                         goto done;
1643                 }
1644                 ep->ep_state |= EP_STOP_CMD_PENDING;
1645                 ep->stop_cmd_timer.expires = jiffies +
1646                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1647                 add_timer(&ep->stop_cmd_timer);
1648                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1649                                          ep_index, 0);
1650                 xhci_ring_cmd_db(xhci);
1651         }
1652 done:
1653         spin_unlock_irqrestore(&xhci->lock, flags);
1654         return ret;
1655
1656 err_giveback:
1657         if (urb_priv)
1658                 xhci_urb_free_priv(urb_priv);
1659         usb_hcd_unlink_urb_from_ep(hcd, urb);
1660         spin_unlock_irqrestore(&xhci->lock, flags);
1661         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1662         return ret;
1663 }
1664
1665 /* Drop an endpoint from a new bandwidth configuration for this device.
1666  * Only one call to this function is allowed per endpoint before
1667  * check_bandwidth() or reset_bandwidth() must be called.
1668  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1669  * add the endpoint to the schedule with possibly new parameters denoted by a
1670  * different endpoint descriptor in usb_host_endpoint.
1671  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1672  * not allowed.
1673  *
1674  * The USB core will not allow URBs to be queued to an endpoint that is being
1675  * disabled, so there's no need for mutual exclusion to protect
1676  * the xhci->devs[slot_id] structure.
1677  */
1678 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1679                 struct usb_host_endpoint *ep)
1680 {
1681         struct xhci_hcd *xhci;
1682         struct xhci_container_ctx *in_ctx, *out_ctx;
1683         struct xhci_input_control_ctx *ctrl_ctx;
1684         unsigned int ep_index;
1685         struct xhci_ep_ctx *ep_ctx;
1686         u32 drop_flag;
1687         u32 new_add_flags, new_drop_flags;
1688         int ret;
1689
1690         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1691         if (ret <= 0)
1692                 return ret;
1693         xhci = hcd_to_xhci(hcd);
1694         if (xhci->xhc_state & XHCI_STATE_DYING)
1695                 return -ENODEV;
1696
1697         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1698         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1699         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1700                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1701                                 __func__, drop_flag);
1702                 return 0;
1703         }
1704
1705         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1706         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1707         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1708         if (!ctrl_ctx) {
1709                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1710                                 __func__);
1711                 return 0;
1712         }
1713
1714         ep_index = xhci_get_endpoint_index(&ep->desc);
1715         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1716         /* If the HC already knows the endpoint is disabled,
1717          * or the HCD has noted it is disabled, ignore this request
1718          */
1719         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1720             le32_to_cpu(ctrl_ctx->drop_flags) &
1721             xhci_get_endpoint_flag(&ep->desc)) {
1722                 /* Do not warn when called after a usb_device_reset */
1723                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1724                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1725                                   __func__, ep);
1726                 return 0;
1727         }
1728
1729         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1730         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1731
1732         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1733         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1734
1735         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1736
1737         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1738
1739         if (xhci->quirks & XHCI_MTK_HOST)
1740                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1741
1742         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1743                         (unsigned int) ep->desc.bEndpointAddress,
1744                         udev->slot_id,
1745                         (unsigned int) new_drop_flags,
1746                         (unsigned int) new_add_flags);
1747         return 0;
1748 }
1749
1750 /* Add an endpoint to a new possible bandwidth configuration for this device.
1751  * Only one call to this function is allowed per endpoint before
1752  * check_bandwidth() or reset_bandwidth() must be called.
1753  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1754  * add the endpoint to the schedule with possibly new parameters denoted by a
1755  * different endpoint descriptor in usb_host_endpoint.
1756  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1757  * not allowed.
1758  *
1759  * The USB core will not allow URBs to be queued to an endpoint until the
1760  * configuration or alt setting is installed in the device, so there's no need
1761  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1762  */
1763 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1764                 struct usb_host_endpoint *ep)
1765 {
1766         struct xhci_hcd *xhci;
1767         struct xhci_container_ctx *in_ctx;
1768         unsigned int ep_index;
1769         struct xhci_input_control_ctx *ctrl_ctx;
1770         u32 added_ctxs;
1771         u32 new_add_flags, new_drop_flags;
1772         struct xhci_virt_device *virt_dev;
1773         int ret = 0;
1774
1775         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1776         if (ret <= 0) {
1777                 /* So we won't queue a reset ep command for a root hub */
1778                 ep->hcpriv = NULL;
1779                 return ret;
1780         }
1781         xhci = hcd_to_xhci(hcd);
1782         if (xhci->xhc_state & XHCI_STATE_DYING)
1783                 return -ENODEV;
1784
1785         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1786         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1787                 /* FIXME when we have to issue an evaluate endpoint command to
1788                  * deal with ep0 max packet size changing once we get the
1789                  * descriptors
1790                  */
1791                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1792                                 __func__, added_ctxs);
1793                 return 0;
1794         }
1795
1796         virt_dev = xhci->devs[udev->slot_id];
1797         in_ctx = virt_dev->in_ctx;
1798         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1799         if (!ctrl_ctx) {
1800                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1801                                 __func__);
1802                 return 0;
1803         }
1804
1805         ep_index = xhci_get_endpoint_index(&ep->desc);
1806         /* If this endpoint is already in use, and the upper layers are trying
1807          * to add it again without dropping it, reject the addition.
1808          */
1809         if (virt_dev->eps[ep_index].ring &&
1810                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1811                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1812                                 "without dropping it.\n",
1813                                 (unsigned int) ep->desc.bEndpointAddress);
1814                 return -EINVAL;
1815         }
1816
1817         /* If the HCD has already noted the endpoint is enabled,
1818          * ignore this request.
1819          */
1820         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1821                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1822                                 __func__, ep);
1823                 return 0;
1824         }
1825
1826         /*
1827          * Configuration and alternate setting changes must be done in
1828          * process context, not interrupt context (or so documenation
1829          * for usb_set_interface() and usb_set_configuration() claim).
1830          */
1831         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1832                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1833                                 __func__, ep->desc.bEndpointAddress);
1834                 return -ENOMEM;
1835         }
1836
1837         if (xhci->quirks & XHCI_MTK_HOST) {
1838                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1839                 if (ret < 0) {
1840                         xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1841                         virt_dev->eps[ep_index].new_ring = NULL;
1842                         return ret;
1843                 }
1844         }
1845
1846         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1847         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1848
1849         /* If xhci_endpoint_disable() was called for this endpoint, but the
1850          * xHC hasn't been notified yet through the check_bandwidth() call,
1851          * this re-adds a new state for the endpoint from the new endpoint
1852          * descriptors.  We must drop and re-add this endpoint, so we leave the
1853          * drop flags alone.
1854          */
1855         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1856
1857         /* Store the usb_device pointer for later use */
1858         ep->hcpriv = udev;
1859
1860         xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1861
1862         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1863                         (unsigned int) ep->desc.bEndpointAddress,
1864                         udev->slot_id,
1865                         (unsigned int) new_drop_flags,
1866                         (unsigned int) new_add_flags);
1867         return 0;
1868 }
1869
1870 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1871 {
1872         struct xhci_input_control_ctx *ctrl_ctx;
1873         struct xhci_ep_ctx *ep_ctx;
1874         struct xhci_slot_ctx *slot_ctx;
1875         int i;
1876
1877         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1878         if (!ctrl_ctx) {
1879                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1880                                 __func__);
1881                 return;
1882         }
1883
1884         /* When a device's add flag and drop flag are zero, any subsequent
1885          * configure endpoint command will leave that endpoint's state
1886          * untouched.  Make sure we don't leave any old state in the input
1887          * endpoint contexts.
1888          */
1889         ctrl_ctx->drop_flags = 0;
1890         ctrl_ctx->add_flags = 0;
1891         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1892         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1893         /* Endpoint 0 is always valid */
1894         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1895         for (i = 1; i < 31; i++) {
1896                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1897                 ep_ctx->ep_info = 0;
1898                 ep_ctx->ep_info2 = 0;
1899                 ep_ctx->deq = 0;
1900                 ep_ctx->tx_info = 0;
1901         }
1902 }
1903
1904 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1905                 struct usb_device *udev, u32 *cmd_status)
1906 {
1907         int ret;
1908
1909         switch (*cmd_status) {
1910         case COMP_COMMAND_ABORTED:
1911         case COMP_COMMAND_RING_STOPPED:
1912                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1913                 ret = -ETIME;
1914                 break;
1915         case COMP_RESOURCE_ERROR:
1916                 dev_warn(&udev->dev,
1917                          "Not enough host controller resources for new device state.\n");
1918                 ret = -ENOMEM;
1919                 /* FIXME: can we allocate more resources for the HC? */
1920                 break;
1921         case COMP_BANDWIDTH_ERROR:
1922         case COMP_SECONDARY_BANDWIDTH_ERROR:
1923                 dev_warn(&udev->dev,
1924                          "Not enough bandwidth for new device state.\n");
1925                 ret = -ENOSPC;
1926                 /* FIXME: can we go back to the old state? */
1927                 break;
1928         case COMP_TRB_ERROR:
1929                 /* the HCD set up something wrong */
1930                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1931                                 "add flag = 1, "
1932                                 "and endpoint is not disabled.\n");
1933                 ret = -EINVAL;
1934                 break;
1935         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1936                 dev_warn(&udev->dev,
1937                          "ERROR: Incompatible device for endpoint configure command.\n");
1938                 ret = -ENODEV;
1939                 break;
1940         case COMP_SUCCESS:
1941                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1942                                 "Successful Endpoint Configure command");
1943                 ret = 0;
1944                 break;
1945         default:
1946                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1947                                 *cmd_status);
1948                 ret = -EINVAL;
1949                 break;
1950         }
1951         return ret;
1952 }
1953
1954 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1955                 struct usb_device *udev, u32 *cmd_status)
1956 {
1957         int ret;
1958
1959         switch (*cmd_status) {
1960         case COMP_COMMAND_ABORTED:
1961         case COMP_COMMAND_RING_STOPPED:
1962                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1963                 ret = -ETIME;
1964                 break;
1965         case COMP_PARAMETER_ERROR:
1966                 dev_warn(&udev->dev,
1967                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1968                 ret = -EINVAL;
1969                 break;
1970         case COMP_SLOT_NOT_ENABLED_ERROR:
1971                 dev_warn(&udev->dev,
1972                         "WARN: slot not enabled for evaluate context command.\n");
1973                 ret = -EINVAL;
1974                 break;
1975         case COMP_CONTEXT_STATE_ERROR:
1976                 dev_warn(&udev->dev,
1977                         "WARN: invalid context state for evaluate context command.\n");
1978                 ret = -EINVAL;
1979                 break;
1980         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1981                 dev_warn(&udev->dev,
1982                         "ERROR: Incompatible device for evaluate context command.\n");
1983                 ret = -ENODEV;
1984                 break;
1985         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1986                 /* Max Exit Latency too large error */
1987                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1988                 ret = -EINVAL;
1989                 break;
1990         case COMP_SUCCESS:
1991                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1992                                 "Successful evaluate context command");
1993                 ret = 0;
1994                 break;
1995         default:
1996                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1997                         *cmd_status);
1998                 ret = -EINVAL;
1999                 break;
2000         }
2001         return ret;
2002 }
2003
2004 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2005                 struct xhci_input_control_ctx *ctrl_ctx)
2006 {
2007         u32 valid_add_flags;
2008         u32 valid_drop_flags;
2009
2010         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2011          * (bit 1).  The default control endpoint is added during the Address
2012          * Device command and is never removed until the slot is disabled.
2013          */
2014         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2015         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2016
2017         /* Use hweight32 to count the number of ones in the add flags, or
2018          * number of endpoints added.  Don't count endpoints that are changed
2019          * (both added and dropped).
2020          */
2021         return hweight32(valid_add_flags) -
2022                 hweight32(valid_add_flags & valid_drop_flags);
2023 }
2024
2025 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2026                 struct xhci_input_control_ctx *ctrl_ctx)
2027 {
2028         u32 valid_add_flags;
2029         u32 valid_drop_flags;
2030
2031         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2032         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2033
2034         return hweight32(valid_drop_flags) -
2035                 hweight32(valid_add_flags & valid_drop_flags);
2036 }
2037
2038 /*
2039  * We need to reserve the new number of endpoints before the configure endpoint
2040  * command completes.  We can't subtract the dropped endpoints from the number
2041  * of active endpoints until the command completes because we can oversubscribe
2042  * the host in this case:
2043  *
2044  *  - the first configure endpoint command drops more endpoints than it adds
2045  *  - a second configure endpoint command that adds more endpoints is queued
2046  *  - the first configure endpoint command fails, so the config is unchanged
2047  *  - the second command may succeed, even though there isn't enough resources
2048  *
2049  * Must be called with xhci->lock held.
2050  */
2051 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2052                 struct xhci_input_control_ctx *ctrl_ctx)
2053 {
2054         u32 added_eps;
2055
2056         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2057         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2058                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2059                                 "Not enough ep ctxs: "
2060                                 "%u active, need to add %u, limit is %u.",
2061                                 xhci->num_active_eps, added_eps,
2062                                 xhci->limit_active_eps);
2063                 return -ENOMEM;
2064         }
2065         xhci->num_active_eps += added_eps;
2066         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2067                         "Adding %u ep ctxs, %u now active.", added_eps,
2068                         xhci->num_active_eps);
2069         return 0;
2070 }
2071
2072 /*
2073  * The configure endpoint was failed by the xHC for some other reason, so we
2074  * need to revert the resources that failed configuration would have used.
2075  *
2076  * Must be called with xhci->lock held.
2077  */
2078 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2079                 struct xhci_input_control_ctx *ctrl_ctx)
2080 {
2081         u32 num_failed_eps;
2082
2083         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2084         xhci->num_active_eps -= num_failed_eps;
2085         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2086                         "Removing %u failed ep ctxs, %u now active.",
2087                         num_failed_eps,
2088                         xhci->num_active_eps);
2089 }
2090
2091 /*
2092  * Now that the command has completed, clean up the active endpoint count by
2093  * subtracting out the endpoints that were dropped (but not changed).
2094  *
2095  * Must be called with xhci->lock held.
2096  */
2097 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2098                 struct xhci_input_control_ctx *ctrl_ctx)
2099 {
2100         u32 num_dropped_eps;
2101
2102         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2103         xhci->num_active_eps -= num_dropped_eps;
2104         if (num_dropped_eps)
2105                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2106                                 "Removing %u dropped ep ctxs, %u now active.",
2107                                 num_dropped_eps,
2108                                 xhci->num_active_eps);
2109 }
2110
2111 static unsigned int xhci_get_block_size(struct usb_device *udev)
2112 {
2113         switch (udev->speed) {
2114         case USB_SPEED_LOW:
2115         case USB_SPEED_FULL:
2116                 return FS_BLOCK;
2117         case USB_SPEED_HIGH:
2118                 return HS_BLOCK;
2119         case USB_SPEED_SUPER:
2120         case USB_SPEED_SUPER_PLUS:
2121                 return SS_BLOCK;
2122         case USB_SPEED_UNKNOWN:
2123         case USB_SPEED_WIRELESS:
2124         default:
2125                 /* Should never happen */
2126                 return 1;
2127         }
2128 }
2129
2130 static unsigned int
2131 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2132 {
2133         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2134                 return LS_OVERHEAD;
2135         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2136                 return FS_OVERHEAD;
2137         return HS_OVERHEAD;
2138 }
2139
2140 /* If we are changing a LS/FS device under a HS hub,
2141  * make sure (if we are activating a new TT) that the HS bus has enough
2142  * bandwidth for this new TT.
2143  */
2144 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2145                 struct xhci_virt_device *virt_dev,
2146                 int old_active_eps)
2147 {
2148         struct xhci_interval_bw_table *bw_table;
2149         struct xhci_tt_bw_info *tt_info;
2150
2151         /* Find the bandwidth table for the root port this TT is attached to. */
2152         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2153         tt_info = virt_dev->tt_info;
2154         /* If this TT already had active endpoints, the bandwidth for this TT
2155          * has already been added.  Removing all periodic endpoints (and thus
2156          * making the TT enactive) will only decrease the bandwidth used.
2157          */
2158         if (old_active_eps)
2159                 return 0;
2160         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2161                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2162                         return -ENOMEM;
2163                 return 0;
2164         }
2165         /* Not sure why we would have no new active endpoints...
2166          *
2167          * Maybe because of an Evaluate Context change for a hub update or a
2168          * control endpoint 0 max packet size change?
2169          * FIXME: skip the bandwidth calculation in that case.
2170          */
2171         return 0;
2172 }
2173
2174 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2175                 struct xhci_virt_device *virt_dev)
2176 {
2177         unsigned int bw_reserved;
2178
2179         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2180         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2181                 return -ENOMEM;
2182
2183         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2184         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2185                 return -ENOMEM;
2186
2187         return 0;
2188 }
2189
2190 /*
2191  * This algorithm is a very conservative estimate of the worst-case scheduling
2192  * scenario for any one interval.  The hardware dynamically schedules the
2193  * packets, so we can't tell which microframe could be the limiting factor in
2194  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2195  *
2196  * Obviously, we can't solve an NP complete problem to find the minimum worst
2197  * case scenario.  Instead, we come up with an estimate that is no less than
2198  * the worst case bandwidth used for any one microframe, but may be an
2199  * over-estimate.
2200  *
2201  * We walk the requirements for each endpoint by interval, starting with the
2202  * smallest interval, and place packets in the schedule where there is only one
2203  * possible way to schedule packets for that interval.  In order to simplify
2204  * this algorithm, we record the largest max packet size for each interval, and
2205  * assume all packets will be that size.
2206  *
2207  * For interval 0, we obviously must schedule all packets for each interval.
2208  * The bandwidth for interval 0 is just the amount of data to be transmitted
2209  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2210  * the number of packets).
2211  *
2212  * For interval 1, we have two possible microframes to schedule those packets
2213  * in.  For this algorithm, if we can schedule the same number of packets for
2214  * each possible scheduling opportunity (each microframe), we will do so.  The
2215  * remaining number of packets will be saved to be transmitted in the gaps in
2216  * the next interval's scheduling sequence.
2217  *
2218  * As we move those remaining packets to be scheduled with interval 2 packets,
2219  * we have to double the number of remaining packets to transmit.  This is
2220  * because the intervals are actually powers of 2, and we would be transmitting
2221  * the previous interval's packets twice in this interval.  We also have to be
2222  * sure that when we look at the largest max packet size for this interval, we
2223  * also look at the largest max packet size for the remaining packets and take
2224  * the greater of the two.
2225  *
2226  * The algorithm continues to evenly distribute packets in each scheduling
2227  * opportunity, and push the remaining packets out, until we get to the last
2228  * interval.  Then those packets and their associated overhead are just added
2229  * to the bandwidth used.
2230  */
2231 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2232                 struct xhci_virt_device *virt_dev,
2233                 int old_active_eps)
2234 {
2235         unsigned int bw_reserved;
2236         unsigned int max_bandwidth;
2237         unsigned int bw_used;
2238         unsigned int block_size;
2239         struct xhci_interval_bw_table *bw_table;
2240         unsigned int packet_size = 0;
2241         unsigned int overhead = 0;
2242         unsigned int packets_transmitted = 0;
2243         unsigned int packets_remaining = 0;
2244         unsigned int i;
2245
2246         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2247                 return xhci_check_ss_bw(xhci, virt_dev);
2248
2249         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2250                 max_bandwidth = HS_BW_LIMIT;
2251                 /* Convert percent of bus BW reserved to blocks reserved */
2252                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2253         } else {
2254                 max_bandwidth = FS_BW_LIMIT;
2255                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2256         }
2257
2258         bw_table = virt_dev->bw_table;
2259         /* We need to translate the max packet size and max ESIT payloads into
2260          * the units the hardware uses.
2261          */
2262         block_size = xhci_get_block_size(virt_dev->udev);
2263
2264         /* If we are manipulating a LS/FS device under a HS hub, double check
2265          * that the HS bus has enough bandwidth if we are activing a new TT.
2266          */
2267         if (virt_dev->tt_info) {
2268                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2269                                 "Recalculating BW for rootport %u",
2270                                 virt_dev->real_port);
2271                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2272                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2273                                         "newly activated TT.\n");
2274                         return -ENOMEM;
2275                 }
2276                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2277                                 "Recalculating BW for TT slot %u port %u",
2278                                 virt_dev->tt_info->slot_id,
2279                                 virt_dev->tt_info->ttport);
2280         } else {
2281                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2282                                 "Recalculating BW for rootport %u",
2283                                 virt_dev->real_port);
2284         }
2285
2286         /* Add in how much bandwidth will be used for interval zero, or the
2287          * rounded max ESIT payload + number of packets * largest overhead.
2288          */
2289         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2290                 bw_table->interval_bw[0].num_packets *
2291                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2292
2293         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2294                 unsigned int bw_added;
2295                 unsigned int largest_mps;
2296                 unsigned int interval_overhead;
2297
2298                 /*
2299                  * How many packets could we transmit in this interval?
2300                  * If packets didn't fit in the previous interval, we will need
2301                  * to transmit that many packets twice within this interval.
2302                  */
2303                 packets_remaining = 2 * packets_remaining +
2304                         bw_table->interval_bw[i].num_packets;
2305
2306                 /* Find the largest max packet size of this or the previous
2307                  * interval.
2308                  */
2309                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2310                         largest_mps = 0;
2311                 else {
2312                         struct xhci_virt_ep *virt_ep;
2313                         struct list_head *ep_entry;
2314
2315                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2316                         virt_ep = list_entry(ep_entry,
2317                                         struct xhci_virt_ep, bw_endpoint_list);
2318                         /* Convert to blocks, rounding up */
2319                         largest_mps = DIV_ROUND_UP(
2320                                         virt_ep->bw_info.max_packet_size,
2321                                         block_size);
2322                 }
2323                 if (largest_mps > packet_size)
2324                         packet_size = largest_mps;
2325
2326                 /* Use the larger overhead of this or the previous interval. */
2327                 interval_overhead = xhci_get_largest_overhead(
2328                                 &bw_table->interval_bw[i]);
2329                 if (interval_overhead > overhead)
2330                         overhead = interval_overhead;
2331
2332                 /* How many packets can we evenly distribute across
2333                  * (1 << (i + 1)) possible scheduling opportunities?
2334                  */
2335                 packets_transmitted = packets_remaining >> (i + 1);
2336
2337                 /* Add in the bandwidth used for those scheduled packets */
2338                 bw_added = packets_transmitted * (overhead + packet_size);
2339
2340                 /* How many packets do we have remaining to transmit? */
2341                 packets_remaining = packets_remaining % (1 << (i + 1));
2342
2343                 /* What largest max packet size should those packets have? */
2344                 /* If we've transmitted all packets, don't carry over the
2345                  * largest packet size.
2346                  */
2347                 if (packets_remaining == 0) {
2348                         packet_size = 0;
2349                         overhead = 0;
2350                 } else if (packets_transmitted > 0) {
2351                         /* Otherwise if we do have remaining packets, and we've
2352                          * scheduled some packets in this interval, take the
2353                          * largest max packet size from endpoints with this
2354                          * interval.
2355                          */
2356                         packet_size = largest_mps;
2357                         overhead = interval_overhead;
2358                 }
2359                 /* Otherwise carry over packet_size and overhead from the last
2360                  * time we had a remainder.
2361                  */
2362                 bw_used += bw_added;
2363                 if (bw_used > max_bandwidth) {
2364                         xhci_warn(xhci, "Not enough bandwidth. "
2365                                         "Proposed: %u, Max: %u\n",
2366                                 bw_used, max_bandwidth);
2367                         return -ENOMEM;
2368                 }
2369         }
2370         /*
2371          * Ok, we know we have some packets left over after even-handedly
2372          * scheduling interval 15.  We don't know which microframes they will
2373          * fit into, so we over-schedule and say they will be scheduled every
2374          * microframe.
2375          */
2376         if (packets_remaining > 0)
2377                 bw_used += overhead + packet_size;
2378
2379         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2380                 unsigned int port_index = virt_dev->real_port - 1;
2381
2382                 /* OK, we're manipulating a HS device attached to a
2383                  * root port bandwidth domain.  Include the number of active TTs
2384                  * in the bandwidth used.
2385                  */
2386                 bw_used += TT_HS_OVERHEAD *
2387                         xhci->rh_bw[port_index].num_active_tts;
2388         }
2389
2390         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2391                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2392                 "Available: %u " "percent",
2393                 bw_used, max_bandwidth, bw_reserved,
2394                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2395                 max_bandwidth);
2396
2397         bw_used += bw_reserved;
2398         if (bw_used > max_bandwidth) {
2399                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2400                                 bw_used, max_bandwidth);
2401                 return -ENOMEM;
2402         }
2403
2404         bw_table->bw_used = bw_used;
2405         return 0;
2406 }
2407
2408 static bool xhci_is_async_ep(unsigned int ep_type)
2409 {
2410         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2411                                         ep_type != ISOC_IN_EP &&
2412                                         ep_type != INT_IN_EP);
2413 }
2414
2415 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2416 {
2417         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2418 }
2419
2420 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2421 {
2422         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2423
2424         if (ep_bw->ep_interval == 0)
2425                 return SS_OVERHEAD_BURST +
2426                         (ep_bw->mult * ep_bw->num_packets *
2427                                         (SS_OVERHEAD + mps));
2428         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2429                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2430                                 1 << ep_bw->ep_interval);
2431
2432 }
2433
2434 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2435                 struct xhci_bw_info *ep_bw,
2436                 struct xhci_interval_bw_table *bw_table,
2437                 struct usb_device *udev,
2438                 struct xhci_virt_ep *virt_ep,
2439                 struct xhci_tt_bw_info *tt_info)
2440 {
2441         struct xhci_interval_bw *interval_bw;
2442         int normalized_interval;
2443
2444         if (xhci_is_async_ep(ep_bw->type))
2445                 return;
2446
2447         if (udev->speed >= USB_SPEED_SUPER) {
2448                 if (xhci_is_sync_in_ep(ep_bw->type))
2449                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2450                                 xhci_get_ss_bw_consumed(ep_bw);
2451                 else
2452                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2453                                 xhci_get_ss_bw_consumed(ep_bw);
2454                 return;
2455         }
2456
2457         /* SuperSpeed endpoints never get added to intervals in the table, so
2458          * this check is only valid for HS/FS/LS devices.
2459          */
2460         if (list_empty(&virt_ep->bw_endpoint_list))
2461                 return;
2462         /* For LS/FS devices, we need to translate the interval expressed in
2463          * microframes to frames.
2464          */
2465         if (udev->speed == USB_SPEED_HIGH)
2466                 normalized_interval = ep_bw->ep_interval;
2467         else
2468                 normalized_interval = ep_bw->ep_interval - 3;
2469
2470         if (normalized_interval == 0)
2471                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2472         interval_bw = &bw_table->interval_bw[normalized_interval];
2473         interval_bw->num_packets -= ep_bw->num_packets;
2474         switch (udev->speed) {
2475         case USB_SPEED_LOW:
2476                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2477                 break;
2478         case USB_SPEED_FULL:
2479                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2480                 break;
2481         case USB_SPEED_HIGH:
2482                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2483                 break;
2484         case USB_SPEED_SUPER:
2485         case USB_SPEED_SUPER_PLUS:
2486         case USB_SPEED_UNKNOWN:
2487         case USB_SPEED_WIRELESS:
2488                 /* Should never happen because only LS/FS/HS endpoints will get
2489                  * added to the endpoint list.
2490                  */
2491                 return;
2492         }
2493         if (tt_info)
2494                 tt_info->active_eps -= 1;
2495         list_del_init(&virt_ep->bw_endpoint_list);
2496 }
2497
2498 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2499                 struct xhci_bw_info *ep_bw,
2500                 struct xhci_interval_bw_table *bw_table,
2501                 struct usb_device *udev,
2502                 struct xhci_virt_ep *virt_ep,
2503                 struct xhci_tt_bw_info *tt_info)
2504 {
2505         struct xhci_interval_bw *interval_bw;
2506         struct xhci_virt_ep *smaller_ep;
2507         int normalized_interval;
2508
2509         if (xhci_is_async_ep(ep_bw->type))
2510                 return;
2511
2512         if (udev->speed == USB_SPEED_SUPER) {
2513                 if (xhci_is_sync_in_ep(ep_bw->type))
2514                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2515                                 xhci_get_ss_bw_consumed(ep_bw);
2516                 else
2517                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2518                                 xhci_get_ss_bw_consumed(ep_bw);
2519                 return;
2520         }
2521
2522         /* For LS/FS devices, we need to translate the interval expressed in
2523          * microframes to frames.
2524          */
2525         if (udev->speed == USB_SPEED_HIGH)
2526                 normalized_interval = ep_bw->ep_interval;
2527         else
2528                 normalized_interval = ep_bw->ep_interval - 3;
2529
2530         if (normalized_interval == 0)
2531                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2532         interval_bw = &bw_table->interval_bw[normalized_interval];
2533         interval_bw->num_packets += ep_bw->num_packets;
2534         switch (udev->speed) {
2535         case USB_SPEED_LOW:
2536                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2537                 break;
2538         case USB_SPEED_FULL:
2539                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2540                 break;
2541         case USB_SPEED_HIGH:
2542                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2543                 break;
2544         case USB_SPEED_SUPER:
2545         case USB_SPEED_SUPER_PLUS:
2546         case USB_SPEED_UNKNOWN:
2547         case USB_SPEED_WIRELESS:
2548                 /* Should never happen because only LS/FS/HS endpoints will get
2549                  * added to the endpoint list.
2550                  */
2551                 return;
2552         }
2553
2554         if (tt_info)
2555                 tt_info->active_eps += 1;
2556         /* Insert the endpoint into the list, largest max packet size first. */
2557         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2558                         bw_endpoint_list) {
2559                 if (ep_bw->max_packet_size >=
2560                                 smaller_ep->bw_info.max_packet_size) {
2561                         /* Add the new ep before the smaller endpoint */
2562                         list_add_tail(&virt_ep->bw_endpoint_list,
2563                                         &smaller_ep->bw_endpoint_list);
2564                         return;
2565                 }
2566         }
2567         /* Add the new endpoint at the end of the list. */
2568         list_add_tail(&virt_ep->bw_endpoint_list,
2569                         &interval_bw->endpoints);
2570 }
2571
2572 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2573                 struct xhci_virt_device *virt_dev,
2574                 int old_active_eps)
2575 {
2576         struct xhci_root_port_bw_info *rh_bw_info;
2577         if (!virt_dev->tt_info)
2578                 return;
2579
2580         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2581         if (old_active_eps == 0 &&
2582                                 virt_dev->tt_info->active_eps != 0) {
2583                 rh_bw_info->num_active_tts += 1;
2584                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2585         } else if (old_active_eps != 0 &&
2586                                 virt_dev->tt_info->active_eps == 0) {
2587                 rh_bw_info->num_active_tts -= 1;
2588                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2589         }
2590 }
2591
2592 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2593                 struct xhci_virt_device *virt_dev,
2594                 struct xhci_container_ctx *in_ctx)
2595 {
2596         struct xhci_bw_info ep_bw_info[31];
2597         int i;
2598         struct xhci_input_control_ctx *ctrl_ctx;
2599         int old_active_eps = 0;
2600
2601         if (virt_dev->tt_info)
2602                 old_active_eps = virt_dev->tt_info->active_eps;
2603
2604         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2605         if (!ctrl_ctx) {
2606                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2607                                 __func__);
2608                 return -ENOMEM;
2609         }
2610
2611         for (i = 0; i < 31; i++) {
2612                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2613                         continue;
2614
2615                 /* Make a copy of the BW info in case we need to revert this */
2616                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2617                                 sizeof(ep_bw_info[i]));
2618                 /* Drop the endpoint from the interval table if the endpoint is
2619                  * being dropped or changed.
2620                  */
2621                 if (EP_IS_DROPPED(ctrl_ctx, i))
2622                         xhci_drop_ep_from_interval_table(xhci,
2623                                         &virt_dev->eps[i].bw_info,
2624                                         virt_dev->bw_table,
2625                                         virt_dev->udev,
2626                                         &virt_dev->eps[i],
2627                                         virt_dev->tt_info);
2628         }
2629         /* Overwrite the information stored in the endpoints' bw_info */
2630         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2631         for (i = 0; i < 31; i++) {
2632                 /* Add any changed or added endpoints to the interval table */
2633                 if (EP_IS_ADDED(ctrl_ctx, i))
2634                         xhci_add_ep_to_interval_table(xhci,
2635                                         &virt_dev->eps[i].bw_info,
2636                                         virt_dev->bw_table,
2637                                         virt_dev->udev,
2638                                         &virt_dev->eps[i],
2639                                         virt_dev->tt_info);
2640         }
2641
2642         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2643                 /* Ok, this fits in the bandwidth we have.
2644                  * Update the number of active TTs.
2645                  */
2646                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2647                 return 0;
2648         }
2649
2650         /* We don't have enough bandwidth for this, revert the stored info. */
2651         for (i = 0; i < 31; i++) {
2652                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2653                         continue;
2654
2655                 /* Drop the new copies of any added or changed endpoints from
2656                  * the interval table.
2657                  */
2658                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2659                         xhci_drop_ep_from_interval_table(xhci,
2660                                         &virt_dev->eps[i].bw_info,
2661                                         virt_dev->bw_table,
2662                                         virt_dev->udev,
2663                                         &virt_dev->eps[i],
2664                                         virt_dev->tt_info);
2665                 }
2666                 /* Revert the endpoint back to its old information */
2667                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2668                                 sizeof(ep_bw_info[i]));
2669                 /* Add any changed or dropped endpoints back into the table */
2670                 if (EP_IS_DROPPED(ctrl_ctx, i))
2671                         xhci_add_ep_to_interval_table(xhci,
2672                                         &virt_dev->eps[i].bw_info,
2673                                         virt_dev->bw_table,
2674                                         virt_dev->udev,
2675                                         &virt_dev->eps[i],
2676                                         virt_dev->tt_info);
2677         }
2678         return -ENOMEM;
2679 }
2680
2681
2682 /* Issue a configure endpoint command or evaluate context command
2683  * and wait for it to finish.
2684  */
2685 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2686                 struct usb_device *udev,
2687                 struct xhci_command *command,
2688                 bool ctx_change, bool must_succeed)
2689 {
2690         int ret;
2691         unsigned long flags;
2692         struct xhci_input_control_ctx *ctrl_ctx;
2693         struct xhci_virt_device *virt_dev;
2694         struct xhci_slot_ctx *slot_ctx;
2695
2696         if (!command)
2697                 return -EINVAL;
2698
2699         spin_lock_irqsave(&xhci->lock, flags);
2700
2701         if (xhci->xhc_state & XHCI_STATE_DYING) {
2702                 spin_unlock_irqrestore(&xhci->lock, flags);
2703                 return -ESHUTDOWN;
2704         }
2705
2706         virt_dev = xhci->devs[udev->slot_id];
2707
2708         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2709         if (!ctrl_ctx) {
2710                 spin_unlock_irqrestore(&xhci->lock, flags);
2711                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2712                                 __func__);
2713                 return -ENOMEM;
2714         }
2715
2716         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2717                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2718                 spin_unlock_irqrestore(&xhci->lock, flags);
2719                 xhci_warn(xhci, "Not enough host resources, "
2720                                 "active endpoint contexts = %u\n",
2721                                 xhci->num_active_eps);
2722                 return -ENOMEM;
2723         }
2724         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2725             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2726                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2727                         xhci_free_host_resources(xhci, ctrl_ctx);
2728                 spin_unlock_irqrestore(&xhci->lock, flags);
2729                 xhci_warn(xhci, "Not enough bandwidth\n");
2730                 return -ENOMEM;
2731         }
2732
2733         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2734         trace_xhci_configure_endpoint(slot_ctx);
2735
2736         if (!ctx_change)
2737                 ret = xhci_queue_configure_endpoint(xhci, command,
2738                                 command->in_ctx->dma,
2739                                 udev->slot_id, must_succeed);
2740         else
2741                 ret = xhci_queue_evaluate_context(xhci, command,
2742                                 command->in_ctx->dma,
2743                                 udev->slot_id, must_succeed);
2744         if (ret < 0) {
2745                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2746                         xhci_free_host_resources(xhci, ctrl_ctx);
2747                 spin_unlock_irqrestore(&xhci->lock, flags);
2748                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2749                                 "FIXME allocate a new ring segment");
2750                 return -ENOMEM;
2751         }
2752         xhci_ring_cmd_db(xhci);
2753         spin_unlock_irqrestore(&xhci->lock, flags);
2754
2755         /* Wait for the configure endpoint command to complete */
2756         wait_for_completion(command->completion);
2757
2758         if (!ctx_change)
2759                 ret = xhci_configure_endpoint_result(xhci, udev,
2760                                                      &command->status);
2761         else
2762                 ret = xhci_evaluate_context_result(xhci, udev,
2763                                                    &command->status);
2764
2765         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2766                 spin_lock_irqsave(&xhci->lock, flags);
2767                 /* If the command failed, remove the reserved resources.
2768                  * Otherwise, clean up the estimate to include dropped eps.
2769                  */
2770                 if (ret)
2771                         xhci_free_host_resources(xhci, ctrl_ctx);
2772                 else
2773                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2774                 spin_unlock_irqrestore(&xhci->lock, flags);
2775         }
2776         return ret;
2777 }
2778
2779 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2780         struct xhci_virt_device *vdev, int i)
2781 {
2782         struct xhci_virt_ep *ep = &vdev->eps[i];
2783
2784         if (ep->ep_state & EP_HAS_STREAMS) {
2785                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2786                                 xhci_get_endpoint_address(i));
2787                 xhci_free_stream_info(xhci, ep->stream_info);
2788                 ep->stream_info = NULL;
2789                 ep->ep_state &= ~EP_HAS_STREAMS;
2790         }
2791 }
2792
2793 /* Called after one or more calls to xhci_add_endpoint() or
2794  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2795  * to call xhci_reset_bandwidth().
2796  *
2797  * Since we are in the middle of changing either configuration or
2798  * installing a new alt setting, the USB core won't allow URBs to be
2799  * enqueued for any endpoint on the old config or interface.  Nothing
2800  * else should be touching the xhci->devs[slot_id] structure, so we
2801  * don't need to take the xhci->lock for manipulating that.
2802  */
2803 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2804 {
2805         int i;
2806         int ret = 0;
2807         struct xhci_hcd *xhci;
2808         struct xhci_virt_device *virt_dev;
2809         struct xhci_input_control_ctx *ctrl_ctx;
2810         struct xhci_slot_ctx *slot_ctx;
2811         struct xhci_command *command;
2812
2813         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2814         if (ret <= 0)
2815                 return ret;
2816         xhci = hcd_to_xhci(hcd);
2817         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2818                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2819                 return -ENODEV;
2820
2821         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2822         virt_dev = xhci->devs[udev->slot_id];
2823
2824         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2825         if (!command)
2826                 return -ENOMEM;
2827
2828         command->in_ctx = virt_dev->in_ctx;
2829
2830         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2831         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2832         if (!ctrl_ctx) {
2833                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2834                                 __func__);
2835                 ret = -ENOMEM;
2836                 goto command_cleanup;
2837         }
2838         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2839         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2840         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2841
2842         /* Don't issue the command if there's no endpoints to update. */
2843         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2844             ctrl_ctx->drop_flags == 0) {
2845                 ret = 0;
2846                 goto command_cleanup;
2847         }
2848         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2849         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2850         for (i = 31; i >= 1; i--) {
2851                 __le32 le32 = cpu_to_le32(BIT(i));
2852
2853                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2854                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2855                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2856                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2857                         break;
2858                 }
2859         }
2860
2861         ret = xhci_configure_endpoint(xhci, udev, command,
2862                         false, false);
2863         if (ret)
2864                 /* Callee should call reset_bandwidth() */
2865                 goto command_cleanup;
2866
2867         /* Free any rings that were dropped, but not changed. */
2868         for (i = 1; i < 31; i++) {
2869                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2870                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2871                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2872                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2873                 }
2874         }
2875         xhci_zero_in_ctx(xhci, virt_dev);
2876         /*
2877          * Install any rings for completely new endpoints or changed endpoints,
2878          * and free any old rings from changed endpoints.
2879          */
2880         for (i = 1; i < 31; i++) {
2881                 if (!virt_dev->eps[i].new_ring)
2882                         continue;
2883                 /* Only free the old ring if it exists.
2884                  * It may not if this is the first add of an endpoint.
2885                  */
2886                 if (virt_dev->eps[i].ring) {
2887                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2888                 }
2889                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2890                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2891                 virt_dev->eps[i].new_ring = NULL;
2892         }
2893 command_cleanup:
2894         kfree(command->completion);
2895         kfree(command);
2896
2897         return ret;
2898 }
2899
2900 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2901 {
2902         struct xhci_hcd *xhci;
2903         struct xhci_virt_device *virt_dev;
2904         int i, ret;
2905
2906         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2907         if (ret <= 0)
2908                 return;
2909         xhci = hcd_to_xhci(hcd);
2910
2911         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2912         virt_dev = xhci->devs[udev->slot_id];
2913         /* Free any rings allocated for added endpoints */
2914         for (i = 0; i < 31; i++) {
2915                 if (virt_dev->eps[i].new_ring) {
2916                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2917                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2918                         virt_dev->eps[i].new_ring = NULL;
2919                 }
2920         }
2921         xhci_zero_in_ctx(xhci, virt_dev);
2922 }
2923
2924 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2925                 struct xhci_container_ctx *in_ctx,
2926                 struct xhci_container_ctx *out_ctx,
2927                 struct xhci_input_control_ctx *ctrl_ctx,
2928                 u32 add_flags, u32 drop_flags)
2929 {
2930         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2931         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2932         xhci_slot_copy(xhci, in_ctx, out_ctx);
2933         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2934 }
2935
2936 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2937                 unsigned int slot_id, unsigned int ep_index,
2938                 struct xhci_dequeue_state *deq_state)
2939 {
2940         struct xhci_input_control_ctx *ctrl_ctx;
2941         struct xhci_container_ctx *in_ctx;
2942         struct xhci_ep_ctx *ep_ctx;
2943         u32 added_ctxs;
2944         dma_addr_t addr;
2945
2946         in_ctx = xhci->devs[slot_id]->in_ctx;
2947         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2948         if (!ctrl_ctx) {
2949                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2950                                 __func__);
2951                 return;
2952         }
2953
2954         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2955                         xhci->devs[slot_id]->out_ctx, ep_index);
2956         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2957         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2958                         deq_state->new_deq_ptr);
2959         if (addr == 0) {
2960                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2961                                 "reset ep command\n");
2962                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2963                                 deq_state->new_deq_seg,
2964                                 deq_state->new_deq_ptr);
2965                 return;
2966         }
2967         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2968
2969         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2970         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2971                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2972                         added_ctxs, added_ctxs);
2973 }
2974
2975 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2976                                unsigned int stream_id, struct xhci_td *td)
2977 {
2978         struct xhci_dequeue_state deq_state;
2979         struct usb_device *udev = td->urb->dev;
2980
2981         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2982                         "Cleaning up stalled endpoint ring");
2983         /* We need to move the HW's dequeue pointer past this TD,
2984          * or it will attempt to resend it on the next doorbell ring.
2985          */
2986         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2987                         ep_index, stream_id, td, &deq_state);
2988
2989         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2990                 return;
2991
2992         /* HW with the reset endpoint quirk will use the saved dequeue state to
2993          * issue a configure endpoint command later.
2994          */
2995         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2996                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2997                                 "Queueing new dequeue state");
2998                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2999                                 ep_index, &deq_state);
3000         } else {
3001                 /* Better hope no one uses the input context between now and the
3002                  * reset endpoint completion!
3003                  * XXX: No idea how this hardware will react when stream rings
3004                  * are enabled.
3005                  */
3006                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3007                                 "Setting up input context for "
3008                                 "configure endpoint command");
3009                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3010                                 ep_index, &deq_state);
3011         }
3012 }
3013
3014 /*
3015  * Called after usb core issues a clear halt control message.
3016  * The host side of the halt should already be cleared by a reset endpoint
3017  * command issued when the STALL event was received.
3018  *
3019  * The reset endpoint command may only be issued to endpoints in the halted
3020  * state. For software that wishes to reset the data toggle or sequence number
3021  * of an endpoint that isn't in the halted state this function will issue a
3022  * configure endpoint command with the Drop and Add bits set for the target
3023  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3024  */
3025
3026 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3027                 struct usb_host_endpoint *host_ep)
3028 {
3029         struct xhci_hcd *xhci;
3030         struct usb_device *udev;
3031         struct xhci_virt_device *vdev;
3032         struct xhci_virt_ep *ep;
3033         struct xhci_input_control_ctx *ctrl_ctx;
3034         struct xhci_command *stop_cmd, *cfg_cmd;
3035         unsigned int ep_index;
3036         unsigned long flags;
3037         u32 ep_flag;
3038
3039         xhci = hcd_to_xhci(hcd);
3040         if (!host_ep->hcpriv)
3041                 return;
3042         udev = (struct usb_device *) host_ep->hcpriv;
3043         vdev = xhci->devs[udev->slot_id];
3044         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3045         ep = &vdev->eps[ep_index];
3046
3047         /* Bail out if toggle is already being cleared by a endpoint reset */
3048         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3049                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3050                 return;
3051         }
3052         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3053         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3054             usb_endpoint_xfer_isoc(&host_ep->desc))
3055                 return;
3056
3057         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3058
3059         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3060                 return;
3061
3062         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3063         if (!stop_cmd)
3064                 return;
3065
3066         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3067         if (!cfg_cmd)
3068                 goto cleanup;
3069
3070         spin_lock_irqsave(&xhci->lock, flags);
3071
3072         /* block queuing new trbs and ringing ep doorbell */
3073         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3074
3075         /*
3076          * Make sure endpoint ring is empty before resetting the toggle/seq.
3077          * Driver is required to synchronously cancel all transfer request.
3078          * Stop the endpoint to force xHC to update the output context
3079          */
3080
3081         if (!list_empty(&ep->ring->td_list)) {
3082                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3083                 spin_unlock_irqrestore(&xhci->lock, flags);
3084                 xhci_free_command(xhci, cfg_cmd);
3085                 goto cleanup;
3086         }
3087         xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0);
3088         xhci_ring_cmd_db(xhci);
3089         spin_unlock_irqrestore(&xhci->lock, flags);
3090
3091         wait_for_completion(stop_cmd->completion);
3092
3093         spin_lock_irqsave(&xhci->lock, flags);
3094
3095         /* config ep command clears toggle if add and drop ep flags are set */
3096         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3097         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3098                                            ctrl_ctx, ep_flag, ep_flag);
3099         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3100
3101         xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3102                                       udev->slot_id, false);
3103         xhci_ring_cmd_db(xhci);
3104         spin_unlock_irqrestore(&xhci->lock, flags);
3105
3106         wait_for_completion(cfg_cmd->completion);
3107
3108         ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3109         xhci_free_command(xhci, cfg_cmd);
3110 cleanup:
3111         xhci_free_command(xhci, stop_cmd);
3112 }
3113
3114 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3115                 struct usb_device *udev, struct usb_host_endpoint *ep,
3116                 unsigned int slot_id)
3117 {
3118         int ret;
3119         unsigned int ep_index;
3120         unsigned int ep_state;
3121
3122         if (!ep)
3123                 return -EINVAL;
3124         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3125         if (ret <= 0)
3126                 return -EINVAL;
3127         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3128                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3129                                 " descriptor for ep 0x%x does not support streams\n",
3130                                 ep->desc.bEndpointAddress);
3131                 return -EINVAL;
3132         }
3133
3134         ep_index = xhci_get_endpoint_index(&ep->desc);
3135         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3136         if (ep_state & EP_HAS_STREAMS ||
3137                         ep_state & EP_GETTING_STREAMS) {
3138                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3139                                 "already has streams set up.\n",
3140                                 ep->desc.bEndpointAddress);
3141                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3142                                 "dynamic stream context array reallocation.\n");
3143                 return -EINVAL;
3144         }
3145         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3146                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3147                                 "endpoint 0x%x; URBs are pending.\n",
3148                                 ep->desc.bEndpointAddress);
3149                 return -EINVAL;
3150         }
3151         return 0;
3152 }
3153
3154 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3155                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3156 {
3157         unsigned int max_streams;
3158
3159         /* The stream context array size must be a power of two */
3160         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3161         /*
3162          * Find out how many primary stream array entries the host controller
3163          * supports.  Later we may use secondary stream arrays (similar to 2nd
3164          * level page entries), but that's an optional feature for xHCI host
3165          * controllers. xHCs must support at least 4 stream IDs.
3166          */
3167         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3168         if (*num_stream_ctxs > max_streams) {
3169                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3170                                 max_streams);
3171                 *num_stream_ctxs = max_streams;
3172                 *num_streams = max_streams;
3173         }
3174 }
3175
3176 /* Returns an error code if one of the endpoint already has streams.
3177  * This does not change any data structures, it only checks and gathers
3178  * information.
3179  */
3180 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3181                 struct usb_device *udev,
3182                 struct usb_host_endpoint **eps, unsigned int num_eps,
3183                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3184 {
3185         unsigned int max_streams;
3186         unsigned int endpoint_flag;
3187         int i;
3188         int ret;
3189
3190         for (i = 0; i < num_eps; i++) {
3191                 ret = xhci_check_streams_endpoint(xhci, udev,
3192                                 eps[i], udev->slot_id);
3193                 if (ret < 0)
3194                         return ret;
3195
3196                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3197                 if (max_streams < (*num_streams - 1)) {
3198                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3199                                         eps[i]->desc.bEndpointAddress,
3200                                         max_streams);
3201                         *num_streams = max_streams+1;
3202                 }
3203
3204                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3205                 if (*changed_ep_bitmask & endpoint_flag)
3206                         return -EINVAL;
3207                 *changed_ep_bitmask |= endpoint_flag;
3208         }
3209         return 0;
3210 }
3211
3212 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3213                 struct usb_device *udev,
3214                 struct usb_host_endpoint **eps, unsigned int num_eps)
3215 {
3216         u32 changed_ep_bitmask = 0;
3217         unsigned int slot_id;
3218         unsigned int ep_index;
3219         unsigned int ep_state;
3220         int i;
3221
3222         slot_id = udev->slot_id;
3223         if (!xhci->devs[slot_id])
3224                 return 0;
3225
3226         for (i = 0; i < num_eps; i++) {
3227                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3228                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3229                 /* Are streams already being freed for the endpoint? */
3230                 if (ep_state & EP_GETTING_NO_STREAMS) {
3231                         xhci_warn(xhci, "WARN Can't disable streams for "
3232                                         "endpoint 0x%x, "
3233                                         "streams are being disabled already\n",
3234                                         eps[i]->desc.bEndpointAddress);
3235                         return 0;
3236                 }
3237                 /* Are there actually any streams to free? */
3238                 if (!(ep_state & EP_HAS_STREAMS) &&
3239                                 !(ep_state & EP_GETTING_STREAMS)) {
3240                         xhci_warn(xhci, "WARN Can't disable streams for "
3241                                         "endpoint 0x%x, "
3242                                         "streams are already disabled!\n",
3243                                         eps[i]->desc.bEndpointAddress);
3244                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3245                                         "with non-streams endpoint\n");
3246                         return 0;
3247                 }
3248                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3249         }
3250         return changed_ep_bitmask;
3251 }
3252
3253 /*
3254  * The USB device drivers use this function (through the HCD interface in USB
3255  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3256  * coordinate mass storage command queueing across multiple endpoints (basically
3257  * a stream ID == a task ID).
3258  *
3259  * Setting up streams involves allocating the same size stream context array
3260  * for each endpoint and issuing a configure endpoint command for all endpoints.
3261  *
3262  * Don't allow the call to succeed if one endpoint only supports one stream
3263  * (which means it doesn't support streams at all).
3264  *
3265  * Drivers may get less stream IDs than they asked for, if the host controller
3266  * hardware or endpoints claim they can't support the number of requested
3267  * stream IDs.
3268  */
3269 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3270                 struct usb_host_endpoint **eps, unsigned int num_eps,
3271                 unsigned int num_streams, gfp_t mem_flags)
3272 {
3273         int i, ret;
3274         struct xhci_hcd *xhci;
3275         struct xhci_virt_device *vdev;
3276         struct xhci_command *config_cmd;
3277         struct xhci_input_control_ctx *ctrl_ctx;
3278         unsigned int ep_index;
3279         unsigned int num_stream_ctxs;
3280         unsigned int max_packet;
3281         unsigned long flags;
3282         u32 changed_ep_bitmask = 0;
3283
3284         if (!eps)
3285                 return -EINVAL;
3286
3287         /* Add one to the number of streams requested to account for
3288          * stream 0 that is reserved for xHCI usage.
3289          */
3290         num_streams += 1;
3291         xhci = hcd_to_xhci(hcd);
3292         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3293                         num_streams);
3294
3295         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3296         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3297                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3298                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3299                 return -ENOSYS;
3300         }
3301
3302         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3303         if (!config_cmd)
3304                 return -ENOMEM;
3305
3306         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3307         if (!ctrl_ctx) {
3308                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3309                                 __func__);
3310                 xhci_free_command(xhci, config_cmd);
3311                 return -ENOMEM;
3312         }
3313
3314         /* Check to make sure all endpoints are not already configured for
3315          * streams.  While we're at it, find the maximum number of streams that
3316          * all the endpoints will support and check for duplicate endpoints.
3317          */
3318         spin_lock_irqsave(&xhci->lock, flags);
3319         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3320                         num_eps, &num_streams, &changed_ep_bitmask);
3321         if (ret < 0) {
3322                 xhci_free_command(xhci, config_cmd);
3323                 spin_unlock_irqrestore(&xhci->lock, flags);
3324                 return ret;
3325         }
3326         if (num_streams <= 1) {
3327                 xhci_warn(xhci, "WARN: endpoints can't handle "
3328                                 "more than one stream.\n");
3329                 xhci_free_command(xhci, config_cmd);
3330                 spin_unlock_irqrestore(&xhci->lock, flags);
3331                 return -EINVAL;
3332         }
3333         vdev = xhci->devs[udev->slot_id];
3334         /* Mark each endpoint as being in transition, so
3335          * xhci_urb_enqueue() will reject all URBs.
3336          */
3337         for (i = 0; i < num_eps; i++) {
3338                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3339                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3340         }
3341         spin_unlock_irqrestore(&xhci->lock, flags);
3342
3343         /* Setup internal data structures and allocate HW data structures for
3344          * streams (but don't install the HW structures in the input context
3345          * until we're sure all memory allocation succeeded).
3346          */
3347         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3348         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3349                         num_stream_ctxs, num_streams);
3350
3351         for (i = 0; i < num_eps; i++) {
3352                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3353                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3354                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3355                                 num_stream_ctxs,
3356                                 num_streams,
3357                                 max_packet, mem_flags);
3358                 if (!vdev->eps[ep_index].stream_info)
3359                         goto cleanup;
3360                 /* Set maxPstreams in endpoint context and update deq ptr to
3361                  * point to stream context array. FIXME
3362                  */
3363         }
3364
3365         /* Set up the input context for a configure endpoint command. */
3366         for (i = 0; i < num_eps; i++) {
3367                 struct xhci_ep_ctx *ep_ctx;
3368
3369                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3370                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3371
3372                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3373                                 vdev->out_ctx, ep_index);
3374                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3375                                 vdev->eps[ep_index].stream_info);
3376         }
3377         /* Tell the HW to drop its old copy of the endpoint context info
3378          * and add the updated copy from the input context.
3379          */
3380         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3381                         vdev->out_ctx, ctrl_ctx,
3382                         changed_ep_bitmask, changed_ep_bitmask);
3383
3384         /* Issue and wait for the configure endpoint command */
3385         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3386                         false, false);
3387
3388         /* xHC rejected the configure endpoint command for some reason, so we
3389          * leave the old ring intact and free our internal streams data
3390          * structure.
3391          */
3392         if (ret < 0)
3393                 goto cleanup;
3394
3395         spin_lock_irqsave(&xhci->lock, flags);
3396         for (i = 0; i < num_eps; i++) {
3397                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3398                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3399                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3400                          udev->slot_id, ep_index);
3401                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3402         }
3403         xhci_free_command(xhci, config_cmd);
3404         spin_unlock_irqrestore(&xhci->lock, flags);
3405
3406         /* Subtract 1 for stream 0, which drivers can't use */
3407         return num_streams - 1;
3408
3409 cleanup:
3410         /* If it didn't work, free the streams! */
3411         for (i = 0; i < num_eps; i++) {
3412                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3413                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3414                 vdev->eps[ep_index].stream_info = NULL;
3415                 /* FIXME Unset maxPstreams in endpoint context and
3416                  * update deq ptr to point to normal string ring.
3417                  */
3418                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3419                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3420                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3421         }
3422         xhci_free_command(xhci, config_cmd);
3423         return -ENOMEM;
3424 }
3425
3426 /* Transition the endpoint from using streams to being a "normal" endpoint
3427  * without streams.
3428  *
3429  * Modify the endpoint context state, submit a configure endpoint command,
3430  * and free all endpoint rings for streams if that completes successfully.
3431  */
3432 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3433                 struct usb_host_endpoint **eps, unsigned int num_eps,
3434                 gfp_t mem_flags)
3435 {
3436         int i, ret;
3437         struct xhci_hcd *xhci;
3438         struct xhci_virt_device *vdev;
3439         struct xhci_command *command;
3440         struct xhci_input_control_ctx *ctrl_ctx;
3441         unsigned int ep_index;
3442         unsigned long flags;
3443         u32 changed_ep_bitmask;
3444
3445         xhci = hcd_to_xhci(hcd);
3446         vdev = xhci->devs[udev->slot_id];
3447
3448         /* Set up a configure endpoint command to remove the streams rings */
3449         spin_lock_irqsave(&xhci->lock, flags);
3450         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3451                         udev, eps, num_eps);
3452         if (changed_ep_bitmask == 0) {
3453                 spin_unlock_irqrestore(&xhci->lock, flags);
3454                 return -EINVAL;
3455         }
3456
3457         /* Use the xhci_command structure from the first endpoint.  We may have
3458          * allocated too many, but the driver may call xhci_free_streams() for
3459          * each endpoint it grouped into one call to xhci_alloc_streams().
3460          */
3461         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3462         command = vdev->eps[ep_index].stream_info->free_streams_command;
3463         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3464         if (!ctrl_ctx) {
3465                 spin_unlock_irqrestore(&xhci->lock, flags);
3466                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3467                                 __func__);
3468                 return -EINVAL;
3469         }
3470
3471         for (i = 0; i < num_eps; i++) {
3472                 struct xhci_ep_ctx *ep_ctx;
3473
3474                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3475                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3476                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3477                         EP_GETTING_NO_STREAMS;
3478
3479                 xhci_endpoint_copy(xhci, command->in_ctx,
3480                                 vdev->out_ctx, ep_index);
3481                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3482                                 &vdev->eps[ep_index]);
3483         }
3484         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3485                         vdev->out_ctx, ctrl_ctx,
3486                         changed_ep_bitmask, changed_ep_bitmask);
3487         spin_unlock_irqrestore(&xhci->lock, flags);
3488
3489         /* Issue and wait for the configure endpoint command,
3490          * which must succeed.
3491          */
3492         ret = xhci_configure_endpoint(xhci, udev, command,
3493                         false, true);
3494
3495         /* xHC rejected the configure endpoint command for some reason, so we
3496          * leave the streams rings intact.
3497          */
3498         if (ret < 0)
3499                 return ret;
3500
3501         spin_lock_irqsave(&xhci->lock, flags);
3502         for (i = 0; i < num_eps; i++) {
3503                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3504                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3505                 vdev->eps[ep_index].stream_info = NULL;
3506                 /* FIXME Unset maxPstreams in endpoint context and
3507                  * update deq ptr to point to normal string ring.
3508                  */
3509                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3510                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3511         }
3512         spin_unlock_irqrestore(&xhci->lock, flags);
3513
3514         return 0;
3515 }
3516
3517 /*
3518  * Deletes endpoint resources for endpoints that were active before a Reset
3519  * Device command, or a Disable Slot command.  The Reset Device command leaves
3520  * the control endpoint intact, whereas the Disable Slot command deletes it.
3521  *
3522  * Must be called with xhci->lock held.
3523  */
3524 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3525         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3526 {
3527         int i;
3528         unsigned int num_dropped_eps = 0;
3529         unsigned int drop_flags = 0;
3530
3531         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3532                 if (virt_dev->eps[i].ring) {
3533                         drop_flags |= 1 << i;
3534                         num_dropped_eps++;
3535                 }
3536         }
3537         xhci->num_active_eps -= num_dropped_eps;
3538         if (num_dropped_eps)
3539                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3540                                 "Dropped %u ep ctxs, flags = 0x%x, "
3541                                 "%u now active.",
3542                                 num_dropped_eps, drop_flags,
3543                                 xhci->num_active_eps);
3544 }
3545
3546 /*
3547  * This submits a Reset Device Command, which will set the device state to 0,
3548  * set the device address to 0, and disable all the endpoints except the default
3549  * control endpoint.  The USB core should come back and call
3550  * xhci_address_device(), and then re-set up the configuration.  If this is
3551  * called because of a usb_reset_and_verify_device(), then the old alternate
3552  * settings will be re-installed through the normal bandwidth allocation
3553  * functions.
3554  *
3555  * Wait for the Reset Device command to finish.  Remove all structures
3556  * associated with the endpoints that were disabled.  Clear the input device
3557  * structure? Reset the control endpoint 0 max packet size?
3558  *
3559  * If the virt_dev to be reset does not exist or does not match the udev,
3560  * it means the device is lost, possibly due to the xHC restore error and
3561  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3562  * re-allocate the device.
3563  */
3564 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3565                 struct usb_device *udev)
3566 {
3567         int ret, i;
3568         unsigned long flags;
3569         struct xhci_hcd *xhci;
3570         unsigned int slot_id;
3571         struct xhci_virt_device *virt_dev;
3572         struct xhci_command *reset_device_cmd;
3573         struct xhci_slot_ctx *slot_ctx;
3574         int old_active_eps = 0;
3575
3576         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3577         if (ret <= 0)
3578                 return ret;
3579         xhci = hcd_to_xhci(hcd);
3580         slot_id = udev->slot_id;
3581         virt_dev = xhci->devs[slot_id];
3582         if (!virt_dev) {
3583                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3584                                 "not exist. Re-allocate the device\n", slot_id);
3585                 ret = xhci_alloc_dev(hcd, udev);
3586                 if (ret == 1)
3587                         return 0;
3588                 else
3589                         return -EINVAL;
3590         }
3591
3592         if (virt_dev->tt_info)
3593                 old_active_eps = virt_dev->tt_info->active_eps;
3594
3595         if (virt_dev->udev != udev) {
3596                 /* If the virt_dev and the udev does not match, this virt_dev
3597                  * may belong to another udev.
3598                  * Re-allocate the device.
3599                  */
3600                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3601                                 "not match the udev. Re-allocate the device\n",
3602                                 slot_id);
3603                 ret = xhci_alloc_dev(hcd, udev);
3604                 if (ret == 1)
3605                         return 0;
3606                 else
3607                         return -EINVAL;
3608         }
3609
3610         /* If device is not setup, there is no point in resetting it */
3611         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3612         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3613                                                 SLOT_STATE_DISABLED)
3614                 return 0;
3615
3616         trace_xhci_discover_or_reset_device(slot_ctx);
3617
3618         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3619         /* Allocate the command structure that holds the struct completion.
3620          * Assume we're in process context, since the normal device reset
3621          * process has to wait for the device anyway.  Storage devices are
3622          * reset as part of error handling, so use GFP_NOIO instead of
3623          * GFP_KERNEL.
3624          */
3625         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3626         if (!reset_device_cmd) {
3627                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3628                 return -ENOMEM;
3629         }
3630
3631         /* Attempt to submit the Reset Device command to the command ring */
3632         spin_lock_irqsave(&xhci->lock, flags);
3633
3634         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3635         if (ret) {
3636                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3637                 spin_unlock_irqrestore(&xhci->lock, flags);
3638                 goto command_cleanup;
3639         }
3640         xhci_ring_cmd_db(xhci);
3641         spin_unlock_irqrestore(&xhci->lock, flags);
3642
3643         /* Wait for the Reset Device command to finish */
3644         wait_for_completion(reset_device_cmd->completion);
3645
3646         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3647          * unless we tried to reset a slot ID that wasn't enabled,
3648          * or the device wasn't in the addressed or configured state.
3649          */
3650         ret = reset_device_cmd->status;
3651         switch (ret) {
3652         case COMP_COMMAND_ABORTED:
3653         case COMP_COMMAND_RING_STOPPED:
3654                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3655                 ret = -ETIME;
3656                 goto command_cleanup;
3657         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3658         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3659                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3660                                 slot_id,
3661                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3662                 xhci_dbg(xhci, "Not freeing device rings.\n");
3663                 /* Don't treat this as an error.  May change my mind later. */
3664                 ret = 0;
3665                 goto command_cleanup;
3666         case COMP_SUCCESS:
3667                 xhci_dbg(xhci, "Successful reset device command.\n");
3668                 break;
3669         default:
3670                 if (xhci_is_vendor_info_code(xhci, ret))
3671                         break;
3672                 xhci_warn(xhci, "Unknown completion code %u for "
3673                                 "reset device command.\n", ret);
3674                 ret = -EINVAL;
3675                 goto command_cleanup;
3676         }
3677
3678         /* Free up host controller endpoint resources */
3679         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3680                 spin_lock_irqsave(&xhci->lock, flags);
3681                 /* Don't delete the default control endpoint resources */
3682                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3683                 spin_unlock_irqrestore(&xhci->lock, flags);
3684         }
3685
3686         /* Everything but endpoint 0 is disabled, so free the rings. */
3687         for (i = 1; i < 31; i++) {
3688                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3689
3690                 if (ep->ep_state & EP_HAS_STREAMS) {
3691                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3692                                         xhci_get_endpoint_address(i));
3693                         xhci_free_stream_info(xhci, ep->stream_info);
3694                         ep->stream_info = NULL;
3695                         ep->ep_state &= ~EP_HAS_STREAMS;
3696                 }
3697
3698                 if (ep->ring) {
3699                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3700                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3701                 }
3702                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3703                         xhci_drop_ep_from_interval_table(xhci,
3704                                         &virt_dev->eps[i].bw_info,
3705                                         virt_dev->bw_table,
3706                                         udev,
3707                                         &virt_dev->eps[i],
3708                                         virt_dev->tt_info);
3709                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3710         }
3711         /* If necessary, update the number of active TTs on this root port */
3712         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3713         ret = 0;
3714
3715 command_cleanup:
3716         xhci_free_command(xhci, reset_device_cmd);
3717         return ret;
3718 }
3719
3720 /*
3721  * At this point, the struct usb_device is about to go away, the device has
3722  * disconnected, and all traffic has been stopped and the endpoints have been
3723  * disabled.  Free any HC data structures associated with that device.
3724  */
3725 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3726 {
3727         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3728         struct xhci_virt_device *virt_dev;
3729         struct xhci_slot_ctx *slot_ctx;
3730         int i, ret;
3731
3732 #ifndef CONFIG_USB_DEFAULT_PERSIST
3733         /*
3734          * We called pm_runtime_get_noresume when the device was attached.
3735          * Decrement the counter here to allow controller to runtime suspend
3736          * if no devices remain.
3737          */
3738         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3739                 pm_runtime_put_noidle(hcd->self.controller);
3740 #endif
3741
3742         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3743         /* If the host is halted due to driver unload, we still need to free the
3744          * device.
3745          */
3746         if (ret <= 0 && ret != -ENODEV)
3747                 return;
3748
3749         virt_dev = xhci->devs[udev->slot_id];
3750         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3751         trace_xhci_free_dev(slot_ctx);
3752
3753         /* Stop any wayward timer functions (which may grab the lock) */
3754         for (i = 0; i < 31; i++) {
3755                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3756                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3757         }
3758         xhci_debugfs_remove_slot(xhci, udev->slot_id);
3759         virt_dev->udev = NULL;
3760         ret = xhci_disable_slot(xhci, udev->slot_id);
3761         if (ret)
3762                 xhci_free_virt_device(xhci, udev->slot_id);
3763 }
3764
3765 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3766 {
3767         struct xhci_command *command;
3768         unsigned long flags;
3769         u32 state;
3770         int ret = 0;
3771
3772         command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3773         if (!command)
3774                 return -ENOMEM;
3775
3776         spin_lock_irqsave(&xhci->lock, flags);
3777         /* Don't disable the slot if the host controller is dead. */
3778         state = readl(&xhci->op_regs->status);
3779         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3780                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3781                 spin_unlock_irqrestore(&xhci->lock, flags);
3782                 kfree(command);
3783                 return -ENODEV;
3784         }
3785
3786         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3787                                 slot_id);
3788         if (ret) {
3789                 spin_unlock_irqrestore(&xhci->lock, flags);
3790                 kfree(command);
3791                 return ret;
3792         }
3793         xhci_ring_cmd_db(xhci);
3794         spin_unlock_irqrestore(&xhci->lock, flags);
3795         return ret;
3796 }
3797
3798 /*
3799  * Checks if we have enough host controller resources for the default control
3800  * endpoint.
3801  *
3802  * Must be called with xhci->lock held.
3803  */
3804 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3805 {
3806         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3807                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3808                                 "Not enough ep ctxs: "
3809                                 "%u active, need to add 1, limit is %u.",
3810                                 xhci->num_active_eps, xhci->limit_active_eps);
3811                 return -ENOMEM;
3812         }
3813         xhci->num_active_eps += 1;
3814         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3815                         "Adding 1 ep ctx, %u now active.",
3816                         xhci->num_active_eps);
3817         return 0;
3818 }
3819
3820
3821 /*
3822  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3823  * timed out, or allocating memory failed.  Returns 1 on success.
3824  */
3825 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3826 {
3827         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3828         struct xhci_virt_device *vdev;
3829         struct xhci_slot_ctx *slot_ctx;
3830         unsigned long flags;
3831         int ret, slot_id;
3832         struct xhci_command *command;
3833
3834         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3835         if (!command)
3836                 return 0;
3837
3838         spin_lock_irqsave(&xhci->lock, flags);
3839         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3840         if (ret) {
3841                 spin_unlock_irqrestore(&xhci->lock, flags);
3842                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3843                 xhci_free_command(xhci, command);
3844                 return 0;
3845         }
3846         xhci_ring_cmd_db(xhci);
3847         spin_unlock_irqrestore(&xhci->lock, flags);
3848
3849         wait_for_completion(command->completion);
3850         slot_id = command->slot_id;
3851
3852         if (!slot_id || command->status != COMP_SUCCESS) {
3853                 xhci_err(xhci, "Error while assigning device slot ID\n");
3854                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3855                                 HCS_MAX_SLOTS(
3856                                         readl(&xhci->cap_regs->hcs_params1)));
3857                 xhci_free_command(xhci, command);
3858                 return 0;
3859         }
3860
3861         xhci_free_command(xhci, command);
3862
3863         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3864                 spin_lock_irqsave(&xhci->lock, flags);
3865                 ret = xhci_reserve_host_control_ep_resources(xhci);
3866                 if (ret) {
3867                         spin_unlock_irqrestore(&xhci->lock, flags);
3868                         xhci_warn(xhci, "Not enough host resources, "
3869                                         "active endpoint contexts = %u\n",
3870                                         xhci->num_active_eps);
3871                         goto disable_slot;
3872                 }
3873                 spin_unlock_irqrestore(&xhci->lock, flags);
3874         }
3875         /* Use GFP_NOIO, since this function can be called from
3876          * xhci_discover_or_reset_device(), which may be called as part of
3877          * mass storage driver error handling.
3878          */
3879         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3880                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3881                 goto disable_slot;
3882         }
3883         vdev = xhci->devs[slot_id];
3884         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3885         trace_xhci_alloc_dev(slot_ctx);
3886
3887         udev->slot_id = slot_id;
3888
3889         xhci_debugfs_create_slot(xhci, slot_id);
3890
3891 #ifndef CONFIG_USB_DEFAULT_PERSIST
3892         /*
3893          * If resetting upon resume, we can't put the controller into runtime
3894          * suspend if there is a device attached.
3895          */
3896         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3897                 pm_runtime_get_noresume(hcd->self.controller);
3898 #endif
3899
3900         /* Is this a LS or FS device under a HS hub? */
3901         /* Hub or peripherial? */
3902         return 1;
3903
3904 disable_slot:
3905         ret = xhci_disable_slot(xhci, udev->slot_id);
3906         if (ret)
3907                 xhci_free_virt_device(xhci, udev->slot_id);
3908
3909         return 0;
3910 }
3911
3912 /*
3913  * Issue an Address Device command and optionally send a corresponding
3914  * SetAddress request to the device.
3915  */
3916 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3917                              enum xhci_setup_dev setup)
3918 {
3919         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3920         unsigned long flags;
3921         struct xhci_virt_device *virt_dev;
3922         int ret = 0;
3923         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3924         struct xhci_slot_ctx *slot_ctx;
3925         struct xhci_input_control_ctx *ctrl_ctx;
3926         u64 temp_64;
3927         struct xhci_command *command = NULL;
3928
3929         mutex_lock(&xhci->mutex);
3930
3931         if (xhci->xhc_state) {  /* dying, removing or halted */
3932                 ret = -ESHUTDOWN;
3933                 goto out;
3934         }
3935
3936         if (!udev->slot_id) {
3937                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3938                                 "Bad Slot ID %d", udev->slot_id);
3939                 ret = -EINVAL;
3940                 goto out;
3941         }
3942
3943         virt_dev = xhci->devs[udev->slot_id];
3944
3945         if (WARN_ON(!virt_dev)) {
3946                 /*
3947                  * In plug/unplug torture test with an NEC controller,
3948                  * a zero-dereference was observed once due to virt_dev = 0.
3949                  * Print useful debug rather than crash if it is observed again!
3950                  */
3951                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3952                         udev->slot_id);
3953                 ret = -EINVAL;
3954                 goto out;
3955         }
3956         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3957         trace_xhci_setup_device_slot(slot_ctx);
3958
3959         if (setup == SETUP_CONTEXT_ONLY) {
3960                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3961                     SLOT_STATE_DEFAULT) {
3962                         xhci_dbg(xhci, "Slot already in default state\n");
3963                         goto out;
3964                 }
3965         }
3966
3967         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3968         if (!command) {
3969                 ret = -ENOMEM;
3970                 goto out;
3971         }
3972
3973         command->in_ctx = virt_dev->in_ctx;
3974
3975         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3976         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3977         if (!ctrl_ctx) {
3978                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3979                                 __func__);
3980                 ret = -EINVAL;
3981                 goto out;
3982         }
3983         /*
3984          * If this is the first Set Address since device plug-in or
3985          * virt_device realloaction after a resume with an xHCI power loss,
3986          * then set up the slot context.
3987          */
3988         if (!slot_ctx->dev_info)
3989                 xhci_setup_addressable_virt_dev(xhci, udev);
3990         /* Otherwise, update the control endpoint ring enqueue pointer. */
3991         else
3992                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3993         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3994         ctrl_ctx->drop_flags = 0;
3995
3996         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3997                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3998
3999         spin_lock_irqsave(&xhci->lock, flags);
4000         trace_xhci_setup_device(virt_dev);
4001         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4002                                         udev->slot_id, setup);
4003         if (ret) {
4004                 spin_unlock_irqrestore(&xhci->lock, flags);
4005                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4006                                 "FIXME: allocate a command ring segment");
4007                 goto out;
4008         }
4009         xhci_ring_cmd_db(xhci);
4010         spin_unlock_irqrestore(&xhci->lock, flags);
4011
4012         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4013         wait_for_completion(command->completion);
4014
4015         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4016          * the SetAddress() "recovery interval" required by USB and aborting the
4017          * command on a timeout.
4018          */
4019         switch (command->status) {
4020         case COMP_COMMAND_ABORTED:
4021         case COMP_COMMAND_RING_STOPPED:
4022                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4023                 ret = -ETIME;
4024                 break;
4025         case COMP_CONTEXT_STATE_ERROR:
4026         case COMP_SLOT_NOT_ENABLED_ERROR:
4027                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4028                          act, udev->slot_id);
4029                 ret = -EINVAL;
4030                 break;
4031         case COMP_USB_TRANSACTION_ERROR:
4032                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4033
4034                 mutex_unlock(&xhci->mutex);
4035                 ret = xhci_disable_slot(xhci, udev->slot_id);
4036                 if (!ret)
4037                         xhci_alloc_dev(hcd, udev);
4038                 kfree(command->completion);
4039                 kfree(command);
4040                 return -EPROTO;
4041         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4042                 dev_warn(&udev->dev,
4043                          "ERROR: Incompatible device for setup %s command\n", act);
4044                 ret = -ENODEV;
4045                 break;
4046         case COMP_SUCCESS:
4047                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4048                                "Successful setup %s command", act);
4049                 break;
4050         default:
4051                 xhci_err(xhci,
4052                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4053                          act, command->status);
4054                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4055                 ret = -EINVAL;
4056                 break;
4057         }
4058         if (ret)
4059                 goto out;
4060         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4061         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4062                         "Op regs DCBAA ptr = %#016llx", temp_64);
4063         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4064                 "Slot ID %d dcbaa entry @%p = %#016llx",
4065                 udev->slot_id,
4066                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4067                 (unsigned long long)
4068                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4069         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4070                         "Output Context DMA address = %#08llx",
4071                         (unsigned long long)virt_dev->out_ctx->dma);
4072         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4073                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4074         /*
4075          * USB core uses address 1 for the roothubs, so we add one to the
4076          * address given back to us by the HC.
4077          */
4078         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4079                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4080         /* Zero the input context control for later use */
4081         ctrl_ctx->add_flags = 0;
4082         ctrl_ctx->drop_flags = 0;
4083
4084         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4085                        "Internal device address = %d",
4086                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4087 out:
4088         mutex_unlock(&xhci->mutex);
4089         if (command) {
4090                 kfree(command->completion);
4091                 kfree(command);
4092         }
4093         return ret;
4094 }
4095
4096 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4097 {
4098         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4099 }
4100
4101 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4102 {
4103         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4104 }
4105
4106 /*
4107  * Transfer the port index into real index in the HW port status
4108  * registers. Caculate offset between the port's PORTSC register
4109  * and port status base. Divide the number of per port register
4110  * to get the real index. The raw port number bases 1.
4111  */
4112 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4113 {
4114         struct xhci_hub *rhub;
4115
4116         rhub = xhci_get_rhub(hcd);
4117         return rhub->ports[port1 - 1]->hw_portnum + 1;
4118 }
4119
4120 /*
4121  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4122  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4123  */
4124 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4125                         struct usb_device *udev, u16 max_exit_latency)
4126 {
4127         struct xhci_virt_device *virt_dev;
4128         struct xhci_command *command;
4129         struct xhci_input_control_ctx *ctrl_ctx;
4130         struct xhci_slot_ctx *slot_ctx;
4131         unsigned long flags;
4132         int ret;
4133
4134         spin_lock_irqsave(&xhci->lock, flags);
4135
4136         virt_dev = xhci->devs[udev->slot_id];
4137
4138         /*
4139          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4140          * xHC was re-initialized. Exit latency will be set later after
4141          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4142          */
4143
4144         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4145                 spin_unlock_irqrestore(&xhci->lock, flags);
4146                 return 0;
4147         }
4148
4149         /* Attempt to issue an Evaluate Context command to change the MEL. */
4150         command = xhci->lpm_command;
4151         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4152         if (!ctrl_ctx) {
4153                 spin_unlock_irqrestore(&xhci->lock, flags);
4154                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4155                                 __func__);
4156                 return -ENOMEM;
4157         }
4158
4159         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4160         spin_unlock_irqrestore(&xhci->lock, flags);
4161
4162         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4163         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4164         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4165         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4166         slot_ctx->dev_state = 0;
4167
4168         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4169                         "Set up evaluate context for LPM MEL change.");
4170
4171         /* Issue and wait for the evaluate context command. */
4172         ret = xhci_configure_endpoint(xhci, udev, command,
4173                         true, true);
4174
4175         if (!ret) {
4176                 spin_lock_irqsave(&xhci->lock, flags);
4177                 virt_dev->current_mel = max_exit_latency;
4178                 spin_unlock_irqrestore(&xhci->lock, flags);
4179         }
4180         return ret;
4181 }
4182
4183 #ifdef CONFIG_PM
4184
4185 /* BESL to HIRD Encoding array for USB2 LPM */
4186 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4187         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4188
4189 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4190 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4191                                         struct usb_device *udev)
4192 {
4193         int u2del, besl, besl_host;
4194         int besl_device = 0;
4195         u32 field;
4196
4197         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4198         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4199
4200         if (field & USB_BESL_SUPPORT) {
4201                 for (besl_host = 0; besl_host < 16; besl_host++) {
4202                         if (xhci_besl_encoding[besl_host] >= u2del)
4203                                 break;
4204                 }
4205                 /* Use baseline BESL value as default */
4206                 if (field & USB_BESL_BASELINE_VALID)
4207                         besl_device = USB_GET_BESL_BASELINE(field);
4208                 else if (field & USB_BESL_DEEP_VALID)
4209                         besl_device = USB_GET_BESL_DEEP(field);
4210         } else {
4211                 if (u2del <= 50)
4212                         besl_host = 0;
4213                 else
4214                         besl_host = (u2del - 51) / 75 + 1;
4215         }
4216
4217         besl = besl_host + besl_device;
4218         if (besl > 15)
4219                 besl = 15;
4220
4221         return besl;
4222 }
4223
4224 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4225 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4226 {
4227         u32 field;
4228         int l1;
4229         int besld = 0;
4230         int hirdm = 0;
4231
4232         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4233
4234         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4235         l1 = udev->l1_params.timeout / 256;
4236
4237         /* device has preferred BESLD */
4238         if (field & USB_BESL_DEEP_VALID) {
4239                 besld = USB_GET_BESL_DEEP(field);
4240                 hirdm = 1;
4241         }
4242
4243         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4244 }
4245
4246 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4247                         struct usb_device *udev, int enable)
4248 {
4249         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4250         struct xhci_port **ports;
4251         __le32 __iomem  *pm_addr, *hlpm_addr;
4252         u32             pm_val, hlpm_val, field;
4253         unsigned int    port_num;
4254         unsigned long   flags;
4255         int             hird, exit_latency;
4256         int             ret;
4257
4258         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4259                         !udev->lpm_capable)
4260                 return -EPERM;
4261
4262         if (!udev->parent || udev->parent->parent ||
4263                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4264                 return -EPERM;
4265
4266         if (udev->usb2_hw_lpm_capable != 1)
4267                 return -EPERM;
4268
4269         spin_lock_irqsave(&xhci->lock, flags);
4270
4271         ports = xhci->usb2_rhub.ports;
4272         port_num = udev->portnum - 1;
4273         pm_addr = ports[port_num]->addr + PORTPMSC;
4274         pm_val = readl(pm_addr);
4275         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4276         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4277
4278         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4279                         enable ? "enable" : "disable", port_num + 1);
4280
4281         if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4282                 /* Host supports BESL timeout instead of HIRD */
4283                 if (udev->usb2_hw_lpm_besl_capable) {
4284                         /* if device doesn't have a preferred BESL value use a
4285                          * default one which works with mixed HIRD and BESL
4286                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4287                          */
4288                         if ((field & USB_BESL_SUPPORT) &&
4289                             (field & USB_BESL_BASELINE_VALID))
4290                                 hird = USB_GET_BESL_BASELINE(field);
4291                         else
4292                                 hird = udev->l1_params.besl;
4293
4294                         exit_latency = xhci_besl_encoding[hird];
4295                         spin_unlock_irqrestore(&xhci->lock, flags);
4296
4297                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4298                          * input context for link powermanagement evaluate
4299                          * context commands. It is protected by hcd->bandwidth
4300                          * mutex and is shared by all devices. We need to set
4301                          * the max ext latency in USB 2 BESL LPM as well, so
4302                          * use the same mutex and xhci_change_max_exit_latency()
4303                          */
4304                         mutex_lock(hcd->bandwidth_mutex);
4305                         ret = xhci_change_max_exit_latency(xhci, udev,
4306                                                            exit_latency);
4307                         mutex_unlock(hcd->bandwidth_mutex);
4308
4309                         if (ret < 0)
4310                                 return ret;
4311                         spin_lock_irqsave(&xhci->lock, flags);
4312
4313                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4314                         writel(hlpm_val, hlpm_addr);
4315                         /* flush write */
4316                         readl(hlpm_addr);
4317                 } else {
4318                         hird = xhci_calculate_hird_besl(xhci, udev);
4319                 }
4320
4321                 pm_val &= ~PORT_HIRD_MASK;
4322                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4323                 writel(pm_val, pm_addr);
4324                 pm_val = readl(pm_addr);
4325                 pm_val |= PORT_HLE;
4326                 writel(pm_val, pm_addr);
4327                 /* flush write */
4328                 readl(pm_addr);
4329         } else {
4330                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4331                 writel(pm_val, pm_addr);
4332                 /* flush write */
4333                 readl(pm_addr);
4334                 if (udev->usb2_hw_lpm_besl_capable) {
4335                         spin_unlock_irqrestore(&xhci->lock, flags);
4336                         mutex_lock(hcd->bandwidth_mutex);
4337                         xhci_change_max_exit_latency(xhci, udev, 0);
4338                         mutex_unlock(hcd->bandwidth_mutex);
4339                         return 0;
4340                 }
4341         }
4342
4343         spin_unlock_irqrestore(&xhci->lock, flags);
4344         return 0;
4345 }
4346
4347 /* check if a usb2 port supports a given extened capability protocol
4348  * only USB2 ports extended protocol capability values are cached.
4349  * Return 1 if capability is supported
4350  */
4351 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4352                                            unsigned capability)
4353 {
4354         u32 port_offset, port_count;
4355         int i;
4356
4357         for (i = 0; i < xhci->num_ext_caps; i++) {
4358                 if (xhci->ext_caps[i] & capability) {
4359                         /* port offsets starts at 1 */
4360                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4361                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4362                         if (port >= port_offset &&
4363                             port < port_offset + port_count)
4364                                 return 1;
4365                 }
4366         }
4367         return 0;
4368 }
4369
4370 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4371 {
4372         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4373         int             portnum = udev->portnum - 1;
4374
4375         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4376                         !udev->lpm_capable)
4377                 return 0;
4378
4379         /* we only support lpm for non-hub device connected to root hub yet */
4380         if (!udev->parent || udev->parent->parent ||
4381                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4382                 return 0;
4383
4384         if (xhci->hw_lpm_support == 1 &&
4385                         xhci_check_usb2_port_capability(
4386                                 xhci, portnum, XHCI_HLC)) {
4387                 udev->usb2_hw_lpm_capable = 1;
4388                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4389                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4390                 if (xhci_check_usb2_port_capability(xhci, portnum,
4391                                         XHCI_BLC))
4392                         udev->usb2_hw_lpm_besl_capable = 1;
4393         }
4394
4395         return 0;
4396 }
4397
4398 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4399
4400 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4401 static unsigned long long xhci_service_interval_to_ns(
4402                 struct usb_endpoint_descriptor *desc)
4403 {
4404         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4405 }
4406
4407 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4408                 enum usb3_link_state state)
4409 {
4410         unsigned long long sel;
4411         unsigned long long pel;
4412         unsigned int max_sel_pel;
4413         char *state_name;
4414
4415         switch (state) {
4416         case USB3_LPM_U1:
4417                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4418                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4419                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4420                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4421                 state_name = "U1";
4422                 break;
4423         case USB3_LPM_U2:
4424                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4425                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4426                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4427                 state_name = "U2";
4428                 break;
4429         default:
4430                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4431                                 __func__);
4432                 return USB3_LPM_DISABLED;
4433         }
4434
4435         if (sel <= max_sel_pel && pel <= max_sel_pel)
4436                 return USB3_LPM_DEVICE_INITIATED;
4437
4438         if (sel > max_sel_pel)
4439                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4440                                 "due to long SEL %llu ms\n",
4441                                 state_name, sel);
4442         else
4443                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4444                                 "due to long PEL %llu ms\n",
4445                                 state_name, pel);
4446         return USB3_LPM_DISABLED;
4447 }
4448
4449 /* The U1 timeout should be the maximum of the following values:
4450  *  - For control endpoints, U1 system exit latency (SEL) * 3
4451  *  - For bulk endpoints, U1 SEL * 5
4452  *  - For interrupt endpoints:
4453  *    - Notification EPs, U1 SEL * 3
4454  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4455  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4456  */
4457 static unsigned long long xhci_calculate_intel_u1_timeout(
4458                 struct usb_device *udev,
4459                 struct usb_endpoint_descriptor *desc)
4460 {
4461         unsigned long long timeout_ns;
4462         int ep_type;
4463         int intr_type;
4464
4465         ep_type = usb_endpoint_type(desc);
4466         switch (ep_type) {
4467         case USB_ENDPOINT_XFER_CONTROL:
4468                 timeout_ns = udev->u1_params.sel * 3;
4469                 break;
4470         case USB_ENDPOINT_XFER_BULK:
4471                 timeout_ns = udev->u1_params.sel * 5;
4472                 break;
4473         case USB_ENDPOINT_XFER_INT:
4474                 intr_type = usb_endpoint_interrupt_type(desc);
4475                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4476                         timeout_ns = udev->u1_params.sel * 3;
4477                         break;
4478                 }
4479                 /* Otherwise the calculation is the same as isoc eps */
4480                 /* fall through */
4481         case USB_ENDPOINT_XFER_ISOC:
4482                 timeout_ns = xhci_service_interval_to_ns(desc);
4483                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4484                 if (timeout_ns < udev->u1_params.sel * 2)
4485                         timeout_ns = udev->u1_params.sel * 2;
4486                 break;
4487         default:
4488                 return 0;
4489         }
4490
4491         return timeout_ns;
4492 }
4493
4494 /* Returns the hub-encoded U1 timeout value. */
4495 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4496                 struct usb_device *udev,
4497                 struct usb_endpoint_descriptor *desc)
4498 {
4499         unsigned long long timeout_ns;
4500
4501         if (xhci->quirks & XHCI_INTEL_HOST)
4502                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4503         else
4504                 timeout_ns = udev->u1_params.sel;
4505
4506         /* The U1 timeout is encoded in 1us intervals.
4507          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4508          */
4509         if (timeout_ns == USB3_LPM_DISABLED)
4510                 timeout_ns = 1;
4511         else
4512                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4513
4514         /* If the necessary timeout value is bigger than what we can set in the
4515          * USB 3.0 hub, we have to disable hub-initiated U1.
4516          */
4517         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4518                 return timeout_ns;
4519         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4520                         "due to long timeout %llu ms\n", timeout_ns);
4521         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4522 }
4523
4524 /* The U2 timeout should be the maximum of:
4525  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4526  *  - largest bInterval of any active periodic endpoint (to avoid going
4527  *    into lower power link states between intervals).
4528  *  - the U2 Exit Latency of the device
4529  */
4530 static unsigned long long xhci_calculate_intel_u2_timeout(
4531                 struct usb_device *udev,
4532                 struct usb_endpoint_descriptor *desc)
4533 {
4534         unsigned long long timeout_ns;
4535         unsigned long long u2_del_ns;
4536
4537         timeout_ns = 10 * 1000 * 1000;
4538
4539         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4540                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4541                 timeout_ns = xhci_service_interval_to_ns(desc);
4542
4543         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4544         if (u2_del_ns > timeout_ns)
4545                 timeout_ns = u2_del_ns;
4546
4547         return timeout_ns;
4548 }
4549
4550 /* Returns the hub-encoded U2 timeout value. */
4551 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4552                 struct usb_device *udev,
4553                 struct usb_endpoint_descriptor *desc)
4554 {
4555         unsigned long long timeout_ns;
4556
4557         if (xhci->quirks & XHCI_INTEL_HOST)
4558                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4559         else
4560                 timeout_ns = udev->u2_params.sel;
4561
4562         /* The U2 timeout is encoded in 256us intervals */
4563         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4564         /* If the necessary timeout value is bigger than what we can set in the
4565          * USB 3.0 hub, we have to disable hub-initiated U2.
4566          */
4567         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4568                 return timeout_ns;
4569         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4570                         "due to long timeout %llu ms\n", timeout_ns);
4571         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4572 }
4573
4574 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4575                 struct usb_device *udev,
4576                 struct usb_endpoint_descriptor *desc,
4577                 enum usb3_link_state state,
4578                 u16 *timeout)
4579 {
4580         if (state == USB3_LPM_U1)
4581                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4582         else if (state == USB3_LPM_U2)
4583                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4584
4585         return USB3_LPM_DISABLED;
4586 }
4587
4588 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4589                 struct usb_device *udev,
4590                 struct usb_endpoint_descriptor *desc,
4591                 enum usb3_link_state state,
4592                 u16 *timeout)
4593 {
4594         u16 alt_timeout;
4595
4596         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4597                 desc, state, timeout);
4598
4599         /* If we found we can't enable hub-initiated LPM, or
4600          * the U1 or U2 exit latency was too high to allow
4601          * device-initiated LPM as well, just stop searching.
4602          */
4603         if (alt_timeout == USB3_LPM_DISABLED ||
4604                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4605                 *timeout = alt_timeout;
4606                 return -E2BIG;
4607         }
4608         if (alt_timeout > *timeout)
4609                 *timeout = alt_timeout;
4610         return 0;
4611 }
4612
4613 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4614                 struct usb_device *udev,
4615                 struct usb_host_interface *alt,
4616                 enum usb3_link_state state,
4617                 u16 *timeout)
4618 {
4619         int j;
4620
4621         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4622                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4623                                         &alt->endpoint[j].desc, state, timeout))
4624                         return -E2BIG;
4625                 continue;
4626         }
4627         return 0;
4628 }
4629
4630 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4631                 enum usb3_link_state state)
4632 {
4633         struct usb_device *parent;
4634         unsigned int num_hubs;
4635
4636         if (state == USB3_LPM_U2)
4637                 return 0;
4638
4639         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4640         for (parent = udev->parent, num_hubs = 0; parent->parent;
4641                         parent = parent->parent)
4642                 num_hubs++;
4643
4644         if (num_hubs < 2)
4645                 return 0;
4646
4647         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4648                         " below second-tier hub.\n");
4649         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4650                         "to decrease power consumption.\n");
4651         return -E2BIG;
4652 }
4653
4654 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4655                 struct usb_device *udev,
4656                 enum usb3_link_state state)
4657 {
4658         if (xhci->quirks & XHCI_INTEL_HOST)
4659                 return xhci_check_intel_tier_policy(udev, state);
4660         else
4661                 return 0;
4662 }
4663
4664 /* Returns the U1 or U2 timeout that should be enabled.
4665  * If the tier check or timeout setting functions return with a non-zero exit
4666  * code, that means the timeout value has been finalized and we shouldn't look
4667  * at any more endpoints.
4668  */
4669 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4670                         struct usb_device *udev, enum usb3_link_state state)
4671 {
4672         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4673         struct usb_host_config *config;
4674         char *state_name;
4675         int i;
4676         u16 timeout = USB3_LPM_DISABLED;
4677
4678         if (state == USB3_LPM_U1)
4679                 state_name = "U1";
4680         else if (state == USB3_LPM_U2)
4681                 state_name = "U2";
4682         else {
4683                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4684                                 state);
4685                 return timeout;
4686         }
4687
4688         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4689                 return timeout;
4690
4691         /* Gather some information about the currently installed configuration
4692          * and alternate interface settings.
4693          */
4694         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4695                         state, &timeout))
4696                 return timeout;
4697
4698         config = udev->actconfig;
4699         if (!config)
4700                 return timeout;
4701
4702         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4703                 struct usb_driver *driver;
4704                 struct usb_interface *intf = config->interface[i];
4705
4706                 if (!intf)
4707                         continue;
4708
4709                 /* Check if any currently bound drivers want hub-initiated LPM
4710                  * disabled.
4711                  */
4712                 if (intf->dev.driver) {
4713                         driver = to_usb_driver(intf->dev.driver);
4714                         if (driver && driver->disable_hub_initiated_lpm) {
4715                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4716                                                 "at request of driver %s\n",
4717                                                 state_name, driver->name);
4718                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4719                         }
4720                 }
4721
4722                 /* Not sure how this could happen... */
4723                 if (!intf->cur_altsetting)
4724                         continue;
4725
4726                 if (xhci_update_timeout_for_interface(xhci, udev,
4727                                         intf->cur_altsetting,
4728                                         state, &timeout))
4729                         return timeout;
4730         }
4731         return timeout;
4732 }
4733
4734 static int calculate_max_exit_latency(struct usb_device *udev,
4735                 enum usb3_link_state state_changed,
4736                 u16 hub_encoded_timeout)
4737 {
4738         unsigned long long u1_mel_us = 0;
4739         unsigned long long u2_mel_us = 0;
4740         unsigned long long mel_us = 0;
4741         bool disabling_u1;
4742         bool disabling_u2;
4743         bool enabling_u1;
4744         bool enabling_u2;
4745
4746         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4747                         hub_encoded_timeout == USB3_LPM_DISABLED);
4748         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4749                         hub_encoded_timeout == USB3_LPM_DISABLED);
4750
4751         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4752                         hub_encoded_timeout != USB3_LPM_DISABLED);
4753         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4754                         hub_encoded_timeout != USB3_LPM_DISABLED);
4755
4756         /* If U1 was already enabled and we're not disabling it,
4757          * or we're going to enable U1, account for the U1 max exit latency.
4758          */
4759         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4760                         enabling_u1)
4761                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4762         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4763                         enabling_u2)
4764                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4765
4766         if (u1_mel_us > u2_mel_us)
4767                 mel_us = u1_mel_us;
4768         else
4769                 mel_us = u2_mel_us;
4770         /* xHCI host controller max exit latency field is only 16 bits wide. */
4771         if (mel_us > MAX_EXIT) {
4772                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4773                                 "is too big.\n", mel_us);
4774                 return -E2BIG;
4775         }
4776         return mel_us;
4777 }
4778
4779 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4780 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4781                         struct usb_device *udev, enum usb3_link_state state)
4782 {
4783         struct xhci_hcd *xhci;
4784         u16 hub_encoded_timeout;
4785         int mel;
4786         int ret;
4787
4788         xhci = hcd_to_xhci(hcd);
4789         /* The LPM timeout values are pretty host-controller specific, so don't
4790          * enable hub-initiated timeouts unless the vendor has provided
4791          * information about their timeout algorithm.
4792          */
4793         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4794                         !xhci->devs[udev->slot_id])
4795                 return USB3_LPM_DISABLED;
4796
4797         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4798         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4799         if (mel < 0) {
4800                 /* Max Exit Latency is too big, disable LPM. */
4801                 hub_encoded_timeout = USB3_LPM_DISABLED;
4802                 mel = 0;
4803         }
4804
4805         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4806         if (ret)
4807                 return ret;
4808         return hub_encoded_timeout;
4809 }
4810
4811 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4812                         struct usb_device *udev, enum usb3_link_state state)
4813 {
4814         struct xhci_hcd *xhci;
4815         u16 mel;
4816
4817         xhci = hcd_to_xhci(hcd);
4818         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4819                         !xhci->devs[udev->slot_id])
4820                 return 0;
4821
4822         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4823         return xhci_change_max_exit_latency(xhci, udev, mel);
4824 }
4825 #else /* CONFIG_PM */
4826
4827 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4828                                 struct usb_device *udev, int enable)
4829 {
4830         return 0;
4831 }
4832
4833 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4834 {
4835         return 0;
4836 }
4837
4838 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4839                         struct usb_device *udev, enum usb3_link_state state)
4840 {
4841         return USB3_LPM_DISABLED;
4842 }
4843
4844 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4845                         struct usb_device *udev, enum usb3_link_state state)
4846 {
4847         return 0;
4848 }
4849 #endif  /* CONFIG_PM */
4850
4851 /*-------------------------------------------------------------------------*/
4852
4853 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4854  * internal data structures for the device.
4855  */
4856 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4857                         struct usb_tt *tt, gfp_t mem_flags)
4858 {
4859         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4860         struct xhci_virt_device *vdev;
4861         struct xhci_command *config_cmd;
4862         struct xhci_input_control_ctx *ctrl_ctx;
4863         struct xhci_slot_ctx *slot_ctx;
4864         unsigned long flags;
4865         unsigned think_time;
4866         int ret;
4867
4868         /* Ignore root hubs */
4869         if (!hdev->parent)
4870                 return 0;
4871
4872         vdev = xhci->devs[hdev->slot_id];
4873         if (!vdev) {
4874                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4875                 return -EINVAL;
4876         }
4877
4878         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4879         if (!config_cmd)
4880                 return -ENOMEM;
4881
4882         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4883         if (!ctrl_ctx) {
4884                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4885                                 __func__);
4886                 xhci_free_command(xhci, config_cmd);
4887                 return -ENOMEM;
4888         }
4889
4890         spin_lock_irqsave(&xhci->lock, flags);
4891         if (hdev->speed == USB_SPEED_HIGH &&
4892                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4893                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4894                 xhci_free_command(xhci, config_cmd);
4895                 spin_unlock_irqrestore(&xhci->lock, flags);
4896                 return -ENOMEM;
4897         }
4898
4899         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4900         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4901         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4902         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4903         /*
4904          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4905          * but it may be already set to 1 when setup an xHCI virtual
4906          * device, so clear it anyway.
4907          */
4908         if (tt->multi)
4909                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4910         else if (hdev->speed == USB_SPEED_FULL)
4911                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4912
4913         if (xhci->hci_version > 0x95) {
4914                 xhci_dbg(xhci, "xHCI version %x needs hub "
4915                                 "TT think time and number of ports\n",
4916                                 (unsigned int) xhci->hci_version);
4917                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4918                 /* Set TT think time - convert from ns to FS bit times.
4919                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4920                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4921                  *
4922                  * xHCI 1.0: this field shall be 0 if the device is not a
4923                  * High-spped hub.
4924                  */
4925                 think_time = tt->think_time;
4926                 if (think_time != 0)
4927                         think_time = (think_time / 666) - 1;
4928                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4929                         slot_ctx->tt_info |=
4930                                 cpu_to_le32(TT_THINK_TIME(think_time));
4931         } else {
4932                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4933                                 "TT think time or number of ports\n",
4934                                 (unsigned int) xhci->hci_version);
4935         }
4936         slot_ctx->dev_state = 0;
4937         spin_unlock_irqrestore(&xhci->lock, flags);
4938
4939         xhci_dbg(xhci, "Set up %s for hub device.\n",
4940                         (xhci->hci_version > 0x95) ?
4941                         "configure endpoint" : "evaluate context");
4942
4943         /* Issue and wait for the configure endpoint or
4944          * evaluate context command.
4945          */
4946         if (xhci->hci_version > 0x95)
4947                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4948                                 false, false);
4949         else
4950                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4951                                 true, false);
4952
4953         xhci_free_command(xhci, config_cmd);
4954         return ret;
4955 }
4956
4957 static int xhci_get_frame(struct usb_hcd *hcd)
4958 {
4959         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4960         /* EHCI mods by the periodic size.  Why? */
4961         return readl(&xhci->run_regs->microframe_index) >> 3;
4962 }
4963
4964 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4965 {
4966         struct xhci_hcd         *xhci;
4967         /*
4968          * TODO: Check with DWC3 clients for sysdev according to
4969          * quirks
4970          */
4971         struct device           *dev = hcd->self.sysdev;
4972         unsigned int            minor_rev;
4973         int                     retval;
4974
4975         /* Accept arbitrarily long scatter-gather lists */
4976         hcd->self.sg_tablesize = ~0;
4977
4978         /* support to build packet from discontinuous buffers */
4979         hcd->self.no_sg_constraint = 1;
4980
4981         /* XHCI controllers don't stop the ep queue on short packets :| */
4982         hcd->self.no_stop_on_short = 1;
4983
4984         xhci = hcd_to_xhci(hcd);
4985
4986         if (usb_hcd_is_primary_hcd(hcd)) {
4987                 xhci->main_hcd = hcd;
4988                 xhci->usb2_rhub.hcd = hcd;
4989                 /* Mark the first roothub as being USB 2.0.
4990                  * The xHCI driver will register the USB 3.0 roothub.
4991                  */
4992                 hcd->speed = HCD_USB2;
4993                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4994                 /*
4995                  * USB 2.0 roothub under xHCI has an integrated TT,
4996                  * (rate matching hub) as opposed to having an OHCI/UHCI
4997                  * companion controller.
4998                  */
4999                 hcd->has_tt = 1;
5000         } else {
5001                 /*
5002                  * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
5003                  * minor revision instead of sbrn
5004                  */
5005                 minor_rev = xhci->usb3_rhub.min_rev;
5006                 if (minor_rev) {
5007                         hcd->speed = HCD_USB31;
5008                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5009                 }
5010                 xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n",
5011                           minor_rev,
5012                           minor_rev ? "Enhanced" : "");
5013
5014                 xhci->usb3_rhub.hcd = hcd;
5015                 /* xHCI private pointer was set in xhci_pci_probe for the second
5016                  * registered roothub.
5017                  */
5018                 return 0;
5019         }
5020
5021         mutex_init(&xhci->mutex);
5022         xhci->cap_regs = hcd->regs;
5023         xhci->op_regs = hcd->regs +
5024                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5025         xhci->run_regs = hcd->regs +
5026                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5027         /* Cache read-only capability registers */
5028         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5029         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5030         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5031         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5032         xhci->hci_version = HC_VERSION(xhci->hcc_params);
5033         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5034         if (xhci->hci_version > 0x100)
5035                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5036
5037         xhci->quirks |= quirks;
5038
5039         get_quirks(dev, xhci);
5040
5041         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5042          * success event after a short transfer. This quirk will ignore such
5043          * spurious event.
5044          */
5045         if (xhci->hci_version > 0x96)
5046                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5047
5048         /* Make sure the HC is halted. */
5049         retval = xhci_halt(xhci);
5050         if (retval)
5051                 return retval;
5052
5053         xhci_zero_64b_regs(xhci);
5054
5055         xhci_dbg(xhci, "Resetting HCD\n");
5056         /* Reset the internal HC memory state and registers. */
5057         retval = xhci_reset(xhci);
5058         if (retval)
5059                 return retval;
5060         xhci_dbg(xhci, "Reset complete\n");
5061
5062         /*
5063          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5064          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5065          * address memory pointers actually. So, this driver clears the AC64
5066          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5067          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5068          */
5069         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5070                 xhci->hcc_params &= ~BIT(0);
5071
5072         /* Set dma_mask and coherent_dma_mask to 64-bits,
5073          * if xHC supports 64-bit addressing */
5074         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5075                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5076                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5077                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5078         } else {
5079                 /*
5080                  * This is to avoid error in cases where a 32-bit USB
5081                  * controller is used on a 64-bit capable system.
5082                  */
5083                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5084                 if (retval)
5085                         return retval;
5086                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5087                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5088         }
5089
5090         xhci_dbg(xhci, "Calling HCD init\n");
5091         /* Initialize HCD and host controller data structures. */
5092         retval = xhci_init(hcd);
5093         if (retval)
5094                 return retval;
5095         xhci_dbg(xhci, "Called HCD init\n");
5096
5097         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5098                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5099
5100         return 0;
5101 }
5102 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5103
5104 static const struct hc_driver xhci_hc_driver = {
5105         .description =          "xhci-hcd",
5106         .product_desc =         "xHCI Host Controller",
5107         .hcd_priv_size =        sizeof(struct xhci_hcd),
5108
5109         /*
5110          * generic hardware linkage
5111          */
5112         .irq =                  xhci_irq,
5113         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
5114
5115         /*
5116          * basic lifecycle operations
5117          */
5118         .reset =                NULL, /* set in xhci_init_driver() */
5119         .start =                xhci_run,
5120         .stop =                 xhci_stop,
5121         .shutdown =             xhci_shutdown,
5122
5123         /*
5124          * managing i/o requests and associated device resources
5125          */
5126         .urb_enqueue =          xhci_urb_enqueue,
5127         .urb_dequeue =          xhci_urb_dequeue,
5128         .alloc_dev =            xhci_alloc_dev,
5129         .free_dev =             xhci_free_dev,
5130         .alloc_streams =        xhci_alloc_streams,
5131         .free_streams =         xhci_free_streams,
5132         .add_endpoint =         xhci_add_endpoint,
5133         .drop_endpoint =        xhci_drop_endpoint,
5134         .endpoint_reset =       xhci_endpoint_reset,
5135         .check_bandwidth =      xhci_check_bandwidth,
5136         .reset_bandwidth =      xhci_reset_bandwidth,
5137         .address_device =       xhci_address_device,
5138         .enable_device =        xhci_enable_device,
5139         .update_hub_device =    xhci_update_hub_device,
5140         .reset_device =         xhci_discover_or_reset_device,
5141
5142         /*
5143          * scheduling support
5144          */
5145         .get_frame_number =     xhci_get_frame,
5146
5147         /*
5148          * root hub support
5149          */
5150         .hub_control =          xhci_hub_control,
5151         .hub_status_data =      xhci_hub_status_data,
5152         .bus_suspend =          xhci_bus_suspend,
5153         .bus_resume =           xhci_bus_resume,
5154         .get_resuming_ports =   xhci_get_resuming_ports,
5155
5156         /*
5157          * call back when device connected and addressed
5158          */
5159         .update_device =        xhci_update_device,
5160         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5161         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5162         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5163         .find_raw_port_number = xhci_find_raw_port_number,
5164 };
5165
5166 void xhci_init_driver(struct hc_driver *drv,
5167                       const struct xhci_driver_overrides *over)
5168 {
5169         BUG_ON(!over);
5170
5171         /* Copy the generic table to drv then apply the overrides */
5172         *drv = xhci_hc_driver;
5173
5174         if (over) {
5175                 drv->hcd_priv_size += over->extra_priv_size;
5176                 if (over->reset)
5177                         drv->reset = over->reset;
5178                 if (over->start)
5179                         drv->start = over->start;
5180         }
5181 }
5182 EXPORT_SYMBOL_GPL(xhci_init_driver);
5183
5184 MODULE_DESCRIPTION(DRIVER_DESC);
5185 MODULE_AUTHOR(DRIVER_AUTHOR);
5186 MODULE_LICENSE("GPL");
5187
5188 static int __init xhci_hcd_init(void)
5189 {
5190         /*
5191          * Check the compiler generated sizes of structures that must be laid
5192          * out in specific ways for hardware access.
5193          */
5194         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5195         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5196         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5197         /* xhci_device_control has eight fields, and also
5198          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5199          */
5200         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5201         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5202         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5203         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5204         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5205         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5206         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5207
5208         if (usb_disabled())
5209                 return -ENODEV;
5210
5211         xhci_debugfs_create_root();
5212
5213         return 0;
5214 }
5215
5216 /*
5217  * If an init function is provided, an exit function must also be provided
5218  * to allow module unload.
5219  */
5220 static void __exit xhci_hcd_fini(void)
5221 {
5222         xhci_debugfs_remove_root();
5223 }
5224
5225 module_init(xhci_hcd_init);
5226 module_exit(xhci_hcd_fini);