Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / drivers / staging / rts5208 / rtsx_transport.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for Realtek PCI-Express card reader
4  *
5  * Copyright(c) 2009-2013 Realtek Semiconductor Corp. All rights reserved.
6  *
7  * Author:
8  *   Wei WANG (wei_wang@realsil.com.cn)
9  *   Micky Ching (micky_ching@realsil.com.cn)
10  */
11
12 #include <linux/blkdev.h>
13 #include <linux/kthread.h>
14 #include <linux/sched.h>
15
16 #include "rtsx.h"
17
18 /***********************************************************************
19  * Scatter-gather transfer buffer access routines
20  ***********************************************************************/
21
22 /*
23  * Copy a buffer of length buflen to/from the srb's transfer buffer.
24  * (Note: for scatter-gather transfers (srb->use_sg > 0), srb->request_buffer
25  * points to a list of s-g entries and we ignore srb->request_bufflen.
26  * For non-scatter-gather transfers, srb->request_buffer points to the
27  * transfer buffer itself and srb->request_bufflen is the buffer's length.)
28  * Update the *index and *offset variables so that the next copy will
29  * pick up from where this one left off.
30  */
31
32 unsigned int rtsx_stor_access_xfer_buf(unsigned char *buffer,
33                                        unsigned int buflen,
34                                        struct scsi_cmnd *srb,
35                                        unsigned int *index,
36                                        unsigned int *offset,
37                                        enum xfer_buf_dir dir)
38 {
39         unsigned int cnt;
40
41         /* If not using scatter-gather, just transfer the data directly. */
42         if (scsi_sg_count(srb) == 0) {
43                 unsigned char *sgbuffer;
44
45                 if (*offset >= scsi_bufflen(srb))
46                         return 0;
47                 cnt = min(buflen, scsi_bufflen(srb) - *offset);
48
49                 sgbuffer = (unsigned char *)scsi_sglist(srb) + *offset;
50
51                 if (dir == TO_XFER_BUF)
52                         memcpy(sgbuffer, buffer, cnt);
53                 else
54                         memcpy(buffer, sgbuffer, cnt);
55                 *offset += cnt;
56
57         /*
58          * Using scatter-gather.  We have to go through the list one entry
59          * at a time.  Each s-g entry contains some number of pages, and
60          * each page has to be kmap()'ed separately.
61          */
62         } else {
63                 struct scatterlist *sg =
64                                 (struct scatterlist *)scsi_sglist(srb)
65                                 + *index;
66
67                 /*
68                  * This loop handles a single s-g list entry, which may
69                  * include multiple pages.  Find the initial page structure
70                  * and the starting offset within the page, and update
71                  * the *offset and *index values for the next loop.
72                  */
73                 cnt = 0;
74                 while (cnt < buflen && *index < scsi_sg_count(srb)) {
75                         struct page *page = sg_page(sg) +
76                                         ((sg->offset + *offset) >> PAGE_SHIFT);
77                         unsigned int poff = (sg->offset + *offset) &
78                                             (PAGE_SIZE - 1);
79                         unsigned int sglen = sg->length - *offset;
80
81                         if (sglen > buflen - cnt) {
82                                 /* Transfer ends within this s-g entry */
83                                 sglen = buflen - cnt;
84                                 *offset += sglen;
85                         } else {
86                                 /* Transfer continues to next s-g entry */
87                                 *offset = 0;
88                                 ++*index;
89                                 ++sg;
90                         }
91
92                         while (sglen > 0) {
93                                 unsigned int plen = min(sglen, (unsigned int)
94                                                 PAGE_SIZE - poff);
95                                 unsigned char *ptr = kmap(page);
96
97                                 if (dir == TO_XFER_BUF)
98                                         memcpy(ptr + poff, buffer + cnt, plen);
99                                 else
100                                         memcpy(buffer + cnt, ptr + poff, plen);
101                                 kunmap(page);
102
103                                 /* Start at the beginning of the next page */
104                                 poff = 0;
105                                 ++page;
106                                 cnt += plen;
107                                 sglen -= plen;
108                         }
109                 }
110         }
111
112         /* Return the amount actually transferred */
113         return cnt;
114 }
115
116 /*
117  * Store the contents of buffer into srb's transfer buffer and set the
118  * SCSI residue.
119  */
120 void rtsx_stor_set_xfer_buf(unsigned char *buffer,
121                             unsigned int buflen, struct scsi_cmnd *srb)
122 {
123         unsigned int index = 0, offset = 0;
124
125         rtsx_stor_access_xfer_buf(buffer, buflen, srb, &index, &offset,
126                                   TO_XFER_BUF);
127         if (buflen < scsi_bufflen(srb))
128                 scsi_set_resid(srb, scsi_bufflen(srb) - buflen);
129 }
130
131 void rtsx_stor_get_xfer_buf(unsigned char *buffer,
132                             unsigned int buflen, struct scsi_cmnd *srb)
133 {
134         unsigned int index = 0, offset = 0;
135
136         rtsx_stor_access_xfer_buf(buffer, buflen, srb, &index, &offset,
137                                   FROM_XFER_BUF);
138         if (buflen < scsi_bufflen(srb))
139                 scsi_set_resid(srb, scsi_bufflen(srb) - buflen);
140 }
141
142 /***********************************************************************
143  * Transport routines
144  ***********************************************************************/
145
146 /*
147  * Invoke the transport and basic error-handling/recovery methods
148  *
149  * This is used to send the message to the device and receive the response.
150  */
151 void rtsx_invoke_transport(struct scsi_cmnd *srb, struct rtsx_chip *chip)
152 {
153         int result;
154
155         result = rtsx_scsi_handler(srb, chip);
156
157         /*
158          * if the command gets aborted by the higher layers, we need to
159          * short-circuit all other processing.
160          */
161         if (rtsx_chk_stat(chip, RTSX_STAT_ABORT)) {
162                 dev_dbg(rtsx_dev(chip), "-- command was aborted\n");
163                 srb->result = DID_ABORT << 16;
164                 goto handle_errors;
165         }
166
167         /* if there is a transport error, reset and don't auto-sense */
168         if (result == TRANSPORT_ERROR) {
169                 dev_dbg(rtsx_dev(chip), "-- transport indicates error, resetting\n");
170                 srb->result = DID_ERROR << 16;
171                 goto handle_errors;
172         }
173
174         srb->result = SAM_STAT_GOOD;
175
176         /*
177          * If we have a failure, we're going to do a REQUEST_SENSE
178          * automatically.  Note that we differentiate between a command
179          * "failure" and an "error" in the transport mechanism.
180          */
181         if (result == TRANSPORT_FAILED) {
182                 /* set the result so the higher layers expect this data */
183                 srb->result = SAM_STAT_CHECK_CONDITION;
184                 memcpy(srb->sense_buffer,
185                        (unsigned char *)&chip->sense_buffer[SCSI_LUN(srb)],
186                        sizeof(struct sense_data_t));
187         }
188
189         return;
190
191 handle_errors:
192         return;
193 }
194
195 void rtsx_add_cmd(struct rtsx_chip *chip,
196                   u8 cmd_type, u16 reg_addr, u8 mask, u8 data)
197 {
198         __le32 *cb = (__le32 *)(chip->host_cmds_ptr);
199         u32 val = 0;
200
201         val |= (u32)(cmd_type & 0x03) << 30;
202         val |= (u32)(reg_addr & 0x3FFF) << 16;
203         val |= (u32)mask << 8;
204         val |= (u32)data;
205
206         spin_lock_irq(&chip->rtsx->reg_lock);
207         if (chip->ci < (HOST_CMDS_BUF_LEN / 4))
208                 cb[(chip->ci)++] = cpu_to_le32(val);
209
210         spin_unlock_irq(&chip->rtsx->reg_lock);
211 }
212
213 void rtsx_send_cmd_no_wait(struct rtsx_chip *chip)
214 {
215         u32 val = BIT(31);
216
217         rtsx_writel(chip, RTSX_HCBAR, chip->host_cmds_addr);
218
219         val |= (u32)(chip->ci * 4) & 0x00FFFFFF;
220         /* Hardware Auto Response */
221         val |= 0x40000000;
222         rtsx_writel(chip, RTSX_HCBCTLR, val);
223 }
224
225 int rtsx_send_cmd(struct rtsx_chip *chip, u8 card, int timeout)
226 {
227         struct rtsx_dev *rtsx = chip->rtsx;
228         struct completion trans_done;
229         u32 val = BIT(31);
230         long timeleft;
231         int err = 0;
232
233         if (card == SD_CARD)
234                 rtsx->check_card_cd = SD_EXIST;
235         else if (card == MS_CARD)
236                 rtsx->check_card_cd = MS_EXIST;
237         else if (card == XD_CARD)
238                 rtsx->check_card_cd = XD_EXIST;
239         else
240                 rtsx->check_card_cd = 0;
241
242         spin_lock_irq(&rtsx->reg_lock);
243
244         /* set up data structures for the wakeup system */
245         rtsx->done = &trans_done;
246         rtsx->trans_result = TRANS_NOT_READY;
247         init_completion(&trans_done);
248         rtsx->trans_state = STATE_TRANS_CMD;
249
250         rtsx_writel(chip, RTSX_HCBAR, chip->host_cmds_addr);
251
252         val |= (u32)(chip->ci * 4) & 0x00FFFFFF;
253         /* Hardware Auto Response */
254         val |= 0x40000000;
255         rtsx_writel(chip, RTSX_HCBCTLR, val);
256
257         spin_unlock_irq(&rtsx->reg_lock);
258
259         /* Wait for TRANS_OK_INT */
260         timeleft = wait_for_completion_interruptible_timeout(
261                 &trans_done, msecs_to_jiffies(timeout));
262         if (timeleft <= 0) {
263                 dev_dbg(rtsx_dev(chip), "chip->int_reg = 0x%x\n",
264                         chip->int_reg);
265                 err = -ETIMEDOUT;
266                 goto finish_send_cmd;
267         }
268
269         spin_lock_irq(&rtsx->reg_lock);
270         if (rtsx->trans_result == TRANS_RESULT_FAIL)
271                 err = -EIO;
272         else if (rtsx->trans_result == TRANS_RESULT_OK)
273                 err = 0;
274
275         spin_unlock_irq(&rtsx->reg_lock);
276
277 finish_send_cmd:
278         rtsx->done = NULL;
279         rtsx->trans_state = STATE_TRANS_NONE;
280
281         if (err < 0)
282                 rtsx_stop_cmd(chip, card);
283
284         return err;
285 }
286
287 static inline void rtsx_add_sg_tbl(
288         struct rtsx_chip *chip, u32 addr, u32 len, u8 option)
289 {
290         __le64 *sgb = (__le64 *)(chip->host_sg_tbl_ptr);
291         u64 val = 0;
292         u32 temp_len = 0;
293         u8  temp_opt = 0;
294
295         do {
296                 if (len > 0x80000) {
297                         temp_len = 0x80000;
298                         temp_opt = option & (~RTSX_SG_END);
299                 } else {
300                         temp_len = len;
301                         temp_opt = option;
302                 }
303                 val = ((u64)addr << 32) | ((u64)temp_len << 12) | temp_opt;
304
305                 if (chip->sgi < (HOST_SG_TBL_BUF_LEN / 8))
306                         sgb[(chip->sgi)++] = cpu_to_le64(val);
307
308                 len -= temp_len;
309                 addr += temp_len;
310         } while (len);
311 }
312
313 static int rtsx_transfer_sglist_adma_partial(struct rtsx_chip *chip, u8 card,
314                                              struct scatterlist *sg, int num_sg,
315                                              unsigned int *index,
316                                              unsigned int *offset, int size,
317                                              enum dma_data_direction dma_dir,
318                                              int timeout)
319 {
320         struct rtsx_dev *rtsx = chip->rtsx;
321         struct completion trans_done;
322         u8 dir;
323         int sg_cnt, i, resid;
324         int err = 0;
325         long timeleft;
326         struct scatterlist *sg_ptr;
327         u32 val = TRIG_DMA;
328
329         if (!sg || (num_sg <= 0) || !offset || !index)
330                 return -EIO;
331
332         if (dma_dir == DMA_TO_DEVICE)
333                 dir = HOST_TO_DEVICE;
334         else if (dma_dir == DMA_FROM_DEVICE)
335                 dir = DEVICE_TO_HOST;
336         else
337                 return -ENXIO;
338
339         if (card == SD_CARD)
340                 rtsx->check_card_cd = SD_EXIST;
341         else if (card == MS_CARD)
342                 rtsx->check_card_cd = MS_EXIST;
343         else if (card == XD_CARD)
344                 rtsx->check_card_cd = XD_EXIST;
345         else
346                 rtsx->check_card_cd = 0;
347
348         spin_lock_irq(&rtsx->reg_lock);
349
350         /* set up data structures for the wakeup system */
351         rtsx->done = &trans_done;
352
353         rtsx->trans_state = STATE_TRANS_SG;
354         rtsx->trans_result = TRANS_NOT_READY;
355
356         spin_unlock_irq(&rtsx->reg_lock);
357
358         sg_cnt = dma_map_sg(&rtsx->pci->dev, sg, num_sg, dma_dir);
359
360         resid = size;
361         sg_ptr = sg;
362         chip->sgi = 0;
363         /*
364          * Usually the next entry will be @sg@ + 1, but if this sg element
365          * is part of a chained scatterlist, it could jump to the start of
366          * a new scatterlist array. So here we use sg_next to move to
367          * the proper sg.
368          */
369         for (i = 0; i < *index; i++)
370                 sg_ptr = sg_next(sg_ptr);
371         for (i = *index; i < sg_cnt; i++) {
372                 dma_addr_t addr;
373                 unsigned int len;
374                 u8 option;
375
376                 addr = sg_dma_address(sg_ptr);
377                 len = sg_dma_len(sg_ptr);
378
379                 dev_dbg(rtsx_dev(chip), "DMA addr: 0x%x, Len: 0x%x\n",
380                         (unsigned int)addr, len);
381                 dev_dbg(rtsx_dev(chip), "*index = %d, *offset = %d\n",
382                         *index, *offset);
383
384                 addr += *offset;
385
386                 if ((len - *offset) > resid) {
387                         *offset += resid;
388                         len = resid;
389                         resid = 0;
390                 } else {
391                         resid -= (len - *offset);
392                         len -= *offset;
393                         *offset = 0;
394                         *index = *index + 1;
395                 }
396                 option = RTSX_SG_VALID | RTSX_SG_TRANS_DATA;
397                 if ((i == sg_cnt - 1) || !resid)
398                         option |= RTSX_SG_END;
399
400                 rtsx_add_sg_tbl(chip, (u32)addr, (u32)len, option);
401
402                 if (!resid)
403                         break;
404
405                 sg_ptr = sg_next(sg_ptr);
406         }
407
408         dev_dbg(rtsx_dev(chip), "SG table count = %d\n", chip->sgi);
409
410         val |= (u32)(dir & 0x01) << 29;
411         val |= ADMA_MODE;
412
413         spin_lock_irq(&rtsx->reg_lock);
414
415         init_completion(&trans_done);
416
417         rtsx_writel(chip, RTSX_HDBAR, chip->host_sg_tbl_addr);
418         rtsx_writel(chip, RTSX_HDBCTLR, val);
419
420         spin_unlock_irq(&rtsx->reg_lock);
421
422         timeleft = wait_for_completion_interruptible_timeout(
423                 &trans_done, msecs_to_jiffies(timeout));
424         if (timeleft <= 0) {
425                 dev_dbg(rtsx_dev(chip), "Timeout (%s %d)\n",
426                         __func__, __LINE__);
427                 dev_dbg(rtsx_dev(chip), "chip->int_reg = 0x%x\n",
428                         chip->int_reg);
429                 err = -ETIMEDOUT;
430                 goto out;
431         }
432
433         spin_lock_irq(&rtsx->reg_lock);
434         if (rtsx->trans_result == TRANS_RESULT_FAIL) {
435                 err = -EIO;
436                 spin_unlock_irq(&rtsx->reg_lock);
437                 goto out;
438         }
439         spin_unlock_irq(&rtsx->reg_lock);
440
441         /* Wait for TRANS_OK_INT */
442         spin_lock_irq(&rtsx->reg_lock);
443         if (rtsx->trans_result == TRANS_NOT_READY) {
444                 init_completion(&trans_done);
445                 spin_unlock_irq(&rtsx->reg_lock);
446                 timeleft = wait_for_completion_interruptible_timeout(
447                         &trans_done, msecs_to_jiffies(timeout));
448                 if (timeleft <= 0) {
449                         dev_dbg(rtsx_dev(chip), "Timeout (%s %d)\n",
450                                 __func__, __LINE__);
451                         dev_dbg(rtsx_dev(chip), "chip->int_reg = 0x%x\n",
452                                 chip->int_reg);
453                         err = -ETIMEDOUT;
454                         goto out;
455                 }
456         } else {
457                 spin_unlock_irq(&rtsx->reg_lock);
458         }
459
460         spin_lock_irq(&rtsx->reg_lock);
461         if (rtsx->trans_result == TRANS_RESULT_FAIL)
462                 err = -EIO;
463         else if (rtsx->trans_result == TRANS_RESULT_OK)
464                 err = 0;
465
466         spin_unlock_irq(&rtsx->reg_lock);
467
468 out:
469         rtsx->done = NULL;
470         rtsx->trans_state = STATE_TRANS_NONE;
471         dma_unmap_sg(&rtsx->pci->dev, sg, num_sg, dma_dir);
472
473         if (err < 0)
474                 rtsx_stop_cmd(chip, card);
475
476         return err;
477 }
478
479 static int rtsx_transfer_sglist_adma(struct rtsx_chip *chip, u8 card,
480                                      struct scatterlist *sg, int num_sg,
481                                      enum dma_data_direction dma_dir,
482                                      int timeout)
483 {
484         struct rtsx_dev *rtsx = chip->rtsx;
485         struct completion trans_done;
486         u8 dir;
487         int buf_cnt, i;
488         int err = 0;
489         long timeleft;
490         struct scatterlist *sg_ptr;
491
492         if (!sg || (num_sg <= 0))
493                 return -EIO;
494
495         if (dma_dir == DMA_TO_DEVICE)
496                 dir = HOST_TO_DEVICE;
497         else if (dma_dir == DMA_FROM_DEVICE)
498                 dir = DEVICE_TO_HOST;
499         else
500                 return -ENXIO;
501
502         if (card == SD_CARD)
503                 rtsx->check_card_cd = SD_EXIST;
504         else if (card == MS_CARD)
505                 rtsx->check_card_cd = MS_EXIST;
506         else if (card == XD_CARD)
507                 rtsx->check_card_cd = XD_EXIST;
508         else
509                 rtsx->check_card_cd = 0;
510
511         spin_lock_irq(&rtsx->reg_lock);
512
513         /* set up data structures for the wakeup system */
514         rtsx->done = &trans_done;
515
516         rtsx->trans_state = STATE_TRANS_SG;
517         rtsx->trans_result = TRANS_NOT_READY;
518
519         spin_unlock_irq(&rtsx->reg_lock);
520
521         buf_cnt = dma_map_sg(&rtsx->pci->dev, sg, num_sg, dma_dir);
522
523         sg_ptr = sg;
524
525         for (i = 0; i <= buf_cnt / (HOST_SG_TBL_BUF_LEN / 8); i++) {
526                 u32 val = TRIG_DMA;
527                 int sg_cnt, j;
528
529                 if (i == buf_cnt / (HOST_SG_TBL_BUF_LEN / 8))
530                         sg_cnt = buf_cnt % (HOST_SG_TBL_BUF_LEN / 8);
531                 else
532                         sg_cnt = HOST_SG_TBL_BUF_LEN / 8;
533
534                 chip->sgi = 0;
535                 for (j = 0; j < sg_cnt; j++) {
536                         dma_addr_t addr = sg_dma_address(sg_ptr);
537                         unsigned int len = sg_dma_len(sg_ptr);
538                         u8 option;
539
540                         dev_dbg(rtsx_dev(chip), "DMA addr: 0x%x, Len: 0x%x\n",
541                                 (unsigned int)addr, len);
542
543                         option = RTSX_SG_VALID | RTSX_SG_TRANS_DATA;
544                         if (j == (sg_cnt - 1))
545                                 option |= RTSX_SG_END;
546
547                         rtsx_add_sg_tbl(chip, (u32)addr, (u32)len, option);
548
549                         sg_ptr = sg_next(sg_ptr);
550                 }
551
552                 dev_dbg(rtsx_dev(chip), "SG table count = %d\n", chip->sgi);
553
554                 val |= (u32)(dir & 0x01) << 29;
555                 val |= ADMA_MODE;
556
557                 spin_lock_irq(&rtsx->reg_lock);
558
559                 init_completion(&trans_done);
560
561                 rtsx_writel(chip, RTSX_HDBAR, chip->host_sg_tbl_addr);
562                 rtsx_writel(chip, RTSX_HDBCTLR, val);
563
564                 spin_unlock_irq(&rtsx->reg_lock);
565
566                 timeleft = wait_for_completion_interruptible_timeout(
567                         &trans_done, msecs_to_jiffies(timeout));
568                 if (timeleft <= 0) {
569                         dev_dbg(rtsx_dev(chip), "Timeout (%s %d)\n",
570                                 __func__, __LINE__);
571                         dev_dbg(rtsx_dev(chip), "chip->int_reg = 0x%x\n",
572                                 chip->int_reg);
573                         err = -ETIMEDOUT;
574                         goto out;
575                 }
576
577                 spin_lock_irq(&rtsx->reg_lock);
578                 if (rtsx->trans_result == TRANS_RESULT_FAIL) {
579                         err = -EIO;
580                         spin_unlock_irq(&rtsx->reg_lock);
581                         goto out;
582                 }
583                 spin_unlock_irq(&rtsx->reg_lock);
584
585                 sg_ptr += sg_cnt;
586         }
587
588         /* Wait for TRANS_OK_INT */
589         spin_lock_irq(&rtsx->reg_lock);
590         if (rtsx->trans_result == TRANS_NOT_READY) {
591                 init_completion(&trans_done);
592                 spin_unlock_irq(&rtsx->reg_lock);
593                 timeleft = wait_for_completion_interruptible_timeout(
594                         &trans_done, msecs_to_jiffies(timeout));
595                 if (timeleft <= 0) {
596                         dev_dbg(rtsx_dev(chip), "Timeout (%s %d)\n",
597                                 __func__, __LINE__);
598                         dev_dbg(rtsx_dev(chip), "chip->int_reg = 0x%x\n",
599                                 chip->int_reg);
600                         err = -ETIMEDOUT;
601                         goto out;
602                 }
603         } else {
604                 spin_unlock_irq(&rtsx->reg_lock);
605         }
606
607         spin_lock_irq(&rtsx->reg_lock);
608         if (rtsx->trans_result == TRANS_RESULT_FAIL)
609                 err = -EIO;
610         else if (rtsx->trans_result == TRANS_RESULT_OK)
611                 err = 0;
612
613         spin_unlock_irq(&rtsx->reg_lock);
614
615 out:
616         rtsx->done = NULL;
617         rtsx->trans_state = STATE_TRANS_NONE;
618         dma_unmap_sg(&rtsx->pci->dev, sg, num_sg, dma_dir);
619
620         if (err < 0)
621                 rtsx_stop_cmd(chip, card);
622
623         return err;
624 }
625
626 static int rtsx_transfer_buf(struct rtsx_chip *chip, u8 card, void *buf,
627                              size_t len, enum dma_data_direction dma_dir,
628                              int timeout)
629 {
630         struct rtsx_dev *rtsx = chip->rtsx;
631         struct completion trans_done;
632         dma_addr_t addr;
633         u8 dir;
634         int err = 0;
635         u32 val = BIT(31);
636         long timeleft;
637
638         if (!buf || (len <= 0))
639                 return -EIO;
640
641         if (dma_dir == DMA_TO_DEVICE)
642                 dir = HOST_TO_DEVICE;
643         else if (dma_dir == DMA_FROM_DEVICE)
644                 dir = DEVICE_TO_HOST;
645         else
646                 return -ENXIO;
647
648         addr = dma_map_single(&rtsx->pci->dev, buf, len, dma_dir);
649         if (dma_mapping_error(&rtsx->pci->dev, addr))
650                 return -ENOMEM;
651
652         if (card == SD_CARD)
653                 rtsx->check_card_cd = SD_EXIST;
654         else if (card == MS_CARD)
655                 rtsx->check_card_cd = MS_EXIST;
656         else if (card == XD_CARD)
657                 rtsx->check_card_cd = XD_EXIST;
658         else
659                 rtsx->check_card_cd = 0;
660
661         val |= (u32)(dir & 0x01) << 29;
662         val |= (u32)(len & 0x00FFFFFF);
663
664         spin_lock_irq(&rtsx->reg_lock);
665
666         /* set up data structures for the wakeup system */
667         rtsx->done = &trans_done;
668
669         init_completion(&trans_done);
670
671         rtsx->trans_state = STATE_TRANS_BUF;
672         rtsx->trans_result = TRANS_NOT_READY;
673
674         rtsx_writel(chip, RTSX_HDBAR, addr);
675         rtsx_writel(chip, RTSX_HDBCTLR, val);
676
677         spin_unlock_irq(&rtsx->reg_lock);
678
679         /* Wait for TRANS_OK_INT */
680         timeleft = wait_for_completion_interruptible_timeout(&trans_done,
681                         msecs_to_jiffies(timeout));
682         if (timeleft <= 0) {
683                 dev_dbg(rtsx_dev(chip), "Timeout (%s %d)\n",
684                         __func__, __LINE__);
685                 dev_dbg(rtsx_dev(chip), "chip->int_reg = 0x%x\n",
686                         chip->int_reg);
687                 err = -ETIMEDOUT;
688                 goto out;
689         }
690
691         spin_lock_irq(&rtsx->reg_lock);
692         if (rtsx->trans_result == TRANS_RESULT_FAIL)
693                 err = -EIO;
694         else if (rtsx->trans_result == TRANS_RESULT_OK)
695                 err = 0;
696
697         spin_unlock_irq(&rtsx->reg_lock);
698
699 out:
700         rtsx->done = NULL;
701         rtsx->trans_state = STATE_TRANS_NONE;
702         dma_unmap_single(&rtsx->pci->dev, addr, len, dma_dir);
703
704         if (err < 0)
705                 rtsx_stop_cmd(chip, card);
706
707         return err;
708 }
709
710 int rtsx_transfer_data_partial(struct rtsx_chip *chip, u8 card,
711                                void *buf, size_t len, int use_sg,
712                                unsigned int *index, unsigned int *offset,
713                                enum dma_data_direction dma_dir, int timeout)
714 {
715         int err = 0;
716
717         /* don't transfer data during abort processing */
718         if (rtsx_chk_stat(chip, RTSX_STAT_ABORT))
719                 return -EIO;
720
721         if (use_sg) {
722                 struct scatterlist *sg = buf;
723
724                 err = rtsx_transfer_sglist_adma_partial(chip, card, sg, use_sg,
725                                                         index, offset, (int)len,
726                                                         dma_dir, timeout);
727         } else {
728                 err = rtsx_transfer_buf(chip, card,
729                                         buf, len, dma_dir, timeout);
730         }
731         if (err < 0) {
732                 if (RTSX_TST_DELINK(chip)) {
733                         RTSX_CLR_DELINK(chip);
734                         chip->need_reinit = SD_CARD | MS_CARD | XD_CARD;
735                         rtsx_reinit_cards(chip, 1);
736                 }
737         }
738
739         return err;
740 }
741
742 int rtsx_transfer_data(struct rtsx_chip *chip, u8 card, void *buf, size_t len,
743                        int use_sg, enum dma_data_direction dma_dir, int timeout)
744 {
745         int err = 0;
746
747         dev_dbg(rtsx_dev(chip), "use_sg = %d\n", use_sg);
748
749         /* don't transfer data during abort processing */
750         if (rtsx_chk_stat(chip, RTSX_STAT_ABORT))
751                 return -EIO;
752
753         if (use_sg) {
754                 err = rtsx_transfer_sglist_adma(chip, card, buf,
755                                                 use_sg, dma_dir, timeout);
756         } else {
757                 err = rtsx_transfer_buf(chip, card, buf, len, dma_dir, timeout);
758         }
759
760         if (err < 0) {
761                 if (RTSX_TST_DELINK(chip)) {
762                         RTSX_CLR_DELINK(chip);
763                         chip->need_reinit = SD_CARD | MS_CARD | XD_CARD;
764                         rtsx_reinit_cards(chip, 1);
765                 }
766         }
767
768         return err;
769 }
770