Merge tag 'wberr-v4.14-1' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton...
[sfrench/cifs-2.6.git] / drivers / spi / spi-bcm-qspi.c
1 /*
2  * Driver for Broadcom BRCMSTB, NSP,  NS2, Cygnus SPI Controllers
3  *
4  * Copyright 2016 Broadcom
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License, version 2, as
8  * published by the Free Software Foundation (the "GPL").
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 (GPLv2) for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * version 2 (GPLv2) along with this source code.
17  */
18
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/io.h>
25 #include <linux/ioport.h>
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/of_irq.h>
30 #include <linux/platform_device.h>
31 #include <linux/slab.h>
32 #include <linux/spi/spi.h>
33 #include <linux/sysfs.h>
34 #include <linux/types.h>
35 #include "spi-bcm-qspi.h"
36
37 #define DRIVER_NAME "bcm_qspi"
38
39
40 /* BSPI register offsets */
41 #define BSPI_REVISION_ID                        0x000
42 #define BSPI_SCRATCH                            0x004
43 #define BSPI_MAST_N_BOOT_CTRL                   0x008
44 #define BSPI_BUSY_STATUS                        0x00c
45 #define BSPI_INTR_STATUS                        0x010
46 #define BSPI_B0_STATUS                          0x014
47 #define BSPI_B0_CTRL                            0x018
48 #define BSPI_B1_STATUS                          0x01c
49 #define BSPI_B1_CTRL                            0x020
50 #define BSPI_STRAP_OVERRIDE_CTRL                0x024
51 #define BSPI_FLEX_MODE_ENABLE                   0x028
52 #define BSPI_BITS_PER_CYCLE                     0x02c
53 #define BSPI_BITS_PER_PHASE                     0x030
54 #define BSPI_CMD_AND_MODE_BYTE                  0x034
55 #define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE 0x038
56 #define BSPI_BSPI_XOR_VALUE                     0x03c
57 #define BSPI_BSPI_XOR_ENABLE                    0x040
58 #define BSPI_BSPI_PIO_MODE_ENABLE               0x044
59 #define BSPI_BSPI_PIO_IODIR                     0x048
60 #define BSPI_BSPI_PIO_DATA                      0x04c
61
62 /* RAF register offsets */
63 #define BSPI_RAF_START_ADDR                     0x100
64 #define BSPI_RAF_NUM_WORDS                      0x104
65 #define BSPI_RAF_CTRL                           0x108
66 #define BSPI_RAF_FULLNESS                       0x10c
67 #define BSPI_RAF_WATERMARK                      0x110
68 #define BSPI_RAF_STATUS                 0x114
69 #define BSPI_RAF_READ_DATA                      0x118
70 #define BSPI_RAF_WORD_CNT                       0x11c
71 #define BSPI_RAF_CURR_ADDR                      0x120
72
73 /* Override mode masks */
74 #define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE       BIT(0)
75 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL      BIT(1)
76 #define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE     BIT(2)
77 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD      BIT(3)
78 #define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE    BIT(4)
79
80 #define BSPI_ADDRLEN_3BYTES                     3
81 #define BSPI_ADDRLEN_4BYTES                     4
82
83 #define BSPI_RAF_STATUS_FIFO_EMPTY_MASK BIT(1)
84
85 #define BSPI_RAF_CTRL_START_MASK                BIT(0)
86 #define BSPI_RAF_CTRL_CLEAR_MASK                BIT(1)
87
88 #define BSPI_BPP_MODE_SELECT_MASK               BIT(8)
89 #define BSPI_BPP_ADDR_SELECT_MASK               BIT(16)
90
91 #define BSPI_READ_LENGTH                        512
92
93 /* MSPI register offsets */
94 #define MSPI_SPCR0_LSB                          0x000
95 #define MSPI_SPCR0_MSB                          0x004
96 #define MSPI_SPCR1_LSB                          0x008
97 #define MSPI_SPCR1_MSB                          0x00c
98 #define MSPI_NEWQP                              0x010
99 #define MSPI_ENDQP                              0x014
100 #define MSPI_SPCR2                              0x018
101 #define MSPI_MSPI_STATUS                        0x020
102 #define MSPI_CPTQP                              0x024
103 #define MSPI_SPCR3                              0x028
104 #define MSPI_TXRAM                              0x040
105 #define MSPI_RXRAM                              0x0c0
106 #define MSPI_CDRAM                              0x140
107 #define MSPI_WRITE_LOCK                 0x180
108
109 #define MSPI_MASTER_BIT                 BIT(7)
110
111 #define MSPI_NUM_CDRAM                          16
112 #define MSPI_CDRAM_CONT_BIT                     BIT(7)
113 #define MSPI_CDRAM_BITSE_BIT                    BIT(6)
114 #define MSPI_CDRAM_PCS                          0xf
115
116 #define MSPI_SPCR2_SPE                          BIT(6)
117 #define MSPI_SPCR2_CONT_AFTER_CMD               BIT(7)
118
119 #define MSPI_MSPI_STATUS_SPIF                   BIT(0)
120
121 #define INTR_BASE_BIT_SHIFT                     0x02
122 #define INTR_COUNT                              0x07
123
124 #define NUM_CHIPSELECT                          4
125 #define QSPI_SPBR_MIN                           8U
126 #define QSPI_SPBR_MAX                           255U
127
128 #define OPCODE_DIOR                             0xBB
129 #define OPCODE_QIOR                             0xEB
130 #define OPCODE_DIOR_4B                          0xBC
131 #define OPCODE_QIOR_4B                          0xEC
132
133 #define MAX_CMD_SIZE                            6
134
135 #define ADDR_4MB_MASK                           GENMASK(22, 0)
136
137 /* stop at end of transfer, no other reason */
138 #define TRANS_STATUS_BREAK_NONE         0
139 /* stop at end of spi_message */
140 #define TRANS_STATUS_BREAK_EOM                  1
141 /* stop at end of spi_transfer if delay */
142 #define TRANS_STATUS_BREAK_DELAY                2
143 /* stop at end of spi_transfer if cs_change */
144 #define TRANS_STATUS_BREAK_CS_CHANGE            4
145 /* stop if we run out of bytes */
146 #define TRANS_STATUS_BREAK_NO_BYTES             8
147
148 /* events that make us stop filling TX slots */
149 #define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM |         \
150                                TRANS_STATUS_BREAK_DELAY |               \
151                                TRANS_STATUS_BREAK_CS_CHANGE)
152
153 /* events that make us deassert CS */
154 #define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM |           \
155                                      TRANS_STATUS_BREAK_CS_CHANGE)
156
157 struct bcm_qspi_parms {
158         u32 speed_hz;
159         u8 mode;
160         u8 bits_per_word;
161 };
162
163 struct bcm_xfer_mode {
164         bool flex_mode;
165         unsigned int width;
166         unsigned int addrlen;
167         unsigned int hp;
168 };
169
170 enum base_type {
171         MSPI,
172         BSPI,
173         CHIP_SELECT,
174         BASEMAX,
175 };
176
177 enum irq_source {
178         SINGLE_L2,
179         MUXED_L1,
180 };
181
182 struct bcm_qspi_irq {
183         const char *irq_name;
184         const irq_handler_t irq_handler;
185         int irq_source;
186         u32 mask;
187 };
188
189 struct bcm_qspi_dev_id {
190         const struct bcm_qspi_irq *irqp;
191         void *dev;
192 };
193
194
195 struct qspi_trans {
196         struct spi_transfer *trans;
197         int byte;
198         bool mspi_last_trans;
199 };
200
201 struct bcm_qspi {
202         struct platform_device *pdev;
203         struct spi_master *master;
204         struct clk *clk;
205         u32 base_clk;
206         u32 max_speed_hz;
207         void __iomem *base[BASEMAX];
208
209         /* Some SoCs provide custom interrupt status register(s) */
210         struct bcm_qspi_soc_intc        *soc_intc;
211
212         struct bcm_qspi_parms last_parms;
213         struct qspi_trans  trans_pos;
214         int curr_cs;
215         int bspi_maj_rev;
216         int bspi_min_rev;
217         int bspi_enabled;
218         struct spi_flash_read_message *bspi_rf_msg;
219         u32 bspi_rf_msg_idx;
220         u32 bspi_rf_msg_len;
221         u32 bspi_rf_msg_status;
222         struct bcm_xfer_mode xfer_mode;
223         u32 s3_strap_override_ctrl;
224         bool bspi_mode;
225         bool big_endian;
226         int num_irqs;
227         struct bcm_qspi_dev_id *dev_ids;
228         struct completion mspi_done;
229         struct completion bspi_done;
230 };
231
232 static inline bool has_bspi(struct bcm_qspi *qspi)
233 {
234         return qspi->bspi_mode;
235 }
236
237 /* Read qspi controller register*/
238 static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
239                                 unsigned int offset)
240 {
241         return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
242 }
243
244 /* Write qspi controller register*/
245 static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
246                                   unsigned int offset, unsigned int data)
247 {
248         bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
249 }
250
251 /* BSPI helpers */
252 static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
253 {
254         int i;
255
256         /* this should normally finish within 10us */
257         for (i = 0; i < 1000; i++) {
258                 if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
259                         return 0;
260                 udelay(1);
261         }
262         dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
263         return -EIO;
264 }
265
266 static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
267 {
268         if (qspi->bspi_maj_rev < 4)
269                 return true;
270         return false;
271 }
272
273 static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
274 {
275         bcm_qspi_bspi_busy_poll(qspi);
276         /* Force rising edge for the b0/b1 'flush' field */
277         bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
278         bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
279         bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
280         bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
281 }
282
283 static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
284 {
285         return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
286                                 BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
287 }
288
289 static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
290 {
291         u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
292
293         /* BSPI v3 LR is LE only, convert data to host endianness */
294         if (bcm_qspi_bspi_ver_three(qspi))
295                 data = le32_to_cpu(data);
296
297         return data;
298 }
299
300 static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
301 {
302         bcm_qspi_bspi_busy_poll(qspi);
303         bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
304                        BSPI_RAF_CTRL_START_MASK);
305 }
306
307 static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
308 {
309         bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
310                        BSPI_RAF_CTRL_CLEAR_MASK);
311         bcm_qspi_bspi_flush_prefetch_buffers(qspi);
312 }
313
314 static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
315 {
316         u32 *buf = (u32 *)qspi->bspi_rf_msg->buf;
317         u32 data = 0;
318
319         dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_msg,
320                 qspi->bspi_rf_msg->buf, qspi->bspi_rf_msg_len);
321         while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
322                 data = bcm_qspi_bspi_lr_read_fifo(qspi);
323                 if (likely(qspi->bspi_rf_msg_len >= 4) &&
324                     IS_ALIGNED((uintptr_t)buf, 4)) {
325                         buf[qspi->bspi_rf_msg_idx++] = data;
326                         qspi->bspi_rf_msg_len -= 4;
327                 } else {
328                         /* Read out remaining bytes, make sure*/
329                         u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_msg_idx];
330
331                         data = cpu_to_le32(data);
332                         while (qspi->bspi_rf_msg_len) {
333                                 *cbuf++ = (u8)data;
334                                 data >>= 8;
335                                 qspi->bspi_rf_msg_len--;
336                         }
337                 }
338         }
339 }
340
341 static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
342                                           int bpp, int bpc, int flex_mode)
343 {
344         bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
345         bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
346         bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
347         bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
348         bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
349 }
350
351 static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi,
352                                        struct spi_flash_read_message *msg,
353                                        int hp)
354 {
355         int bpc = 0, bpp = 0;
356         u8 command = msg->read_opcode;
357         int width  = msg->data_nbits ? msg->data_nbits : SPI_NBITS_SINGLE;
358         int addrlen = msg->addr_width;
359         int addr_nbits = msg->addr_nbits ? msg->addr_nbits : SPI_NBITS_SINGLE;
360         int flex_mode = 1;
361
362         dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
363                 width, addrlen, hp);
364
365         if (addrlen == BSPI_ADDRLEN_4BYTES)
366                 bpp = BSPI_BPP_ADDR_SELECT_MASK;
367
368         bpp |= msg->dummy_bytes * (8/addr_nbits);
369
370         switch (width) {
371         case SPI_NBITS_SINGLE:
372                 if (addrlen == BSPI_ADDRLEN_3BYTES)
373                         /* default mode, does not need flex_cmd */
374                         flex_mode = 0;
375                 break;
376         case SPI_NBITS_DUAL:
377                 bpc = 0x00000001;
378                 if (hp) {
379                         bpc |= 0x00010100; /* address and mode are 2-bit */
380                         bpp = BSPI_BPP_MODE_SELECT_MASK;
381                 }
382                 break;
383         case SPI_NBITS_QUAD:
384                 bpc = 0x00000002;
385                 if (hp) {
386                         bpc |= 0x00020200; /* address and mode are 4-bit */
387                         bpp |= BSPI_BPP_MODE_SELECT_MASK;
388                 }
389                 break;
390         default:
391                 return -EINVAL;
392         }
393
394         bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc, flex_mode);
395
396         return 0;
397 }
398
399 static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi,
400                                       struct spi_flash_read_message *msg,
401                                       int hp)
402 {
403         int width = msg->data_nbits ? msg->data_nbits : SPI_NBITS_SINGLE;
404         int addrlen = msg->addr_width;
405         u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
406
407         dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
408                 width, addrlen, hp);
409
410         switch (width) {
411         case SPI_NBITS_SINGLE:
412                 /* clear quad/dual mode */
413                 data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
414                           BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
415                 break;
416         case SPI_NBITS_QUAD:
417                 /* clear dual mode and set quad mode */
418                 data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
419                 data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
420                 break;
421         case SPI_NBITS_DUAL:
422                 /* clear quad mode set dual mode */
423                 data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
424                 data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
425                 break;
426         default:
427                 return -EINVAL;
428         }
429
430         if (addrlen == BSPI_ADDRLEN_4BYTES)
431                 /* set 4byte mode*/
432                 data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
433         else
434                 /* clear 4 byte mode */
435                 data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
436
437         /* set the override mode */
438         data |= BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
439         bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
440         bcm_qspi_bspi_set_xfer_params(qspi, msg->read_opcode, 0, 0, 0);
441
442         return 0;
443 }
444
445 static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
446                                   struct spi_flash_read_message *msg, int hp)
447 {
448         int error = 0;
449         int width = msg->data_nbits ? msg->data_nbits : SPI_NBITS_SINGLE;
450         int addrlen = msg->addr_width;
451
452         /* default mode */
453         qspi->xfer_mode.flex_mode = true;
454
455         if (!bcm_qspi_bspi_ver_three(qspi)) {
456                 u32 val, mask;
457
458                 val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
459                 mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
460                 if (val & mask || qspi->s3_strap_override_ctrl & mask) {
461                         qspi->xfer_mode.flex_mode = false;
462                         bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
463                         error = bcm_qspi_bspi_set_override(qspi, msg, hp);
464                 }
465         }
466
467         if (qspi->xfer_mode.flex_mode)
468                 error = bcm_qspi_bspi_set_flex_mode(qspi, msg, hp);
469
470         if (error) {
471                 dev_warn(&qspi->pdev->dev,
472                          "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
473                          width, addrlen, hp);
474         } else if (qspi->xfer_mode.width != width ||
475                    qspi->xfer_mode.addrlen != addrlen ||
476                    qspi->xfer_mode.hp != hp) {
477                 qspi->xfer_mode.width = width;
478                 qspi->xfer_mode.addrlen = addrlen;
479                 qspi->xfer_mode.hp = hp;
480                 dev_dbg(&qspi->pdev->dev,
481                         "cs:%d %d-lane output, %d-byte address%s\n",
482                         qspi->curr_cs,
483                         qspi->xfer_mode.width,
484                         qspi->xfer_mode.addrlen,
485                         qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
486         }
487
488         return error;
489 }
490
491 static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
492 {
493         if (!has_bspi(qspi) || (qspi->bspi_enabled))
494                 return;
495
496         qspi->bspi_enabled = 1;
497         if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
498                 return;
499
500         bcm_qspi_bspi_flush_prefetch_buffers(qspi);
501         udelay(1);
502         bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
503         udelay(1);
504 }
505
506 static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
507 {
508         if (!has_bspi(qspi) || (!qspi->bspi_enabled))
509                 return;
510
511         qspi->bspi_enabled = 0;
512         if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
513                 return;
514
515         bcm_qspi_bspi_busy_poll(qspi);
516         bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
517         udelay(1);
518 }
519
520 static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
521 {
522         u32 data = 0;
523
524         if (qspi->curr_cs == cs)
525                 return;
526         if (qspi->base[CHIP_SELECT]) {
527                 data = bcm_qspi_read(qspi, CHIP_SELECT, 0);
528                 data = (data & ~0xff) | (1 << cs);
529                 bcm_qspi_write(qspi, CHIP_SELECT, 0, data);
530                 usleep_range(10, 20);
531         }
532         qspi->curr_cs = cs;
533 }
534
535 /* MSPI helpers */
536 static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
537                                   const struct bcm_qspi_parms *xp)
538 {
539         u32 spcr, spbr = 0;
540
541         if (xp->speed_hz)
542                 spbr = qspi->base_clk / (2 * xp->speed_hz);
543
544         spcr = clamp_val(spbr, QSPI_SPBR_MIN, QSPI_SPBR_MAX);
545         bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spcr);
546
547         spcr = MSPI_MASTER_BIT;
548         /* for 16 bit the data should be zero */
549         if (xp->bits_per_word != 16)
550                 spcr |= xp->bits_per_word << 2;
551         spcr |= xp->mode & 3;
552         bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
553
554         qspi->last_parms = *xp;
555 }
556
557 static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
558                                   struct spi_device *spi,
559                                   struct spi_transfer *trans)
560 {
561         struct bcm_qspi_parms xp;
562
563         xp.speed_hz = trans->speed_hz;
564         xp.bits_per_word = trans->bits_per_word;
565         xp.mode = spi->mode;
566
567         bcm_qspi_hw_set_parms(qspi, &xp);
568 }
569
570 static int bcm_qspi_setup(struct spi_device *spi)
571 {
572         struct bcm_qspi_parms *xp;
573
574         if (spi->bits_per_word > 16)
575                 return -EINVAL;
576
577         xp = spi_get_ctldata(spi);
578         if (!xp) {
579                 xp = kzalloc(sizeof(*xp), GFP_KERNEL);
580                 if (!xp)
581                         return -ENOMEM;
582                 spi_set_ctldata(spi, xp);
583         }
584         xp->speed_hz = spi->max_speed_hz;
585         xp->mode = spi->mode;
586
587         if (spi->bits_per_word)
588                 xp->bits_per_word = spi->bits_per_word;
589         else
590                 xp->bits_per_word = 8;
591
592         return 0;
593 }
594
595 static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi,
596                                            struct qspi_trans *qt)
597 {
598         if (qt->mspi_last_trans &&
599             spi_transfer_is_last(qspi->master, qt->trans))
600                 return true;
601         else
602                 return false;
603 }
604
605 static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
606                                         struct qspi_trans *qt, int flags)
607 {
608         int ret = TRANS_STATUS_BREAK_NONE;
609
610         /* count the last transferred bytes */
611         if (qt->trans->bits_per_word <= 8)
612                 qt->byte++;
613         else
614                 qt->byte += 2;
615
616         if (qt->byte >= qt->trans->len) {
617                 /* we're at the end of the spi_transfer */
618                 /* in TX mode, need to pause for a delay or CS change */
619                 if (qt->trans->delay_usecs &&
620                     (flags & TRANS_STATUS_BREAK_DELAY))
621                         ret |= TRANS_STATUS_BREAK_DELAY;
622                 if (qt->trans->cs_change &&
623                     (flags & TRANS_STATUS_BREAK_CS_CHANGE))
624                         ret |= TRANS_STATUS_BREAK_CS_CHANGE;
625                 if (ret)
626                         goto done;
627
628                 dev_dbg(&qspi->pdev->dev, "advance msg exit\n");
629                 if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
630                         ret = TRANS_STATUS_BREAK_EOM;
631                 else
632                         ret = TRANS_STATUS_BREAK_NO_BYTES;
633
634                 qt->trans = NULL;
635         }
636
637 done:
638         dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
639                 qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
640         return ret;
641 }
642
643 static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
644 {
645         u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
646
647         /* mask out reserved bits */
648         return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
649 }
650
651 static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
652 {
653         u32 reg_offset = MSPI_RXRAM;
654         u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
655         u32 msb_offset = reg_offset + (slot << 3);
656
657         return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
658                 ((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
659 }
660
661 static void read_from_hw(struct bcm_qspi *qspi, int slots)
662 {
663         struct qspi_trans tp;
664         int slot;
665
666         bcm_qspi_disable_bspi(qspi);
667
668         if (slots > MSPI_NUM_CDRAM) {
669                 /* should never happen */
670                 dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
671                 return;
672         }
673
674         tp = qspi->trans_pos;
675
676         for (slot = 0; slot < slots; slot++) {
677                 if (tp.trans->bits_per_word <= 8) {
678                         u8 *buf = tp.trans->rx_buf;
679
680                         if (buf)
681                                 buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
682                         dev_dbg(&qspi->pdev->dev, "RD %02x\n",
683                                 buf ? buf[tp.byte] : 0xff);
684                 } else {
685                         u16 *buf = tp.trans->rx_buf;
686
687                         if (buf)
688                                 buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
689                                                                       slot);
690                         dev_dbg(&qspi->pdev->dev, "RD %04x\n",
691                                 buf ? buf[tp.byte] : 0xffff);
692                 }
693
694                 update_qspi_trans_byte_count(qspi, &tp,
695                                              TRANS_STATUS_BREAK_NONE);
696         }
697
698         qspi->trans_pos = tp;
699 }
700
701 static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
702                                        u8 val)
703 {
704         u32 reg_offset = MSPI_TXRAM + (slot << 3);
705
706         /* mask out reserved bits */
707         bcm_qspi_write(qspi, MSPI, reg_offset, val);
708 }
709
710 static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
711                                         u16 val)
712 {
713         u32 reg_offset = MSPI_TXRAM;
714         u32 msb_offset = reg_offset + (slot << 3);
715         u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
716
717         bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
718         bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
719 }
720
721 static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
722 {
723         return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
724 }
725
726 static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
727 {
728         bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
729 }
730
731 /* Return number of slots written */
732 static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
733 {
734         struct qspi_trans tp;
735         int slot = 0, tstatus = 0;
736         u32 mspi_cdram = 0;
737
738         bcm_qspi_disable_bspi(qspi);
739         tp = qspi->trans_pos;
740         bcm_qspi_update_parms(qspi, spi, tp.trans);
741
742         /* Run until end of transfer or reached the max data */
743         while (!tstatus && slot < MSPI_NUM_CDRAM) {
744                 if (tp.trans->bits_per_word <= 8) {
745                         const u8 *buf = tp.trans->tx_buf;
746                         u8 val = buf ? buf[tp.byte] : 0xff;
747
748                         write_txram_slot_u8(qspi, slot, val);
749                         dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
750                 } else {
751                         const u16 *buf = tp.trans->tx_buf;
752                         u16 val = buf ? buf[tp.byte / 2] : 0xffff;
753
754                         write_txram_slot_u16(qspi, slot, val);
755                         dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
756                 }
757                 mspi_cdram = MSPI_CDRAM_CONT_BIT;
758                 mspi_cdram |= (~(1 << spi->chip_select) &
759                                MSPI_CDRAM_PCS);
760                 mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
761                                 MSPI_CDRAM_BITSE_BIT);
762
763                 write_cdram_slot(qspi, slot, mspi_cdram);
764
765                 tstatus = update_qspi_trans_byte_count(qspi, &tp,
766                                                        TRANS_STATUS_BREAK_TX);
767                 slot++;
768         }
769
770         if (!slot) {
771                 dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
772                 goto done;
773         }
774
775         dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
776         bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
777         bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
778
779         if (tstatus & TRANS_STATUS_BREAK_DESELECT) {
780                 mspi_cdram = read_cdram_slot(qspi, slot - 1) &
781                         ~MSPI_CDRAM_CONT_BIT;
782                 write_cdram_slot(qspi, slot - 1, mspi_cdram);
783         }
784
785         if (has_bspi(qspi))
786                 bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
787
788         /* Must flush previous writes before starting MSPI operation */
789         mb();
790         /* Set cont | spe | spifie */
791         bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
792
793 done:
794         return slot;
795 }
796
797 static int bcm_qspi_bspi_flash_read(struct spi_device *spi,
798                                     struct spi_flash_read_message *msg)
799 {
800         struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
801         u32 addr = 0, len, rdlen, len_words;
802         int ret = 0;
803         unsigned long timeo = msecs_to_jiffies(100);
804         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
805
806         if (bcm_qspi_bspi_ver_three(qspi))
807                 if (msg->addr_width == BSPI_ADDRLEN_4BYTES)
808                         return -EIO;
809
810         bcm_qspi_chip_select(qspi, spi->chip_select);
811         bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
812
813         /*
814          * when using flex mode we need to send
815          * the upper address byte to bspi
816          */
817         if (bcm_qspi_bspi_ver_three(qspi) == false) {
818                 addr = msg->from & 0xff000000;
819                 bcm_qspi_write(qspi, BSPI,
820                                BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
821         }
822
823         if (!qspi->xfer_mode.flex_mode)
824                 addr = msg->from;
825         else
826                 addr = msg->from & 0x00ffffff;
827
828         if (bcm_qspi_bspi_ver_three(qspi) == true)
829                 addr = (addr + 0xc00000) & 0xffffff;
830
831         /*
832          * read into the entire buffer by breaking the reads
833          * into RAF buffer read lengths
834          */
835         len = msg->len;
836         qspi->bspi_rf_msg_idx = 0;
837
838         do {
839                 if (len > BSPI_READ_LENGTH)
840                         rdlen = BSPI_READ_LENGTH;
841                 else
842                         rdlen = len;
843
844                 reinit_completion(&qspi->bspi_done);
845                 bcm_qspi_enable_bspi(qspi);
846                 len_words = (rdlen + 3) >> 2;
847                 qspi->bspi_rf_msg = msg;
848                 qspi->bspi_rf_msg_status = 0;
849                 qspi->bspi_rf_msg_len = rdlen;
850                 dev_dbg(&qspi->pdev->dev,
851                         "bspi xfr addr 0x%x len 0x%x", addr, rdlen);
852                 bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
853                 bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
854                 bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
855                 if (qspi->soc_intc) {
856                         /*
857                          * clear soc MSPI and BSPI interrupts and enable
858                          * BSPI interrupts.
859                          */
860                         soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
861                         soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
862                 }
863
864                 /* Must flush previous writes before starting BSPI operation */
865                 mb();
866                 bcm_qspi_bspi_lr_start(qspi);
867                 if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
868                         dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
869                         ret = -ETIMEDOUT;
870                         break;
871                 }
872
873                 /* set msg return length */
874                 msg->retlen += rdlen;
875                 addr += rdlen;
876                 len -= rdlen;
877         } while (len);
878
879         return ret;
880 }
881
882 static int bcm_qspi_transfer_one(struct spi_master *master,
883                                  struct spi_device *spi,
884                                  struct spi_transfer *trans)
885 {
886         struct bcm_qspi *qspi = spi_master_get_devdata(master);
887         int slots;
888         unsigned long timeo = msecs_to_jiffies(100);
889
890         bcm_qspi_chip_select(qspi, spi->chip_select);
891         qspi->trans_pos.trans = trans;
892         qspi->trans_pos.byte = 0;
893
894         while (qspi->trans_pos.byte < trans->len) {
895                 reinit_completion(&qspi->mspi_done);
896
897                 slots = write_to_hw(qspi, spi);
898                 if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
899                         dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
900                         return -ETIMEDOUT;
901                 }
902
903                 read_from_hw(qspi, slots);
904         }
905
906         return 0;
907 }
908
909 static int bcm_qspi_mspi_flash_read(struct spi_device *spi,
910                                     struct spi_flash_read_message *msg)
911 {
912         struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
913         struct spi_transfer t[2];
914         u8 cmd[6];
915         int ret;
916
917         memset(cmd, 0, sizeof(cmd));
918         memset(t, 0, sizeof(t));
919
920         /* tx */
921         /* opcode is in cmd[0] */
922         cmd[0] = msg->read_opcode;
923         cmd[1] = msg->from >> (msg->addr_width * 8 -  8);
924         cmd[2] = msg->from >> (msg->addr_width * 8 - 16);
925         cmd[3] = msg->from >> (msg->addr_width * 8 - 24);
926         cmd[4] = msg->from >> (msg->addr_width * 8 - 32);
927         t[0].tx_buf = cmd;
928         t[0].len = msg->addr_width + msg->dummy_bytes + 1;
929         t[0].bits_per_word = spi->bits_per_word;
930         t[0].tx_nbits = msg->opcode_nbits;
931         /* lets mspi know that this is not last transfer */
932         qspi->trans_pos.mspi_last_trans = false;
933         ret = bcm_qspi_transfer_one(spi->master, spi, &t[0]);
934
935         /* rx */
936         qspi->trans_pos.mspi_last_trans = true;
937         if (!ret) {
938                 /* rx */
939                 t[1].rx_buf = msg->buf;
940                 t[1].len = msg->len;
941                 t[1].rx_nbits =  msg->data_nbits;
942                 t[1].bits_per_word = spi->bits_per_word;
943                 ret = bcm_qspi_transfer_one(spi->master, spi, &t[1]);
944         }
945
946         if (!ret)
947                 msg->retlen = msg->len;
948
949         return ret;
950 }
951
952 static int bcm_qspi_flash_read(struct spi_device *spi,
953                                struct spi_flash_read_message *msg)
954 {
955         struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
956         int ret = 0;
957         bool mspi_read = false;
958         u32 addr, len;
959         u_char *buf;
960
961         buf = msg->buf;
962         addr = msg->from;
963         len = msg->len;
964
965         if (bcm_qspi_bspi_ver_three(qspi) == true) {
966                 /*
967                  * The address coming into this function is a raw flash offset.
968                  * But for BSPI <= V3, we need to convert it to a remapped BSPI
969                  * address. If it crosses a 4MB boundary, just revert back to
970                  * using MSPI.
971                  */
972                 addr = (addr + 0xc00000) & 0xffffff;
973
974                 if ((~ADDR_4MB_MASK & addr) ^
975                     (~ADDR_4MB_MASK & (addr + len - 1)))
976                         mspi_read = true;
977         }
978
979         /* non-aligned and very short transfers are handled by MSPI */
980         if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
981             len < 4)
982                 mspi_read = true;
983
984         if (mspi_read)
985                 return bcm_qspi_mspi_flash_read(spi, msg);
986
987         ret = bcm_qspi_bspi_set_mode(qspi, msg, -1);
988
989         if (!ret)
990                 ret = bcm_qspi_bspi_flash_read(spi, msg);
991
992         return ret;
993 }
994
995 static void bcm_qspi_cleanup(struct spi_device *spi)
996 {
997         struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
998
999         kfree(xp);
1000 }
1001
1002 static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
1003 {
1004         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1005         struct bcm_qspi *qspi = qspi_dev_id->dev;
1006         u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1007
1008         if (status & MSPI_MSPI_STATUS_SPIF) {
1009                 struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1010                 /* clear interrupt */
1011                 status &= ~MSPI_MSPI_STATUS_SPIF;
1012                 bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
1013                 if (qspi->soc_intc)
1014                         soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
1015                 complete(&qspi->mspi_done);
1016                 return IRQ_HANDLED;
1017         }
1018
1019         return IRQ_NONE;
1020 }
1021
1022 static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
1023 {
1024         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1025         struct bcm_qspi *qspi = qspi_dev_id->dev;
1026         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1027         u32 status = qspi_dev_id->irqp->mask;
1028
1029         if (qspi->bspi_enabled && qspi->bspi_rf_msg) {
1030                 bcm_qspi_bspi_lr_data_read(qspi);
1031                 if (qspi->bspi_rf_msg_len == 0) {
1032                         qspi->bspi_rf_msg = NULL;
1033                         if (qspi->soc_intc) {
1034                                 /* disable soc BSPI interrupt */
1035                                 soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
1036                                                            false);
1037                                 /* indicate done */
1038                                 status = INTR_BSPI_LR_SESSION_DONE_MASK;
1039                         }
1040
1041                         if (qspi->bspi_rf_msg_status)
1042                                 bcm_qspi_bspi_lr_clear(qspi);
1043                         else
1044                                 bcm_qspi_bspi_flush_prefetch_buffers(qspi);
1045                 }
1046
1047                 if (qspi->soc_intc)
1048                         /* clear soc BSPI interrupt */
1049                         soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
1050         }
1051
1052         status &= INTR_BSPI_LR_SESSION_DONE_MASK;
1053         if (qspi->bspi_enabled && status && qspi->bspi_rf_msg_len == 0)
1054                 complete(&qspi->bspi_done);
1055
1056         return IRQ_HANDLED;
1057 }
1058
1059 static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
1060 {
1061         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1062         struct bcm_qspi *qspi = qspi_dev_id->dev;
1063         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1064
1065         dev_err(&qspi->pdev->dev, "BSPI INT error\n");
1066         qspi->bspi_rf_msg_status = -EIO;
1067         if (qspi->soc_intc)
1068                 /* clear soc interrupt */
1069                 soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
1070
1071         complete(&qspi->bspi_done);
1072         return IRQ_HANDLED;
1073 }
1074
1075 static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
1076 {
1077         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1078         struct bcm_qspi *qspi = qspi_dev_id->dev;
1079         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1080         irqreturn_t ret = IRQ_NONE;
1081
1082         if (soc_intc) {
1083                 u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
1084
1085                 if (status & MSPI_DONE)
1086                         ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
1087                 else if (status & BSPI_DONE)
1088                         ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
1089                 else if (status & BSPI_ERR)
1090                         ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
1091         }
1092
1093         return ret;
1094 }
1095
1096 static const struct bcm_qspi_irq qspi_irq_tab[] = {
1097         {
1098                 .irq_name = "spi_lr_fullness_reached",
1099                 .irq_handler = bcm_qspi_bspi_lr_l2_isr,
1100                 .mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
1101         },
1102         {
1103                 .irq_name = "spi_lr_session_aborted",
1104                 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1105                 .mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
1106         },
1107         {
1108                 .irq_name = "spi_lr_impatient",
1109                 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1110                 .mask = INTR_BSPI_LR_IMPATIENT_MASK,
1111         },
1112         {
1113                 .irq_name = "spi_lr_session_done",
1114                 .irq_handler = bcm_qspi_bspi_lr_l2_isr,
1115                 .mask = INTR_BSPI_LR_SESSION_DONE_MASK,
1116         },
1117 #ifdef QSPI_INT_DEBUG
1118         /* this interrupt is for debug purposes only, dont request irq */
1119         {
1120                 .irq_name = "spi_lr_overread",
1121                 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1122                 .mask = INTR_BSPI_LR_OVERREAD_MASK,
1123         },
1124 #endif
1125         {
1126                 .irq_name = "mspi_done",
1127                 .irq_handler = bcm_qspi_mspi_l2_isr,
1128                 .mask = INTR_MSPI_DONE_MASK,
1129         },
1130         {
1131                 .irq_name = "mspi_halted",
1132                 .irq_handler = bcm_qspi_mspi_l2_isr,
1133                 .mask = INTR_MSPI_HALTED_MASK,
1134         },
1135         {
1136                 /* single muxed L1 interrupt source */
1137                 .irq_name = "spi_l1_intr",
1138                 .irq_handler = bcm_qspi_l1_isr,
1139                 .irq_source = MUXED_L1,
1140                 .mask = QSPI_INTERRUPTS_ALL,
1141         },
1142 };
1143
1144 static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
1145 {
1146         u32 val = 0;
1147
1148         val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
1149         qspi->bspi_maj_rev = (val >> 8) & 0xff;
1150         qspi->bspi_min_rev = val & 0xff;
1151         if (!(bcm_qspi_bspi_ver_three(qspi))) {
1152                 /* Force mapping of BSPI address -> flash offset */
1153                 bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
1154                 bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
1155         }
1156         qspi->bspi_enabled = 1;
1157         bcm_qspi_disable_bspi(qspi);
1158         bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
1159         bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
1160 }
1161
1162 static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
1163 {
1164         struct bcm_qspi_parms parms;
1165
1166         bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
1167         bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
1168         bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1169         bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
1170         bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
1171
1172         parms.mode = SPI_MODE_3;
1173         parms.bits_per_word = 8;
1174         parms.speed_hz = qspi->max_speed_hz;
1175         bcm_qspi_hw_set_parms(qspi, &parms);
1176
1177         if (has_bspi(qspi))
1178                 bcm_qspi_bspi_init(qspi);
1179 }
1180
1181 static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
1182 {
1183         bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
1184         if (has_bspi(qspi))
1185                 bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1186
1187 }
1188
1189 static const struct of_device_id bcm_qspi_of_match[] = {
1190         { .compatible = "brcm,spi-bcm-qspi" },
1191         {},
1192 };
1193 MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
1194
1195 int bcm_qspi_probe(struct platform_device *pdev,
1196                    struct bcm_qspi_soc_intc *soc_intc)
1197 {
1198         struct device *dev = &pdev->dev;
1199         struct bcm_qspi *qspi;
1200         struct spi_master *master;
1201         struct resource *res;
1202         int irq, ret = 0, num_ints = 0;
1203         u32 val;
1204         const char *name = NULL;
1205         int num_irqs = ARRAY_SIZE(qspi_irq_tab);
1206
1207         /* We only support device-tree instantiation */
1208         if (!dev->of_node)
1209                 return -ENODEV;
1210
1211         if (!of_match_node(bcm_qspi_of_match, dev->of_node))
1212                 return -ENODEV;
1213
1214         master = spi_alloc_master(dev, sizeof(struct bcm_qspi));
1215         if (!master) {
1216                 dev_err(dev, "error allocating spi_master\n");
1217                 return -ENOMEM;
1218         }
1219
1220         qspi = spi_master_get_devdata(master);
1221         qspi->pdev = pdev;
1222         qspi->trans_pos.trans = NULL;
1223         qspi->trans_pos.byte = 0;
1224         qspi->trans_pos.mspi_last_trans = true;
1225         qspi->master = master;
1226
1227         master->bus_num = -1;
1228         master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD;
1229         master->setup = bcm_qspi_setup;
1230         master->transfer_one = bcm_qspi_transfer_one;
1231         master->spi_flash_read = bcm_qspi_flash_read;
1232         master->cleanup = bcm_qspi_cleanup;
1233         master->dev.of_node = dev->of_node;
1234         master->num_chipselect = NUM_CHIPSELECT;
1235
1236         qspi->big_endian = of_device_is_big_endian(dev->of_node);
1237
1238         if (!of_property_read_u32(dev->of_node, "num-cs", &val))
1239                 master->num_chipselect = val;
1240
1241         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
1242         if (!res)
1243                 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1244                                                    "mspi");
1245
1246         if (res) {
1247                 qspi->base[MSPI]  = devm_ioremap_resource(dev, res);
1248                 if (IS_ERR(qspi->base[MSPI])) {
1249                         ret = PTR_ERR(qspi->base[MSPI]);
1250                         goto qspi_probe_err;
1251                 }
1252         } else {
1253                 goto qspi_probe_err;
1254         }
1255
1256         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
1257         if (res) {
1258                 qspi->base[BSPI]  = devm_ioremap_resource(dev, res);
1259                 if (IS_ERR(qspi->base[BSPI])) {
1260                         ret = PTR_ERR(qspi->base[BSPI]);
1261                         goto qspi_probe_err;
1262                 }
1263                 qspi->bspi_mode = true;
1264         } else {
1265                 qspi->bspi_mode = false;
1266         }
1267
1268         dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
1269
1270         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
1271         if (res) {
1272                 qspi->base[CHIP_SELECT]  = devm_ioremap_resource(dev, res);
1273                 if (IS_ERR(qspi->base[CHIP_SELECT])) {
1274                         ret = PTR_ERR(qspi->base[CHIP_SELECT]);
1275                         goto qspi_probe_err;
1276                 }
1277         }
1278
1279         qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
1280                                 GFP_KERNEL);
1281         if (!qspi->dev_ids) {
1282                 ret = -ENOMEM;
1283                 goto qspi_probe_err;
1284         }
1285
1286         for (val = 0; val < num_irqs; val++) {
1287                 irq = -1;
1288                 name = qspi_irq_tab[val].irq_name;
1289                 if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
1290                         /* get the l2 interrupts */
1291                         irq = platform_get_irq_byname(pdev, name);
1292                 } else if (!num_ints && soc_intc) {
1293                         /* all mspi, bspi intrs muxed to one L1 intr */
1294                         irq = platform_get_irq(pdev, 0);
1295                 }
1296
1297                 if (irq  >= 0) {
1298                         ret = devm_request_irq(&pdev->dev, irq,
1299                                                qspi_irq_tab[val].irq_handler, 0,
1300                                                name,
1301                                                &qspi->dev_ids[val]);
1302                         if (ret < 0) {
1303                                 dev_err(&pdev->dev, "IRQ %s not found\n", name);
1304                                 goto qspi_probe_err;
1305                         }
1306
1307                         qspi->dev_ids[val].dev = qspi;
1308                         qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
1309                         num_ints++;
1310                         dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
1311                                 qspi_irq_tab[val].irq_name,
1312                                 irq);
1313                 }
1314         }
1315
1316         if (!num_ints) {
1317                 dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
1318                 ret = -EINVAL;
1319                 goto qspi_probe_err;
1320         }
1321
1322         /*
1323          * Some SoCs integrate spi controller (e.g., its interrupt bits)
1324          * in specific ways
1325          */
1326         if (soc_intc) {
1327                 qspi->soc_intc = soc_intc;
1328                 soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
1329         } else {
1330                 qspi->soc_intc = NULL;
1331         }
1332
1333         qspi->clk = devm_clk_get(&pdev->dev, NULL);
1334         if (IS_ERR(qspi->clk)) {
1335                 dev_warn(dev, "unable to get clock\n");
1336                 ret = PTR_ERR(qspi->clk);
1337                 goto qspi_probe_err;
1338         }
1339
1340         ret = clk_prepare_enable(qspi->clk);
1341         if (ret) {
1342                 dev_err(dev, "failed to prepare clock\n");
1343                 goto qspi_probe_err;
1344         }
1345
1346         qspi->base_clk = clk_get_rate(qspi->clk);
1347         qspi->max_speed_hz = qspi->base_clk / (QSPI_SPBR_MIN * 2);
1348
1349         bcm_qspi_hw_init(qspi);
1350         init_completion(&qspi->mspi_done);
1351         init_completion(&qspi->bspi_done);
1352         qspi->curr_cs = -1;
1353
1354         platform_set_drvdata(pdev, qspi);
1355
1356         qspi->xfer_mode.width = -1;
1357         qspi->xfer_mode.addrlen = -1;
1358         qspi->xfer_mode.hp = -1;
1359
1360         ret = devm_spi_register_master(&pdev->dev, master);
1361         if (ret < 0) {
1362                 dev_err(dev, "can't register master\n");
1363                 goto qspi_reg_err;
1364         }
1365
1366         return 0;
1367
1368 qspi_reg_err:
1369         bcm_qspi_hw_uninit(qspi);
1370         clk_disable_unprepare(qspi->clk);
1371 qspi_probe_err:
1372         spi_master_put(master);
1373         kfree(qspi->dev_ids);
1374         return ret;
1375 }
1376 /* probe function to be called by SoC specific platform driver probe */
1377 EXPORT_SYMBOL_GPL(bcm_qspi_probe);
1378
1379 int bcm_qspi_remove(struct platform_device *pdev)
1380 {
1381         struct bcm_qspi *qspi = platform_get_drvdata(pdev);
1382
1383         bcm_qspi_hw_uninit(qspi);
1384         clk_disable_unprepare(qspi->clk);
1385         kfree(qspi->dev_ids);
1386         spi_unregister_master(qspi->master);
1387
1388         return 0;
1389 }
1390 /* function to be called by SoC specific platform driver remove() */
1391 EXPORT_SYMBOL_GPL(bcm_qspi_remove);
1392
1393 static int __maybe_unused bcm_qspi_suspend(struct device *dev)
1394 {
1395         struct bcm_qspi *qspi = dev_get_drvdata(dev);
1396
1397         /* store the override strap value */
1398         if (!bcm_qspi_bspi_ver_three(qspi))
1399                 qspi->s3_strap_override_ctrl =
1400                         bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
1401
1402         spi_master_suspend(qspi->master);
1403         clk_disable(qspi->clk);
1404         bcm_qspi_hw_uninit(qspi);
1405
1406         return 0;
1407 };
1408
1409 static int __maybe_unused bcm_qspi_resume(struct device *dev)
1410 {
1411         struct bcm_qspi *qspi = dev_get_drvdata(dev);
1412         int ret = 0;
1413
1414         bcm_qspi_hw_init(qspi);
1415         bcm_qspi_chip_select(qspi, qspi->curr_cs);
1416         if (qspi->soc_intc)
1417                 /* enable MSPI interrupt */
1418                 qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
1419                                                  true);
1420
1421         ret = clk_enable(qspi->clk);
1422         if (!ret)
1423                 spi_master_resume(qspi->master);
1424
1425         return ret;
1426 }
1427
1428 SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
1429
1430 /* pm_ops to be called by SoC specific platform driver */
1431 EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
1432
1433 MODULE_AUTHOR("Kamal Dasu");
1434 MODULE_DESCRIPTION("Broadcom QSPI driver");
1435 MODULE_LICENSE("GPL v2");
1436 MODULE_ALIAS("platform:" DRIVER_NAME);