Merge tag 'backlight-next-4.12' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / thermal / devfreq_cooling.c
1 /*
2  * devfreq_cooling: Thermal cooling device implementation for devices using
3  *                  devfreq
4  *
5  * Copyright (C) 2014-2015 ARM Limited
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12  * kind, whether express or implied; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * TODO:
17  *    - If OPPs are added or removed after devfreq cooling has
18  *      registered, the devfreq cooling won't react to it.
19  */
20
21 #include <linux/devfreq.h>
22 #include <linux/devfreq_cooling.h>
23 #include <linux/export.h>
24 #include <linux/idr.h>
25 #include <linux/slab.h>
26 #include <linux/pm_opp.h>
27 #include <linux/thermal.h>
28
29 #include <trace/events/thermal.h>
30
31 static DEFINE_IDA(devfreq_ida);
32
33 /**
34  * struct devfreq_cooling_device - Devfreq cooling device
35  * @id:         unique integer value corresponding to each
36  *              devfreq_cooling_device registered.
37  * @cdev:       Pointer to associated thermal cooling device.
38  * @devfreq:    Pointer to associated devfreq device.
39  * @cooling_state:      Current cooling state.
40  * @power_table:        Pointer to table with maximum power draw for each
41  *                      cooling state. State is the index into the table, and
42  *                      the power is in mW.
43  * @freq_table: Pointer to a table with the frequencies sorted in descending
44  *              order.  You can index the table by cooling device state
45  * @freq_table_size:    Size of the @freq_table and @power_table
46  * @power_ops:  Pointer to devfreq_cooling_power, used to generate the
47  *              @power_table.
48  */
49 struct devfreq_cooling_device {
50         int id;
51         struct thermal_cooling_device *cdev;
52         struct devfreq *devfreq;
53         unsigned long cooling_state;
54         u32 *power_table;
55         u32 *freq_table;
56         size_t freq_table_size;
57         struct devfreq_cooling_power *power_ops;
58 };
59
60 /**
61  * partition_enable_opps() - disable all opps above a given state
62  * @dfc:        Pointer to devfreq we are operating on
63  * @cdev_state: cooling device state we're setting
64  *
65  * Go through the OPPs of the device, enabling all OPPs until
66  * @cdev_state and disabling those frequencies above it.
67  */
68 static int partition_enable_opps(struct devfreq_cooling_device *dfc,
69                                  unsigned long cdev_state)
70 {
71         int i;
72         struct device *dev = dfc->devfreq->dev.parent;
73
74         for (i = 0; i < dfc->freq_table_size; i++) {
75                 struct dev_pm_opp *opp;
76                 int ret = 0;
77                 unsigned int freq = dfc->freq_table[i];
78                 bool want_enable = i >= cdev_state ? true : false;
79
80                 opp = dev_pm_opp_find_freq_exact(dev, freq, !want_enable);
81
82                 if (PTR_ERR(opp) == -ERANGE)
83                         continue;
84                 else if (IS_ERR(opp))
85                         return PTR_ERR(opp);
86
87                 dev_pm_opp_put(opp);
88
89                 if (want_enable)
90                         ret = dev_pm_opp_enable(dev, freq);
91                 else
92                         ret = dev_pm_opp_disable(dev, freq);
93
94                 if (ret)
95                         return ret;
96         }
97
98         return 0;
99 }
100
101 static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev,
102                                          unsigned long *state)
103 {
104         struct devfreq_cooling_device *dfc = cdev->devdata;
105
106         *state = dfc->freq_table_size - 1;
107
108         return 0;
109 }
110
111 static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev,
112                                          unsigned long *state)
113 {
114         struct devfreq_cooling_device *dfc = cdev->devdata;
115
116         *state = dfc->cooling_state;
117
118         return 0;
119 }
120
121 static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
122                                          unsigned long state)
123 {
124         struct devfreq_cooling_device *dfc = cdev->devdata;
125         struct devfreq *df = dfc->devfreq;
126         struct device *dev = df->dev.parent;
127         int ret;
128
129         if (state == dfc->cooling_state)
130                 return 0;
131
132         dev_dbg(dev, "Setting cooling state %lu\n", state);
133
134         if (state >= dfc->freq_table_size)
135                 return -EINVAL;
136
137         ret = partition_enable_opps(dfc, state);
138         if (ret)
139                 return ret;
140
141         dfc->cooling_state = state;
142
143         return 0;
144 }
145
146 /**
147  * freq_get_state() - get the cooling state corresponding to a frequency
148  * @dfc:        Pointer to devfreq cooling device
149  * @freq:       frequency in Hz
150  *
151  * Return: the cooling state associated with the @freq, or
152  * THERMAL_CSTATE_INVALID if it wasn't found.
153  */
154 static unsigned long
155 freq_get_state(struct devfreq_cooling_device *dfc, unsigned long freq)
156 {
157         int i;
158
159         for (i = 0; i < dfc->freq_table_size; i++) {
160                 if (dfc->freq_table[i] == freq)
161                         return i;
162         }
163
164         return THERMAL_CSTATE_INVALID;
165 }
166
167 /**
168  * get_static_power() - calculate the static power
169  * @dfc:        Pointer to devfreq cooling device
170  * @freq:       Frequency in Hz
171  *
172  * Calculate the static power in milliwatts using the supplied
173  * get_static_power().  The current voltage is calculated using the
174  * OPP library.  If no get_static_power() was supplied, assume the
175  * static power is negligible.
176  */
177 static unsigned long
178 get_static_power(struct devfreq_cooling_device *dfc, unsigned long freq)
179 {
180         struct devfreq *df = dfc->devfreq;
181         struct device *dev = df->dev.parent;
182         unsigned long voltage;
183         struct dev_pm_opp *opp;
184
185         if (!dfc->power_ops->get_static_power)
186                 return 0;
187
188         opp = dev_pm_opp_find_freq_exact(dev, freq, true);
189         if (PTR_ERR(opp) == -ERANGE)
190                 opp = dev_pm_opp_find_freq_exact(dev, freq, false);
191
192         if (IS_ERR(opp)) {
193                 dev_err_ratelimited(dev, "Failed to find OPP for frequency %lu: %ld\n",
194                                     freq, PTR_ERR(opp));
195                 return 0;
196         }
197
198         voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
199         dev_pm_opp_put(opp);
200
201         if (voltage == 0) {
202                 dev_err_ratelimited(dev,
203                                     "Failed to get voltage for frequency %lu\n",
204                                     freq);
205                 return 0;
206         }
207
208         return dfc->power_ops->get_static_power(df, voltage);
209 }
210
211 /**
212  * get_dynamic_power - calculate the dynamic power
213  * @dfc:        Pointer to devfreq cooling device
214  * @freq:       Frequency in Hz
215  * @voltage:    Voltage in millivolts
216  *
217  * Calculate the dynamic power in milliwatts consumed by the device at
218  * frequency @freq and voltage @voltage.  If the get_dynamic_power()
219  * was supplied as part of the devfreq_cooling_power struct, then that
220  * function is used.  Otherwise, a simple power model (Pdyn = Coeff *
221  * Voltage^2 * Frequency) is used.
222  */
223 static unsigned long
224 get_dynamic_power(struct devfreq_cooling_device *dfc, unsigned long freq,
225                   unsigned long voltage)
226 {
227         u64 power;
228         u32 freq_mhz;
229         struct devfreq_cooling_power *dfc_power = dfc->power_ops;
230
231         if (dfc_power->get_dynamic_power)
232                 return dfc_power->get_dynamic_power(dfc->devfreq, freq,
233                                                     voltage);
234
235         freq_mhz = freq / 1000000;
236         power = (u64)dfc_power->dyn_power_coeff * freq_mhz * voltage * voltage;
237         do_div(power, 1000000000);
238
239         return power;
240 }
241
242 static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev,
243                                                struct thermal_zone_device *tz,
244                                                u32 *power)
245 {
246         struct devfreq_cooling_device *dfc = cdev->devdata;
247         struct devfreq *df = dfc->devfreq;
248         struct devfreq_dev_status *status = &df->last_status;
249         unsigned long state;
250         unsigned long freq = status->current_frequency;
251         u32 dyn_power, static_power;
252
253         /* Get dynamic power for state */
254         state = freq_get_state(dfc, freq);
255         if (state == THERMAL_CSTATE_INVALID)
256                 return -EAGAIN;
257
258         dyn_power = dfc->power_table[state];
259
260         /* Scale dynamic power for utilization */
261         dyn_power = (dyn_power * status->busy_time) / status->total_time;
262
263         /* Get static power */
264         static_power = get_static_power(dfc, freq);
265
266         trace_thermal_power_devfreq_get_power(cdev, status, freq, dyn_power,
267                                               static_power);
268
269         *power = dyn_power + static_power;
270
271         return 0;
272 }
273
274 static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev,
275                                        struct thermal_zone_device *tz,
276                                        unsigned long state,
277                                        u32 *power)
278 {
279         struct devfreq_cooling_device *dfc = cdev->devdata;
280         unsigned long freq;
281         u32 static_power;
282
283         if (state >= dfc->freq_table_size)
284                 return -EINVAL;
285
286         freq = dfc->freq_table[state];
287         static_power = get_static_power(dfc, freq);
288
289         *power = dfc->power_table[state] + static_power;
290         return 0;
291 }
292
293 static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
294                                        struct thermal_zone_device *tz,
295                                        u32 power, unsigned long *state)
296 {
297         struct devfreq_cooling_device *dfc = cdev->devdata;
298         struct devfreq *df = dfc->devfreq;
299         struct devfreq_dev_status *status = &df->last_status;
300         unsigned long freq = status->current_frequency;
301         unsigned long busy_time;
302         s32 dyn_power;
303         u32 static_power;
304         int i;
305
306         static_power = get_static_power(dfc, freq);
307
308         dyn_power = power - static_power;
309         dyn_power = dyn_power > 0 ? dyn_power : 0;
310
311         /* Scale dynamic power for utilization */
312         busy_time = status->busy_time ?: 1;
313         dyn_power = (dyn_power * status->total_time) / busy_time;
314
315         /*
316          * Find the first cooling state that is within the power
317          * budget for dynamic power.
318          */
319         for (i = 0; i < dfc->freq_table_size - 1; i++)
320                 if (dyn_power >= dfc->power_table[i])
321                         break;
322
323         *state = i;
324         trace_thermal_power_devfreq_limit(cdev, freq, *state, power);
325         return 0;
326 }
327
328 static struct thermal_cooling_device_ops devfreq_cooling_ops = {
329         .get_max_state = devfreq_cooling_get_max_state,
330         .get_cur_state = devfreq_cooling_get_cur_state,
331         .set_cur_state = devfreq_cooling_set_cur_state,
332 };
333
334 /**
335  * devfreq_cooling_gen_tables() - Generate power and freq tables.
336  * @dfc: Pointer to devfreq cooling device.
337  *
338  * Generate power and frequency tables: the power table hold the
339  * device's maximum power usage at each cooling state (OPP).  The
340  * static and dynamic power using the appropriate voltage and
341  * frequency for the state, is acquired from the struct
342  * devfreq_cooling_power, and summed to make the maximum power draw.
343  *
344  * The frequency table holds the frequencies in descending order.
345  * That way its indexed by cooling device state.
346  *
347  * The tables are malloced, and pointers put in dfc.  They must be
348  * freed when unregistering the devfreq cooling device.
349  *
350  * Return: 0 on success, negative error code on failure.
351  */
352 static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc)
353 {
354         struct devfreq *df = dfc->devfreq;
355         struct device *dev = df->dev.parent;
356         int ret, num_opps;
357         unsigned long freq;
358         u32 *power_table = NULL;
359         u32 *freq_table;
360         int i;
361
362         num_opps = dev_pm_opp_get_opp_count(dev);
363
364         if (dfc->power_ops) {
365                 power_table = kcalloc(num_opps, sizeof(*power_table),
366                                       GFP_KERNEL);
367                 if (!power_table)
368                         return -ENOMEM;
369         }
370
371         freq_table = kcalloc(num_opps, sizeof(*freq_table),
372                              GFP_KERNEL);
373         if (!freq_table) {
374                 ret = -ENOMEM;
375                 goto free_power_table;
376         }
377
378         for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) {
379                 unsigned long power_dyn, voltage;
380                 struct dev_pm_opp *opp;
381
382                 opp = dev_pm_opp_find_freq_floor(dev, &freq);
383                 if (IS_ERR(opp)) {
384                         ret = PTR_ERR(opp);
385                         goto free_tables;
386                 }
387
388                 voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
389                 dev_pm_opp_put(opp);
390
391                 if (dfc->power_ops) {
392                         power_dyn = get_dynamic_power(dfc, freq, voltage);
393
394                         dev_dbg(dev, "Dynamic power table: %lu MHz @ %lu mV: %lu = %lu mW\n",
395                                 freq / 1000000, voltage, power_dyn, power_dyn);
396
397                         power_table[i] = power_dyn;
398                 }
399
400                 freq_table[i] = freq;
401         }
402
403         if (dfc->power_ops)
404                 dfc->power_table = power_table;
405
406         dfc->freq_table = freq_table;
407         dfc->freq_table_size = num_opps;
408
409         return 0;
410
411 free_tables:
412         kfree(freq_table);
413 free_power_table:
414         kfree(power_table);
415
416         return ret;
417 }
418
419 /**
420  * of_devfreq_cooling_register_power() - Register devfreq cooling device,
421  *                                      with OF and power information.
422  * @np: Pointer to OF device_node.
423  * @df: Pointer to devfreq device.
424  * @dfc_power:  Pointer to devfreq_cooling_power.
425  *
426  * Register a devfreq cooling device.  The available OPPs must be
427  * registered on the device.
428  *
429  * If @dfc_power is provided, the cooling device is registered with the
430  * power extensions.  For the power extensions to work correctly,
431  * devfreq should use the simple_ondemand governor, other governors
432  * are not currently supported.
433  */
434 struct thermal_cooling_device *
435 of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
436                                   struct devfreq_cooling_power *dfc_power)
437 {
438         struct thermal_cooling_device *cdev;
439         struct devfreq_cooling_device *dfc;
440         char dev_name[THERMAL_NAME_LENGTH];
441         int err;
442
443         dfc = kzalloc(sizeof(*dfc), GFP_KERNEL);
444         if (!dfc)
445                 return ERR_PTR(-ENOMEM);
446
447         dfc->devfreq = df;
448
449         if (dfc_power) {
450                 dfc->power_ops = dfc_power;
451
452                 devfreq_cooling_ops.get_requested_power =
453                         devfreq_cooling_get_requested_power;
454                 devfreq_cooling_ops.state2power = devfreq_cooling_state2power;
455                 devfreq_cooling_ops.power2state = devfreq_cooling_power2state;
456         }
457
458         err = devfreq_cooling_gen_tables(dfc);
459         if (err)
460                 goto free_dfc;
461
462         err = ida_simple_get(&devfreq_ida, 0, 0, GFP_KERNEL);
463         if (err < 0)
464                 goto free_tables;
465         dfc->id = err;
466
467         snprintf(dev_name, sizeof(dev_name), "thermal-devfreq-%d", dfc->id);
468
469         cdev = thermal_of_cooling_device_register(np, dev_name, dfc,
470                                                   &devfreq_cooling_ops);
471         if (IS_ERR(cdev)) {
472                 err = PTR_ERR(cdev);
473                 dev_err(df->dev.parent,
474                         "Failed to register devfreq cooling device (%d)\n",
475                         err);
476                 goto release_ida;
477         }
478
479         dfc->cdev = cdev;
480
481         return cdev;
482
483 release_ida:
484         ida_simple_remove(&devfreq_ida, dfc->id);
485 free_tables:
486         kfree(dfc->power_table);
487         kfree(dfc->freq_table);
488 free_dfc:
489         kfree(dfc);
490
491         return ERR_PTR(err);
492 }
493 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power);
494
495 /**
496  * of_devfreq_cooling_register() - Register devfreq cooling device,
497  *                                with OF information.
498  * @np: Pointer to OF device_node.
499  * @df: Pointer to devfreq device.
500  */
501 struct thermal_cooling_device *
502 of_devfreq_cooling_register(struct device_node *np, struct devfreq *df)
503 {
504         return of_devfreq_cooling_register_power(np, df, NULL);
505 }
506 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register);
507
508 /**
509  * devfreq_cooling_register() - Register devfreq cooling device.
510  * @df: Pointer to devfreq device.
511  */
512 struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df)
513 {
514         return of_devfreq_cooling_register(NULL, df);
515 }
516 EXPORT_SYMBOL_GPL(devfreq_cooling_register);
517
518 /**
519  * devfreq_cooling_unregister() - Unregister devfreq cooling device.
520  * @dfc: Pointer to devfreq cooling device to unregister.
521  */
522 void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
523 {
524         struct devfreq_cooling_device *dfc;
525
526         if (!cdev)
527                 return;
528
529         dfc = cdev->devdata;
530
531         thermal_cooling_device_unregister(dfc->cdev);
532         ida_simple_remove(&devfreq_ida, dfc->id);
533         kfree(dfc->power_table);
534         kfree(dfc->freq_table);
535
536         kfree(dfc);
537 }
538 EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);