userfaultfd: selftest: generalize read and poll
[sfrench/cifs-2.6.git] / drivers / spi / spi-bcm-qspi.c
1 /*
2  * Driver for Broadcom BRCMSTB, NSP,  NS2, Cygnus SPI Controllers
3  *
4  * Copyright 2016 Broadcom
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License, version 2, as
8  * published by the Free Software Foundation (the "GPL").
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 (GPLv2) for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * version 2 (GPLv2) along with this source code.
17  */
18
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/io.h>
25 #include <linux/ioport.h>
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/of_irq.h>
30 #include <linux/platform_device.h>
31 #include <linux/slab.h>
32 #include <linux/spi/spi.h>
33 #include <linux/spi/spi-mem.h>
34 #include <linux/sysfs.h>
35 #include <linux/types.h>
36 #include "spi-bcm-qspi.h"
37
38 #define DRIVER_NAME "bcm_qspi"
39
40
41 /* BSPI register offsets */
42 #define BSPI_REVISION_ID                        0x000
43 #define BSPI_SCRATCH                            0x004
44 #define BSPI_MAST_N_BOOT_CTRL                   0x008
45 #define BSPI_BUSY_STATUS                        0x00c
46 #define BSPI_INTR_STATUS                        0x010
47 #define BSPI_B0_STATUS                          0x014
48 #define BSPI_B0_CTRL                            0x018
49 #define BSPI_B1_STATUS                          0x01c
50 #define BSPI_B1_CTRL                            0x020
51 #define BSPI_STRAP_OVERRIDE_CTRL                0x024
52 #define BSPI_FLEX_MODE_ENABLE                   0x028
53 #define BSPI_BITS_PER_CYCLE                     0x02c
54 #define BSPI_BITS_PER_PHASE                     0x030
55 #define BSPI_CMD_AND_MODE_BYTE                  0x034
56 #define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE 0x038
57 #define BSPI_BSPI_XOR_VALUE                     0x03c
58 #define BSPI_BSPI_XOR_ENABLE                    0x040
59 #define BSPI_BSPI_PIO_MODE_ENABLE               0x044
60 #define BSPI_BSPI_PIO_IODIR                     0x048
61 #define BSPI_BSPI_PIO_DATA                      0x04c
62
63 /* RAF register offsets */
64 #define BSPI_RAF_START_ADDR                     0x100
65 #define BSPI_RAF_NUM_WORDS                      0x104
66 #define BSPI_RAF_CTRL                           0x108
67 #define BSPI_RAF_FULLNESS                       0x10c
68 #define BSPI_RAF_WATERMARK                      0x110
69 #define BSPI_RAF_STATUS                 0x114
70 #define BSPI_RAF_READ_DATA                      0x118
71 #define BSPI_RAF_WORD_CNT                       0x11c
72 #define BSPI_RAF_CURR_ADDR                      0x120
73
74 /* Override mode masks */
75 #define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE       BIT(0)
76 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL      BIT(1)
77 #define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE     BIT(2)
78 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD      BIT(3)
79 #define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE    BIT(4)
80
81 #define BSPI_ADDRLEN_3BYTES                     3
82 #define BSPI_ADDRLEN_4BYTES                     4
83
84 #define BSPI_RAF_STATUS_FIFO_EMPTY_MASK BIT(1)
85
86 #define BSPI_RAF_CTRL_START_MASK                BIT(0)
87 #define BSPI_RAF_CTRL_CLEAR_MASK                BIT(1)
88
89 #define BSPI_BPP_MODE_SELECT_MASK               BIT(8)
90 #define BSPI_BPP_ADDR_SELECT_MASK               BIT(16)
91
92 #define BSPI_READ_LENGTH                        256
93
94 /* MSPI register offsets */
95 #define MSPI_SPCR0_LSB                          0x000
96 #define MSPI_SPCR0_MSB                          0x004
97 #define MSPI_SPCR1_LSB                          0x008
98 #define MSPI_SPCR1_MSB                          0x00c
99 #define MSPI_NEWQP                              0x010
100 #define MSPI_ENDQP                              0x014
101 #define MSPI_SPCR2                              0x018
102 #define MSPI_MSPI_STATUS                        0x020
103 #define MSPI_CPTQP                              0x024
104 #define MSPI_SPCR3                              0x028
105 #define MSPI_TXRAM                              0x040
106 #define MSPI_RXRAM                              0x0c0
107 #define MSPI_CDRAM                              0x140
108 #define MSPI_WRITE_LOCK                 0x180
109
110 #define MSPI_MASTER_BIT                 BIT(7)
111
112 #define MSPI_NUM_CDRAM                          16
113 #define MSPI_CDRAM_CONT_BIT                     BIT(7)
114 #define MSPI_CDRAM_BITSE_BIT                    BIT(6)
115 #define MSPI_CDRAM_PCS                          0xf
116
117 #define MSPI_SPCR2_SPE                          BIT(6)
118 #define MSPI_SPCR2_CONT_AFTER_CMD               BIT(7)
119
120 #define MSPI_MSPI_STATUS_SPIF                   BIT(0)
121
122 #define INTR_BASE_BIT_SHIFT                     0x02
123 #define INTR_COUNT                              0x07
124
125 #define NUM_CHIPSELECT                          4
126 #define QSPI_SPBR_MIN                           8U
127 #define QSPI_SPBR_MAX                           255U
128
129 #define OPCODE_DIOR                             0xBB
130 #define OPCODE_QIOR                             0xEB
131 #define OPCODE_DIOR_4B                          0xBC
132 #define OPCODE_QIOR_4B                          0xEC
133
134 #define MAX_CMD_SIZE                            6
135
136 #define ADDR_4MB_MASK                           GENMASK(22, 0)
137
138 /* stop at end of transfer, no other reason */
139 #define TRANS_STATUS_BREAK_NONE         0
140 /* stop at end of spi_message */
141 #define TRANS_STATUS_BREAK_EOM                  1
142 /* stop at end of spi_transfer if delay */
143 #define TRANS_STATUS_BREAK_DELAY                2
144 /* stop at end of spi_transfer if cs_change */
145 #define TRANS_STATUS_BREAK_CS_CHANGE            4
146 /* stop if we run out of bytes */
147 #define TRANS_STATUS_BREAK_NO_BYTES             8
148
149 /* events that make us stop filling TX slots */
150 #define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM |         \
151                                TRANS_STATUS_BREAK_DELAY |               \
152                                TRANS_STATUS_BREAK_CS_CHANGE)
153
154 /* events that make us deassert CS */
155 #define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM |           \
156                                      TRANS_STATUS_BREAK_CS_CHANGE)
157
158 struct bcm_qspi_parms {
159         u32 speed_hz;
160         u8 mode;
161         u8 bits_per_word;
162 };
163
164 struct bcm_xfer_mode {
165         bool flex_mode;
166         unsigned int width;
167         unsigned int addrlen;
168         unsigned int hp;
169 };
170
171 enum base_type {
172         MSPI,
173         BSPI,
174         CHIP_SELECT,
175         BASEMAX,
176 };
177
178 enum irq_source {
179         SINGLE_L2,
180         MUXED_L1,
181 };
182
183 struct bcm_qspi_irq {
184         const char *irq_name;
185         const irq_handler_t irq_handler;
186         int irq_source;
187         u32 mask;
188 };
189
190 struct bcm_qspi_dev_id {
191         const struct bcm_qspi_irq *irqp;
192         void *dev;
193 };
194
195
196 struct qspi_trans {
197         struct spi_transfer *trans;
198         int byte;
199         bool mspi_last_trans;
200 };
201
202 struct bcm_qspi {
203         struct platform_device *pdev;
204         struct spi_master *master;
205         struct clk *clk;
206         u32 base_clk;
207         u32 max_speed_hz;
208         void __iomem *base[BASEMAX];
209
210         /* Some SoCs provide custom interrupt status register(s) */
211         struct bcm_qspi_soc_intc        *soc_intc;
212
213         struct bcm_qspi_parms last_parms;
214         struct qspi_trans  trans_pos;
215         int curr_cs;
216         int bspi_maj_rev;
217         int bspi_min_rev;
218         int bspi_enabled;
219         const struct spi_mem_op *bspi_rf_op;
220         u32 bspi_rf_op_idx;
221         u32 bspi_rf_op_len;
222         u32 bspi_rf_op_status;
223         struct bcm_xfer_mode xfer_mode;
224         u32 s3_strap_override_ctrl;
225         bool bspi_mode;
226         bool big_endian;
227         int num_irqs;
228         struct bcm_qspi_dev_id *dev_ids;
229         struct completion mspi_done;
230         struct completion bspi_done;
231 };
232
233 static inline bool has_bspi(struct bcm_qspi *qspi)
234 {
235         return qspi->bspi_mode;
236 }
237
238 /* Read qspi controller register*/
239 static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
240                                 unsigned int offset)
241 {
242         return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
243 }
244
245 /* Write qspi controller register*/
246 static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
247                                   unsigned int offset, unsigned int data)
248 {
249         bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
250 }
251
252 /* BSPI helpers */
253 static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
254 {
255         int i;
256
257         /* this should normally finish within 10us */
258         for (i = 0; i < 1000; i++) {
259                 if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
260                         return 0;
261                 udelay(1);
262         }
263         dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
264         return -EIO;
265 }
266
267 static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
268 {
269         if (qspi->bspi_maj_rev < 4)
270                 return true;
271         return false;
272 }
273
274 static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
275 {
276         bcm_qspi_bspi_busy_poll(qspi);
277         /* Force rising edge for the b0/b1 'flush' field */
278         bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
279         bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
280         bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
281         bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
282 }
283
284 static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
285 {
286         return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
287                                 BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
288 }
289
290 static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
291 {
292         u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
293
294         /* BSPI v3 LR is LE only, convert data to host endianness */
295         if (bcm_qspi_bspi_ver_three(qspi))
296                 data = le32_to_cpu(data);
297
298         return data;
299 }
300
301 static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
302 {
303         bcm_qspi_bspi_busy_poll(qspi);
304         bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
305                        BSPI_RAF_CTRL_START_MASK);
306 }
307
308 static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
309 {
310         bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
311                        BSPI_RAF_CTRL_CLEAR_MASK);
312         bcm_qspi_bspi_flush_prefetch_buffers(qspi);
313 }
314
315 static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
316 {
317         u32 *buf = (u32 *)qspi->bspi_rf_op->data.buf.in;
318         u32 data = 0;
319
320         dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_op,
321                 qspi->bspi_rf_op->data.buf.in, qspi->bspi_rf_op_len);
322         while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
323                 data = bcm_qspi_bspi_lr_read_fifo(qspi);
324                 if (likely(qspi->bspi_rf_op_len >= 4) &&
325                     IS_ALIGNED((uintptr_t)buf, 4)) {
326                         buf[qspi->bspi_rf_op_idx++] = data;
327                         qspi->bspi_rf_op_len -= 4;
328                 } else {
329                         /* Read out remaining bytes, make sure*/
330                         u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_op_idx];
331
332                         data = cpu_to_le32(data);
333                         while (qspi->bspi_rf_op_len) {
334                                 *cbuf++ = (u8)data;
335                                 data >>= 8;
336                                 qspi->bspi_rf_op_len--;
337                         }
338                 }
339         }
340 }
341
342 static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
343                                           int bpp, int bpc, int flex_mode)
344 {
345         bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
346         bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
347         bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
348         bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
349         bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
350 }
351
352 static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi,
353                                        const struct spi_mem_op *op, int hp)
354 {
355         int bpc = 0, bpp = 0;
356         u8 command = op->cmd.opcode;
357         int width  = op->cmd.buswidth ? op->cmd.buswidth : SPI_NBITS_SINGLE;
358         int addrlen = op->addr.nbytes;
359         int flex_mode = 1;
360
361         dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
362                 width, addrlen, hp);
363
364         if (addrlen == BSPI_ADDRLEN_4BYTES)
365                 bpp = BSPI_BPP_ADDR_SELECT_MASK;
366
367         bpp |= (op->dummy.nbytes * 8) / op->dummy.buswidth;
368
369         switch (width) {
370         case SPI_NBITS_SINGLE:
371                 if (addrlen == BSPI_ADDRLEN_3BYTES)
372                         /* default mode, does not need flex_cmd */
373                         flex_mode = 0;
374                 break;
375         case SPI_NBITS_DUAL:
376                 bpc = 0x00000001;
377                 if (hp) {
378                         bpc |= 0x00010100; /* address and mode are 2-bit */
379                         bpp = BSPI_BPP_MODE_SELECT_MASK;
380                 }
381                 break;
382         case SPI_NBITS_QUAD:
383                 bpc = 0x00000002;
384                 if (hp) {
385                         bpc |= 0x00020200; /* address and mode are 4-bit */
386                         bpp |= BSPI_BPP_MODE_SELECT_MASK;
387                 }
388                 break;
389         default:
390                 return -EINVAL;
391         }
392
393         bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc, flex_mode);
394
395         return 0;
396 }
397
398 static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi,
399                                       const struct spi_mem_op *op, int hp)
400 {
401         int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
402         int addrlen = op->addr.nbytes;
403         u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
404
405         dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
406                 width, addrlen, hp);
407
408         switch (width) {
409         case SPI_NBITS_SINGLE:
410                 /* clear quad/dual mode */
411                 data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
412                           BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
413                 break;
414         case SPI_NBITS_QUAD:
415                 /* clear dual mode and set quad mode */
416                 data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
417                 data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
418                 break;
419         case SPI_NBITS_DUAL:
420                 /* clear quad mode set dual mode */
421                 data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
422                 data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
423                 break;
424         default:
425                 return -EINVAL;
426         }
427
428         if (addrlen == BSPI_ADDRLEN_4BYTES)
429                 /* set 4byte mode*/
430                 data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
431         else
432                 /* clear 4 byte mode */
433                 data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
434
435         /* set the override mode */
436         data |= BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
437         bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
438         bcm_qspi_bspi_set_xfer_params(qspi, op->cmd.opcode, 0, 0, 0);
439
440         return 0;
441 }
442
443 static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
444                                   const struct spi_mem_op *op, int hp)
445 {
446         int error = 0;
447         int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE;
448         int addrlen = op->addr.nbytes;
449
450         /* default mode */
451         qspi->xfer_mode.flex_mode = true;
452
453         if (!bcm_qspi_bspi_ver_three(qspi)) {
454                 u32 val, mask;
455
456                 val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
457                 mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
458                 if (val & mask || qspi->s3_strap_override_ctrl & mask) {
459                         qspi->xfer_mode.flex_mode = false;
460                         bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
461                         error = bcm_qspi_bspi_set_override(qspi, op, hp);
462                 }
463         }
464
465         if (qspi->xfer_mode.flex_mode)
466                 error = bcm_qspi_bspi_set_flex_mode(qspi, op, hp);
467
468         if (error) {
469                 dev_warn(&qspi->pdev->dev,
470                          "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
471                          width, addrlen, hp);
472         } else if (qspi->xfer_mode.width != width ||
473                    qspi->xfer_mode.addrlen != addrlen ||
474                    qspi->xfer_mode.hp != hp) {
475                 qspi->xfer_mode.width = width;
476                 qspi->xfer_mode.addrlen = addrlen;
477                 qspi->xfer_mode.hp = hp;
478                 dev_dbg(&qspi->pdev->dev,
479                         "cs:%d %d-lane output, %d-byte address%s\n",
480                         qspi->curr_cs,
481                         qspi->xfer_mode.width,
482                         qspi->xfer_mode.addrlen,
483                         qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
484         }
485
486         return error;
487 }
488
489 static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
490 {
491         if (!has_bspi(qspi))
492                 return;
493
494         qspi->bspi_enabled = 1;
495         if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
496                 return;
497
498         bcm_qspi_bspi_flush_prefetch_buffers(qspi);
499         udelay(1);
500         bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
501         udelay(1);
502 }
503
504 static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
505 {
506         if (!has_bspi(qspi))
507                 return;
508
509         qspi->bspi_enabled = 0;
510         if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
511                 return;
512
513         bcm_qspi_bspi_busy_poll(qspi);
514         bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
515         udelay(1);
516 }
517
518 static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
519 {
520         u32 rd = 0;
521         u32 wr = 0;
522
523         if (qspi->base[CHIP_SELECT]) {
524                 rd = bcm_qspi_read(qspi, CHIP_SELECT, 0);
525                 wr = (rd & ~0xff) | (1 << cs);
526                 if (rd == wr)
527                         return;
528                 bcm_qspi_write(qspi, CHIP_SELECT, 0, wr);
529                 usleep_range(10, 20);
530         }
531
532         dev_dbg(&qspi->pdev->dev, "using cs:%d\n", cs);
533         qspi->curr_cs = cs;
534 }
535
536 /* MSPI helpers */
537 static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
538                                   const struct bcm_qspi_parms *xp)
539 {
540         u32 spcr, spbr = 0;
541
542         if (xp->speed_hz)
543                 spbr = qspi->base_clk / (2 * xp->speed_hz);
544
545         spcr = clamp_val(spbr, QSPI_SPBR_MIN, QSPI_SPBR_MAX);
546         bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spcr);
547
548         spcr = MSPI_MASTER_BIT;
549         /* for 16 bit the data should be zero */
550         if (xp->bits_per_word != 16)
551                 spcr |= xp->bits_per_word << 2;
552         spcr |= xp->mode & 3;
553         bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
554
555         qspi->last_parms = *xp;
556 }
557
558 static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
559                                   struct spi_device *spi,
560                                   struct spi_transfer *trans)
561 {
562         struct bcm_qspi_parms xp;
563
564         xp.speed_hz = trans->speed_hz;
565         xp.bits_per_word = trans->bits_per_word;
566         xp.mode = spi->mode;
567
568         bcm_qspi_hw_set_parms(qspi, &xp);
569 }
570
571 static int bcm_qspi_setup(struct spi_device *spi)
572 {
573         struct bcm_qspi_parms *xp;
574
575         if (spi->bits_per_word > 16)
576                 return -EINVAL;
577
578         xp = spi_get_ctldata(spi);
579         if (!xp) {
580                 xp = kzalloc(sizeof(*xp), GFP_KERNEL);
581                 if (!xp)
582                         return -ENOMEM;
583                 spi_set_ctldata(spi, xp);
584         }
585         xp->speed_hz = spi->max_speed_hz;
586         xp->mode = spi->mode;
587
588         if (spi->bits_per_word)
589                 xp->bits_per_word = spi->bits_per_word;
590         else
591                 xp->bits_per_word = 8;
592
593         return 0;
594 }
595
596 static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi,
597                                            struct qspi_trans *qt)
598 {
599         if (qt->mspi_last_trans &&
600             spi_transfer_is_last(qspi->master, qt->trans))
601                 return true;
602         else
603                 return false;
604 }
605
606 static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
607                                         struct qspi_trans *qt, int flags)
608 {
609         int ret = TRANS_STATUS_BREAK_NONE;
610
611         /* count the last transferred bytes */
612         if (qt->trans->bits_per_word <= 8)
613                 qt->byte++;
614         else
615                 qt->byte += 2;
616
617         if (qt->byte >= qt->trans->len) {
618                 /* we're at the end of the spi_transfer */
619                 /* in TX mode, need to pause for a delay or CS change */
620                 if (qt->trans->delay_usecs &&
621                     (flags & TRANS_STATUS_BREAK_DELAY))
622                         ret |= TRANS_STATUS_BREAK_DELAY;
623                 if (qt->trans->cs_change &&
624                     (flags & TRANS_STATUS_BREAK_CS_CHANGE))
625                         ret |= TRANS_STATUS_BREAK_CS_CHANGE;
626                 if (ret)
627                         goto done;
628
629                 dev_dbg(&qspi->pdev->dev, "advance msg exit\n");
630                 if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
631                         ret = TRANS_STATUS_BREAK_EOM;
632                 else
633                         ret = TRANS_STATUS_BREAK_NO_BYTES;
634
635                 qt->trans = NULL;
636         }
637
638 done:
639         dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
640                 qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
641         return ret;
642 }
643
644 static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
645 {
646         u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
647
648         /* mask out reserved bits */
649         return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
650 }
651
652 static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
653 {
654         u32 reg_offset = MSPI_RXRAM;
655         u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
656         u32 msb_offset = reg_offset + (slot << 3);
657
658         return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
659                 ((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
660 }
661
662 static void read_from_hw(struct bcm_qspi *qspi, int slots)
663 {
664         struct qspi_trans tp;
665         int slot;
666
667         bcm_qspi_disable_bspi(qspi);
668
669         if (slots > MSPI_NUM_CDRAM) {
670                 /* should never happen */
671                 dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
672                 return;
673         }
674
675         tp = qspi->trans_pos;
676
677         for (slot = 0; slot < slots; slot++) {
678                 if (tp.trans->bits_per_word <= 8) {
679                         u8 *buf = tp.trans->rx_buf;
680
681                         if (buf)
682                                 buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
683                         dev_dbg(&qspi->pdev->dev, "RD %02x\n",
684                                 buf ? buf[tp.byte] : 0xff);
685                 } else {
686                         u16 *buf = tp.trans->rx_buf;
687
688                         if (buf)
689                                 buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
690                                                                       slot);
691                         dev_dbg(&qspi->pdev->dev, "RD %04x\n",
692                                 buf ? buf[tp.byte] : 0xffff);
693                 }
694
695                 update_qspi_trans_byte_count(qspi, &tp,
696                                              TRANS_STATUS_BREAK_NONE);
697         }
698
699         qspi->trans_pos = tp;
700 }
701
702 static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
703                                        u8 val)
704 {
705         u32 reg_offset = MSPI_TXRAM + (slot << 3);
706
707         /* mask out reserved bits */
708         bcm_qspi_write(qspi, MSPI, reg_offset, val);
709 }
710
711 static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
712                                         u16 val)
713 {
714         u32 reg_offset = MSPI_TXRAM;
715         u32 msb_offset = reg_offset + (slot << 3);
716         u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
717
718         bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
719         bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
720 }
721
722 static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
723 {
724         return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
725 }
726
727 static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
728 {
729         bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
730 }
731
732 /* Return number of slots written */
733 static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
734 {
735         struct qspi_trans tp;
736         int slot = 0, tstatus = 0;
737         u32 mspi_cdram = 0;
738
739         bcm_qspi_disable_bspi(qspi);
740         tp = qspi->trans_pos;
741         bcm_qspi_update_parms(qspi, spi, tp.trans);
742
743         /* Run until end of transfer or reached the max data */
744         while (!tstatus && slot < MSPI_NUM_CDRAM) {
745                 if (tp.trans->bits_per_word <= 8) {
746                         const u8 *buf = tp.trans->tx_buf;
747                         u8 val = buf ? buf[tp.byte] : 0xff;
748
749                         write_txram_slot_u8(qspi, slot, val);
750                         dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
751                 } else {
752                         const u16 *buf = tp.trans->tx_buf;
753                         u16 val = buf ? buf[tp.byte / 2] : 0xffff;
754
755                         write_txram_slot_u16(qspi, slot, val);
756                         dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
757                 }
758                 mspi_cdram = MSPI_CDRAM_CONT_BIT;
759
760                 if (has_bspi(qspi))
761                         mspi_cdram &= ~1;
762                 else
763                         mspi_cdram |= (~(1 << spi->chip_select) &
764                                        MSPI_CDRAM_PCS);
765
766                 mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
767                                 MSPI_CDRAM_BITSE_BIT);
768
769                 write_cdram_slot(qspi, slot, mspi_cdram);
770
771                 tstatus = update_qspi_trans_byte_count(qspi, &tp,
772                                                        TRANS_STATUS_BREAK_TX);
773                 slot++;
774         }
775
776         if (!slot) {
777                 dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
778                 goto done;
779         }
780
781         dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
782         bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
783         bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
784
785         if (tstatus & TRANS_STATUS_BREAK_DESELECT) {
786                 mspi_cdram = read_cdram_slot(qspi, slot - 1) &
787                         ~MSPI_CDRAM_CONT_BIT;
788                 write_cdram_slot(qspi, slot - 1, mspi_cdram);
789         }
790
791         if (has_bspi(qspi))
792                 bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
793
794         /* Must flush previous writes before starting MSPI operation */
795         mb();
796         /* Set cont | spe | spifie */
797         bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
798
799 done:
800         return slot;
801 }
802
803 static int bcm_qspi_bspi_exec_mem_op(struct spi_device *spi,
804                                      const struct spi_mem_op *op)
805 {
806         struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
807         u32 addr = 0, len, rdlen, len_words, from = 0;
808         int ret = 0;
809         unsigned long timeo = msecs_to_jiffies(100);
810         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
811
812         if (bcm_qspi_bspi_ver_three(qspi))
813                 if (op->addr.nbytes == BSPI_ADDRLEN_4BYTES)
814                         return -EIO;
815
816         from = op->addr.val;
817         bcm_qspi_chip_select(qspi, spi->chip_select);
818         bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
819
820         /*
821          * when using flex mode we need to send
822          * the upper address byte to bspi
823          */
824         if (bcm_qspi_bspi_ver_three(qspi) == false) {
825                 addr = from & 0xff000000;
826                 bcm_qspi_write(qspi, BSPI,
827                                BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
828         }
829
830         if (!qspi->xfer_mode.flex_mode)
831                 addr = from;
832         else
833                 addr = from & 0x00ffffff;
834
835         if (bcm_qspi_bspi_ver_three(qspi) == true)
836                 addr = (addr + 0xc00000) & 0xffffff;
837
838         /*
839          * read into the entire buffer by breaking the reads
840          * into RAF buffer read lengths
841          */
842         len = op->data.nbytes;
843         qspi->bspi_rf_op_idx = 0;
844
845         do {
846                 if (len > BSPI_READ_LENGTH)
847                         rdlen = BSPI_READ_LENGTH;
848                 else
849                         rdlen = len;
850
851                 reinit_completion(&qspi->bspi_done);
852                 bcm_qspi_enable_bspi(qspi);
853                 len_words = (rdlen + 3) >> 2;
854                 qspi->bspi_rf_op = op;
855                 qspi->bspi_rf_op_status = 0;
856                 qspi->bspi_rf_op_len = rdlen;
857                 dev_dbg(&qspi->pdev->dev,
858                         "bspi xfr addr 0x%x len 0x%x", addr, rdlen);
859                 bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
860                 bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
861                 bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
862                 if (qspi->soc_intc) {
863                         /*
864                          * clear soc MSPI and BSPI interrupts and enable
865                          * BSPI interrupts.
866                          */
867                         soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
868                         soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
869                 }
870
871                 /* Must flush previous writes before starting BSPI operation */
872                 mb();
873                 bcm_qspi_bspi_lr_start(qspi);
874                 if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
875                         dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
876                         ret = -ETIMEDOUT;
877                         break;
878                 }
879
880                 /* set msg return length */
881                 addr += rdlen;
882                 len -= rdlen;
883         } while (len);
884
885         return ret;
886 }
887
888 static int bcm_qspi_transfer_one(struct spi_master *master,
889                                  struct spi_device *spi,
890                                  struct spi_transfer *trans)
891 {
892         struct bcm_qspi *qspi = spi_master_get_devdata(master);
893         int slots;
894         unsigned long timeo = msecs_to_jiffies(100);
895
896         bcm_qspi_chip_select(qspi, spi->chip_select);
897         qspi->trans_pos.trans = trans;
898         qspi->trans_pos.byte = 0;
899
900         while (qspi->trans_pos.byte < trans->len) {
901                 reinit_completion(&qspi->mspi_done);
902
903                 slots = write_to_hw(qspi, spi);
904                 if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
905                         dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
906                         return -ETIMEDOUT;
907                 }
908
909                 read_from_hw(qspi, slots);
910         }
911
912         return 0;
913 }
914
915 static int bcm_qspi_mspi_exec_mem_op(struct spi_device *spi,
916                                      const struct spi_mem_op *op)
917 {
918         struct spi_master *master = spi->master;
919         struct bcm_qspi *qspi = spi_master_get_devdata(master);
920         struct spi_transfer t[2];
921         u8 cmd[6] = { };
922         int ret, i;
923
924         memset(cmd, 0, sizeof(cmd));
925         memset(t, 0, sizeof(t));
926
927         /* tx */
928         /* opcode is in cmd[0] */
929         cmd[0] = op->cmd.opcode;
930         for (i = 0; i < op->addr.nbytes; i++)
931                 cmd[1 + i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
932
933         t[0].tx_buf = cmd;
934         t[0].len = op->addr.nbytes + op->dummy.nbytes + 1;
935         t[0].bits_per_word = spi->bits_per_word;
936         t[0].tx_nbits = op->cmd.buswidth;
937         /* lets mspi know that this is not last transfer */
938         qspi->trans_pos.mspi_last_trans = false;
939         ret = bcm_qspi_transfer_one(master, spi, &t[0]);
940
941         /* rx */
942         qspi->trans_pos.mspi_last_trans = true;
943         if (!ret) {
944                 /* rx */
945                 t[1].rx_buf = op->data.buf.in;
946                 t[1].len = op->data.nbytes;
947                 t[1].rx_nbits =  op->data.buswidth;
948                 t[1].bits_per_word = spi->bits_per_word;
949                 ret = bcm_qspi_transfer_one(master, spi, &t[1]);
950         }
951
952         return ret;
953 }
954
955 static int bcm_qspi_exec_mem_op(struct spi_mem *mem,
956                                 const struct spi_mem_op *op)
957 {
958         struct spi_device *spi = mem->spi;
959         struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
960         int ret = 0;
961         bool mspi_read = false;
962         u32 addr = 0, len;
963         u_char *buf;
964
965         if (!op->data.nbytes || !op->addr.nbytes || op->addr.nbytes > 4 ||
966             op->data.dir != SPI_MEM_DATA_IN)
967                 return -ENOTSUPP;
968
969         buf = op->data.buf.in;
970         addr = op->addr.val;
971         len = op->data.nbytes;
972
973         if (bcm_qspi_bspi_ver_three(qspi) == true) {
974                 /*
975                  * The address coming into this function is a raw flash offset.
976                  * But for BSPI <= V3, we need to convert it to a remapped BSPI
977                  * address. If it crosses a 4MB boundary, just revert back to
978                  * using MSPI.
979                  */
980                 addr = (addr + 0xc00000) & 0xffffff;
981
982                 if ((~ADDR_4MB_MASK & addr) ^
983                     (~ADDR_4MB_MASK & (addr + len - 1)))
984                         mspi_read = true;
985         }
986
987         /* non-aligned and very short transfers are handled by MSPI */
988         if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
989             len < 4)
990                 mspi_read = true;
991
992         if (mspi_read)
993                 return bcm_qspi_mspi_exec_mem_op(spi, op);
994
995         ret = bcm_qspi_bspi_set_mode(qspi, op, -1);
996
997         if (!ret)
998                 ret = bcm_qspi_bspi_exec_mem_op(spi, op);
999
1000         return ret;
1001 }
1002
1003 static void bcm_qspi_cleanup(struct spi_device *spi)
1004 {
1005         struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
1006
1007         kfree(xp);
1008 }
1009
1010 static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
1011 {
1012         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1013         struct bcm_qspi *qspi = qspi_dev_id->dev;
1014         u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
1015
1016         if (status & MSPI_MSPI_STATUS_SPIF) {
1017                 struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1018                 /* clear interrupt */
1019                 status &= ~MSPI_MSPI_STATUS_SPIF;
1020                 bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
1021                 if (qspi->soc_intc)
1022                         soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
1023                 complete(&qspi->mspi_done);
1024                 return IRQ_HANDLED;
1025         }
1026
1027         return IRQ_NONE;
1028 }
1029
1030 static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
1031 {
1032         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1033         struct bcm_qspi *qspi = qspi_dev_id->dev;
1034         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1035         u32 status = qspi_dev_id->irqp->mask;
1036
1037         if (qspi->bspi_enabled && qspi->bspi_rf_op) {
1038                 bcm_qspi_bspi_lr_data_read(qspi);
1039                 if (qspi->bspi_rf_op_len == 0) {
1040                         qspi->bspi_rf_op = NULL;
1041                         if (qspi->soc_intc) {
1042                                 /* disable soc BSPI interrupt */
1043                                 soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
1044                                                            false);
1045                                 /* indicate done */
1046                                 status = INTR_BSPI_LR_SESSION_DONE_MASK;
1047                         }
1048
1049                         if (qspi->bspi_rf_op_status)
1050                                 bcm_qspi_bspi_lr_clear(qspi);
1051                         else
1052                                 bcm_qspi_bspi_flush_prefetch_buffers(qspi);
1053                 }
1054
1055                 if (qspi->soc_intc)
1056                         /* clear soc BSPI interrupt */
1057                         soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
1058         }
1059
1060         status &= INTR_BSPI_LR_SESSION_DONE_MASK;
1061         if (qspi->bspi_enabled && status && qspi->bspi_rf_op_len == 0)
1062                 complete(&qspi->bspi_done);
1063
1064         return IRQ_HANDLED;
1065 }
1066
1067 static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
1068 {
1069         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1070         struct bcm_qspi *qspi = qspi_dev_id->dev;
1071         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1072
1073         dev_err(&qspi->pdev->dev, "BSPI INT error\n");
1074         qspi->bspi_rf_op_status = -EIO;
1075         if (qspi->soc_intc)
1076                 /* clear soc interrupt */
1077                 soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
1078
1079         complete(&qspi->bspi_done);
1080         return IRQ_HANDLED;
1081 }
1082
1083 static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
1084 {
1085         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1086         struct bcm_qspi *qspi = qspi_dev_id->dev;
1087         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1088         irqreturn_t ret = IRQ_NONE;
1089
1090         if (soc_intc) {
1091                 u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
1092
1093                 if (status & MSPI_DONE)
1094                         ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
1095                 else if (status & BSPI_DONE)
1096                         ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
1097                 else if (status & BSPI_ERR)
1098                         ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
1099         }
1100
1101         return ret;
1102 }
1103
1104 static const struct bcm_qspi_irq qspi_irq_tab[] = {
1105         {
1106                 .irq_name = "spi_lr_fullness_reached",
1107                 .irq_handler = bcm_qspi_bspi_lr_l2_isr,
1108                 .mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
1109         },
1110         {
1111                 .irq_name = "spi_lr_session_aborted",
1112                 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1113                 .mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
1114         },
1115         {
1116                 .irq_name = "spi_lr_impatient",
1117                 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1118                 .mask = INTR_BSPI_LR_IMPATIENT_MASK,
1119         },
1120         {
1121                 .irq_name = "spi_lr_session_done",
1122                 .irq_handler = bcm_qspi_bspi_lr_l2_isr,
1123                 .mask = INTR_BSPI_LR_SESSION_DONE_MASK,
1124         },
1125 #ifdef QSPI_INT_DEBUG
1126         /* this interrupt is for debug purposes only, dont request irq */
1127         {
1128                 .irq_name = "spi_lr_overread",
1129                 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1130                 .mask = INTR_BSPI_LR_OVERREAD_MASK,
1131         },
1132 #endif
1133         {
1134                 .irq_name = "mspi_done",
1135                 .irq_handler = bcm_qspi_mspi_l2_isr,
1136                 .mask = INTR_MSPI_DONE_MASK,
1137         },
1138         {
1139                 .irq_name = "mspi_halted",
1140                 .irq_handler = bcm_qspi_mspi_l2_isr,
1141                 .mask = INTR_MSPI_HALTED_MASK,
1142         },
1143         {
1144                 /* single muxed L1 interrupt source */
1145                 .irq_name = "spi_l1_intr",
1146                 .irq_handler = bcm_qspi_l1_isr,
1147                 .irq_source = MUXED_L1,
1148                 .mask = QSPI_INTERRUPTS_ALL,
1149         },
1150 };
1151
1152 static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
1153 {
1154         u32 val = 0;
1155
1156         val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
1157         qspi->bspi_maj_rev = (val >> 8) & 0xff;
1158         qspi->bspi_min_rev = val & 0xff;
1159         if (!(bcm_qspi_bspi_ver_three(qspi))) {
1160                 /* Force mapping of BSPI address -> flash offset */
1161                 bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
1162                 bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
1163         }
1164         qspi->bspi_enabled = 1;
1165         bcm_qspi_disable_bspi(qspi);
1166         bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
1167         bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
1168 }
1169
1170 static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
1171 {
1172         struct bcm_qspi_parms parms;
1173
1174         bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
1175         bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
1176         bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1177         bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
1178         bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
1179
1180         parms.mode = SPI_MODE_3;
1181         parms.bits_per_word = 8;
1182         parms.speed_hz = qspi->max_speed_hz;
1183         bcm_qspi_hw_set_parms(qspi, &parms);
1184
1185         if (has_bspi(qspi))
1186                 bcm_qspi_bspi_init(qspi);
1187 }
1188
1189 static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
1190 {
1191         bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
1192         if (has_bspi(qspi))
1193                 bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1194
1195 }
1196
1197 static const struct spi_controller_mem_ops bcm_qspi_mem_ops = {
1198         .exec_op = bcm_qspi_exec_mem_op,
1199 };
1200
1201 static const struct of_device_id bcm_qspi_of_match[] = {
1202         { .compatible = "brcm,spi-bcm-qspi" },
1203         {},
1204 };
1205 MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
1206
1207 int bcm_qspi_probe(struct platform_device *pdev,
1208                    struct bcm_qspi_soc_intc *soc_intc)
1209 {
1210         struct device *dev = &pdev->dev;
1211         struct bcm_qspi *qspi;
1212         struct spi_master *master;
1213         struct resource *res;
1214         int irq, ret = 0, num_ints = 0;
1215         u32 val;
1216         const char *name = NULL;
1217         int num_irqs = ARRAY_SIZE(qspi_irq_tab);
1218
1219         /* We only support device-tree instantiation */
1220         if (!dev->of_node)
1221                 return -ENODEV;
1222
1223         if (!of_match_node(bcm_qspi_of_match, dev->of_node))
1224                 return -ENODEV;
1225
1226         master = spi_alloc_master(dev, sizeof(struct bcm_qspi));
1227         if (!master) {
1228                 dev_err(dev, "error allocating spi_master\n");
1229                 return -ENOMEM;
1230         }
1231
1232         qspi = spi_master_get_devdata(master);
1233         qspi->pdev = pdev;
1234         qspi->trans_pos.trans = NULL;
1235         qspi->trans_pos.byte = 0;
1236         qspi->trans_pos.mspi_last_trans = true;
1237         qspi->master = master;
1238
1239         master->bus_num = -1;
1240         master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD;
1241         master->setup = bcm_qspi_setup;
1242         master->transfer_one = bcm_qspi_transfer_one;
1243         master->mem_ops = &bcm_qspi_mem_ops;
1244         master->cleanup = bcm_qspi_cleanup;
1245         master->dev.of_node = dev->of_node;
1246         master->num_chipselect = NUM_CHIPSELECT;
1247
1248         qspi->big_endian = of_device_is_big_endian(dev->of_node);
1249
1250         if (!of_property_read_u32(dev->of_node, "num-cs", &val))
1251                 master->num_chipselect = val;
1252
1253         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
1254         if (!res)
1255                 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1256                                                    "mspi");
1257
1258         if (res) {
1259                 qspi->base[MSPI]  = devm_ioremap_resource(dev, res);
1260                 if (IS_ERR(qspi->base[MSPI])) {
1261                         ret = PTR_ERR(qspi->base[MSPI]);
1262                         goto qspi_resource_err;
1263                 }
1264         } else {
1265                 goto qspi_resource_err;
1266         }
1267
1268         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
1269         if (res) {
1270                 qspi->base[BSPI]  = devm_ioremap_resource(dev, res);
1271                 if (IS_ERR(qspi->base[BSPI])) {
1272                         ret = PTR_ERR(qspi->base[BSPI]);
1273                         goto qspi_resource_err;
1274                 }
1275                 qspi->bspi_mode = true;
1276         } else {
1277                 qspi->bspi_mode = false;
1278         }
1279
1280         dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
1281
1282         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
1283         if (res) {
1284                 qspi->base[CHIP_SELECT]  = devm_ioremap_resource(dev, res);
1285                 if (IS_ERR(qspi->base[CHIP_SELECT])) {
1286                         ret = PTR_ERR(qspi->base[CHIP_SELECT]);
1287                         goto qspi_resource_err;
1288                 }
1289         }
1290
1291         qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
1292                                 GFP_KERNEL);
1293         if (!qspi->dev_ids) {
1294                 ret = -ENOMEM;
1295                 goto qspi_resource_err;
1296         }
1297
1298         for (val = 0; val < num_irqs; val++) {
1299                 irq = -1;
1300                 name = qspi_irq_tab[val].irq_name;
1301                 if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
1302                         /* get the l2 interrupts */
1303                         irq = platform_get_irq_byname(pdev, name);
1304                 } else if (!num_ints && soc_intc) {
1305                         /* all mspi, bspi intrs muxed to one L1 intr */
1306                         irq = platform_get_irq(pdev, 0);
1307                 }
1308
1309                 if (irq  >= 0) {
1310                         ret = devm_request_irq(&pdev->dev, irq,
1311                                                qspi_irq_tab[val].irq_handler, 0,
1312                                                name,
1313                                                &qspi->dev_ids[val]);
1314                         if (ret < 0) {
1315                                 dev_err(&pdev->dev, "IRQ %s not found\n", name);
1316                                 goto qspi_probe_err;
1317                         }
1318
1319                         qspi->dev_ids[val].dev = qspi;
1320                         qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
1321                         num_ints++;
1322                         dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
1323                                 qspi_irq_tab[val].irq_name,
1324                                 irq);
1325                 }
1326         }
1327
1328         if (!num_ints) {
1329                 dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
1330                 ret = -EINVAL;
1331                 goto qspi_probe_err;
1332         }
1333
1334         /*
1335          * Some SoCs integrate spi controller (e.g., its interrupt bits)
1336          * in specific ways
1337          */
1338         if (soc_intc) {
1339                 qspi->soc_intc = soc_intc;
1340                 soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
1341         } else {
1342                 qspi->soc_intc = NULL;
1343         }
1344
1345         qspi->clk = devm_clk_get(&pdev->dev, NULL);
1346         if (IS_ERR(qspi->clk)) {
1347                 dev_warn(dev, "unable to get clock\n");
1348                 ret = PTR_ERR(qspi->clk);
1349                 goto qspi_probe_err;
1350         }
1351
1352         ret = clk_prepare_enable(qspi->clk);
1353         if (ret) {
1354                 dev_err(dev, "failed to prepare clock\n");
1355                 goto qspi_probe_err;
1356         }
1357
1358         qspi->base_clk = clk_get_rate(qspi->clk);
1359         qspi->max_speed_hz = qspi->base_clk / (QSPI_SPBR_MIN * 2);
1360
1361         bcm_qspi_hw_init(qspi);
1362         init_completion(&qspi->mspi_done);
1363         init_completion(&qspi->bspi_done);
1364         qspi->curr_cs = -1;
1365
1366         platform_set_drvdata(pdev, qspi);
1367
1368         qspi->xfer_mode.width = -1;
1369         qspi->xfer_mode.addrlen = -1;
1370         qspi->xfer_mode.hp = -1;
1371
1372         ret = devm_spi_register_master(&pdev->dev, master);
1373         if (ret < 0) {
1374                 dev_err(dev, "can't register master\n");
1375                 goto qspi_reg_err;
1376         }
1377
1378         return 0;
1379
1380 qspi_reg_err:
1381         bcm_qspi_hw_uninit(qspi);
1382         clk_disable_unprepare(qspi->clk);
1383 qspi_probe_err:
1384         kfree(qspi->dev_ids);
1385 qspi_resource_err:
1386         spi_master_put(master);
1387         return ret;
1388 }
1389 /* probe function to be called by SoC specific platform driver probe */
1390 EXPORT_SYMBOL_GPL(bcm_qspi_probe);
1391
1392 int bcm_qspi_remove(struct platform_device *pdev)
1393 {
1394         struct bcm_qspi *qspi = platform_get_drvdata(pdev);
1395
1396         bcm_qspi_hw_uninit(qspi);
1397         clk_disable_unprepare(qspi->clk);
1398         kfree(qspi->dev_ids);
1399         spi_unregister_master(qspi->master);
1400
1401         return 0;
1402 }
1403 /* function to be called by SoC specific platform driver remove() */
1404 EXPORT_SYMBOL_GPL(bcm_qspi_remove);
1405
1406 static int __maybe_unused bcm_qspi_suspend(struct device *dev)
1407 {
1408         struct bcm_qspi *qspi = dev_get_drvdata(dev);
1409
1410         /* store the override strap value */
1411         if (!bcm_qspi_bspi_ver_three(qspi))
1412                 qspi->s3_strap_override_ctrl =
1413                         bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
1414
1415         spi_master_suspend(qspi->master);
1416         clk_disable(qspi->clk);
1417         bcm_qspi_hw_uninit(qspi);
1418
1419         return 0;
1420 };
1421
1422 static int __maybe_unused bcm_qspi_resume(struct device *dev)
1423 {
1424         struct bcm_qspi *qspi = dev_get_drvdata(dev);
1425         int ret = 0;
1426
1427         bcm_qspi_hw_init(qspi);
1428         bcm_qspi_chip_select(qspi, qspi->curr_cs);
1429         if (qspi->soc_intc)
1430                 /* enable MSPI interrupt */
1431                 qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
1432                                                  true);
1433
1434         ret = clk_enable(qspi->clk);
1435         if (!ret)
1436                 spi_master_resume(qspi->master);
1437
1438         return ret;
1439 }
1440
1441 SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
1442
1443 /* pm_ops to be called by SoC specific platform driver */
1444 EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
1445
1446 MODULE_AUTHOR("Kamal Dasu");
1447 MODULE_DESCRIPTION("Broadcom QSPI driver");
1448 MODULE_LICENSE("GPL v2");
1449 MODULE_ALIAS("platform:" DRIVER_NAME);