Merge branch 'topic/section-fix' into for-linus
[sfrench/cifs-2.6.git] / drivers / spi / atmel_spi.c
1 /*
2  * Driver for Atmel AT32 and AT91 SPI Controllers
3  *
4  * Copyright (C) 2006 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21
22 #include <asm/io.h>
23 #include <mach/board.h>
24 #include <mach/gpio.h>
25 #include <mach/cpu.h>
26
27 #include "atmel_spi.h"
28
29 /*
30  * The core SPI transfer engine just talks to a register bank to set up
31  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
32  * framework provides the base clock, subdivided for each spi_device.
33  */
34 struct atmel_spi {
35         spinlock_t              lock;
36
37         void __iomem            *regs;
38         int                     irq;
39         struct clk              *clk;
40         struct platform_device  *pdev;
41         struct spi_device       *stay;
42
43         u8                      stopping;
44         struct list_head        queue;
45         struct spi_transfer     *current_transfer;
46         unsigned long           current_remaining_bytes;
47         struct spi_transfer     *next_transfer;
48         unsigned long           next_remaining_bytes;
49
50         void                    *buffer;
51         dma_addr_t              buffer_dma;
52 };
53
54 /* Controller-specific per-slave state */
55 struct atmel_spi_device {
56         unsigned int            npcs_pin;
57         u32                     csr;
58 };
59
60 #define BUFFER_SIZE             PAGE_SIZE
61 #define INVALID_DMA_ADDRESS     0xffffffff
62
63 /*
64  * Version 2 of the SPI controller has
65  *  - CR.LASTXFER
66  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
67  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
68  *  - SPI_CSRx.CSAAT
69  *  - SPI_CSRx.SBCR allows faster clocking
70  *
71  * We can determine the controller version by reading the VERSION
72  * register, but I haven't checked that it exists on all chips, and
73  * this is cheaper anyway.
74  */
75 static bool atmel_spi_is_v2(void)
76 {
77         return !cpu_is_at91rm9200();
78 }
79
80 /*
81  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
82  * they assume that spi slave device state will not change on deselect, so
83  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
84  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
85  * controllers have CSAAT and friends.
86  *
87  * Since the CSAAT functionality is a bit weird on newer controllers as
88  * well, we use GPIO to control nCSx pins on all controllers, updating
89  * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
90  * support active-high chipselects despite the controller's belief that
91  * only active-low devices/systems exists.
92  *
93  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
94  * right when driven with GPIO.  ("Mode Fault does not allow more than one
95  * Master on Chip Select 0.")  No workaround exists for that ... so for
96  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
97  * and (c) will trigger that first erratum in some cases.
98  *
99  * TODO: Test if the atmel_spi_is_v2() branch below works on
100  * AT91RM9200 if we use some other register than CSR0. However, don't
101  * do this unconditionally since AP7000 has an errata where the BITS
102  * field in CSR0 overrides all other CSRs.
103  */
104
105 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
106 {
107         struct atmel_spi_device *asd = spi->controller_state;
108         unsigned active = spi->mode & SPI_CS_HIGH;
109         u32 mr;
110
111         if (atmel_spi_is_v2()) {
112                 /*
113                  * Always use CSR0. This ensures that the clock
114                  * switches to the correct idle polarity before we
115                  * toggle the CS.
116                  */
117                 spi_writel(as, CSR0, asd->csr);
118                 spi_writel(as, MR, SPI_BF(PCS, 0x0e) | SPI_BIT(MODFDIS)
119                                 | SPI_BIT(MSTR));
120                 mr = spi_readl(as, MR);
121                 gpio_set_value(asd->npcs_pin, active);
122         } else {
123                 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
124                 int i;
125                 u32 csr;
126
127                 /* Make sure clock polarity is correct */
128                 for (i = 0; i < spi->master->num_chipselect; i++) {
129                         csr = spi_readl(as, CSR0 + 4 * i);
130                         if ((csr ^ cpol) & SPI_BIT(CPOL))
131                                 spi_writel(as, CSR0 + 4 * i,
132                                                 csr ^ SPI_BIT(CPOL));
133                 }
134
135                 mr = spi_readl(as, MR);
136                 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
137                 if (spi->chip_select != 0)
138                         gpio_set_value(asd->npcs_pin, active);
139                 spi_writel(as, MR, mr);
140         }
141
142         dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
143                         asd->npcs_pin, active ? " (high)" : "",
144                         mr);
145 }
146
147 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
148 {
149         struct atmel_spi_device *asd = spi->controller_state;
150         unsigned active = spi->mode & SPI_CS_HIGH;
151         u32 mr;
152
153         /* only deactivate *this* device; sometimes transfers to
154          * another device may be active when this routine is called.
155          */
156         mr = spi_readl(as, MR);
157         if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
158                 mr = SPI_BFINS(PCS, 0xf, mr);
159                 spi_writel(as, MR, mr);
160         }
161
162         dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
163                         asd->npcs_pin, active ? " (low)" : "",
164                         mr);
165
166         if (atmel_spi_is_v2() || spi->chip_select != 0)
167                 gpio_set_value(asd->npcs_pin, !active);
168 }
169
170 static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
171                                         struct spi_transfer *xfer)
172 {
173         return msg->transfers.prev == &xfer->transfer_list;
174 }
175
176 static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
177 {
178         return xfer->delay_usecs == 0 && !xfer->cs_change;
179 }
180
181 static void atmel_spi_next_xfer_data(struct spi_master *master,
182                                 struct spi_transfer *xfer,
183                                 dma_addr_t *tx_dma,
184                                 dma_addr_t *rx_dma,
185                                 u32 *plen)
186 {
187         struct atmel_spi        *as = spi_master_get_devdata(master);
188         u32                     len = *plen;
189
190         /* use scratch buffer only when rx or tx data is unspecified */
191         if (xfer->rx_buf)
192                 *rx_dma = xfer->rx_dma + xfer->len - len;
193         else {
194                 *rx_dma = as->buffer_dma;
195                 if (len > BUFFER_SIZE)
196                         len = BUFFER_SIZE;
197         }
198         if (xfer->tx_buf)
199                 *tx_dma = xfer->tx_dma + xfer->len - len;
200         else {
201                 *tx_dma = as->buffer_dma;
202                 if (len > BUFFER_SIZE)
203                         len = BUFFER_SIZE;
204                 memset(as->buffer, 0, len);
205                 dma_sync_single_for_device(&as->pdev->dev,
206                                 as->buffer_dma, len, DMA_TO_DEVICE);
207         }
208
209         *plen = len;
210 }
211
212 /*
213  * Submit next transfer for DMA.
214  * lock is held, spi irq is blocked
215  */
216 static void atmel_spi_next_xfer(struct spi_master *master,
217                                 struct spi_message *msg)
218 {
219         struct atmel_spi        *as = spi_master_get_devdata(master);
220         struct spi_transfer     *xfer;
221         u32                     len, remaining;
222         u32                     ieval;
223         dma_addr_t              tx_dma, rx_dma;
224
225         if (!as->current_transfer)
226                 xfer = list_entry(msg->transfers.next,
227                                 struct spi_transfer, transfer_list);
228         else if (!as->next_transfer)
229                 xfer = list_entry(as->current_transfer->transfer_list.next,
230                                 struct spi_transfer, transfer_list);
231         else
232                 xfer = NULL;
233
234         if (xfer) {
235                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
236
237                 len = xfer->len;
238                 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
239                 remaining = xfer->len - len;
240
241                 spi_writel(as, RPR, rx_dma);
242                 spi_writel(as, TPR, tx_dma);
243
244                 if (msg->spi->bits_per_word > 8)
245                         len >>= 1;
246                 spi_writel(as, RCR, len);
247                 spi_writel(as, TCR, len);
248
249                 dev_dbg(&msg->spi->dev,
250                         "  start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
251                         xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
252                         xfer->rx_buf, xfer->rx_dma);
253         } else {
254                 xfer = as->next_transfer;
255                 remaining = as->next_remaining_bytes;
256         }
257
258         as->current_transfer = xfer;
259         as->current_remaining_bytes = remaining;
260
261         if (remaining > 0)
262                 len = remaining;
263         else if (!atmel_spi_xfer_is_last(msg, xfer)
264                         && atmel_spi_xfer_can_be_chained(xfer)) {
265                 xfer = list_entry(xfer->transfer_list.next,
266                                 struct spi_transfer, transfer_list);
267                 len = xfer->len;
268         } else
269                 xfer = NULL;
270
271         as->next_transfer = xfer;
272
273         if (xfer) {
274                 u32     total;
275
276                 total = len;
277                 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
278                 as->next_remaining_bytes = total - len;
279
280                 spi_writel(as, RNPR, rx_dma);
281                 spi_writel(as, TNPR, tx_dma);
282
283                 if (msg->spi->bits_per_word > 8)
284                         len >>= 1;
285                 spi_writel(as, RNCR, len);
286                 spi_writel(as, TNCR, len);
287
288                 dev_dbg(&msg->spi->dev,
289                         "  next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
290                         xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
291                         xfer->rx_buf, xfer->rx_dma);
292                 ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
293         } else {
294                 spi_writel(as, RNCR, 0);
295                 spi_writel(as, TNCR, 0);
296                 ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
297         }
298
299         /* REVISIT: We're waiting for ENDRX before we start the next
300          * transfer because we need to handle some difficult timing
301          * issues otherwise. If we wait for ENDTX in one transfer and
302          * then starts waiting for ENDRX in the next, it's difficult
303          * to tell the difference between the ENDRX interrupt we're
304          * actually waiting for and the ENDRX interrupt of the
305          * previous transfer.
306          *
307          * It should be doable, though. Just not now...
308          */
309         spi_writel(as, IER, ieval);
310         spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
311 }
312
313 static void atmel_spi_next_message(struct spi_master *master)
314 {
315         struct atmel_spi        *as = spi_master_get_devdata(master);
316         struct spi_message      *msg;
317         struct spi_device       *spi;
318
319         BUG_ON(as->current_transfer);
320
321         msg = list_entry(as->queue.next, struct spi_message, queue);
322         spi = msg->spi;
323
324         dev_dbg(master->dev.parent, "start message %p for %s\n",
325                         msg, dev_name(&spi->dev));
326
327         /* select chip if it's not still active */
328         if (as->stay) {
329                 if (as->stay != spi) {
330                         cs_deactivate(as, as->stay);
331                         cs_activate(as, spi);
332                 }
333                 as->stay = NULL;
334         } else
335                 cs_activate(as, spi);
336
337         atmel_spi_next_xfer(master, msg);
338 }
339
340 /*
341  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
342  *  - The buffer is either valid for CPU access, else NULL
343  *  - If the buffer is valid, so is its DMA addresss
344  *
345  * This driver manages the dma addresss unless message->is_dma_mapped.
346  */
347 static int
348 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
349 {
350         struct device   *dev = &as->pdev->dev;
351
352         xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
353         if (xfer->tx_buf) {
354                 xfer->tx_dma = dma_map_single(dev,
355                                 (void *) xfer->tx_buf, xfer->len,
356                                 DMA_TO_DEVICE);
357                 if (dma_mapping_error(dev, xfer->tx_dma))
358                         return -ENOMEM;
359         }
360         if (xfer->rx_buf) {
361                 xfer->rx_dma = dma_map_single(dev,
362                                 xfer->rx_buf, xfer->len,
363                                 DMA_FROM_DEVICE);
364                 if (dma_mapping_error(dev, xfer->rx_dma)) {
365                         if (xfer->tx_buf)
366                                 dma_unmap_single(dev,
367                                                 xfer->tx_dma, xfer->len,
368                                                 DMA_TO_DEVICE);
369                         return -ENOMEM;
370                 }
371         }
372         return 0;
373 }
374
375 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
376                                      struct spi_transfer *xfer)
377 {
378         if (xfer->tx_dma != INVALID_DMA_ADDRESS)
379                 dma_unmap_single(master->dev.parent, xfer->tx_dma,
380                                  xfer->len, DMA_TO_DEVICE);
381         if (xfer->rx_dma != INVALID_DMA_ADDRESS)
382                 dma_unmap_single(master->dev.parent, xfer->rx_dma,
383                                  xfer->len, DMA_FROM_DEVICE);
384 }
385
386 static void
387 atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
388                 struct spi_message *msg, int status, int stay)
389 {
390         if (!stay || status < 0)
391                 cs_deactivate(as, msg->spi);
392         else
393                 as->stay = msg->spi;
394
395         list_del(&msg->queue);
396         msg->status = status;
397
398         dev_dbg(master->dev.parent,
399                 "xfer complete: %u bytes transferred\n",
400                 msg->actual_length);
401
402         spin_unlock(&as->lock);
403         msg->complete(msg->context);
404         spin_lock(&as->lock);
405
406         as->current_transfer = NULL;
407         as->next_transfer = NULL;
408
409         /* continue if needed */
410         if (list_empty(&as->queue) || as->stopping)
411                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
412         else
413                 atmel_spi_next_message(master);
414 }
415
416 static irqreturn_t
417 atmel_spi_interrupt(int irq, void *dev_id)
418 {
419         struct spi_master       *master = dev_id;
420         struct atmel_spi        *as = spi_master_get_devdata(master);
421         struct spi_message      *msg;
422         struct spi_transfer     *xfer;
423         u32                     status, pending, imr;
424         int                     ret = IRQ_NONE;
425
426         spin_lock(&as->lock);
427
428         xfer = as->current_transfer;
429         msg = list_entry(as->queue.next, struct spi_message, queue);
430
431         imr = spi_readl(as, IMR);
432         status = spi_readl(as, SR);
433         pending = status & imr;
434
435         if (pending & SPI_BIT(OVRES)) {
436                 int timeout;
437
438                 ret = IRQ_HANDLED;
439
440                 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
441                                      | SPI_BIT(OVRES)));
442
443                 /*
444                  * When we get an overrun, we disregard the current
445                  * transfer. Data will not be copied back from any
446                  * bounce buffer and msg->actual_len will not be
447                  * updated with the last xfer.
448                  *
449                  * We will also not process any remaning transfers in
450                  * the message.
451                  *
452                  * First, stop the transfer and unmap the DMA buffers.
453                  */
454                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
455                 if (!msg->is_dma_mapped)
456                         atmel_spi_dma_unmap_xfer(master, xfer);
457
458                 /* REVISIT: udelay in irq is unfriendly */
459                 if (xfer->delay_usecs)
460                         udelay(xfer->delay_usecs);
461
462                 dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
463                          spi_readl(as, TCR), spi_readl(as, RCR));
464
465                 /*
466                  * Clean up DMA registers and make sure the data
467                  * registers are empty.
468                  */
469                 spi_writel(as, RNCR, 0);
470                 spi_writel(as, TNCR, 0);
471                 spi_writel(as, RCR, 0);
472                 spi_writel(as, TCR, 0);
473                 for (timeout = 1000; timeout; timeout--)
474                         if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
475                                 break;
476                 if (!timeout)
477                         dev_warn(master->dev.parent,
478                                  "timeout waiting for TXEMPTY");
479                 while (spi_readl(as, SR) & SPI_BIT(RDRF))
480                         spi_readl(as, RDR);
481
482                 /* Clear any overrun happening while cleaning up */
483                 spi_readl(as, SR);
484
485                 atmel_spi_msg_done(master, as, msg, -EIO, 0);
486         } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
487                 ret = IRQ_HANDLED;
488
489                 spi_writel(as, IDR, pending);
490
491                 if (as->current_remaining_bytes == 0) {
492                         msg->actual_length += xfer->len;
493
494                         if (!msg->is_dma_mapped)
495                                 atmel_spi_dma_unmap_xfer(master, xfer);
496
497                         /* REVISIT: udelay in irq is unfriendly */
498                         if (xfer->delay_usecs)
499                                 udelay(xfer->delay_usecs);
500
501                         if (atmel_spi_xfer_is_last(msg, xfer)) {
502                                 /* report completed message */
503                                 atmel_spi_msg_done(master, as, msg, 0,
504                                                 xfer->cs_change);
505                         } else {
506                                 if (xfer->cs_change) {
507                                         cs_deactivate(as, msg->spi);
508                                         udelay(1);
509                                         cs_activate(as, msg->spi);
510                                 }
511
512                                 /*
513                                  * Not done yet. Submit the next transfer.
514                                  *
515                                  * FIXME handle protocol options for xfer
516                                  */
517                                 atmel_spi_next_xfer(master, msg);
518                         }
519                 } else {
520                         /*
521                          * Keep going, we still have data to send in
522                          * the current transfer.
523                          */
524                         atmel_spi_next_xfer(master, msg);
525                 }
526         }
527
528         spin_unlock(&as->lock);
529
530         return ret;
531 }
532
533 /* the spi->mode bits understood by this driver: */
534 #define MODEBITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH)
535
536 static int atmel_spi_setup(struct spi_device *spi)
537 {
538         struct atmel_spi        *as;
539         struct atmel_spi_device *asd;
540         u32                     scbr, csr;
541         unsigned int            bits = spi->bits_per_word;
542         unsigned long           bus_hz;
543         unsigned int            npcs_pin;
544         int                     ret;
545
546         as = spi_master_get_devdata(spi->master);
547
548         if (as->stopping)
549                 return -ESHUTDOWN;
550
551         if (spi->chip_select > spi->master->num_chipselect) {
552                 dev_dbg(&spi->dev,
553                                 "setup: invalid chipselect %u (%u defined)\n",
554                                 spi->chip_select, spi->master->num_chipselect);
555                 return -EINVAL;
556         }
557
558         if (bits == 0)
559                 bits = 8;
560         if (bits < 8 || bits > 16) {
561                 dev_dbg(&spi->dev,
562                                 "setup: invalid bits_per_word %u (8 to 16)\n",
563                                 bits);
564                 return -EINVAL;
565         }
566
567         if (spi->mode & ~MODEBITS) {
568                 dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
569                         spi->mode & ~MODEBITS);
570                 return -EINVAL;
571         }
572
573         /* see notes above re chipselect */
574         if (!atmel_spi_is_v2()
575                         && spi->chip_select == 0
576                         && (spi->mode & SPI_CS_HIGH)) {
577                 dev_dbg(&spi->dev, "setup: can't be active-high\n");
578                 return -EINVAL;
579         }
580
581         /* v1 chips start out at half the peripheral bus speed. */
582         bus_hz = clk_get_rate(as->clk);
583         if (!atmel_spi_is_v2())
584                 bus_hz /= 2;
585
586         if (spi->max_speed_hz) {
587                 /*
588                  * Calculate the lowest divider that satisfies the
589                  * constraint, assuming div32/fdiv/mbz == 0.
590                  */
591                 scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
592
593                 /*
594                  * If the resulting divider doesn't fit into the
595                  * register bitfield, we can't satisfy the constraint.
596                  */
597                 if (scbr >= (1 << SPI_SCBR_SIZE)) {
598                         dev_dbg(&spi->dev,
599                                 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
600                                 spi->max_speed_hz, scbr, bus_hz/255);
601                         return -EINVAL;
602                 }
603         } else
604                 /* speed zero means "as slow as possible" */
605                 scbr = 0xff;
606
607         csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
608         if (spi->mode & SPI_CPOL)
609                 csr |= SPI_BIT(CPOL);
610         if (!(spi->mode & SPI_CPHA))
611                 csr |= SPI_BIT(NCPHA);
612
613         /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
614          *
615          * DLYBCT would add delays between words, slowing down transfers.
616          * It could potentially be useful to cope with DMA bottlenecks, but
617          * in those cases it's probably best to just use a lower bitrate.
618          */
619         csr |= SPI_BF(DLYBS, 0);
620         csr |= SPI_BF(DLYBCT, 0);
621
622         /* chipselect must have been muxed as GPIO (e.g. in board setup) */
623         npcs_pin = (unsigned int)spi->controller_data;
624         asd = spi->controller_state;
625         if (!asd) {
626                 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
627                 if (!asd)
628                         return -ENOMEM;
629
630                 ret = gpio_request(npcs_pin, dev_name(&spi->dev));
631                 if (ret) {
632                         kfree(asd);
633                         return ret;
634                 }
635
636                 asd->npcs_pin = npcs_pin;
637                 spi->controller_state = asd;
638                 gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
639         } else {
640                 unsigned long           flags;
641
642                 spin_lock_irqsave(&as->lock, flags);
643                 if (as->stay == spi)
644                         as->stay = NULL;
645                 cs_deactivate(as, spi);
646                 spin_unlock_irqrestore(&as->lock, flags);
647         }
648
649         asd->csr = csr;
650
651         dev_dbg(&spi->dev,
652                 "setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
653                 bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
654
655         if (!atmel_spi_is_v2())
656                 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
657
658         return 0;
659 }
660
661 static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
662 {
663         struct atmel_spi        *as;
664         struct spi_transfer     *xfer;
665         unsigned long           flags;
666         struct device           *controller = spi->master->dev.parent;
667
668         as = spi_master_get_devdata(spi->master);
669
670         dev_dbg(controller, "new message %p submitted for %s\n",
671                         msg, dev_name(&spi->dev));
672
673         if (unlikely(list_empty(&msg->transfers)))
674                 return -EINVAL;
675
676         if (as->stopping)
677                 return -ESHUTDOWN;
678
679         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
680                 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
681                         dev_dbg(&spi->dev, "missing rx or tx buf\n");
682                         return -EINVAL;
683                 }
684
685                 /* FIXME implement these protocol options!! */
686                 if (xfer->bits_per_word || xfer->speed_hz) {
687                         dev_dbg(&spi->dev, "no protocol options yet\n");
688                         return -ENOPROTOOPT;
689                 }
690
691                 /*
692                  * DMA map early, for performance (empties dcache ASAP) and
693                  * better fault reporting.  This is a DMA-only driver.
694                  *
695                  * NOTE that if dma_unmap_single() ever starts to do work on
696                  * platforms supported by this driver, we would need to clean
697                  * up mappings for previously-mapped transfers.
698                  */
699                 if (!msg->is_dma_mapped) {
700                         if (atmel_spi_dma_map_xfer(as, xfer) < 0)
701                                 return -ENOMEM;
702                 }
703         }
704
705 #ifdef VERBOSE
706         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
707                 dev_dbg(controller,
708                         "  xfer %p: len %u tx %p/%08x rx %p/%08x\n",
709                         xfer, xfer->len,
710                         xfer->tx_buf, xfer->tx_dma,
711                         xfer->rx_buf, xfer->rx_dma);
712         }
713 #endif
714
715         msg->status = -EINPROGRESS;
716         msg->actual_length = 0;
717
718         spin_lock_irqsave(&as->lock, flags);
719         list_add_tail(&msg->queue, &as->queue);
720         if (!as->current_transfer)
721                 atmel_spi_next_message(spi->master);
722         spin_unlock_irqrestore(&as->lock, flags);
723
724         return 0;
725 }
726
727 static void atmel_spi_cleanup(struct spi_device *spi)
728 {
729         struct atmel_spi        *as = spi_master_get_devdata(spi->master);
730         struct atmel_spi_device *asd = spi->controller_state;
731         unsigned                gpio = (unsigned) spi->controller_data;
732         unsigned long           flags;
733
734         if (!asd)
735                 return;
736
737         spin_lock_irqsave(&as->lock, flags);
738         if (as->stay == spi) {
739                 as->stay = NULL;
740                 cs_deactivate(as, spi);
741         }
742         spin_unlock_irqrestore(&as->lock, flags);
743
744         spi->controller_state = NULL;
745         gpio_free(gpio);
746         kfree(asd);
747 }
748
749 /*-------------------------------------------------------------------------*/
750
751 static int __init atmel_spi_probe(struct platform_device *pdev)
752 {
753         struct resource         *regs;
754         int                     irq;
755         struct clk              *clk;
756         int                     ret;
757         struct spi_master       *master;
758         struct atmel_spi        *as;
759
760         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
761         if (!regs)
762                 return -ENXIO;
763
764         irq = platform_get_irq(pdev, 0);
765         if (irq < 0)
766                 return irq;
767
768         clk = clk_get(&pdev->dev, "spi_clk");
769         if (IS_ERR(clk))
770                 return PTR_ERR(clk);
771
772         /* setup spi core then atmel-specific driver state */
773         ret = -ENOMEM;
774         master = spi_alloc_master(&pdev->dev, sizeof *as);
775         if (!master)
776                 goto out_free;
777
778         master->bus_num = pdev->id;
779         master->num_chipselect = 4;
780         master->setup = atmel_spi_setup;
781         master->transfer = atmel_spi_transfer;
782         master->cleanup = atmel_spi_cleanup;
783         platform_set_drvdata(pdev, master);
784
785         as = spi_master_get_devdata(master);
786
787         /*
788          * Scratch buffer is used for throwaway rx and tx data.
789          * It's coherent to minimize dcache pollution.
790          */
791         as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
792                                         &as->buffer_dma, GFP_KERNEL);
793         if (!as->buffer)
794                 goto out_free;
795
796         spin_lock_init(&as->lock);
797         INIT_LIST_HEAD(&as->queue);
798         as->pdev = pdev;
799         as->regs = ioremap(regs->start, (regs->end - regs->start) + 1);
800         if (!as->regs)
801                 goto out_free_buffer;
802         as->irq = irq;
803         as->clk = clk;
804
805         ret = request_irq(irq, atmel_spi_interrupt, 0,
806                         dev_name(&pdev->dev), master);
807         if (ret)
808                 goto out_unmap_regs;
809
810         /* Initialize the hardware */
811         clk_enable(clk);
812         spi_writel(as, CR, SPI_BIT(SWRST));
813         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
814         spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
815         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
816         spi_writel(as, CR, SPI_BIT(SPIEN));
817
818         /* go! */
819         dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
820                         (unsigned long)regs->start, irq);
821
822         ret = spi_register_master(master);
823         if (ret)
824                 goto out_reset_hw;
825
826         return 0;
827
828 out_reset_hw:
829         spi_writel(as, CR, SPI_BIT(SWRST));
830         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
831         clk_disable(clk);
832         free_irq(irq, master);
833 out_unmap_regs:
834         iounmap(as->regs);
835 out_free_buffer:
836         dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
837                         as->buffer_dma);
838 out_free:
839         clk_put(clk);
840         spi_master_put(master);
841         return ret;
842 }
843
844 static int __exit atmel_spi_remove(struct platform_device *pdev)
845 {
846         struct spi_master       *master = platform_get_drvdata(pdev);
847         struct atmel_spi        *as = spi_master_get_devdata(master);
848         struct spi_message      *msg;
849
850         /* reset the hardware and block queue progress */
851         spin_lock_irq(&as->lock);
852         as->stopping = 1;
853         spi_writel(as, CR, SPI_BIT(SWRST));
854         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
855         spi_readl(as, SR);
856         spin_unlock_irq(&as->lock);
857
858         /* Terminate remaining queued transfers */
859         list_for_each_entry(msg, &as->queue, queue) {
860                 /* REVISIT unmapping the dma is a NOP on ARM and AVR32
861                  * but we shouldn't depend on that...
862                  */
863                 msg->status = -ESHUTDOWN;
864                 msg->complete(msg->context);
865         }
866
867         dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
868                         as->buffer_dma);
869
870         clk_disable(as->clk);
871         clk_put(as->clk);
872         free_irq(as->irq, master);
873         iounmap(as->regs);
874
875         spi_unregister_master(master);
876
877         return 0;
878 }
879
880 #ifdef  CONFIG_PM
881
882 static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
883 {
884         struct spi_master       *master = platform_get_drvdata(pdev);
885         struct atmel_spi        *as = spi_master_get_devdata(master);
886
887         clk_disable(as->clk);
888         return 0;
889 }
890
891 static int atmel_spi_resume(struct platform_device *pdev)
892 {
893         struct spi_master       *master = platform_get_drvdata(pdev);
894         struct atmel_spi        *as = spi_master_get_devdata(master);
895
896         clk_enable(as->clk);
897         return 0;
898 }
899
900 #else
901 #define atmel_spi_suspend       NULL
902 #define atmel_spi_resume        NULL
903 #endif
904
905
906 static struct platform_driver atmel_spi_driver = {
907         .driver         = {
908                 .name   = "atmel_spi",
909                 .owner  = THIS_MODULE,
910         },
911         .suspend        = atmel_spi_suspend,
912         .resume         = atmel_spi_resume,
913         .remove         = __exit_p(atmel_spi_remove),
914 };
915
916 static int __init atmel_spi_init(void)
917 {
918         return platform_driver_probe(&atmel_spi_driver, atmel_spi_probe);
919 }
920 module_init(atmel_spi_init);
921
922 static void __exit atmel_spi_exit(void)
923 {
924         platform_driver_unregister(&atmel_spi_driver);
925 }
926 module_exit(atmel_spi_exit);
927
928 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
929 MODULE_AUTHOR("Haavard Skinnemoen <hskinnemoen@atmel.com>");
930 MODULE_LICENSE("GPL");
931 MODULE_ALIAS("platform:atmel_spi");