kill dentry_update_name_case()
[sfrench/cifs-2.6.git] / drivers / usb / dwc2 / hcd.c
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * hcd.c - DesignWare HS OTG Controller host-mode routines
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The names of the above-listed copyright holders may not be used
17  *    to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * ALTERNATIVELY, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any
23  * later version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37
38 /*
39  * This file contains the core HCD code, and implements the Linux hc_driver
40  * API
41  */
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/spinlock.h>
45 #include <linux/interrupt.h>
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/delay.h>
49 #include <linux/io.h>
50 #include <linux/slab.h>
51 #include <linux/usb.h>
52
53 #include <linux/usb/hcd.h>
54 #include <linux/usb/ch11.h>
55
56 #include "core.h"
57 #include "hcd.h"
58
59 static void dwc2_port_resume(struct dwc2_hsotg *hsotg);
60
61 /*
62  * =========================================================================
63  *  Host Core Layer Functions
64  * =========================================================================
65  */
66
67 /**
68  * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
69  * used in both device and host modes
70  *
71  * @hsotg: Programming view of the DWC_otg controller
72  */
73 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
74 {
75         u32 intmsk;
76
77         /* Clear any pending OTG Interrupts */
78         dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
79
80         /* Clear any pending interrupts */
81         dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
82
83         /* Enable the interrupts in the GINTMSK */
84         intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
85
86         if (!hsotg->params.host_dma)
87                 intmsk |= GINTSTS_RXFLVL;
88         if (!hsotg->params.external_id_pin_ctl)
89                 intmsk |= GINTSTS_CONIDSTSCHNG;
90
91         intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
92                   GINTSTS_SESSREQINT;
93
94         if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
95                 intmsk |= GINTSTS_LPMTRANRCVD;
96
97         dwc2_writel(intmsk, hsotg->regs + GINTMSK);
98 }
99
100 /*
101  * Initializes the FSLSPClkSel field of the HCFG register depending on the
102  * PHY type
103  */
104 static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
105 {
106         u32 hcfg, val;
107
108         if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
109              hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
110              hsotg->params.ulpi_fs_ls) ||
111             hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
112                 /* Full speed PHY */
113                 val = HCFG_FSLSPCLKSEL_48_MHZ;
114         } else {
115                 /* High speed PHY running at full speed or high speed */
116                 val = HCFG_FSLSPCLKSEL_30_60_MHZ;
117         }
118
119         dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
120         hcfg = dwc2_readl(hsotg->regs + HCFG);
121         hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
122         hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
123         dwc2_writel(hcfg, hsotg->regs + HCFG);
124 }
125
126 static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
127 {
128         u32 usbcfg, ggpio, i2cctl;
129         int retval = 0;
130
131         /*
132          * core_init() is now called on every switch so only call the
133          * following for the first time through
134          */
135         if (select_phy) {
136                 dev_dbg(hsotg->dev, "FS PHY selected\n");
137
138                 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
139                 if (!(usbcfg & GUSBCFG_PHYSEL)) {
140                         usbcfg |= GUSBCFG_PHYSEL;
141                         dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
142
143                         /* Reset after a PHY select */
144                         retval = dwc2_core_reset(hsotg, false);
145
146                         if (retval) {
147                                 dev_err(hsotg->dev,
148                                         "%s: Reset failed, aborting", __func__);
149                                 return retval;
150                         }
151                 }
152
153                 if (hsotg->params.activate_stm_fs_transceiver) {
154                         ggpio = dwc2_readl(hsotg->regs + GGPIO);
155                         if (!(ggpio & GGPIO_STM32_OTG_GCCFG_PWRDWN)) {
156                                 dev_dbg(hsotg->dev, "Activating transceiver\n");
157                                 /*
158                                  * STM32F4x9 uses the GGPIO register as general
159                                  * core configuration register.
160                                  */
161                                 ggpio |= GGPIO_STM32_OTG_GCCFG_PWRDWN;
162                                 dwc2_writel(ggpio, hsotg->regs + GGPIO);
163                         }
164                 }
165         }
166
167         /*
168          * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
169          * do this on HNP Dev/Host mode switches (done in dev_init and
170          * host_init).
171          */
172         if (dwc2_is_host_mode(hsotg))
173                 dwc2_init_fs_ls_pclk_sel(hsotg);
174
175         if (hsotg->params.i2c_enable) {
176                 dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
177
178                 /* Program GUSBCFG.OtgUtmiFsSel to I2C */
179                 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
180                 usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
181                 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
182
183                 /* Program GI2CCTL.I2CEn */
184                 i2cctl = dwc2_readl(hsotg->regs + GI2CCTL);
185                 i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
186                 i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
187                 i2cctl &= ~GI2CCTL_I2CEN;
188                 dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
189                 i2cctl |= GI2CCTL_I2CEN;
190                 dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
191         }
192
193         return retval;
194 }
195
196 static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
197 {
198         u32 usbcfg, usbcfg_old;
199         int retval = 0;
200
201         if (!select_phy)
202                 return 0;
203
204         usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
205         usbcfg_old = usbcfg;
206
207         /*
208          * HS PHY parameters. These parameters are preserved during soft reset
209          * so only program the first time. Do a soft reset immediately after
210          * setting phyif.
211          */
212         switch (hsotg->params.phy_type) {
213         case DWC2_PHY_TYPE_PARAM_ULPI:
214                 /* ULPI interface */
215                 dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
216                 usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
217                 usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
218                 if (hsotg->params.phy_ulpi_ddr)
219                         usbcfg |= GUSBCFG_DDRSEL;
220
221                 /* Set external VBUS indicator as needed. */
222                 if (hsotg->params.oc_disable)
223                         usbcfg |= (GUSBCFG_ULPI_INT_VBUS_IND |
224                                    GUSBCFG_INDICATORPASSTHROUGH);
225                 break;
226         case DWC2_PHY_TYPE_PARAM_UTMI:
227                 /* UTMI+ interface */
228                 dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
229                 usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
230                 if (hsotg->params.phy_utmi_width == 16)
231                         usbcfg |= GUSBCFG_PHYIF16;
232                 break;
233         default:
234                 dev_err(hsotg->dev, "FS PHY selected at HS!\n");
235                 break;
236         }
237
238         if (usbcfg != usbcfg_old) {
239                 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
240
241                 /* Reset after setting the PHY parameters */
242                 retval = dwc2_core_reset(hsotg, false);
243                 if (retval) {
244                         dev_err(hsotg->dev,
245                                 "%s: Reset failed, aborting", __func__);
246                         return retval;
247                 }
248         }
249
250         return retval;
251 }
252
253 static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
254 {
255         u32 usbcfg;
256         int retval = 0;
257
258         if ((hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
259              hsotg->params.speed == DWC2_SPEED_PARAM_LOW) &&
260             hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
261                 /* If FS/LS mode with FS/LS PHY */
262                 retval = dwc2_fs_phy_init(hsotg, select_phy);
263                 if (retval)
264                         return retval;
265         } else {
266                 /* High speed PHY */
267                 retval = dwc2_hs_phy_init(hsotg, select_phy);
268                 if (retval)
269                         return retval;
270         }
271
272         if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
273             hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
274             hsotg->params.ulpi_fs_ls) {
275                 dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
276                 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
277                 usbcfg |= GUSBCFG_ULPI_FS_LS;
278                 usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
279                 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
280         } else {
281                 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
282                 usbcfg &= ~GUSBCFG_ULPI_FS_LS;
283                 usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
284                 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
285         }
286
287         return retval;
288 }
289
290 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
291 {
292         u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
293
294         switch (hsotg->hw_params.arch) {
295         case GHWCFG2_EXT_DMA_ARCH:
296                 dev_err(hsotg->dev, "External DMA Mode not supported\n");
297                 return -EINVAL;
298
299         case GHWCFG2_INT_DMA_ARCH:
300                 dev_dbg(hsotg->dev, "Internal DMA Mode\n");
301                 if (hsotg->params.ahbcfg != -1) {
302                         ahbcfg &= GAHBCFG_CTRL_MASK;
303                         ahbcfg |= hsotg->params.ahbcfg &
304                                   ~GAHBCFG_CTRL_MASK;
305                 }
306                 break;
307
308         case GHWCFG2_SLAVE_ONLY_ARCH:
309         default:
310                 dev_dbg(hsotg->dev, "Slave Only Mode\n");
311                 break;
312         }
313
314         if (hsotg->params.host_dma)
315                 ahbcfg |= GAHBCFG_DMA_EN;
316         else
317                 hsotg->params.dma_desc_enable = false;
318
319         dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
320
321         return 0;
322 }
323
324 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
325 {
326         u32 usbcfg;
327
328         usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
329         usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
330
331         switch (hsotg->hw_params.op_mode) {
332         case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
333                 if (hsotg->params.otg_cap ==
334                                 DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
335                         usbcfg |= GUSBCFG_HNPCAP;
336                 if (hsotg->params.otg_cap !=
337                                 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
338                         usbcfg |= GUSBCFG_SRPCAP;
339                 break;
340
341         case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
342         case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
343         case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
344                 if (hsotg->params.otg_cap !=
345                                 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
346                         usbcfg |= GUSBCFG_SRPCAP;
347                 break;
348
349         case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
350         case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
351         case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
352         default:
353                 break;
354         }
355
356         dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
357 }
358
359 static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
360 {
361         int ret;
362
363         hsotg->vbus_supply = devm_regulator_get_optional(hsotg->dev, "vbus");
364         if (IS_ERR(hsotg->vbus_supply)) {
365                 ret = PTR_ERR(hsotg->vbus_supply);
366                 hsotg->vbus_supply = NULL;
367                 return ret == -ENODEV ? 0 : ret;
368         }
369
370         return regulator_enable(hsotg->vbus_supply);
371 }
372
373 static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
374 {
375         if (hsotg->vbus_supply)
376                 return regulator_disable(hsotg->vbus_supply);
377
378         return 0;
379 }
380
381 /**
382  * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
383  *
384  * @hsotg: Programming view of DWC_otg controller
385  */
386 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
387 {
388         u32 intmsk;
389
390         dev_dbg(hsotg->dev, "%s()\n", __func__);
391
392         /* Disable all interrupts */
393         dwc2_writel(0, hsotg->regs + GINTMSK);
394         dwc2_writel(0, hsotg->regs + HAINTMSK);
395
396         /* Enable the common interrupts */
397         dwc2_enable_common_interrupts(hsotg);
398
399         /* Enable host mode interrupts without disturbing common interrupts */
400         intmsk = dwc2_readl(hsotg->regs + GINTMSK);
401         intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
402         dwc2_writel(intmsk, hsotg->regs + GINTMSK);
403 }
404
405 /**
406  * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
407  *
408  * @hsotg: Programming view of DWC_otg controller
409  */
410 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
411 {
412         u32 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
413
414         /* Disable host mode interrupts without disturbing common interrupts */
415         intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
416                     GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
417         dwc2_writel(intmsk, hsotg->regs + GINTMSK);
418 }
419
420 /*
421  * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
422  * For system that have a total fifo depth that is smaller than the default
423  * RX + TX fifo size.
424  *
425  * @hsotg: Programming view of DWC_otg controller
426  */
427 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
428 {
429         struct dwc2_core_params *params = &hsotg->params;
430         struct dwc2_hw_params *hw = &hsotg->hw_params;
431         u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
432
433         total_fifo_size = hw->total_fifo_size;
434         rxfsiz = params->host_rx_fifo_size;
435         nptxfsiz = params->host_nperio_tx_fifo_size;
436         ptxfsiz = params->host_perio_tx_fifo_size;
437
438         /*
439          * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
440          * allocation with support for high bandwidth endpoints. Synopsys
441          * defines MPS(Max Packet size) for a periodic EP=1024, and for
442          * non-periodic as 512.
443          */
444         if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
445                 /*
446                  * For Buffer DMA mode/Scatter Gather DMA mode
447                  * 2 * ((Largest Packet size / 4) + 1 + 1) + n
448                  * with n = number of host channel.
449                  * 2 * ((1024/4) + 2) = 516
450                  */
451                 rxfsiz = 516 + hw->host_channels;
452
453                 /*
454                  * min non-periodic tx fifo depth
455                  * 2 * (largest non-periodic USB packet used / 4)
456                  * 2 * (512/4) = 256
457                  */
458                 nptxfsiz = 256;
459
460                 /*
461                  * min periodic tx fifo depth
462                  * (largest packet size*MC)/4
463                  * (1024 * 3)/4 = 768
464                  */
465                 ptxfsiz = 768;
466
467                 params->host_rx_fifo_size = rxfsiz;
468                 params->host_nperio_tx_fifo_size = nptxfsiz;
469                 params->host_perio_tx_fifo_size = ptxfsiz;
470         }
471
472         /*
473          * If the summation of RX, NPTX and PTX fifo sizes is still
474          * bigger than the total_fifo_size, then we have a problem.
475          *
476          * We won't be able to allocate as many endpoints. Right now,
477          * we're just printing an error message, but ideally this FIFO
478          * allocation algorithm would be improved in the future.
479          *
480          * FIXME improve this FIFO allocation algorithm.
481          */
482         if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
483                 dev_err(hsotg->dev, "invalid fifo sizes\n");
484 }
485
486 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
487 {
488         struct dwc2_core_params *params = &hsotg->params;
489         u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
490
491         if (!params->enable_dynamic_fifo)
492                 return;
493
494         dwc2_calculate_dynamic_fifo(hsotg);
495
496         /* Rx FIFO */
497         grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ);
498         dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
499         grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
500         grxfsiz |= params->host_rx_fifo_size <<
501                    GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
502         dwc2_writel(grxfsiz, hsotg->regs + GRXFSIZ);
503         dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
504                 dwc2_readl(hsotg->regs + GRXFSIZ));
505
506         /* Non-periodic Tx FIFO */
507         dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
508                 dwc2_readl(hsotg->regs + GNPTXFSIZ));
509         nptxfsiz = params->host_nperio_tx_fifo_size <<
510                    FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
511         nptxfsiz |= params->host_rx_fifo_size <<
512                     FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
513         dwc2_writel(nptxfsiz, hsotg->regs + GNPTXFSIZ);
514         dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
515                 dwc2_readl(hsotg->regs + GNPTXFSIZ));
516
517         /* Periodic Tx FIFO */
518         dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
519                 dwc2_readl(hsotg->regs + HPTXFSIZ));
520         hptxfsiz = params->host_perio_tx_fifo_size <<
521                    FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
522         hptxfsiz |= (params->host_rx_fifo_size +
523                      params->host_nperio_tx_fifo_size) <<
524                     FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
525         dwc2_writel(hptxfsiz, hsotg->regs + HPTXFSIZ);
526         dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
527                 dwc2_readl(hsotg->regs + HPTXFSIZ));
528
529         if (hsotg->params.en_multiple_tx_fifo &&
530             hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
531                 /*
532                  * This feature was implemented in 2.91a version
533                  * Global DFIFOCFG calculation for Host mode -
534                  * include RxFIFO, NPTXFIFO and HPTXFIFO
535                  */
536                 dfifocfg = dwc2_readl(hsotg->regs + GDFIFOCFG);
537                 dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
538                 dfifocfg |= (params->host_rx_fifo_size +
539                              params->host_nperio_tx_fifo_size +
540                              params->host_perio_tx_fifo_size) <<
541                             GDFIFOCFG_EPINFOBASE_SHIFT &
542                             GDFIFOCFG_EPINFOBASE_MASK;
543                 dwc2_writel(dfifocfg, hsotg->regs + GDFIFOCFG);
544         }
545 }
546
547 /**
548  * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
549  * the HFIR register according to PHY type and speed
550  *
551  * @hsotg: Programming view of DWC_otg controller
552  *
553  * NOTE: The caller can modify the value of the HFIR register only after the
554  * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
555  * has been set
556  */
557 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
558 {
559         u32 usbcfg;
560         u32 hprt0;
561         int clock = 60; /* default value */
562
563         usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
564         hprt0 = dwc2_readl(hsotg->regs + HPRT0);
565
566         if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
567             !(usbcfg & GUSBCFG_PHYIF16))
568                 clock = 60;
569         if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
570             GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
571                 clock = 48;
572         if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
573             !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
574                 clock = 30;
575         if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
576             !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
577                 clock = 60;
578         if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
579             !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
580                 clock = 48;
581         if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
582             hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
583                 clock = 48;
584         if ((usbcfg & GUSBCFG_PHYSEL) &&
585             hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
586                 clock = 48;
587
588         if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
589                 /* High speed case */
590                 return 125 * clock - 1;
591
592         /* FS/LS case */
593         return 1000 * clock - 1;
594 }
595
596 /**
597  * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
598  * buffer
599  *
600  * @hsotg: Programming view of DWC_otg controller
601  * @dest:    Destination buffer for the packet
602  * @bytes:   Number of bytes to copy to the destination
603  */
604 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
605 {
606         u32 __iomem *fifo = hsotg->regs + HCFIFO(0);
607         u32 *data_buf = (u32 *)dest;
608         int word_count = (bytes + 3) / 4;
609         int i;
610
611         /*
612          * Todo: Account for the case where dest is not dword aligned. This
613          * requires reading data from the FIFO into a u32 temp buffer, then
614          * moving it into the data buffer.
615          */
616
617         dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
618
619         for (i = 0; i < word_count; i++, data_buf++)
620                 *data_buf = dwc2_readl(fifo);
621 }
622
623 /**
624  * dwc2_dump_channel_info() - Prints the state of a host channel
625  *
626  * @hsotg: Programming view of DWC_otg controller
627  * @chan:  Pointer to the channel to dump
628  *
629  * Must be called with interrupt disabled and spinlock held
630  *
631  * NOTE: This function will be removed once the peripheral controller code
632  * is integrated and the driver is stable
633  */
634 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
635                                    struct dwc2_host_chan *chan)
636 {
637 #ifdef VERBOSE_DEBUG
638         int num_channels = hsotg->params.host_channels;
639         struct dwc2_qh *qh;
640         u32 hcchar;
641         u32 hcsplt;
642         u32 hctsiz;
643         u32 hc_dma;
644         int i;
645
646         if (!chan)
647                 return;
648
649         hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
650         hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
651         hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(chan->hc_num));
652         hc_dma = dwc2_readl(hsotg->regs + HCDMA(chan->hc_num));
653
654         dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
655         dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
656                 hcchar, hcsplt);
657         dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
658                 hctsiz, hc_dma);
659         dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
660                 chan->dev_addr, chan->ep_num, chan->ep_is_in);
661         dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
662         dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
663         dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
664         dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
665         dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
666         dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
667         dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
668                 (unsigned long)chan->xfer_dma);
669         dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
670         dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
671         dev_dbg(hsotg->dev, "  NP inactive sched:\n");
672         list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
673                             qh_list_entry)
674                 dev_dbg(hsotg->dev, "    %p\n", qh);
675         dev_dbg(hsotg->dev, "  NP waiting sched:\n");
676         list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
677                             qh_list_entry)
678                 dev_dbg(hsotg->dev, "    %p\n", qh);
679         dev_dbg(hsotg->dev, "  NP active sched:\n");
680         list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
681                             qh_list_entry)
682                 dev_dbg(hsotg->dev, "    %p\n", qh);
683         dev_dbg(hsotg->dev, "  Channels:\n");
684         for (i = 0; i < num_channels; i++) {
685                 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
686
687                 dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
688         }
689 #endif /* VERBOSE_DEBUG */
690 }
691
692 static int _dwc2_hcd_start(struct usb_hcd *hcd);
693
694 static void dwc2_host_start(struct dwc2_hsotg *hsotg)
695 {
696         struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
697
698         hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
699         _dwc2_hcd_start(hcd);
700 }
701
702 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
703 {
704         struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
705
706         hcd->self.is_b_host = 0;
707 }
708
709 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
710                                int *hub_addr, int *hub_port)
711 {
712         struct urb *urb = context;
713
714         if (urb->dev->tt)
715                 *hub_addr = urb->dev->tt->hub->devnum;
716         else
717                 *hub_addr = 0;
718         *hub_port = urb->dev->ttport;
719 }
720
721 /*
722  * =========================================================================
723  *  Low Level Host Channel Access Functions
724  * =========================================================================
725  */
726
727 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
728                                       struct dwc2_host_chan *chan)
729 {
730         u32 hcintmsk = HCINTMSK_CHHLTD;
731
732         switch (chan->ep_type) {
733         case USB_ENDPOINT_XFER_CONTROL:
734         case USB_ENDPOINT_XFER_BULK:
735                 dev_vdbg(hsotg->dev, "control/bulk\n");
736                 hcintmsk |= HCINTMSK_XFERCOMPL;
737                 hcintmsk |= HCINTMSK_STALL;
738                 hcintmsk |= HCINTMSK_XACTERR;
739                 hcintmsk |= HCINTMSK_DATATGLERR;
740                 if (chan->ep_is_in) {
741                         hcintmsk |= HCINTMSK_BBLERR;
742                 } else {
743                         hcintmsk |= HCINTMSK_NAK;
744                         hcintmsk |= HCINTMSK_NYET;
745                         if (chan->do_ping)
746                                 hcintmsk |= HCINTMSK_ACK;
747                 }
748
749                 if (chan->do_split) {
750                         hcintmsk |= HCINTMSK_NAK;
751                         if (chan->complete_split)
752                                 hcintmsk |= HCINTMSK_NYET;
753                         else
754                                 hcintmsk |= HCINTMSK_ACK;
755                 }
756
757                 if (chan->error_state)
758                         hcintmsk |= HCINTMSK_ACK;
759                 break;
760
761         case USB_ENDPOINT_XFER_INT:
762                 if (dbg_perio())
763                         dev_vdbg(hsotg->dev, "intr\n");
764                 hcintmsk |= HCINTMSK_XFERCOMPL;
765                 hcintmsk |= HCINTMSK_NAK;
766                 hcintmsk |= HCINTMSK_STALL;
767                 hcintmsk |= HCINTMSK_XACTERR;
768                 hcintmsk |= HCINTMSK_DATATGLERR;
769                 hcintmsk |= HCINTMSK_FRMOVRUN;
770
771                 if (chan->ep_is_in)
772                         hcintmsk |= HCINTMSK_BBLERR;
773                 if (chan->error_state)
774                         hcintmsk |= HCINTMSK_ACK;
775                 if (chan->do_split) {
776                         if (chan->complete_split)
777                                 hcintmsk |= HCINTMSK_NYET;
778                         else
779                                 hcintmsk |= HCINTMSK_ACK;
780                 }
781                 break;
782
783         case USB_ENDPOINT_XFER_ISOC:
784                 if (dbg_perio())
785                         dev_vdbg(hsotg->dev, "isoc\n");
786                 hcintmsk |= HCINTMSK_XFERCOMPL;
787                 hcintmsk |= HCINTMSK_FRMOVRUN;
788                 hcintmsk |= HCINTMSK_ACK;
789
790                 if (chan->ep_is_in) {
791                         hcintmsk |= HCINTMSK_XACTERR;
792                         hcintmsk |= HCINTMSK_BBLERR;
793                 }
794                 break;
795         default:
796                 dev_err(hsotg->dev, "## Unknown EP type ##\n");
797                 break;
798         }
799
800         dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
801         if (dbg_hc(chan))
802                 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
803 }
804
805 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
806                                     struct dwc2_host_chan *chan)
807 {
808         u32 hcintmsk = HCINTMSK_CHHLTD;
809
810         /*
811          * For Descriptor DMA mode core halts the channel on AHB error.
812          * Interrupt is not required.
813          */
814         if (!hsotg->params.dma_desc_enable) {
815                 if (dbg_hc(chan))
816                         dev_vdbg(hsotg->dev, "desc DMA disabled\n");
817                 hcintmsk |= HCINTMSK_AHBERR;
818         } else {
819                 if (dbg_hc(chan))
820                         dev_vdbg(hsotg->dev, "desc DMA enabled\n");
821                 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
822                         hcintmsk |= HCINTMSK_XFERCOMPL;
823         }
824
825         if (chan->error_state && !chan->do_split &&
826             chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
827                 if (dbg_hc(chan))
828                         dev_vdbg(hsotg->dev, "setting ACK\n");
829                 hcintmsk |= HCINTMSK_ACK;
830                 if (chan->ep_is_in) {
831                         hcintmsk |= HCINTMSK_DATATGLERR;
832                         if (chan->ep_type != USB_ENDPOINT_XFER_INT)
833                                 hcintmsk |= HCINTMSK_NAK;
834                 }
835         }
836
837         dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
838         if (dbg_hc(chan))
839                 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
840 }
841
842 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
843                                 struct dwc2_host_chan *chan)
844 {
845         u32 intmsk;
846
847         if (hsotg->params.host_dma) {
848                 if (dbg_hc(chan))
849                         dev_vdbg(hsotg->dev, "DMA enabled\n");
850                 dwc2_hc_enable_dma_ints(hsotg, chan);
851         } else {
852                 if (dbg_hc(chan))
853                         dev_vdbg(hsotg->dev, "DMA disabled\n");
854                 dwc2_hc_enable_slave_ints(hsotg, chan);
855         }
856
857         /* Enable the top level host channel interrupt */
858         intmsk = dwc2_readl(hsotg->regs + HAINTMSK);
859         intmsk |= 1 << chan->hc_num;
860         dwc2_writel(intmsk, hsotg->regs + HAINTMSK);
861         if (dbg_hc(chan))
862                 dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
863
864         /* Make sure host channel interrupts are enabled */
865         intmsk = dwc2_readl(hsotg->regs + GINTMSK);
866         intmsk |= GINTSTS_HCHINT;
867         dwc2_writel(intmsk, hsotg->regs + GINTMSK);
868         if (dbg_hc(chan))
869                 dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
870 }
871
872 /**
873  * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
874  * a specific endpoint
875  *
876  * @hsotg: Programming view of DWC_otg controller
877  * @chan:  Information needed to initialize the host channel
878  *
879  * The HCCHARn register is set up with the characteristics specified in chan.
880  * Host channel interrupts that may need to be serviced while this transfer is
881  * in progress are enabled.
882  */
883 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
884 {
885         u8 hc_num = chan->hc_num;
886         u32 hcintmsk;
887         u32 hcchar;
888         u32 hcsplt = 0;
889
890         if (dbg_hc(chan))
891                 dev_vdbg(hsotg->dev, "%s()\n", __func__);
892
893         /* Clear old interrupt conditions for this host channel */
894         hcintmsk = 0xffffffff;
895         hcintmsk &= ~HCINTMSK_RESERVED14_31;
896         dwc2_writel(hcintmsk, hsotg->regs + HCINT(hc_num));
897
898         /* Enable channel interrupts required for this transfer */
899         dwc2_hc_enable_ints(hsotg, chan);
900
901         /*
902          * Program the HCCHARn register with the endpoint characteristics for
903          * the current transfer
904          */
905         hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
906         hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
907         if (chan->ep_is_in)
908                 hcchar |= HCCHAR_EPDIR;
909         if (chan->speed == USB_SPEED_LOW)
910                 hcchar |= HCCHAR_LSPDDEV;
911         hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
912         hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
913         dwc2_writel(hcchar, hsotg->regs + HCCHAR(hc_num));
914         if (dbg_hc(chan)) {
915                 dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
916                          hc_num, hcchar);
917
918                 dev_vdbg(hsotg->dev, "%s: Channel %d\n",
919                          __func__, hc_num);
920                 dev_vdbg(hsotg->dev, "   Dev Addr: %d\n",
921                          chan->dev_addr);
922                 dev_vdbg(hsotg->dev, "   Ep Num: %d\n",
923                          chan->ep_num);
924                 dev_vdbg(hsotg->dev, "   Is In: %d\n",
925                          chan->ep_is_in);
926                 dev_vdbg(hsotg->dev, "   Is Low Speed: %d\n",
927                          chan->speed == USB_SPEED_LOW);
928                 dev_vdbg(hsotg->dev, "   Ep Type: %d\n",
929                          chan->ep_type);
930                 dev_vdbg(hsotg->dev, "   Max Pkt: %d\n",
931                          chan->max_packet);
932         }
933
934         /* Program the HCSPLT register for SPLITs */
935         if (chan->do_split) {
936                 if (dbg_hc(chan))
937                         dev_vdbg(hsotg->dev,
938                                  "Programming HC %d with split --> %s\n",
939                                  hc_num,
940                                  chan->complete_split ? "CSPLIT" : "SSPLIT");
941                 if (chan->complete_split)
942                         hcsplt |= HCSPLT_COMPSPLT;
943                 hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
944                           HCSPLT_XACTPOS_MASK;
945                 hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
946                           HCSPLT_HUBADDR_MASK;
947                 hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
948                           HCSPLT_PRTADDR_MASK;
949                 if (dbg_hc(chan)) {
950                         dev_vdbg(hsotg->dev, "    comp split %d\n",
951                                  chan->complete_split);
952                         dev_vdbg(hsotg->dev, "    xact pos %d\n",
953                                  chan->xact_pos);
954                         dev_vdbg(hsotg->dev, "    hub addr %d\n",
955                                  chan->hub_addr);
956                         dev_vdbg(hsotg->dev, "    hub port %d\n",
957                                  chan->hub_port);
958                         dev_vdbg(hsotg->dev, "    is_in %d\n",
959                                  chan->ep_is_in);
960                         dev_vdbg(hsotg->dev, "    Max Pkt %d\n",
961                                  chan->max_packet);
962                         dev_vdbg(hsotg->dev, "    xferlen %d\n",
963                                  chan->xfer_len);
964                 }
965         }
966
967         dwc2_writel(hcsplt, hsotg->regs + HCSPLT(hc_num));
968 }
969
970 /**
971  * dwc2_hc_halt() - Attempts to halt a host channel
972  *
973  * @hsotg:       Controller register interface
974  * @chan:        Host channel to halt
975  * @halt_status: Reason for halting the channel
976  *
977  * This function should only be called in Slave mode or to abort a transfer in
978  * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
979  * controller halts the channel when the transfer is complete or a condition
980  * occurs that requires application intervention.
981  *
982  * In slave mode, checks for a free request queue entry, then sets the Channel
983  * Enable and Channel Disable bits of the Host Channel Characteristics
984  * register of the specified channel to intiate the halt. If there is no free
985  * request queue entry, sets only the Channel Disable bit of the HCCHARn
986  * register to flush requests for this channel. In the latter case, sets a
987  * flag to indicate that the host channel needs to be halted when a request
988  * queue slot is open.
989  *
990  * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
991  * HCCHARn register. The controller ensures there is space in the request
992  * queue before submitting the halt request.
993  *
994  * Some time may elapse before the core flushes any posted requests for this
995  * host channel and halts. The Channel Halted interrupt handler completes the
996  * deactivation of the host channel.
997  */
998 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
999                   enum dwc2_halt_status halt_status)
1000 {
1001         u32 nptxsts, hptxsts, hcchar;
1002
1003         if (dbg_hc(chan))
1004                 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1005
1006         /*
1007          * In buffer DMA or external DMA mode channel can't be halted
1008          * for non-split periodic channels. At the end of the next
1009          * uframe/frame (in the worst case), the core generates a channel
1010          * halted and disables the channel automatically.
1011          */
1012         if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
1013             hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
1014                 if (!chan->do_split &&
1015                     (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
1016                      chan->ep_type == USB_ENDPOINT_XFER_INT)) {
1017                         dev_err(hsotg->dev, "%s() Channel can't be halted\n",
1018                                 __func__);
1019                         return;
1020                 }
1021         }
1022
1023         if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
1024                 dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
1025
1026         if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
1027             halt_status == DWC2_HC_XFER_AHB_ERR) {
1028                 /*
1029                  * Disable all channel interrupts except Ch Halted. The QTD
1030                  * and QH state associated with this transfer has been cleared
1031                  * (in the case of URB_DEQUEUE), so the channel needs to be
1032                  * shut down carefully to prevent crashes.
1033                  */
1034                 u32 hcintmsk = HCINTMSK_CHHLTD;
1035
1036                 dev_vdbg(hsotg->dev, "dequeue/error\n");
1037                 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
1038
1039                 /*
1040                  * Make sure no other interrupts besides halt are currently
1041                  * pending. Handling another interrupt could cause a crash due
1042                  * to the QTD and QH state.
1043                  */
1044                 dwc2_writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1045
1046                 /*
1047                  * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
1048                  * even if the channel was already halted for some other
1049                  * reason
1050                  */
1051                 chan->halt_status = halt_status;
1052
1053                 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1054                 if (!(hcchar & HCCHAR_CHENA)) {
1055                         /*
1056                          * The channel is either already halted or it hasn't
1057                          * started yet. In DMA mode, the transfer may halt if
1058                          * it finishes normally or a condition occurs that
1059                          * requires driver intervention. Don't want to halt
1060                          * the channel again. In either Slave or DMA mode,
1061                          * it's possible that the transfer has been assigned
1062                          * to a channel, but not started yet when an URB is
1063                          * dequeued. Don't want to halt a channel that hasn't
1064                          * started yet.
1065                          */
1066                         return;
1067                 }
1068         }
1069         if (chan->halt_pending) {
1070                 /*
1071                  * A halt has already been issued for this channel. This might
1072                  * happen when a transfer is aborted by a higher level in
1073                  * the stack.
1074                  */
1075                 dev_vdbg(hsotg->dev,
1076                          "*** %s: Channel %d, chan->halt_pending already set ***\n",
1077                          __func__, chan->hc_num);
1078                 return;
1079         }
1080
1081         hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1082
1083         /* No need to set the bit in DDMA for disabling the channel */
1084         /* TODO check it everywhere channel is disabled */
1085         if (!hsotg->params.dma_desc_enable) {
1086                 if (dbg_hc(chan))
1087                         dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1088                 hcchar |= HCCHAR_CHENA;
1089         } else {
1090                 if (dbg_hc(chan))
1091                         dev_dbg(hsotg->dev, "desc DMA enabled\n");
1092         }
1093         hcchar |= HCCHAR_CHDIS;
1094
1095         if (!hsotg->params.host_dma) {
1096                 if (dbg_hc(chan))
1097                         dev_vdbg(hsotg->dev, "DMA not enabled\n");
1098                 hcchar |= HCCHAR_CHENA;
1099
1100                 /* Check for space in the request queue to issue the halt */
1101                 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
1102                     chan->ep_type == USB_ENDPOINT_XFER_BULK) {
1103                         dev_vdbg(hsotg->dev, "control/bulk\n");
1104                         nptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
1105                         if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
1106                                 dev_vdbg(hsotg->dev, "Disabling channel\n");
1107                                 hcchar &= ~HCCHAR_CHENA;
1108                         }
1109                 } else {
1110                         if (dbg_perio())
1111                                 dev_vdbg(hsotg->dev, "isoc/intr\n");
1112                         hptxsts = dwc2_readl(hsotg->regs + HPTXSTS);
1113                         if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
1114                             hsotg->queuing_high_bandwidth) {
1115                                 if (dbg_perio())
1116                                         dev_vdbg(hsotg->dev, "Disabling channel\n");
1117                                 hcchar &= ~HCCHAR_CHENA;
1118                         }
1119                 }
1120         } else {
1121                 if (dbg_hc(chan))
1122                         dev_vdbg(hsotg->dev, "DMA enabled\n");
1123         }
1124
1125         dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1126         chan->halt_status = halt_status;
1127
1128         if (hcchar & HCCHAR_CHENA) {
1129                 if (dbg_hc(chan))
1130                         dev_vdbg(hsotg->dev, "Channel enabled\n");
1131                 chan->halt_pending = 1;
1132                 chan->halt_on_queue = 0;
1133         } else {
1134                 if (dbg_hc(chan))
1135                         dev_vdbg(hsotg->dev, "Channel disabled\n");
1136                 chan->halt_on_queue = 1;
1137         }
1138
1139         if (dbg_hc(chan)) {
1140                 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1141                          chan->hc_num);
1142                 dev_vdbg(hsotg->dev, "   hcchar: 0x%08x\n",
1143                          hcchar);
1144                 dev_vdbg(hsotg->dev, "   halt_pending: %d\n",
1145                          chan->halt_pending);
1146                 dev_vdbg(hsotg->dev, "   halt_on_queue: %d\n",
1147                          chan->halt_on_queue);
1148                 dev_vdbg(hsotg->dev, "   halt_status: %d\n",
1149                          chan->halt_status);
1150         }
1151 }
1152
1153 /**
1154  * dwc2_hc_cleanup() - Clears the transfer state for a host channel
1155  *
1156  * @hsotg: Programming view of DWC_otg controller
1157  * @chan:  Identifies the host channel to clean up
1158  *
1159  * This function is normally called after a transfer is done and the host
1160  * channel is being released
1161  */
1162 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1163 {
1164         u32 hcintmsk;
1165
1166         chan->xfer_started = 0;
1167
1168         list_del_init(&chan->split_order_list_entry);
1169
1170         /*
1171          * Clear channel interrupt enables and any unhandled channel interrupt
1172          * conditions
1173          */
1174         dwc2_writel(0, hsotg->regs + HCINTMSK(chan->hc_num));
1175         hcintmsk = 0xffffffff;
1176         hcintmsk &= ~HCINTMSK_RESERVED14_31;
1177         dwc2_writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1178 }
1179
1180 /**
1181  * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
1182  * which frame a periodic transfer should occur
1183  *
1184  * @hsotg:  Programming view of DWC_otg controller
1185  * @chan:   Identifies the host channel to set up and its properties
1186  * @hcchar: Current value of the HCCHAR register for the specified host channel
1187  *
1188  * This function has no effect on non-periodic transfers
1189  */
1190 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
1191                                        struct dwc2_host_chan *chan, u32 *hcchar)
1192 {
1193         if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1194             chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1195                 int host_speed;
1196                 int xfer_ns;
1197                 int xfer_us;
1198                 int bytes_in_fifo;
1199                 u16 fifo_space;
1200                 u16 frame_number;
1201                 u16 wire_frame;
1202
1203                 /*
1204                  * Try to figure out if we're an even or odd frame. If we set
1205                  * even and the current frame number is even the the transfer
1206                  * will happen immediately.  Similar if both are odd. If one is
1207                  * even and the other is odd then the transfer will happen when
1208                  * the frame number ticks.
1209                  *
1210                  * There's a bit of a balancing act to get this right.
1211                  * Sometimes we may want to send data in the current frame (AK
1212                  * right away).  We might want to do this if the frame number
1213                  * _just_ ticked, but we might also want to do this in order
1214                  * to continue a split transaction that happened late in a
1215                  * microframe (so we didn't know to queue the next transfer
1216                  * until the frame number had ticked).  The problem is that we
1217                  * need a lot of knowledge to know if there's actually still
1218                  * time to send things or if it would be better to wait until
1219                  * the next frame.
1220                  *
1221                  * We can look at how much time is left in the current frame
1222                  * and make a guess about whether we'll have time to transfer.
1223                  * We'll do that.
1224                  */
1225
1226                 /* Get speed host is running at */
1227                 host_speed = (chan->speed != USB_SPEED_HIGH &&
1228                               !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1229
1230                 /* See how many bytes are in the periodic FIFO right now */
1231                 fifo_space = (dwc2_readl(hsotg->regs + HPTXSTS) &
1232                               TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1233                 bytes_in_fifo = sizeof(u32) *
1234                                 (hsotg->params.host_perio_tx_fifo_size -
1235                                  fifo_space);
1236
1237                 /*
1238                  * Roughly estimate bus time for everything in the periodic
1239                  * queue + our new transfer.  This is "rough" because we're
1240                  * using a function that makes takes into account IN/OUT
1241                  * and INT/ISO and we're just slamming in one value for all
1242                  * transfers.  This should be an over-estimate and that should
1243                  * be OK, but we can probably tighten it.
1244                  */
1245                 xfer_ns = usb_calc_bus_time(host_speed, false, false,
1246                                             chan->xfer_len + bytes_in_fifo);
1247                 xfer_us = NS_TO_US(xfer_ns);
1248
1249                 /* See what frame number we'll be at by the time we finish */
1250                 frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1251
1252                 /* This is when we were scheduled to be on the wire */
1253                 wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1254
1255                 /*
1256                  * If we'd finish _after_ the frame we're scheduled in then
1257                  * it's hopeless.  Just schedule right away and hope for the
1258                  * best.  Note that it _might_ be wise to call back into the
1259                  * scheduler to pick a better frame, but this is better than
1260                  * nothing.
1261                  */
1262                 if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1263                         dwc2_sch_vdbg(hsotg,
1264                                       "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1265                                       chan->qh, wire_frame, frame_number,
1266                                       dwc2_frame_num_dec(frame_number,
1267                                                          wire_frame));
1268                         wire_frame = frame_number;
1269
1270                         /*
1271                          * We picked a different frame number; communicate this
1272                          * back to the scheduler so it doesn't try to schedule
1273                          * another in the same frame.
1274                          *
1275                          * Remember that next_active_frame is 1 before the wire
1276                          * frame.
1277                          */
1278                         chan->qh->next_active_frame =
1279                                 dwc2_frame_num_dec(frame_number, 1);
1280                 }
1281
1282                 if (wire_frame & 1)
1283                         *hcchar |= HCCHAR_ODDFRM;
1284                 else
1285                         *hcchar &= ~HCCHAR_ODDFRM;
1286         }
1287 }
1288
1289 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1290 {
1291         /* Set up the initial PID for the transfer */
1292         if (chan->speed == USB_SPEED_HIGH) {
1293                 if (chan->ep_is_in) {
1294                         if (chan->multi_count == 1)
1295                                 chan->data_pid_start = DWC2_HC_PID_DATA0;
1296                         else if (chan->multi_count == 2)
1297                                 chan->data_pid_start = DWC2_HC_PID_DATA1;
1298                         else
1299                                 chan->data_pid_start = DWC2_HC_PID_DATA2;
1300                 } else {
1301                         if (chan->multi_count == 1)
1302                                 chan->data_pid_start = DWC2_HC_PID_DATA0;
1303                         else
1304                                 chan->data_pid_start = DWC2_HC_PID_MDATA;
1305                 }
1306         } else {
1307                 chan->data_pid_start = DWC2_HC_PID_DATA0;
1308         }
1309 }
1310
1311 /**
1312  * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1313  * the Host Channel
1314  *
1315  * @hsotg: Programming view of DWC_otg controller
1316  * @chan:  Information needed to initialize the host channel
1317  *
1318  * This function should only be called in Slave mode. For a channel associated
1319  * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1320  * associated with a periodic EP, the periodic Tx FIFO is written.
1321  *
1322  * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1323  * the number of bytes written to the Tx FIFO.
1324  */
1325 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1326                                  struct dwc2_host_chan *chan)
1327 {
1328         u32 i;
1329         u32 remaining_count;
1330         u32 byte_count;
1331         u32 dword_count;
1332         u32 __iomem *data_fifo;
1333         u32 *data_buf = (u32 *)chan->xfer_buf;
1334
1335         if (dbg_hc(chan))
1336                 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1337
1338         data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));
1339
1340         remaining_count = chan->xfer_len - chan->xfer_count;
1341         if (remaining_count > chan->max_packet)
1342                 byte_count = chan->max_packet;
1343         else
1344                 byte_count = remaining_count;
1345
1346         dword_count = (byte_count + 3) / 4;
1347
1348         if (((unsigned long)data_buf & 0x3) == 0) {
1349                 /* xfer_buf is DWORD aligned */
1350                 for (i = 0; i < dword_count; i++, data_buf++)
1351                         dwc2_writel(*data_buf, data_fifo);
1352         } else {
1353                 /* xfer_buf is not DWORD aligned */
1354                 for (i = 0; i < dword_count; i++, data_buf++) {
1355                         u32 data = data_buf[0] | data_buf[1] << 8 |
1356                                    data_buf[2] << 16 | data_buf[3] << 24;
1357                         dwc2_writel(data, data_fifo);
1358                 }
1359         }
1360
1361         chan->xfer_count += byte_count;
1362         chan->xfer_buf += byte_count;
1363 }
1364
1365 /**
1366  * dwc2_hc_do_ping() - Starts a PING transfer
1367  *
1368  * @hsotg: Programming view of DWC_otg controller
1369  * @chan:  Information needed to initialize the host channel
1370  *
1371  * This function should only be called in Slave mode. The Do Ping bit is set in
1372  * the HCTSIZ register, then the channel is enabled.
1373  */
1374 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1375                             struct dwc2_host_chan *chan)
1376 {
1377         u32 hcchar;
1378         u32 hctsiz;
1379
1380         if (dbg_hc(chan))
1381                 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1382                          chan->hc_num);
1383
1384         hctsiz = TSIZ_DOPNG;
1385         hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1386         dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1387
1388         hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1389         hcchar |= HCCHAR_CHENA;
1390         hcchar &= ~HCCHAR_CHDIS;
1391         dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1392 }
1393
1394 /**
1395  * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1396  * channel and starts the transfer
1397  *
1398  * @hsotg: Programming view of DWC_otg controller
1399  * @chan:  Information needed to initialize the host channel. The xfer_len value
1400  *         may be reduced to accommodate the max widths of the XferSize and
1401  *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1402  *         changed to reflect the final xfer_len value.
1403  *
1404  * This function may be called in either Slave mode or DMA mode. In Slave mode,
1405  * the caller must ensure that there is sufficient space in the request queue
1406  * and Tx Data FIFO.
1407  *
1408  * For an OUT transfer in Slave mode, it loads a data packet into the
1409  * appropriate FIFO. If necessary, additional data packets are loaded in the
1410  * Host ISR.
1411  *
1412  * For an IN transfer in Slave mode, a data packet is requested. The data
1413  * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1414  * additional data packets are requested in the Host ISR.
1415  *
1416  * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1417  * register along with a packet count of 1 and the channel is enabled. This
1418  * causes a single PING transaction to occur. Other fields in HCTSIZ are
1419  * simply set to 0 since no data transfer occurs in this case.
1420  *
1421  * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1422  * all the information required to perform the subsequent data transfer. In
1423  * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1424  * controller performs the entire PING protocol, then starts the data
1425  * transfer.
1426  */
1427 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1428                                    struct dwc2_host_chan *chan)
1429 {
1430         u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1431         u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1432         u32 hcchar;
1433         u32 hctsiz = 0;
1434         u16 num_packets;
1435         u32 ec_mc;
1436
1437         if (dbg_hc(chan))
1438                 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1439
1440         if (chan->do_ping) {
1441                 if (!hsotg->params.host_dma) {
1442                         if (dbg_hc(chan))
1443                                 dev_vdbg(hsotg->dev, "ping, no DMA\n");
1444                         dwc2_hc_do_ping(hsotg, chan);
1445                         chan->xfer_started = 1;
1446                         return;
1447                 }
1448
1449                 if (dbg_hc(chan))
1450                         dev_vdbg(hsotg->dev, "ping, DMA\n");
1451
1452                 hctsiz |= TSIZ_DOPNG;
1453         }
1454
1455         if (chan->do_split) {
1456                 if (dbg_hc(chan))
1457                         dev_vdbg(hsotg->dev, "split\n");
1458                 num_packets = 1;
1459
1460                 if (chan->complete_split && !chan->ep_is_in)
1461                         /*
1462                          * For CSPLIT OUT Transfer, set the size to 0 so the
1463                          * core doesn't expect any data written to the FIFO
1464                          */
1465                         chan->xfer_len = 0;
1466                 else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1467                         chan->xfer_len = chan->max_packet;
1468                 else if (!chan->ep_is_in && chan->xfer_len > 188)
1469                         chan->xfer_len = 188;
1470
1471                 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1472                           TSIZ_XFERSIZE_MASK;
1473
1474                 /* For split set ec_mc for immediate retries */
1475                 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1476                     chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1477                         ec_mc = 3;
1478                 else
1479                         ec_mc = 1;
1480         } else {
1481                 if (dbg_hc(chan))
1482                         dev_vdbg(hsotg->dev, "no split\n");
1483                 /*
1484                  * Ensure that the transfer length and packet count will fit
1485                  * in the widths allocated for them in the HCTSIZn register
1486                  */
1487                 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1488                     chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1489                         /*
1490                          * Make sure the transfer size is no larger than one
1491                          * (micro)frame's worth of data. (A check was done
1492                          * when the periodic transfer was accepted to ensure
1493                          * that a (micro)frame's worth of data can be
1494                          * programmed into a channel.)
1495                          */
1496                         u32 max_periodic_len =
1497                                 chan->multi_count * chan->max_packet;
1498
1499                         if (chan->xfer_len > max_periodic_len)
1500                                 chan->xfer_len = max_periodic_len;
1501                 } else if (chan->xfer_len > max_hc_xfer_size) {
1502                         /*
1503                          * Make sure that xfer_len is a multiple of max packet
1504                          * size
1505                          */
1506                         chan->xfer_len =
1507                                 max_hc_xfer_size - chan->max_packet + 1;
1508                 }
1509
1510                 if (chan->xfer_len > 0) {
1511                         num_packets = (chan->xfer_len + chan->max_packet - 1) /
1512                                         chan->max_packet;
1513                         if (num_packets > max_hc_pkt_count) {
1514                                 num_packets = max_hc_pkt_count;
1515                                 chan->xfer_len = num_packets * chan->max_packet;
1516                         }
1517                 } else {
1518                         /* Need 1 packet for transfer length of 0 */
1519                         num_packets = 1;
1520                 }
1521
1522                 if (chan->ep_is_in)
1523                         /*
1524                          * Always program an integral # of max packets for IN
1525                          * transfers
1526                          */
1527                         chan->xfer_len = num_packets * chan->max_packet;
1528
1529                 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1530                     chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1531                         /*
1532                          * Make sure that the multi_count field matches the
1533                          * actual transfer length
1534                          */
1535                         chan->multi_count = num_packets;
1536
1537                 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1538                         dwc2_set_pid_isoc(chan);
1539
1540                 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1541                           TSIZ_XFERSIZE_MASK;
1542
1543                 /* The ec_mc gets the multi_count for non-split */
1544                 ec_mc = chan->multi_count;
1545         }
1546
1547         chan->start_pkt_count = num_packets;
1548         hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1549         hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1550                   TSIZ_SC_MC_PID_MASK;
1551         dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1552         if (dbg_hc(chan)) {
1553                 dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1554                          hctsiz, chan->hc_num);
1555
1556                 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1557                          chan->hc_num);
1558                 dev_vdbg(hsotg->dev, "   Xfer Size: %d\n",
1559                          (hctsiz & TSIZ_XFERSIZE_MASK) >>
1560                          TSIZ_XFERSIZE_SHIFT);
1561                 dev_vdbg(hsotg->dev, "   Num Pkts: %d\n",
1562                          (hctsiz & TSIZ_PKTCNT_MASK) >>
1563                          TSIZ_PKTCNT_SHIFT);
1564                 dev_vdbg(hsotg->dev, "   Start PID: %d\n",
1565                          (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1566                          TSIZ_SC_MC_PID_SHIFT);
1567         }
1568
1569         if (hsotg->params.host_dma) {
1570                 dwc2_writel((u32)chan->xfer_dma,
1571                             hsotg->regs + HCDMA(chan->hc_num));
1572                 if (dbg_hc(chan))
1573                         dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1574                                  (unsigned long)chan->xfer_dma, chan->hc_num);
1575         }
1576
1577         /* Start the split */
1578         if (chan->do_split) {
1579                 u32 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
1580
1581                 hcsplt |= HCSPLT_SPLTENA;
1582                 dwc2_writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num));
1583         }
1584
1585         hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1586         hcchar &= ~HCCHAR_MULTICNT_MASK;
1587         hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1588         dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1589
1590         if (hcchar & HCCHAR_CHDIS)
1591                 dev_warn(hsotg->dev,
1592                          "%s: chdis set, channel %d, hcchar 0x%08x\n",
1593                          __func__, chan->hc_num, hcchar);
1594
1595         /* Set host channel enable after all other setup is complete */
1596         hcchar |= HCCHAR_CHENA;
1597         hcchar &= ~HCCHAR_CHDIS;
1598
1599         if (dbg_hc(chan))
1600                 dev_vdbg(hsotg->dev, "   Multi Cnt: %d\n",
1601                          (hcchar & HCCHAR_MULTICNT_MASK) >>
1602                          HCCHAR_MULTICNT_SHIFT);
1603
1604         dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1605         if (dbg_hc(chan))
1606                 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1607                          chan->hc_num);
1608
1609         chan->xfer_started = 1;
1610         chan->requests++;
1611
1612         if (!hsotg->params.host_dma &&
1613             !chan->ep_is_in && chan->xfer_len > 0)
1614                 /* Load OUT packet into the appropriate Tx FIFO */
1615                 dwc2_hc_write_packet(hsotg, chan);
1616 }
1617
1618 /**
1619  * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1620  * host channel and starts the transfer in Descriptor DMA mode
1621  *
1622  * @hsotg: Programming view of DWC_otg controller
1623  * @chan:  Information needed to initialize the host channel
1624  *
1625  * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1626  * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1627  * with micro-frame bitmap.
1628  *
1629  * Initializes HCDMA register with descriptor list address and CTD value then
1630  * starts the transfer via enabling the channel.
1631  */
1632 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1633                                  struct dwc2_host_chan *chan)
1634 {
1635         u32 hcchar;
1636         u32 hctsiz = 0;
1637
1638         if (chan->do_ping)
1639                 hctsiz |= TSIZ_DOPNG;
1640
1641         if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1642                 dwc2_set_pid_isoc(chan);
1643
1644         /* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1645         hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1646                   TSIZ_SC_MC_PID_MASK;
1647
1648         /* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1649         hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1650
1651         /* Non-zero only for high-speed interrupt endpoints */
1652         hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1653
1654         if (dbg_hc(chan)) {
1655                 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1656                          chan->hc_num);
1657                 dev_vdbg(hsotg->dev, "   Start PID: %d\n",
1658                          chan->data_pid_start);
1659                 dev_vdbg(hsotg->dev, "   NTD: %d\n", chan->ntd - 1);
1660         }
1661
1662         dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1663
1664         dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1665                                    chan->desc_list_sz, DMA_TO_DEVICE);
1666
1667         dwc2_writel(chan->desc_list_addr, hsotg->regs + HCDMA(chan->hc_num));
1668
1669         if (dbg_hc(chan))
1670                 dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1671                          &chan->desc_list_addr, chan->hc_num);
1672
1673         hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1674         hcchar &= ~HCCHAR_MULTICNT_MASK;
1675         hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1676                   HCCHAR_MULTICNT_MASK;
1677
1678         if (hcchar & HCCHAR_CHDIS)
1679                 dev_warn(hsotg->dev,
1680                          "%s: chdis set, channel %d, hcchar 0x%08x\n",
1681                          __func__, chan->hc_num, hcchar);
1682
1683         /* Set host channel enable after all other setup is complete */
1684         hcchar |= HCCHAR_CHENA;
1685         hcchar &= ~HCCHAR_CHDIS;
1686
1687         if (dbg_hc(chan))
1688                 dev_vdbg(hsotg->dev, "   Multi Cnt: %d\n",
1689                          (hcchar & HCCHAR_MULTICNT_MASK) >>
1690                          HCCHAR_MULTICNT_SHIFT);
1691
1692         dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1693         if (dbg_hc(chan))
1694                 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1695                          chan->hc_num);
1696
1697         chan->xfer_started = 1;
1698         chan->requests++;
1699 }
1700
1701 /**
1702  * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1703  * a previous call to dwc2_hc_start_transfer()
1704  *
1705  * @hsotg: Programming view of DWC_otg controller
1706  * @chan:  Information needed to initialize the host channel
1707  *
1708  * The caller must ensure there is sufficient space in the request queue and Tx
1709  * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1710  * the controller acts autonomously to complete transfers programmed to a host
1711  * channel.
1712  *
1713  * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1714  * if there is any data remaining to be queued. For an IN transfer, another
1715  * data packet is always requested. For the SETUP phase of a control transfer,
1716  * this function does nothing.
1717  *
1718  * Return: 1 if a new request is queued, 0 if no more requests are required
1719  * for this transfer
1720  */
1721 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1722                                      struct dwc2_host_chan *chan)
1723 {
1724         if (dbg_hc(chan))
1725                 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1726                          chan->hc_num);
1727
1728         if (chan->do_split)
1729                 /* SPLITs always queue just once per channel */
1730                 return 0;
1731
1732         if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1733                 /* SETUPs are queued only once since they can't be NAK'd */
1734                 return 0;
1735
1736         if (chan->ep_is_in) {
1737                 /*
1738                  * Always queue another request for other IN transfers. If
1739                  * back-to-back INs are issued and NAKs are received for both,
1740                  * the driver may still be processing the first NAK when the
1741                  * second NAK is received. When the interrupt handler clears
1742                  * the NAK interrupt for the first NAK, the second NAK will
1743                  * not be seen. So we can't depend on the NAK interrupt
1744                  * handler to requeue a NAK'd request. Instead, IN requests
1745                  * are issued each time this function is called. When the
1746                  * transfer completes, the extra requests for the channel will
1747                  * be flushed.
1748                  */
1749                 u32 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1750
1751                 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1752                 hcchar |= HCCHAR_CHENA;
1753                 hcchar &= ~HCCHAR_CHDIS;
1754                 if (dbg_hc(chan))
1755                         dev_vdbg(hsotg->dev, "   IN xfer: hcchar = 0x%08x\n",
1756                                  hcchar);
1757                 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1758                 chan->requests++;
1759                 return 1;
1760         }
1761
1762         /* OUT transfers */
1763
1764         if (chan->xfer_count < chan->xfer_len) {
1765                 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1766                     chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1767                         u32 hcchar = dwc2_readl(hsotg->regs +
1768                                                 HCCHAR(chan->hc_num));
1769
1770                         dwc2_hc_set_even_odd_frame(hsotg, chan,
1771                                                    &hcchar);
1772                 }
1773
1774                 /* Load OUT packet into the appropriate Tx FIFO */
1775                 dwc2_hc_write_packet(hsotg, chan);
1776                 chan->requests++;
1777                 return 1;
1778         }
1779
1780         return 0;
1781 }
1782
1783 /*
1784  * =========================================================================
1785  *  HCD
1786  * =========================================================================
1787  */
1788
1789 /*
1790  * Processes all the URBs in a single list of QHs. Completes them with
1791  * -ETIMEDOUT and frees the QTD.
1792  *
1793  * Must be called with interrupt disabled and spinlock held
1794  */
1795 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1796                                       struct list_head *qh_list)
1797 {
1798         struct dwc2_qh *qh, *qh_tmp;
1799         struct dwc2_qtd *qtd, *qtd_tmp;
1800
1801         list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1802                 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1803                                          qtd_list_entry) {
1804                         dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1805                         dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1806                 }
1807         }
1808 }
1809
1810 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1811                               struct list_head *qh_list)
1812 {
1813         struct dwc2_qtd *qtd, *qtd_tmp;
1814         struct dwc2_qh *qh, *qh_tmp;
1815         unsigned long flags;
1816
1817         if (!qh_list->next)
1818                 /* The list hasn't been initialized yet */
1819                 return;
1820
1821         spin_lock_irqsave(&hsotg->lock, flags);
1822
1823         /* Ensure there are no QTDs or URBs left */
1824         dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1825
1826         list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1827                 dwc2_hcd_qh_unlink(hsotg, qh);
1828
1829                 /* Free each QTD in the QH's QTD list */
1830                 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1831                                          qtd_list_entry)
1832                         dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1833
1834                 if (qh->channel && qh->channel->qh == qh)
1835                         qh->channel->qh = NULL;
1836
1837                 spin_unlock_irqrestore(&hsotg->lock, flags);
1838                 dwc2_hcd_qh_free(hsotg, qh);
1839                 spin_lock_irqsave(&hsotg->lock, flags);
1840         }
1841
1842         spin_unlock_irqrestore(&hsotg->lock, flags);
1843 }
1844
1845 /*
1846  * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1847  * and periodic schedules. The QTD associated with each URB is removed from
1848  * the schedule and freed. This function may be called when a disconnect is
1849  * detected or when the HCD is being stopped.
1850  *
1851  * Must be called with interrupt disabled and spinlock held
1852  */
1853 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1854 {
1855         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1856         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1857         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1858         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1859         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1860         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1861         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1862 }
1863
1864 /**
1865  * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1866  *
1867  * @hsotg: Pointer to struct dwc2_hsotg
1868  */
1869 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1870 {
1871         u32 hprt0;
1872
1873         if (hsotg->op_state == OTG_STATE_B_HOST) {
1874                 /*
1875                  * Reset the port. During a HNP mode switch the reset
1876                  * needs to occur within 1ms and have a duration of at
1877                  * least 50ms.
1878                  */
1879                 hprt0 = dwc2_read_hprt0(hsotg);
1880                 hprt0 |= HPRT0_RST;
1881                 dwc2_writel(hprt0, hsotg->regs + HPRT0);
1882         }
1883
1884         queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1885                            msecs_to_jiffies(50));
1886 }
1887
1888 /* Must be called with interrupt disabled and spinlock held */
1889 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1890 {
1891         int num_channels = hsotg->params.host_channels;
1892         struct dwc2_host_chan *channel;
1893         u32 hcchar;
1894         int i;
1895
1896         if (!hsotg->params.host_dma) {
1897                 /* Flush out any channel requests in slave mode */
1898                 for (i = 0; i < num_channels; i++) {
1899                         channel = hsotg->hc_ptr_array[i];
1900                         if (!list_empty(&channel->hc_list_entry))
1901                                 continue;
1902                         hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1903                         if (hcchar & HCCHAR_CHENA) {
1904                                 hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1905                                 hcchar |= HCCHAR_CHDIS;
1906                                 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1907                         }
1908                 }
1909         }
1910
1911         for (i = 0; i < num_channels; i++) {
1912                 channel = hsotg->hc_ptr_array[i];
1913                 if (!list_empty(&channel->hc_list_entry))
1914                         continue;
1915                 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1916                 if (hcchar & HCCHAR_CHENA) {
1917                         /* Halt the channel */
1918                         hcchar |= HCCHAR_CHDIS;
1919                         dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1920                 }
1921
1922                 dwc2_hc_cleanup(hsotg, channel);
1923                 list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1924                 /*
1925                  * Added for Descriptor DMA to prevent channel double cleanup in
1926                  * release_channel_ddma(), which is called from ep_disable when
1927                  * device disconnects
1928                  */
1929                 channel->qh = NULL;
1930         }
1931         /* All channels have been freed, mark them available */
1932         if (hsotg->params.uframe_sched) {
1933                 hsotg->available_host_channels =
1934                         hsotg->params.host_channels;
1935         } else {
1936                 hsotg->non_periodic_channels = 0;
1937                 hsotg->periodic_channels = 0;
1938         }
1939 }
1940
1941 /**
1942  * dwc2_hcd_connect() - Handles connect of the HCD
1943  *
1944  * @hsotg: Pointer to struct dwc2_hsotg
1945  *
1946  * Must be called with interrupt disabled and spinlock held
1947  */
1948 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1949 {
1950         if (hsotg->lx_state != DWC2_L0)
1951                 usb_hcd_resume_root_hub(hsotg->priv);
1952
1953         hsotg->flags.b.port_connect_status_change = 1;
1954         hsotg->flags.b.port_connect_status = 1;
1955 }
1956
1957 /**
1958  * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1959  *
1960  * @hsotg: Pointer to struct dwc2_hsotg
1961  * @force: If true, we won't try to reconnect even if we see device connected.
1962  *
1963  * Must be called with interrupt disabled and spinlock held
1964  */
1965 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1966 {
1967         u32 intr;
1968         u32 hprt0;
1969
1970         /* Set status flags for the hub driver */
1971         hsotg->flags.b.port_connect_status_change = 1;
1972         hsotg->flags.b.port_connect_status = 0;
1973
1974         /*
1975          * Shutdown any transfers in process by clearing the Tx FIFO Empty
1976          * interrupt mask and status bits and disabling subsequent host
1977          * channel interrupts.
1978          */
1979         intr = dwc2_readl(hsotg->regs + GINTMSK);
1980         intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1981         dwc2_writel(intr, hsotg->regs + GINTMSK);
1982         intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1983         dwc2_writel(intr, hsotg->regs + GINTSTS);
1984
1985         /*
1986          * Turn off the vbus power only if the core has transitioned to device
1987          * mode. If still in host mode, need to keep power on to detect a
1988          * reconnection.
1989          */
1990         if (dwc2_is_device_mode(hsotg)) {
1991                 if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1992                         dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1993                         dwc2_writel(0, hsotg->regs + HPRT0);
1994                 }
1995
1996                 dwc2_disable_host_interrupts(hsotg);
1997         }
1998
1999         /* Respond with an error status to all URBs in the schedule */
2000         dwc2_kill_all_urbs(hsotg);
2001
2002         if (dwc2_is_host_mode(hsotg))
2003                 /* Clean up any host channels that were in use */
2004                 dwc2_hcd_cleanup_channels(hsotg);
2005
2006         dwc2_host_disconnect(hsotg);
2007
2008         /*
2009          * Add an extra check here to see if we're actually connected but
2010          * we don't have a detection interrupt pending.  This can happen if:
2011          *   1. hardware sees connect
2012          *   2. hardware sees disconnect
2013          *   3. hardware sees connect
2014          *   4. dwc2_port_intr() - clears connect interrupt
2015          *   5. dwc2_handle_common_intr() - calls here
2016          *
2017          * Without the extra check here we will end calling disconnect
2018          * and won't get any future interrupts to handle the connect.
2019          */
2020         if (!force) {
2021                 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
2022                 if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
2023                         dwc2_hcd_connect(hsotg);
2024         }
2025 }
2026
2027 /**
2028  * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
2029  *
2030  * @hsotg: Pointer to struct dwc2_hsotg
2031  */
2032 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
2033 {
2034         if (hsotg->bus_suspended) {
2035                 hsotg->flags.b.port_suspend_change = 1;
2036                 usb_hcd_resume_root_hub(hsotg->priv);
2037         }
2038
2039         if (hsotg->lx_state == DWC2_L1)
2040                 hsotg->flags.b.port_l1_change = 1;
2041 }
2042
2043 /**
2044  * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
2045  *
2046  * @hsotg: Pointer to struct dwc2_hsotg
2047  *
2048  * Must be called with interrupt disabled and spinlock held
2049  */
2050 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
2051 {
2052         dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
2053
2054         /*
2055          * The root hub should be disconnected before this function is called.
2056          * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
2057          * and the QH lists (via ..._hcd_endpoint_disable).
2058          */
2059
2060         /* Turn off all host-specific interrupts */
2061         dwc2_disable_host_interrupts(hsotg);
2062
2063         /* Turn off the vbus power */
2064         dev_dbg(hsotg->dev, "PortPower off\n");
2065         dwc2_writel(0, hsotg->regs + HPRT0);
2066 }
2067
2068 /* Caller must hold driver lock */
2069 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
2070                                 struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
2071                                 struct dwc2_qtd *qtd)
2072 {
2073         u32 intr_mask;
2074         int retval;
2075         int dev_speed;
2076
2077         if (!hsotg->flags.b.port_connect_status) {
2078                 /* No longer connected */
2079                 dev_err(hsotg->dev, "Not connected\n");
2080                 return -ENODEV;
2081         }
2082
2083         dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
2084
2085         /* Some configurations cannot support LS traffic on a FS root port */
2086         if ((dev_speed == USB_SPEED_LOW) &&
2087             (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
2088             (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
2089                 u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
2090                 u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
2091
2092                 if (prtspd == HPRT0_SPD_FULL_SPEED)
2093                         return -ENODEV;
2094         }
2095
2096         if (!qtd)
2097                 return -EINVAL;
2098
2099         dwc2_hcd_qtd_init(qtd, urb);
2100         retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
2101         if (retval) {
2102                 dev_err(hsotg->dev,
2103                         "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
2104                         retval);
2105                 return retval;
2106         }
2107
2108         intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
2109         if (!(intr_mask & GINTSTS_SOF)) {
2110                 enum dwc2_transaction_type tr_type;
2111
2112                 if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
2113                     !(qtd->urb->flags & URB_GIVEBACK_ASAP))
2114                         /*
2115                          * Do not schedule SG transactions until qtd has
2116                          * URB_GIVEBACK_ASAP set
2117                          */
2118                         return 0;
2119
2120                 tr_type = dwc2_hcd_select_transactions(hsotg);
2121                 if (tr_type != DWC2_TRANSACTION_NONE)
2122                         dwc2_hcd_queue_transactions(hsotg, tr_type);
2123         }
2124
2125         return 0;
2126 }
2127
2128 /* Must be called with interrupt disabled and spinlock held */
2129 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
2130                                 struct dwc2_hcd_urb *urb)
2131 {
2132         struct dwc2_qh *qh;
2133         struct dwc2_qtd *urb_qtd;
2134
2135         urb_qtd = urb->qtd;
2136         if (!urb_qtd) {
2137                 dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
2138                 return -EINVAL;
2139         }
2140
2141         qh = urb_qtd->qh;
2142         if (!qh) {
2143                 dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
2144                 return -EINVAL;
2145         }
2146
2147         urb->priv = NULL;
2148
2149         if (urb_qtd->in_process && qh->channel) {
2150                 dwc2_dump_channel_info(hsotg, qh->channel);
2151
2152                 /* The QTD is in process (it has been assigned to a channel) */
2153                 if (hsotg->flags.b.port_connect_status)
2154                         /*
2155                          * If still connected (i.e. in host mode), halt the
2156                          * channel so it can be used for other transfers. If
2157                          * no longer connected, the host registers can't be
2158                          * written to halt the channel since the core is in
2159                          * device mode.
2160                          */
2161                         dwc2_hc_halt(hsotg, qh->channel,
2162                                      DWC2_HC_XFER_URB_DEQUEUE);
2163         }
2164
2165         /*
2166          * Free the QTD and clean up the associated QH. Leave the QH in the
2167          * schedule if it has any remaining QTDs.
2168          */
2169         if (!hsotg->params.dma_desc_enable) {
2170                 u8 in_process = urb_qtd->in_process;
2171
2172                 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2173                 if (in_process) {
2174                         dwc2_hcd_qh_deactivate(hsotg, qh, 0);
2175                         qh->channel = NULL;
2176                 } else if (list_empty(&qh->qtd_list)) {
2177                         dwc2_hcd_qh_unlink(hsotg, qh);
2178                 }
2179         } else {
2180                 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2181         }
2182
2183         return 0;
2184 }
2185
2186 /* Must NOT be called with interrupt disabled or spinlock held */
2187 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
2188                                      struct usb_host_endpoint *ep, int retry)
2189 {
2190         struct dwc2_qtd *qtd, *qtd_tmp;
2191         struct dwc2_qh *qh;
2192         unsigned long flags;
2193         int rc;
2194
2195         spin_lock_irqsave(&hsotg->lock, flags);
2196
2197         qh = ep->hcpriv;
2198         if (!qh) {
2199                 rc = -EINVAL;
2200                 goto err;
2201         }
2202
2203         while (!list_empty(&qh->qtd_list) && retry--) {
2204                 if (retry == 0) {
2205                         dev_err(hsotg->dev,
2206                                 "## timeout in dwc2_hcd_endpoint_disable() ##\n");
2207                         rc = -EBUSY;
2208                         goto err;
2209                 }
2210
2211                 spin_unlock_irqrestore(&hsotg->lock, flags);
2212                 msleep(20);
2213                 spin_lock_irqsave(&hsotg->lock, flags);
2214                 qh = ep->hcpriv;
2215                 if (!qh) {
2216                         rc = -EINVAL;
2217                         goto err;
2218                 }
2219         }
2220
2221         dwc2_hcd_qh_unlink(hsotg, qh);
2222
2223         /* Free each QTD in the QH's QTD list */
2224         list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2225                 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2226
2227         ep->hcpriv = NULL;
2228
2229         if (qh->channel && qh->channel->qh == qh)
2230                 qh->channel->qh = NULL;
2231
2232         spin_unlock_irqrestore(&hsotg->lock, flags);
2233
2234         dwc2_hcd_qh_free(hsotg, qh);
2235
2236         return 0;
2237
2238 err:
2239         ep->hcpriv = NULL;
2240         spin_unlock_irqrestore(&hsotg->lock, flags);
2241
2242         return rc;
2243 }
2244
2245 /* Must be called with interrupt disabled and spinlock held */
2246 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2247                                    struct usb_host_endpoint *ep)
2248 {
2249         struct dwc2_qh *qh = ep->hcpriv;
2250
2251         if (!qh)
2252                 return -EINVAL;
2253
2254         qh->data_toggle = DWC2_HC_PID_DATA0;
2255
2256         return 0;
2257 }
2258
2259 /**
2260  * dwc2_core_init() - Initializes the DWC_otg controller registers and
2261  * prepares the core for device mode or host mode operation
2262  *
2263  * @hsotg:         Programming view of the DWC_otg controller
2264  * @initial_setup: If true then this is the first init for this instance.
2265  */
2266 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2267 {
2268         u32 usbcfg, otgctl;
2269         int retval;
2270
2271         dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2272
2273         usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2274
2275         /* Set ULPI External VBUS bit if needed */
2276         usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2277         if (hsotg->params.phy_ulpi_ext_vbus)
2278                 usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2279
2280         /* Set external TS Dline pulsing bit if needed */
2281         usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2282         if (hsotg->params.ts_dline)
2283                 usbcfg |= GUSBCFG_TERMSELDLPULSE;
2284
2285         dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2286
2287         /*
2288          * Reset the Controller
2289          *
2290          * We only need to reset the controller if this is a re-init.
2291          * For the first init we know for sure that earlier code reset us (it
2292          * needed to in order to properly detect various parameters).
2293          */
2294         if (!initial_setup) {
2295                 retval = dwc2_core_reset(hsotg, false);
2296                 if (retval) {
2297                         dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2298                                 __func__);
2299                         return retval;
2300                 }
2301         }
2302
2303         /*
2304          * This needs to happen in FS mode before any other programming occurs
2305          */
2306         retval = dwc2_phy_init(hsotg, initial_setup);
2307         if (retval)
2308                 return retval;
2309
2310         /* Program the GAHBCFG Register */
2311         retval = dwc2_gahbcfg_init(hsotg);
2312         if (retval)
2313                 return retval;
2314
2315         /* Program the GUSBCFG register */
2316         dwc2_gusbcfg_init(hsotg);
2317
2318         /* Program the GOTGCTL register */
2319         otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2320         otgctl &= ~GOTGCTL_OTGVER;
2321         dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2322
2323         /* Clear the SRP success bit for FS-I2c */
2324         hsotg->srp_success = 0;
2325
2326         /* Enable common interrupts */
2327         dwc2_enable_common_interrupts(hsotg);
2328
2329         /*
2330          * Do device or host initialization based on mode during PCD and
2331          * HCD initialization
2332          */
2333         if (dwc2_is_host_mode(hsotg)) {
2334                 dev_dbg(hsotg->dev, "Host Mode\n");
2335                 hsotg->op_state = OTG_STATE_A_HOST;
2336         } else {
2337                 dev_dbg(hsotg->dev, "Device Mode\n");
2338                 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2339         }
2340
2341         return 0;
2342 }
2343
2344 /**
2345  * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2346  * Host mode
2347  *
2348  * @hsotg: Programming view of DWC_otg controller
2349  *
2350  * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2351  * request queues. Host channels are reset to ensure that they are ready for
2352  * performing transfers.
2353  */
2354 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2355 {
2356         u32 hcfg, hfir, otgctl, usbcfg;
2357
2358         dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2359
2360         /* Set HS/FS Timeout Calibration to 7 (max available value).
2361          * The number of PHY clocks that the application programs in
2362          * this field is added to the high/full speed interpacket timeout
2363          * duration in the core to account for any additional delays
2364          * introduced by the PHY. This can be required, because the delay
2365          * introduced by the PHY in generating the linestate condition
2366          * can vary from one PHY to another.
2367          */
2368         usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2369         usbcfg |= GUSBCFG_TOUTCAL(7);
2370         dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2371
2372         /* Restart the Phy Clock */
2373         dwc2_writel(0, hsotg->regs + PCGCTL);
2374
2375         /* Initialize Host Configuration Register */
2376         dwc2_init_fs_ls_pclk_sel(hsotg);
2377         if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2378             hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2379                 hcfg = dwc2_readl(hsotg->regs + HCFG);
2380                 hcfg |= HCFG_FSLSSUPP;
2381                 dwc2_writel(hcfg, hsotg->regs + HCFG);
2382         }
2383
2384         /*
2385          * This bit allows dynamic reloading of the HFIR register during
2386          * runtime. This bit needs to be programmed during initial configuration
2387          * and its value must not be changed during runtime.
2388          */
2389         if (hsotg->params.reload_ctl) {
2390                 hfir = dwc2_readl(hsotg->regs + HFIR);
2391                 hfir |= HFIR_RLDCTRL;
2392                 dwc2_writel(hfir, hsotg->regs + HFIR);
2393         }
2394
2395         if (hsotg->params.dma_desc_enable) {
2396                 u32 op_mode = hsotg->hw_params.op_mode;
2397
2398                 if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2399                     !hsotg->hw_params.dma_desc_enable ||
2400                     op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2401                     op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2402                     op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2403                         dev_err(hsotg->dev,
2404                                 "Hardware does not support descriptor DMA mode -\n");
2405                         dev_err(hsotg->dev,
2406                                 "falling back to buffer DMA mode.\n");
2407                         hsotg->params.dma_desc_enable = false;
2408                 } else {
2409                         hcfg = dwc2_readl(hsotg->regs + HCFG);
2410                         hcfg |= HCFG_DESCDMA;
2411                         dwc2_writel(hcfg, hsotg->regs + HCFG);
2412                 }
2413         }
2414
2415         /* Configure data FIFO sizes */
2416         dwc2_config_fifos(hsotg);
2417
2418         /* TODO - check this */
2419         /* Clear Host Set HNP Enable in the OTG Control Register */
2420         otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2421         otgctl &= ~GOTGCTL_HSTSETHNPEN;
2422         dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2423
2424         /* Make sure the FIFOs are flushed */
2425         dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2426         dwc2_flush_rx_fifo(hsotg);
2427
2428         /* Clear Host Set HNP Enable in the OTG Control Register */
2429         otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2430         otgctl &= ~GOTGCTL_HSTSETHNPEN;
2431         dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2432
2433         if (!hsotg->params.dma_desc_enable) {
2434                 int num_channels, i;
2435                 u32 hcchar;
2436
2437                 /* Flush out any leftover queued requests */
2438                 num_channels = hsotg->params.host_channels;
2439                 for (i = 0; i < num_channels; i++) {
2440                         hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2441                         hcchar &= ~HCCHAR_CHENA;
2442                         hcchar |= HCCHAR_CHDIS;
2443                         hcchar &= ~HCCHAR_EPDIR;
2444                         dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2445                 }
2446
2447                 /* Halt all channels to put them into a known state */
2448                 for (i = 0; i < num_channels; i++) {
2449                         hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2450                         hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2451                         hcchar &= ~HCCHAR_EPDIR;
2452                         dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2453                         dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2454                                 __func__, i);
2455
2456                         if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2457                                                       HCCHAR_CHENA, 1000)) {
2458                                 dev_warn(hsotg->dev, "Unable to clear enable on channel %d\n",
2459                                          i);
2460                         }
2461                 }
2462         }
2463
2464         /* Enable ACG feature in host mode, if supported */
2465         dwc2_enable_acg(hsotg);
2466
2467         /* Turn on the vbus power */
2468         dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2469         if (hsotg->op_state == OTG_STATE_A_HOST) {
2470                 u32 hprt0 = dwc2_read_hprt0(hsotg);
2471
2472                 dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2473                         !!(hprt0 & HPRT0_PWR));
2474                 if (!(hprt0 & HPRT0_PWR)) {
2475                         hprt0 |= HPRT0_PWR;
2476                         dwc2_writel(hprt0, hsotg->regs + HPRT0);
2477                 }
2478         }
2479
2480         dwc2_enable_host_interrupts(hsotg);
2481 }
2482
2483 /*
2484  * Initializes dynamic portions of the DWC_otg HCD state
2485  *
2486  * Must be called with interrupt disabled and spinlock held
2487  */
2488 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2489 {
2490         struct dwc2_host_chan *chan, *chan_tmp;
2491         int num_channels;
2492         int i;
2493
2494         hsotg->flags.d32 = 0;
2495         hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2496
2497         if (hsotg->params.uframe_sched) {
2498                 hsotg->available_host_channels =
2499                         hsotg->params.host_channels;
2500         } else {
2501                 hsotg->non_periodic_channels = 0;
2502                 hsotg->periodic_channels = 0;
2503         }
2504
2505         /*
2506          * Put all channels in the free channel list and clean up channel
2507          * states
2508          */
2509         list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2510                                  hc_list_entry)
2511                 list_del_init(&chan->hc_list_entry);
2512
2513         num_channels = hsotg->params.host_channels;
2514         for (i = 0; i < num_channels; i++) {
2515                 chan = hsotg->hc_ptr_array[i];
2516                 list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2517                 dwc2_hc_cleanup(hsotg, chan);
2518         }
2519
2520         /* Initialize the DWC core for host mode operation */
2521         dwc2_core_host_init(hsotg);
2522 }
2523
2524 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2525                                struct dwc2_host_chan *chan,
2526                                struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2527 {
2528         int hub_addr, hub_port;
2529
2530         chan->do_split = 1;
2531         chan->xact_pos = qtd->isoc_split_pos;
2532         chan->complete_split = qtd->complete_split;
2533         dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2534         chan->hub_addr = (u8)hub_addr;
2535         chan->hub_port = (u8)hub_port;
2536 }
2537
2538 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2539                               struct dwc2_host_chan *chan,
2540                               struct dwc2_qtd *qtd)
2541 {
2542         struct dwc2_hcd_urb *urb = qtd->urb;
2543         struct dwc2_hcd_iso_packet_desc *frame_desc;
2544
2545         switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2546         case USB_ENDPOINT_XFER_CONTROL:
2547                 chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2548
2549                 switch (qtd->control_phase) {
2550                 case DWC2_CONTROL_SETUP:
2551                         dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2552                         chan->do_ping = 0;
2553                         chan->ep_is_in = 0;
2554                         chan->data_pid_start = DWC2_HC_PID_SETUP;
2555                         if (hsotg->params.host_dma)
2556                                 chan->xfer_dma = urb->setup_dma;
2557                         else
2558                                 chan->xfer_buf = urb->setup_packet;
2559                         chan->xfer_len = 8;
2560                         break;
2561
2562                 case DWC2_CONTROL_DATA:
2563                         dev_vdbg(hsotg->dev, "  Control data transaction\n");
2564                         chan->data_pid_start = qtd->data_toggle;
2565                         break;
2566
2567                 case DWC2_CONTROL_STATUS:
2568                         /*
2569                          * Direction is opposite of data direction or IN if no
2570                          * data
2571                          */
2572                         dev_vdbg(hsotg->dev, "  Control status transaction\n");
2573                         if (urb->length == 0)
2574                                 chan->ep_is_in = 1;
2575                         else
2576                                 chan->ep_is_in =
2577                                         dwc2_hcd_is_pipe_out(&urb->pipe_info);
2578                         if (chan->ep_is_in)
2579                                 chan->do_ping = 0;
2580                         chan->data_pid_start = DWC2_HC_PID_DATA1;
2581                         chan->xfer_len = 0;
2582                         if (hsotg->params.host_dma)
2583                                 chan->xfer_dma = hsotg->status_buf_dma;
2584                         else
2585                                 chan->xfer_buf = hsotg->status_buf;
2586                         break;
2587                 }
2588                 break;
2589
2590         case USB_ENDPOINT_XFER_BULK:
2591                 chan->ep_type = USB_ENDPOINT_XFER_BULK;
2592                 break;
2593
2594         case USB_ENDPOINT_XFER_INT:
2595                 chan->ep_type = USB_ENDPOINT_XFER_INT;
2596                 break;
2597
2598         case USB_ENDPOINT_XFER_ISOC:
2599                 chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2600                 if (hsotg->params.dma_desc_enable)
2601                         break;
2602
2603                 frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2604                 frame_desc->status = 0;
2605
2606                 if (hsotg->params.host_dma) {
2607                         chan->xfer_dma = urb->dma;
2608                         chan->xfer_dma += frame_desc->offset +
2609                                         qtd->isoc_split_offset;
2610                 } else {
2611                         chan->xfer_buf = urb->buf;
2612                         chan->xfer_buf += frame_desc->offset +
2613                                         qtd->isoc_split_offset;
2614                 }
2615
2616                 chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2617
2618                 if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2619                         if (chan->xfer_len <= 188)
2620                                 chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2621                         else
2622                                 chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2623                 }
2624                 break;
2625         }
2626 }
2627
2628 #define DWC2_USB_DMA_ALIGN 4
2629
2630 struct dma_aligned_buffer {
2631         void *kmalloc_ptr;
2632         void *old_xfer_buffer;
2633         u8 data[0];
2634 };
2635
2636 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2637 {
2638         struct dma_aligned_buffer *temp;
2639
2640         if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2641                 return;
2642
2643         temp = container_of(urb->transfer_buffer,
2644                             struct dma_aligned_buffer, data);
2645
2646         if (usb_urb_dir_in(urb))
2647                 memcpy(temp->old_xfer_buffer, temp->data,
2648                        urb->transfer_buffer_length);
2649         urb->transfer_buffer = temp->old_xfer_buffer;
2650         kfree(temp->kmalloc_ptr);
2651
2652         urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2653 }
2654
2655 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2656 {
2657         struct dma_aligned_buffer *temp, *kmalloc_ptr;
2658         size_t kmalloc_size;
2659
2660         if (urb->num_sgs || urb->sg ||
2661             urb->transfer_buffer_length == 0 ||
2662             !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2663                 return 0;
2664
2665         /* Allocate a buffer with enough padding for alignment */
2666         kmalloc_size = urb->transfer_buffer_length +
2667                 sizeof(struct dma_aligned_buffer) + DWC2_USB_DMA_ALIGN - 1;
2668
2669         kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2670         if (!kmalloc_ptr)
2671                 return -ENOMEM;
2672
2673         /* Position our struct dma_aligned_buffer such that data is aligned */
2674         temp = PTR_ALIGN(kmalloc_ptr + 1, DWC2_USB_DMA_ALIGN) - 1;
2675         temp->kmalloc_ptr = kmalloc_ptr;
2676         temp->old_xfer_buffer = urb->transfer_buffer;
2677         if (usb_urb_dir_out(urb))
2678                 memcpy(temp->data, urb->transfer_buffer,
2679                        urb->transfer_buffer_length);
2680         urb->transfer_buffer = temp->data;
2681
2682         urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2683
2684         return 0;
2685 }
2686
2687 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2688                                 gfp_t mem_flags)
2689 {
2690         int ret;
2691
2692         /* We assume setup_dma is always aligned; warn if not */
2693         WARN_ON_ONCE(urb->setup_dma &&
2694                      (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2695
2696         ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2697         if (ret)
2698                 return ret;
2699
2700         ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2701         if (ret)
2702                 dwc2_free_dma_aligned_buffer(urb);
2703
2704         return ret;
2705 }
2706
2707 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2708 {
2709         usb_hcd_unmap_urb_for_dma(hcd, urb);
2710         dwc2_free_dma_aligned_buffer(urb);
2711 }
2712
2713 /**
2714  * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2715  * channel and initializes the host channel to perform the transactions. The
2716  * host channel is removed from the free list.
2717  *
2718  * @hsotg: The HCD state structure
2719  * @qh:    Transactions from the first QTD for this QH are selected and assigned
2720  *         to a free host channel
2721  */
2722 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2723 {
2724         struct dwc2_host_chan *chan;
2725         struct dwc2_hcd_urb *urb;
2726         struct dwc2_qtd *qtd;
2727
2728         if (dbg_qh(qh))
2729                 dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2730
2731         if (list_empty(&qh->qtd_list)) {
2732                 dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2733                 return -ENOMEM;
2734         }
2735
2736         if (list_empty(&hsotg->free_hc_list)) {
2737                 dev_dbg(hsotg->dev, "No free channel to assign\n");
2738                 return -ENOMEM;
2739         }
2740
2741         chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2742                                 hc_list_entry);
2743
2744         /* Remove host channel from free list */
2745         list_del_init(&chan->hc_list_entry);
2746
2747         qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2748         urb = qtd->urb;
2749         qh->channel = chan;
2750         qtd->in_process = 1;
2751
2752         /*
2753          * Use usb_pipedevice to determine device address. This address is
2754          * 0 before the SET_ADDRESS command and the correct address afterward.
2755          */
2756         chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2757         chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2758         chan->speed = qh->dev_speed;
2759         chan->max_packet = dwc2_max_packet(qh->maxp);
2760
2761         chan->xfer_started = 0;
2762         chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2763         chan->error_state = (qtd->error_count > 0);
2764         chan->halt_on_queue = 0;
2765         chan->halt_pending = 0;
2766         chan->requests = 0;
2767
2768         /*
2769          * The following values may be modified in the transfer type section
2770          * below. The xfer_len value may be reduced when the transfer is
2771          * started to accommodate the max widths of the XferSize and PktCnt
2772          * fields in the HCTSIZn register.
2773          */
2774
2775         chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2776         if (chan->ep_is_in)
2777                 chan->do_ping = 0;
2778         else
2779                 chan->do_ping = qh->ping_state;
2780
2781         chan->data_pid_start = qh->data_toggle;
2782         chan->multi_count = 1;
2783
2784         if (urb->actual_length > urb->length &&
2785             !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2786                 urb->actual_length = urb->length;
2787
2788         if (hsotg->params.host_dma)
2789                 chan->xfer_dma = urb->dma + urb->actual_length;
2790         else
2791                 chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2792
2793         chan->xfer_len = urb->length - urb->actual_length;
2794         chan->xfer_count = 0;
2795
2796         /* Set the split attributes if required */
2797         if (qh->do_split)
2798                 dwc2_hc_init_split(hsotg, chan, qtd, urb);
2799         else
2800                 chan->do_split = 0;
2801
2802         /* Set the transfer attributes */
2803         dwc2_hc_init_xfer(hsotg, chan, qtd);
2804
2805         if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2806             chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2807                 /*
2808                  * This value may be modified when the transfer is started
2809                  * to reflect the actual transfer length
2810                  */
2811                 chan->multi_count = dwc2_hb_mult(qh->maxp);
2812
2813         if (hsotg->params.dma_desc_enable) {
2814                 chan->desc_list_addr = qh->desc_list_dma;
2815                 chan->desc_list_sz = qh->desc_list_sz;
2816         }
2817
2818         dwc2_hc_init(hsotg, chan);
2819         chan->qh = qh;
2820
2821         return 0;
2822 }
2823
2824 /**
2825  * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2826  * schedule and assigns them to available host channels. Called from the HCD
2827  * interrupt handler functions.
2828  *
2829  * @hsotg: The HCD state structure
2830  *
2831  * Return: The types of new transactions that were assigned to host channels
2832  */
2833 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2834                 struct dwc2_hsotg *hsotg)
2835 {
2836         enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2837         struct list_head *qh_ptr;
2838         struct dwc2_qh *qh;
2839         int num_channels;
2840
2841 #ifdef DWC2_DEBUG_SOF
2842         dev_vdbg(hsotg->dev, "  Select Transactions\n");
2843 #endif
2844
2845         /* Process entries in the periodic ready list */
2846         qh_ptr = hsotg->periodic_sched_ready.next;
2847         while (qh_ptr != &hsotg->periodic_sched_ready) {
2848                 if (list_empty(&hsotg->free_hc_list))
2849                         break;
2850                 if (hsotg->params.uframe_sched) {
2851                         if (hsotg->available_host_channels <= 1)
2852                                 break;
2853                         hsotg->available_host_channels--;
2854                 }
2855                 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2856                 if (dwc2_assign_and_init_hc(hsotg, qh))
2857                         break;
2858
2859                 /*
2860                  * Move the QH from the periodic ready schedule to the
2861                  * periodic assigned schedule
2862                  */
2863                 qh_ptr = qh_ptr->next;
2864                 list_move_tail(&qh->qh_list_entry,
2865                                &hsotg->periodic_sched_assigned);
2866                 ret_val = DWC2_TRANSACTION_PERIODIC;
2867         }
2868
2869         /*
2870          * Process entries in the inactive portion of the non-periodic
2871          * schedule. Some free host channels may not be used if they are
2872          * reserved for periodic transfers.
2873          */
2874         num_channels = hsotg->params.host_channels;
2875         qh_ptr = hsotg->non_periodic_sched_inactive.next;
2876         while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2877                 if (!hsotg->params.uframe_sched &&
2878                     hsotg->non_periodic_channels >= num_channels -
2879                                                 hsotg->periodic_channels)
2880                         break;
2881                 if (list_empty(&hsotg->free_hc_list))
2882                         break;
2883                 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2884                 if (hsotg->params.uframe_sched) {
2885                         if (hsotg->available_host_channels < 1)
2886                                 break;
2887                         hsotg->available_host_channels--;
2888                 }
2889
2890                 if (dwc2_assign_and_init_hc(hsotg, qh))
2891                         break;
2892
2893                 /*
2894                  * Move the QH from the non-periodic inactive schedule to the
2895                  * non-periodic active schedule
2896                  */
2897                 qh_ptr = qh_ptr->next;
2898                 list_move_tail(&qh->qh_list_entry,
2899                                &hsotg->non_periodic_sched_active);
2900
2901                 if (ret_val == DWC2_TRANSACTION_NONE)
2902                         ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2903                 else
2904                         ret_val = DWC2_TRANSACTION_ALL;
2905
2906                 if (!hsotg->params.uframe_sched)
2907                         hsotg->non_periodic_channels++;
2908         }
2909
2910         return ret_val;
2911 }
2912
2913 /**
2914  * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2915  * a host channel associated with either a periodic or non-periodic transfer
2916  *
2917  * @hsotg: The HCD state structure
2918  * @chan:  Host channel descriptor associated with either a periodic or
2919  *         non-periodic transfer
2920  * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2921  *                     for periodic transfers or the non-periodic Tx FIFO
2922  *                     for non-periodic transfers
2923  *
2924  * Return: 1 if a request is queued and more requests may be needed to
2925  * complete the transfer, 0 if no more requests are required for this
2926  * transfer, -1 if there is insufficient space in the Tx FIFO
2927  *
2928  * This function assumes that there is space available in the appropriate
2929  * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2930  * it checks whether space is available in the appropriate Tx FIFO.
2931  *
2932  * Must be called with interrupt disabled and spinlock held
2933  */
2934 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2935                                   struct dwc2_host_chan *chan,
2936                                   u16 fifo_dwords_avail)
2937 {
2938         int retval = 0;
2939
2940         if (chan->do_split)
2941                 /* Put ourselves on the list to keep order straight */
2942                 list_move_tail(&chan->split_order_list_entry,
2943                                &hsotg->split_order);
2944
2945         if (hsotg->params.host_dma) {
2946                 if (hsotg->params.dma_desc_enable) {
2947                         if (!chan->xfer_started ||
2948                             chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2949                                 dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2950                                 chan->qh->ping_state = 0;
2951                         }
2952                 } else if (!chan->xfer_started) {
2953                         dwc2_hc_start_transfer(hsotg, chan);
2954                         chan->qh->ping_state = 0;
2955                 }
2956         } else if (chan->halt_pending) {
2957                 /* Don't queue a request if the channel has been halted */
2958         } else if (chan->halt_on_queue) {
2959                 dwc2_hc_halt(hsotg, chan, chan->halt_status);
2960         } else if (chan->do_ping) {
2961                 if (!chan->xfer_started)
2962                         dwc2_hc_start_transfer(hsotg, chan);
2963         } else if (!chan->ep_is_in ||
2964                    chan->data_pid_start == DWC2_HC_PID_SETUP) {
2965                 if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2966                         if (!chan->xfer_started) {
2967                                 dwc2_hc_start_transfer(hsotg, chan);
2968                                 retval = 1;
2969                         } else {
2970                                 retval = dwc2_hc_continue_transfer(hsotg, chan);
2971                         }
2972                 } else {
2973                         retval = -1;
2974                 }
2975         } else {
2976                 if (!chan->xfer_started) {
2977                         dwc2_hc_start_transfer(hsotg, chan);
2978                         retval = 1;
2979                 } else {
2980                         retval = dwc2_hc_continue_transfer(hsotg, chan);
2981                 }
2982         }
2983
2984         return retval;
2985 }
2986
2987 /*
2988  * Processes periodic channels for the next frame and queues transactions for
2989  * these channels to the DWC_otg controller. After queueing transactions, the
2990  * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2991  * to queue as Periodic Tx FIFO or request queue space becomes available.
2992  * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2993  *
2994  * Must be called with interrupt disabled and spinlock held
2995  */
2996 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2997 {
2998         struct list_head *qh_ptr;
2999         struct dwc2_qh *qh;
3000         u32 tx_status;
3001         u32 fspcavail;
3002         u32 gintmsk;
3003         int status;
3004         bool no_queue_space = false;
3005         bool no_fifo_space = false;
3006         u32 qspcavail;
3007
3008         /* If empty list then just adjust interrupt enables */
3009         if (list_empty(&hsotg->periodic_sched_assigned))
3010                 goto exit;
3011
3012         if (dbg_perio())
3013                 dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
3014
3015         tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
3016         qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3017                     TXSTS_QSPCAVAIL_SHIFT;
3018         fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3019                     TXSTS_FSPCAVAIL_SHIFT;
3020
3021         if (dbg_perio()) {
3022                 dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
3023                          qspcavail);
3024                 dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
3025                          fspcavail);
3026         }
3027
3028         qh_ptr = hsotg->periodic_sched_assigned.next;
3029         while (qh_ptr != &hsotg->periodic_sched_assigned) {
3030                 tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
3031                 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3032                             TXSTS_QSPCAVAIL_SHIFT;
3033                 if (qspcavail == 0) {
3034                         no_queue_space = true;
3035                         break;
3036                 }
3037
3038                 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
3039                 if (!qh->channel) {
3040                         qh_ptr = qh_ptr->next;
3041                         continue;
3042                 }
3043
3044                 /* Make sure EP's TT buffer is clean before queueing qtds */
3045                 if (qh->tt_buffer_dirty) {
3046                         qh_ptr = qh_ptr->next;
3047                         continue;
3048                 }
3049
3050                 /*
3051                  * Set a flag if we're queuing high-bandwidth in slave mode.
3052                  * The flag prevents any halts to get into the request queue in
3053                  * the middle of multiple high-bandwidth packets getting queued.
3054                  */
3055                 if (!hsotg->params.host_dma &&
3056                     qh->channel->multi_count > 1)
3057                         hsotg->queuing_high_bandwidth = 1;
3058
3059                 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3060                             TXSTS_FSPCAVAIL_SHIFT;
3061                 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3062                 if (status < 0) {
3063                         no_fifo_space = true;
3064                         break;
3065                 }
3066
3067                 /*
3068                  * In Slave mode, stay on the current transfer until there is
3069                  * nothing more to do or the high-bandwidth request count is
3070                  * reached. In DMA mode, only need to queue one request. The
3071                  * controller automatically handles multiple packets for
3072                  * high-bandwidth transfers.
3073                  */
3074                 if (hsotg->params.host_dma || status == 0 ||
3075                     qh->channel->requests == qh->channel->multi_count) {
3076                         qh_ptr = qh_ptr->next;
3077                         /*
3078                          * Move the QH from the periodic assigned schedule to
3079                          * the periodic queued schedule
3080                          */
3081                         list_move_tail(&qh->qh_list_entry,
3082                                        &hsotg->periodic_sched_queued);
3083
3084                         /* done queuing high bandwidth */
3085                         hsotg->queuing_high_bandwidth = 0;
3086                 }
3087         }
3088
3089 exit:
3090         if (no_queue_space || no_fifo_space ||
3091             (!hsotg->params.host_dma &&
3092              !list_empty(&hsotg->periodic_sched_assigned))) {
3093                 /*
3094                  * May need to queue more transactions as the request
3095                  * queue or Tx FIFO empties. Enable the periodic Tx
3096                  * FIFO empty interrupt. (Always use the half-empty
3097                  * level to ensure that new requests are loaded as
3098                  * soon as possible.)
3099                  */
3100                 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3101                 if (!(gintmsk & GINTSTS_PTXFEMP)) {
3102                         gintmsk |= GINTSTS_PTXFEMP;
3103                         dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3104                 }
3105         } else {
3106                 /*
3107                  * Disable the Tx FIFO empty interrupt since there are
3108                  * no more transactions that need to be queued right
3109                  * now. This function is called from interrupt
3110                  * handlers to queue more transactions as transfer
3111                  * states change.
3112                  */
3113                 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3114                 if (gintmsk & GINTSTS_PTXFEMP) {
3115                         gintmsk &= ~GINTSTS_PTXFEMP;
3116                         dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3117                 }
3118         }
3119 }
3120
3121 /*
3122  * Processes active non-periodic channels and queues transactions for these
3123  * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3124  * FIFO Empty interrupt is enabled if there are more transactions to queue as
3125  * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3126  * FIFO Empty interrupt is disabled.
3127  *
3128  * Must be called with interrupt disabled and spinlock held
3129  */
3130 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3131 {
3132         struct list_head *orig_qh_ptr;
3133         struct dwc2_qh *qh;
3134         u32 tx_status;
3135         u32 qspcavail;
3136         u32 fspcavail;
3137         u32 gintmsk;
3138         int status;
3139         int no_queue_space = 0;
3140         int no_fifo_space = 0;
3141         int more_to_do = 0;
3142
3143         dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3144
3145         tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3146         qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3147                     TXSTS_QSPCAVAIL_SHIFT;
3148         fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3149                     TXSTS_FSPCAVAIL_SHIFT;
3150         dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
3151                  qspcavail);
3152         dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3153                  fspcavail);
3154
3155         /*
3156          * Keep track of the starting point. Skip over the start-of-list
3157          * entry.
3158          */
3159         if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3160                 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3161         orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3162
3163         /*
3164          * Process once through the active list or until no more space is
3165          * available in the request queue or the Tx FIFO
3166          */
3167         do {
3168                 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3169                 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3170                             TXSTS_QSPCAVAIL_SHIFT;
3171                 if (!hsotg->params.host_dma && qspcavail == 0) {
3172                         no_queue_space = 1;
3173                         break;
3174                 }
3175
3176                 qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3177                                 qh_list_entry);
3178                 if (!qh->channel)
3179                         goto next;
3180
3181                 /* Make sure EP's TT buffer is clean before queueing qtds */
3182                 if (qh->tt_buffer_dirty)
3183                         goto next;
3184
3185                 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3186                             TXSTS_FSPCAVAIL_SHIFT;
3187                 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3188
3189                 if (status > 0) {
3190                         more_to_do = 1;
3191                 } else if (status < 0) {
3192                         no_fifo_space = 1;
3193                         break;
3194                 }
3195 next:
3196                 /* Advance to next QH, skipping start-of-list entry */
3197                 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3198                 if (hsotg->non_periodic_qh_ptr ==
3199                                 &hsotg->non_periodic_sched_active)
3200                         hsotg->non_periodic_qh_ptr =
3201                                         hsotg->non_periodic_qh_ptr->next;
3202         } while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3203
3204         if (!hsotg->params.host_dma) {
3205                 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3206                 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3207                             TXSTS_QSPCAVAIL_SHIFT;
3208                 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3209                             TXSTS_FSPCAVAIL_SHIFT;
3210                 dev_vdbg(hsotg->dev,
3211                          "  NP Tx Req Queue Space Avail (after queue): %d\n",
3212                          qspcavail);
3213                 dev_vdbg(hsotg->dev,
3214                          "  NP Tx FIFO Space Avail (after queue): %d\n",
3215                          fspcavail);
3216
3217                 if (more_to_do || no_queue_space || no_fifo_space) {
3218                         /*
3219                          * May need to queue more transactions as the request
3220                          * queue or Tx FIFO empties. Enable the non-periodic
3221                          * Tx FIFO empty interrupt. (Always use the half-empty
3222                          * level to ensure that new requests are loaded as
3223                          * soon as possible.)
3224                          */
3225                         gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3226                         gintmsk |= GINTSTS_NPTXFEMP;
3227                         dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3228                 } else {
3229                         /*
3230                          * Disable the Tx FIFO empty interrupt since there are
3231                          * no more transactions that need to be queued right
3232                          * now. This function is called from interrupt
3233                          * handlers to queue more transactions as transfer
3234                          * states change.
3235                          */
3236                         gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3237                         gintmsk &= ~GINTSTS_NPTXFEMP;
3238                         dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3239                 }
3240         }
3241 }
3242
3243 /**
3244  * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3245  * and queues transactions for these channels to the DWC_otg controller. Called
3246  * from the HCD interrupt handler functions.
3247  *
3248  * @hsotg:   The HCD state structure
3249  * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3250  *           or both)
3251  *
3252  * Must be called with interrupt disabled and spinlock held
3253  */
3254 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3255                                  enum dwc2_transaction_type tr_type)
3256 {
3257 #ifdef DWC2_DEBUG_SOF
3258         dev_vdbg(hsotg->dev, "Queue Transactions\n");
3259 #endif
3260         /* Process host channels associated with periodic transfers */
3261         if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3262             tr_type == DWC2_TRANSACTION_ALL)
3263                 dwc2_process_periodic_channels(hsotg);
3264
3265         /* Process host channels associated with non-periodic transfers */
3266         if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3267             tr_type == DWC2_TRANSACTION_ALL) {
3268                 if (!list_empty(&hsotg->non_periodic_sched_active)) {
3269                         dwc2_process_non_periodic_channels(hsotg);
3270                 } else {
3271                         /*
3272                          * Ensure NP Tx FIFO empty interrupt is disabled when
3273                          * there are no non-periodic transfers to process
3274                          */
3275                         u32 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3276
3277                         gintmsk &= ~GINTSTS_NPTXFEMP;
3278                         dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3279                 }
3280         }
3281 }
3282
3283 static void dwc2_conn_id_status_change(struct work_struct *work)
3284 {
3285         struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3286                                                 wf_otg);
3287         u32 count = 0;
3288         u32 gotgctl;
3289         unsigned long flags;
3290
3291         dev_dbg(hsotg->dev, "%s()\n", __func__);
3292
3293         gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3294         dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3295         dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3296                 !!(gotgctl & GOTGCTL_CONID_B));
3297
3298         /* B-Device connector (Device Mode) */
3299         if (gotgctl & GOTGCTL_CONID_B) {
3300                 dwc2_vbus_supply_exit(hsotg);
3301                 /* Wait for switch to device mode */
3302                 dev_dbg(hsotg->dev, "connId B\n");
3303                 if (hsotg->bus_suspended) {
3304                         dev_info(hsotg->dev,
3305                                  "Do port resume before switching to device mode\n");
3306                         dwc2_port_resume(hsotg);
3307                 }
3308                 while (!dwc2_is_device_mode(hsotg)) {
3309                         dev_info(hsotg->dev,
3310                                  "Waiting for Peripheral Mode, Mode=%s\n",
3311                                  dwc2_is_host_mode(hsotg) ? "Host" :
3312                                  "Peripheral");
3313                         msleep(20);
3314                         /*
3315                          * Sometimes the initial GOTGCTRL read is wrong, so
3316                          * check it again and jump to host mode if that was
3317                          * the case.
3318                          */
3319                         gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3320                         if (!(gotgctl & GOTGCTL_CONID_B))
3321                                 goto host;
3322                         if (++count > 250)
3323                                 break;
3324                 }
3325                 if (count > 250)
3326                         dev_err(hsotg->dev,
3327                                 "Connection id status change timed out\n");
3328                 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3329                 dwc2_core_init(hsotg, false);
3330                 dwc2_enable_global_interrupts(hsotg);
3331                 spin_lock_irqsave(&hsotg->lock, flags);
3332                 dwc2_hsotg_core_init_disconnected(hsotg, false);
3333                 spin_unlock_irqrestore(&hsotg->lock, flags);
3334                 /* Enable ACG feature in device mode,if supported */
3335                 dwc2_enable_acg(hsotg);
3336                 dwc2_hsotg_core_connect(hsotg);
3337         } else {
3338 host:
3339                 /* A-Device connector (Host Mode) */
3340                 dev_dbg(hsotg->dev, "connId A\n");
3341                 while (!dwc2_is_host_mode(hsotg)) {
3342                         dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3343                                  dwc2_is_host_mode(hsotg) ?
3344                                  "Host" : "Peripheral");
3345                         msleep(20);
3346                         if (++count > 250)
3347                                 break;
3348                 }
3349                 if (count > 250)
3350                         dev_err(hsotg->dev,
3351                                 "Connection id status change timed out\n");
3352
3353                 spin_lock_irqsave(&hsotg->lock, flags);
3354                 dwc2_hsotg_disconnect(hsotg);
3355                 spin_unlock_irqrestore(&hsotg->lock, flags);
3356
3357                 hsotg->op_state = OTG_STATE_A_HOST;
3358                 /* Initialize the Core for Host mode */
3359                 dwc2_core_init(hsotg, false);
3360                 dwc2_enable_global_interrupts(hsotg);
3361                 dwc2_hcd_start(hsotg);
3362         }
3363 }
3364
3365 static void dwc2_wakeup_detected(struct timer_list *t)
3366 {
3367         struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3368         u32 hprt0;
3369
3370         dev_dbg(hsotg->dev, "%s()\n", __func__);
3371
3372         /*
3373          * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3374          * so that OPT tests pass with all PHYs.)
3375          */
3376         hprt0 = dwc2_read_hprt0(hsotg);
3377         dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3378         hprt0 &= ~HPRT0_RES;
3379         dwc2_writel(hprt0, hsotg->regs + HPRT0);
3380         dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3381                 dwc2_readl(hsotg->regs + HPRT0));
3382
3383         dwc2_hcd_rem_wakeup(hsotg);
3384         hsotg->bus_suspended = false;
3385
3386         /* Change to L0 state */
3387         hsotg->lx_state = DWC2_L0;
3388 }
3389
3390 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3391 {
3392         struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3393
3394         return hcd->self.b_hnp_enable;
3395 }
3396
3397 /* Must NOT be called with interrupt disabled or spinlock held */
3398 static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3399 {
3400         unsigned long flags;
3401         u32 hprt0;
3402         u32 pcgctl;
3403         u32 gotgctl;
3404
3405         dev_dbg(hsotg->dev, "%s()\n", __func__);
3406
3407         spin_lock_irqsave(&hsotg->lock, flags);
3408
3409         if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3410                 gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3411                 gotgctl |= GOTGCTL_HSTSETHNPEN;
3412                 dwc2_writel(gotgctl, hsotg->regs + GOTGCTL);
3413                 hsotg->op_state = OTG_STATE_A_SUSPEND;
3414         }
3415
3416         hprt0 = dwc2_read_hprt0(hsotg);
3417         hprt0 |= HPRT0_SUSP;
3418         dwc2_writel(hprt0, hsotg->regs + HPRT0);
3419
3420         hsotg->bus_suspended = true;
3421
3422         /*
3423          * If power_down is supported, Phy clock will be suspended
3424          * after registers are backuped.
3425          */
3426         if (!hsotg->params.power_down) {
3427                 /* Suspend the Phy Clock */
3428                 pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3429                 pcgctl |= PCGCTL_STOPPCLK;
3430                 dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3431                 udelay(10);
3432         }
3433
3434         /* For HNP the bus must be suspended for at least 200ms */
3435         if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3436                 pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3437                 pcgctl &= ~PCGCTL_STOPPCLK;
3438                 dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3439
3440                 spin_unlock_irqrestore(&hsotg->lock, flags);
3441
3442                 msleep(200);
3443         } else {
3444                 spin_unlock_irqrestore(&hsotg->lock, flags);
3445         }
3446 }
3447
3448 /* Must NOT be called with interrupt disabled or spinlock held */
3449 static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
3450 {
3451         unsigned long flags;
3452         u32 hprt0;
3453         u32 pcgctl;
3454
3455         spin_lock_irqsave(&hsotg->lock, flags);
3456
3457         /*
3458          * If power_down is supported, Phy clock is already resumed
3459          * after registers restore.
3460          */
3461         if (!hsotg->params.power_down) {
3462                 pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3463                 pcgctl &= ~PCGCTL_STOPPCLK;
3464                 dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3465                 spin_unlock_irqrestore(&hsotg->lock, flags);
3466                 msleep(20);
3467                 spin_lock_irqsave(&hsotg->lock, flags);
3468         }
3469
3470         hprt0 = dwc2_read_hprt0(hsotg);
3471         hprt0 |= HPRT0_RES;
3472         hprt0 &= ~HPRT0_SUSP;
3473         dwc2_writel(hprt0, hsotg->regs + HPRT0);
3474         spin_unlock_irqrestore(&hsotg->lock, flags);
3475
3476         msleep(USB_RESUME_TIMEOUT);
3477
3478         spin_lock_irqsave(&hsotg->lock, flags);
3479         hprt0 = dwc2_read_hprt0(hsotg);
3480         hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
3481         dwc2_writel(hprt0, hsotg->regs + HPRT0);
3482         hsotg->bus_suspended = false;
3483         spin_unlock_irqrestore(&hsotg->lock, flags);
3484 }
3485
3486 /* Handles hub class-specific requests */
3487 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3488                                 u16 wvalue, u16 windex, char *buf, u16 wlength)
3489 {
3490         struct usb_hub_descriptor *hub_desc;
3491         int retval = 0;
3492         u32 hprt0;
3493         u32 port_status;
3494         u32 speed;
3495         u32 pcgctl;
3496
3497         switch (typereq) {
3498         case ClearHubFeature:
3499                 dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3500
3501                 switch (wvalue) {
3502                 case C_HUB_LOCAL_POWER:
3503                 case C_HUB_OVER_CURRENT:
3504                         /* Nothing required here */
3505                         break;
3506
3507                 default:
3508                         retval = -EINVAL;
3509                         dev_err(hsotg->dev,
3510                                 "ClearHubFeature request %1xh unknown\n",
3511                                 wvalue);
3512                 }
3513                 break;
3514
3515         case ClearPortFeature:
3516                 if (wvalue != USB_PORT_FEAT_L1)
3517                         if (!windex || windex > 1)
3518                                 goto error;
3519                 switch (wvalue) {
3520                 case USB_PORT_FEAT_ENABLE:
3521                         dev_dbg(hsotg->dev,
3522                                 "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3523                         hprt0 = dwc2_read_hprt0(hsotg);
3524                         hprt0 |= HPRT0_ENA;
3525                         dwc2_writel(hprt0, hsotg->regs + HPRT0);
3526                         break;
3527
3528                 case USB_PORT_FEAT_SUSPEND:
3529                         dev_dbg(hsotg->dev,
3530                                 "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3531
3532                         if (hsotg->bus_suspended) {
3533                                 if (hsotg->hibernated)
3534                                         dwc2_exit_hibernation(hsotg, 0, 0, 1);
3535                                 else
3536                                         dwc2_port_resume(hsotg);
3537                         }
3538                         break;
3539
3540                 case USB_PORT_FEAT_POWER:
3541                         dev_dbg(hsotg->dev,
3542                                 "ClearPortFeature USB_PORT_FEAT_POWER\n");
3543                         hprt0 = dwc2_read_hprt0(hsotg);
3544                         hprt0 &= ~HPRT0_PWR;
3545                         dwc2_writel(hprt0, hsotg->regs + HPRT0);
3546                         break;
3547
3548                 case USB_PORT_FEAT_INDICATOR:
3549                         dev_dbg(hsotg->dev,
3550                                 "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3551                         /* Port indicator not supported */
3552                         break;
3553
3554                 case USB_PORT_FEAT_C_CONNECTION:
3555                         /*
3556                          * Clears driver's internal Connect Status Change flag
3557                          */
3558                         dev_dbg(hsotg->dev,
3559                                 "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3560                         hsotg->flags.b.port_connect_status_change = 0;
3561                         break;
3562
3563                 case USB_PORT_FEAT_C_RESET:
3564                         /* Clears driver's internal Port Reset Change flag */
3565                         dev_dbg(hsotg->dev,
3566                                 "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3567                         hsotg->flags.b.port_reset_change = 0;
3568                         break;
3569
3570                 case USB_PORT_FEAT_C_ENABLE:
3571                         /*
3572                          * Clears the driver's internal Port Enable/Disable
3573                          * Change flag
3574                          */
3575                         dev_dbg(hsotg->dev,
3576                                 "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3577                         hsotg->flags.b.port_enable_change = 0;
3578                         break;
3579
3580                 case USB_PORT_FEAT_C_SUSPEND:
3581                         /*
3582                          * Clears the driver's internal Port Suspend Change
3583                          * flag, which is set when resume signaling on the host
3584                          * port is complete
3585                          */
3586                         dev_dbg(hsotg->dev,
3587                                 "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3588                         hsotg->flags.b.port_suspend_change = 0;
3589                         break;
3590
3591                 case USB_PORT_FEAT_C_PORT_L1:
3592                         dev_dbg(hsotg->dev,
3593                                 "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3594                         hsotg->flags.b.port_l1_change = 0;
3595                         break;
3596
3597                 case USB_PORT_FEAT_C_OVER_CURRENT:
3598                         dev_dbg(hsotg->dev,
3599                                 "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3600                         hsotg->flags.b.port_over_current_change = 0;
3601                         break;
3602
3603                 default:
3604                         retval = -EINVAL;
3605                         dev_err(hsotg->dev,
3606                                 "ClearPortFeature request %1xh unknown or unsupported\n",
3607                                 wvalue);
3608                 }
3609                 break;
3610
3611         case GetHubDescriptor:
3612                 dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3613                 hub_desc = (struct usb_hub_descriptor *)buf;
3614                 hub_desc->bDescLength = 9;
3615                 hub_desc->bDescriptorType = USB_DT_HUB;
3616                 hub_desc->bNbrPorts = 1;
3617                 hub_desc->wHubCharacteristics =
3618                         cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3619                                     HUB_CHAR_INDV_PORT_OCPM);
3620                 hub_desc->bPwrOn2PwrGood = 1;
3621                 hub_desc->bHubContrCurrent = 0;
3622                 hub_desc->u.hs.DeviceRemovable[0] = 0;
3623                 hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3624                 break;
3625
3626         case GetHubStatus:
3627                 dev_dbg(hsotg->dev, "GetHubStatus\n");
3628                 memset(buf, 0, 4);
3629                 break;
3630
3631         case GetPortStatus:
3632                 dev_vdbg(hsotg->dev,
3633                          "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3634                          hsotg->flags.d32);
3635                 if (!windex || windex > 1)
3636                         goto error;
3637
3638                 port_status = 0;
3639                 if (hsotg->flags.b.port_connect_status_change)
3640                         port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3641                 if (hsotg->flags.b.port_enable_change)
3642                         port_status |= USB_PORT_STAT_C_ENABLE << 16;
3643                 if (hsotg->flags.b.port_suspend_change)
3644                         port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3645                 if (hsotg->flags.b.port_l1_change)
3646                         port_status |= USB_PORT_STAT_C_L1 << 16;
3647                 if (hsotg->flags.b.port_reset_change)
3648                         port_status |= USB_PORT_STAT_C_RESET << 16;
3649                 if (hsotg->flags.b.port_over_current_change) {
3650                         dev_warn(hsotg->dev, "Overcurrent change detected\n");
3651                         port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3652                 }
3653
3654                 if (!hsotg->flags.b.port_connect_status) {
3655                         /*
3656                          * The port is disconnected, which means the core is
3657                          * either in device mode or it soon will be. Just
3658                          * return 0's for the remainder of the port status
3659                          * since the port register can't be read if the core
3660                          * is in device mode.
3661                          */
3662                         *(__le32 *)buf = cpu_to_le32(port_status);
3663                         break;
3664                 }
3665
3666                 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
3667                 dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3668
3669                 if (hprt0 & HPRT0_CONNSTS)
3670                         port_status |= USB_PORT_STAT_CONNECTION;
3671                 if (hprt0 & HPRT0_ENA)
3672                         port_status |= USB_PORT_STAT_ENABLE;
3673                 if (hprt0 & HPRT0_SUSP)
3674                         port_status |= USB_PORT_STAT_SUSPEND;
3675                 if (hprt0 & HPRT0_OVRCURRACT)
3676                         port_status |= USB_PORT_STAT_OVERCURRENT;
3677                 if (hprt0 & HPRT0_RST)
3678                         port_status |= USB_PORT_STAT_RESET;
3679                 if (hprt0 & HPRT0_PWR)
3680                         port_status |= USB_PORT_STAT_POWER;
3681
3682                 speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3683                 if (speed == HPRT0_SPD_HIGH_SPEED)
3684                         port_status |= USB_PORT_STAT_HIGH_SPEED;
3685                 else if (speed == HPRT0_SPD_LOW_SPEED)
3686                         port_status |= USB_PORT_STAT_LOW_SPEED;
3687
3688                 if (hprt0 & HPRT0_TSTCTL_MASK)
3689                         port_status |= USB_PORT_STAT_TEST;
3690                 /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3691
3692                 if (hsotg->params.dma_desc_fs_enable) {
3693                         /*
3694                          * Enable descriptor DMA only if a full speed
3695                          * device is connected.
3696                          */
3697                         if (hsotg->new_connection &&
3698                             ((port_status &
3699                               (USB_PORT_STAT_CONNECTION |
3700                                USB_PORT_STAT_HIGH_SPEED |
3701                                USB_PORT_STAT_LOW_SPEED)) ==
3702                                USB_PORT_STAT_CONNECTION)) {
3703                                 u32 hcfg;
3704
3705                                 dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3706                                 hsotg->params.dma_desc_enable = true;
3707                                 hcfg = dwc2_readl(hsotg->regs + HCFG);
3708                                 hcfg |= HCFG_DESCDMA;
3709                                 dwc2_writel(hcfg, hsotg->regs + HCFG);
3710                                 hsotg->new_connection = false;
3711                         }
3712                 }
3713
3714                 dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3715                 *(__le32 *)buf = cpu_to_le32(port_status);
3716                 break;
3717
3718         case SetHubFeature:
3719                 dev_dbg(hsotg->dev, "SetHubFeature\n");
3720                 /* No HUB features supported */
3721                 break;
3722
3723         case SetPortFeature:
3724                 dev_dbg(hsotg->dev, "SetPortFeature\n");
3725                 if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3726                         goto error;
3727
3728                 if (!hsotg->flags.b.port_connect_status) {
3729                         /*
3730                          * The port is disconnected, which means the core is
3731                          * either in device mode or it soon will be. Just
3732                          * return without doing anything since the port
3733                          * register can't be written if the core is in device
3734                          * mode.
3735                          */
3736                         break;
3737                 }
3738
3739                 switch (wvalue) {
3740                 case USB_PORT_FEAT_SUSPEND:
3741                         dev_dbg(hsotg->dev,
3742                                 "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3743                         if (windex != hsotg->otg_port)
3744                                 goto error;
3745                         if (hsotg->params.power_down == 2)
3746                                 dwc2_enter_hibernation(hsotg, 1);
3747                         else
3748                                 dwc2_port_suspend(hsotg, windex);
3749                         break;
3750
3751                 case USB_PORT_FEAT_POWER:
3752                         dev_dbg(hsotg->dev,
3753                                 "SetPortFeature - USB_PORT_FEAT_POWER\n");
3754                         hprt0 = dwc2_read_hprt0(hsotg);
3755                         hprt0 |= HPRT0_PWR;
3756                         dwc2_writel(hprt0, hsotg->regs + HPRT0);
3757                         break;
3758
3759                 case USB_PORT_FEAT_RESET:
3760                         if (hsotg->params.power_down == 2 &&
3761                             hsotg->hibernated)
3762                                 dwc2_exit_hibernation(hsotg, 0, 1, 1);
3763                         hprt0 = dwc2_read_hprt0(hsotg);
3764                         dev_dbg(hsotg->dev,
3765                                 "SetPortFeature - USB_PORT_FEAT_RESET\n");
3766                         pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3767                         pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3768                         dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3769                         /* ??? Original driver does this */
3770                         dwc2_writel(0, hsotg->regs + PCGCTL);
3771
3772                         hprt0 = dwc2_read_hprt0(hsotg);
3773                         /* Clear suspend bit if resetting from suspend state */
3774                         hprt0 &= ~HPRT0_SUSP;
3775
3776                         /*
3777                          * When B-Host the Port reset bit is set in the Start
3778                          * HCD Callback function, so that the reset is started
3779                          * within 1ms of the HNP success interrupt
3780                          */
3781                         if (!dwc2_hcd_is_b_host(hsotg)) {
3782                                 hprt0 |= HPRT0_PWR | HPRT0_RST;
3783                                 dev_dbg(hsotg->dev,
3784                                         "In host mode, hprt0=%08x\n", hprt0);
3785                                 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3786                         }
3787
3788                         /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3789                         msleep(50);
3790                         hprt0 &= ~HPRT0_RST;
3791                         dwc2_writel(hprt0, hsotg->regs + HPRT0);
3792                         hsotg->lx_state = DWC2_L0; /* Now back to On state */
3793                         break;
3794
3795                 case USB_PORT_FEAT_INDICATOR:
3796                         dev_dbg(hsotg->dev,
3797                                 "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3798                         /* Not supported */
3799                         break;
3800
3801                 case USB_PORT_FEAT_TEST:
3802                         hprt0 = dwc2_read_hprt0(hsotg);
3803                         dev_dbg(hsotg->dev,
3804                                 "SetPortFeature - USB_PORT_FEAT_TEST\n");
3805                         hprt0 &= ~HPRT0_TSTCTL_MASK;
3806                         hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3807                         dwc2_writel(hprt0, hsotg->regs + HPRT0);
3808                         break;
3809
3810                 default:
3811                         retval = -EINVAL;
3812                         dev_err(hsotg->dev,
3813                                 "SetPortFeature %1xh unknown or unsupported\n",
3814                                 wvalue);
3815                         break;
3816                 }
3817                 break;
3818
3819         default:
3820 error:
3821                 retval = -EINVAL;
3822                 dev_dbg(hsotg->dev,
3823                         "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3824                         typereq, windex, wvalue);
3825                 break;
3826         }
3827
3828         return retval;
3829 }
3830
3831 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3832 {
3833         int retval;
3834
3835         if (port != 1)
3836                 return -EINVAL;
3837
3838         retval = (hsotg->flags.b.port_connect_status_change ||
3839                   hsotg->flags.b.port_reset_change ||
3840                   hsotg->flags.b.port_enable_change ||
3841                   hsotg->flags.b.port_suspend_change ||
3842                   hsotg->flags.b.port_over_current_change);
3843
3844         if (retval) {
3845                 dev_dbg(hsotg->dev,
3846                         "DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3847                 dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3848                         hsotg->flags.b.port_connect_status_change);
3849                 dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3850                         hsotg->flags.b.port_reset_change);
3851                 dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3852                         hsotg->flags.b.port_enable_change);
3853                 dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3854                         hsotg->flags.b.port_suspend_change);
3855                 dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3856                         hsotg->flags.b.port_over_current_change);
3857         }
3858
3859         return retval;
3860 }
3861
3862 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3863 {
3864         u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3865
3866 #ifdef DWC2_DEBUG_SOF
3867         dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3868                  (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3869 #endif
3870         return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3871 }
3872
3873 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3874 {
3875         u32 hprt = dwc2_readl(hsotg->regs + HPRT0);
3876         u32 hfir = dwc2_readl(hsotg->regs + HFIR);
3877         u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3878         unsigned int us_per_frame;
3879         unsigned int frame_number;
3880         unsigned int remaining;
3881         unsigned int interval;
3882         unsigned int phy_clks;
3883
3884         /* High speed has 125 us per (micro) frame; others are 1 ms per */
3885         us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3886
3887         /* Extract fields */
3888         frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3889         remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3890         interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3891
3892         /*
3893          * Number of phy clocks since the last tick of the frame number after
3894          * "us" has passed.
3895          */
3896         phy_clks = (interval - remaining) +
3897                    DIV_ROUND_UP(interval * us, us_per_frame);
3898
3899         return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3900 }
3901
3902 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3903 {
3904         return hsotg->op_state == OTG_STATE_B_HOST;
3905 }
3906
3907 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3908                                                int iso_desc_count,
3909                                                gfp_t mem_flags)
3910 {
3911         struct dwc2_hcd_urb *urb;
3912         u32 size = sizeof(*urb) + iso_desc_count *
3913                    sizeof(struct dwc2_hcd_iso_packet_desc);
3914
3915         urb = kzalloc(size, mem_flags);
3916         if (urb)
3917                 urb->packet_count = iso_desc_count;
3918         return urb;
3919 }
3920
3921 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3922                                       struct dwc2_hcd_urb *urb, u8 dev_addr,
3923                                       u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps)
3924 {
3925         if (dbg_perio() ||
3926             ep_type == USB_ENDPOINT_XFER_BULK ||
3927             ep_type == USB_ENDPOINT_XFER_CONTROL)
3928                 dev_vdbg(hsotg->dev,
3929                          "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n",
3930                          dev_addr, ep_num, ep_dir, ep_type, mps);
3931         urb->pipe_info.dev_addr = dev_addr;
3932         urb->pipe_info.ep_num = ep_num;
3933         urb->pipe_info.pipe_type = ep_type;
3934         urb->pipe_info.pipe_dir = ep_dir;
3935         urb->pipe_info.mps = mps;
3936 }
3937
3938 /*
3939  * NOTE: This function will be removed once the peripheral controller code
3940  * is integrated and the driver is stable
3941  */
3942 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3943 {
3944 #ifdef DEBUG
3945         struct dwc2_host_chan *chan;
3946         struct dwc2_hcd_urb *urb;
3947         struct dwc2_qtd *qtd;
3948         int num_channels;
3949         u32 np_tx_status;
3950         u32 p_tx_status;
3951         int i;
3952
3953         num_channels = hsotg->params.host_channels;
3954         dev_dbg(hsotg->dev, "\n");
3955         dev_dbg(hsotg->dev,
3956                 "************************************************************\n");
3957         dev_dbg(hsotg->dev, "HCD State:\n");
3958         dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
3959
3960         for (i = 0; i < num_channels; i++) {
3961                 chan = hsotg->hc_ptr_array[i];
3962                 dev_dbg(hsotg->dev, "  Channel %d:\n", i);
3963                 dev_dbg(hsotg->dev,
3964                         "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3965                         chan->dev_addr, chan->ep_num, chan->ep_is_in);
3966                 dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
3967                 dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
3968                 dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
3969                 dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
3970                         chan->data_pid_start);
3971                 dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
3972                 dev_dbg(hsotg->dev, "    xfer_started: %d\n",
3973                         chan->xfer_started);
3974                 dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
3975                 dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
3976                         (unsigned long)chan->xfer_dma);
3977                 dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
3978                 dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
3979                 dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
3980                         chan->halt_on_queue);
3981                 dev_dbg(hsotg->dev, "    halt_pending: %d\n",
3982                         chan->halt_pending);
3983                 dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
3984                 dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
3985                 dev_dbg(hsotg->dev, "    complete_split: %d\n",
3986                         chan->complete_split);
3987                 dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
3988                 dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
3989                 dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
3990                 dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
3991                 dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
3992
3993                 if (chan->xfer_started) {
3994                         u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3995
3996                         hfnum = dwc2_readl(hsotg->regs + HFNUM);
3997                         hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
3998                         hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(i));
3999                         hcint = dwc2_readl(hsotg->regs + HCINT(i));
4000                         hcintmsk = dwc2_readl(hsotg->regs + HCINTMSK(i));
4001                         dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
4002                         dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
4003                         dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
4004                         dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
4005                         dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
4006                 }
4007
4008                 if (!(chan->xfer_started && chan->qh))
4009                         continue;
4010
4011                 list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
4012                         if (!qtd->in_process)
4013                                 break;
4014                         urb = qtd->urb;
4015                         dev_dbg(hsotg->dev, "    URB Info:\n");
4016                         dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
4017                                 qtd, urb);
4018                         if (urb) {
4019                                 dev_dbg(hsotg->dev,
4020                                         "      Dev: %d, EP: %d %s\n",
4021                                         dwc2_hcd_get_dev_addr(&urb->pipe_info),
4022                                         dwc2_hcd_get_ep_num(&urb->pipe_info),
4023                                         dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
4024                                         "IN" : "OUT");
4025                                 dev_dbg(hsotg->dev,
4026                                         "      Max packet size: %d\n",
4027                                         dwc2_hcd_get_mps(&urb->pipe_info));
4028                                 dev_dbg(hsotg->dev,
4029                                         "      transfer_buffer: %p\n",
4030                                         urb->buf);
4031                                 dev_dbg(hsotg->dev,
4032                                         "      transfer_dma: %08lx\n",
4033                                         (unsigned long)urb->dma);
4034                                 dev_dbg(hsotg->dev,
4035                                         "      transfer_buffer_length: %d\n",
4036                                         urb->length);
4037                                 dev_dbg(hsotg->dev, "      actual_length: %d\n",
4038                                         urb->actual_length);
4039                         }
4040                 }
4041         }
4042
4043         dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
4044                 hsotg->non_periodic_channels);
4045         dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
4046                 hsotg->periodic_channels);
4047         dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
4048         np_tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
4049         dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
4050                 (np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
4051         dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
4052                 (np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
4053         p_tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
4054         dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
4055                 (p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
4056         dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
4057                 (p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
4058         dwc2_dump_global_registers(hsotg);
4059         dwc2_dump_host_registers(hsotg);
4060         dev_dbg(hsotg->dev,
4061                 "************************************************************\n");
4062         dev_dbg(hsotg->dev, "\n");
4063 #endif
4064 }
4065
4066 struct wrapper_priv_data {
4067         struct dwc2_hsotg *hsotg;
4068 };
4069
4070 /* Gets the dwc2_hsotg from a usb_hcd */
4071 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
4072 {
4073         struct wrapper_priv_data *p;
4074
4075         p = (struct wrapper_priv_data *)&hcd->hcd_priv;
4076         return p->hsotg;
4077 }
4078
4079 /**
4080  * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4081  *
4082  * This will get the dwc2_tt structure (and ttport) associated with the given
4083  * context (which is really just a struct urb pointer).
4084  *
4085  * The first time this is called for a given TT we allocate memory for our
4086  * structure.  When everyone is done and has called dwc2_host_put_tt_info()
4087  * then the refcount for the structure will go to 0 and we'll free it.
4088  *
4089  * @hsotg:     The HCD state structure for the DWC OTG controller.
4090  * @context:   The priv pointer from a struct dwc2_hcd_urb.
4091  * @mem_flags: Flags for allocating memory.
4092  * @ttport:    We'll return this device's port number here.  That's used to
4093  *             reference into the bitmap if we're on a multi_tt hub.
4094  *
4095  * Return: a pointer to a struct dwc2_tt.  Don't forget to call
4096  *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
4097  */
4098
4099 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4100                                       gfp_t mem_flags, int *ttport)
4101 {
4102         struct urb *urb = context;
4103         struct dwc2_tt *dwc_tt = NULL;
4104
4105         if (urb->dev->tt) {
4106                 *ttport = urb->dev->ttport;
4107
4108                 dwc_tt = urb->dev->tt->hcpriv;
4109                 if (!dwc_tt) {
4110                         size_t bitmap_size;
4111
4112                         /*
4113                          * For single_tt we need one schedule.  For multi_tt
4114                          * we need one per port.
4115                          */
4116                         bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4117                                       sizeof(dwc_tt->periodic_bitmaps[0]);
4118                         if (urb->dev->tt->multi)
4119                                 bitmap_size *= urb->dev->tt->hub->maxchild;
4120
4121                         dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4122                                          mem_flags);
4123                         if (!dwc_tt)
4124                                 return NULL;
4125
4126                         dwc_tt->usb_tt = urb->dev->tt;
4127                         dwc_tt->usb_tt->hcpriv = dwc_tt;
4128                 }
4129
4130                 dwc_tt->refcount++;
4131         }
4132
4133         return dwc_tt;
4134 }
4135
4136 /**
4137  * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4138  *
4139  * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4140  * of the structure are done.
4141  *
4142  * It's OK to call this with NULL.
4143  *
4144  * @hsotg:     The HCD state structure for the DWC OTG controller.
4145  * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4146  */
4147 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4148 {
4149         /* Model kfree and make put of NULL a no-op */
4150         if (!dwc_tt)
4151                 return;
4152
4153         WARN_ON(dwc_tt->refcount < 1);
4154
4155         dwc_tt->refcount--;
4156         if (!dwc_tt->refcount) {
4157                 dwc_tt->usb_tt->hcpriv = NULL;
4158                 kfree(dwc_tt);
4159         }
4160 }
4161
4162 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4163 {
4164         struct urb *urb = context;
4165
4166         return urb->dev->speed;
4167 }
4168
4169 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4170                                         struct urb *urb)
4171 {
4172         struct usb_bus *bus = hcd_to_bus(hcd);
4173
4174         if (urb->interval)
4175                 bus->bandwidth_allocated += bw / urb->interval;
4176         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4177                 bus->bandwidth_isoc_reqs++;
4178         else
4179                 bus->bandwidth_int_reqs++;
4180 }
4181
4182 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4183                                     struct urb *urb)
4184 {
4185         struct usb_bus *bus = hcd_to_bus(hcd);
4186
4187         if (urb->interval)
4188                 bus->bandwidth_allocated -= bw / urb->interval;
4189         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4190                 bus->bandwidth_isoc_reqs--;
4191         else
4192                 bus->bandwidth_int_reqs--;
4193 }
4194
4195 /*
4196  * Sets the final status of an URB and returns it to the upper layer. Any
4197  * required cleanup of the URB is performed.
4198  *
4199  * Must be called with interrupt disabled and spinlock held
4200  */
4201 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4202                         int status)
4203 {
4204         struct urb *urb;
4205         int i;
4206
4207         if (!qtd) {
4208                 dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4209                 return;
4210         }
4211
4212         if (!qtd->urb) {
4213                 dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4214                 return;
4215         }
4216
4217         urb = qtd->urb->priv;
4218         if (!urb) {
4219                 dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4220                 return;
4221         }
4222
4223         urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4224
4225         if (dbg_urb(urb))
4226                 dev_vdbg(hsotg->dev,
4227                          "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4228                          __func__, urb, usb_pipedevice(urb->pipe),
4229                          usb_pipeendpoint(urb->pipe),
4230                          usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4231                          urb->actual_length);
4232
4233         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4234                 urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4235                 for (i = 0; i < urb->number_of_packets; ++i) {
4236                         urb->iso_frame_desc[i].actual_length =
4237                                 dwc2_hcd_urb_get_iso_desc_actual_length(
4238                                                 qtd->urb, i);
4239                         urb->iso_frame_desc[i].status =
4240                                 dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4241                 }
4242         }
4243
4244         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4245                 for (i = 0; i < urb->number_of_packets; i++)
4246                         dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4247                                  i, urb->iso_frame_desc[i].status);
4248         }
4249
4250         urb->status = status;
4251         if (!status) {
4252                 if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4253                     urb->actual_length < urb->transfer_buffer_length)
4254                         urb->status = -EREMOTEIO;
4255         }
4256
4257         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4258             usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4259                 struct usb_host_endpoint *ep = urb->ep;
4260
4261                 if (ep)
4262                         dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4263                                         dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4264                                         urb);
4265         }
4266
4267         usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4268         urb->hcpriv = NULL;
4269         kfree(qtd->urb);
4270         qtd->urb = NULL;
4271
4272         usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4273 }
4274
4275 /*
4276  * Work queue function for starting the HCD when A-Cable is connected
4277  */
4278 static void dwc2_hcd_start_func(struct work_struct *work)
4279 {
4280         struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4281                                                 start_work.work);
4282
4283         dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4284         dwc2_host_start(hsotg);
4285 }
4286
4287 /*
4288  * Reset work queue function
4289  */
4290 static void dwc2_hcd_reset_func(struct work_struct *work)
4291 {
4292         struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4293                                                 reset_work.work);
4294         unsigned long flags;
4295         u32 hprt0;
4296
4297         dev_dbg(hsotg->dev, "USB RESET function called\n");
4298
4299         spin_lock_irqsave(&hsotg->lock, flags);
4300
4301         hprt0 = dwc2_read_hprt0(hsotg);
4302         hprt0 &= ~HPRT0_RST;
4303         dwc2_writel(hprt0, hsotg->regs + HPRT0);
4304         hsotg->flags.b.port_reset_change = 1;
4305
4306         spin_unlock_irqrestore(&hsotg->lock, flags);
4307 }
4308
4309 /*
4310  * =========================================================================
4311  *  Linux HC Driver Functions
4312  * =========================================================================
4313  */
4314
4315 /*
4316  * Initializes the DWC_otg controller and its root hub and prepares it for host
4317  * mode operation. Activates the root port. Returns 0 on success and a negative
4318  * error code on failure.
4319  */
4320 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4321 {
4322         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4323         struct usb_bus *bus = hcd_to_bus(hcd);
4324         unsigned long flags;
4325
4326         dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4327
4328         spin_lock_irqsave(&hsotg->lock, flags);
4329         hsotg->lx_state = DWC2_L0;
4330         hcd->state = HC_STATE_RUNNING;
4331         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4332
4333         if (dwc2_is_device_mode(hsotg)) {
4334                 spin_unlock_irqrestore(&hsotg->lock, flags);
4335                 return 0;       /* why 0 ?? */
4336         }
4337
4338         dwc2_hcd_reinit(hsotg);
4339
4340         /* Initialize and connect root hub if one is not already attached */
4341         if (bus->root_hub) {
4342                 dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4343                 /* Inform the HUB driver to resume */
4344                 usb_hcd_resume_root_hub(hcd);
4345         }
4346
4347         spin_unlock_irqrestore(&hsotg->lock, flags);
4348
4349         return dwc2_vbus_supply_init(hsotg);
4350 }
4351
4352 /*
4353  * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4354  * stopped.
4355  */
4356 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4357 {
4358         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4359         unsigned long flags;
4360
4361         /* Turn off all host-specific interrupts */
4362         dwc2_disable_host_interrupts(hsotg);
4363
4364         /* Wait for interrupt processing to finish */
4365         synchronize_irq(hcd->irq);
4366
4367         spin_lock_irqsave(&hsotg->lock, flags);
4368         /* Ensure hcd is disconnected */
4369         dwc2_hcd_disconnect(hsotg, true);
4370         dwc2_hcd_stop(hsotg);
4371         hsotg->lx_state = DWC2_L3;
4372         hcd->state = HC_STATE_HALT;
4373         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4374         spin_unlock_irqrestore(&hsotg->lock, flags);
4375
4376         dwc2_vbus_supply_exit(hsotg);
4377
4378         usleep_range(1000, 3000);
4379 }
4380
4381 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4382 {
4383         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4384         unsigned long flags;
4385         int ret = 0;
4386         u32 hprt0;
4387
4388         spin_lock_irqsave(&hsotg->lock, flags);
4389
4390         if (dwc2_is_device_mode(hsotg))
4391                 goto unlock;
4392
4393         if (hsotg->lx_state != DWC2_L0)
4394                 goto unlock;
4395
4396         if (!HCD_HW_ACCESSIBLE(hcd))
4397                 goto unlock;
4398
4399         if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4400                 goto unlock;
4401
4402         if (hsotg->params.power_down != DWC2_POWER_DOWN_PARAM_PARTIAL)
4403                 goto skip_power_saving;
4404
4405         /*
4406          * Drive USB suspend and disable port Power
4407          * if usb bus is not suspended.
4408          */
4409         if (!hsotg->bus_suspended) {
4410                 hprt0 = dwc2_read_hprt0(hsotg);
4411                 hprt0 |= HPRT0_SUSP;
4412                 hprt0 &= ~HPRT0_PWR;
4413                 dwc2_writel(hprt0, hsotg->regs + HPRT0);
4414                 dwc2_vbus_supply_exit(hsotg);
4415         }
4416
4417         /* Enter partial_power_down */
4418         ret = dwc2_enter_partial_power_down(hsotg);
4419         if (ret) {
4420                 if (ret != -ENOTSUPP)
4421                         dev_err(hsotg->dev,
4422                                 "enter partial_power_down failed\n");
4423                 goto skip_power_saving;
4424         }
4425
4426         /* Ask phy to be suspended */
4427         if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4428                 spin_unlock_irqrestore(&hsotg->lock, flags);
4429                 usb_phy_set_suspend(hsotg->uphy, true);
4430                 spin_lock_irqsave(&hsotg->lock, flags);
4431         }
4432
4433         /* After entering partial_power_down, hardware is no more accessible */
4434         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4435
4436 skip_power_saving:
4437         hsotg->lx_state = DWC2_L2;
4438 unlock:
4439         spin_unlock_irqrestore(&hsotg->lock, flags);
4440
4441         return ret;
4442 }
4443
4444 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4445 {
4446         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4447         unsigned long flags;
4448         int ret = 0;
4449
4450         spin_lock_irqsave(&hsotg->lock, flags);
4451
4452         if (dwc2_is_device_mode(hsotg))
4453                 goto unlock;
4454
4455         if (hsotg->lx_state != DWC2_L2)
4456                 goto unlock;
4457
4458         if (hsotg->params.power_down != DWC2_POWER_DOWN_PARAM_PARTIAL) {
4459                 hsotg->lx_state = DWC2_L0;
4460                 goto unlock;
4461         }
4462
4463         /*
4464          * Set HW accessible bit before powering on the controller
4465          * since an interrupt may rise.
4466          */
4467         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4468
4469         /*
4470          * Enable power if not already done.
4471          * This must not be spinlocked since duration
4472          * of this call is unknown.
4473          */
4474         if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4475                 spin_unlock_irqrestore(&hsotg->lock, flags);
4476                 usb_phy_set_suspend(hsotg->uphy, false);
4477                 spin_lock_irqsave(&hsotg->lock, flags);
4478         }
4479
4480         /* Exit partial_power_down */
4481         ret = dwc2_exit_partial_power_down(hsotg, true);
4482         if (ret && (ret != -ENOTSUPP))
4483                 dev_err(hsotg->dev, "exit partial_power_down failed\n");
4484
4485         hsotg->lx_state = DWC2_L0;
4486
4487         spin_unlock_irqrestore(&hsotg->lock, flags);
4488
4489         if (hsotg->bus_suspended) {
4490                 spin_lock_irqsave(&hsotg->lock, flags);
4491                 hsotg->flags.b.port_suspend_change = 1;
4492                 spin_unlock_irqrestore(&hsotg->lock, flags);
4493                 dwc2_port_resume(hsotg);
4494         } else {
4495                 dwc2_vbus_supply_init(hsotg);
4496
4497                 /* Wait for controller to correctly update D+/D- level */
4498                 usleep_range(3000, 5000);
4499
4500                 /*
4501                  * Clear Port Enable and Port Status changes.
4502                  * Enable Port Power.
4503                  */
4504                 dwc2_writel(HPRT0_PWR | HPRT0_CONNDET |
4505                                 HPRT0_ENACHG, hsotg->regs + HPRT0);
4506                 /* Wait for controller to detect Port Connect */
4507                 usleep_range(5000, 7000);
4508         }
4509
4510         return ret;
4511 unlock:
4512         spin_unlock_irqrestore(&hsotg->lock, flags);
4513
4514         return ret;
4515 }
4516
4517 /* Returns the current frame number */
4518 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4519 {
4520         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4521
4522         return dwc2_hcd_get_frame_number(hsotg);
4523 }
4524
4525 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4526                                char *fn_name)
4527 {
4528 #ifdef VERBOSE_DEBUG
4529         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4530         char *pipetype = NULL;
4531         char *speed = NULL;
4532
4533         dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4534         dev_vdbg(hsotg->dev, "  Device address: %d\n",
4535                  usb_pipedevice(urb->pipe));
4536         dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4537                  usb_pipeendpoint(urb->pipe),
4538                  usb_pipein(urb->pipe) ? "IN" : "OUT");
4539
4540         switch (usb_pipetype(urb->pipe)) {
4541         case PIPE_CONTROL:
4542                 pipetype = "CONTROL";
4543                 break;
4544         case PIPE_BULK:
4545                 pipetype = "BULK";
4546                 break;
4547         case PIPE_INTERRUPT:
4548                 pipetype = "INTERRUPT";
4549                 break;
4550         case PIPE_ISOCHRONOUS:
4551                 pipetype = "ISOCHRONOUS";
4552                 break;
4553         }
4554
4555         dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4556                  usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4557                  "IN" : "OUT");
4558
4559         switch (urb->dev->speed) {
4560         case USB_SPEED_HIGH:
4561                 speed = "HIGH";
4562                 break;
4563         case USB_SPEED_FULL:
4564                 speed = "FULL";
4565                 break;
4566         case USB_SPEED_LOW:
4567                 speed = "LOW";
4568                 break;
4569         default:
4570                 speed = "UNKNOWN";
4571                 break;
4572         }
4573
4574         dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4575         dev_vdbg(hsotg->dev, "  Max packet size: %d\n",
4576                  usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
4577         dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4578                  urb->transfer_buffer_length);
4579         dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4580                  urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4581         dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4582                  urb->setup_packet, (unsigned long)urb->setup_dma);
4583         dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4584
4585         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4586                 int i;
4587
4588                 for (i = 0; i < urb->number_of_packets; i++) {
4589                         dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4590                         dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4591                                  urb->iso_frame_desc[i].offset,
4592                                  urb->iso_frame_desc[i].length);
4593                 }
4594         }
4595 #endif
4596 }
4597
4598 /*
4599  * Starts processing a USB transfer request specified by a USB Request Block
4600  * (URB). mem_flags indicates the type of memory allocation to use while
4601  * processing this URB.
4602  */
4603 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4604                                  gfp_t mem_flags)
4605 {
4606         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4607         struct usb_host_endpoint *ep = urb->ep;
4608         struct dwc2_hcd_urb *dwc2_urb;
4609         int i;
4610         int retval;
4611         int alloc_bandwidth = 0;
4612         u8 ep_type = 0;
4613         u32 tflags = 0;
4614         void *buf;
4615         unsigned long flags;
4616         struct dwc2_qh *qh;
4617         bool qh_allocated = false;
4618         struct dwc2_qtd *qtd;
4619
4620         if (dbg_urb(urb)) {
4621                 dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4622                 dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4623         }
4624
4625         if (!ep)
4626                 return -EINVAL;
4627
4628         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4629             usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4630                 spin_lock_irqsave(&hsotg->lock, flags);
4631                 if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4632                         alloc_bandwidth = 1;
4633                 spin_unlock_irqrestore(&hsotg->lock, flags);
4634         }
4635
4636         switch (usb_pipetype(urb->pipe)) {
4637         case PIPE_CONTROL:
4638                 ep_type = USB_ENDPOINT_XFER_CONTROL;
4639                 break;
4640         case PIPE_ISOCHRONOUS:
4641                 ep_type = USB_ENDPOINT_XFER_ISOC;
4642                 break;
4643         case PIPE_BULK:
4644                 ep_type = USB_ENDPOINT_XFER_BULK;
4645                 break;
4646         case PIPE_INTERRUPT:
4647                 ep_type = USB_ENDPOINT_XFER_INT;
4648                 break;
4649         }
4650
4651         dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4652                                       mem_flags);
4653         if (!dwc2_urb)
4654                 return -ENOMEM;
4655
4656         dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4657                                   usb_pipeendpoint(urb->pipe), ep_type,
4658                                   usb_pipein(urb->pipe),
4659                                   usb_maxpacket(urb->dev, urb->pipe,
4660                                                 !(usb_pipein(urb->pipe))));
4661
4662         buf = urb->transfer_buffer;
4663
4664         if (hcd->self.uses_dma) {
4665                 if (!buf && (urb->transfer_dma & 3)) {
4666                         dev_err(hsotg->dev,
4667                                 "%s: unaligned transfer with no transfer_buffer",
4668                                 __func__);
4669                         retval = -EINVAL;
4670                         goto fail0;
4671                 }
4672         }
4673
4674         if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4675                 tflags |= URB_GIVEBACK_ASAP;
4676         if (urb->transfer_flags & URB_ZERO_PACKET)
4677                 tflags |= URB_SEND_ZERO_PACKET;
4678
4679         dwc2_urb->priv = urb;
4680         dwc2_urb->buf = buf;
4681         dwc2_urb->dma = urb->transfer_dma;
4682         dwc2_urb->length = urb->transfer_buffer_length;
4683         dwc2_urb->setup_packet = urb->setup_packet;
4684         dwc2_urb->setup_dma = urb->setup_dma;
4685         dwc2_urb->flags = tflags;
4686         dwc2_urb->interval = urb->interval;
4687         dwc2_urb->status = -EINPROGRESS;
4688
4689         for (i = 0; i < urb->number_of_packets; ++i)
4690                 dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4691                                                  urb->iso_frame_desc[i].offset,
4692                                                  urb->iso_frame_desc[i].length);
4693
4694         urb->hcpriv = dwc2_urb;
4695         qh = (struct dwc2_qh *)ep->hcpriv;
4696         /* Create QH for the endpoint if it doesn't exist */
4697         if (!qh) {
4698                 qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4699                 if (!qh) {
4700                         retval = -ENOMEM;
4701                         goto fail0;
4702                 }
4703                 ep->hcpriv = qh;
4704                 qh_allocated = true;
4705         }
4706
4707         qtd = kzalloc(sizeof(*qtd), mem_flags);
4708         if (!qtd) {
4709                 retval = -ENOMEM;
4710                 goto fail1;
4711         }
4712
4713         spin_lock_irqsave(&hsotg->lock, flags);
4714         retval = usb_hcd_link_urb_to_ep(hcd, urb);
4715         if (retval)
4716                 goto fail2;
4717
4718         retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4719         if (retval)
4720                 goto fail3;
4721
4722         if (alloc_bandwidth) {
4723                 dwc2_allocate_bus_bandwidth(hcd,
4724                                 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4725                                 urb);
4726         }
4727
4728         spin_unlock_irqrestore(&hsotg->lock, flags);
4729
4730         return 0;
4731
4732 fail3:
4733         dwc2_urb->priv = NULL;
4734         usb_hcd_unlink_urb_from_ep(hcd, urb);
4735         if (qh_allocated && qh->channel && qh->channel->qh == qh)
4736                 qh->channel->qh = NULL;
4737 fail2:
4738         spin_unlock_irqrestore(&hsotg->lock, flags);
4739         urb->hcpriv = NULL;
4740         kfree(qtd);
4741         qtd = NULL;
4742 fail1:
4743         if (qh_allocated) {
4744                 struct dwc2_qtd *qtd2, *qtd2_tmp;
4745
4746                 ep->hcpriv = NULL;
4747                 dwc2_hcd_qh_unlink(hsotg, qh);
4748                 /* Free each QTD in the QH's QTD list */
4749                 list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4750                                          qtd_list_entry)
4751                         dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4752                 dwc2_hcd_qh_free(hsotg, qh);
4753         }
4754 fail0:
4755         kfree(dwc2_urb);
4756
4757         return retval;
4758 }
4759
4760 /*
4761  * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4762  */
4763 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4764                                  int status)
4765 {
4766         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4767         int rc;
4768         unsigned long flags;
4769
4770         dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4771         dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4772
4773         spin_lock_irqsave(&hsotg->lock, flags);
4774
4775         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4776         if (rc)
4777                 goto out;
4778
4779         if (!urb->hcpriv) {
4780                 dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4781                 goto out;
4782         }
4783
4784         rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4785
4786         usb_hcd_unlink_urb_from_ep(hcd, urb);
4787
4788         kfree(urb->hcpriv);
4789         urb->hcpriv = NULL;
4790
4791         /* Higher layer software sets URB status */
4792         spin_unlock(&hsotg->lock);
4793         usb_hcd_giveback_urb(hcd, urb, status);
4794         spin_lock(&hsotg->lock);
4795
4796         dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4797         dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4798 out:
4799         spin_unlock_irqrestore(&hsotg->lock, flags);
4800
4801         return rc;
4802 }
4803
4804 /*
4805  * Frees resources in the DWC_otg controller related to a given endpoint. Also
4806  * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4807  * must already be dequeued.
4808  */
4809 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4810                                        struct usb_host_endpoint *ep)
4811 {
4812         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4813
4814         dev_dbg(hsotg->dev,
4815                 "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4816                 ep->desc.bEndpointAddress, ep->hcpriv);
4817         dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4818 }
4819
4820 /*
4821  * Resets endpoint specific parameter values, in current version used to reset
4822  * the data toggle (as a WA). This function can be called from usb_clear_halt
4823  * routine.
4824  */
4825 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4826                                      struct usb_host_endpoint *ep)
4827 {
4828         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4829         unsigned long flags;
4830
4831         dev_dbg(hsotg->dev,
4832                 "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4833                 ep->desc.bEndpointAddress);
4834
4835         spin_lock_irqsave(&hsotg->lock, flags);
4836         dwc2_hcd_endpoint_reset(hsotg, ep);
4837         spin_unlock_irqrestore(&hsotg->lock, flags);
4838 }
4839
4840 /*
4841  * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4842  * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4843  * interrupt.
4844  *
4845  * This function is called by the USB core when an interrupt occurs
4846  */
4847 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4848 {
4849         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4850
4851         return dwc2_handle_hcd_intr(hsotg);
4852 }
4853
4854 /*
4855  * Creates Status Change bitmap for the root hub and root port. The bitmap is
4856  * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4857  * is the status change indicator for the single root port. Returns 1 if either
4858  * change indicator is 1, otherwise returns 0.
4859  */
4860 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4861 {
4862         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4863
4864         buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4865         return buf[0] != 0;
4866 }
4867
4868 /* Handles hub class-specific requests */
4869 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4870                                  u16 windex, char *buf, u16 wlength)
4871 {
4872         int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4873                                           wvalue, windex, buf, wlength);
4874         return retval;
4875 }
4876
4877 /* Handles hub TT buffer clear completions */
4878 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4879                                                struct usb_host_endpoint *ep)
4880 {
4881         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4882         struct dwc2_qh *qh;
4883         unsigned long flags;
4884
4885         qh = ep->hcpriv;
4886         if (!qh)
4887                 return;
4888
4889         spin_lock_irqsave(&hsotg->lock, flags);
4890         qh->tt_buffer_dirty = 0;
4891
4892         if (hsotg->flags.b.port_connect_status)
4893                 dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4894
4895         spin_unlock_irqrestore(&hsotg->lock, flags);
4896 }
4897
4898 /*
4899  * HPRT0_SPD_HIGH_SPEED: high speed
4900  * HPRT0_SPD_FULL_SPEED: full speed
4901  */
4902 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4903 {
4904         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4905
4906         if (hsotg->params.speed == speed)
4907                 return;
4908
4909         hsotg->params.speed = speed;
4910         queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4911 }
4912
4913 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4914 {
4915         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4916
4917         if (!hsotg->params.change_speed_quirk)
4918                 return;
4919
4920         /*
4921          * On removal, set speed to default high-speed.
4922          */
4923         if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4924             udev->parent->speed < USB_SPEED_HIGH) {
4925                 dev_info(hsotg->dev, "Set speed to default high-speed\n");
4926                 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4927         }
4928 }
4929
4930 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4931 {
4932         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4933
4934         if (!hsotg->params.change_speed_quirk)
4935                 return 0;
4936
4937         if (udev->speed == USB_SPEED_HIGH) {
4938                 dev_info(hsotg->dev, "Set speed to high-speed\n");
4939                 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4940         } else if ((udev->speed == USB_SPEED_FULL ||
4941                                 udev->speed == USB_SPEED_LOW)) {
4942                 /*
4943                  * Change speed setting to full-speed if there's
4944                  * a full-speed or low-speed device plugged in.
4945                  */
4946                 dev_info(hsotg->dev, "Set speed to full-speed\n");
4947                 dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
4948         }
4949
4950         return 0;
4951 }
4952
4953 static struct hc_driver dwc2_hc_driver = {
4954         .description = "dwc2_hsotg",
4955         .product_desc = "DWC OTG Controller",
4956         .hcd_priv_size = sizeof(struct wrapper_priv_data),
4957
4958         .irq = _dwc2_hcd_irq,
4959         .flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
4960
4961         .start = _dwc2_hcd_start,
4962         .stop = _dwc2_hcd_stop,
4963         .urb_enqueue = _dwc2_hcd_urb_enqueue,
4964         .urb_dequeue = _dwc2_hcd_urb_dequeue,
4965         .endpoint_disable = _dwc2_hcd_endpoint_disable,
4966         .endpoint_reset = _dwc2_hcd_endpoint_reset,
4967         .get_frame_number = _dwc2_hcd_get_frame_number,
4968
4969         .hub_status_data = _dwc2_hcd_hub_status_data,
4970         .hub_control = _dwc2_hcd_hub_control,
4971         .clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
4972
4973         .bus_suspend = _dwc2_hcd_suspend,
4974         .bus_resume = _dwc2_hcd_resume,
4975
4976         .map_urb_for_dma        = dwc2_map_urb_for_dma,
4977         .unmap_urb_for_dma      = dwc2_unmap_urb_for_dma,
4978 };
4979
4980 /*
4981  * Frees secondary storage associated with the dwc2_hsotg structure contained
4982  * in the struct usb_hcd field
4983  */
4984 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
4985 {
4986         u32 ahbcfg;
4987         u32 dctl;
4988         int i;
4989
4990         dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
4991
4992         /* Free memory for QH/QTD lists */
4993         dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
4994         dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
4995         dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
4996         dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
4997         dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
4998         dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
4999         dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
5000
5001         /* Free memory for the host channels */
5002         for (i = 0; i < MAX_EPS_CHANNELS; i++) {
5003                 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
5004
5005                 if (chan) {
5006                         dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
5007                                 i, chan);
5008                         hsotg->hc_ptr_array[i] = NULL;
5009                         kfree(chan);
5010                 }
5011         }
5012
5013         if (hsotg->params.host_dma) {
5014                 if (hsotg->status_buf) {
5015                         dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
5016                                           hsotg->status_buf,
5017                                           hsotg->status_buf_dma);
5018                         hsotg->status_buf = NULL;
5019                 }
5020         } else {
5021                 kfree(hsotg->status_buf);
5022                 hsotg->status_buf = NULL;
5023         }
5024
5025         ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
5026
5027         /* Disable all interrupts */
5028         ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
5029         dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
5030         dwc2_writel(0, hsotg->regs + GINTMSK);
5031
5032         if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
5033                 dctl = dwc2_readl(hsotg->regs + DCTL);
5034                 dctl |= DCTL_SFTDISCON;
5035                 dwc2_writel(dctl, hsotg->regs + DCTL);
5036         }
5037
5038         if (hsotg->wq_otg) {
5039                 if (!cancel_work_sync(&hsotg->wf_otg))
5040                         flush_workqueue(hsotg->wq_otg);
5041                 destroy_workqueue(hsotg->wq_otg);
5042         }
5043
5044         del_timer(&hsotg->wkp_timer);
5045 }
5046
5047 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
5048 {
5049         /* Turn off all host-specific interrupts */
5050         dwc2_disable_host_interrupts(hsotg);
5051
5052         dwc2_hcd_free(hsotg);
5053 }
5054
5055 /*
5056  * Initializes the HCD. This function allocates memory for and initializes the
5057  * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5058  * USB bus with the core and calls the hc_driver->start() function. It returns
5059  * a negative error on failure.
5060  */
5061 int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5062 {
5063         struct platform_device *pdev = to_platform_device(hsotg->dev);
5064         struct resource *res;
5065         struct usb_hcd *hcd;
5066         struct dwc2_host_chan *channel;
5067         u32 hcfg;
5068         int i, num_channels;
5069         int retval;
5070
5071         if (usb_disabled())
5072                 return -ENODEV;
5073
5074         dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5075
5076         retval = -ENOMEM;
5077
5078         hcfg = dwc2_readl(hsotg->regs + HCFG);
5079         dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5080
5081 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5082         hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5083                                          sizeof(*hsotg->frame_num_array),
5084                                          GFP_KERNEL);
5085         if (!hsotg->frame_num_array)
5086                 goto error1;
5087         hsotg->last_frame_num_array =
5088                 kcalloc(FRAME_NUM_ARRAY_SIZE,
5089                         sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5090         if (!hsotg->last_frame_num_array)
5091                 goto error1;
5092 #endif
5093         hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5094
5095         /* Check if the bus driver or platform code has setup a dma_mask */
5096         if (hsotg->params.host_dma &&
5097             !hsotg->dev->dma_mask) {
5098                 dev_warn(hsotg->dev,
5099                          "dma_mask not set, disabling DMA\n");
5100                 hsotg->params.host_dma = false;
5101                 hsotg->params.dma_desc_enable = false;
5102         }
5103
5104         /* Set device flags indicating whether the HCD supports DMA */
5105         if (hsotg->params.host_dma) {
5106                 if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5107                         dev_warn(hsotg->dev, "can't set DMA mask\n");
5108                 if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5109                         dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5110         }
5111
5112         if (hsotg->params.change_speed_quirk) {
5113                 dwc2_hc_driver.free_dev = dwc2_free_dev;
5114                 dwc2_hc_driver.reset_device = dwc2_reset_device;
5115         }
5116
5117         hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5118         if (!hcd)
5119                 goto error1;
5120
5121         if (!hsotg->params.host_dma)
5122                 hcd->self.uses_dma = 0;
5123
5124         hcd->has_tt = 1;
5125
5126         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5127         hcd->rsrc_start = res->start;
5128         hcd->rsrc_len = resource_size(res);
5129
5130         ((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5131         hsotg->priv = hcd;
5132
5133         /*
5134          * Disable the global interrupt until all the interrupt handlers are
5135          * installed
5136          */
5137         dwc2_disable_global_interrupts(hsotg);
5138
5139         /* Initialize the DWC_otg core, and select the Phy type */
5140         retval = dwc2_core_init(hsotg, true);
5141         if (retval)
5142                 goto error2;
5143
5144         /* Create new workqueue and init work */
5145         retval = -ENOMEM;
5146         hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5147         if (!hsotg->wq_otg) {
5148                 dev_err(hsotg->dev, "Failed to create workqueue\n");
5149                 goto error2;
5150         }
5151         INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5152
5153         timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5154
5155         /* Initialize the non-periodic schedule */
5156         INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5157         INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5158         INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5159
5160         /* Initialize the periodic schedule */
5161         INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5162         INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5163         INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5164         INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5165
5166         INIT_LIST_HEAD(&hsotg->split_order);
5167
5168         /*
5169          * Create a host channel descriptor for each host channel implemented
5170          * in the controller. Initialize the channel descriptor array.
5171          */
5172         INIT_LIST_HEAD(&hsotg->free_hc_list);
5173         num_channels = hsotg->params.host_channels;
5174         memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5175
5176         for (i = 0; i < num_channels; i++) {
5177                 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5178                 if (!channel)
5179                         goto error3;
5180                 channel->hc_num = i;
5181                 INIT_LIST_HEAD(&channel->split_order_list_entry);
5182                 hsotg->hc_ptr_array[i] = channel;
5183         }
5184
5185         /* Initialize hsotg start work */
5186         INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5187
5188         /* Initialize port reset work */
5189         INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5190
5191         /*
5192          * Allocate space for storing data on status transactions. Normally no
5193          * data is sent, but this space acts as a bit bucket. This must be
5194          * done after usb_add_hcd since that function allocates the DMA buffer
5195          * pool.
5196          */
5197         if (hsotg->params.host_dma)
5198                 hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5199                                         DWC2_HCD_STATUS_BUF_SIZE,
5200                                         &hsotg->status_buf_dma, GFP_KERNEL);
5201         else
5202                 hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5203                                           GFP_KERNEL);
5204
5205         if (!hsotg->status_buf)
5206                 goto error3;
5207
5208         /*
5209          * Create kmem caches to handle descriptor buffers in descriptor
5210          * DMA mode.
5211          * Alignment must be set to 512 bytes.
5212          */
5213         if (hsotg->params.dma_desc_enable ||
5214             hsotg->params.dma_desc_fs_enable) {
5215                 hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5216                                 sizeof(struct dwc2_dma_desc) *
5217                                 MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5218                                 NULL);
5219                 if (!hsotg->desc_gen_cache) {
5220                         dev_err(hsotg->dev,
5221                                 "unable to create dwc2 generic desc cache\n");
5222
5223                         /*
5224                          * Disable descriptor dma mode since it will not be
5225                          * usable.
5226                          */
5227                         hsotg->params.dma_desc_enable = false;
5228                         hsotg->params.dma_desc_fs_enable = false;
5229                 }
5230
5231                 hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5232                                 sizeof(struct dwc2_dma_desc) *
5233                                 MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5234                 if (!hsotg->desc_hsisoc_cache) {
5235                         dev_err(hsotg->dev,
5236                                 "unable to create dwc2 hs isoc desc cache\n");
5237
5238                         kmem_cache_destroy(hsotg->desc_gen_cache);
5239
5240                         /*
5241                          * Disable descriptor dma mode since it will not be
5242                          * usable.
5243                          */
5244                         hsotg->params.dma_desc_enable = false;
5245                         hsotg->params.dma_desc_fs_enable = false;
5246                 }
5247         }
5248
5249         hsotg->otg_port = 1;
5250         hsotg->frame_list = NULL;
5251         hsotg->frame_list_dma = 0;
5252         hsotg->periodic_qh_count = 0;
5253
5254         /* Initiate lx_state to L3 disconnected state */
5255         hsotg->lx_state = DWC2_L3;
5256
5257         hcd->self.otg_port = hsotg->otg_port;
5258
5259         /* Don't support SG list at this point */
5260         hcd->self.sg_tablesize = 0;
5261
5262         if (!IS_ERR_OR_NULL(hsotg->uphy))
5263                 otg_set_host(hsotg->uphy->otg, &hcd->self);
5264
5265         /*
5266          * Finish generic HCD initialization and start the HCD. This function
5267          * allocates the DMA buffer pool, registers the USB bus, requests the
5268          * IRQ line, and calls hcd_start method.
5269          */
5270         retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5271         if (retval < 0)
5272                 goto error4;
5273
5274         device_wakeup_enable(hcd->self.controller);
5275
5276         dwc2_hcd_dump_state(hsotg);
5277
5278         dwc2_enable_global_interrupts(hsotg);
5279
5280         return 0;
5281
5282 error4:
5283         kmem_cache_destroy(hsotg->desc_gen_cache);
5284         kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5285 error3:
5286         dwc2_hcd_release(hsotg);
5287 error2:
5288         usb_put_hcd(hcd);
5289 error1:
5290
5291 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5292         kfree(hsotg->last_frame_num_array);
5293         kfree(hsotg->frame_num_array);
5294 #endif
5295
5296         dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5297         return retval;
5298 }
5299
5300 /*
5301  * Removes the HCD.
5302  * Frees memory and resources associated with the HCD and deregisters the bus.
5303  */
5304 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5305 {
5306         struct usb_hcd *hcd;
5307
5308         dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5309
5310         hcd = dwc2_hsotg_to_hcd(hsotg);
5311         dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5312
5313         if (!hcd) {
5314                 dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5315                         __func__);
5316                 return;
5317         }
5318
5319         if (!IS_ERR_OR_NULL(hsotg->uphy))
5320                 otg_set_host(hsotg->uphy->otg, NULL);
5321
5322         usb_remove_hcd(hcd);
5323         hsotg->priv = NULL;
5324
5325         kmem_cache_destroy(hsotg->desc_gen_cache);
5326         kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5327
5328         dwc2_hcd_release(hsotg);
5329         usb_put_hcd(hcd);
5330
5331 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5332         kfree(hsotg->last_frame_num_array);
5333         kfree(hsotg->frame_num_array);
5334 #endif
5335 }
5336
5337 /**
5338  * dwc2_backup_host_registers() - Backup controller host registers.
5339  * When suspending usb bus, registers needs to be backuped
5340  * if controller power is disabled once suspended.
5341  *
5342  * @hsotg: Programming view of the DWC_otg controller
5343  */
5344 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5345 {
5346         struct dwc2_hregs_backup *hr;
5347         int i;
5348
5349         dev_dbg(hsotg->dev, "%s\n", __func__);
5350
5351         /* Backup Host regs */
5352         hr = &hsotg->hr_backup;
5353         hr->hcfg = dwc2_readl(hsotg->regs + HCFG);
5354         hr->haintmsk = dwc2_readl(hsotg->regs + HAINTMSK);
5355         for (i = 0; i < hsotg->params.host_channels; ++i)
5356                 hr->hcintmsk[i] = dwc2_readl(hsotg->regs + HCINTMSK(i));
5357
5358         hr->hprt0 = dwc2_read_hprt0(hsotg);
5359         hr->hfir = dwc2_readl(hsotg->regs + HFIR);
5360         hr->hptxfsiz = dwc2_readl(hsotg->regs + HPTXFSIZ);
5361         hr->valid = true;
5362
5363         return 0;
5364 }
5365
5366 /**
5367  * dwc2_restore_host_registers() - Restore controller host registers.
5368  * When resuming usb bus, device registers needs to be restored
5369  * if controller power were disabled.
5370  *
5371  * @hsotg: Programming view of the DWC_otg controller
5372  */
5373 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5374 {
5375         struct dwc2_hregs_backup *hr;
5376         int i;
5377
5378         dev_dbg(hsotg->dev, "%s\n", __func__);
5379
5380         /* Restore host regs */
5381         hr = &hsotg->hr_backup;
5382         if (!hr->valid) {
5383                 dev_err(hsotg->dev, "%s: no host registers to restore\n",
5384                         __func__);
5385                 return -EINVAL;
5386         }
5387         hr->valid = false;
5388
5389         dwc2_writel(hr->hcfg, hsotg->regs + HCFG);
5390         dwc2_writel(hr->haintmsk, hsotg->regs + HAINTMSK);
5391
5392         for (i = 0; i < hsotg->params.host_channels; ++i)
5393                 dwc2_writel(hr->hcintmsk[i], hsotg->regs + HCINTMSK(i));
5394
5395         dwc2_writel(hr->hprt0, hsotg->regs + HPRT0);
5396         dwc2_writel(hr->hfir, hsotg->regs + HFIR);
5397         dwc2_writel(hr->hptxfsiz, hsotg->regs + HPTXFSIZ);
5398         hsotg->frame_number = 0;
5399
5400         return 0;
5401 }
5402
5403 /**
5404  * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5405  *
5406  * @hsotg: Programming view of the DWC_otg controller
5407  */
5408 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5409 {
5410         unsigned long flags;
5411         int ret = 0;
5412         u32 hprt0;
5413         u32 pcgcctl;
5414         u32 gusbcfg;
5415         u32 gpwrdn;
5416
5417         dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5418         ret = dwc2_backup_global_registers(hsotg);
5419         if (ret) {
5420                 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5421                         __func__);
5422                 return ret;
5423         }
5424         ret = dwc2_backup_host_registers(hsotg);
5425         if (ret) {
5426                 dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5427                         __func__);
5428                 return ret;
5429         }
5430
5431         /* Enter USB Suspend Mode */
5432         hprt0 = dwc2_readl(hsotg->regs + HPRT0);
5433         hprt0 |= HPRT0_SUSP;
5434         hprt0 &= ~HPRT0_ENA;
5435         dwc2_writel(hprt0, hsotg->regs + HPRT0);
5436
5437         /* Wait for the HPRT0.PrtSusp register field to be set */
5438         if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 300))
5439                 dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5440
5441         /*
5442          * We need to disable interrupts to prevent servicing of any IRQ
5443          * during going to hibernation
5444          */
5445         spin_lock_irqsave(&hsotg->lock, flags);
5446         hsotg->lx_state = DWC2_L2;
5447
5448         gusbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
5449         if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5450                 /* ULPI interface */
5451                 /* Suspend the Phy Clock */
5452                 pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
5453                 pcgcctl |= PCGCTL_STOPPCLK;
5454                 dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
5455                 udelay(10);
5456
5457                 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5458                 gpwrdn |= GPWRDN_PMUACTV;
5459                 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5460                 udelay(10);
5461         } else {
5462                 /* UTMI+ Interface */
5463                 gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5464                 gpwrdn |= GPWRDN_PMUACTV;
5465                 dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5466                 udelay(10);
5467
5468                 pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
5469                 pcgcctl |= PCGCTL_STOPPCLK;
5470                 dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
5471                 udelay(10);
5472         }
5473
5474         /* Enable interrupts from wake up logic */
5475         gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5476         gpwrdn |= GPWRDN_PMUINTSEL;
5477         dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5478         udelay(10);
5479
5480         /* Unmask host mode interrupts in GPWRDN */
5481         gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5482         gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5483         gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5484         gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5485         dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5486         udelay(10);
5487
5488         /* Enable Power Down Clamp */
5489         gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5490         gpwrdn |= GPWRDN_PWRDNCLMP;
5491         dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5492         udelay(10);
5493
5494         /* Switch off VDD */
5495         gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5496         gpwrdn |= GPWRDN_PWRDNSWTCH;
5497         dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5498
5499         hsotg->hibernated = 1;
5500         hsotg->bus_suspended = 1;
5501         dev_dbg(hsotg->dev, "Host hibernation completed\n");
5502         spin_unlock_irqrestore(&hsotg->lock, flags);
5503         return ret;
5504 }
5505
5506 /*
5507  * dwc2_host_exit_hibernation()
5508  *
5509  * @hsotg: Programming view of the DWC_otg controller
5510  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5511  * @param reset: indicates whether resume is initiated by Reset.
5512  *
5513  * Return: non-zero if failed to enter to hibernation.
5514  *
5515  * This function is for exiting from Host mode hibernation by
5516  * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5517  */
5518 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5519                                int reset)
5520 {
5521         u32 gpwrdn;
5522         u32 hprt0;
5523         int ret = 0;
5524         struct dwc2_gregs_backup *gr;
5525         struct dwc2_hregs_backup *hr;
5526
5527         gr = &hsotg->gr_backup;
5528         hr = &hsotg->hr_backup;
5529
5530         dev_dbg(hsotg->dev,
5531                 "%s: called with rem_wakeup = %d reset = %d\n",
5532                 __func__, rem_wakeup, reset);
5533
5534         dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5535         hsotg->hibernated = 0;
5536
5537         /*
5538          * This step is not described in functional spec but if not wait for
5539          * this delay, mismatch interrupts occurred because just after restore
5540          * core is in Device mode(gintsts.curmode == 0)
5541          */
5542         mdelay(100);
5543
5544         /* Clear all pending interupts */
5545         dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
5546
5547         /* De-assert Restore */
5548         gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5549         gpwrdn &= ~GPWRDN_RESTORE;
5550         dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5551         udelay(10);
5552
5553         /* Restore GUSBCFG, HCFG */
5554         dwc2_writel(gr->gusbcfg, hsotg->regs + GUSBCFG);
5555         dwc2_writel(hr->hcfg, hsotg->regs + HCFG);
5556
5557         /* De-assert Wakeup Logic */
5558         gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5559         gpwrdn &= ~GPWRDN_PMUACTV;
5560         dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5561         udelay(10);
5562
5563         hprt0 = hr->hprt0;
5564         hprt0 |= HPRT0_PWR;
5565         hprt0 &= ~HPRT0_ENA;
5566         hprt0 &= ~HPRT0_SUSP;
5567         dwc2_writel(hprt0, hsotg->regs + HPRT0);
5568
5569         hprt0 = hr->hprt0;
5570         hprt0 |= HPRT0_PWR;
5571         hprt0 &= ~HPRT0_ENA;
5572         hprt0 &= ~HPRT0_SUSP;
5573
5574         if (reset) {
5575                 hprt0 |= HPRT0_RST;
5576                 dwc2_writel(hprt0, hsotg->regs + HPRT0);
5577
5578                 /* Wait for Resume time and then program HPRT again */
5579                 mdelay(60);
5580                 hprt0 &= ~HPRT0_RST;
5581                 dwc2_writel(hprt0, hsotg->regs + HPRT0);
5582         } else {
5583                 hprt0 |= HPRT0_RES;
5584                 dwc2_writel(hprt0, hsotg->regs + HPRT0);
5585
5586                 /* Wait for Resume time and then program HPRT again */
5587                 mdelay(100);
5588                 hprt0 &= ~HPRT0_RES;
5589                 dwc2_writel(hprt0, hsotg->regs + HPRT0);
5590         }
5591         /* Clear all interrupt status */
5592         hprt0 = dwc2_readl(hsotg->regs + HPRT0);
5593         hprt0 |= HPRT0_CONNDET;
5594         hprt0 |= HPRT0_ENACHG;
5595         hprt0 &= ~HPRT0_ENA;
5596         dwc2_writel(hprt0, hsotg->regs + HPRT0);
5597
5598         hprt0 = dwc2_readl(hsotg->regs + HPRT0);
5599
5600         /* Clear all pending interupts */
5601         dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
5602
5603         /* Restore global registers */
5604         ret = dwc2_restore_global_registers(hsotg);
5605         if (ret) {
5606                 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5607                         __func__);
5608                 return ret;
5609         }
5610
5611         /* Restore host registers */
5612         ret = dwc2_restore_host_registers(hsotg);
5613         if (ret) {
5614                 dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5615                         __func__);
5616                 return ret;
5617         }
5618
5619         hsotg->hibernated = 0;
5620         hsotg->bus_suspended = 0;
5621         hsotg->lx_state = DWC2_L0;
5622         dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5623         return ret;
5624 }