Merge branch 'pm-cpufreq'
[sfrench/cifs-2.6.git] / drivers / scsi / scsi_lib.c
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_dh.h>
34
35 #include <trace/events/scsi.h>
36
37 #include "scsi_priv.h"
38 #include "scsi_logging.h"
39
40
41 struct kmem_cache *scsi_sdb_cache;
42
43 /*
44  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
45  * not change behaviour from the previous unplug mechanism, experimentation
46  * may prove this needs changing.
47  */
48 #define SCSI_QUEUE_DELAY        3
49
50 static void
51 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
52 {
53         struct Scsi_Host *host = cmd->device->host;
54         struct scsi_device *device = cmd->device;
55         struct scsi_target *starget = scsi_target(device);
56
57         /*
58          * Set the appropriate busy bit for the device/host.
59          *
60          * If the host/device isn't busy, assume that something actually
61          * completed, and that we should be able to queue a command now.
62          *
63          * Note that the prior mid-layer assumption that any host could
64          * always queue at least one command is now broken.  The mid-layer
65          * will implement a user specifiable stall (see
66          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
67          * if a command is requeued with no other commands outstanding
68          * either for the device or for the host.
69          */
70         switch (reason) {
71         case SCSI_MLQUEUE_HOST_BUSY:
72                 atomic_set(&host->host_blocked, host->max_host_blocked);
73                 break;
74         case SCSI_MLQUEUE_DEVICE_BUSY:
75         case SCSI_MLQUEUE_EH_RETRY:
76                 atomic_set(&device->device_blocked,
77                            device->max_device_blocked);
78                 break;
79         case SCSI_MLQUEUE_TARGET_BUSY:
80                 atomic_set(&starget->target_blocked,
81                            starget->max_target_blocked);
82                 break;
83         }
84 }
85
86 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
87 {
88         struct scsi_device *sdev = cmd->device;
89
90         blk_mq_requeue_request(cmd->request, true);
91         put_device(&sdev->sdev_gendev);
92 }
93
94 /**
95  * __scsi_queue_insert - private queue insertion
96  * @cmd: The SCSI command being requeued
97  * @reason:  The reason for the requeue
98  * @unbusy: Whether the queue should be unbusied
99  *
100  * This is a private queue insertion.  The public interface
101  * scsi_queue_insert() always assumes the queue should be unbusied
102  * because it's always called before the completion.  This function is
103  * for a requeue after completion, which should only occur in this
104  * file.
105  */
106 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
107 {
108         struct scsi_device *device = cmd->device;
109         struct request_queue *q = device->request_queue;
110         unsigned long flags;
111
112         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
113                 "Inserting command %p into mlqueue\n", cmd));
114
115         scsi_set_blocked(cmd, reason);
116
117         /*
118          * Decrement the counters, since these commands are no longer
119          * active on the host/device.
120          */
121         if (unbusy)
122                 scsi_device_unbusy(device);
123
124         /*
125          * Requeue this command.  It will go before all other commands
126          * that are already in the queue. Schedule requeue work under
127          * lock such that the kblockd_schedule_work() call happens
128          * before blk_cleanup_queue() finishes.
129          */
130         cmd->result = 0;
131         if (q->mq_ops) {
132                 scsi_mq_requeue_cmd(cmd);
133                 return;
134         }
135         spin_lock_irqsave(q->queue_lock, flags);
136         blk_requeue_request(q, cmd->request);
137         kblockd_schedule_work(&device->requeue_work);
138         spin_unlock_irqrestore(q->queue_lock, flags);
139 }
140
141 /*
142  * Function:    scsi_queue_insert()
143  *
144  * Purpose:     Insert a command in the midlevel queue.
145  *
146  * Arguments:   cmd    - command that we are adding to queue.
147  *              reason - why we are inserting command to queue.
148  *
149  * Lock status: Assumed that lock is not held upon entry.
150  *
151  * Returns:     Nothing.
152  *
153  * Notes:       We do this for one of two cases.  Either the host is busy
154  *              and it cannot accept any more commands for the time being,
155  *              or the device returned QUEUE_FULL and can accept no more
156  *              commands.
157  * Notes:       This could be called either from an interrupt context or a
158  *              normal process context.
159  */
160 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
161 {
162         __scsi_queue_insert(cmd, reason, 1);
163 }
164
165 static int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
166                  int data_direction, void *buffer, unsigned bufflen,
167                  unsigned char *sense, int timeout, int retries, u64 flags,
168                  req_flags_t rq_flags, int *resid)
169 {
170         struct request *req;
171         int write = (data_direction == DMA_TO_DEVICE);
172         int ret = DRIVER_ERROR << 24;
173
174         req = blk_get_request(sdev->request_queue, write, __GFP_RECLAIM);
175         if (IS_ERR(req))
176                 return ret;
177         blk_rq_set_block_pc(req);
178
179         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
180                                         buffer, bufflen, __GFP_RECLAIM))
181                 goto out;
182
183         req->cmd_len = COMMAND_SIZE(cmd[0]);
184         memcpy(req->cmd, cmd, req->cmd_len);
185         req->sense = sense;
186         req->sense_len = 0;
187         req->retries = retries;
188         req->timeout = timeout;
189         req->cmd_flags |= flags;
190         req->rq_flags |= rq_flags | RQF_QUIET | RQF_PREEMPT;
191
192         /*
193          * head injection *required* here otherwise quiesce won't work
194          */
195         blk_execute_rq(req->q, NULL, req, 1);
196
197         /*
198          * Some devices (USB mass-storage in particular) may transfer
199          * garbage data together with a residue indicating that the data
200          * is invalid.  Prevent the garbage from being misinterpreted
201          * and prevent security leaks by zeroing out the excess data.
202          */
203         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
204                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
205
206         if (resid)
207                 *resid = req->resid_len;
208         ret = req->errors;
209  out:
210         blk_put_request(req);
211
212         return ret;
213 }
214
215 /**
216  * scsi_execute - insert request and wait for the result
217  * @sdev:       scsi device
218  * @cmd:        scsi command
219  * @data_direction: data direction
220  * @buffer:     data buffer
221  * @bufflen:    len of buffer
222  * @sense:      optional sense buffer
223  * @timeout:    request timeout in seconds
224  * @retries:    number of times to retry request
225  * @flags:      or into request flags;
226  * @resid:      optional residual length
227  *
228  * returns the req->errors value which is the scsi_cmnd result
229  * field.
230  */
231 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
232                  int data_direction, void *buffer, unsigned bufflen,
233                  unsigned char *sense, int timeout, int retries, u64 flags,
234                  int *resid)
235 {
236         return __scsi_execute(sdev, cmd, data_direction, buffer, bufflen, sense,
237                         timeout, retries, flags, 0, resid);
238 }
239 EXPORT_SYMBOL(scsi_execute);
240
241 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
242                      int data_direction, void *buffer, unsigned bufflen,
243                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
244                      int *resid, u64 flags, req_flags_t rq_flags)
245 {
246         char *sense = NULL;
247         int result;
248         
249         if (sshdr) {
250                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
251                 if (!sense)
252                         return DRIVER_ERROR << 24;
253         }
254         result = __scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
255                               sense, timeout, retries, flags, rq_flags, resid);
256         if (sshdr)
257                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
258
259         kfree(sense);
260         return result;
261 }
262 EXPORT_SYMBOL(scsi_execute_req_flags);
263
264 /*
265  * Function:    scsi_init_cmd_errh()
266  *
267  * Purpose:     Initialize cmd fields related to error handling.
268  *
269  * Arguments:   cmd     - command that is ready to be queued.
270  *
271  * Notes:       This function has the job of initializing a number of
272  *              fields related to error handling.   Typically this will
273  *              be called once for each command, as required.
274  */
275 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
276 {
277         cmd->serial_number = 0;
278         scsi_set_resid(cmd, 0);
279         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
280         if (cmd->cmd_len == 0)
281                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
282 }
283
284 void scsi_device_unbusy(struct scsi_device *sdev)
285 {
286         struct Scsi_Host *shost = sdev->host;
287         struct scsi_target *starget = scsi_target(sdev);
288         unsigned long flags;
289
290         atomic_dec(&shost->host_busy);
291         if (starget->can_queue > 0)
292                 atomic_dec(&starget->target_busy);
293
294         if (unlikely(scsi_host_in_recovery(shost) &&
295                      (shost->host_failed || shost->host_eh_scheduled))) {
296                 spin_lock_irqsave(shost->host_lock, flags);
297                 scsi_eh_wakeup(shost);
298                 spin_unlock_irqrestore(shost->host_lock, flags);
299         }
300
301         atomic_dec(&sdev->device_busy);
302 }
303
304 static void scsi_kick_queue(struct request_queue *q)
305 {
306         if (q->mq_ops)
307                 blk_mq_start_hw_queues(q);
308         else
309                 blk_run_queue(q);
310 }
311
312 /*
313  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
314  * and call blk_run_queue for all the scsi_devices on the target -
315  * including current_sdev first.
316  *
317  * Called with *no* scsi locks held.
318  */
319 static void scsi_single_lun_run(struct scsi_device *current_sdev)
320 {
321         struct Scsi_Host *shost = current_sdev->host;
322         struct scsi_device *sdev, *tmp;
323         struct scsi_target *starget = scsi_target(current_sdev);
324         unsigned long flags;
325
326         spin_lock_irqsave(shost->host_lock, flags);
327         starget->starget_sdev_user = NULL;
328         spin_unlock_irqrestore(shost->host_lock, flags);
329
330         /*
331          * Call blk_run_queue for all LUNs on the target, starting with
332          * current_sdev. We race with others (to set starget_sdev_user),
333          * but in most cases, we will be first. Ideally, each LU on the
334          * target would get some limited time or requests on the target.
335          */
336         scsi_kick_queue(current_sdev->request_queue);
337
338         spin_lock_irqsave(shost->host_lock, flags);
339         if (starget->starget_sdev_user)
340                 goto out;
341         list_for_each_entry_safe(sdev, tmp, &starget->devices,
342                         same_target_siblings) {
343                 if (sdev == current_sdev)
344                         continue;
345                 if (scsi_device_get(sdev))
346                         continue;
347
348                 spin_unlock_irqrestore(shost->host_lock, flags);
349                 scsi_kick_queue(sdev->request_queue);
350                 spin_lock_irqsave(shost->host_lock, flags);
351         
352                 scsi_device_put(sdev);
353         }
354  out:
355         spin_unlock_irqrestore(shost->host_lock, flags);
356 }
357
358 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
359 {
360         if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
361                 return true;
362         if (atomic_read(&sdev->device_blocked) > 0)
363                 return true;
364         return false;
365 }
366
367 static inline bool scsi_target_is_busy(struct scsi_target *starget)
368 {
369         if (starget->can_queue > 0) {
370                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
371                         return true;
372                 if (atomic_read(&starget->target_blocked) > 0)
373                         return true;
374         }
375         return false;
376 }
377
378 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
379 {
380         if (shost->can_queue > 0 &&
381             atomic_read(&shost->host_busy) >= shost->can_queue)
382                 return true;
383         if (atomic_read(&shost->host_blocked) > 0)
384                 return true;
385         if (shost->host_self_blocked)
386                 return true;
387         return false;
388 }
389
390 static void scsi_starved_list_run(struct Scsi_Host *shost)
391 {
392         LIST_HEAD(starved_list);
393         struct scsi_device *sdev;
394         unsigned long flags;
395
396         spin_lock_irqsave(shost->host_lock, flags);
397         list_splice_init(&shost->starved_list, &starved_list);
398
399         while (!list_empty(&starved_list)) {
400                 struct request_queue *slq;
401
402                 /*
403                  * As long as shost is accepting commands and we have
404                  * starved queues, call blk_run_queue. scsi_request_fn
405                  * drops the queue_lock and can add us back to the
406                  * starved_list.
407                  *
408                  * host_lock protects the starved_list and starved_entry.
409                  * scsi_request_fn must get the host_lock before checking
410                  * or modifying starved_list or starved_entry.
411                  */
412                 if (scsi_host_is_busy(shost))
413                         break;
414
415                 sdev = list_entry(starved_list.next,
416                                   struct scsi_device, starved_entry);
417                 list_del_init(&sdev->starved_entry);
418                 if (scsi_target_is_busy(scsi_target(sdev))) {
419                         list_move_tail(&sdev->starved_entry,
420                                        &shost->starved_list);
421                         continue;
422                 }
423
424                 /*
425                  * Once we drop the host lock, a racing scsi_remove_device()
426                  * call may remove the sdev from the starved list and destroy
427                  * it and the queue.  Mitigate by taking a reference to the
428                  * queue and never touching the sdev again after we drop the
429                  * host lock.  Note: if __scsi_remove_device() invokes
430                  * blk_cleanup_queue() before the queue is run from this
431                  * function then blk_run_queue() will return immediately since
432                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
433                  */
434                 slq = sdev->request_queue;
435                 if (!blk_get_queue(slq))
436                         continue;
437                 spin_unlock_irqrestore(shost->host_lock, flags);
438
439                 scsi_kick_queue(slq);
440                 blk_put_queue(slq);
441
442                 spin_lock_irqsave(shost->host_lock, flags);
443         }
444         /* put any unprocessed entries back */
445         list_splice(&starved_list, &shost->starved_list);
446         spin_unlock_irqrestore(shost->host_lock, flags);
447 }
448
449 /*
450  * Function:   scsi_run_queue()
451  *
452  * Purpose:    Select a proper request queue to serve next
453  *
454  * Arguments:  q       - last request's queue
455  *
456  * Returns:     Nothing
457  *
458  * Notes:      The previous command was completely finished, start
459  *             a new one if possible.
460  */
461 static void scsi_run_queue(struct request_queue *q)
462 {
463         struct scsi_device *sdev = q->queuedata;
464
465         if (scsi_target(sdev)->single_lun)
466                 scsi_single_lun_run(sdev);
467         if (!list_empty(&sdev->host->starved_list))
468                 scsi_starved_list_run(sdev->host);
469
470         if (q->mq_ops)
471                 blk_mq_start_stopped_hw_queues(q, false);
472         else
473                 blk_run_queue(q);
474 }
475
476 void scsi_requeue_run_queue(struct work_struct *work)
477 {
478         struct scsi_device *sdev;
479         struct request_queue *q;
480
481         sdev = container_of(work, struct scsi_device, requeue_work);
482         q = sdev->request_queue;
483         scsi_run_queue(q);
484 }
485
486 /*
487  * Function:    scsi_requeue_command()
488  *
489  * Purpose:     Handle post-processing of completed commands.
490  *
491  * Arguments:   q       - queue to operate on
492  *              cmd     - command that may need to be requeued.
493  *
494  * Returns:     Nothing
495  *
496  * Notes:       After command completion, there may be blocks left
497  *              over which weren't finished by the previous command
498  *              this can be for a number of reasons - the main one is
499  *              I/O errors in the middle of the request, in which case
500  *              we need to request the blocks that come after the bad
501  *              sector.
502  * Notes:       Upon return, cmd is a stale pointer.
503  */
504 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
505 {
506         struct scsi_device *sdev = cmd->device;
507         struct request *req = cmd->request;
508         unsigned long flags;
509
510         spin_lock_irqsave(q->queue_lock, flags);
511         blk_unprep_request(req);
512         req->special = NULL;
513         scsi_put_command(cmd);
514         blk_requeue_request(q, req);
515         spin_unlock_irqrestore(q->queue_lock, flags);
516
517         scsi_run_queue(q);
518
519         put_device(&sdev->sdev_gendev);
520 }
521
522 void scsi_run_host_queues(struct Scsi_Host *shost)
523 {
524         struct scsi_device *sdev;
525
526         shost_for_each_device(sdev, shost)
527                 scsi_run_queue(sdev->request_queue);
528 }
529
530 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
531 {
532         if (cmd->request->cmd_type == REQ_TYPE_FS) {
533                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
534
535                 if (drv->uninit_command)
536                         drv->uninit_command(cmd);
537         }
538 }
539
540 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
541 {
542         struct scsi_data_buffer *sdb;
543
544         if (cmd->sdb.table.nents)
545                 sg_free_table_chained(&cmd->sdb.table, true);
546         if (cmd->request->next_rq) {
547                 sdb = cmd->request->next_rq->special;
548                 if (sdb)
549                         sg_free_table_chained(&sdb->table, true);
550         }
551         if (scsi_prot_sg_count(cmd))
552                 sg_free_table_chained(&cmd->prot_sdb->table, true);
553 }
554
555 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
556 {
557         struct scsi_device *sdev = cmd->device;
558         struct Scsi_Host *shost = sdev->host;
559         unsigned long flags;
560
561         scsi_mq_free_sgtables(cmd);
562         scsi_uninit_cmd(cmd);
563
564         if (shost->use_cmd_list) {
565                 BUG_ON(list_empty(&cmd->list));
566                 spin_lock_irqsave(&sdev->list_lock, flags);
567                 list_del_init(&cmd->list);
568                 spin_unlock_irqrestore(&sdev->list_lock, flags);
569         }
570 }
571
572 /*
573  * Function:    scsi_release_buffers()
574  *
575  * Purpose:     Free resources allocate for a scsi_command.
576  *
577  * Arguments:   cmd     - command that we are bailing.
578  *
579  * Lock status: Assumed that no lock is held upon entry.
580  *
581  * Returns:     Nothing
582  *
583  * Notes:       In the event that an upper level driver rejects a
584  *              command, we must release resources allocated during
585  *              the __init_io() function.  Primarily this would involve
586  *              the scatter-gather table.
587  */
588 static void scsi_release_buffers(struct scsi_cmnd *cmd)
589 {
590         if (cmd->sdb.table.nents)
591                 sg_free_table_chained(&cmd->sdb.table, false);
592
593         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
594
595         if (scsi_prot_sg_count(cmd))
596                 sg_free_table_chained(&cmd->prot_sdb->table, false);
597 }
598
599 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
600 {
601         struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
602
603         sg_free_table_chained(&bidi_sdb->table, false);
604         kmem_cache_free(scsi_sdb_cache, bidi_sdb);
605         cmd->request->next_rq->special = NULL;
606 }
607
608 static bool scsi_end_request(struct request *req, int error,
609                 unsigned int bytes, unsigned int bidi_bytes)
610 {
611         struct scsi_cmnd *cmd = req->special;
612         struct scsi_device *sdev = cmd->device;
613         struct request_queue *q = sdev->request_queue;
614
615         if (blk_update_request(req, error, bytes))
616                 return true;
617
618         /* Bidi request must be completed as a whole */
619         if (unlikely(bidi_bytes) &&
620             blk_update_request(req->next_rq, error, bidi_bytes))
621                 return true;
622
623         if (blk_queue_add_random(q))
624                 add_disk_randomness(req->rq_disk);
625
626         if (req->mq_ctx) {
627                 /*
628                  * In the MQ case the command gets freed by __blk_mq_end_request,
629                  * so we have to do all cleanup that depends on it earlier.
630                  *
631                  * We also can't kick the queues from irq context, so we
632                  * will have to defer it to a workqueue.
633                  */
634                 scsi_mq_uninit_cmd(cmd);
635
636                 __blk_mq_end_request(req, error);
637
638                 if (scsi_target(sdev)->single_lun ||
639                     !list_empty(&sdev->host->starved_list))
640                         kblockd_schedule_work(&sdev->requeue_work);
641                 else
642                         blk_mq_start_stopped_hw_queues(q, true);
643         } else {
644                 unsigned long flags;
645
646                 if (bidi_bytes)
647                         scsi_release_bidi_buffers(cmd);
648
649                 spin_lock_irqsave(q->queue_lock, flags);
650                 blk_finish_request(req, error);
651                 spin_unlock_irqrestore(q->queue_lock, flags);
652
653                 scsi_release_buffers(cmd);
654
655                 scsi_put_command(cmd);
656                 scsi_run_queue(q);
657         }
658
659         put_device(&sdev->sdev_gendev);
660         return false;
661 }
662
663 /**
664  * __scsi_error_from_host_byte - translate SCSI error code into errno
665  * @cmd:        SCSI command (unused)
666  * @result:     scsi error code
667  *
668  * Translate SCSI error code into standard UNIX errno.
669  * Return values:
670  * -ENOLINK     temporary transport failure
671  * -EREMOTEIO   permanent target failure, do not retry
672  * -EBADE       permanent nexus failure, retry on other path
673  * -ENOSPC      No write space available
674  * -ENODATA     Medium error
675  * -EIO         unspecified I/O error
676  */
677 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
678 {
679         int error = 0;
680
681         switch(host_byte(result)) {
682         case DID_TRANSPORT_FAILFAST:
683                 error = -ENOLINK;
684                 break;
685         case DID_TARGET_FAILURE:
686                 set_host_byte(cmd, DID_OK);
687                 error = -EREMOTEIO;
688                 break;
689         case DID_NEXUS_FAILURE:
690                 set_host_byte(cmd, DID_OK);
691                 error = -EBADE;
692                 break;
693         case DID_ALLOC_FAILURE:
694                 set_host_byte(cmd, DID_OK);
695                 error = -ENOSPC;
696                 break;
697         case DID_MEDIUM_ERROR:
698                 set_host_byte(cmd, DID_OK);
699                 error = -ENODATA;
700                 break;
701         default:
702                 error = -EIO;
703                 break;
704         }
705
706         return error;
707 }
708
709 /*
710  * Function:    scsi_io_completion()
711  *
712  * Purpose:     Completion processing for block device I/O requests.
713  *
714  * Arguments:   cmd   - command that is finished.
715  *
716  * Lock status: Assumed that no lock is held upon entry.
717  *
718  * Returns:     Nothing
719  *
720  * Notes:       We will finish off the specified number of sectors.  If we
721  *              are done, the command block will be released and the queue
722  *              function will be goosed.  If we are not done then we have to
723  *              figure out what to do next:
724  *
725  *              a) We can call scsi_requeue_command().  The request
726  *                 will be unprepared and put back on the queue.  Then
727  *                 a new command will be created for it.  This should
728  *                 be used if we made forward progress, or if we want
729  *                 to switch from READ(10) to READ(6) for example.
730  *
731  *              b) We can call __scsi_queue_insert().  The request will
732  *                 be put back on the queue and retried using the same
733  *                 command as before, possibly after a delay.
734  *
735  *              c) We can call scsi_end_request() with -EIO to fail
736  *                 the remainder of the request.
737  */
738 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
739 {
740         int result = cmd->result;
741         struct request_queue *q = cmd->device->request_queue;
742         struct request *req = cmd->request;
743         int error = 0;
744         struct scsi_sense_hdr sshdr;
745         bool sense_valid = false;
746         int sense_deferred = 0, level = 0;
747         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
748               ACTION_DELAYED_RETRY} action;
749         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
750
751         if (result) {
752                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
753                 if (sense_valid)
754                         sense_deferred = scsi_sense_is_deferred(&sshdr);
755         }
756
757         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
758                 if (result) {
759                         if (sense_valid && req->sense) {
760                                 /*
761                                  * SG_IO wants current and deferred errors
762                                  */
763                                 int len = 8 + cmd->sense_buffer[7];
764
765                                 if (len > SCSI_SENSE_BUFFERSIZE)
766                                         len = SCSI_SENSE_BUFFERSIZE;
767                                 memcpy(req->sense, cmd->sense_buffer,  len);
768                                 req->sense_len = len;
769                         }
770                         if (!sense_deferred)
771                                 error = __scsi_error_from_host_byte(cmd, result);
772                 }
773                 /*
774                  * __scsi_error_from_host_byte may have reset the host_byte
775                  */
776                 req->errors = cmd->result;
777
778                 req->resid_len = scsi_get_resid(cmd);
779
780                 if (scsi_bidi_cmnd(cmd)) {
781                         /*
782                          * Bidi commands Must be complete as a whole,
783                          * both sides at once.
784                          */
785                         req->next_rq->resid_len = scsi_in(cmd)->resid;
786                         if (scsi_end_request(req, 0, blk_rq_bytes(req),
787                                         blk_rq_bytes(req->next_rq)))
788                                 BUG();
789                         return;
790                 }
791         } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
792                 /*
793                  * Certain non BLOCK_PC requests are commands that don't
794                  * actually transfer anything (FLUSH), so cannot use
795                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
796                  * This sets the error explicitly for the problem case.
797                  */
798                 error = __scsi_error_from_host_byte(cmd, result);
799         }
800
801         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
802         BUG_ON(blk_bidi_rq(req));
803
804         /*
805          * Next deal with any sectors which we were able to correctly
806          * handle.
807          */
808         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
809                 "%u sectors total, %d bytes done.\n",
810                 blk_rq_sectors(req), good_bytes));
811
812         /*
813          * Recovered errors need reporting, but they're always treated
814          * as success, so fiddle the result code here.  For BLOCK_PC
815          * we already took a copy of the original into rq->errors which
816          * is what gets returned to the user
817          */
818         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
819                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
820                  * print since caller wants ATA registers. Only occurs on
821                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
822                  */
823                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
824                         ;
825                 else if (!(req->rq_flags & RQF_QUIET))
826                         scsi_print_sense(cmd);
827                 result = 0;
828                 /* BLOCK_PC may have set error */
829                 error = 0;
830         }
831
832         /*
833          * special case: failed zero length commands always need to
834          * drop down into the retry code. Otherwise, if we finished
835          * all bytes in the request we are done now.
836          */
837         if (!(blk_rq_bytes(req) == 0 && error) &&
838             !scsi_end_request(req, error, good_bytes, 0))
839                 return;
840
841         /*
842          * Kill remainder if no retrys.
843          */
844         if (error && scsi_noretry_cmd(cmd)) {
845                 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
846                         BUG();
847                 return;
848         }
849
850         /*
851          * If there had been no error, but we have leftover bytes in the
852          * requeues just queue the command up again.
853          */
854         if (result == 0)
855                 goto requeue;
856
857         error = __scsi_error_from_host_byte(cmd, result);
858
859         if (host_byte(result) == DID_RESET) {
860                 /* Third party bus reset or reset for error recovery
861                  * reasons.  Just retry the command and see what
862                  * happens.
863                  */
864                 action = ACTION_RETRY;
865         } else if (sense_valid && !sense_deferred) {
866                 switch (sshdr.sense_key) {
867                 case UNIT_ATTENTION:
868                         if (cmd->device->removable) {
869                                 /* Detected disc change.  Set a bit
870                                  * and quietly refuse further access.
871                                  */
872                                 cmd->device->changed = 1;
873                                 action = ACTION_FAIL;
874                         } else {
875                                 /* Must have been a power glitch, or a
876                                  * bus reset.  Could not have been a
877                                  * media change, so we just retry the
878                                  * command and see what happens.
879                                  */
880                                 action = ACTION_RETRY;
881                         }
882                         break;
883                 case ILLEGAL_REQUEST:
884                         /* If we had an ILLEGAL REQUEST returned, then
885                          * we may have performed an unsupported
886                          * command.  The only thing this should be
887                          * would be a ten byte read where only a six
888                          * byte read was supported.  Also, on a system
889                          * where READ CAPACITY failed, we may have
890                          * read past the end of the disk.
891                          */
892                         if ((cmd->device->use_10_for_rw &&
893                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
894                             (cmd->cmnd[0] == READ_10 ||
895                              cmd->cmnd[0] == WRITE_10)) {
896                                 /* This will issue a new 6-byte command. */
897                                 cmd->device->use_10_for_rw = 0;
898                                 action = ACTION_REPREP;
899                         } else if (sshdr.asc == 0x10) /* DIX */ {
900                                 action = ACTION_FAIL;
901                                 error = -EILSEQ;
902                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
903                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
904                                 action = ACTION_FAIL;
905                                 error = -EREMOTEIO;
906                         } else
907                                 action = ACTION_FAIL;
908                         break;
909                 case ABORTED_COMMAND:
910                         action = ACTION_FAIL;
911                         if (sshdr.asc == 0x10) /* DIF */
912                                 error = -EILSEQ;
913                         break;
914                 case NOT_READY:
915                         /* If the device is in the process of becoming
916                          * ready, or has a temporary blockage, retry.
917                          */
918                         if (sshdr.asc == 0x04) {
919                                 switch (sshdr.ascq) {
920                                 case 0x01: /* becoming ready */
921                                 case 0x04: /* format in progress */
922                                 case 0x05: /* rebuild in progress */
923                                 case 0x06: /* recalculation in progress */
924                                 case 0x07: /* operation in progress */
925                                 case 0x08: /* Long write in progress */
926                                 case 0x09: /* self test in progress */
927                                 case 0x14: /* space allocation in progress */
928                                         action = ACTION_DELAYED_RETRY;
929                                         break;
930                                 default:
931                                         action = ACTION_FAIL;
932                                         break;
933                                 }
934                         } else
935                                 action = ACTION_FAIL;
936                         break;
937                 case VOLUME_OVERFLOW:
938                         /* See SSC3rXX or current. */
939                         action = ACTION_FAIL;
940                         break;
941                 default:
942                         action = ACTION_FAIL;
943                         break;
944                 }
945         } else
946                 action = ACTION_FAIL;
947
948         if (action != ACTION_FAIL &&
949             time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
950                 action = ACTION_FAIL;
951
952         switch (action) {
953         case ACTION_FAIL:
954                 /* Give up and fail the remainder of the request */
955                 if (!(req->rq_flags & RQF_QUIET)) {
956                         static DEFINE_RATELIMIT_STATE(_rs,
957                                         DEFAULT_RATELIMIT_INTERVAL,
958                                         DEFAULT_RATELIMIT_BURST);
959
960                         if (unlikely(scsi_logging_level))
961                                 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
962                                                        SCSI_LOG_MLCOMPLETE_BITS);
963
964                         /*
965                          * if logging is enabled the failure will be printed
966                          * in scsi_log_completion(), so avoid duplicate messages
967                          */
968                         if (!level && __ratelimit(&_rs)) {
969                                 scsi_print_result(cmd, NULL, FAILED);
970                                 if (driver_byte(result) & DRIVER_SENSE)
971                                         scsi_print_sense(cmd);
972                                 scsi_print_command(cmd);
973                         }
974                 }
975                 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
976                         return;
977                 /*FALLTHRU*/
978         case ACTION_REPREP:
979         requeue:
980                 /* Unprep the request and put it back at the head of the queue.
981                  * A new command will be prepared and issued.
982                  */
983                 if (q->mq_ops) {
984                         cmd->request->rq_flags &= ~RQF_DONTPREP;
985                         scsi_mq_uninit_cmd(cmd);
986                         scsi_mq_requeue_cmd(cmd);
987                 } else {
988                         scsi_release_buffers(cmd);
989                         scsi_requeue_command(q, cmd);
990                 }
991                 break;
992         case ACTION_RETRY:
993                 /* Retry the same command immediately */
994                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
995                 break;
996         case ACTION_DELAYED_RETRY:
997                 /* Retry the same command after a delay */
998                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
999                 break;
1000         }
1001 }
1002
1003 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1004 {
1005         int count;
1006
1007         /*
1008          * If sg table allocation fails, requeue request later.
1009          */
1010         if (unlikely(sg_alloc_table_chained(&sdb->table,
1011                         blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1012                 return BLKPREP_DEFER;
1013
1014         /* 
1015          * Next, walk the list, and fill in the addresses and sizes of
1016          * each segment.
1017          */
1018         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1019         BUG_ON(count > sdb->table.nents);
1020         sdb->table.nents = count;
1021         sdb->length = blk_rq_bytes(req);
1022         return BLKPREP_OK;
1023 }
1024
1025 /*
1026  * Function:    scsi_init_io()
1027  *
1028  * Purpose:     SCSI I/O initialize function.
1029  *
1030  * Arguments:   cmd   - Command descriptor we wish to initialize
1031  *
1032  * Returns:     0 on success
1033  *              BLKPREP_DEFER if the failure is retryable
1034  *              BLKPREP_KILL if the failure is fatal
1035  */
1036 int scsi_init_io(struct scsi_cmnd *cmd)
1037 {
1038         struct scsi_device *sdev = cmd->device;
1039         struct request *rq = cmd->request;
1040         bool is_mq = (rq->mq_ctx != NULL);
1041         int error;
1042
1043         BUG_ON(!blk_rq_nr_phys_segments(rq));
1044
1045         error = scsi_init_sgtable(rq, &cmd->sdb);
1046         if (error)
1047                 goto err_exit;
1048
1049         if (blk_bidi_rq(rq)) {
1050                 if (!rq->q->mq_ops) {
1051                         struct scsi_data_buffer *bidi_sdb =
1052                                 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1053                         if (!bidi_sdb) {
1054                                 error = BLKPREP_DEFER;
1055                                 goto err_exit;
1056                         }
1057
1058                         rq->next_rq->special = bidi_sdb;
1059                 }
1060
1061                 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1062                 if (error)
1063                         goto err_exit;
1064         }
1065
1066         if (blk_integrity_rq(rq)) {
1067                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1068                 int ivecs, count;
1069
1070                 if (prot_sdb == NULL) {
1071                         /*
1072                          * This can happen if someone (e.g. multipath)
1073                          * queues a command to a device on an adapter
1074                          * that does not support DIX.
1075                          */
1076                         WARN_ON_ONCE(1);
1077                         error = BLKPREP_KILL;
1078                         goto err_exit;
1079                 }
1080
1081                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1082
1083                 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1084                                 prot_sdb->table.sgl)) {
1085                         error = BLKPREP_DEFER;
1086                         goto err_exit;
1087                 }
1088
1089                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1090                                                 prot_sdb->table.sgl);
1091                 BUG_ON(unlikely(count > ivecs));
1092                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1093
1094                 cmd->prot_sdb = prot_sdb;
1095                 cmd->prot_sdb->table.nents = count;
1096         }
1097
1098         return BLKPREP_OK;
1099 err_exit:
1100         if (is_mq) {
1101                 scsi_mq_free_sgtables(cmd);
1102         } else {
1103                 scsi_release_buffers(cmd);
1104                 cmd->request->special = NULL;
1105                 scsi_put_command(cmd);
1106                 put_device(&sdev->sdev_gendev);
1107         }
1108         return error;
1109 }
1110 EXPORT_SYMBOL(scsi_init_io);
1111
1112 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1113                 struct request *req)
1114 {
1115         struct scsi_cmnd *cmd;
1116
1117         if (!req->special) {
1118                 /* Bail if we can't get a reference to the device */
1119                 if (!get_device(&sdev->sdev_gendev))
1120                         return NULL;
1121
1122                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1123                 if (unlikely(!cmd)) {
1124                         put_device(&sdev->sdev_gendev);
1125                         return NULL;
1126                 }
1127                 req->special = cmd;
1128         } else {
1129                 cmd = req->special;
1130         }
1131
1132         /* pull a tag out of the request if we have one */
1133         cmd->tag = req->tag;
1134         cmd->request = req;
1135
1136         cmd->cmnd = req->cmd;
1137         cmd->prot_op = SCSI_PROT_NORMAL;
1138
1139         return cmd;
1140 }
1141
1142 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1143 {
1144         struct scsi_cmnd *cmd = req->special;
1145
1146         /*
1147          * BLOCK_PC requests may transfer data, in which case they must
1148          * a bio attached to them.  Or they might contain a SCSI command
1149          * that does not transfer data, in which case they may optionally
1150          * submit a request without an attached bio.
1151          */
1152         if (req->bio) {
1153                 int ret = scsi_init_io(cmd);
1154                 if (unlikely(ret))
1155                         return ret;
1156         } else {
1157                 BUG_ON(blk_rq_bytes(req));
1158
1159                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1160         }
1161
1162         cmd->cmd_len = req->cmd_len;
1163         cmd->transfersize = blk_rq_bytes(req);
1164         cmd->allowed = req->retries;
1165         return BLKPREP_OK;
1166 }
1167
1168 /*
1169  * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1170  * that still need to be translated to SCSI CDBs from the ULD.
1171  */
1172 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1173 {
1174         struct scsi_cmnd *cmd = req->special;
1175
1176         if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1177                 int ret = sdev->handler->prep_fn(sdev, req);
1178                 if (ret != BLKPREP_OK)
1179                         return ret;
1180         }
1181
1182         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1183         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1184 }
1185
1186 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1187 {
1188         struct scsi_cmnd *cmd = req->special;
1189
1190         if (!blk_rq_bytes(req))
1191                 cmd->sc_data_direction = DMA_NONE;
1192         else if (rq_data_dir(req) == WRITE)
1193                 cmd->sc_data_direction = DMA_TO_DEVICE;
1194         else
1195                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1196
1197         switch (req->cmd_type) {
1198         case REQ_TYPE_FS:
1199                 return scsi_setup_fs_cmnd(sdev, req);
1200         case REQ_TYPE_BLOCK_PC:
1201                 return scsi_setup_blk_pc_cmnd(sdev, req);
1202         default:
1203                 return BLKPREP_KILL;
1204         }
1205 }
1206
1207 static int
1208 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1209 {
1210         int ret = BLKPREP_OK;
1211
1212         /*
1213          * If the device is not in running state we will reject some
1214          * or all commands.
1215          */
1216         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1217                 switch (sdev->sdev_state) {
1218                 case SDEV_OFFLINE:
1219                 case SDEV_TRANSPORT_OFFLINE:
1220                         /*
1221                          * If the device is offline we refuse to process any
1222                          * commands.  The device must be brought online
1223                          * before trying any recovery commands.
1224                          */
1225                         sdev_printk(KERN_ERR, sdev,
1226                                     "rejecting I/O to offline device\n");
1227                         ret = BLKPREP_KILL;
1228                         break;
1229                 case SDEV_DEL:
1230                         /*
1231                          * If the device is fully deleted, we refuse to
1232                          * process any commands as well.
1233                          */
1234                         sdev_printk(KERN_ERR, sdev,
1235                                     "rejecting I/O to dead device\n");
1236                         ret = BLKPREP_KILL;
1237                         break;
1238                 case SDEV_BLOCK:
1239                 case SDEV_CREATED_BLOCK:
1240                         ret = BLKPREP_DEFER;
1241                         break;
1242                 case SDEV_QUIESCE:
1243                         /*
1244                          * If the devices is blocked we defer normal commands.
1245                          */
1246                         if (!(req->rq_flags & RQF_PREEMPT))
1247                                 ret = BLKPREP_DEFER;
1248                         break;
1249                 default:
1250                         /*
1251                          * For any other not fully online state we only allow
1252                          * special commands.  In particular any user initiated
1253                          * command is not allowed.
1254                          */
1255                         if (!(req->rq_flags & RQF_PREEMPT))
1256                                 ret = BLKPREP_KILL;
1257                         break;
1258                 }
1259         }
1260         return ret;
1261 }
1262
1263 static int
1264 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1265 {
1266         struct scsi_device *sdev = q->queuedata;
1267
1268         switch (ret) {
1269         case BLKPREP_KILL:
1270         case BLKPREP_INVALID:
1271                 req->errors = DID_NO_CONNECT << 16;
1272                 /* release the command and kill it */
1273                 if (req->special) {
1274                         struct scsi_cmnd *cmd = req->special;
1275                         scsi_release_buffers(cmd);
1276                         scsi_put_command(cmd);
1277                         put_device(&sdev->sdev_gendev);
1278                         req->special = NULL;
1279                 }
1280                 break;
1281         case BLKPREP_DEFER:
1282                 /*
1283                  * If we defer, the blk_peek_request() returns NULL, but the
1284                  * queue must be restarted, so we schedule a callback to happen
1285                  * shortly.
1286                  */
1287                 if (atomic_read(&sdev->device_busy) == 0)
1288                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1289                 break;
1290         default:
1291                 req->rq_flags |= RQF_DONTPREP;
1292         }
1293
1294         return ret;
1295 }
1296
1297 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1298 {
1299         struct scsi_device *sdev = q->queuedata;
1300         struct scsi_cmnd *cmd;
1301         int ret;
1302
1303         ret = scsi_prep_state_check(sdev, req);
1304         if (ret != BLKPREP_OK)
1305                 goto out;
1306
1307         cmd = scsi_get_cmd_from_req(sdev, req);
1308         if (unlikely(!cmd)) {
1309                 ret = BLKPREP_DEFER;
1310                 goto out;
1311         }
1312
1313         ret = scsi_setup_cmnd(sdev, req);
1314 out:
1315         return scsi_prep_return(q, req, ret);
1316 }
1317
1318 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1319 {
1320         scsi_uninit_cmd(req->special);
1321 }
1322
1323 /*
1324  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1325  * return 0.
1326  *
1327  * Called with the queue_lock held.
1328  */
1329 static inline int scsi_dev_queue_ready(struct request_queue *q,
1330                                   struct scsi_device *sdev)
1331 {
1332         unsigned int busy;
1333
1334         busy = atomic_inc_return(&sdev->device_busy) - 1;
1335         if (atomic_read(&sdev->device_blocked)) {
1336                 if (busy)
1337                         goto out_dec;
1338
1339                 /*
1340                  * unblock after device_blocked iterates to zero
1341                  */
1342                 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1343                         /*
1344                          * For the MQ case we take care of this in the caller.
1345                          */
1346                         if (!q->mq_ops)
1347                                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1348                         goto out_dec;
1349                 }
1350                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1351                                    "unblocking device at zero depth\n"));
1352         }
1353
1354         if (busy >= sdev->queue_depth)
1355                 goto out_dec;
1356
1357         return 1;
1358 out_dec:
1359         atomic_dec(&sdev->device_busy);
1360         return 0;
1361 }
1362
1363 /*
1364  * scsi_target_queue_ready: checks if there we can send commands to target
1365  * @sdev: scsi device on starget to check.
1366  */
1367 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1368                                            struct scsi_device *sdev)
1369 {
1370         struct scsi_target *starget = scsi_target(sdev);
1371         unsigned int busy;
1372
1373         if (starget->single_lun) {
1374                 spin_lock_irq(shost->host_lock);
1375                 if (starget->starget_sdev_user &&
1376                     starget->starget_sdev_user != sdev) {
1377                         spin_unlock_irq(shost->host_lock);
1378                         return 0;
1379                 }
1380                 starget->starget_sdev_user = sdev;
1381                 spin_unlock_irq(shost->host_lock);
1382         }
1383
1384         if (starget->can_queue <= 0)
1385                 return 1;
1386
1387         busy = atomic_inc_return(&starget->target_busy) - 1;
1388         if (atomic_read(&starget->target_blocked) > 0) {
1389                 if (busy)
1390                         goto starved;
1391
1392                 /*
1393                  * unblock after target_blocked iterates to zero
1394                  */
1395                 if (atomic_dec_return(&starget->target_blocked) > 0)
1396                         goto out_dec;
1397
1398                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1399                                  "unblocking target at zero depth\n"));
1400         }
1401
1402         if (busy >= starget->can_queue)
1403                 goto starved;
1404
1405         return 1;
1406
1407 starved:
1408         spin_lock_irq(shost->host_lock);
1409         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1410         spin_unlock_irq(shost->host_lock);
1411 out_dec:
1412         if (starget->can_queue > 0)
1413                 atomic_dec(&starget->target_busy);
1414         return 0;
1415 }
1416
1417 /*
1418  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1419  * return 0. We must end up running the queue again whenever 0 is
1420  * returned, else IO can hang.
1421  */
1422 static inline int scsi_host_queue_ready(struct request_queue *q,
1423                                    struct Scsi_Host *shost,
1424                                    struct scsi_device *sdev)
1425 {
1426         unsigned int busy;
1427
1428         if (scsi_host_in_recovery(shost))
1429                 return 0;
1430
1431         busy = atomic_inc_return(&shost->host_busy) - 1;
1432         if (atomic_read(&shost->host_blocked) > 0) {
1433                 if (busy)
1434                         goto starved;
1435
1436                 /*
1437                  * unblock after host_blocked iterates to zero
1438                  */
1439                 if (atomic_dec_return(&shost->host_blocked) > 0)
1440                         goto out_dec;
1441
1442                 SCSI_LOG_MLQUEUE(3,
1443                         shost_printk(KERN_INFO, shost,
1444                                      "unblocking host at zero depth\n"));
1445         }
1446
1447         if (shost->can_queue > 0 && busy >= shost->can_queue)
1448                 goto starved;
1449         if (shost->host_self_blocked)
1450                 goto starved;
1451
1452         /* We're OK to process the command, so we can't be starved */
1453         if (!list_empty(&sdev->starved_entry)) {
1454                 spin_lock_irq(shost->host_lock);
1455                 if (!list_empty(&sdev->starved_entry))
1456                         list_del_init(&sdev->starved_entry);
1457                 spin_unlock_irq(shost->host_lock);
1458         }
1459
1460         return 1;
1461
1462 starved:
1463         spin_lock_irq(shost->host_lock);
1464         if (list_empty(&sdev->starved_entry))
1465                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1466         spin_unlock_irq(shost->host_lock);
1467 out_dec:
1468         atomic_dec(&shost->host_busy);
1469         return 0;
1470 }
1471
1472 /*
1473  * Busy state exporting function for request stacking drivers.
1474  *
1475  * For efficiency, no lock is taken to check the busy state of
1476  * shost/starget/sdev, since the returned value is not guaranteed and
1477  * may be changed after request stacking drivers call the function,
1478  * regardless of taking lock or not.
1479  *
1480  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1481  * needs to return 'not busy'. Otherwise, request stacking drivers
1482  * may hold requests forever.
1483  */
1484 static int scsi_lld_busy(struct request_queue *q)
1485 {
1486         struct scsi_device *sdev = q->queuedata;
1487         struct Scsi_Host *shost;
1488
1489         if (blk_queue_dying(q))
1490                 return 0;
1491
1492         shost = sdev->host;
1493
1494         /*
1495          * Ignore host/starget busy state.
1496          * Since block layer does not have a concept of fairness across
1497          * multiple queues, congestion of host/starget needs to be handled
1498          * in SCSI layer.
1499          */
1500         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1501                 return 1;
1502
1503         return 0;
1504 }
1505
1506 /*
1507  * Kill a request for a dead device
1508  */
1509 static void scsi_kill_request(struct request *req, struct request_queue *q)
1510 {
1511         struct scsi_cmnd *cmd = req->special;
1512         struct scsi_device *sdev;
1513         struct scsi_target *starget;
1514         struct Scsi_Host *shost;
1515
1516         blk_start_request(req);
1517
1518         scmd_printk(KERN_INFO, cmd, "killing request\n");
1519
1520         sdev = cmd->device;
1521         starget = scsi_target(sdev);
1522         shost = sdev->host;
1523         scsi_init_cmd_errh(cmd);
1524         cmd->result = DID_NO_CONNECT << 16;
1525         atomic_inc(&cmd->device->iorequest_cnt);
1526
1527         /*
1528          * SCSI request completion path will do scsi_device_unbusy(),
1529          * bump busy counts.  To bump the counters, we need to dance
1530          * with the locks as normal issue path does.
1531          */
1532         atomic_inc(&sdev->device_busy);
1533         atomic_inc(&shost->host_busy);
1534         if (starget->can_queue > 0)
1535                 atomic_inc(&starget->target_busy);
1536
1537         blk_complete_request(req);
1538 }
1539
1540 static void scsi_softirq_done(struct request *rq)
1541 {
1542         struct scsi_cmnd *cmd = rq->special;
1543         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1544         int disposition;
1545
1546         INIT_LIST_HEAD(&cmd->eh_entry);
1547
1548         atomic_inc(&cmd->device->iodone_cnt);
1549         if (cmd->result)
1550                 atomic_inc(&cmd->device->ioerr_cnt);
1551
1552         disposition = scsi_decide_disposition(cmd);
1553         if (disposition != SUCCESS &&
1554             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1555                 sdev_printk(KERN_ERR, cmd->device,
1556                             "timing out command, waited %lus\n",
1557                             wait_for/HZ);
1558                 disposition = SUCCESS;
1559         }
1560
1561         scsi_log_completion(cmd, disposition);
1562
1563         switch (disposition) {
1564                 case SUCCESS:
1565                         scsi_finish_command(cmd);
1566                         break;
1567                 case NEEDS_RETRY:
1568                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1569                         break;
1570                 case ADD_TO_MLQUEUE:
1571                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1572                         break;
1573                 default:
1574                         if (!scsi_eh_scmd_add(cmd, 0))
1575                                 scsi_finish_command(cmd);
1576         }
1577 }
1578
1579 /**
1580  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1581  * @cmd: command block we are dispatching.
1582  *
1583  * Return: nonzero return request was rejected and device's queue needs to be
1584  * plugged.
1585  */
1586 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1587 {
1588         struct Scsi_Host *host = cmd->device->host;
1589         int rtn = 0;
1590
1591         atomic_inc(&cmd->device->iorequest_cnt);
1592
1593         /* check if the device is still usable */
1594         if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1595                 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1596                  * returns an immediate error upwards, and signals
1597                  * that the device is no longer present */
1598                 cmd->result = DID_NO_CONNECT << 16;
1599                 goto done;
1600         }
1601
1602         /* Check to see if the scsi lld made this device blocked. */
1603         if (unlikely(scsi_device_blocked(cmd->device))) {
1604                 /*
1605                  * in blocked state, the command is just put back on
1606                  * the device queue.  The suspend state has already
1607                  * blocked the queue so future requests should not
1608                  * occur until the device transitions out of the
1609                  * suspend state.
1610                  */
1611                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1612                         "queuecommand : device blocked\n"));
1613                 return SCSI_MLQUEUE_DEVICE_BUSY;
1614         }
1615
1616         /* Store the LUN value in cmnd, if needed. */
1617         if (cmd->device->lun_in_cdb)
1618                 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1619                                (cmd->device->lun << 5 & 0xe0);
1620
1621         scsi_log_send(cmd);
1622
1623         /*
1624          * Before we queue this command, check if the command
1625          * length exceeds what the host adapter can handle.
1626          */
1627         if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1628                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1629                                "queuecommand : command too long. "
1630                                "cdb_size=%d host->max_cmd_len=%d\n",
1631                                cmd->cmd_len, cmd->device->host->max_cmd_len));
1632                 cmd->result = (DID_ABORT << 16);
1633                 goto done;
1634         }
1635
1636         if (unlikely(host->shost_state == SHOST_DEL)) {
1637                 cmd->result = (DID_NO_CONNECT << 16);
1638                 goto done;
1639
1640         }
1641
1642         trace_scsi_dispatch_cmd_start(cmd);
1643         rtn = host->hostt->queuecommand(host, cmd);
1644         if (rtn) {
1645                 trace_scsi_dispatch_cmd_error(cmd, rtn);
1646                 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1647                     rtn != SCSI_MLQUEUE_TARGET_BUSY)
1648                         rtn = SCSI_MLQUEUE_HOST_BUSY;
1649
1650                 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1651                         "queuecommand : request rejected\n"));
1652         }
1653
1654         return rtn;
1655  done:
1656         cmd->scsi_done(cmd);
1657         return 0;
1658 }
1659
1660 /**
1661  * scsi_done - Invoke completion on finished SCSI command.
1662  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1663  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1664  *
1665  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1666  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1667  * calls blk_complete_request() for further processing.
1668  *
1669  * This function is interrupt context safe.
1670  */
1671 static void scsi_done(struct scsi_cmnd *cmd)
1672 {
1673         trace_scsi_dispatch_cmd_done(cmd);
1674         blk_complete_request(cmd->request);
1675 }
1676
1677 /*
1678  * Function:    scsi_request_fn()
1679  *
1680  * Purpose:     Main strategy routine for SCSI.
1681  *
1682  * Arguments:   q       - Pointer to actual queue.
1683  *
1684  * Returns:     Nothing
1685  *
1686  * Lock status: IO request lock assumed to be held when called.
1687  */
1688 static void scsi_request_fn(struct request_queue *q)
1689         __releases(q->queue_lock)
1690         __acquires(q->queue_lock)
1691 {
1692         struct scsi_device *sdev = q->queuedata;
1693         struct Scsi_Host *shost;
1694         struct scsi_cmnd *cmd;
1695         struct request *req;
1696
1697         /*
1698          * To start with, we keep looping until the queue is empty, or until
1699          * the host is no longer able to accept any more requests.
1700          */
1701         shost = sdev->host;
1702         for (;;) {
1703                 int rtn;
1704                 /*
1705                  * get next queueable request.  We do this early to make sure
1706                  * that the request is fully prepared even if we cannot
1707                  * accept it.
1708                  */
1709                 req = blk_peek_request(q);
1710                 if (!req)
1711                         break;
1712
1713                 if (unlikely(!scsi_device_online(sdev))) {
1714                         sdev_printk(KERN_ERR, sdev,
1715                                     "rejecting I/O to offline device\n");
1716                         scsi_kill_request(req, q);
1717                         continue;
1718                 }
1719
1720                 if (!scsi_dev_queue_ready(q, sdev))
1721                         break;
1722
1723                 /*
1724                  * Remove the request from the request list.
1725                  */
1726                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1727                         blk_start_request(req);
1728
1729                 spin_unlock_irq(q->queue_lock);
1730                 cmd = req->special;
1731                 if (unlikely(cmd == NULL)) {
1732                         printk(KERN_CRIT "impossible request in %s.\n"
1733                                          "please mail a stack trace to "
1734                                          "linux-scsi@vger.kernel.org\n",
1735                                          __func__);
1736                         blk_dump_rq_flags(req, "foo");
1737                         BUG();
1738                 }
1739
1740                 /*
1741                  * We hit this when the driver is using a host wide
1742                  * tag map. For device level tag maps the queue_depth check
1743                  * in the device ready fn would prevent us from trying
1744                  * to allocate a tag. Since the map is a shared host resource
1745                  * we add the dev to the starved list so it eventually gets
1746                  * a run when a tag is freed.
1747                  */
1748                 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1749                         spin_lock_irq(shost->host_lock);
1750                         if (list_empty(&sdev->starved_entry))
1751                                 list_add_tail(&sdev->starved_entry,
1752                                               &shost->starved_list);
1753                         spin_unlock_irq(shost->host_lock);
1754                         goto not_ready;
1755                 }
1756
1757                 if (!scsi_target_queue_ready(shost, sdev))
1758                         goto not_ready;
1759
1760                 if (!scsi_host_queue_ready(q, shost, sdev))
1761                         goto host_not_ready;
1762         
1763                 if (sdev->simple_tags)
1764                         cmd->flags |= SCMD_TAGGED;
1765                 else
1766                         cmd->flags &= ~SCMD_TAGGED;
1767
1768                 /*
1769                  * Finally, initialize any error handling parameters, and set up
1770                  * the timers for timeouts.
1771                  */
1772                 scsi_init_cmd_errh(cmd);
1773
1774                 /*
1775                  * Dispatch the command to the low-level driver.
1776                  */
1777                 cmd->scsi_done = scsi_done;
1778                 rtn = scsi_dispatch_cmd(cmd);
1779                 if (rtn) {
1780                         scsi_queue_insert(cmd, rtn);
1781                         spin_lock_irq(q->queue_lock);
1782                         goto out_delay;
1783                 }
1784                 spin_lock_irq(q->queue_lock);
1785         }
1786
1787         return;
1788
1789  host_not_ready:
1790         if (scsi_target(sdev)->can_queue > 0)
1791                 atomic_dec(&scsi_target(sdev)->target_busy);
1792  not_ready:
1793         /*
1794          * lock q, handle tag, requeue req, and decrement device_busy. We
1795          * must return with queue_lock held.
1796          *
1797          * Decrementing device_busy without checking it is OK, as all such
1798          * cases (host limits or settings) should run the queue at some
1799          * later time.
1800          */
1801         spin_lock_irq(q->queue_lock);
1802         blk_requeue_request(q, req);
1803         atomic_dec(&sdev->device_busy);
1804 out_delay:
1805         if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1806                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1807 }
1808
1809 static inline int prep_to_mq(int ret)
1810 {
1811         switch (ret) {
1812         case BLKPREP_OK:
1813                 return BLK_MQ_RQ_QUEUE_OK;
1814         case BLKPREP_DEFER:
1815                 return BLK_MQ_RQ_QUEUE_BUSY;
1816         default:
1817                 return BLK_MQ_RQ_QUEUE_ERROR;
1818         }
1819 }
1820
1821 static int scsi_mq_prep_fn(struct request *req)
1822 {
1823         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1824         struct scsi_device *sdev = req->q->queuedata;
1825         struct Scsi_Host *shost = sdev->host;
1826         unsigned char *sense_buf = cmd->sense_buffer;
1827         struct scatterlist *sg;
1828
1829         memset(cmd, 0, sizeof(struct scsi_cmnd));
1830
1831         req->special = cmd;
1832
1833         cmd->request = req;
1834         cmd->device = sdev;
1835         cmd->sense_buffer = sense_buf;
1836
1837         cmd->tag = req->tag;
1838
1839         cmd->cmnd = req->cmd;
1840         cmd->prot_op = SCSI_PROT_NORMAL;
1841
1842         INIT_LIST_HEAD(&cmd->list);
1843         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1844         cmd->jiffies_at_alloc = jiffies;
1845
1846         if (shost->use_cmd_list) {
1847                 spin_lock_irq(&sdev->list_lock);
1848                 list_add_tail(&cmd->list, &sdev->cmd_list);
1849                 spin_unlock_irq(&sdev->list_lock);
1850         }
1851
1852         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1853         cmd->sdb.table.sgl = sg;
1854
1855         if (scsi_host_get_prot(shost)) {
1856                 cmd->prot_sdb = (void *)sg +
1857                         min_t(unsigned int,
1858                               shost->sg_tablesize, SG_CHUNK_SIZE) *
1859                         sizeof(struct scatterlist);
1860                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1861
1862                 cmd->prot_sdb->table.sgl =
1863                         (struct scatterlist *)(cmd->prot_sdb + 1);
1864         }
1865
1866         if (blk_bidi_rq(req)) {
1867                 struct request *next_rq = req->next_rq;
1868                 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1869
1870                 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1871                 bidi_sdb->table.sgl =
1872                         (struct scatterlist *)(bidi_sdb + 1);
1873
1874                 next_rq->special = bidi_sdb;
1875         }
1876
1877         blk_mq_start_request(req);
1878
1879         return scsi_setup_cmnd(sdev, req);
1880 }
1881
1882 static void scsi_mq_done(struct scsi_cmnd *cmd)
1883 {
1884         trace_scsi_dispatch_cmd_done(cmd);
1885         blk_mq_complete_request(cmd->request, cmd->request->errors);
1886 }
1887
1888 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1889                          const struct blk_mq_queue_data *bd)
1890 {
1891         struct request *req = bd->rq;
1892         struct request_queue *q = req->q;
1893         struct scsi_device *sdev = q->queuedata;
1894         struct Scsi_Host *shost = sdev->host;
1895         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1896         int ret;
1897         int reason;
1898
1899         ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1900         if (ret != BLK_MQ_RQ_QUEUE_OK)
1901                 goto out;
1902
1903         ret = BLK_MQ_RQ_QUEUE_BUSY;
1904         if (!get_device(&sdev->sdev_gendev))
1905                 goto out;
1906
1907         if (!scsi_dev_queue_ready(q, sdev))
1908                 goto out_put_device;
1909         if (!scsi_target_queue_ready(shost, sdev))
1910                 goto out_dec_device_busy;
1911         if (!scsi_host_queue_ready(q, shost, sdev))
1912                 goto out_dec_target_busy;
1913
1914
1915         if (!(req->rq_flags & RQF_DONTPREP)) {
1916                 ret = prep_to_mq(scsi_mq_prep_fn(req));
1917                 if (ret != BLK_MQ_RQ_QUEUE_OK)
1918                         goto out_dec_host_busy;
1919                 req->rq_flags |= RQF_DONTPREP;
1920         } else {
1921                 blk_mq_start_request(req);
1922         }
1923
1924         if (sdev->simple_tags)
1925                 cmd->flags |= SCMD_TAGGED;
1926         else
1927                 cmd->flags &= ~SCMD_TAGGED;
1928
1929         scsi_init_cmd_errh(cmd);
1930         cmd->scsi_done = scsi_mq_done;
1931
1932         reason = scsi_dispatch_cmd(cmd);
1933         if (reason) {
1934                 scsi_set_blocked(cmd, reason);
1935                 ret = BLK_MQ_RQ_QUEUE_BUSY;
1936                 goto out_dec_host_busy;
1937         }
1938
1939         return BLK_MQ_RQ_QUEUE_OK;
1940
1941 out_dec_host_busy:
1942         atomic_dec(&shost->host_busy);
1943 out_dec_target_busy:
1944         if (scsi_target(sdev)->can_queue > 0)
1945                 atomic_dec(&scsi_target(sdev)->target_busy);
1946 out_dec_device_busy:
1947         atomic_dec(&sdev->device_busy);
1948 out_put_device:
1949         put_device(&sdev->sdev_gendev);
1950 out:
1951         switch (ret) {
1952         case BLK_MQ_RQ_QUEUE_BUSY:
1953                 if (atomic_read(&sdev->device_busy) == 0 &&
1954                     !scsi_device_blocked(sdev))
1955                         blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
1956                 break;
1957         case BLK_MQ_RQ_QUEUE_ERROR:
1958                 /*
1959                  * Make sure to release all allocated ressources when
1960                  * we hit an error, as we will never see this command
1961                  * again.
1962                  */
1963                 if (req->rq_flags & RQF_DONTPREP)
1964                         scsi_mq_uninit_cmd(cmd);
1965                 break;
1966         default:
1967                 break;
1968         }
1969         return ret;
1970 }
1971
1972 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1973                 bool reserved)
1974 {
1975         if (reserved)
1976                 return BLK_EH_RESET_TIMER;
1977         return scsi_times_out(req);
1978 }
1979
1980 static int scsi_init_request(void *data, struct request *rq,
1981                 unsigned int hctx_idx, unsigned int request_idx,
1982                 unsigned int numa_node)
1983 {
1984         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1985
1986         cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
1987                         numa_node);
1988         if (!cmd->sense_buffer)
1989                 return -ENOMEM;
1990         return 0;
1991 }
1992
1993 static void scsi_exit_request(void *data, struct request *rq,
1994                 unsigned int hctx_idx, unsigned int request_idx)
1995 {
1996         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1997
1998         kfree(cmd->sense_buffer);
1999 }
2000
2001 static int scsi_map_queues(struct blk_mq_tag_set *set)
2002 {
2003         struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2004
2005         if (shost->hostt->map_queues)
2006                 return shost->hostt->map_queues(shost);
2007         return blk_mq_map_queues(set);
2008 }
2009
2010 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2011 {
2012         struct device *host_dev;
2013         u64 bounce_limit = 0xffffffff;
2014
2015         if (shost->unchecked_isa_dma)
2016                 return BLK_BOUNCE_ISA;
2017         /*
2018          * Platforms with virtual-DMA translation
2019          * hardware have no practical limit.
2020          */
2021         if (!PCI_DMA_BUS_IS_PHYS)
2022                 return BLK_BOUNCE_ANY;
2023
2024         host_dev = scsi_get_device(shost);
2025         if (host_dev && host_dev->dma_mask)
2026                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2027
2028         return bounce_limit;
2029 }
2030
2031 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2032 {
2033         struct device *dev = shost->dma_dev;
2034
2035         /*
2036          * this limit is imposed by hardware restrictions
2037          */
2038         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2039                                         SG_MAX_SEGMENTS));
2040
2041         if (scsi_host_prot_dma(shost)) {
2042                 shost->sg_prot_tablesize =
2043                         min_not_zero(shost->sg_prot_tablesize,
2044                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2045                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2046                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2047         }
2048
2049         blk_queue_max_hw_sectors(q, shost->max_sectors);
2050         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2051         blk_queue_segment_boundary(q, shost->dma_boundary);
2052         dma_set_seg_boundary(dev, shost->dma_boundary);
2053
2054         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2055
2056         if (!shost->use_clustering)
2057                 q->limits.cluster = 0;
2058
2059         /*
2060          * set a reasonable default alignment on word boundaries: the
2061          * host and device may alter it using
2062          * blk_queue_update_dma_alignment() later.
2063          */
2064         blk_queue_dma_alignment(q, 0x03);
2065 }
2066
2067 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2068                                          request_fn_proc *request_fn)
2069 {
2070         struct request_queue *q;
2071
2072         q = blk_init_queue(request_fn, NULL);
2073         if (!q)
2074                 return NULL;
2075         __scsi_init_queue(shost, q);
2076         return q;
2077 }
2078 EXPORT_SYMBOL(__scsi_alloc_queue);
2079
2080 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2081 {
2082         struct request_queue *q;
2083
2084         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2085         if (!q)
2086                 return NULL;
2087
2088         blk_queue_prep_rq(q, scsi_prep_fn);
2089         blk_queue_unprep_rq(q, scsi_unprep_fn);
2090         blk_queue_softirq_done(q, scsi_softirq_done);
2091         blk_queue_rq_timed_out(q, scsi_times_out);
2092         blk_queue_lld_busy(q, scsi_lld_busy);
2093         return q;
2094 }
2095
2096 static struct blk_mq_ops scsi_mq_ops = {
2097         .queue_rq       = scsi_queue_rq,
2098         .complete       = scsi_softirq_done,
2099         .timeout        = scsi_timeout,
2100         .init_request   = scsi_init_request,
2101         .exit_request   = scsi_exit_request,
2102         .map_queues     = scsi_map_queues,
2103 };
2104
2105 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2106 {
2107         sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2108         if (IS_ERR(sdev->request_queue))
2109                 return NULL;
2110
2111         sdev->request_queue->queuedata = sdev;
2112         __scsi_init_queue(sdev->host, sdev->request_queue);
2113         return sdev->request_queue;
2114 }
2115
2116 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2117 {
2118         unsigned int cmd_size, sgl_size, tbl_size;
2119
2120         tbl_size = shost->sg_tablesize;
2121         if (tbl_size > SG_CHUNK_SIZE)
2122                 tbl_size = SG_CHUNK_SIZE;
2123         sgl_size = tbl_size * sizeof(struct scatterlist);
2124         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2125         if (scsi_host_get_prot(shost))
2126                 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2127
2128         memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2129         shost->tag_set.ops = &scsi_mq_ops;
2130         shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2131         shost->tag_set.queue_depth = shost->can_queue;
2132         shost->tag_set.cmd_size = cmd_size;
2133         shost->tag_set.numa_node = NUMA_NO_NODE;
2134         shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2135         shost->tag_set.flags |=
2136                 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2137         shost->tag_set.driver_data = shost;
2138
2139         return blk_mq_alloc_tag_set(&shost->tag_set);
2140 }
2141
2142 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2143 {
2144         blk_mq_free_tag_set(&shost->tag_set);
2145 }
2146
2147 /*
2148  * Function:    scsi_block_requests()
2149  *
2150  * Purpose:     Utility function used by low-level drivers to prevent further
2151  *              commands from being queued to the device.
2152  *
2153  * Arguments:   shost       - Host in question
2154  *
2155  * Returns:     Nothing
2156  *
2157  * Lock status: No locks are assumed held.
2158  *
2159  * Notes:       There is no timer nor any other means by which the requests
2160  *              get unblocked other than the low-level driver calling
2161  *              scsi_unblock_requests().
2162  */
2163 void scsi_block_requests(struct Scsi_Host *shost)
2164 {
2165         shost->host_self_blocked = 1;
2166 }
2167 EXPORT_SYMBOL(scsi_block_requests);
2168
2169 /*
2170  * Function:    scsi_unblock_requests()
2171  *
2172  * Purpose:     Utility function used by low-level drivers to allow further
2173  *              commands from being queued to the device.
2174  *
2175  * Arguments:   shost       - Host in question
2176  *
2177  * Returns:     Nothing
2178  *
2179  * Lock status: No locks are assumed held.
2180  *
2181  * Notes:       There is no timer nor any other means by which the requests
2182  *              get unblocked other than the low-level driver calling
2183  *              scsi_unblock_requests().
2184  *
2185  *              This is done as an API function so that changes to the
2186  *              internals of the scsi mid-layer won't require wholesale
2187  *              changes to drivers that use this feature.
2188  */
2189 void scsi_unblock_requests(struct Scsi_Host *shost)
2190 {
2191         shost->host_self_blocked = 0;
2192         scsi_run_host_queues(shost);
2193 }
2194 EXPORT_SYMBOL(scsi_unblock_requests);
2195
2196 int __init scsi_init_queue(void)
2197 {
2198         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2199                                            sizeof(struct scsi_data_buffer),
2200                                            0, 0, NULL);
2201         if (!scsi_sdb_cache) {
2202                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2203                 return -ENOMEM;
2204         }
2205
2206         return 0;
2207 }
2208
2209 void scsi_exit_queue(void)
2210 {
2211         kmem_cache_destroy(scsi_sdb_cache);
2212 }
2213
2214 /**
2215  *      scsi_mode_select - issue a mode select
2216  *      @sdev:  SCSI device to be queried
2217  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2218  *      @sp:    Save page bit (0 == don't save, 1 == save)
2219  *      @modepage: mode page being requested
2220  *      @buffer: request buffer (may not be smaller than eight bytes)
2221  *      @len:   length of request buffer.
2222  *      @timeout: command timeout
2223  *      @retries: number of retries before failing
2224  *      @data: returns a structure abstracting the mode header data
2225  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2226  *              must be SCSI_SENSE_BUFFERSIZE big.
2227  *
2228  *      Returns zero if successful; negative error number or scsi
2229  *      status on error
2230  *
2231  */
2232 int
2233 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2234                  unsigned char *buffer, int len, int timeout, int retries,
2235                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2236 {
2237         unsigned char cmd[10];
2238         unsigned char *real_buffer;
2239         int ret;
2240
2241         memset(cmd, 0, sizeof(cmd));
2242         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2243
2244         if (sdev->use_10_for_ms) {
2245                 if (len > 65535)
2246                         return -EINVAL;
2247                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2248                 if (!real_buffer)
2249                         return -ENOMEM;
2250                 memcpy(real_buffer + 8, buffer, len);
2251                 len += 8;
2252                 real_buffer[0] = 0;
2253                 real_buffer[1] = 0;
2254                 real_buffer[2] = data->medium_type;
2255                 real_buffer[3] = data->device_specific;
2256                 real_buffer[4] = data->longlba ? 0x01 : 0;
2257                 real_buffer[5] = 0;
2258                 real_buffer[6] = data->block_descriptor_length >> 8;
2259                 real_buffer[7] = data->block_descriptor_length;
2260
2261                 cmd[0] = MODE_SELECT_10;
2262                 cmd[7] = len >> 8;
2263                 cmd[8] = len;
2264         } else {
2265                 if (len > 255 || data->block_descriptor_length > 255 ||
2266                     data->longlba)
2267                         return -EINVAL;
2268
2269                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2270                 if (!real_buffer)
2271                         return -ENOMEM;
2272                 memcpy(real_buffer + 4, buffer, len);
2273                 len += 4;
2274                 real_buffer[0] = 0;
2275                 real_buffer[1] = data->medium_type;
2276                 real_buffer[2] = data->device_specific;
2277                 real_buffer[3] = data->block_descriptor_length;
2278                 
2279
2280                 cmd[0] = MODE_SELECT;
2281                 cmd[4] = len;
2282         }
2283
2284         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2285                                sshdr, timeout, retries, NULL);
2286         kfree(real_buffer);
2287         return ret;
2288 }
2289 EXPORT_SYMBOL_GPL(scsi_mode_select);
2290
2291 /**
2292  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2293  *      @sdev:  SCSI device to be queried
2294  *      @dbd:   set if mode sense will allow block descriptors to be returned
2295  *      @modepage: mode page being requested
2296  *      @buffer: request buffer (may not be smaller than eight bytes)
2297  *      @len:   length of request buffer.
2298  *      @timeout: command timeout
2299  *      @retries: number of retries before failing
2300  *      @data: returns a structure abstracting the mode header data
2301  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2302  *              must be SCSI_SENSE_BUFFERSIZE big.
2303  *
2304  *      Returns zero if unsuccessful, or the header offset (either 4
2305  *      or 8 depending on whether a six or ten byte command was
2306  *      issued) if successful.
2307  */
2308 int
2309 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2310                   unsigned char *buffer, int len, int timeout, int retries,
2311                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2312 {
2313         unsigned char cmd[12];
2314         int use_10_for_ms;
2315         int header_length;
2316         int result, retry_count = retries;
2317         struct scsi_sense_hdr my_sshdr;
2318
2319         memset(data, 0, sizeof(*data));
2320         memset(&cmd[0], 0, 12);
2321         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2322         cmd[2] = modepage;
2323
2324         /* caller might not be interested in sense, but we need it */
2325         if (!sshdr)
2326                 sshdr = &my_sshdr;
2327
2328  retry:
2329         use_10_for_ms = sdev->use_10_for_ms;
2330
2331         if (use_10_for_ms) {
2332                 if (len < 8)
2333                         len = 8;
2334
2335                 cmd[0] = MODE_SENSE_10;
2336                 cmd[8] = len;
2337                 header_length = 8;
2338         } else {
2339                 if (len < 4)
2340                         len = 4;
2341
2342                 cmd[0] = MODE_SENSE;
2343                 cmd[4] = len;
2344                 header_length = 4;
2345         }
2346
2347         memset(buffer, 0, len);
2348
2349         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2350                                   sshdr, timeout, retries, NULL);
2351
2352         /* This code looks awful: what it's doing is making sure an
2353          * ILLEGAL REQUEST sense return identifies the actual command
2354          * byte as the problem.  MODE_SENSE commands can return
2355          * ILLEGAL REQUEST if the code page isn't supported */
2356
2357         if (use_10_for_ms && !scsi_status_is_good(result) &&
2358             (driver_byte(result) & DRIVER_SENSE)) {
2359                 if (scsi_sense_valid(sshdr)) {
2360                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2361                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2362                                 /* 
2363                                  * Invalid command operation code
2364                                  */
2365                                 sdev->use_10_for_ms = 0;
2366                                 goto retry;
2367                         }
2368                 }
2369         }
2370
2371         if(scsi_status_is_good(result)) {
2372                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2373                              (modepage == 6 || modepage == 8))) {
2374                         /* Initio breakage? */
2375                         header_length = 0;
2376                         data->length = 13;
2377                         data->medium_type = 0;
2378                         data->device_specific = 0;
2379                         data->longlba = 0;
2380                         data->block_descriptor_length = 0;
2381                 } else if(use_10_for_ms) {
2382                         data->length = buffer[0]*256 + buffer[1] + 2;
2383                         data->medium_type = buffer[2];
2384                         data->device_specific = buffer[3];
2385                         data->longlba = buffer[4] & 0x01;
2386                         data->block_descriptor_length = buffer[6]*256
2387                                 + buffer[7];
2388                 } else {
2389                         data->length = buffer[0] + 1;
2390                         data->medium_type = buffer[1];
2391                         data->device_specific = buffer[2];
2392                         data->block_descriptor_length = buffer[3];
2393                 }
2394                 data->header_length = header_length;
2395         } else if ((status_byte(result) == CHECK_CONDITION) &&
2396                    scsi_sense_valid(sshdr) &&
2397                    sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2398                 retry_count--;
2399                 goto retry;
2400         }
2401
2402         return result;
2403 }
2404 EXPORT_SYMBOL(scsi_mode_sense);
2405
2406 /**
2407  *      scsi_test_unit_ready - test if unit is ready
2408  *      @sdev:  scsi device to change the state of.
2409  *      @timeout: command timeout
2410  *      @retries: number of retries before failing
2411  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2412  *              returning sense. Make sure that this is cleared before passing
2413  *              in.
2414  *
2415  *      Returns zero if unsuccessful or an error if TUR failed.  For
2416  *      removable media, UNIT_ATTENTION sets ->changed flag.
2417  **/
2418 int
2419 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2420                      struct scsi_sense_hdr *sshdr_external)
2421 {
2422         char cmd[] = {
2423                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2424         };
2425         struct scsi_sense_hdr *sshdr;
2426         int result;
2427
2428         if (!sshdr_external)
2429                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2430         else
2431                 sshdr = sshdr_external;
2432
2433         /* try to eat the UNIT_ATTENTION if there are enough retries */
2434         do {
2435                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2436                                           timeout, retries, NULL);
2437                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2438                     sshdr->sense_key == UNIT_ATTENTION)
2439                         sdev->changed = 1;
2440         } while (scsi_sense_valid(sshdr) &&
2441                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2442
2443         if (!sshdr_external)
2444                 kfree(sshdr);
2445         return result;
2446 }
2447 EXPORT_SYMBOL(scsi_test_unit_ready);
2448
2449 /**
2450  *      scsi_device_set_state - Take the given device through the device state model.
2451  *      @sdev:  scsi device to change the state of.
2452  *      @state: state to change to.
2453  *
2454  *      Returns zero if unsuccessful or an error if the requested 
2455  *      transition is illegal.
2456  */
2457 int
2458 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2459 {
2460         enum scsi_device_state oldstate = sdev->sdev_state;
2461
2462         if (state == oldstate)
2463                 return 0;
2464
2465         switch (state) {
2466         case SDEV_CREATED:
2467                 switch (oldstate) {
2468                 case SDEV_CREATED_BLOCK:
2469                         break;
2470                 default:
2471                         goto illegal;
2472                 }
2473                 break;
2474                         
2475         case SDEV_RUNNING:
2476                 switch (oldstate) {
2477                 case SDEV_CREATED:
2478                 case SDEV_OFFLINE:
2479                 case SDEV_TRANSPORT_OFFLINE:
2480                 case SDEV_QUIESCE:
2481                 case SDEV_BLOCK:
2482                         break;
2483                 default:
2484                         goto illegal;
2485                 }
2486                 break;
2487
2488         case SDEV_QUIESCE:
2489                 switch (oldstate) {
2490                 case SDEV_RUNNING:
2491                 case SDEV_OFFLINE:
2492                 case SDEV_TRANSPORT_OFFLINE:
2493                         break;
2494                 default:
2495                         goto illegal;
2496                 }
2497                 break;
2498
2499         case SDEV_OFFLINE:
2500         case SDEV_TRANSPORT_OFFLINE:
2501                 switch (oldstate) {
2502                 case SDEV_CREATED:
2503                 case SDEV_RUNNING:
2504                 case SDEV_QUIESCE:
2505                 case SDEV_BLOCK:
2506                         break;
2507                 default:
2508                         goto illegal;
2509                 }
2510                 break;
2511
2512         case SDEV_BLOCK:
2513                 switch (oldstate) {
2514                 case SDEV_RUNNING:
2515                 case SDEV_CREATED_BLOCK:
2516                         break;
2517                 default:
2518                         goto illegal;
2519                 }
2520                 break;
2521
2522         case SDEV_CREATED_BLOCK:
2523                 switch (oldstate) {
2524                 case SDEV_CREATED:
2525                         break;
2526                 default:
2527                         goto illegal;
2528                 }
2529                 break;
2530
2531         case SDEV_CANCEL:
2532                 switch (oldstate) {
2533                 case SDEV_CREATED:
2534                 case SDEV_RUNNING:
2535                 case SDEV_QUIESCE:
2536                 case SDEV_OFFLINE:
2537                 case SDEV_TRANSPORT_OFFLINE:
2538                 case SDEV_BLOCK:
2539                         break;
2540                 default:
2541                         goto illegal;
2542                 }
2543                 break;
2544
2545         case SDEV_DEL:
2546                 switch (oldstate) {
2547                 case SDEV_CREATED:
2548                 case SDEV_RUNNING:
2549                 case SDEV_OFFLINE:
2550                 case SDEV_TRANSPORT_OFFLINE:
2551                 case SDEV_CANCEL:
2552                 case SDEV_CREATED_BLOCK:
2553                         break;
2554                 default:
2555                         goto illegal;
2556                 }
2557                 break;
2558
2559         }
2560         sdev->sdev_state = state;
2561         return 0;
2562
2563  illegal:
2564         SCSI_LOG_ERROR_RECOVERY(1,
2565                                 sdev_printk(KERN_ERR, sdev,
2566                                             "Illegal state transition %s->%s",
2567                                             scsi_device_state_name(oldstate),
2568                                             scsi_device_state_name(state))
2569                                 );
2570         return -EINVAL;
2571 }
2572 EXPORT_SYMBOL(scsi_device_set_state);
2573
2574 /**
2575  *      sdev_evt_emit - emit a single SCSI device uevent
2576  *      @sdev: associated SCSI device
2577  *      @evt: event to emit
2578  *
2579  *      Send a single uevent (scsi_event) to the associated scsi_device.
2580  */
2581 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2582 {
2583         int idx = 0;
2584         char *envp[3];
2585
2586         switch (evt->evt_type) {
2587         case SDEV_EVT_MEDIA_CHANGE:
2588                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2589                 break;
2590         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2591                 scsi_rescan_device(&sdev->sdev_gendev);
2592                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2593                 break;
2594         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2595                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2596                 break;
2597         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2598                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2599                 break;
2600         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2601                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2602                 break;
2603         case SDEV_EVT_LUN_CHANGE_REPORTED:
2604                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2605                 break;
2606         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2607                 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2608                 break;
2609         default:
2610                 /* do nothing */
2611                 break;
2612         }
2613
2614         envp[idx++] = NULL;
2615
2616         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2617 }
2618
2619 /**
2620  *      sdev_evt_thread - send a uevent for each scsi event
2621  *      @work: work struct for scsi_device
2622  *
2623  *      Dispatch queued events to their associated scsi_device kobjects
2624  *      as uevents.
2625  */
2626 void scsi_evt_thread(struct work_struct *work)
2627 {
2628         struct scsi_device *sdev;
2629         enum scsi_device_event evt_type;
2630         LIST_HEAD(event_list);
2631
2632         sdev = container_of(work, struct scsi_device, event_work);
2633
2634         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2635                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2636                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2637
2638         while (1) {
2639                 struct scsi_event *evt;
2640                 struct list_head *this, *tmp;
2641                 unsigned long flags;
2642
2643                 spin_lock_irqsave(&sdev->list_lock, flags);
2644                 list_splice_init(&sdev->event_list, &event_list);
2645                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2646
2647                 if (list_empty(&event_list))
2648                         break;
2649
2650                 list_for_each_safe(this, tmp, &event_list) {
2651                         evt = list_entry(this, struct scsi_event, node);
2652                         list_del(&evt->node);
2653                         scsi_evt_emit(sdev, evt);
2654                         kfree(evt);
2655                 }
2656         }
2657 }
2658
2659 /**
2660  *      sdev_evt_send - send asserted event to uevent thread
2661  *      @sdev: scsi_device event occurred on
2662  *      @evt: event to send
2663  *
2664  *      Assert scsi device event asynchronously.
2665  */
2666 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2667 {
2668         unsigned long flags;
2669
2670 #if 0
2671         /* FIXME: currently this check eliminates all media change events
2672          * for polled devices.  Need to update to discriminate between AN
2673          * and polled events */
2674         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2675                 kfree(evt);
2676                 return;
2677         }
2678 #endif
2679
2680         spin_lock_irqsave(&sdev->list_lock, flags);
2681         list_add_tail(&evt->node, &sdev->event_list);
2682         schedule_work(&sdev->event_work);
2683         spin_unlock_irqrestore(&sdev->list_lock, flags);
2684 }
2685 EXPORT_SYMBOL_GPL(sdev_evt_send);
2686
2687 /**
2688  *      sdev_evt_alloc - allocate a new scsi event
2689  *      @evt_type: type of event to allocate
2690  *      @gfpflags: GFP flags for allocation
2691  *
2692  *      Allocates and returns a new scsi_event.
2693  */
2694 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2695                                   gfp_t gfpflags)
2696 {
2697         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2698         if (!evt)
2699                 return NULL;
2700
2701         evt->evt_type = evt_type;
2702         INIT_LIST_HEAD(&evt->node);
2703
2704         /* evt_type-specific initialization, if any */
2705         switch (evt_type) {
2706         case SDEV_EVT_MEDIA_CHANGE:
2707         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2708         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2709         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2710         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2711         case SDEV_EVT_LUN_CHANGE_REPORTED:
2712         case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2713         default:
2714                 /* do nothing */
2715                 break;
2716         }
2717
2718         return evt;
2719 }
2720 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2721
2722 /**
2723  *      sdev_evt_send_simple - send asserted event to uevent thread
2724  *      @sdev: scsi_device event occurred on
2725  *      @evt_type: type of event to send
2726  *      @gfpflags: GFP flags for allocation
2727  *
2728  *      Assert scsi device event asynchronously, given an event type.
2729  */
2730 void sdev_evt_send_simple(struct scsi_device *sdev,
2731                           enum scsi_device_event evt_type, gfp_t gfpflags)
2732 {
2733         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2734         if (!evt) {
2735                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2736                             evt_type);
2737                 return;
2738         }
2739
2740         sdev_evt_send(sdev, evt);
2741 }
2742 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2743
2744 /**
2745  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2746  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2747  */
2748 static int scsi_request_fn_active(struct scsi_device *sdev)
2749 {
2750         struct request_queue *q = sdev->request_queue;
2751         int request_fn_active;
2752
2753         WARN_ON_ONCE(sdev->host->use_blk_mq);
2754
2755         spin_lock_irq(q->queue_lock);
2756         request_fn_active = q->request_fn_active;
2757         spin_unlock_irq(q->queue_lock);
2758
2759         return request_fn_active;
2760 }
2761
2762 /**
2763  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2764  * @sdev: SCSI device pointer.
2765  *
2766  * Wait until the ongoing shost->hostt->queuecommand() calls that are
2767  * invoked from scsi_request_fn() have finished.
2768  */
2769 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2770 {
2771         WARN_ON_ONCE(sdev->host->use_blk_mq);
2772
2773         while (scsi_request_fn_active(sdev))
2774                 msleep(20);
2775 }
2776
2777 /**
2778  *      scsi_device_quiesce - Block user issued commands.
2779  *      @sdev:  scsi device to quiesce.
2780  *
2781  *      This works by trying to transition to the SDEV_QUIESCE state
2782  *      (which must be a legal transition).  When the device is in this
2783  *      state, only special requests will be accepted, all others will
2784  *      be deferred.  Since special requests may also be requeued requests,
2785  *      a successful return doesn't guarantee the device will be 
2786  *      totally quiescent.
2787  *
2788  *      Must be called with user context, may sleep.
2789  *
2790  *      Returns zero if unsuccessful or an error if not.
2791  */
2792 int
2793 scsi_device_quiesce(struct scsi_device *sdev)
2794 {
2795         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2796         if (err)
2797                 return err;
2798
2799         scsi_run_queue(sdev->request_queue);
2800         while (atomic_read(&sdev->device_busy)) {
2801                 msleep_interruptible(200);
2802                 scsi_run_queue(sdev->request_queue);
2803         }
2804         return 0;
2805 }
2806 EXPORT_SYMBOL(scsi_device_quiesce);
2807
2808 /**
2809  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2810  *      @sdev:  scsi device to resume.
2811  *
2812  *      Moves the device from quiesced back to running and restarts the
2813  *      queues.
2814  *
2815  *      Must be called with user context, may sleep.
2816  */
2817 void scsi_device_resume(struct scsi_device *sdev)
2818 {
2819         /* check if the device state was mutated prior to resume, and if
2820          * so assume the state is being managed elsewhere (for example
2821          * device deleted during suspend)
2822          */
2823         if (sdev->sdev_state != SDEV_QUIESCE ||
2824             scsi_device_set_state(sdev, SDEV_RUNNING))
2825                 return;
2826         scsi_run_queue(sdev->request_queue);
2827 }
2828 EXPORT_SYMBOL(scsi_device_resume);
2829
2830 static void
2831 device_quiesce_fn(struct scsi_device *sdev, void *data)
2832 {
2833         scsi_device_quiesce(sdev);
2834 }
2835
2836 void
2837 scsi_target_quiesce(struct scsi_target *starget)
2838 {
2839         starget_for_each_device(starget, NULL, device_quiesce_fn);
2840 }
2841 EXPORT_SYMBOL(scsi_target_quiesce);
2842
2843 static void
2844 device_resume_fn(struct scsi_device *sdev, void *data)
2845 {
2846         scsi_device_resume(sdev);
2847 }
2848
2849 void
2850 scsi_target_resume(struct scsi_target *starget)
2851 {
2852         starget_for_each_device(starget, NULL, device_resume_fn);
2853 }
2854 EXPORT_SYMBOL(scsi_target_resume);
2855
2856 /**
2857  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2858  * @sdev:       device to block
2859  *
2860  * Block request made by scsi lld's to temporarily stop all
2861  * scsi commands on the specified device. May sleep.
2862  *
2863  * Returns zero if successful or error if not
2864  *
2865  * Notes:       
2866  *      This routine transitions the device to the SDEV_BLOCK state
2867  *      (which must be a legal transition).  When the device is in this
2868  *      state, all commands are deferred until the scsi lld reenables
2869  *      the device with scsi_device_unblock or device_block_tmo fires.
2870  *
2871  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
2872  * scsi_internal_device_block() has blocked a SCSI device and also
2873  * remove the rport mutex lock and unlock calls from srp_queuecommand().
2874  */
2875 int
2876 scsi_internal_device_block(struct scsi_device *sdev)
2877 {
2878         struct request_queue *q = sdev->request_queue;
2879         unsigned long flags;
2880         int err = 0;
2881
2882         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2883         if (err) {
2884                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2885
2886                 if (err)
2887                         return err;
2888         }
2889
2890         /* 
2891          * The device has transitioned to SDEV_BLOCK.  Stop the
2892          * block layer from calling the midlayer with this device's
2893          * request queue. 
2894          */
2895         if (q->mq_ops) {
2896                 blk_mq_stop_hw_queues(q);
2897         } else {
2898                 spin_lock_irqsave(q->queue_lock, flags);
2899                 blk_stop_queue(q);
2900                 spin_unlock_irqrestore(q->queue_lock, flags);
2901                 scsi_wait_for_queuecommand(sdev);
2902         }
2903
2904         return 0;
2905 }
2906 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2907  
2908 /**
2909  * scsi_internal_device_unblock - resume a device after a block request
2910  * @sdev:       device to resume
2911  * @new_state:  state to set devices to after unblocking
2912  *
2913  * Called by scsi lld's or the midlayer to restart the device queue
2914  * for the previously suspended scsi device.  Called from interrupt or
2915  * normal process context.
2916  *
2917  * Returns zero if successful or error if not.
2918  *
2919  * Notes:       
2920  *      This routine transitions the device to the SDEV_RUNNING state
2921  *      or to one of the offline states (which must be a legal transition)
2922  *      allowing the midlayer to goose the queue for this device.
2923  */
2924 int
2925 scsi_internal_device_unblock(struct scsi_device *sdev,
2926                              enum scsi_device_state new_state)
2927 {
2928         struct request_queue *q = sdev->request_queue; 
2929         unsigned long flags;
2930
2931         /*
2932          * Try to transition the scsi device to SDEV_RUNNING or one of the
2933          * offlined states and goose the device queue if successful.
2934          */
2935         if ((sdev->sdev_state == SDEV_BLOCK) ||
2936             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2937                 sdev->sdev_state = new_state;
2938         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2939                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2940                     new_state == SDEV_OFFLINE)
2941                         sdev->sdev_state = new_state;
2942                 else
2943                         sdev->sdev_state = SDEV_CREATED;
2944         } else if (sdev->sdev_state != SDEV_CANCEL &&
2945                  sdev->sdev_state != SDEV_OFFLINE)
2946                 return -EINVAL;
2947
2948         if (q->mq_ops) {
2949                 blk_mq_start_stopped_hw_queues(q, false);
2950         } else {
2951                 spin_lock_irqsave(q->queue_lock, flags);
2952                 blk_start_queue(q);
2953                 spin_unlock_irqrestore(q->queue_lock, flags);
2954         }
2955
2956         return 0;
2957 }
2958 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2959
2960 static void
2961 device_block(struct scsi_device *sdev, void *data)
2962 {
2963         scsi_internal_device_block(sdev);
2964 }
2965
2966 static int
2967 target_block(struct device *dev, void *data)
2968 {
2969         if (scsi_is_target_device(dev))
2970                 starget_for_each_device(to_scsi_target(dev), NULL,
2971                                         device_block);
2972         return 0;
2973 }
2974
2975 void
2976 scsi_target_block(struct device *dev)
2977 {
2978         if (scsi_is_target_device(dev))
2979                 starget_for_each_device(to_scsi_target(dev), NULL,
2980                                         device_block);
2981         else
2982                 device_for_each_child(dev, NULL, target_block);
2983 }
2984 EXPORT_SYMBOL_GPL(scsi_target_block);
2985
2986 static void
2987 device_unblock(struct scsi_device *sdev, void *data)
2988 {
2989         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2990 }
2991
2992 static int
2993 target_unblock(struct device *dev, void *data)
2994 {
2995         if (scsi_is_target_device(dev))
2996                 starget_for_each_device(to_scsi_target(dev), data,
2997                                         device_unblock);
2998         return 0;
2999 }
3000
3001 void
3002 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3003 {
3004         if (scsi_is_target_device(dev))
3005                 starget_for_each_device(to_scsi_target(dev), &new_state,
3006                                         device_unblock);
3007         else
3008                 device_for_each_child(dev, &new_state, target_unblock);
3009 }
3010 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3011
3012 /**
3013  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3014  * @sgl:        scatter-gather list
3015  * @sg_count:   number of segments in sg
3016  * @offset:     offset in bytes into sg, on return offset into the mapped area
3017  * @len:        bytes to map, on return number of bytes mapped
3018  *
3019  * Returns virtual address of the start of the mapped page
3020  */
3021 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3022                           size_t *offset, size_t *len)
3023 {
3024         int i;
3025         size_t sg_len = 0, len_complete = 0;
3026         struct scatterlist *sg;
3027         struct page *page;
3028
3029         WARN_ON(!irqs_disabled());
3030
3031         for_each_sg(sgl, sg, sg_count, i) {
3032                 len_complete = sg_len; /* Complete sg-entries */
3033                 sg_len += sg->length;
3034                 if (sg_len > *offset)
3035                         break;
3036         }
3037
3038         if (unlikely(i == sg_count)) {
3039                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3040                         "elements %d\n",
3041                        __func__, sg_len, *offset, sg_count);
3042                 WARN_ON(1);
3043                 return NULL;
3044         }
3045
3046         /* Offset starting from the beginning of first page in this sg-entry */
3047         *offset = *offset - len_complete + sg->offset;
3048
3049         /* Assumption: contiguous pages can be accessed as "page + i" */
3050         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3051         *offset &= ~PAGE_MASK;
3052
3053         /* Bytes in this sg-entry from *offset to the end of the page */
3054         sg_len = PAGE_SIZE - *offset;
3055         if (*len > sg_len)
3056                 *len = sg_len;
3057
3058         return kmap_atomic(page);
3059 }
3060 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3061
3062 /**
3063  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3064  * @virt:       virtual address to be unmapped
3065  */
3066 void scsi_kunmap_atomic_sg(void *virt)
3067 {
3068         kunmap_atomic(virt);
3069 }
3070 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3071
3072 void sdev_disable_disk_events(struct scsi_device *sdev)
3073 {
3074         atomic_inc(&sdev->disk_events_disable_depth);
3075 }
3076 EXPORT_SYMBOL(sdev_disable_disk_events);
3077
3078 void sdev_enable_disk_events(struct scsi_device *sdev)
3079 {
3080         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3081                 return;
3082         atomic_dec(&sdev->disk_events_disable_depth);
3083 }
3084 EXPORT_SYMBOL(sdev_enable_disk_events);
3085
3086 /**
3087  * scsi_vpd_lun_id - return a unique device identification
3088  * @sdev: SCSI device
3089  * @id:   buffer for the identification
3090  * @id_len:  length of the buffer
3091  *
3092  * Copies a unique device identification into @id based
3093  * on the information in the VPD page 0x83 of the device.
3094  * The string will be formatted as a SCSI name string.
3095  *
3096  * Returns the length of the identification or error on failure.
3097  * If the identifier is longer than the supplied buffer the actual
3098  * identifier length is returned and the buffer is not zero-padded.
3099  */
3100 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3101 {
3102         u8 cur_id_type = 0xff;
3103         u8 cur_id_size = 0;
3104         unsigned char *d, *cur_id_str;
3105         unsigned char __rcu *vpd_pg83;
3106         int id_size = -EINVAL;
3107
3108         rcu_read_lock();
3109         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3110         if (!vpd_pg83) {
3111                 rcu_read_unlock();
3112                 return -ENXIO;
3113         }
3114
3115         /*
3116          * Look for the correct descriptor.
3117          * Order of preference for lun descriptor:
3118          * - SCSI name string
3119          * - NAA IEEE Registered Extended
3120          * - EUI-64 based 16-byte
3121          * - EUI-64 based 12-byte
3122          * - NAA IEEE Registered
3123          * - NAA IEEE Extended
3124          * - T10 Vendor ID
3125          * as longer descriptors reduce the likelyhood
3126          * of identification clashes.
3127          */
3128
3129         /* The id string must be at least 20 bytes + terminating NULL byte */
3130         if (id_len < 21) {
3131                 rcu_read_unlock();
3132                 return -EINVAL;
3133         }
3134
3135         memset(id, 0, id_len);
3136         d = vpd_pg83 + 4;
3137         while (d < vpd_pg83 + sdev->vpd_pg83_len) {
3138                 /* Skip designators not referring to the LUN */
3139                 if ((d[1] & 0x30) != 0x00)
3140                         goto next_desig;
3141
3142                 switch (d[1] & 0xf) {
3143                 case 0x1:
3144                         /* T10 Vendor ID */
3145                         if (cur_id_size > d[3])
3146                                 break;
3147                         /* Prefer anything */
3148                         if (cur_id_type > 0x01 && cur_id_type != 0xff)
3149                                 break;
3150                         cur_id_size = d[3];
3151                         if (cur_id_size + 4 > id_len)
3152                                 cur_id_size = id_len - 4;
3153                         cur_id_str = d + 4;
3154                         cur_id_type = d[1] & 0xf;
3155                         id_size = snprintf(id, id_len, "t10.%*pE",
3156                                            cur_id_size, cur_id_str);
3157                         break;
3158                 case 0x2:
3159                         /* EUI-64 */
3160                         if (cur_id_size > d[3])
3161                                 break;
3162                         /* Prefer NAA IEEE Registered Extended */
3163                         if (cur_id_type == 0x3 &&
3164                             cur_id_size == d[3])
3165                                 break;
3166                         cur_id_size = d[3];
3167                         cur_id_str = d + 4;
3168                         cur_id_type = d[1] & 0xf;
3169                         switch (cur_id_size) {
3170                         case 8:
3171                                 id_size = snprintf(id, id_len,
3172                                                    "eui.%8phN",
3173                                                    cur_id_str);
3174                                 break;
3175                         case 12:
3176                                 id_size = snprintf(id, id_len,
3177                                                    "eui.%12phN",
3178                                                    cur_id_str);
3179                                 break;
3180                         case 16:
3181                                 id_size = snprintf(id, id_len,
3182                                                    "eui.%16phN",
3183                                                    cur_id_str);
3184                                 break;
3185                         default:
3186                                 cur_id_size = 0;
3187                                 break;
3188                         }
3189                         break;
3190                 case 0x3:
3191                         /* NAA */
3192                         if (cur_id_size > d[3])
3193                                 break;
3194                         cur_id_size = d[3];
3195                         cur_id_str = d + 4;
3196                         cur_id_type = d[1] & 0xf;
3197                         switch (cur_id_size) {
3198                         case 8:
3199                                 id_size = snprintf(id, id_len,
3200                                                    "naa.%8phN",
3201                                                    cur_id_str);
3202                                 break;
3203                         case 16:
3204                                 id_size = snprintf(id, id_len,
3205                                                    "naa.%16phN",
3206                                                    cur_id_str);
3207                                 break;
3208                         default:
3209                                 cur_id_size = 0;
3210                                 break;
3211                         }
3212                         break;
3213                 case 0x8:
3214                         /* SCSI name string */
3215                         if (cur_id_size + 4 > d[3])
3216                                 break;
3217                         /* Prefer others for truncated descriptor */
3218                         if (cur_id_size && d[3] > id_len)
3219                                 break;
3220                         cur_id_size = id_size = d[3];
3221                         cur_id_str = d + 4;
3222                         cur_id_type = d[1] & 0xf;
3223                         if (cur_id_size >= id_len)
3224                                 cur_id_size = id_len - 1;
3225                         memcpy(id, cur_id_str, cur_id_size);
3226                         /* Decrease priority for truncated descriptor */
3227                         if (cur_id_size != id_size)
3228                                 cur_id_size = 6;
3229                         break;
3230                 default:
3231                         break;
3232                 }
3233 next_desig:
3234                 d += d[3] + 4;
3235         }
3236         rcu_read_unlock();
3237
3238         return id_size;
3239 }
3240 EXPORT_SYMBOL(scsi_vpd_lun_id);
3241
3242 /*
3243  * scsi_vpd_tpg_id - return a target port group identifier
3244  * @sdev: SCSI device
3245  *
3246  * Returns the Target Port Group identifier from the information
3247  * froom VPD page 0x83 of the device.
3248  *
3249  * Returns the identifier or error on failure.
3250  */
3251 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3252 {
3253         unsigned char *d;
3254         unsigned char __rcu *vpd_pg83;
3255         int group_id = -EAGAIN, rel_port = -1;
3256
3257         rcu_read_lock();
3258         vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3259         if (!vpd_pg83) {
3260                 rcu_read_unlock();
3261                 return -ENXIO;
3262         }
3263
3264         d = sdev->vpd_pg83 + 4;
3265         while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) {
3266                 switch (d[1] & 0xf) {
3267                 case 0x4:
3268                         /* Relative target port */
3269                         rel_port = get_unaligned_be16(&d[6]);
3270                         break;
3271                 case 0x5:
3272                         /* Target port group */
3273                         group_id = get_unaligned_be16(&d[6]);
3274                         break;
3275                 default:
3276                         break;
3277                 }
3278                 d += d[3] + 4;
3279         }
3280         rcu_read_unlock();
3281
3282         if (group_id >= 0 && rel_id && rel_port != -1)
3283                 *rel_id = rel_port;
3284
3285         return group_id;
3286 }
3287 EXPORT_SYMBOL(scsi_vpd_tpg_id);