Merge branches 'work.misc' and 'work.dcache' of git://git.kernel.org/pub/scm/linux...
[sfrench/cifs-2.6.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/log2.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/slab.h>
17 #include <linux/dmi.h>
18 #include <linux/dma-mapping.h>
19
20 #include "xhci.h"
21 #include "xhci-trace.h"
22 #include "xhci-mtk.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * xhci_handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
55 {
56         u32     result;
57
58         do {
59                 result = readl(ptr);
60                 if (result == ~(u32)0)          /* card removed */
61                         return -ENODEV;
62                 result &= mask;
63                 if (result == done)
64                         return 0;
65                 udelay(1);
66                 usec--;
67         } while (usec > 0);
68         return -ETIMEDOUT;
69 }
70
71 /*
72  * Disable interrupts and begin the xHCI halting process.
73  */
74 void xhci_quiesce(struct xhci_hcd *xhci)
75 {
76         u32 halted;
77         u32 cmd;
78         u32 mask;
79
80         mask = ~(XHCI_IRQS);
81         halted = readl(&xhci->op_regs->status) & STS_HALT;
82         if (!halted)
83                 mask &= ~CMD_RUN;
84
85         cmd = readl(&xhci->op_regs->command);
86         cmd &= mask;
87         writel(cmd, &xhci->op_regs->command);
88 }
89
90 /*
91  * Force HC into halt state.
92  *
93  * Disable any IRQs and clear the run/stop bit.
94  * HC will complete any current and actively pipelined transactions, and
95  * should halt within 16 ms of the run/stop bit being cleared.
96  * Read HC Halted bit in the status register to see when the HC is finished.
97  */
98 int xhci_halt(struct xhci_hcd *xhci)
99 {
100         int ret;
101         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
102         xhci_quiesce(xhci);
103
104         ret = xhci_handshake(&xhci->op_regs->status,
105                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
106         if (ret) {
107                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
108                 return ret;
109         }
110         xhci->xhc_state |= XHCI_STATE_HALTED;
111         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
112         return ret;
113 }
114
115 /*
116  * Set the run bit and wait for the host to be running.
117  */
118 int xhci_start(struct xhci_hcd *xhci)
119 {
120         u32 temp;
121         int ret;
122
123         temp = readl(&xhci->op_regs->command);
124         temp |= (CMD_RUN);
125         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
126                         temp);
127         writel(temp, &xhci->op_regs->command);
128
129         /*
130          * Wait for the HCHalted Status bit to be 0 to indicate the host is
131          * running.
132          */
133         ret = xhci_handshake(&xhci->op_regs->status,
134                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
135         if (ret == -ETIMEDOUT)
136                 xhci_err(xhci, "Host took too long to start, "
137                                 "waited %u microseconds.\n",
138                                 XHCI_MAX_HALT_USEC);
139         if (!ret)
140                 /* clear state flags. Including dying, halted or removing */
141                 xhci->xhc_state = 0;
142
143         return ret;
144 }
145
146 /*
147  * Reset a halted HC.
148  *
149  * This resets pipelines, timers, counters, state machines, etc.
150  * Transactions will be terminated immediately, and operational registers
151  * will be set to their defaults.
152  */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155         u32 command;
156         u32 state;
157         int ret, i;
158
159         state = readl(&xhci->op_regs->status);
160
161         if (state == ~(u32)0) {
162                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
163                 return -ENODEV;
164         }
165
166         if ((state & STS_HALT) == 0) {
167                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168                 return 0;
169         }
170
171         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172         command = readl(&xhci->op_regs->command);
173         command |= CMD_RESET;
174         writel(command, &xhci->op_regs->command);
175
176         /* Existing Intel xHCI controllers require a delay of 1 mS,
177          * after setting the CMD_RESET bit, and before accessing any
178          * HC registers. This allows the HC to complete the
179          * reset operation and be ready for HC register access.
180          * Without this delay, the subsequent HC register access,
181          * may result in a system hang very rarely.
182          */
183         if (xhci->quirks & XHCI_INTEL_HOST)
184                 udelay(1000);
185
186         ret = xhci_handshake(&xhci->op_regs->command,
187                         CMD_RESET, 0, 10 * 1000 * 1000);
188         if (ret)
189                 return ret;
190
191         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
192                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
193
194         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195                          "Wait for controller to be ready for doorbell rings");
196         /*
197          * xHCI cannot write to any doorbells or operational registers other
198          * than status until the "Controller Not Ready" flag is cleared.
199          */
200         ret = xhci_handshake(&xhci->op_regs->status,
201                         STS_CNR, 0, 10 * 1000 * 1000);
202
203         for (i = 0; i < 2; i++) {
204                 xhci->bus_state[i].port_c_suspend = 0;
205                 xhci->bus_state[i].suspended_ports = 0;
206                 xhci->bus_state[i].resuming_ports = 0;
207         }
208
209         return ret;
210 }
211
212 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
213 {
214         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
215         int err, i;
216         u64 val;
217
218         /*
219          * Some Renesas controllers get into a weird state if they are
220          * reset while programmed with 64bit addresses (they will preserve
221          * the top half of the address in internal, non visible
222          * registers). You end up with half the address coming from the
223          * kernel, and the other half coming from the firmware. Also,
224          * changing the programming leads to extra accesses even if the
225          * controller is supposed to be halted. The controller ends up with
226          * a fatal fault, and is then ripe for being properly reset.
227          *
228          * Special care is taken to only apply this if the device is behind
229          * an iommu. Doing anything when there is no iommu is definitely
230          * unsafe...
231          */
232         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !dev->iommu_group)
233                 return;
234
235         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
236
237         /* Clear HSEIE so that faults do not get signaled */
238         val = readl(&xhci->op_regs->command);
239         val &= ~CMD_HSEIE;
240         writel(val, &xhci->op_regs->command);
241
242         /* Clear HSE (aka FATAL) */
243         val = readl(&xhci->op_regs->status);
244         val |= STS_FATAL;
245         writel(val, &xhci->op_regs->status);
246
247         /* Now zero the registers, and brace for impact */
248         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
249         if (upper_32_bits(val))
250                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
251         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
252         if (upper_32_bits(val))
253                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
254
255         for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
256                 struct xhci_intr_reg __iomem *ir;
257
258                 ir = &xhci->run_regs->ir_set[i];
259                 val = xhci_read_64(xhci, &ir->erst_base);
260                 if (upper_32_bits(val))
261                         xhci_write_64(xhci, 0, &ir->erst_base);
262                 val= xhci_read_64(xhci, &ir->erst_dequeue);
263                 if (upper_32_bits(val))
264                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
265         }
266
267         /* Wait for the fault to appear. It will be cleared on reset */
268         err = xhci_handshake(&xhci->op_regs->status,
269                              STS_FATAL, STS_FATAL,
270                              XHCI_MAX_HALT_USEC);
271         if (!err)
272                 xhci_info(xhci, "Fault detected\n");
273 }
274
275 #ifdef CONFIG_USB_PCI
276 /*
277  * Set up MSI
278  */
279 static int xhci_setup_msi(struct xhci_hcd *xhci)
280 {
281         int ret;
282         /*
283          * TODO:Check with MSI Soc for sysdev
284          */
285         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
286
287         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
288         if (ret < 0) {
289                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
290                                 "failed to allocate MSI entry");
291                 return ret;
292         }
293
294         ret = request_irq(pdev->irq, xhci_msi_irq,
295                                 0, "xhci_hcd", xhci_to_hcd(xhci));
296         if (ret) {
297                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
298                                 "disable MSI interrupt");
299                 pci_free_irq_vectors(pdev);
300         }
301
302         return ret;
303 }
304
305 /*
306  * Set up MSI-X
307  */
308 static int xhci_setup_msix(struct xhci_hcd *xhci)
309 {
310         int i, ret = 0;
311         struct usb_hcd *hcd = xhci_to_hcd(xhci);
312         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
313
314         /*
315          * calculate number of msi-x vectors supported.
316          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
317          *   with max number of interrupters based on the xhci HCSPARAMS1.
318          * - num_online_cpus: maximum msi-x vectors per CPUs core.
319          *   Add additional 1 vector to ensure always available interrupt.
320          */
321         xhci->msix_count = min(num_online_cpus() + 1,
322                                 HCS_MAX_INTRS(xhci->hcs_params1));
323
324         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
325                         PCI_IRQ_MSIX);
326         if (ret < 0) {
327                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
328                                 "Failed to enable MSI-X");
329                 return ret;
330         }
331
332         for (i = 0; i < xhci->msix_count; i++) {
333                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
334                                 "xhci_hcd", xhci_to_hcd(xhci));
335                 if (ret)
336                         goto disable_msix;
337         }
338
339         hcd->msix_enabled = 1;
340         return ret;
341
342 disable_msix:
343         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
344         while (--i >= 0)
345                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
346         pci_free_irq_vectors(pdev);
347         return ret;
348 }
349
350 /* Free any IRQs and disable MSI-X */
351 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
352 {
353         struct usb_hcd *hcd = xhci_to_hcd(xhci);
354         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
355
356         if (xhci->quirks & XHCI_PLAT)
357                 return;
358
359         /* return if using legacy interrupt */
360         if (hcd->irq > 0)
361                 return;
362
363         if (hcd->msix_enabled) {
364                 int i;
365
366                 for (i = 0; i < xhci->msix_count; i++)
367                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
368         } else {
369                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
370         }
371
372         pci_free_irq_vectors(pdev);
373         hcd->msix_enabled = 0;
374 }
375
376 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
377 {
378         struct usb_hcd *hcd = xhci_to_hcd(xhci);
379
380         if (hcd->msix_enabled) {
381                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
382                 int i;
383
384                 for (i = 0; i < xhci->msix_count; i++)
385                         synchronize_irq(pci_irq_vector(pdev, i));
386         }
387 }
388
389 static int xhci_try_enable_msi(struct usb_hcd *hcd)
390 {
391         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
392         struct pci_dev  *pdev;
393         int ret;
394
395         /* The xhci platform device has set up IRQs through usb_add_hcd. */
396         if (xhci->quirks & XHCI_PLAT)
397                 return 0;
398
399         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
400         /*
401          * Some Fresco Logic host controllers advertise MSI, but fail to
402          * generate interrupts.  Don't even try to enable MSI.
403          */
404         if (xhci->quirks & XHCI_BROKEN_MSI)
405                 goto legacy_irq;
406
407         /* unregister the legacy interrupt */
408         if (hcd->irq)
409                 free_irq(hcd->irq, hcd);
410         hcd->irq = 0;
411
412         ret = xhci_setup_msix(xhci);
413         if (ret)
414                 /* fall back to msi*/
415                 ret = xhci_setup_msi(xhci);
416
417         if (!ret) {
418                 hcd->msi_enabled = 1;
419                 return 0;
420         }
421
422         if (!pdev->irq) {
423                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
424                 return -EINVAL;
425         }
426
427  legacy_irq:
428         if (!strlen(hcd->irq_descr))
429                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
430                          hcd->driver->description, hcd->self.busnum);
431
432         /* fall back to legacy interrupt*/
433         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
434                         hcd->irq_descr, hcd);
435         if (ret) {
436                 xhci_err(xhci, "request interrupt %d failed\n",
437                                 pdev->irq);
438                 return ret;
439         }
440         hcd->irq = pdev->irq;
441         return 0;
442 }
443
444 #else
445
446 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
447 {
448         return 0;
449 }
450
451 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
452 {
453 }
454
455 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
456 {
457 }
458
459 #endif
460
461 static void compliance_mode_recovery(struct timer_list *t)
462 {
463         struct xhci_hcd *xhci;
464         struct usb_hcd *hcd;
465         struct xhci_hub *rhub;
466         u32 temp;
467         int i;
468
469         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
470         rhub = &xhci->usb3_rhub;
471
472         for (i = 0; i < rhub->num_ports; i++) {
473                 temp = readl(rhub->ports[i]->addr);
474                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
475                         /*
476                          * Compliance Mode Detected. Letting USB Core
477                          * handle the Warm Reset
478                          */
479                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
480                                         "Compliance mode detected->port %d",
481                                         i + 1);
482                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
483                                         "Attempting compliance mode recovery");
484                         hcd = xhci->shared_hcd;
485
486                         if (hcd->state == HC_STATE_SUSPENDED)
487                                 usb_hcd_resume_root_hub(hcd);
488
489                         usb_hcd_poll_rh_status(hcd);
490                 }
491         }
492
493         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
494                 mod_timer(&xhci->comp_mode_recovery_timer,
495                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
496 }
497
498 /*
499  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
500  * that causes ports behind that hardware to enter compliance mode sometimes.
501  * The quirk creates a timer that polls every 2 seconds the link state of
502  * each host controller's port and recovers it by issuing a Warm reset
503  * if Compliance mode is detected, otherwise the port will become "dead" (no
504  * device connections or disconnections will be detected anymore). Becasue no
505  * status event is generated when entering compliance mode (per xhci spec),
506  * this quirk is needed on systems that have the failing hardware installed.
507  */
508 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
509 {
510         xhci->port_status_u0 = 0;
511         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
512                     0);
513         xhci->comp_mode_recovery_timer.expires = jiffies +
514                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
515
516         add_timer(&xhci->comp_mode_recovery_timer);
517         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
518                         "Compliance mode recovery timer initialized");
519 }
520
521 /*
522  * This function identifies the systems that have installed the SN65LVPE502CP
523  * USB3.0 re-driver and that need the Compliance Mode Quirk.
524  * Systems:
525  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
526  */
527 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
528 {
529         const char *dmi_product_name, *dmi_sys_vendor;
530
531         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
532         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
533         if (!dmi_product_name || !dmi_sys_vendor)
534                 return false;
535
536         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
537                 return false;
538
539         if (strstr(dmi_product_name, "Z420") ||
540                         strstr(dmi_product_name, "Z620") ||
541                         strstr(dmi_product_name, "Z820") ||
542                         strstr(dmi_product_name, "Z1 Workstation"))
543                 return true;
544
545         return false;
546 }
547
548 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
549 {
550         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
551 }
552
553
554 /*
555  * Initialize memory for HCD and xHC (one-time init).
556  *
557  * Program the PAGESIZE register, initialize the device context array, create
558  * device contexts (?), set up a command ring segment (or two?), create event
559  * ring (one for now).
560  */
561 static int xhci_init(struct usb_hcd *hcd)
562 {
563         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
564         int retval = 0;
565
566         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
567         spin_lock_init(&xhci->lock);
568         if (xhci->hci_version == 0x95 && link_quirk) {
569                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
570                                 "QUIRK: Not clearing Link TRB chain bits.");
571                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
572         } else {
573                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
574                                 "xHCI doesn't need link TRB QUIRK");
575         }
576         retval = xhci_mem_init(xhci, GFP_KERNEL);
577         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
578
579         /* Initializing Compliance Mode Recovery Data If Needed */
580         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
581                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
582                 compliance_mode_recovery_timer_init(xhci);
583         }
584
585         return retval;
586 }
587
588 /*-------------------------------------------------------------------------*/
589
590
591 static int xhci_run_finished(struct xhci_hcd *xhci)
592 {
593         if (xhci_start(xhci)) {
594                 xhci_halt(xhci);
595                 return -ENODEV;
596         }
597         xhci->shared_hcd->state = HC_STATE_RUNNING;
598         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
599
600         if (xhci->quirks & XHCI_NEC_HOST)
601                 xhci_ring_cmd_db(xhci);
602
603         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
604                         "Finished xhci_run for USB3 roothub");
605         return 0;
606 }
607
608 /*
609  * Start the HC after it was halted.
610  *
611  * This function is called by the USB core when the HC driver is added.
612  * Its opposite is xhci_stop().
613  *
614  * xhci_init() must be called once before this function can be called.
615  * Reset the HC, enable device slot contexts, program DCBAAP, and
616  * set command ring pointer and event ring pointer.
617  *
618  * Setup MSI-X vectors and enable interrupts.
619  */
620 int xhci_run(struct usb_hcd *hcd)
621 {
622         u32 temp;
623         u64 temp_64;
624         int ret;
625         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
626
627         /* Start the xHCI host controller running only after the USB 2.0 roothub
628          * is setup.
629          */
630
631         hcd->uses_new_polling = 1;
632         if (!usb_hcd_is_primary_hcd(hcd))
633                 return xhci_run_finished(xhci);
634
635         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
636
637         ret = xhci_try_enable_msi(hcd);
638         if (ret)
639                 return ret;
640
641         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
642         temp_64 &= ~ERST_PTR_MASK;
643         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
644                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
645
646         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
647                         "// Set the interrupt modulation register");
648         temp = readl(&xhci->ir_set->irq_control);
649         temp &= ~ER_IRQ_INTERVAL_MASK;
650         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
651         writel(temp, &xhci->ir_set->irq_control);
652
653         /* Set the HCD state before we enable the irqs */
654         temp = readl(&xhci->op_regs->command);
655         temp |= (CMD_EIE);
656         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
657                         "// Enable interrupts, cmd = 0x%x.", temp);
658         writel(temp, &xhci->op_regs->command);
659
660         temp = readl(&xhci->ir_set->irq_pending);
661         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
662                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
663                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
664         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
665
666         if (xhci->quirks & XHCI_NEC_HOST) {
667                 struct xhci_command *command;
668
669                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
670                 if (!command)
671                         return -ENOMEM;
672
673                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
674                                 TRB_TYPE(TRB_NEC_GET_FW));
675                 if (ret)
676                         xhci_free_command(xhci, command);
677         }
678         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
679                         "Finished xhci_run for USB2 roothub");
680
681         xhci_dbc_init(xhci);
682
683         xhci_debugfs_init(xhci);
684
685         return 0;
686 }
687 EXPORT_SYMBOL_GPL(xhci_run);
688
689 /*
690  * Stop xHCI driver.
691  *
692  * This function is called by the USB core when the HC driver is removed.
693  * Its opposite is xhci_run().
694  *
695  * Disable device contexts, disable IRQs, and quiesce the HC.
696  * Reset the HC, finish any completed transactions, and cleanup memory.
697  */
698 static void xhci_stop(struct usb_hcd *hcd)
699 {
700         u32 temp;
701         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
702
703         mutex_lock(&xhci->mutex);
704
705         /* Only halt host and free memory after both hcds are removed */
706         if (!usb_hcd_is_primary_hcd(hcd)) {
707                 /* usb core will free this hcd shortly, unset pointer */
708                 xhci->shared_hcd = NULL;
709                 mutex_unlock(&xhci->mutex);
710                 return;
711         }
712
713         xhci_dbc_exit(xhci);
714
715         spin_lock_irq(&xhci->lock);
716         xhci->xhc_state |= XHCI_STATE_HALTED;
717         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
718         xhci_halt(xhci);
719         xhci_reset(xhci);
720         spin_unlock_irq(&xhci->lock);
721
722         xhci_cleanup_msix(xhci);
723
724         /* Deleting Compliance Mode Recovery Timer */
725         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
726                         (!(xhci_all_ports_seen_u0(xhci)))) {
727                 del_timer_sync(&xhci->comp_mode_recovery_timer);
728                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
729                                 "%s: compliance mode recovery timer deleted",
730                                 __func__);
731         }
732
733         if (xhci->quirks & XHCI_AMD_PLL_FIX)
734                 usb_amd_dev_put();
735
736         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
737                         "// Disabling event ring interrupts");
738         temp = readl(&xhci->op_regs->status);
739         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
740         temp = readl(&xhci->ir_set->irq_pending);
741         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
742
743         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
744         xhci_mem_cleanup(xhci);
745         xhci_debugfs_exit(xhci);
746         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
747                         "xhci_stop completed - status = %x",
748                         readl(&xhci->op_regs->status));
749         mutex_unlock(&xhci->mutex);
750 }
751
752 /*
753  * Shutdown HC (not bus-specific)
754  *
755  * This is called when the machine is rebooting or halting.  We assume that the
756  * machine will be powered off, and the HC's internal state will be reset.
757  * Don't bother to free memory.
758  *
759  * This will only ever be called with the main usb_hcd (the USB3 roothub).
760  */
761 static void xhci_shutdown(struct usb_hcd *hcd)
762 {
763         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
764
765         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
766                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
767
768         spin_lock_irq(&xhci->lock);
769         xhci_halt(xhci);
770         /* Workaround for spurious wakeups at shutdown with HSW */
771         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
772                 xhci_reset(xhci);
773         spin_unlock_irq(&xhci->lock);
774
775         xhci_cleanup_msix(xhci);
776
777         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
778                         "xhci_shutdown completed - status = %x",
779                         readl(&xhci->op_regs->status));
780
781         /* Yet another workaround for spurious wakeups at shutdown with HSW */
782         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
783                 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
784 }
785
786 #ifdef CONFIG_PM
787 static void xhci_save_registers(struct xhci_hcd *xhci)
788 {
789         xhci->s3.command = readl(&xhci->op_regs->command);
790         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
791         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
792         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
793         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
794         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
795         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
796         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
797         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
798 }
799
800 static void xhci_restore_registers(struct xhci_hcd *xhci)
801 {
802         writel(xhci->s3.command, &xhci->op_regs->command);
803         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
804         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
805         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
806         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
807         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
808         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
809         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
810         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
811 }
812
813 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
814 {
815         u64     val_64;
816
817         /* step 2: initialize command ring buffer */
818         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
819         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
820                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
821                                       xhci->cmd_ring->dequeue) &
822                  (u64) ~CMD_RING_RSVD_BITS) |
823                 xhci->cmd_ring->cycle_state;
824         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
825                         "// Setting command ring address to 0x%llx",
826                         (long unsigned long) val_64);
827         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
828 }
829
830 /*
831  * The whole command ring must be cleared to zero when we suspend the host.
832  *
833  * The host doesn't save the command ring pointer in the suspend well, so we
834  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
835  * aligned, because of the reserved bits in the command ring dequeue pointer
836  * register.  Therefore, we can't just set the dequeue pointer back in the
837  * middle of the ring (TRBs are 16-byte aligned).
838  */
839 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
840 {
841         struct xhci_ring *ring;
842         struct xhci_segment *seg;
843
844         ring = xhci->cmd_ring;
845         seg = ring->deq_seg;
846         do {
847                 memset(seg->trbs, 0,
848                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
849                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
850                         cpu_to_le32(~TRB_CYCLE);
851                 seg = seg->next;
852         } while (seg != ring->deq_seg);
853
854         /* Reset the software enqueue and dequeue pointers */
855         ring->deq_seg = ring->first_seg;
856         ring->dequeue = ring->first_seg->trbs;
857         ring->enq_seg = ring->deq_seg;
858         ring->enqueue = ring->dequeue;
859
860         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
861         /*
862          * Ring is now zeroed, so the HW should look for change of ownership
863          * when the cycle bit is set to 1.
864          */
865         ring->cycle_state = 1;
866
867         /*
868          * Reset the hardware dequeue pointer.
869          * Yes, this will need to be re-written after resume, but we're paranoid
870          * and want to make sure the hardware doesn't access bogus memory
871          * because, say, the BIOS or an SMI started the host without changing
872          * the command ring pointers.
873          */
874         xhci_set_cmd_ring_deq(xhci);
875 }
876
877 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
878 {
879         struct xhci_port **ports;
880         int port_index;
881         unsigned long flags;
882         u32 t1, t2;
883
884         spin_lock_irqsave(&xhci->lock, flags);
885
886         /* disable usb3 ports Wake bits */
887         port_index = xhci->usb3_rhub.num_ports;
888         ports = xhci->usb3_rhub.ports;
889         while (port_index--) {
890                 t1 = readl(ports[port_index]->addr);
891                 t1 = xhci_port_state_to_neutral(t1);
892                 t2 = t1 & ~PORT_WAKE_BITS;
893                 if (t1 != t2)
894                         writel(t2, ports[port_index]->addr);
895         }
896
897         /* disable usb2 ports Wake bits */
898         port_index = xhci->usb2_rhub.num_ports;
899         ports = xhci->usb2_rhub.ports;
900         while (port_index--) {
901                 t1 = readl(ports[port_index]->addr);
902                 t1 = xhci_port_state_to_neutral(t1);
903                 t2 = t1 & ~PORT_WAKE_BITS;
904                 if (t1 != t2)
905                         writel(t2, ports[port_index]->addr);
906         }
907
908         spin_unlock_irqrestore(&xhci->lock, flags);
909 }
910
911 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
912 {
913         struct xhci_port        **ports;
914         int                     port_index;
915         u32                     status;
916         u32                     portsc;
917
918         status = readl(&xhci->op_regs->status);
919         if (status & STS_EINT)
920                 return true;
921         /*
922          * Checking STS_EINT is not enough as there is a lag between a change
923          * bit being set and the Port Status Change Event that it generated
924          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
925          */
926
927         port_index = xhci->usb2_rhub.num_ports;
928         ports = xhci->usb2_rhub.ports;
929         while (port_index--) {
930                 portsc = readl(ports[port_index]->addr);
931                 if (portsc & PORT_CHANGE_MASK ||
932                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
933                         return true;
934         }
935         port_index = xhci->usb3_rhub.num_ports;
936         ports = xhci->usb3_rhub.ports;
937         while (port_index--) {
938                 portsc = readl(ports[port_index]->addr);
939                 if (portsc & PORT_CHANGE_MASK ||
940                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
941                         return true;
942         }
943         return false;
944 }
945
946 /*
947  * Stop HC (not bus-specific)
948  *
949  * This is called when the machine transition into S3/S4 mode.
950  *
951  */
952 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
953 {
954         int                     rc = 0;
955         unsigned int            delay = XHCI_MAX_HALT_USEC;
956         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
957         u32                     command;
958
959         if (!hcd->state)
960                 return 0;
961
962         if (hcd->state != HC_STATE_SUSPENDED ||
963                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
964                 return -EINVAL;
965
966         xhci_dbc_suspend(xhci);
967
968         /* Clear root port wake on bits if wakeup not allowed. */
969         if (!do_wakeup)
970                 xhci_disable_port_wake_on_bits(xhci);
971
972         /* Don't poll the roothubs on bus suspend. */
973         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
974         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
975         del_timer_sync(&hcd->rh_timer);
976         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
977         del_timer_sync(&xhci->shared_hcd->rh_timer);
978
979         if (xhci->quirks & XHCI_SUSPEND_DELAY)
980                 usleep_range(1000, 1500);
981
982         spin_lock_irq(&xhci->lock);
983         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
984         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
985         /* step 1: stop endpoint */
986         /* skipped assuming that port suspend has done */
987
988         /* step 2: clear Run/Stop bit */
989         command = readl(&xhci->op_regs->command);
990         command &= ~CMD_RUN;
991         writel(command, &xhci->op_regs->command);
992
993         /* Some chips from Fresco Logic need an extraordinary delay */
994         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
995
996         if (xhci_handshake(&xhci->op_regs->status,
997                       STS_HALT, STS_HALT, delay)) {
998                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
999                 spin_unlock_irq(&xhci->lock);
1000                 return -ETIMEDOUT;
1001         }
1002         xhci_clear_command_ring(xhci);
1003
1004         /* step 3: save registers */
1005         xhci_save_registers(xhci);
1006
1007         /* step 4: set CSS flag */
1008         command = readl(&xhci->op_regs->command);
1009         command |= CMD_CSS;
1010         writel(command, &xhci->op_regs->command);
1011         if (xhci_handshake(&xhci->op_regs->status,
1012                                 STS_SAVE, 0, 10 * 1000)) {
1013                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
1014                 spin_unlock_irq(&xhci->lock);
1015                 return -ETIMEDOUT;
1016         }
1017         spin_unlock_irq(&xhci->lock);
1018
1019         /*
1020          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1021          * is about to be suspended.
1022          */
1023         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1024                         (!(xhci_all_ports_seen_u0(xhci)))) {
1025                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1026                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1027                                 "%s: compliance mode recovery timer deleted",
1028                                 __func__);
1029         }
1030
1031         /* step 5: remove core well power */
1032         /* synchronize irq when using MSI-X */
1033         xhci_msix_sync_irqs(xhci);
1034
1035         return rc;
1036 }
1037 EXPORT_SYMBOL_GPL(xhci_suspend);
1038
1039 /*
1040  * start xHC (not bus-specific)
1041  *
1042  * This is called when the machine transition from S3/S4 mode.
1043  *
1044  */
1045 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1046 {
1047         u32                     command, temp = 0;
1048         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1049         struct usb_hcd          *secondary_hcd;
1050         int                     retval = 0;
1051         bool                    comp_timer_running = false;
1052
1053         if (!hcd->state)
1054                 return 0;
1055
1056         /* Wait a bit if either of the roothubs need to settle from the
1057          * transition into bus suspend.
1058          */
1059         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1060                         time_before(jiffies,
1061                                 xhci->bus_state[1].next_statechange))
1062                 msleep(100);
1063
1064         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1065         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1066
1067         spin_lock_irq(&xhci->lock);
1068         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1069                 hibernated = true;
1070
1071         if (!hibernated) {
1072                 /* step 1: restore register */
1073                 xhci_restore_registers(xhci);
1074                 /* step 2: initialize command ring buffer */
1075                 xhci_set_cmd_ring_deq(xhci);
1076                 /* step 3: restore state and start state*/
1077                 /* step 3: set CRS flag */
1078                 command = readl(&xhci->op_regs->command);
1079                 command |= CMD_CRS;
1080                 writel(command, &xhci->op_regs->command);
1081                 /*
1082                  * Some controllers take up to 55+ ms to complete the controller
1083                  * restore so setting the timeout to 100ms. Xhci specification
1084                  * doesn't mention any timeout value.
1085                  */
1086                 if (xhci_handshake(&xhci->op_regs->status,
1087                               STS_RESTORE, 0, 100 * 1000)) {
1088                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1089                         spin_unlock_irq(&xhci->lock);
1090                         return -ETIMEDOUT;
1091                 }
1092                 temp = readl(&xhci->op_regs->status);
1093         }
1094
1095         /* If restore operation fails, re-initialize the HC during resume */
1096         if ((temp & STS_SRE) || hibernated) {
1097
1098                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1099                                 !(xhci_all_ports_seen_u0(xhci))) {
1100                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1101                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1102                                 "Compliance Mode Recovery Timer deleted!");
1103                 }
1104
1105                 /* Let the USB core know _both_ roothubs lost power. */
1106                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1107                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1108
1109                 xhci_dbg(xhci, "Stop HCD\n");
1110                 xhci_halt(xhci);
1111                 xhci_zero_64b_regs(xhci);
1112                 xhci_reset(xhci);
1113                 spin_unlock_irq(&xhci->lock);
1114                 xhci_cleanup_msix(xhci);
1115
1116                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1117                 temp = readl(&xhci->op_regs->status);
1118                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1119                 temp = readl(&xhci->ir_set->irq_pending);
1120                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1121
1122                 xhci_dbg(xhci, "cleaning up memory\n");
1123                 xhci_mem_cleanup(xhci);
1124                 xhci_debugfs_exit(xhci);
1125                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1126                             readl(&xhci->op_regs->status));
1127
1128                 /* USB core calls the PCI reinit and start functions twice:
1129                  * first with the primary HCD, and then with the secondary HCD.
1130                  * If we don't do the same, the host will never be started.
1131                  */
1132                 if (!usb_hcd_is_primary_hcd(hcd))
1133                         secondary_hcd = hcd;
1134                 else
1135                         secondary_hcd = xhci->shared_hcd;
1136
1137                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1138                 retval = xhci_init(hcd->primary_hcd);
1139                 if (retval)
1140                         return retval;
1141                 comp_timer_running = true;
1142
1143                 xhci_dbg(xhci, "Start the primary HCD\n");
1144                 retval = xhci_run(hcd->primary_hcd);
1145                 if (!retval) {
1146                         xhci_dbg(xhci, "Start the secondary HCD\n");
1147                         retval = xhci_run(secondary_hcd);
1148                 }
1149                 hcd->state = HC_STATE_SUSPENDED;
1150                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1151                 goto done;
1152         }
1153
1154         /* step 4: set Run/Stop bit */
1155         command = readl(&xhci->op_regs->command);
1156         command |= CMD_RUN;
1157         writel(command, &xhci->op_regs->command);
1158         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1159                   0, 250 * 1000);
1160
1161         /* step 5: walk topology and initialize portsc,
1162          * portpmsc and portli
1163          */
1164         /* this is done in bus_resume */
1165
1166         /* step 6: restart each of the previously
1167          * Running endpoints by ringing their doorbells
1168          */
1169
1170         spin_unlock_irq(&xhci->lock);
1171
1172         xhci_dbc_resume(xhci);
1173
1174  done:
1175         if (retval == 0) {
1176                 /* Resume root hubs only when have pending events. */
1177                 if (xhci_pending_portevent(xhci)) {
1178                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1179                         usb_hcd_resume_root_hub(hcd);
1180                 }
1181         }
1182
1183         /*
1184          * If system is subject to the Quirk, Compliance Mode Timer needs to
1185          * be re-initialized Always after a system resume. Ports are subject
1186          * to suffer the Compliance Mode issue again. It doesn't matter if
1187          * ports have entered previously to U0 before system's suspension.
1188          */
1189         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1190                 compliance_mode_recovery_timer_init(xhci);
1191
1192         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1193                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1194
1195         /* Re-enable port polling. */
1196         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1197         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1198         usb_hcd_poll_rh_status(xhci->shared_hcd);
1199         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1200         usb_hcd_poll_rh_status(hcd);
1201
1202         return retval;
1203 }
1204 EXPORT_SYMBOL_GPL(xhci_resume);
1205 #endif  /* CONFIG_PM */
1206
1207 /*-------------------------------------------------------------------------*/
1208
1209 /**
1210  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1211  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1212  * value to right shift 1 for the bitmask.
1213  *
1214  * Index  = (epnum * 2) + direction - 1,
1215  * where direction = 0 for OUT, 1 for IN.
1216  * For control endpoints, the IN index is used (OUT index is unused), so
1217  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1218  */
1219 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1220 {
1221         unsigned int index;
1222         if (usb_endpoint_xfer_control(desc))
1223                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1224         else
1225                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1226                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1227         return index;
1228 }
1229
1230 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1231  * address from the XHCI endpoint index.
1232  */
1233 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1234 {
1235         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1236         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1237         return direction | number;
1238 }
1239
1240 /* Find the flag for this endpoint (for use in the control context).  Use the
1241  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1242  * bit 1, etc.
1243  */
1244 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1245 {
1246         return 1 << (xhci_get_endpoint_index(desc) + 1);
1247 }
1248
1249 /* Find the flag for this endpoint (for use in the control context).  Use the
1250  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1251  * bit 1, etc.
1252  */
1253 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1254 {
1255         return 1 << (ep_index + 1);
1256 }
1257
1258 /* Compute the last valid endpoint context index.  Basically, this is the
1259  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1260  * we find the most significant bit set in the added contexts flags.
1261  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1262  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1263  */
1264 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1265 {
1266         return fls(added_ctxs) - 1;
1267 }
1268
1269 /* Returns 1 if the arguments are OK;
1270  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1271  */
1272 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1273                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1274                 const char *func) {
1275         struct xhci_hcd *xhci;
1276         struct xhci_virt_device *virt_dev;
1277
1278         if (!hcd || (check_ep && !ep) || !udev) {
1279                 pr_debug("xHCI %s called with invalid args\n", func);
1280                 return -EINVAL;
1281         }
1282         if (!udev->parent) {
1283                 pr_debug("xHCI %s called for root hub\n", func);
1284                 return 0;
1285         }
1286
1287         xhci = hcd_to_xhci(hcd);
1288         if (check_virt_dev) {
1289                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1290                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1291                                         func);
1292                         return -EINVAL;
1293                 }
1294
1295                 virt_dev = xhci->devs[udev->slot_id];
1296                 if (virt_dev->udev != udev) {
1297                         xhci_dbg(xhci, "xHCI %s called with udev and "
1298                                           "virt_dev does not match\n", func);
1299                         return -EINVAL;
1300                 }
1301         }
1302
1303         if (xhci->xhc_state & XHCI_STATE_HALTED)
1304                 return -ENODEV;
1305
1306         return 1;
1307 }
1308
1309 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1310                 struct usb_device *udev, struct xhci_command *command,
1311                 bool ctx_change, bool must_succeed);
1312
1313 /*
1314  * Full speed devices may have a max packet size greater than 8 bytes, but the
1315  * USB core doesn't know that until it reads the first 8 bytes of the
1316  * descriptor.  If the usb_device's max packet size changes after that point,
1317  * we need to issue an evaluate context command and wait on it.
1318  */
1319 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1320                 unsigned int ep_index, struct urb *urb)
1321 {
1322         struct xhci_container_ctx *out_ctx;
1323         struct xhci_input_control_ctx *ctrl_ctx;
1324         struct xhci_ep_ctx *ep_ctx;
1325         struct xhci_command *command;
1326         int max_packet_size;
1327         int hw_max_packet_size;
1328         int ret = 0;
1329
1330         out_ctx = xhci->devs[slot_id]->out_ctx;
1331         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1332         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1333         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1334         if (hw_max_packet_size != max_packet_size) {
1335                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1336                                 "Max Packet Size for ep 0 changed.");
1337                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1338                                 "Max packet size in usb_device = %d",
1339                                 max_packet_size);
1340                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1341                                 "Max packet size in xHCI HW = %d",
1342                                 hw_max_packet_size);
1343                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1344                                 "Issuing evaluate context command.");
1345
1346                 /* Set up the input context flags for the command */
1347                 /* FIXME: This won't work if a non-default control endpoint
1348                  * changes max packet sizes.
1349                  */
1350
1351                 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1352                 if (!command)
1353                         return -ENOMEM;
1354
1355                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1356                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1357                 if (!ctrl_ctx) {
1358                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1359                                         __func__);
1360                         ret = -ENOMEM;
1361                         goto command_cleanup;
1362                 }
1363                 /* Set up the modified control endpoint 0 */
1364                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1365                                 xhci->devs[slot_id]->out_ctx, ep_index);
1366
1367                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1368                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1369                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1370
1371                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1372                 ctrl_ctx->drop_flags = 0;
1373
1374                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1375                                 true, false);
1376
1377                 /* Clean up the input context for later use by bandwidth
1378                  * functions.
1379                  */
1380                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1381 command_cleanup:
1382                 kfree(command->completion);
1383                 kfree(command);
1384         }
1385         return ret;
1386 }
1387
1388 /*
1389  * non-error returns are a promise to giveback() the urb later
1390  * we drop ownership so next owner (or urb unlink) can get it
1391  */
1392 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1393 {
1394         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1395         unsigned long flags;
1396         int ret = 0;
1397         unsigned int slot_id, ep_index;
1398         unsigned int *ep_state;
1399         struct urb_priv *urb_priv;
1400         int num_tds;
1401
1402         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1403                                         true, true, __func__) <= 0)
1404                 return -EINVAL;
1405
1406         slot_id = urb->dev->slot_id;
1407         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1408         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1409
1410         if (!HCD_HW_ACCESSIBLE(hcd)) {
1411                 if (!in_interrupt())
1412                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1413                 return -ESHUTDOWN;
1414         }
1415
1416         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1417                 num_tds = urb->number_of_packets;
1418         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1419             urb->transfer_buffer_length > 0 &&
1420             urb->transfer_flags & URB_ZERO_PACKET &&
1421             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1422                 num_tds = 2;
1423         else
1424                 num_tds = 1;
1425
1426         urb_priv = kzalloc(sizeof(struct urb_priv) +
1427                            num_tds * sizeof(struct xhci_td), mem_flags);
1428         if (!urb_priv)
1429                 return -ENOMEM;
1430
1431         urb_priv->num_tds = num_tds;
1432         urb_priv->num_tds_done = 0;
1433         urb->hcpriv = urb_priv;
1434
1435         trace_xhci_urb_enqueue(urb);
1436
1437         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1438                 /* Check to see if the max packet size for the default control
1439                  * endpoint changed during FS device enumeration
1440                  */
1441                 if (urb->dev->speed == USB_SPEED_FULL) {
1442                         ret = xhci_check_maxpacket(xhci, slot_id,
1443                                         ep_index, urb);
1444                         if (ret < 0) {
1445                                 xhci_urb_free_priv(urb_priv);
1446                                 urb->hcpriv = NULL;
1447                                 return ret;
1448                         }
1449                 }
1450         }
1451
1452         spin_lock_irqsave(&xhci->lock, flags);
1453
1454         if (xhci->xhc_state & XHCI_STATE_DYING) {
1455                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1456                          urb->ep->desc.bEndpointAddress, urb);
1457                 ret = -ESHUTDOWN;
1458                 goto free_priv;
1459         }
1460         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1461                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1462                           *ep_state);
1463                 ret = -EINVAL;
1464                 goto free_priv;
1465         }
1466         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1467                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1468                 ret = -EINVAL;
1469                 goto free_priv;
1470         }
1471
1472         switch (usb_endpoint_type(&urb->ep->desc)) {
1473
1474         case USB_ENDPOINT_XFER_CONTROL:
1475                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1476                                          slot_id, ep_index);
1477                 break;
1478         case USB_ENDPOINT_XFER_BULK:
1479                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1480                                          slot_id, ep_index);
1481                 break;
1482         case USB_ENDPOINT_XFER_INT:
1483                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1484                                 slot_id, ep_index);
1485                 break;
1486         case USB_ENDPOINT_XFER_ISOC:
1487                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1488                                 slot_id, ep_index);
1489         }
1490
1491         if (ret) {
1492 free_priv:
1493                 xhci_urb_free_priv(urb_priv);
1494                 urb->hcpriv = NULL;
1495         }
1496         spin_unlock_irqrestore(&xhci->lock, flags);
1497         return ret;
1498 }
1499
1500 /*
1501  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1502  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1503  * should pick up where it left off in the TD, unless a Set Transfer Ring
1504  * Dequeue Pointer is issued.
1505  *
1506  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1507  * the ring.  Since the ring is a contiguous structure, they can't be physically
1508  * removed.  Instead, there are two options:
1509  *
1510  *  1) If the HC is in the middle of processing the URB to be canceled, we
1511  *     simply move the ring's dequeue pointer past those TRBs using the Set
1512  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1513  *     when drivers timeout on the last submitted URB and attempt to cancel.
1514  *
1515  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1516  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1517  *     HC will need to invalidate the any TRBs it has cached after the stop
1518  *     endpoint command, as noted in the xHCI 0.95 errata.
1519  *
1520  *  3) The TD may have completed by the time the Stop Endpoint Command
1521  *     completes, so software needs to handle that case too.
1522  *
1523  * This function should protect against the TD enqueueing code ringing the
1524  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1525  * It also needs to account for multiple cancellations on happening at the same
1526  * time for the same endpoint.
1527  *
1528  * Note that this function can be called in any context, or so says
1529  * usb_hcd_unlink_urb()
1530  */
1531 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1532 {
1533         unsigned long flags;
1534         int ret, i;
1535         u32 temp;
1536         struct xhci_hcd *xhci;
1537         struct urb_priv *urb_priv;
1538         struct xhci_td *td;
1539         unsigned int ep_index;
1540         struct xhci_ring *ep_ring;
1541         struct xhci_virt_ep *ep;
1542         struct xhci_command *command;
1543         struct xhci_virt_device *vdev;
1544
1545         xhci = hcd_to_xhci(hcd);
1546         spin_lock_irqsave(&xhci->lock, flags);
1547
1548         trace_xhci_urb_dequeue(urb);
1549
1550         /* Make sure the URB hasn't completed or been unlinked already */
1551         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1552         if (ret)
1553                 goto done;
1554
1555         /* give back URB now if we can't queue it for cancel */
1556         vdev = xhci->devs[urb->dev->slot_id];
1557         urb_priv = urb->hcpriv;
1558         if (!vdev || !urb_priv)
1559                 goto err_giveback;
1560
1561         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1562         ep = &vdev->eps[ep_index];
1563         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1564         if (!ep || !ep_ring)
1565                 goto err_giveback;
1566
1567         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1568         temp = readl(&xhci->op_regs->status);
1569         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1570                 xhci_hc_died(xhci);
1571                 goto done;
1572         }
1573
1574         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1575                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1576                                 "HC halted, freeing TD manually.");
1577                 for (i = urb_priv->num_tds_done;
1578                      i < urb_priv->num_tds;
1579                      i++) {
1580                         td = &urb_priv->td[i];
1581                         if (!list_empty(&td->td_list))
1582                                 list_del_init(&td->td_list);
1583                         if (!list_empty(&td->cancelled_td_list))
1584                                 list_del_init(&td->cancelled_td_list);
1585                 }
1586                 goto err_giveback;
1587         }
1588
1589         i = urb_priv->num_tds_done;
1590         if (i < urb_priv->num_tds)
1591                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1592                                 "Cancel URB %p, dev %s, ep 0x%x, "
1593                                 "starting at offset 0x%llx",
1594                                 urb, urb->dev->devpath,
1595                                 urb->ep->desc.bEndpointAddress,
1596                                 (unsigned long long) xhci_trb_virt_to_dma(
1597                                         urb_priv->td[i].start_seg,
1598                                         urb_priv->td[i].first_trb));
1599
1600         for (; i < urb_priv->num_tds; i++) {
1601                 td = &urb_priv->td[i];
1602                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1603         }
1604
1605         /* Queue a stop endpoint command, but only if this is
1606          * the first cancellation to be handled.
1607          */
1608         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1609                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1610                 if (!command) {
1611                         ret = -ENOMEM;
1612                         goto done;
1613                 }
1614                 ep->ep_state |= EP_STOP_CMD_PENDING;
1615                 ep->stop_cmd_timer.expires = jiffies +
1616                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1617                 add_timer(&ep->stop_cmd_timer);
1618                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1619                                          ep_index, 0);
1620                 xhci_ring_cmd_db(xhci);
1621         }
1622 done:
1623         spin_unlock_irqrestore(&xhci->lock, flags);
1624         return ret;
1625
1626 err_giveback:
1627         if (urb_priv)
1628                 xhci_urb_free_priv(urb_priv);
1629         usb_hcd_unlink_urb_from_ep(hcd, urb);
1630         spin_unlock_irqrestore(&xhci->lock, flags);
1631         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1632         return ret;
1633 }
1634
1635 /* Drop an endpoint from a new bandwidth configuration for this device.
1636  * Only one call to this function is allowed per endpoint before
1637  * check_bandwidth() or reset_bandwidth() must be called.
1638  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1639  * add the endpoint to the schedule with possibly new parameters denoted by a
1640  * different endpoint descriptor in usb_host_endpoint.
1641  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1642  * not allowed.
1643  *
1644  * The USB core will not allow URBs to be queued to an endpoint that is being
1645  * disabled, so there's no need for mutual exclusion to protect
1646  * the xhci->devs[slot_id] structure.
1647  */
1648 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1649                 struct usb_host_endpoint *ep)
1650 {
1651         struct xhci_hcd *xhci;
1652         struct xhci_container_ctx *in_ctx, *out_ctx;
1653         struct xhci_input_control_ctx *ctrl_ctx;
1654         unsigned int ep_index;
1655         struct xhci_ep_ctx *ep_ctx;
1656         u32 drop_flag;
1657         u32 new_add_flags, new_drop_flags;
1658         int ret;
1659
1660         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1661         if (ret <= 0)
1662                 return ret;
1663         xhci = hcd_to_xhci(hcd);
1664         if (xhci->xhc_state & XHCI_STATE_DYING)
1665                 return -ENODEV;
1666
1667         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1668         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1669         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1670                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1671                                 __func__, drop_flag);
1672                 return 0;
1673         }
1674
1675         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1676         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1677         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1678         if (!ctrl_ctx) {
1679                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1680                                 __func__);
1681                 return 0;
1682         }
1683
1684         ep_index = xhci_get_endpoint_index(&ep->desc);
1685         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1686         /* If the HC already knows the endpoint is disabled,
1687          * or the HCD has noted it is disabled, ignore this request
1688          */
1689         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1690             le32_to_cpu(ctrl_ctx->drop_flags) &
1691             xhci_get_endpoint_flag(&ep->desc)) {
1692                 /* Do not warn when called after a usb_device_reset */
1693                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1694                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1695                                   __func__, ep);
1696                 return 0;
1697         }
1698
1699         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1700         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1701
1702         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1703         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1704
1705         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1706
1707         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1708
1709         if (xhci->quirks & XHCI_MTK_HOST)
1710                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1711
1712         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1713                         (unsigned int) ep->desc.bEndpointAddress,
1714                         udev->slot_id,
1715                         (unsigned int) new_drop_flags,
1716                         (unsigned int) new_add_flags);
1717         return 0;
1718 }
1719
1720 /* Add an endpoint to a new possible bandwidth configuration for this device.
1721  * Only one call to this function is allowed per endpoint before
1722  * check_bandwidth() or reset_bandwidth() must be called.
1723  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1724  * add the endpoint to the schedule with possibly new parameters denoted by a
1725  * different endpoint descriptor in usb_host_endpoint.
1726  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1727  * not allowed.
1728  *
1729  * The USB core will not allow URBs to be queued to an endpoint until the
1730  * configuration or alt setting is installed in the device, so there's no need
1731  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1732  */
1733 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1734                 struct usb_host_endpoint *ep)
1735 {
1736         struct xhci_hcd *xhci;
1737         struct xhci_container_ctx *in_ctx;
1738         unsigned int ep_index;
1739         struct xhci_input_control_ctx *ctrl_ctx;
1740         u32 added_ctxs;
1741         u32 new_add_flags, new_drop_flags;
1742         struct xhci_virt_device *virt_dev;
1743         int ret = 0;
1744
1745         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1746         if (ret <= 0) {
1747                 /* So we won't queue a reset ep command for a root hub */
1748                 ep->hcpriv = NULL;
1749                 return ret;
1750         }
1751         xhci = hcd_to_xhci(hcd);
1752         if (xhci->xhc_state & XHCI_STATE_DYING)
1753                 return -ENODEV;
1754
1755         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1756         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1757                 /* FIXME when we have to issue an evaluate endpoint command to
1758                  * deal with ep0 max packet size changing once we get the
1759                  * descriptors
1760                  */
1761                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1762                                 __func__, added_ctxs);
1763                 return 0;
1764         }
1765
1766         virt_dev = xhci->devs[udev->slot_id];
1767         in_ctx = virt_dev->in_ctx;
1768         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1769         if (!ctrl_ctx) {
1770                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1771                                 __func__);
1772                 return 0;
1773         }
1774
1775         ep_index = xhci_get_endpoint_index(&ep->desc);
1776         /* If this endpoint is already in use, and the upper layers are trying
1777          * to add it again without dropping it, reject the addition.
1778          */
1779         if (virt_dev->eps[ep_index].ring &&
1780                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1781                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1782                                 "without dropping it.\n",
1783                                 (unsigned int) ep->desc.bEndpointAddress);
1784                 return -EINVAL;
1785         }
1786
1787         /* If the HCD has already noted the endpoint is enabled,
1788          * ignore this request.
1789          */
1790         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1791                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1792                                 __func__, ep);
1793                 return 0;
1794         }
1795
1796         /*
1797          * Configuration and alternate setting changes must be done in
1798          * process context, not interrupt context (or so documenation
1799          * for usb_set_interface() and usb_set_configuration() claim).
1800          */
1801         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1802                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1803                                 __func__, ep->desc.bEndpointAddress);
1804                 return -ENOMEM;
1805         }
1806
1807         if (xhci->quirks & XHCI_MTK_HOST) {
1808                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1809                 if (ret < 0) {
1810                         xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1811                         virt_dev->eps[ep_index].new_ring = NULL;
1812                         return ret;
1813                 }
1814         }
1815
1816         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1817         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1818
1819         /* If xhci_endpoint_disable() was called for this endpoint, but the
1820          * xHC hasn't been notified yet through the check_bandwidth() call,
1821          * this re-adds a new state for the endpoint from the new endpoint
1822          * descriptors.  We must drop and re-add this endpoint, so we leave the
1823          * drop flags alone.
1824          */
1825         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1826
1827         /* Store the usb_device pointer for later use */
1828         ep->hcpriv = udev;
1829
1830         xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1831
1832         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1833                         (unsigned int) ep->desc.bEndpointAddress,
1834                         udev->slot_id,
1835                         (unsigned int) new_drop_flags,
1836                         (unsigned int) new_add_flags);
1837         return 0;
1838 }
1839
1840 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1841 {
1842         struct xhci_input_control_ctx *ctrl_ctx;
1843         struct xhci_ep_ctx *ep_ctx;
1844         struct xhci_slot_ctx *slot_ctx;
1845         int i;
1846
1847         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1848         if (!ctrl_ctx) {
1849                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1850                                 __func__);
1851                 return;
1852         }
1853
1854         /* When a device's add flag and drop flag are zero, any subsequent
1855          * configure endpoint command will leave that endpoint's state
1856          * untouched.  Make sure we don't leave any old state in the input
1857          * endpoint contexts.
1858          */
1859         ctrl_ctx->drop_flags = 0;
1860         ctrl_ctx->add_flags = 0;
1861         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1862         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1863         /* Endpoint 0 is always valid */
1864         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1865         for (i = 1; i < 31; i++) {
1866                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1867                 ep_ctx->ep_info = 0;
1868                 ep_ctx->ep_info2 = 0;
1869                 ep_ctx->deq = 0;
1870                 ep_ctx->tx_info = 0;
1871         }
1872 }
1873
1874 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1875                 struct usb_device *udev, u32 *cmd_status)
1876 {
1877         int ret;
1878
1879         switch (*cmd_status) {
1880         case COMP_COMMAND_ABORTED:
1881         case COMP_COMMAND_RING_STOPPED:
1882                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1883                 ret = -ETIME;
1884                 break;
1885         case COMP_RESOURCE_ERROR:
1886                 dev_warn(&udev->dev,
1887                          "Not enough host controller resources for new device state.\n");
1888                 ret = -ENOMEM;
1889                 /* FIXME: can we allocate more resources for the HC? */
1890                 break;
1891         case COMP_BANDWIDTH_ERROR:
1892         case COMP_SECONDARY_BANDWIDTH_ERROR:
1893                 dev_warn(&udev->dev,
1894                          "Not enough bandwidth for new device state.\n");
1895                 ret = -ENOSPC;
1896                 /* FIXME: can we go back to the old state? */
1897                 break;
1898         case COMP_TRB_ERROR:
1899                 /* the HCD set up something wrong */
1900                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1901                                 "add flag = 1, "
1902                                 "and endpoint is not disabled.\n");
1903                 ret = -EINVAL;
1904                 break;
1905         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1906                 dev_warn(&udev->dev,
1907                          "ERROR: Incompatible device for endpoint configure command.\n");
1908                 ret = -ENODEV;
1909                 break;
1910         case COMP_SUCCESS:
1911                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1912                                 "Successful Endpoint Configure command");
1913                 ret = 0;
1914                 break;
1915         default:
1916                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1917                                 *cmd_status);
1918                 ret = -EINVAL;
1919                 break;
1920         }
1921         return ret;
1922 }
1923
1924 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1925                 struct usb_device *udev, u32 *cmd_status)
1926 {
1927         int ret;
1928
1929         switch (*cmd_status) {
1930         case COMP_COMMAND_ABORTED:
1931         case COMP_COMMAND_RING_STOPPED:
1932                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1933                 ret = -ETIME;
1934                 break;
1935         case COMP_PARAMETER_ERROR:
1936                 dev_warn(&udev->dev,
1937                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1938                 ret = -EINVAL;
1939                 break;
1940         case COMP_SLOT_NOT_ENABLED_ERROR:
1941                 dev_warn(&udev->dev,
1942                         "WARN: slot not enabled for evaluate context command.\n");
1943                 ret = -EINVAL;
1944                 break;
1945         case COMP_CONTEXT_STATE_ERROR:
1946                 dev_warn(&udev->dev,
1947                         "WARN: invalid context state for evaluate context command.\n");
1948                 ret = -EINVAL;
1949                 break;
1950         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1951                 dev_warn(&udev->dev,
1952                         "ERROR: Incompatible device for evaluate context command.\n");
1953                 ret = -ENODEV;
1954                 break;
1955         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1956                 /* Max Exit Latency too large error */
1957                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1958                 ret = -EINVAL;
1959                 break;
1960         case COMP_SUCCESS:
1961                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1962                                 "Successful evaluate context command");
1963                 ret = 0;
1964                 break;
1965         default:
1966                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1967                         *cmd_status);
1968                 ret = -EINVAL;
1969                 break;
1970         }
1971         return ret;
1972 }
1973
1974 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1975                 struct xhci_input_control_ctx *ctrl_ctx)
1976 {
1977         u32 valid_add_flags;
1978         u32 valid_drop_flags;
1979
1980         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1981          * (bit 1).  The default control endpoint is added during the Address
1982          * Device command and is never removed until the slot is disabled.
1983          */
1984         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1985         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1986
1987         /* Use hweight32 to count the number of ones in the add flags, or
1988          * number of endpoints added.  Don't count endpoints that are changed
1989          * (both added and dropped).
1990          */
1991         return hweight32(valid_add_flags) -
1992                 hweight32(valid_add_flags & valid_drop_flags);
1993 }
1994
1995 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1996                 struct xhci_input_control_ctx *ctrl_ctx)
1997 {
1998         u32 valid_add_flags;
1999         u32 valid_drop_flags;
2000
2001         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2002         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2003
2004         return hweight32(valid_drop_flags) -
2005                 hweight32(valid_add_flags & valid_drop_flags);
2006 }
2007
2008 /*
2009  * We need to reserve the new number of endpoints before the configure endpoint
2010  * command completes.  We can't subtract the dropped endpoints from the number
2011  * of active endpoints until the command completes because we can oversubscribe
2012  * the host in this case:
2013  *
2014  *  - the first configure endpoint command drops more endpoints than it adds
2015  *  - a second configure endpoint command that adds more endpoints is queued
2016  *  - the first configure endpoint command fails, so the config is unchanged
2017  *  - the second command may succeed, even though there isn't enough resources
2018  *
2019  * Must be called with xhci->lock held.
2020  */
2021 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2022                 struct xhci_input_control_ctx *ctrl_ctx)
2023 {
2024         u32 added_eps;
2025
2026         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2027         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2028                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2029                                 "Not enough ep ctxs: "
2030                                 "%u active, need to add %u, limit is %u.",
2031                                 xhci->num_active_eps, added_eps,
2032                                 xhci->limit_active_eps);
2033                 return -ENOMEM;
2034         }
2035         xhci->num_active_eps += added_eps;
2036         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2037                         "Adding %u ep ctxs, %u now active.", added_eps,
2038                         xhci->num_active_eps);
2039         return 0;
2040 }
2041
2042 /*
2043  * The configure endpoint was failed by the xHC for some other reason, so we
2044  * need to revert the resources that failed configuration would have used.
2045  *
2046  * Must be called with xhci->lock held.
2047  */
2048 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2049                 struct xhci_input_control_ctx *ctrl_ctx)
2050 {
2051         u32 num_failed_eps;
2052
2053         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2054         xhci->num_active_eps -= num_failed_eps;
2055         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2056                         "Removing %u failed ep ctxs, %u now active.",
2057                         num_failed_eps,
2058                         xhci->num_active_eps);
2059 }
2060
2061 /*
2062  * Now that the command has completed, clean up the active endpoint count by
2063  * subtracting out the endpoints that were dropped (but not changed).
2064  *
2065  * Must be called with xhci->lock held.
2066  */
2067 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2068                 struct xhci_input_control_ctx *ctrl_ctx)
2069 {
2070         u32 num_dropped_eps;
2071
2072         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2073         xhci->num_active_eps -= num_dropped_eps;
2074         if (num_dropped_eps)
2075                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2076                                 "Removing %u dropped ep ctxs, %u now active.",
2077                                 num_dropped_eps,
2078                                 xhci->num_active_eps);
2079 }
2080
2081 static unsigned int xhci_get_block_size(struct usb_device *udev)
2082 {
2083         switch (udev->speed) {
2084         case USB_SPEED_LOW:
2085         case USB_SPEED_FULL:
2086                 return FS_BLOCK;
2087         case USB_SPEED_HIGH:
2088                 return HS_BLOCK;
2089         case USB_SPEED_SUPER:
2090         case USB_SPEED_SUPER_PLUS:
2091                 return SS_BLOCK;
2092         case USB_SPEED_UNKNOWN:
2093         case USB_SPEED_WIRELESS:
2094         default:
2095                 /* Should never happen */
2096                 return 1;
2097         }
2098 }
2099
2100 static unsigned int
2101 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2102 {
2103         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2104                 return LS_OVERHEAD;
2105         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2106                 return FS_OVERHEAD;
2107         return HS_OVERHEAD;
2108 }
2109
2110 /* If we are changing a LS/FS device under a HS hub,
2111  * make sure (if we are activating a new TT) that the HS bus has enough
2112  * bandwidth for this new TT.
2113  */
2114 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2115                 struct xhci_virt_device *virt_dev,
2116                 int old_active_eps)
2117 {
2118         struct xhci_interval_bw_table *bw_table;
2119         struct xhci_tt_bw_info *tt_info;
2120
2121         /* Find the bandwidth table for the root port this TT is attached to. */
2122         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2123         tt_info = virt_dev->tt_info;
2124         /* If this TT already had active endpoints, the bandwidth for this TT
2125          * has already been added.  Removing all periodic endpoints (and thus
2126          * making the TT enactive) will only decrease the bandwidth used.
2127          */
2128         if (old_active_eps)
2129                 return 0;
2130         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2131                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2132                         return -ENOMEM;
2133                 return 0;
2134         }
2135         /* Not sure why we would have no new active endpoints...
2136          *
2137          * Maybe because of an Evaluate Context change for a hub update or a
2138          * control endpoint 0 max packet size change?
2139          * FIXME: skip the bandwidth calculation in that case.
2140          */
2141         return 0;
2142 }
2143
2144 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2145                 struct xhci_virt_device *virt_dev)
2146 {
2147         unsigned int bw_reserved;
2148
2149         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2150         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2151                 return -ENOMEM;
2152
2153         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2154         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2155                 return -ENOMEM;
2156
2157         return 0;
2158 }
2159
2160 /*
2161  * This algorithm is a very conservative estimate of the worst-case scheduling
2162  * scenario for any one interval.  The hardware dynamically schedules the
2163  * packets, so we can't tell which microframe could be the limiting factor in
2164  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2165  *
2166  * Obviously, we can't solve an NP complete problem to find the minimum worst
2167  * case scenario.  Instead, we come up with an estimate that is no less than
2168  * the worst case bandwidth used for any one microframe, but may be an
2169  * over-estimate.
2170  *
2171  * We walk the requirements for each endpoint by interval, starting with the
2172  * smallest interval, and place packets in the schedule where there is only one
2173  * possible way to schedule packets for that interval.  In order to simplify
2174  * this algorithm, we record the largest max packet size for each interval, and
2175  * assume all packets will be that size.
2176  *
2177  * For interval 0, we obviously must schedule all packets for each interval.
2178  * The bandwidth for interval 0 is just the amount of data to be transmitted
2179  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2180  * the number of packets).
2181  *
2182  * For interval 1, we have two possible microframes to schedule those packets
2183  * in.  For this algorithm, if we can schedule the same number of packets for
2184  * each possible scheduling opportunity (each microframe), we will do so.  The
2185  * remaining number of packets will be saved to be transmitted in the gaps in
2186  * the next interval's scheduling sequence.
2187  *
2188  * As we move those remaining packets to be scheduled with interval 2 packets,
2189  * we have to double the number of remaining packets to transmit.  This is
2190  * because the intervals are actually powers of 2, and we would be transmitting
2191  * the previous interval's packets twice in this interval.  We also have to be
2192  * sure that when we look at the largest max packet size for this interval, we
2193  * also look at the largest max packet size for the remaining packets and take
2194  * the greater of the two.
2195  *
2196  * The algorithm continues to evenly distribute packets in each scheduling
2197  * opportunity, and push the remaining packets out, until we get to the last
2198  * interval.  Then those packets and their associated overhead are just added
2199  * to the bandwidth used.
2200  */
2201 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2202                 struct xhci_virt_device *virt_dev,
2203                 int old_active_eps)
2204 {
2205         unsigned int bw_reserved;
2206         unsigned int max_bandwidth;
2207         unsigned int bw_used;
2208         unsigned int block_size;
2209         struct xhci_interval_bw_table *bw_table;
2210         unsigned int packet_size = 0;
2211         unsigned int overhead = 0;
2212         unsigned int packets_transmitted = 0;
2213         unsigned int packets_remaining = 0;
2214         unsigned int i;
2215
2216         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2217                 return xhci_check_ss_bw(xhci, virt_dev);
2218
2219         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2220                 max_bandwidth = HS_BW_LIMIT;
2221                 /* Convert percent of bus BW reserved to blocks reserved */
2222                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2223         } else {
2224                 max_bandwidth = FS_BW_LIMIT;
2225                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2226         }
2227
2228         bw_table = virt_dev->bw_table;
2229         /* We need to translate the max packet size and max ESIT payloads into
2230          * the units the hardware uses.
2231          */
2232         block_size = xhci_get_block_size(virt_dev->udev);
2233
2234         /* If we are manipulating a LS/FS device under a HS hub, double check
2235          * that the HS bus has enough bandwidth if we are activing a new TT.
2236          */
2237         if (virt_dev->tt_info) {
2238                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2239                                 "Recalculating BW for rootport %u",
2240                                 virt_dev->real_port);
2241                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2242                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2243                                         "newly activated TT.\n");
2244                         return -ENOMEM;
2245                 }
2246                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2247                                 "Recalculating BW for TT slot %u port %u",
2248                                 virt_dev->tt_info->slot_id,
2249                                 virt_dev->tt_info->ttport);
2250         } else {
2251                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2252                                 "Recalculating BW for rootport %u",
2253                                 virt_dev->real_port);
2254         }
2255
2256         /* Add in how much bandwidth will be used for interval zero, or the
2257          * rounded max ESIT payload + number of packets * largest overhead.
2258          */
2259         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2260                 bw_table->interval_bw[0].num_packets *
2261                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2262
2263         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2264                 unsigned int bw_added;
2265                 unsigned int largest_mps;
2266                 unsigned int interval_overhead;
2267
2268                 /*
2269                  * How many packets could we transmit in this interval?
2270                  * If packets didn't fit in the previous interval, we will need
2271                  * to transmit that many packets twice within this interval.
2272                  */
2273                 packets_remaining = 2 * packets_remaining +
2274                         bw_table->interval_bw[i].num_packets;
2275
2276                 /* Find the largest max packet size of this or the previous
2277                  * interval.
2278                  */
2279                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2280                         largest_mps = 0;
2281                 else {
2282                         struct xhci_virt_ep *virt_ep;
2283                         struct list_head *ep_entry;
2284
2285                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2286                         virt_ep = list_entry(ep_entry,
2287                                         struct xhci_virt_ep, bw_endpoint_list);
2288                         /* Convert to blocks, rounding up */
2289                         largest_mps = DIV_ROUND_UP(
2290                                         virt_ep->bw_info.max_packet_size,
2291                                         block_size);
2292                 }
2293                 if (largest_mps > packet_size)
2294                         packet_size = largest_mps;
2295
2296                 /* Use the larger overhead of this or the previous interval. */
2297                 interval_overhead = xhci_get_largest_overhead(
2298                                 &bw_table->interval_bw[i]);
2299                 if (interval_overhead > overhead)
2300                         overhead = interval_overhead;
2301
2302                 /* How many packets can we evenly distribute across
2303                  * (1 << (i + 1)) possible scheduling opportunities?
2304                  */
2305                 packets_transmitted = packets_remaining >> (i + 1);
2306
2307                 /* Add in the bandwidth used for those scheduled packets */
2308                 bw_added = packets_transmitted * (overhead + packet_size);
2309
2310                 /* How many packets do we have remaining to transmit? */
2311                 packets_remaining = packets_remaining % (1 << (i + 1));
2312
2313                 /* What largest max packet size should those packets have? */
2314                 /* If we've transmitted all packets, don't carry over the
2315                  * largest packet size.
2316                  */
2317                 if (packets_remaining == 0) {
2318                         packet_size = 0;
2319                         overhead = 0;
2320                 } else if (packets_transmitted > 0) {
2321                         /* Otherwise if we do have remaining packets, and we've
2322                          * scheduled some packets in this interval, take the
2323                          * largest max packet size from endpoints with this
2324                          * interval.
2325                          */
2326                         packet_size = largest_mps;
2327                         overhead = interval_overhead;
2328                 }
2329                 /* Otherwise carry over packet_size and overhead from the last
2330                  * time we had a remainder.
2331                  */
2332                 bw_used += bw_added;
2333                 if (bw_used > max_bandwidth) {
2334                         xhci_warn(xhci, "Not enough bandwidth. "
2335                                         "Proposed: %u, Max: %u\n",
2336                                 bw_used, max_bandwidth);
2337                         return -ENOMEM;
2338                 }
2339         }
2340         /*
2341          * Ok, we know we have some packets left over after even-handedly
2342          * scheduling interval 15.  We don't know which microframes they will
2343          * fit into, so we over-schedule and say they will be scheduled every
2344          * microframe.
2345          */
2346         if (packets_remaining > 0)
2347                 bw_used += overhead + packet_size;
2348
2349         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2350                 unsigned int port_index = virt_dev->real_port - 1;
2351
2352                 /* OK, we're manipulating a HS device attached to a
2353                  * root port bandwidth domain.  Include the number of active TTs
2354                  * in the bandwidth used.
2355                  */
2356                 bw_used += TT_HS_OVERHEAD *
2357                         xhci->rh_bw[port_index].num_active_tts;
2358         }
2359
2360         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2361                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2362                 "Available: %u " "percent",
2363                 bw_used, max_bandwidth, bw_reserved,
2364                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2365                 max_bandwidth);
2366
2367         bw_used += bw_reserved;
2368         if (bw_used > max_bandwidth) {
2369                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2370                                 bw_used, max_bandwidth);
2371                 return -ENOMEM;
2372         }
2373
2374         bw_table->bw_used = bw_used;
2375         return 0;
2376 }
2377
2378 static bool xhci_is_async_ep(unsigned int ep_type)
2379 {
2380         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2381                                         ep_type != ISOC_IN_EP &&
2382                                         ep_type != INT_IN_EP);
2383 }
2384
2385 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2386 {
2387         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2388 }
2389
2390 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2391 {
2392         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2393
2394         if (ep_bw->ep_interval == 0)
2395                 return SS_OVERHEAD_BURST +
2396                         (ep_bw->mult * ep_bw->num_packets *
2397                                         (SS_OVERHEAD + mps));
2398         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2399                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2400                                 1 << ep_bw->ep_interval);
2401
2402 }
2403
2404 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2405                 struct xhci_bw_info *ep_bw,
2406                 struct xhci_interval_bw_table *bw_table,
2407                 struct usb_device *udev,
2408                 struct xhci_virt_ep *virt_ep,
2409                 struct xhci_tt_bw_info *tt_info)
2410 {
2411         struct xhci_interval_bw *interval_bw;
2412         int normalized_interval;
2413
2414         if (xhci_is_async_ep(ep_bw->type))
2415                 return;
2416
2417         if (udev->speed >= USB_SPEED_SUPER) {
2418                 if (xhci_is_sync_in_ep(ep_bw->type))
2419                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2420                                 xhci_get_ss_bw_consumed(ep_bw);
2421                 else
2422                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2423                                 xhci_get_ss_bw_consumed(ep_bw);
2424                 return;
2425         }
2426
2427         /* SuperSpeed endpoints never get added to intervals in the table, so
2428          * this check is only valid for HS/FS/LS devices.
2429          */
2430         if (list_empty(&virt_ep->bw_endpoint_list))
2431                 return;
2432         /* For LS/FS devices, we need to translate the interval expressed in
2433          * microframes to frames.
2434          */
2435         if (udev->speed == USB_SPEED_HIGH)
2436                 normalized_interval = ep_bw->ep_interval;
2437         else
2438                 normalized_interval = ep_bw->ep_interval - 3;
2439
2440         if (normalized_interval == 0)
2441                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2442         interval_bw = &bw_table->interval_bw[normalized_interval];
2443         interval_bw->num_packets -= ep_bw->num_packets;
2444         switch (udev->speed) {
2445         case USB_SPEED_LOW:
2446                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2447                 break;
2448         case USB_SPEED_FULL:
2449                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2450                 break;
2451         case USB_SPEED_HIGH:
2452                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2453                 break;
2454         case USB_SPEED_SUPER:
2455         case USB_SPEED_SUPER_PLUS:
2456         case USB_SPEED_UNKNOWN:
2457         case USB_SPEED_WIRELESS:
2458                 /* Should never happen because only LS/FS/HS endpoints will get
2459                  * added to the endpoint list.
2460                  */
2461                 return;
2462         }
2463         if (tt_info)
2464                 tt_info->active_eps -= 1;
2465         list_del_init(&virt_ep->bw_endpoint_list);
2466 }
2467
2468 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2469                 struct xhci_bw_info *ep_bw,
2470                 struct xhci_interval_bw_table *bw_table,
2471                 struct usb_device *udev,
2472                 struct xhci_virt_ep *virt_ep,
2473                 struct xhci_tt_bw_info *tt_info)
2474 {
2475         struct xhci_interval_bw *interval_bw;
2476         struct xhci_virt_ep *smaller_ep;
2477         int normalized_interval;
2478
2479         if (xhci_is_async_ep(ep_bw->type))
2480                 return;
2481
2482         if (udev->speed == USB_SPEED_SUPER) {
2483                 if (xhci_is_sync_in_ep(ep_bw->type))
2484                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2485                                 xhci_get_ss_bw_consumed(ep_bw);
2486                 else
2487                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2488                                 xhci_get_ss_bw_consumed(ep_bw);
2489                 return;
2490         }
2491
2492         /* For LS/FS devices, we need to translate the interval expressed in
2493          * microframes to frames.
2494          */
2495         if (udev->speed == USB_SPEED_HIGH)
2496                 normalized_interval = ep_bw->ep_interval;
2497         else
2498                 normalized_interval = ep_bw->ep_interval - 3;
2499
2500         if (normalized_interval == 0)
2501                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2502         interval_bw = &bw_table->interval_bw[normalized_interval];
2503         interval_bw->num_packets += ep_bw->num_packets;
2504         switch (udev->speed) {
2505         case USB_SPEED_LOW:
2506                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2507                 break;
2508         case USB_SPEED_FULL:
2509                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2510                 break;
2511         case USB_SPEED_HIGH:
2512                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2513                 break;
2514         case USB_SPEED_SUPER:
2515         case USB_SPEED_SUPER_PLUS:
2516         case USB_SPEED_UNKNOWN:
2517         case USB_SPEED_WIRELESS:
2518                 /* Should never happen because only LS/FS/HS endpoints will get
2519                  * added to the endpoint list.
2520                  */
2521                 return;
2522         }
2523
2524         if (tt_info)
2525                 tt_info->active_eps += 1;
2526         /* Insert the endpoint into the list, largest max packet size first. */
2527         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2528                         bw_endpoint_list) {
2529                 if (ep_bw->max_packet_size >=
2530                                 smaller_ep->bw_info.max_packet_size) {
2531                         /* Add the new ep before the smaller endpoint */
2532                         list_add_tail(&virt_ep->bw_endpoint_list,
2533                                         &smaller_ep->bw_endpoint_list);
2534                         return;
2535                 }
2536         }
2537         /* Add the new endpoint at the end of the list. */
2538         list_add_tail(&virt_ep->bw_endpoint_list,
2539                         &interval_bw->endpoints);
2540 }
2541
2542 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2543                 struct xhci_virt_device *virt_dev,
2544                 int old_active_eps)
2545 {
2546         struct xhci_root_port_bw_info *rh_bw_info;
2547         if (!virt_dev->tt_info)
2548                 return;
2549
2550         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2551         if (old_active_eps == 0 &&
2552                                 virt_dev->tt_info->active_eps != 0) {
2553                 rh_bw_info->num_active_tts += 1;
2554                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2555         } else if (old_active_eps != 0 &&
2556                                 virt_dev->tt_info->active_eps == 0) {
2557                 rh_bw_info->num_active_tts -= 1;
2558                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2559         }
2560 }
2561
2562 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2563                 struct xhci_virt_device *virt_dev,
2564                 struct xhci_container_ctx *in_ctx)
2565 {
2566         struct xhci_bw_info ep_bw_info[31];
2567         int i;
2568         struct xhci_input_control_ctx *ctrl_ctx;
2569         int old_active_eps = 0;
2570
2571         if (virt_dev->tt_info)
2572                 old_active_eps = virt_dev->tt_info->active_eps;
2573
2574         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2575         if (!ctrl_ctx) {
2576                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2577                                 __func__);
2578                 return -ENOMEM;
2579         }
2580
2581         for (i = 0; i < 31; i++) {
2582                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2583                         continue;
2584
2585                 /* Make a copy of the BW info in case we need to revert this */
2586                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2587                                 sizeof(ep_bw_info[i]));
2588                 /* Drop the endpoint from the interval table if the endpoint is
2589                  * being dropped or changed.
2590                  */
2591                 if (EP_IS_DROPPED(ctrl_ctx, i))
2592                         xhci_drop_ep_from_interval_table(xhci,
2593                                         &virt_dev->eps[i].bw_info,
2594                                         virt_dev->bw_table,
2595                                         virt_dev->udev,
2596                                         &virt_dev->eps[i],
2597                                         virt_dev->tt_info);
2598         }
2599         /* Overwrite the information stored in the endpoints' bw_info */
2600         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2601         for (i = 0; i < 31; i++) {
2602                 /* Add any changed or added endpoints to the interval table */
2603                 if (EP_IS_ADDED(ctrl_ctx, i))
2604                         xhci_add_ep_to_interval_table(xhci,
2605                                         &virt_dev->eps[i].bw_info,
2606                                         virt_dev->bw_table,
2607                                         virt_dev->udev,
2608                                         &virt_dev->eps[i],
2609                                         virt_dev->tt_info);
2610         }
2611
2612         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2613                 /* Ok, this fits in the bandwidth we have.
2614                  * Update the number of active TTs.
2615                  */
2616                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2617                 return 0;
2618         }
2619
2620         /* We don't have enough bandwidth for this, revert the stored info. */
2621         for (i = 0; i < 31; i++) {
2622                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2623                         continue;
2624
2625                 /* Drop the new copies of any added or changed endpoints from
2626                  * the interval table.
2627                  */
2628                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2629                         xhci_drop_ep_from_interval_table(xhci,
2630                                         &virt_dev->eps[i].bw_info,
2631                                         virt_dev->bw_table,
2632                                         virt_dev->udev,
2633                                         &virt_dev->eps[i],
2634                                         virt_dev->tt_info);
2635                 }
2636                 /* Revert the endpoint back to its old information */
2637                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2638                                 sizeof(ep_bw_info[i]));
2639                 /* Add any changed or dropped endpoints back into the table */
2640                 if (EP_IS_DROPPED(ctrl_ctx, i))
2641                         xhci_add_ep_to_interval_table(xhci,
2642                                         &virt_dev->eps[i].bw_info,
2643                                         virt_dev->bw_table,
2644                                         virt_dev->udev,
2645                                         &virt_dev->eps[i],
2646                                         virt_dev->tt_info);
2647         }
2648         return -ENOMEM;
2649 }
2650
2651
2652 /* Issue a configure endpoint command or evaluate context command
2653  * and wait for it to finish.
2654  */
2655 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2656                 struct usb_device *udev,
2657                 struct xhci_command *command,
2658                 bool ctx_change, bool must_succeed)
2659 {
2660         int ret;
2661         unsigned long flags;
2662         struct xhci_input_control_ctx *ctrl_ctx;
2663         struct xhci_virt_device *virt_dev;
2664         struct xhci_slot_ctx *slot_ctx;
2665
2666         if (!command)
2667                 return -EINVAL;
2668
2669         spin_lock_irqsave(&xhci->lock, flags);
2670
2671         if (xhci->xhc_state & XHCI_STATE_DYING) {
2672                 spin_unlock_irqrestore(&xhci->lock, flags);
2673                 return -ESHUTDOWN;
2674         }
2675
2676         virt_dev = xhci->devs[udev->slot_id];
2677
2678         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2679         if (!ctrl_ctx) {
2680                 spin_unlock_irqrestore(&xhci->lock, flags);
2681                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2682                                 __func__);
2683                 return -ENOMEM;
2684         }
2685
2686         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2687                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2688                 spin_unlock_irqrestore(&xhci->lock, flags);
2689                 xhci_warn(xhci, "Not enough host resources, "
2690                                 "active endpoint contexts = %u\n",
2691                                 xhci->num_active_eps);
2692                 return -ENOMEM;
2693         }
2694         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2695             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2696                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2697                         xhci_free_host_resources(xhci, ctrl_ctx);
2698                 spin_unlock_irqrestore(&xhci->lock, flags);
2699                 xhci_warn(xhci, "Not enough bandwidth\n");
2700                 return -ENOMEM;
2701         }
2702
2703         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2704         trace_xhci_configure_endpoint(slot_ctx);
2705
2706         if (!ctx_change)
2707                 ret = xhci_queue_configure_endpoint(xhci, command,
2708                                 command->in_ctx->dma,
2709                                 udev->slot_id, must_succeed);
2710         else
2711                 ret = xhci_queue_evaluate_context(xhci, command,
2712                                 command->in_ctx->dma,
2713                                 udev->slot_id, must_succeed);
2714         if (ret < 0) {
2715                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2716                         xhci_free_host_resources(xhci, ctrl_ctx);
2717                 spin_unlock_irqrestore(&xhci->lock, flags);
2718                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2719                                 "FIXME allocate a new ring segment");
2720                 return -ENOMEM;
2721         }
2722         xhci_ring_cmd_db(xhci);
2723         spin_unlock_irqrestore(&xhci->lock, flags);
2724
2725         /* Wait for the configure endpoint command to complete */
2726         wait_for_completion(command->completion);
2727
2728         if (!ctx_change)
2729                 ret = xhci_configure_endpoint_result(xhci, udev,
2730                                                      &command->status);
2731         else
2732                 ret = xhci_evaluate_context_result(xhci, udev,
2733                                                    &command->status);
2734
2735         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2736                 spin_lock_irqsave(&xhci->lock, flags);
2737                 /* If the command failed, remove the reserved resources.
2738                  * Otherwise, clean up the estimate to include dropped eps.
2739                  */
2740                 if (ret)
2741                         xhci_free_host_resources(xhci, ctrl_ctx);
2742                 else
2743                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2744                 spin_unlock_irqrestore(&xhci->lock, flags);
2745         }
2746         return ret;
2747 }
2748
2749 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2750         struct xhci_virt_device *vdev, int i)
2751 {
2752         struct xhci_virt_ep *ep = &vdev->eps[i];
2753
2754         if (ep->ep_state & EP_HAS_STREAMS) {
2755                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2756                                 xhci_get_endpoint_address(i));
2757                 xhci_free_stream_info(xhci, ep->stream_info);
2758                 ep->stream_info = NULL;
2759                 ep->ep_state &= ~EP_HAS_STREAMS;
2760         }
2761 }
2762
2763 /* Called after one or more calls to xhci_add_endpoint() or
2764  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2765  * to call xhci_reset_bandwidth().
2766  *
2767  * Since we are in the middle of changing either configuration or
2768  * installing a new alt setting, the USB core won't allow URBs to be
2769  * enqueued for any endpoint on the old config or interface.  Nothing
2770  * else should be touching the xhci->devs[slot_id] structure, so we
2771  * don't need to take the xhci->lock for manipulating that.
2772  */
2773 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2774 {
2775         int i;
2776         int ret = 0;
2777         struct xhci_hcd *xhci;
2778         struct xhci_virt_device *virt_dev;
2779         struct xhci_input_control_ctx *ctrl_ctx;
2780         struct xhci_slot_ctx *slot_ctx;
2781         struct xhci_command *command;
2782
2783         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2784         if (ret <= 0)
2785                 return ret;
2786         xhci = hcd_to_xhci(hcd);
2787         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2788                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2789                 return -ENODEV;
2790
2791         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2792         virt_dev = xhci->devs[udev->slot_id];
2793
2794         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2795         if (!command)
2796                 return -ENOMEM;
2797
2798         command->in_ctx = virt_dev->in_ctx;
2799
2800         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2801         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2802         if (!ctrl_ctx) {
2803                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2804                                 __func__);
2805                 ret = -ENOMEM;
2806                 goto command_cleanup;
2807         }
2808         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2809         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2810         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2811
2812         /* Don't issue the command if there's no endpoints to update. */
2813         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2814             ctrl_ctx->drop_flags == 0) {
2815                 ret = 0;
2816                 goto command_cleanup;
2817         }
2818         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2819         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2820         for (i = 31; i >= 1; i--) {
2821                 __le32 le32 = cpu_to_le32(BIT(i));
2822
2823                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2824                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2825                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2826                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2827                         break;
2828                 }
2829         }
2830
2831         ret = xhci_configure_endpoint(xhci, udev, command,
2832                         false, false);
2833         if (ret)
2834                 /* Callee should call reset_bandwidth() */
2835                 goto command_cleanup;
2836
2837         /* Free any rings that were dropped, but not changed. */
2838         for (i = 1; i < 31; i++) {
2839                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2840                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2841                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2842                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2843                 }
2844         }
2845         xhci_zero_in_ctx(xhci, virt_dev);
2846         /*
2847          * Install any rings for completely new endpoints or changed endpoints,
2848          * and free any old rings from changed endpoints.
2849          */
2850         for (i = 1; i < 31; i++) {
2851                 if (!virt_dev->eps[i].new_ring)
2852                         continue;
2853                 /* Only free the old ring if it exists.
2854                  * It may not if this is the first add of an endpoint.
2855                  */
2856                 if (virt_dev->eps[i].ring) {
2857                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2858                 }
2859                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2860                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2861                 virt_dev->eps[i].new_ring = NULL;
2862         }
2863 command_cleanup:
2864         kfree(command->completion);
2865         kfree(command);
2866
2867         return ret;
2868 }
2869
2870 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2871 {
2872         struct xhci_hcd *xhci;
2873         struct xhci_virt_device *virt_dev;
2874         int i, ret;
2875
2876         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2877         if (ret <= 0)
2878                 return;
2879         xhci = hcd_to_xhci(hcd);
2880
2881         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2882         virt_dev = xhci->devs[udev->slot_id];
2883         /* Free any rings allocated for added endpoints */
2884         for (i = 0; i < 31; i++) {
2885                 if (virt_dev->eps[i].new_ring) {
2886                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2887                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2888                         virt_dev->eps[i].new_ring = NULL;
2889                 }
2890         }
2891         xhci_zero_in_ctx(xhci, virt_dev);
2892 }
2893
2894 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2895                 struct xhci_container_ctx *in_ctx,
2896                 struct xhci_container_ctx *out_ctx,
2897                 struct xhci_input_control_ctx *ctrl_ctx,
2898                 u32 add_flags, u32 drop_flags)
2899 {
2900         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2901         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2902         xhci_slot_copy(xhci, in_ctx, out_ctx);
2903         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2904 }
2905
2906 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2907                 unsigned int slot_id, unsigned int ep_index,
2908                 struct xhci_dequeue_state *deq_state)
2909 {
2910         struct xhci_input_control_ctx *ctrl_ctx;
2911         struct xhci_container_ctx *in_ctx;
2912         struct xhci_ep_ctx *ep_ctx;
2913         u32 added_ctxs;
2914         dma_addr_t addr;
2915
2916         in_ctx = xhci->devs[slot_id]->in_ctx;
2917         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2918         if (!ctrl_ctx) {
2919                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2920                                 __func__);
2921                 return;
2922         }
2923
2924         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2925                         xhci->devs[slot_id]->out_ctx, ep_index);
2926         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2927         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2928                         deq_state->new_deq_ptr);
2929         if (addr == 0) {
2930                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2931                                 "reset ep command\n");
2932                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2933                                 deq_state->new_deq_seg,
2934                                 deq_state->new_deq_ptr);
2935                 return;
2936         }
2937         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2938
2939         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2940         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2941                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2942                         added_ctxs, added_ctxs);
2943 }
2944
2945 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2946                                unsigned int stream_id, struct xhci_td *td)
2947 {
2948         struct xhci_dequeue_state deq_state;
2949         struct usb_device *udev = td->urb->dev;
2950
2951         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2952                         "Cleaning up stalled endpoint ring");
2953         /* We need to move the HW's dequeue pointer past this TD,
2954          * or it will attempt to resend it on the next doorbell ring.
2955          */
2956         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2957                         ep_index, stream_id, td, &deq_state);
2958
2959         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2960                 return;
2961
2962         /* HW with the reset endpoint quirk will use the saved dequeue state to
2963          * issue a configure endpoint command later.
2964          */
2965         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2966                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2967                                 "Queueing new dequeue state");
2968                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2969                                 ep_index, &deq_state);
2970         } else {
2971                 /* Better hope no one uses the input context between now and the
2972                  * reset endpoint completion!
2973                  * XXX: No idea how this hardware will react when stream rings
2974                  * are enabled.
2975                  */
2976                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2977                                 "Setting up input context for "
2978                                 "configure endpoint command");
2979                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2980                                 ep_index, &deq_state);
2981         }
2982 }
2983
2984 /*
2985  * Called after usb core issues a clear halt control message.
2986  * The host side of the halt should already be cleared by a reset endpoint
2987  * command issued when the STALL event was received.
2988  *
2989  * The reset endpoint command may only be issued to endpoints in the halted
2990  * state. For software that wishes to reset the data toggle or sequence number
2991  * of an endpoint that isn't in the halted state this function will issue a
2992  * configure endpoint command with the Drop and Add bits set for the target
2993  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
2994  */
2995
2996 static void xhci_endpoint_reset(struct usb_hcd *hcd,
2997                 struct usb_host_endpoint *host_ep)
2998 {
2999         struct xhci_hcd *xhci;
3000         struct usb_device *udev;
3001         struct xhci_virt_device *vdev;
3002         struct xhci_virt_ep *ep;
3003         struct xhci_input_control_ctx *ctrl_ctx;
3004         struct xhci_command *stop_cmd, *cfg_cmd;
3005         unsigned int ep_index;
3006         unsigned long flags;
3007         u32 ep_flag;
3008
3009         xhci = hcd_to_xhci(hcd);
3010         if (!host_ep->hcpriv)
3011                 return;
3012         udev = (struct usb_device *) host_ep->hcpriv;
3013         vdev = xhci->devs[udev->slot_id];
3014         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3015         ep = &vdev->eps[ep_index];
3016
3017         /* Bail out if toggle is already being cleared by a endpoint reset */
3018         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3019                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3020                 return;
3021         }
3022         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3023         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3024             usb_endpoint_xfer_isoc(&host_ep->desc))
3025                 return;
3026
3027         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3028
3029         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3030                 return;
3031
3032         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3033         if (!stop_cmd)
3034                 return;
3035
3036         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3037         if (!cfg_cmd)
3038                 goto cleanup;
3039
3040         spin_lock_irqsave(&xhci->lock, flags);
3041
3042         /* block queuing new trbs and ringing ep doorbell */
3043         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3044
3045         /*
3046          * Make sure endpoint ring is empty before resetting the toggle/seq.
3047          * Driver is required to synchronously cancel all transfer request.
3048          * Stop the endpoint to force xHC to update the output context
3049          */
3050
3051         if (!list_empty(&ep->ring->td_list)) {
3052                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3053                 spin_unlock_irqrestore(&xhci->lock, flags);
3054                 xhci_free_command(xhci, cfg_cmd);
3055                 goto cleanup;
3056         }
3057         xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0);
3058         xhci_ring_cmd_db(xhci);
3059         spin_unlock_irqrestore(&xhci->lock, flags);
3060
3061         wait_for_completion(stop_cmd->completion);
3062
3063         spin_lock_irqsave(&xhci->lock, flags);
3064
3065         /* config ep command clears toggle if add and drop ep flags are set */
3066         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3067         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3068                                            ctrl_ctx, ep_flag, ep_flag);
3069         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3070
3071         xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3072                                       udev->slot_id, false);
3073         xhci_ring_cmd_db(xhci);
3074         spin_unlock_irqrestore(&xhci->lock, flags);
3075
3076         wait_for_completion(cfg_cmd->completion);
3077
3078         ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3079         xhci_free_command(xhci, cfg_cmd);
3080 cleanup:
3081         xhci_free_command(xhci, stop_cmd);
3082 }
3083
3084 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3085                 struct usb_device *udev, struct usb_host_endpoint *ep,
3086                 unsigned int slot_id)
3087 {
3088         int ret;
3089         unsigned int ep_index;
3090         unsigned int ep_state;
3091
3092         if (!ep)
3093                 return -EINVAL;
3094         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3095         if (ret <= 0)
3096                 return -EINVAL;
3097         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3098                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3099                                 " descriptor for ep 0x%x does not support streams\n",
3100                                 ep->desc.bEndpointAddress);
3101                 return -EINVAL;
3102         }
3103
3104         ep_index = xhci_get_endpoint_index(&ep->desc);
3105         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3106         if (ep_state & EP_HAS_STREAMS ||
3107                         ep_state & EP_GETTING_STREAMS) {
3108                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3109                                 "already has streams set up.\n",
3110                                 ep->desc.bEndpointAddress);
3111                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3112                                 "dynamic stream context array reallocation.\n");
3113                 return -EINVAL;
3114         }
3115         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3116                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3117                                 "endpoint 0x%x; URBs are pending.\n",
3118                                 ep->desc.bEndpointAddress);
3119                 return -EINVAL;
3120         }
3121         return 0;
3122 }
3123
3124 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3125                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3126 {
3127         unsigned int max_streams;
3128
3129         /* The stream context array size must be a power of two */
3130         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3131         /*
3132          * Find out how many primary stream array entries the host controller
3133          * supports.  Later we may use secondary stream arrays (similar to 2nd
3134          * level page entries), but that's an optional feature for xHCI host
3135          * controllers. xHCs must support at least 4 stream IDs.
3136          */
3137         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3138         if (*num_stream_ctxs > max_streams) {
3139                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3140                                 max_streams);
3141                 *num_stream_ctxs = max_streams;
3142                 *num_streams = max_streams;
3143         }
3144 }
3145
3146 /* Returns an error code if one of the endpoint already has streams.
3147  * This does not change any data structures, it only checks and gathers
3148  * information.
3149  */
3150 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3151                 struct usb_device *udev,
3152                 struct usb_host_endpoint **eps, unsigned int num_eps,
3153                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3154 {
3155         unsigned int max_streams;
3156         unsigned int endpoint_flag;
3157         int i;
3158         int ret;
3159
3160         for (i = 0; i < num_eps; i++) {
3161                 ret = xhci_check_streams_endpoint(xhci, udev,
3162                                 eps[i], udev->slot_id);
3163                 if (ret < 0)
3164                         return ret;
3165
3166                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3167                 if (max_streams < (*num_streams - 1)) {
3168                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3169                                         eps[i]->desc.bEndpointAddress,
3170                                         max_streams);
3171                         *num_streams = max_streams+1;
3172                 }
3173
3174                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3175                 if (*changed_ep_bitmask & endpoint_flag)
3176                         return -EINVAL;
3177                 *changed_ep_bitmask |= endpoint_flag;
3178         }
3179         return 0;
3180 }
3181
3182 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3183                 struct usb_device *udev,
3184                 struct usb_host_endpoint **eps, unsigned int num_eps)
3185 {
3186         u32 changed_ep_bitmask = 0;
3187         unsigned int slot_id;
3188         unsigned int ep_index;
3189         unsigned int ep_state;
3190         int i;
3191
3192         slot_id = udev->slot_id;
3193         if (!xhci->devs[slot_id])
3194                 return 0;
3195
3196         for (i = 0; i < num_eps; i++) {
3197                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3198                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3199                 /* Are streams already being freed for the endpoint? */
3200                 if (ep_state & EP_GETTING_NO_STREAMS) {
3201                         xhci_warn(xhci, "WARN Can't disable streams for "
3202                                         "endpoint 0x%x, "
3203                                         "streams are being disabled already\n",
3204                                         eps[i]->desc.bEndpointAddress);
3205                         return 0;
3206                 }
3207                 /* Are there actually any streams to free? */
3208                 if (!(ep_state & EP_HAS_STREAMS) &&
3209                                 !(ep_state & EP_GETTING_STREAMS)) {
3210                         xhci_warn(xhci, "WARN Can't disable streams for "
3211                                         "endpoint 0x%x, "
3212                                         "streams are already disabled!\n",
3213                                         eps[i]->desc.bEndpointAddress);
3214                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3215                                         "with non-streams endpoint\n");
3216                         return 0;
3217                 }
3218                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3219         }
3220         return changed_ep_bitmask;
3221 }
3222
3223 /*
3224  * The USB device drivers use this function (through the HCD interface in USB
3225  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3226  * coordinate mass storage command queueing across multiple endpoints (basically
3227  * a stream ID == a task ID).
3228  *
3229  * Setting up streams involves allocating the same size stream context array
3230  * for each endpoint and issuing a configure endpoint command for all endpoints.
3231  *
3232  * Don't allow the call to succeed if one endpoint only supports one stream
3233  * (which means it doesn't support streams at all).
3234  *
3235  * Drivers may get less stream IDs than they asked for, if the host controller
3236  * hardware or endpoints claim they can't support the number of requested
3237  * stream IDs.
3238  */
3239 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3240                 struct usb_host_endpoint **eps, unsigned int num_eps,
3241                 unsigned int num_streams, gfp_t mem_flags)
3242 {
3243         int i, ret;
3244         struct xhci_hcd *xhci;
3245         struct xhci_virt_device *vdev;
3246         struct xhci_command *config_cmd;
3247         struct xhci_input_control_ctx *ctrl_ctx;
3248         unsigned int ep_index;
3249         unsigned int num_stream_ctxs;
3250         unsigned int max_packet;
3251         unsigned long flags;
3252         u32 changed_ep_bitmask = 0;
3253
3254         if (!eps)
3255                 return -EINVAL;
3256
3257         /* Add one to the number of streams requested to account for
3258          * stream 0 that is reserved for xHCI usage.
3259          */
3260         num_streams += 1;
3261         xhci = hcd_to_xhci(hcd);
3262         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3263                         num_streams);
3264
3265         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3266         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3267                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3268                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3269                 return -ENOSYS;
3270         }
3271
3272         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3273         if (!config_cmd)
3274                 return -ENOMEM;
3275
3276         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3277         if (!ctrl_ctx) {
3278                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3279                                 __func__);
3280                 xhci_free_command(xhci, config_cmd);
3281                 return -ENOMEM;
3282         }
3283
3284         /* Check to make sure all endpoints are not already configured for
3285          * streams.  While we're at it, find the maximum number of streams that
3286          * all the endpoints will support and check for duplicate endpoints.
3287          */
3288         spin_lock_irqsave(&xhci->lock, flags);
3289         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3290                         num_eps, &num_streams, &changed_ep_bitmask);
3291         if (ret < 0) {
3292                 xhci_free_command(xhci, config_cmd);
3293                 spin_unlock_irqrestore(&xhci->lock, flags);
3294                 return ret;
3295         }
3296         if (num_streams <= 1) {
3297                 xhci_warn(xhci, "WARN: endpoints can't handle "
3298                                 "more than one stream.\n");
3299                 xhci_free_command(xhci, config_cmd);
3300                 spin_unlock_irqrestore(&xhci->lock, flags);
3301                 return -EINVAL;
3302         }
3303         vdev = xhci->devs[udev->slot_id];
3304         /* Mark each endpoint as being in transition, so
3305          * xhci_urb_enqueue() will reject all URBs.
3306          */
3307         for (i = 0; i < num_eps; i++) {
3308                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3309                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3310         }
3311         spin_unlock_irqrestore(&xhci->lock, flags);
3312
3313         /* Setup internal data structures and allocate HW data structures for
3314          * streams (but don't install the HW structures in the input context
3315          * until we're sure all memory allocation succeeded).
3316          */
3317         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3318         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3319                         num_stream_ctxs, num_streams);
3320
3321         for (i = 0; i < num_eps; i++) {
3322                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3323                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3324                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3325                                 num_stream_ctxs,
3326                                 num_streams,
3327                                 max_packet, mem_flags);
3328                 if (!vdev->eps[ep_index].stream_info)
3329                         goto cleanup;
3330                 /* Set maxPstreams in endpoint context and update deq ptr to
3331                  * point to stream context array. FIXME
3332                  */
3333         }
3334
3335         /* Set up the input context for a configure endpoint command. */
3336         for (i = 0; i < num_eps; i++) {
3337                 struct xhci_ep_ctx *ep_ctx;
3338
3339                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3340                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3341
3342                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3343                                 vdev->out_ctx, ep_index);
3344                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3345                                 vdev->eps[ep_index].stream_info);
3346         }
3347         /* Tell the HW to drop its old copy of the endpoint context info
3348          * and add the updated copy from the input context.
3349          */
3350         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3351                         vdev->out_ctx, ctrl_ctx,
3352                         changed_ep_bitmask, changed_ep_bitmask);
3353
3354         /* Issue and wait for the configure endpoint command */
3355         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3356                         false, false);
3357
3358         /* xHC rejected the configure endpoint command for some reason, so we
3359          * leave the old ring intact and free our internal streams data
3360          * structure.
3361          */
3362         if (ret < 0)
3363                 goto cleanup;
3364
3365         spin_lock_irqsave(&xhci->lock, flags);
3366         for (i = 0; i < num_eps; i++) {
3367                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3368                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3369                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3370                          udev->slot_id, ep_index);
3371                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3372         }
3373         xhci_free_command(xhci, config_cmd);
3374         spin_unlock_irqrestore(&xhci->lock, flags);
3375
3376         /* Subtract 1 for stream 0, which drivers can't use */
3377         return num_streams - 1;
3378
3379 cleanup:
3380         /* If it didn't work, free the streams! */
3381         for (i = 0; i < num_eps; i++) {
3382                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3383                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3384                 vdev->eps[ep_index].stream_info = NULL;
3385                 /* FIXME Unset maxPstreams in endpoint context and
3386                  * update deq ptr to point to normal string ring.
3387                  */
3388                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3389                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3390                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3391         }
3392         xhci_free_command(xhci, config_cmd);
3393         return -ENOMEM;
3394 }
3395
3396 /* Transition the endpoint from using streams to being a "normal" endpoint
3397  * without streams.
3398  *
3399  * Modify the endpoint context state, submit a configure endpoint command,
3400  * and free all endpoint rings for streams if that completes successfully.
3401  */
3402 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3403                 struct usb_host_endpoint **eps, unsigned int num_eps,
3404                 gfp_t mem_flags)
3405 {
3406         int i, ret;
3407         struct xhci_hcd *xhci;
3408         struct xhci_virt_device *vdev;
3409         struct xhci_command *command;
3410         struct xhci_input_control_ctx *ctrl_ctx;
3411         unsigned int ep_index;
3412         unsigned long flags;
3413         u32 changed_ep_bitmask;
3414
3415         xhci = hcd_to_xhci(hcd);
3416         vdev = xhci->devs[udev->slot_id];
3417
3418         /* Set up a configure endpoint command to remove the streams rings */
3419         spin_lock_irqsave(&xhci->lock, flags);
3420         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3421                         udev, eps, num_eps);
3422         if (changed_ep_bitmask == 0) {
3423                 spin_unlock_irqrestore(&xhci->lock, flags);
3424                 return -EINVAL;
3425         }
3426
3427         /* Use the xhci_command structure from the first endpoint.  We may have
3428          * allocated too many, but the driver may call xhci_free_streams() for
3429          * each endpoint it grouped into one call to xhci_alloc_streams().
3430          */
3431         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3432         command = vdev->eps[ep_index].stream_info->free_streams_command;
3433         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3434         if (!ctrl_ctx) {
3435                 spin_unlock_irqrestore(&xhci->lock, flags);
3436                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3437                                 __func__);
3438                 return -EINVAL;
3439         }
3440
3441         for (i = 0; i < num_eps; i++) {
3442                 struct xhci_ep_ctx *ep_ctx;
3443
3444                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3445                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3446                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3447                         EP_GETTING_NO_STREAMS;
3448
3449                 xhci_endpoint_copy(xhci, command->in_ctx,
3450                                 vdev->out_ctx, ep_index);
3451                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3452                                 &vdev->eps[ep_index]);
3453         }
3454         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3455                         vdev->out_ctx, ctrl_ctx,
3456                         changed_ep_bitmask, changed_ep_bitmask);
3457         spin_unlock_irqrestore(&xhci->lock, flags);
3458
3459         /* Issue and wait for the configure endpoint command,
3460          * which must succeed.
3461          */
3462         ret = xhci_configure_endpoint(xhci, udev, command,
3463                         false, true);
3464
3465         /* xHC rejected the configure endpoint command for some reason, so we
3466          * leave the streams rings intact.
3467          */
3468         if (ret < 0)
3469                 return ret;
3470
3471         spin_lock_irqsave(&xhci->lock, flags);
3472         for (i = 0; i < num_eps; i++) {
3473                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3474                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3475                 vdev->eps[ep_index].stream_info = NULL;
3476                 /* FIXME Unset maxPstreams in endpoint context and
3477                  * update deq ptr to point to normal string ring.
3478                  */
3479                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3480                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3481         }
3482         spin_unlock_irqrestore(&xhci->lock, flags);
3483
3484         return 0;
3485 }
3486
3487 /*
3488  * Deletes endpoint resources for endpoints that were active before a Reset
3489  * Device command, or a Disable Slot command.  The Reset Device command leaves
3490  * the control endpoint intact, whereas the Disable Slot command deletes it.
3491  *
3492  * Must be called with xhci->lock held.
3493  */
3494 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3495         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3496 {
3497         int i;
3498         unsigned int num_dropped_eps = 0;
3499         unsigned int drop_flags = 0;
3500
3501         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3502                 if (virt_dev->eps[i].ring) {
3503                         drop_flags |= 1 << i;
3504                         num_dropped_eps++;
3505                 }
3506         }
3507         xhci->num_active_eps -= num_dropped_eps;
3508         if (num_dropped_eps)
3509                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3510                                 "Dropped %u ep ctxs, flags = 0x%x, "
3511                                 "%u now active.",
3512                                 num_dropped_eps, drop_flags,
3513                                 xhci->num_active_eps);
3514 }
3515
3516 /*
3517  * This submits a Reset Device Command, which will set the device state to 0,
3518  * set the device address to 0, and disable all the endpoints except the default
3519  * control endpoint.  The USB core should come back and call
3520  * xhci_address_device(), and then re-set up the configuration.  If this is
3521  * called because of a usb_reset_and_verify_device(), then the old alternate
3522  * settings will be re-installed through the normal bandwidth allocation
3523  * functions.
3524  *
3525  * Wait for the Reset Device command to finish.  Remove all structures
3526  * associated with the endpoints that were disabled.  Clear the input device
3527  * structure? Reset the control endpoint 0 max packet size?
3528  *
3529  * If the virt_dev to be reset does not exist or does not match the udev,
3530  * it means the device is lost, possibly due to the xHC restore error and
3531  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3532  * re-allocate the device.
3533  */
3534 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3535                 struct usb_device *udev)
3536 {
3537         int ret, i;
3538         unsigned long flags;
3539         struct xhci_hcd *xhci;
3540         unsigned int slot_id;
3541         struct xhci_virt_device *virt_dev;
3542         struct xhci_command *reset_device_cmd;
3543         struct xhci_slot_ctx *slot_ctx;
3544         int old_active_eps = 0;
3545
3546         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3547         if (ret <= 0)
3548                 return ret;
3549         xhci = hcd_to_xhci(hcd);
3550         slot_id = udev->slot_id;
3551         virt_dev = xhci->devs[slot_id];
3552         if (!virt_dev) {
3553                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3554                                 "not exist. Re-allocate the device\n", slot_id);
3555                 ret = xhci_alloc_dev(hcd, udev);
3556                 if (ret == 1)
3557                         return 0;
3558                 else
3559                         return -EINVAL;
3560         }
3561
3562         if (virt_dev->tt_info)
3563                 old_active_eps = virt_dev->tt_info->active_eps;
3564
3565         if (virt_dev->udev != udev) {
3566                 /* If the virt_dev and the udev does not match, this virt_dev
3567                  * may belong to another udev.
3568                  * Re-allocate the device.
3569                  */
3570                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3571                                 "not match the udev. Re-allocate the device\n",
3572                                 slot_id);
3573                 ret = xhci_alloc_dev(hcd, udev);
3574                 if (ret == 1)
3575                         return 0;
3576                 else
3577                         return -EINVAL;
3578         }
3579
3580         /* If device is not setup, there is no point in resetting it */
3581         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3582         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3583                                                 SLOT_STATE_DISABLED)
3584                 return 0;
3585
3586         trace_xhci_discover_or_reset_device(slot_ctx);
3587
3588         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3589         /* Allocate the command structure that holds the struct completion.
3590          * Assume we're in process context, since the normal device reset
3591          * process has to wait for the device anyway.  Storage devices are
3592          * reset as part of error handling, so use GFP_NOIO instead of
3593          * GFP_KERNEL.
3594          */
3595         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3596         if (!reset_device_cmd) {
3597                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3598                 return -ENOMEM;
3599         }
3600
3601         /* Attempt to submit the Reset Device command to the command ring */
3602         spin_lock_irqsave(&xhci->lock, flags);
3603
3604         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3605         if (ret) {
3606                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3607                 spin_unlock_irqrestore(&xhci->lock, flags);
3608                 goto command_cleanup;
3609         }
3610         xhci_ring_cmd_db(xhci);
3611         spin_unlock_irqrestore(&xhci->lock, flags);
3612
3613         /* Wait for the Reset Device command to finish */
3614         wait_for_completion(reset_device_cmd->completion);
3615
3616         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3617          * unless we tried to reset a slot ID that wasn't enabled,
3618          * or the device wasn't in the addressed or configured state.
3619          */
3620         ret = reset_device_cmd->status;
3621         switch (ret) {
3622         case COMP_COMMAND_ABORTED:
3623         case COMP_COMMAND_RING_STOPPED:
3624                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3625                 ret = -ETIME;
3626                 goto command_cleanup;
3627         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3628         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3629                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3630                                 slot_id,
3631                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3632                 xhci_dbg(xhci, "Not freeing device rings.\n");
3633                 /* Don't treat this as an error.  May change my mind later. */
3634                 ret = 0;
3635                 goto command_cleanup;
3636         case COMP_SUCCESS:
3637                 xhci_dbg(xhci, "Successful reset device command.\n");
3638                 break;
3639         default:
3640                 if (xhci_is_vendor_info_code(xhci, ret))
3641                         break;
3642                 xhci_warn(xhci, "Unknown completion code %u for "
3643                                 "reset device command.\n", ret);
3644                 ret = -EINVAL;
3645                 goto command_cleanup;
3646         }
3647
3648         /* Free up host controller endpoint resources */
3649         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3650                 spin_lock_irqsave(&xhci->lock, flags);
3651                 /* Don't delete the default control endpoint resources */
3652                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3653                 spin_unlock_irqrestore(&xhci->lock, flags);
3654         }
3655
3656         /* Everything but endpoint 0 is disabled, so free the rings. */
3657         for (i = 1; i < 31; i++) {
3658                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3659
3660                 if (ep->ep_state & EP_HAS_STREAMS) {
3661                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3662                                         xhci_get_endpoint_address(i));
3663                         xhci_free_stream_info(xhci, ep->stream_info);
3664                         ep->stream_info = NULL;
3665                         ep->ep_state &= ~EP_HAS_STREAMS;
3666                 }
3667
3668                 if (ep->ring) {
3669                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3670                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3671                 }
3672                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3673                         xhci_drop_ep_from_interval_table(xhci,
3674                                         &virt_dev->eps[i].bw_info,
3675                                         virt_dev->bw_table,
3676                                         udev,
3677                                         &virt_dev->eps[i],
3678                                         virt_dev->tt_info);
3679                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3680         }
3681         /* If necessary, update the number of active TTs on this root port */
3682         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3683         ret = 0;
3684
3685 command_cleanup:
3686         xhci_free_command(xhci, reset_device_cmd);
3687         return ret;
3688 }
3689
3690 /*
3691  * At this point, the struct usb_device is about to go away, the device has
3692  * disconnected, and all traffic has been stopped and the endpoints have been
3693  * disabled.  Free any HC data structures associated with that device.
3694  */
3695 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3696 {
3697         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3698         struct xhci_virt_device *virt_dev;
3699         struct xhci_slot_ctx *slot_ctx;
3700         int i, ret;
3701
3702 #ifndef CONFIG_USB_DEFAULT_PERSIST
3703         /*
3704          * We called pm_runtime_get_noresume when the device was attached.
3705          * Decrement the counter here to allow controller to runtime suspend
3706          * if no devices remain.
3707          */
3708         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3709                 pm_runtime_put_noidle(hcd->self.controller);
3710 #endif
3711
3712         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3713         /* If the host is halted due to driver unload, we still need to free the
3714          * device.
3715          */
3716         if (ret <= 0 && ret != -ENODEV)
3717                 return;
3718
3719         virt_dev = xhci->devs[udev->slot_id];
3720         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3721         trace_xhci_free_dev(slot_ctx);
3722
3723         /* Stop any wayward timer functions (which may grab the lock) */
3724         for (i = 0; i < 31; i++) {
3725                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3726                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3727         }
3728         xhci_debugfs_remove_slot(xhci, udev->slot_id);
3729         virt_dev->udev = NULL;
3730         ret = xhci_disable_slot(xhci, udev->slot_id);
3731         if (ret)
3732                 xhci_free_virt_device(xhci, udev->slot_id);
3733 }
3734
3735 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3736 {
3737         struct xhci_command *command;
3738         unsigned long flags;
3739         u32 state;
3740         int ret = 0;
3741
3742         command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3743         if (!command)
3744                 return -ENOMEM;
3745
3746         spin_lock_irqsave(&xhci->lock, flags);
3747         /* Don't disable the slot if the host controller is dead. */
3748         state = readl(&xhci->op_regs->status);
3749         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3750                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3751                 spin_unlock_irqrestore(&xhci->lock, flags);
3752                 kfree(command);
3753                 return -ENODEV;
3754         }
3755
3756         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3757                                 slot_id);
3758         if (ret) {
3759                 spin_unlock_irqrestore(&xhci->lock, flags);
3760                 kfree(command);
3761                 return ret;
3762         }
3763         xhci_ring_cmd_db(xhci);
3764         spin_unlock_irqrestore(&xhci->lock, flags);
3765         return ret;
3766 }
3767
3768 /*
3769  * Checks if we have enough host controller resources for the default control
3770  * endpoint.
3771  *
3772  * Must be called with xhci->lock held.
3773  */
3774 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3775 {
3776         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3777                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3778                                 "Not enough ep ctxs: "
3779                                 "%u active, need to add 1, limit is %u.",
3780                                 xhci->num_active_eps, xhci->limit_active_eps);
3781                 return -ENOMEM;
3782         }
3783         xhci->num_active_eps += 1;
3784         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3785                         "Adding 1 ep ctx, %u now active.",
3786                         xhci->num_active_eps);
3787         return 0;
3788 }
3789
3790
3791 /*
3792  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3793  * timed out, or allocating memory failed.  Returns 1 on success.
3794  */
3795 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3796 {
3797         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3798         struct xhci_virt_device *vdev;
3799         struct xhci_slot_ctx *slot_ctx;
3800         unsigned long flags;
3801         int ret, slot_id;
3802         struct xhci_command *command;
3803
3804         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3805         if (!command)
3806                 return 0;
3807
3808         spin_lock_irqsave(&xhci->lock, flags);
3809         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3810         if (ret) {
3811                 spin_unlock_irqrestore(&xhci->lock, flags);
3812                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3813                 xhci_free_command(xhci, command);
3814                 return 0;
3815         }
3816         xhci_ring_cmd_db(xhci);
3817         spin_unlock_irqrestore(&xhci->lock, flags);
3818
3819         wait_for_completion(command->completion);
3820         slot_id = command->slot_id;
3821
3822         if (!slot_id || command->status != COMP_SUCCESS) {
3823                 xhci_err(xhci, "Error while assigning device slot ID\n");
3824                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3825                                 HCS_MAX_SLOTS(
3826                                         readl(&xhci->cap_regs->hcs_params1)));
3827                 xhci_free_command(xhci, command);
3828                 return 0;
3829         }
3830
3831         xhci_free_command(xhci, command);
3832
3833         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3834                 spin_lock_irqsave(&xhci->lock, flags);
3835                 ret = xhci_reserve_host_control_ep_resources(xhci);
3836                 if (ret) {
3837                         spin_unlock_irqrestore(&xhci->lock, flags);
3838                         xhci_warn(xhci, "Not enough host resources, "
3839                                         "active endpoint contexts = %u\n",
3840                                         xhci->num_active_eps);
3841                         goto disable_slot;
3842                 }
3843                 spin_unlock_irqrestore(&xhci->lock, flags);
3844         }
3845         /* Use GFP_NOIO, since this function can be called from
3846          * xhci_discover_or_reset_device(), which may be called as part of
3847          * mass storage driver error handling.
3848          */
3849         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3850                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3851                 goto disable_slot;
3852         }
3853         vdev = xhci->devs[slot_id];
3854         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3855         trace_xhci_alloc_dev(slot_ctx);
3856
3857         udev->slot_id = slot_id;
3858
3859         xhci_debugfs_create_slot(xhci, slot_id);
3860
3861 #ifndef CONFIG_USB_DEFAULT_PERSIST
3862         /*
3863          * If resetting upon resume, we can't put the controller into runtime
3864          * suspend if there is a device attached.
3865          */
3866         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3867                 pm_runtime_get_noresume(hcd->self.controller);
3868 #endif
3869
3870         /* Is this a LS or FS device under a HS hub? */
3871         /* Hub or peripherial? */
3872         return 1;
3873
3874 disable_slot:
3875         ret = xhci_disable_slot(xhci, udev->slot_id);
3876         if (ret)
3877                 xhci_free_virt_device(xhci, udev->slot_id);
3878
3879         return 0;
3880 }
3881
3882 /*
3883  * Issue an Address Device command and optionally send a corresponding
3884  * SetAddress request to the device.
3885  */
3886 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3887                              enum xhci_setup_dev setup)
3888 {
3889         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3890         unsigned long flags;
3891         struct xhci_virt_device *virt_dev;
3892         int ret = 0;
3893         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3894         struct xhci_slot_ctx *slot_ctx;
3895         struct xhci_input_control_ctx *ctrl_ctx;
3896         u64 temp_64;
3897         struct xhci_command *command = NULL;
3898
3899         mutex_lock(&xhci->mutex);
3900
3901         if (xhci->xhc_state) {  /* dying, removing or halted */
3902                 ret = -ESHUTDOWN;
3903                 goto out;
3904         }
3905
3906         if (!udev->slot_id) {
3907                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3908                                 "Bad Slot ID %d", udev->slot_id);
3909                 ret = -EINVAL;
3910                 goto out;
3911         }
3912
3913         virt_dev = xhci->devs[udev->slot_id];
3914
3915         if (WARN_ON(!virt_dev)) {
3916                 /*
3917                  * In plug/unplug torture test with an NEC controller,
3918                  * a zero-dereference was observed once due to virt_dev = 0.
3919                  * Print useful debug rather than crash if it is observed again!
3920                  */
3921                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3922                         udev->slot_id);
3923                 ret = -EINVAL;
3924                 goto out;
3925         }
3926         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3927         trace_xhci_setup_device_slot(slot_ctx);
3928
3929         if (setup == SETUP_CONTEXT_ONLY) {
3930                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3931                     SLOT_STATE_DEFAULT) {
3932                         xhci_dbg(xhci, "Slot already in default state\n");
3933                         goto out;
3934                 }
3935         }
3936
3937         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3938         if (!command) {
3939                 ret = -ENOMEM;
3940                 goto out;
3941         }
3942
3943         command->in_ctx = virt_dev->in_ctx;
3944
3945         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3946         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3947         if (!ctrl_ctx) {
3948                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3949                                 __func__);
3950                 ret = -EINVAL;
3951                 goto out;
3952         }
3953         /*
3954          * If this is the first Set Address since device plug-in or
3955          * virt_device realloaction after a resume with an xHCI power loss,
3956          * then set up the slot context.
3957          */
3958         if (!slot_ctx->dev_info)
3959                 xhci_setup_addressable_virt_dev(xhci, udev);
3960         /* Otherwise, update the control endpoint ring enqueue pointer. */
3961         else
3962                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3963         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3964         ctrl_ctx->drop_flags = 0;
3965
3966         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3967                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3968
3969         spin_lock_irqsave(&xhci->lock, flags);
3970         trace_xhci_setup_device(virt_dev);
3971         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3972                                         udev->slot_id, setup);
3973         if (ret) {
3974                 spin_unlock_irqrestore(&xhci->lock, flags);
3975                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3976                                 "FIXME: allocate a command ring segment");
3977                 goto out;
3978         }
3979         xhci_ring_cmd_db(xhci);
3980         spin_unlock_irqrestore(&xhci->lock, flags);
3981
3982         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3983         wait_for_completion(command->completion);
3984
3985         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3986          * the SetAddress() "recovery interval" required by USB and aborting the
3987          * command on a timeout.
3988          */
3989         switch (command->status) {
3990         case COMP_COMMAND_ABORTED:
3991         case COMP_COMMAND_RING_STOPPED:
3992                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3993                 ret = -ETIME;
3994                 break;
3995         case COMP_CONTEXT_STATE_ERROR:
3996         case COMP_SLOT_NOT_ENABLED_ERROR:
3997                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3998                          act, udev->slot_id);
3999                 ret = -EINVAL;
4000                 break;
4001         case COMP_USB_TRANSACTION_ERROR:
4002                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4003
4004                 mutex_unlock(&xhci->mutex);
4005                 ret = xhci_disable_slot(xhci, udev->slot_id);
4006                 if (!ret)
4007                         xhci_alloc_dev(hcd, udev);
4008                 kfree(command->completion);
4009                 kfree(command);
4010                 return -EPROTO;
4011         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4012                 dev_warn(&udev->dev,
4013                          "ERROR: Incompatible device for setup %s command\n", act);
4014                 ret = -ENODEV;
4015                 break;
4016         case COMP_SUCCESS:
4017                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4018                                "Successful setup %s command", act);
4019                 break;
4020         default:
4021                 xhci_err(xhci,
4022                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4023                          act, command->status);
4024                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4025                 ret = -EINVAL;
4026                 break;
4027         }
4028         if (ret)
4029                 goto out;
4030         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4031         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4032                         "Op regs DCBAA ptr = %#016llx", temp_64);
4033         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4034                 "Slot ID %d dcbaa entry @%p = %#016llx",
4035                 udev->slot_id,
4036                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4037                 (unsigned long long)
4038                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4039         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4040                         "Output Context DMA address = %#08llx",
4041                         (unsigned long long)virt_dev->out_ctx->dma);
4042         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4043                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4044         /*
4045          * USB core uses address 1 for the roothubs, so we add one to the
4046          * address given back to us by the HC.
4047          */
4048         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4049                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4050         /* Zero the input context control for later use */
4051         ctrl_ctx->add_flags = 0;
4052         ctrl_ctx->drop_flags = 0;
4053
4054         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4055                        "Internal device address = %d",
4056                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4057 out:
4058         mutex_unlock(&xhci->mutex);
4059         if (command) {
4060                 kfree(command->completion);
4061                 kfree(command);
4062         }
4063         return ret;
4064 }
4065
4066 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4067 {
4068         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4069 }
4070
4071 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4072 {
4073         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4074 }
4075
4076 /*
4077  * Transfer the port index into real index in the HW port status
4078  * registers. Caculate offset between the port's PORTSC register
4079  * and port status base. Divide the number of per port register
4080  * to get the real index. The raw port number bases 1.
4081  */
4082 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4083 {
4084         struct xhci_hub *rhub;
4085
4086         rhub = xhci_get_rhub(hcd);
4087         return rhub->ports[port1 - 1]->hw_portnum + 1;
4088 }
4089
4090 /*
4091  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4092  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4093  */
4094 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4095                         struct usb_device *udev, u16 max_exit_latency)
4096 {
4097         struct xhci_virt_device *virt_dev;
4098         struct xhci_command *command;
4099         struct xhci_input_control_ctx *ctrl_ctx;
4100         struct xhci_slot_ctx *slot_ctx;
4101         unsigned long flags;
4102         int ret;
4103
4104         spin_lock_irqsave(&xhci->lock, flags);
4105
4106         virt_dev = xhci->devs[udev->slot_id];
4107
4108         /*
4109          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4110          * xHC was re-initialized. Exit latency will be set later after
4111          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4112          */
4113
4114         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4115                 spin_unlock_irqrestore(&xhci->lock, flags);
4116                 return 0;
4117         }
4118
4119         /* Attempt to issue an Evaluate Context command to change the MEL. */
4120         command = xhci->lpm_command;
4121         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4122         if (!ctrl_ctx) {
4123                 spin_unlock_irqrestore(&xhci->lock, flags);
4124                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4125                                 __func__);
4126                 return -ENOMEM;
4127         }
4128
4129         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4130         spin_unlock_irqrestore(&xhci->lock, flags);
4131
4132         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4133         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4134         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4135         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4136         slot_ctx->dev_state = 0;
4137
4138         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4139                         "Set up evaluate context for LPM MEL change.");
4140
4141         /* Issue and wait for the evaluate context command. */
4142         ret = xhci_configure_endpoint(xhci, udev, command,
4143                         true, true);
4144
4145         if (!ret) {
4146                 spin_lock_irqsave(&xhci->lock, flags);
4147                 virt_dev->current_mel = max_exit_latency;
4148                 spin_unlock_irqrestore(&xhci->lock, flags);
4149         }
4150         return ret;
4151 }
4152
4153 #ifdef CONFIG_PM
4154
4155 /* BESL to HIRD Encoding array for USB2 LPM */
4156 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4157         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4158
4159 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4160 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4161                                         struct usb_device *udev)
4162 {
4163         int u2del, besl, besl_host;
4164         int besl_device = 0;
4165         u32 field;
4166
4167         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4168         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4169
4170         if (field & USB_BESL_SUPPORT) {
4171                 for (besl_host = 0; besl_host < 16; besl_host++) {
4172                         if (xhci_besl_encoding[besl_host] >= u2del)
4173                                 break;
4174                 }
4175                 /* Use baseline BESL value as default */
4176                 if (field & USB_BESL_BASELINE_VALID)
4177                         besl_device = USB_GET_BESL_BASELINE(field);
4178                 else if (field & USB_BESL_DEEP_VALID)
4179                         besl_device = USB_GET_BESL_DEEP(field);
4180         } else {
4181                 if (u2del <= 50)
4182                         besl_host = 0;
4183                 else
4184                         besl_host = (u2del - 51) / 75 + 1;
4185         }
4186
4187         besl = besl_host + besl_device;
4188         if (besl > 15)
4189                 besl = 15;
4190
4191         return besl;
4192 }
4193
4194 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4195 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4196 {
4197         u32 field;
4198         int l1;
4199         int besld = 0;
4200         int hirdm = 0;
4201
4202         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4203
4204         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4205         l1 = udev->l1_params.timeout / 256;
4206
4207         /* device has preferred BESLD */
4208         if (field & USB_BESL_DEEP_VALID) {
4209                 besld = USB_GET_BESL_DEEP(field);
4210                 hirdm = 1;
4211         }
4212
4213         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4214 }
4215
4216 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4217                         struct usb_device *udev, int enable)
4218 {
4219         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4220         struct xhci_port **ports;
4221         __le32 __iomem  *pm_addr, *hlpm_addr;
4222         u32             pm_val, hlpm_val, field;
4223         unsigned int    port_num;
4224         unsigned long   flags;
4225         int             hird, exit_latency;
4226         int             ret;
4227
4228         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4229                         !udev->lpm_capable)
4230                 return -EPERM;
4231
4232         if (!udev->parent || udev->parent->parent ||
4233                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4234                 return -EPERM;
4235
4236         if (udev->usb2_hw_lpm_capable != 1)
4237                 return -EPERM;
4238
4239         spin_lock_irqsave(&xhci->lock, flags);
4240
4241         ports = xhci->usb2_rhub.ports;
4242         port_num = udev->portnum - 1;
4243         pm_addr = ports[port_num]->addr + PORTPMSC;
4244         pm_val = readl(pm_addr);
4245         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4246         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4247
4248         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4249                         enable ? "enable" : "disable", port_num + 1);
4250
4251         if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4252                 /* Host supports BESL timeout instead of HIRD */
4253                 if (udev->usb2_hw_lpm_besl_capable) {
4254                         /* if device doesn't have a preferred BESL value use a
4255                          * default one which works with mixed HIRD and BESL
4256                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4257                          */
4258                         if ((field & USB_BESL_SUPPORT) &&
4259                             (field & USB_BESL_BASELINE_VALID))
4260                                 hird = USB_GET_BESL_BASELINE(field);
4261                         else
4262                                 hird = udev->l1_params.besl;
4263
4264                         exit_latency = xhci_besl_encoding[hird];
4265                         spin_unlock_irqrestore(&xhci->lock, flags);
4266
4267                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4268                          * input context for link powermanagement evaluate
4269                          * context commands. It is protected by hcd->bandwidth
4270                          * mutex and is shared by all devices. We need to set
4271                          * the max ext latency in USB 2 BESL LPM as well, so
4272                          * use the same mutex and xhci_change_max_exit_latency()
4273                          */
4274                         mutex_lock(hcd->bandwidth_mutex);
4275                         ret = xhci_change_max_exit_latency(xhci, udev,
4276                                                            exit_latency);
4277                         mutex_unlock(hcd->bandwidth_mutex);
4278
4279                         if (ret < 0)
4280                                 return ret;
4281                         spin_lock_irqsave(&xhci->lock, flags);
4282
4283                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4284                         writel(hlpm_val, hlpm_addr);
4285                         /* flush write */
4286                         readl(hlpm_addr);
4287                 } else {
4288                         hird = xhci_calculate_hird_besl(xhci, udev);
4289                 }
4290
4291                 pm_val &= ~PORT_HIRD_MASK;
4292                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4293                 writel(pm_val, pm_addr);
4294                 pm_val = readl(pm_addr);
4295                 pm_val |= PORT_HLE;
4296                 writel(pm_val, pm_addr);
4297                 /* flush write */
4298                 readl(pm_addr);
4299         } else {
4300                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4301                 writel(pm_val, pm_addr);
4302                 /* flush write */
4303                 readl(pm_addr);
4304                 if (udev->usb2_hw_lpm_besl_capable) {
4305                         spin_unlock_irqrestore(&xhci->lock, flags);
4306                         mutex_lock(hcd->bandwidth_mutex);
4307                         xhci_change_max_exit_latency(xhci, udev, 0);
4308                         mutex_unlock(hcd->bandwidth_mutex);
4309                         return 0;
4310                 }
4311         }
4312
4313         spin_unlock_irqrestore(&xhci->lock, flags);
4314         return 0;
4315 }
4316
4317 /* check if a usb2 port supports a given extened capability protocol
4318  * only USB2 ports extended protocol capability values are cached.
4319  * Return 1 if capability is supported
4320  */
4321 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4322                                            unsigned capability)
4323 {
4324         u32 port_offset, port_count;
4325         int i;
4326
4327         for (i = 0; i < xhci->num_ext_caps; i++) {
4328                 if (xhci->ext_caps[i] & capability) {
4329                         /* port offsets starts at 1 */
4330                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4331                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4332                         if (port >= port_offset &&
4333                             port < port_offset + port_count)
4334                                 return 1;
4335                 }
4336         }
4337         return 0;
4338 }
4339
4340 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4341 {
4342         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4343         int             portnum = udev->portnum - 1;
4344
4345         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4346                         !udev->lpm_capable)
4347                 return 0;
4348
4349         /* we only support lpm for non-hub device connected to root hub yet */
4350         if (!udev->parent || udev->parent->parent ||
4351                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4352                 return 0;
4353
4354         if (xhci->hw_lpm_support == 1 &&
4355                         xhci_check_usb2_port_capability(
4356                                 xhci, portnum, XHCI_HLC)) {
4357                 udev->usb2_hw_lpm_capable = 1;
4358                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4359                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4360                 if (xhci_check_usb2_port_capability(xhci, portnum,
4361                                         XHCI_BLC))
4362                         udev->usb2_hw_lpm_besl_capable = 1;
4363         }
4364
4365         return 0;
4366 }
4367
4368 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4369
4370 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4371 static unsigned long long xhci_service_interval_to_ns(
4372                 struct usb_endpoint_descriptor *desc)
4373 {
4374         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4375 }
4376
4377 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4378                 enum usb3_link_state state)
4379 {
4380         unsigned long long sel;
4381         unsigned long long pel;
4382         unsigned int max_sel_pel;
4383         char *state_name;
4384
4385         switch (state) {
4386         case USB3_LPM_U1:
4387                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4388                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4389                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4390                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4391                 state_name = "U1";
4392                 break;
4393         case USB3_LPM_U2:
4394                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4395                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4396                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4397                 state_name = "U2";
4398                 break;
4399         default:
4400                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4401                                 __func__);
4402                 return USB3_LPM_DISABLED;
4403         }
4404
4405         if (sel <= max_sel_pel && pel <= max_sel_pel)
4406                 return USB3_LPM_DEVICE_INITIATED;
4407
4408         if (sel > max_sel_pel)
4409                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4410                                 "due to long SEL %llu ms\n",
4411                                 state_name, sel);
4412         else
4413                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4414                                 "due to long PEL %llu ms\n",
4415                                 state_name, pel);
4416         return USB3_LPM_DISABLED;
4417 }
4418
4419 /* The U1 timeout should be the maximum of the following values:
4420  *  - For control endpoints, U1 system exit latency (SEL) * 3
4421  *  - For bulk endpoints, U1 SEL * 5
4422  *  - For interrupt endpoints:
4423  *    - Notification EPs, U1 SEL * 3
4424  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4425  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4426  */
4427 static unsigned long long xhci_calculate_intel_u1_timeout(
4428                 struct usb_device *udev,
4429                 struct usb_endpoint_descriptor *desc)
4430 {
4431         unsigned long long timeout_ns;
4432         int ep_type;
4433         int intr_type;
4434
4435         ep_type = usb_endpoint_type(desc);
4436         switch (ep_type) {
4437         case USB_ENDPOINT_XFER_CONTROL:
4438                 timeout_ns = udev->u1_params.sel * 3;
4439                 break;
4440         case USB_ENDPOINT_XFER_BULK:
4441                 timeout_ns = udev->u1_params.sel * 5;
4442                 break;
4443         case USB_ENDPOINT_XFER_INT:
4444                 intr_type = usb_endpoint_interrupt_type(desc);
4445                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4446                         timeout_ns = udev->u1_params.sel * 3;
4447                         break;
4448                 }
4449                 /* Otherwise the calculation is the same as isoc eps */
4450                 /* fall through */
4451         case USB_ENDPOINT_XFER_ISOC:
4452                 timeout_ns = xhci_service_interval_to_ns(desc);
4453                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4454                 if (timeout_ns < udev->u1_params.sel * 2)
4455                         timeout_ns = udev->u1_params.sel * 2;
4456                 break;
4457         default:
4458                 return 0;
4459         }
4460
4461         return timeout_ns;
4462 }
4463
4464 /* Returns the hub-encoded U1 timeout value. */
4465 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4466                 struct usb_device *udev,
4467                 struct usb_endpoint_descriptor *desc)
4468 {
4469         unsigned long long timeout_ns;
4470
4471         if (xhci->quirks & XHCI_INTEL_HOST)
4472                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4473         else
4474                 timeout_ns = udev->u1_params.sel;
4475
4476         /* The U1 timeout is encoded in 1us intervals.
4477          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4478          */
4479         if (timeout_ns == USB3_LPM_DISABLED)
4480                 timeout_ns = 1;
4481         else
4482                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4483
4484         /* If the necessary timeout value is bigger than what we can set in the
4485          * USB 3.0 hub, we have to disable hub-initiated U1.
4486          */
4487         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4488                 return timeout_ns;
4489         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4490                         "due to long timeout %llu ms\n", timeout_ns);
4491         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4492 }
4493
4494 /* The U2 timeout should be the maximum of:
4495  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4496  *  - largest bInterval of any active periodic endpoint (to avoid going
4497  *    into lower power link states between intervals).
4498  *  - the U2 Exit Latency of the device
4499  */
4500 static unsigned long long xhci_calculate_intel_u2_timeout(
4501                 struct usb_device *udev,
4502                 struct usb_endpoint_descriptor *desc)
4503 {
4504         unsigned long long timeout_ns;
4505         unsigned long long u2_del_ns;
4506
4507         timeout_ns = 10 * 1000 * 1000;
4508
4509         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4510                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4511                 timeout_ns = xhci_service_interval_to_ns(desc);
4512
4513         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4514         if (u2_del_ns > timeout_ns)
4515                 timeout_ns = u2_del_ns;
4516
4517         return timeout_ns;
4518 }
4519
4520 /* Returns the hub-encoded U2 timeout value. */
4521 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4522                 struct usb_device *udev,
4523                 struct usb_endpoint_descriptor *desc)
4524 {
4525         unsigned long long timeout_ns;
4526
4527         if (xhci->quirks & XHCI_INTEL_HOST)
4528                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4529         else
4530                 timeout_ns = udev->u2_params.sel;
4531
4532         /* The U2 timeout is encoded in 256us intervals */
4533         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4534         /* If the necessary timeout value is bigger than what we can set in the
4535          * USB 3.0 hub, we have to disable hub-initiated U2.
4536          */
4537         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4538                 return timeout_ns;
4539         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4540                         "due to long timeout %llu ms\n", timeout_ns);
4541         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4542 }
4543
4544 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4545                 struct usb_device *udev,
4546                 struct usb_endpoint_descriptor *desc,
4547                 enum usb3_link_state state,
4548                 u16 *timeout)
4549 {
4550         if (state == USB3_LPM_U1)
4551                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4552         else if (state == USB3_LPM_U2)
4553                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4554
4555         return USB3_LPM_DISABLED;
4556 }
4557
4558 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4559                 struct usb_device *udev,
4560                 struct usb_endpoint_descriptor *desc,
4561                 enum usb3_link_state state,
4562                 u16 *timeout)
4563 {
4564         u16 alt_timeout;
4565
4566         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4567                 desc, state, timeout);
4568
4569         /* If we found we can't enable hub-initiated LPM, or
4570          * the U1 or U2 exit latency was too high to allow
4571          * device-initiated LPM as well, just stop searching.
4572          */
4573         if (alt_timeout == USB3_LPM_DISABLED ||
4574                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4575                 *timeout = alt_timeout;
4576                 return -E2BIG;
4577         }
4578         if (alt_timeout > *timeout)
4579                 *timeout = alt_timeout;
4580         return 0;
4581 }
4582
4583 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4584                 struct usb_device *udev,
4585                 struct usb_host_interface *alt,
4586                 enum usb3_link_state state,
4587                 u16 *timeout)
4588 {
4589         int j;
4590
4591         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4592                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4593                                         &alt->endpoint[j].desc, state, timeout))
4594                         return -E2BIG;
4595                 continue;
4596         }
4597         return 0;
4598 }
4599
4600 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4601                 enum usb3_link_state state)
4602 {
4603         struct usb_device *parent;
4604         unsigned int num_hubs;
4605
4606         if (state == USB3_LPM_U2)
4607                 return 0;
4608
4609         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4610         for (parent = udev->parent, num_hubs = 0; parent->parent;
4611                         parent = parent->parent)
4612                 num_hubs++;
4613
4614         if (num_hubs < 2)
4615                 return 0;
4616
4617         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4618                         " below second-tier hub.\n");
4619         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4620                         "to decrease power consumption.\n");
4621         return -E2BIG;
4622 }
4623
4624 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4625                 struct usb_device *udev,
4626                 enum usb3_link_state state)
4627 {
4628         if (xhci->quirks & XHCI_INTEL_HOST)
4629                 return xhci_check_intel_tier_policy(udev, state);
4630         else
4631                 return 0;
4632 }
4633
4634 /* Returns the U1 or U2 timeout that should be enabled.
4635  * If the tier check or timeout setting functions return with a non-zero exit
4636  * code, that means the timeout value has been finalized and we shouldn't look
4637  * at any more endpoints.
4638  */
4639 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4640                         struct usb_device *udev, enum usb3_link_state state)
4641 {
4642         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4643         struct usb_host_config *config;
4644         char *state_name;
4645         int i;
4646         u16 timeout = USB3_LPM_DISABLED;
4647
4648         if (state == USB3_LPM_U1)
4649                 state_name = "U1";
4650         else if (state == USB3_LPM_U2)
4651                 state_name = "U2";
4652         else {
4653                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4654                                 state);
4655                 return timeout;
4656         }
4657
4658         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4659                 return timeout;
4660
4661         /* Gather some information about the currently installed configuration
4662          * and alternate interface settings.
4663          */
4664         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4665                         state, &timeout))
4666                 return timeout;
4667
4668         config = udev->actconfig;
4669         if (!config)
4670                 return timeout;
4671
4672         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4673                 struct usb_driver *driver;
4674                 struct usb_interface *intf = config->interface[i];
4675
4676                 if (!intf)
4677                         continue;
4678
4679                 /* Check if any currently bound drivers want hub-initiated LPM
4680                  * disabled.
4681                  */
4682                 if (intf->dev.driver) {
4683                         driver = to_usb_driver(intf->dev.driver);
4684                         if (driver && driver->disable_hub_initiated_lpm) {
4685                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4686                                                 "at request of driver %s\n",
4687                                                 state_name, driver->name);
4688                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4689                         }
4690                 }
4691
4692                 /* Not sure how this could happen... */
4693                 if (!intf->cur_altsetting)
4694                         continue;
4695
4696                 if (xhci_update_timeout_for_interface(xhci, udev,
4697                                         intf->cur_altsetting,
4698                                         state, &timeout))
4699                         return timeout;
4700         }
4701         return timeout;
4702 }
4703
4704 static int calculate_max_exit_latency(struct usb_device *udev,
4705                 enum usb3_link_state state_changed,
4706                 u16 hub_encoded_timeout)
4707 {
4708         unsigned long long u1_mel_us = 0;
4709         unsigned long long u2_mel_us = 0;
4710         unsigned long long mel_us = 0;
4711         bool disabling_u1;
4712         bool disabling_u2;
4713         bool enabling_u1;
4714         bool enabling_u2;
4715
4716         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4717                         hub_encoded_timeout == USB3_LPM_DISABLED);
4718         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4719                         hub_encoded_timeout == USB3_LPM_DISABLED);
4720
4721         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4722                         hub_encoded_timeout != USB3_LPM_DISABLED);
4723         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4724                         hub_encoded_timeout != USB3_LPM_DISABLED);
4725
4726         /* If U1 was already enabled and we're not disabling it,
4727          * or we're going to enable U1, account for the U1 max exit latency.
4728          */
4729         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4730                         enabling_u1)
4731                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4732         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4733                         enabling_u2)
4734                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4735
4736         if (u1_mel_us > u2_mel_us)
4737                 mel_us = u1_mel_us;
4738         else
4739                 mel_us = u2_mel_us;
4740         /* xHCI host controller max exit latency field is only 16 bits wide. */
4741         if (mel_us > MAX_EXIT) {
4742                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4743                                 "is too big.\n", mel_us);
4744                 return -E2BIG;
4745         }
4746         return mel_us;
4747 }
4748
4749 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4750 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4751                         struct usb_device *udev, enum usb3_link_state state)
4752 {
4753         struct xhci_hcd *xhci;
4754         u16 hub_encoded_timeout;
4755         int mel;
4756         int ret;
4757
4758         xhci = hcd_to_xhci(hcd);
4759         /* The LPM timeout values are pretty host-controller specific, so don't
4760          * enable hub-initiated timeouts unless the vendor has provided
4761          * information about their timeout algorithm.
4762          */
4763         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4764                         !xhci->devs[udev->slot_id])
4765                 return USB3_LPM_DISABLED;
4766
4767         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4768         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4769         if (mel < 0) {
4770                 /* Max Exit Latency is too big, disable LPM. */
4771                 hub_encoded_timeout = USB3_LPM_DISABLED;
4772                 mel = 0;
4773         }
4774
4775         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4776         if (ret)
4777                 return ret;
4778         return hub_encoded_timeout;
4779 }
4780
4781 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4782                         struct usb_device *udev, enum usb3_link_state state)
4783 {
4784         struct xhci_hcd *xhci;
4785         u16 mel;
4786
4787         xhci = hcd_to_xhci(hcd);
4788         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4789                         !xhci->devs[udev->slot_id])
4790                 return 0;
4791
4792         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4793         return xhci_change_max_exit_latency(xhci, udev, mel);
4794 }
4795 #else /* CONFIG_PM */
4796
4797 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4798                                 struct usb_device *udev, int enable)
4799 {
4800         return 0;
4801 }
4802
4803 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4804 {
4805         return 0;
4806 }
4807
4808 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4809                         struct usb_device *udev, enum usb3_link_state state)
4810 {
4811         return USB3_LPM_DISABLED;
4812 }
4813
4814 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4815                         struct usb_device *udev, enum usb3_link_state state)
4816 {
4817         return 0;
4818 }
4819 #endif  /* CONFIG_PM */
4820
4821 /*-------------------------------------------------------------------------*/
4822
4823 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4824  * internal data structures for the device.
4825  */
4826 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4827                         struct usb_tt *tt, gfp_t mem_flags)
4828 {
4829         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4830         struct xhci_virt_device *vdev;
4831         struct xhci_command *config_cmd;
4832         struct xhci_input_control_ctx *ctrl_ctx;
4833         struct xhci_slot_ctx *slot_ctx;
4834         unsigned long flags;
4835         unsigned think_time;
4836         int ret;
4837
4838         /* Ignore root hubs */
4839         if (!hdev->parent)
4840                 return 0;
4841
4842         vdev = xhci->devs[hdev->slot_id];
4843         if (!vdev) {
4844                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4845                 return -EINVAL;
4846         }
4847
4848         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4849         if (!config_cmd)
4850                 return -ENOMEM;
4851
4852         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4853         if (!ctrl_ctx) {
4854                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4855                                 __func__);
4856                 xhci_free_command(xhci, config_cmd);
4857                 return -ENOMEM;
4858         }
4859
4860         spin_lock_irqsave(&xhci->lock, flags);
4861         if (hdev->speed == USB_SPEED_HIGH &&
4862                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4863                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4864                 xhci_free_command(xhci, config_cmd);
4865                 spin_unlock_irqrestore(&xhci->lock, flags);
4866                 return -ENOMEM;
4867         }
4868
4869         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4870         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4871         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4872         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4873         /*
4874          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4875          * but it may be already set to 1 when setup an xHCI virtual
4876          * device, so clear it anyway.
4877          */
4878         if (tt->multi)
4879                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4880         else if (hdev->speed == USB_SPEED_FULL)
4881                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4882
4883         if (xhci->hci_version > 0x95) {
4884                 xhci_dbg(xhci, "xHCI version %x needs hub "
4885                                 "TT think time and number of ports\n",
4886                                 (unsigned int) xhci->hci_version);
4887                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4888                 /* Set TT think time - convert from ns to FS bit times.
4889                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4890                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4891                  *
4892                  * xHCI 1.0: this field shall be 0 if the device is not a
4893                  * High-spped hub.
4894                  */
4895                 think_time = tt->think_time;
4896                 if (think_time != 0)
4897                         think_time = (think_time / 666) - 1;
4898                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4899                         slot_ctx->tt_info |=
4900                                 cpu_to_le32(TT_THINK_TIME(think_time));
4901         } else {
4902                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4903                                 "TT think time or number of ports\n",
4904                                 (unsigned int) xhci->hci_version);
4905         }
4906         slot_ctx->dev_state = 0;
4907         spin_unlock_irqrestore(&xhci->lock, flags);
4908
4909         xhci_dbg(xhci, "Set up %s for hub device.\n",
4910                         (xhci->hci_version > 0x95) ?
4911                         "configure endpoint" : "evaluate context");
4912
4913         /* Issue and wait for the configure endpoint or
4914          * evaluate context command.
4915          */
4916         if (xhci->hci_version > 0x95)
4917                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4918                                 false, false);
4919         else
4920                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4921                                 true, false);
4922
4923         xhci_free_command(xhci, config_cmd);
4924         return ret;
4925 }
4926
4927 static int xhci_get_frame(struct usb_hcd *hcd)
4928 {
4929         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4930         /* EHCI mods by the periodic size.  Why? */
4931         return readl(&xhci->run_regs->microframe_index) >> 3;
4932 }
4933
4934 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4935 {
4936         struct xhci_hcd         *xhci;
4937         /*
4938          * TODO: Check with DWC3 clients for sysdev according to
4939          * quirks
4940          */
4941         struct device           *dev = hcd->self.sysdev;
4942         unsigned int            minor_rev;
4943         int                     retval;
4944
4945         /* Accept arbitrarily long scatter-gather lists */
4946         hcd->self.sg_tablesize = ~0;
4947
4948         /* support to build packet from discontinuous buffers */
4949         hcd->self.no_sg_constraint = 1;
4950
4951         /* XHCI controllers don't stop the ep queue on short packets :| */
4952         hcd->self.no_stop_on_short = 1;
4953
4954         xhci = hcd_to_xhci(hcd);
4955
4956         if (usb_hcd_is_primary_hcd(hcd)) {
4957                 xhci->main_hcd = hcd;
4958                 xhci->usb2_rhub.hcd = hcd;
4959                 /* Mark the first roothub as being USB 2.0.
4960                  * The xHCI driver will register the USB 3.0 roothub.
4961                  */
4962                 hcd->speed = HCD_USB2;
4963                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4964                 /*
4965                  * USB 2.0 roothub under xHCI has an integrated TT,
4966                  * (rate matching hub) as opposed to having an OHCI/UHCI
4967                  * companion controller.
4968                  */
4969                 hcd->has_tt = 1;
4970         } else {
4971                 /*
4972                  * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
4973                  * minor revision instead of sbrn
4974                  */
4975                 minor_rev = xhci->usb3_rhub.min_rev;
4976                 if (minor_rev) {
4977                         hcd->speed = HCD_USB31;
4978                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4979                 }
4980                 xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n",
4981                           minor_rev,
4982                           minor_rev ? "Enhanced" : "");
4983
4984                 xhci->usb3_rhub.hcd = hcd;
4985                 /* xHCI private pointer was set in xhci_pci_probe for the second
4986                  * registered roothub.
4987                  */
4988                 return 0;
4989         }
4990
4991         mutex_init(&xhci->mutex);
4992         xhci->cap_regs = hcd->regs;
4993         xhci->op_regs = hcd->regs +
4994                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4995         xhci->run_regs = hcd->regs +
4996                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4997         /* Cache read-only capability registers */
4998         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4999         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5000         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5001         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5002         xhci->hci_version = HC_VERSION(xhci->hcc_params);
5003         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5004         if (xhci->hci_version > 0x100)
5005                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5006
5007         xhci->quirks |= quirks;
5008
5009         get_quirks(dev, xhci);
5010
5011         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5012          * success event after a short transfer. This quirk will ignore such
5013          * spurious event.
5014          */
5015         if (xhci->hci_version > 0x96)
5016                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5017
5018         /* Make sure the HC is halted. */
5019         retval = xhci_halt(xhci);
5020         if (retval)
5021                 return retval;
5022
5023         xhci_zero_64b_regs(xhci);
5024
5025         xhci_dbg(xhci, "Resetting HCD\n");
5026         /* Reset the internal HC memory state and registers. */
5027         retval = xhci_reset(xhci);
5028         if (retval)
5029                 return retval;
5030         xhci_dbg(xhci, "Reset complete\n");
5031
5032         /*
5033          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5034          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5035          * address memory pointers actually. So, this driver clears the AC64
5036          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5037          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5038          */
5039         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5040                 xhci->hcc_params &= ~BIT(0);
5041
5042         /* Set dma_mask and coherent_dma_mask to 64-bits,
5043          * if xHC supports 64-bit addressing */
5044         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5045                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5046                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5047                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5048         } else {
5049                 /*
5050                  * This is to avoid error in cases where a 32-bit USB
5051                  * controller is used on a 64-bit capable system.
5052                  */
5053                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5054                 if (retval)
5055                         return retval;
5056                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5057                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5058         }
5059
5060         xhci_dbg(xhci, "Calling HCD init\n");
5061         /* Initialize HCD and host controller data structures. */
5062         retval = xhci_init(hcd);
5063         if (retval)
5064                 return retval;
5065         xhci_dbg(xhci, "Called HCD init\n");
5066
5067         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5068                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5069
5070         return 0;
5071 }
5072 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5073
5074 static const struct hc_driver xhci_hc_driver = {
5075         .description =          "xhci-hcd",
5076         .product_desc =         "xHCI Host Controller",
5077         .hcd_priv_size =        sizeof(struct xhci_hcd),
5078
5079         /*
5080          * generic hardware linkage
5081          */
5082         .irq =                  xhci_irq,
5083         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
5084
5085         /*
5086          * basic lifecycle operations
5087          */
5088         .reset =                NULL, /* set in xhci_init_driver() */
5089         .start =                xhci_run,
5090         .stop =                 xhci_stop,
5091         .shutdown =             xhci_shutdown,
5092
5093         /*
5094          * managing i/o requests and associated device resources
5095          */
5096         .urb_enqueue =          xhci_urb_enqueue,
5097         .urb_dequeue =          xhci_urb_dequeue,
5098         .alloc_dev =            xhci_alloc_dev,
5099         .free_dev =             xhci_free_dev,
5100         .alloc_streams =        xhci_alloc_streams,
5101         .free_streams =         xhci_free_streams,
5102         .add_endpoint =         xhci_add_endpoint,
5103         .drop_endpoint =        xhci_drop_endpoint,
5104         .endpoint_reset =       xhci_endpoint_reset,
5105         .check_bandwidth =      xhci_check_bandwidth,
5106         .reset_bandwidth =      xhci_reset_bandwidth,
5107         .address_device =       xhci_address_device,
5108         .enable_device =        xhci_enable_device,
5109         .update_hub_device =    xhci_update_hub_device,
5110         .reset_device =         xhci_discover_or_reset_device,
5111
5112         /*
5113          * scheduling support
5114          */
5115         .get_frame_number =     xhci_get_frame,
5116
5117         /*
5118          * root hub support
5119          */
5120         .hub_control =          xhci_hub_control,
5121         .hub_status_data =      xhci_hub_status_data,
5122         .bus_suspend =          xhci_bus_suspend,
5123         .bus_resume =           xhci_bus_resume,
5124
5125         /*
5126          * call back when device connected and addressed
5127          */
5128         .update_device =        xhci_update_device,
5129         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5130         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5131         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5132         .find_raw_port_number = xhci_find_raw_port_number,
5133 };
5134
5135 void xhci_init_driver(struct hc_driver *drv,
5136                       const struct xhci_driver_overrides *over)
5137 {
5138         BUG_ON(!over);
5139
5140         /* Copy the generic table to drv then apply the overrides */
5141         *drv = xhci_hc_driver;
5142
5143         if (over) {
5144                 drv->hcd_priv_size += over->extra_priv_size;
5145                 if (over->reset)
5146                         drv->reset = over->reset;
5147                 if (over->start)
5148                         drv->start = over->start;
5149         }
5150 }
5151 EXPORT_SYMBOL_GPL(xhci_init_driver);
5152
5153 MODULE_DESCRIPTION(DRIVER_DESC);
5154 MODULE_AUTHOR(DRIVER_AUTHOR);
5155 MODULE_LICENSE("GPL");
5156
5157 static int __init xhci_hcd_init(void)
5158 {
5159         /*
5160          * Check the compiler generated sizes of structures that must be laid
5161          * out in specific ways for hardware access.
5162          */
5163         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5164         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5165         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5166         /* xhci_device_control has eight fields, and also
5167          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5168          */
5169         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5170         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5171         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5172         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5173         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5174         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5175         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5176
5177         if (usb_disabled())
5178                 return -ENODEV;
5179
5180         xhci_debugfs_create_root();
5181
5182         return 0;
5183 }
5184
5185 /*
5186  * If an init function is provided, an exit function must also be provided
5187  * to allow module unload.
5188  */
5189 static void __exit xhci_hcd_fini(void)
5190 {
5191         xhci_debugfs_remove_root();
5192 }
5193
5194 module_init(xhci_hcd_init);
5195 module_exit(xhci_hcd_fini);