Linux 6.9-rc6
[sfrench/cifs-2.6.git] / drivers / scsi / isci / host.c
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  * redistributing this file, you may do so under either license.
4  *
5  * GPL LICENSE SUMMARY
6  *
7  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21  * The full GNU General Public License is included in this distribution
22  * in the file called LICENSE.GPL.
23  *
24  * BSD LICENSE
25  *
26  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27  * All rights reserved.
28  *
29  * Redistribution and use in source and binary forms, with or without
30  * modification, are permitted provided that the following conditions
31  * are met:
32  *
33  *   * Redistributions of source code must retain the above copyright
34  *     notice, this list of conditions and the following disclaimer.
35  *   * Redistributions in binary form must reproduce the above copyright
36  *     notice, this list of conditions and the following disclaimer in
37  *     the documentation and/or other materials provided with the
38  *     distribution.
39  *   * Neither the name of Intel Corporation nor the names of its
40  *     contributors may be used to endorse or promote products derived
41  *     from this software without specific prior written permission.
42  *
43  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54  */
55 #include <linux/circ_buf.h>
56 #include <linux/device.h>
57 #include <scsi/sas.h>
58 #include "host.h"
59 #include "isci.h"
60 #include "port.h"
61 #include "probe_roms.h"
62 #include "remote_device.h"
63 #include "request.h"
64 #include "scu_completion_codes.h"
65 #include "scu_event_codes.h"
66 #include "registers.h"
67 #include "scu_remote_node_context.h"
68 #include "scu_task_context.h"
69
70 #define SCU_CONTEXT_RAM_INIT_STALL_TIME      200
71
72 #define smu_max_ports(dcc_value) \
73         (\
74                 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
75                  >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
76         )
77
78 #define smu_max_task_contexts(dcc_value)        \
79         (\
80                 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
81                  >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
82         )
83
84 #define smu_max_rncs(dcc_value) \
85         (\
86                 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
87                  >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
88         )
89
90 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT      100
91
92 /*
93  * The number of milliseconds to wait while a given phy is consuming power
94  * before allowing another set of phys to consume power. Ultimately, this will
95  * be specified by OEM parameter.
96  */
97 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
98
99 /*
100  * NORMALIZE_PUT_POINTER() -
101  *
102  * This macro will normalize the completion queue put pointer so its value can
103  * be used as an array inde
104  */
105 #define NORMALIZE_PUT_POINTER(x) \
106         ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
107
108
109 /*
110  * NORMALIZE_EVENT_POINTER() -
111  *
112  * This macro will normalize the completion queue event entry so its value can
113  * be used as an index.
114  */
115 #define NORMALIZE_EVENT_POINTER(x) \
116         (\
117                 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
118                 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
119         )
120
121 /*
122  * NORMALIZE_GET_POINTER() -
123  *
124  * This macro will normalize the completion queue get pointer so its value can
125  * be used as an index into an array
126  */
127 #define NORMALIZE_GET_POINTER(x) \
128         ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
129
130 /*
131  * NORMALIZE_GET_POINTER_CYCLE_BIT() -
132  *
133  * This macro will normalize the completion queue cycle pointer so it matches
134  * the completion queue cycle bit
135  */
136 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
137         ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
138
139 /*
140  * COMPLETION_QUEUE_CYCLE_BIT() -
141  *
142  * This macro will return the cycle bit of the completion queue entry
143  */
144 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
145
146 /* Init the state machine and call the state entry function (if any) */
147 void sci_init_sm(struct sci_base_state_machine *sm,
148                  const struct sci_base_state *state_table, u32 initial_state)
149 {
150         sci_state_transition_t handler;
151
152         sm->initial_state_id    = initial_state;
153         sm->previous_state_id   = initial_state;
154         sm->current_state_id    = initial_state;
155         sm->state_table         = state_table;
156
157         handler = sm->state_table[initial_state].enter_state;
158         if (handler)
159                 handler(sm);
160 }
161
162 /* Call the state exit fn, update the current state, call the state entry fn */
163 void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
164 {
165         sci_state_transition_t handler;
166
167         handler = sm->state_table[sm->current_state_id].exit_state;
168         if (handler)
169                 handler(sm);
170
171         sm->previous_state_id = sm->current_state_id;
172         sm->current_state_id = next_state;
173
174         handler = sm->state_table[sm->current_state_id].enter_state;
175         if (handler)
176                 handler(sm);
177 }
178
179 static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
180 {
181         u32 get_value = ihost->completion_queue_get;
182         u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
183
184         if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
185             COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
186                 return true;
187
188         return false;
189 }
190
191 static bool sci_controller_isr(struct isci_host *ihost)
192 {
193         if (sci_controller_completion_queue_has_entries(ihost))
194                 return true;
195
196         /* we have a spurious interrupt it could be that we have already
197          * emptied the completion queue from a previous interrupt
198          * FIXME: really!?
199          */
200         writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
201
202         /* There is a race in the hardware that could cause us not to be
203          * notified of an interrupt completion if we do not take this
204          * step.  We will mask then unmask the interrupts so if there is
205          * another interrupt pending the clearing of the interrupt
206          * source we get the next interrupt message.
207          */
208         spin_lock(&ihost->scic_lock);
209         if (test_bit(IHOST_IRQ_ENABLED, &ihost->flags)) {
210                 writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
211                 writel(0, &ihost->smu_registers->interrupt_mask);
212         }
213         spin_unlock(&ihost->scic_lock);
214
215         return false;
216 }
217
218 irqreturn_t isci_msix_isr(int vec, void *data)
219 {
220         struct isci_host *ihost = data;
221
222         if (sci_controller_isr(ihost))
223                 tasklet_schedule(&ihost->completion_tasklet);
224
225         return IRQ_HANDLED;
226 }
227
228 static bool sci_controller_error_isr(struct isci_host *ihost)
229 {
230         u32 interrupt_status;
231
232         interrupt_status =
233                 readl(&ihost->smu_registers->interrupt_status);
234         interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
235
236         if (interrupt_status != 0) {
237                 /*
238                  * There is an error interrupt pending so let it through and handle
239                  * in the callback */
240                 return true;
241         }
242
243         /*
244          * There is a race in the hardware that could cause us not to be notified
245          * of an interrupt completion if we do not take this step.  We will mask
246          * then unmask the error interrupts so if there was another interrupt
247          * pending we will be notified.
248          * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
249         writel(0xff, &ihost->smu_registers->interrupt_mask);
250         writel(0, &ihost->smu_registers->interrupt_mask);
251
252         return false;
253 }
254
255 static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
256 {
257         u32 index = SCU_GET_COMPLETION_INDEX(ent);
258         struct isci_request *ireq = ihost->reqs[index];
259
260         /* Make sure that we really want to process this IO request */
261         if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
262             ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
263             ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
264                 /* Yep this is a valid io request pass it along to the
265                  * io request handler
266                  */
267                 sci_io_request_tc_completion(ireq, ent);
268 }
269
270 static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
271 {
272         u32 index;
273         struct isci_request *ireq;
274         struct isci_remote_device *idev;
275
276         index = SCU_GET_COMPLETION_INDEX(ent);
277
278         switch (scu_get_command_request_type(ent)) {
279         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
280         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
281                 ireq = ihost->reqs[index];
282                 dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
283                          __func__, ent, ireq);
284                 /* @todo For a post TC operation we need to fail the IO
285                  * request
286                  */
287                 break;
288         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
289         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
290         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
291                 idev = ihost->device_table[index];
292                 dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
293                          __func__, ent, idev);
294                 /* @todo For a port RNC operation we need to fail the
295                  * device
296                  */
297                 break;
298         default:
299                 dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
300                          __func__, ent);
301                 break;
302         }
303 }
304
305 static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
306 {
307         u32 index;
308         u32 frame_index;
309
310         struct scu_unsolicited_frame_header *frame_header;
311         struct isci_phy *iphy;
312         struct isci_remote_device *idev;
313
314         enum sci_status result = SCI_FAILURE;
315
316         frame_index = SCU_GET_FRAME_INDEX(ent);
317
318         frame_header = ihost->uf_control.buffers.array[frame_index].header;
319         ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
320
321         if (SCU_GET_FRAME_ERROR(ent)) {
322                 /*
323                  * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
324                  * /       this cause a problem? We expect the phy initialization will
325                  * /       fail if there is an error in the frame. */
326                 sci_controller_release_frame(ihost, frame_index);
327                 return;
328         }
329
330         if (frame_header->is_address_frame) {
331                 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
332                 iphy = &ihost->phys[index];
333                 result = sci_phy_frame_handler(iphy, frame_index);
334         } else {
335
336                 index = SCU_GET_COMPLETION_INDEX(ent);
337
338                 if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
339                         /*
340                          * This is a signature fis or a frame from a direct attached SATA
341                          * device that has not yet been created.  In either case forwared
342                          * the frame to the PE and let it take care of the frame data. */
343                         index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
344                         iphy = &ihost->phys[index];
345                         result = sci_phy_frame_handler(iphy, frame_index);
346                 } else {
347                         if (index < ihost->remote_node_entries)
348                                 idev = ihost->device_table[index];
349                         else
350                                 idev = NULL;
351
352                         if (idev != NULL)
353                                 result = sci_remote_device_frame_handler(idev, frame_index);
354                         else
355                                 sci_controller_release_frame(ihost, frame_index);
356                 }
357         }
358
359         if (result != SCI_SUCCESS) {
360                 /*
361                  * / @todo Is there any reason to report some additional error message
362                  * /       when we get this failure notifiction? */
363         }
364 }
365
366 static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
367 {
368         struct isci_remote_device *idev;
369         struct isci_request *ireq;
370         struct isci_phy *iphy;
371         u32 index;
372
373         index = SCU_GET_COMPLETION_INDEX(ent);
374
375         switch (scu_get_event_type(ent)) {
376         case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
377                 /* / @todo The driver did something wrong and we need to fix the condtion. */
378                 dev_err(&ihost->pdev->dev,
379                         "%s: SCIC Controller 0x%p received SMU command error "
380                         "0x%x\n",
381                         __func__,
382                         ihost,
383                         ent);
384                 break;
385
386         case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
387         case SCU_EVENT_TYPE_SMU_ERROR:
388         case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
389                 /*
390                  * / @todo This is a hardware failure and its likely that we want to
391                  * /       reset the controller. */
392                 dev_err(&ihost->pdev->dev,
393                         "%s: SCIC Controller 0x%p received fatal controller "
394                         "event  0x%x\n",
395                         __func__,
396                         ihost,
397                         ent);
398                 break;
399
400         case SCU_EVENT_TYPE_TRANSPORT_ERROR:
401                 ireq = ihost->reqs[index];
402                 sci_io_request_event_handler(ireq, ent);
403                 break;
404
405         case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
406                 switch (scu_get_event_specifier(ent)) {
407                 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
408                 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
409                         ireq = ihost->reqs[index];
410                         if (ireq != NULL)
411                                 sci_io_request_event_handler(ireq, ent);
412                         else
413                                 dev_warn(&ihost->pdev->dev,
414                                          "%s: SCIC Controller 0x%p received "
415                                          "event 0x%x for io request object "
416                                          "that doesn't exist.\n",
417                                          __func__,
418                                          ihost,
419                                          ent);
420
421                         break;
422
423                 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
424                         idev = ihost->device_table[index];
425                         if (idev != NULL)
426                                 sci_remote_device_event_handler(idev, ent);
427                         else
428                                 dev_warn(&ihost->pdev->dev,
429                                          "%s: SCIC Controller 0x%p received "
430                                          "event 0x%x for remote device object "
431                                          "that doesn't exist.\n",
432                                          __func__,
433                                          ihost,
434                                          ent);
435
436                         break;
437                 }
438                 break;
439
440         case SCU_EVENT_TYPE_BROADCAST_CHANGE:
441         /*
442          * direct the broadcast change event to the phy first and then let
443          * the phy redirect the broadcast change to the port object */
444         case SCU_EVENT_TYPE_ERR_CNT_EVENT:
445         /*
446          * direct error counter event to the phy object since that is where
447          * we get the event notification.  This is a type 4 event. */
448         case SCU_EVENT_TYPE_OSSP_EVENT:
449                 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
450                 iphy = &ihost->phys[index];
451                 sci_phy_event_handler(iphy, ent);
452                 break;
453
454         case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
455         case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
456         case SCU_EVENT_TYPE_RNC_OPS_MISC:
457                 if (index < ihost->remote_node_entries) {
458                         idev = ihost->device_table[index];
459
460                         if (idev != NULL)
461                                 sci_remote_device_event_handler(idev, ent);
462                 } else
463                         dev_err(&ihost->pdev->dev,
464                                 "%s: SCIC Controller 0x%p received event 0x%x "
465                                 "for remote device object 0x%0x that doesn't "
466                                 "exist.\n",
467                                 __func__,
468                                 ihost,
469                                 ent,
470                                 index);
471
472                 break;
473
474         default:
475                 dev_warn(&ihost->pdev->dev,
476                          "%s: SCIC Controller received unknown event code %x\n",
477                          __func__,
478                          ent);
479                 break;
480         }
481 }
482
483 static void sci_controller_process_completions(struct isci_host *ihost)
484 {
485         u32 completion_count = 0;
486         u32 ent;
487         u32 get_index;
488         u32 get_cycle;
489         u32 event_get;
490         u32 event_cycle;
491
492         dev_dbg(&ihost->pdev->dev,
493                 "%s: completion queue beginning get:0x%08x\n",
494                 __func__,
495                 ihost->completion_queue_get);
496
497         /* Get the component parts of the completion queue */
498         get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
499         get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
500
501         event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
502         event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
503
504         while (
505                 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
506                 == COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
507                 ) {
508                 completion_count++;
509
510                 ent = ihost->completion_queue[get_index];
511
512                 /* increment the get pointer and check for rollover to toggle the cycle bit */
513                 get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
514                              (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
515                 get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
516
517                 dev_dbg(&ihost->pdev->dev,
518                         "%s: completion queue entry:0x%08x\n",
519                         __func__,
520                         ent);
521
522                 switch (SCU_GET_COMPLETION_TYPE(ent)) {
523                 case SCU_COMPLETION_TYPE_TASK:
524                         sci_controller_task_completion(ihost, ent);
525                         break;
526
527                 case SCU_COMPLETION_TYPE_SDMA:
528                         sci_controller_sdma_completion(ihost, ent);
529                         break;
530
531                 case SCU_COMPLETION_TYPE_UFI:
532                         sci_controller_unsolicited_frame(ihost, ent);
533                         break;
534
535                 case SCU_COMPLETION_TYPE_EVENT:
536                         sci_controller_event_completion(ihost, ent);
537                         break;
538
539                 case SCU_COMPLETION_TYPE_NOTIFY: {
540                         event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
541                                        (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
542                         event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
543
544                         sci_controller_event_completion(ihost, ent);
545                         break;
546                 }
547                 default:
548                         dev_warn(&ihost->pdev->dev,
549                                  "%s: SCIC Controller received unknown "
550                                  "completion type %x\n",
551                                  __func__,
552                                  ent);
553                         break;
554                 }
555         }
556
557         /* Update the get register if we completed one or more entries */
558         if (completion_count > 0) {
559                 ihost->completion_queue_get =
560                         SMU_CQGR_GEN_BIT(ENABLE) |
561                         SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
562                         event_cycle |
563                         SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
564                         get_cycle |
565                         SMU_CQGR_GEN_VAL(POINTER, get_index);
566
567                 writel(ihost->completion_queue_get,
568                        &ihost->smu_registers->completion_queue_get);
569
570         }
571
572         dev_dbg(&ihost->pdev->dev,
573                 "%s: completion queue ending get:0x%08x\n",
574                 __func__,
575                 ihost->completion_queue_get);
576
577 }
578
579 static void sci_controller_error_handler(struct isci_host *ihost)
580 {
581         u32 interrupt_status;
582
583         interrupt_status =
584                 readl(&ihost->smu_registers->interrupt_status);
585
586         if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
587             sci_controller_completion_queue_has_entries(ihost)) {
588
589                 sci_controller_process_completions(ihost);
590                 writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
591         } else {
592                 dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
593                         interrupt_status);
594
595                 sci_change_state(&ihost->sm, SCIC_FAILED);
596
597                 return;
598         }
599
600         /* If we dont process any completions I am not sure that we want to do this.
601          * We are in the middle of a hardware fault and should probably be reset.
602          */
603         writel(0, &ihost->smu_registers->interrupt_mask);
604 }
605
606 irqreturn_t isci_intx_isr(int vec, void *data)
607 {
608         irqreturn_t ret = IRQ_NONE;
609         struct isci_host *ihost = data;
610
611         if (sci_controller_isr(ihost)) {
612                 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
613                 tasklet_schedule(&ihost->completion_tasklet);
614                 ret = IRQ_HANDLED;
615         } else if (sci_controller_error_isr(ihost)) {
616                 spin_lock(&ihost->scic_lock);
617                 sci_controller_error_handler(ihost);
618                 spin_unlock(&ihost->scic_lock);
619                 ret = IRQ_HANDLED;
620         }
621
622         return ret;
623 }
624
625 irqreturn_t isci_error_isr(int vec, void *data)
626 {
627         struct isci_host *ihost = data;
628
629         if (sci_controller_error_isr(ihost))
630                 sci_controller_error_handler(ihost);
631
632         return IRQ_HANDLED;
633 }
634
635 /**
636  * isci_host_start_complete() - This function is called by the core library,
637  *    through the ISCI Module, to indicate controller start status.
638  * @ihost: This parameter specifies the ISCI host object
639  * @completion_status: This parameter specifies the completion status from the
640  *    core library.
641  *
642  */
643 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
644 {
645         if (completion_status != SCI_SUCCESS)
646                 dev_info(&ihost->pdev->dev,
647                         "controller start timed out, continuing...\n");
648         clear_bit(IHOST_START_PENDING, &ihost->flags);
649         wake_up(&ihost->eventq);
650 }
651
652 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
653 {
654         struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
655         struct isci_host *ihost = ha->lldd_ha;
656
657         if (test_bit(IHOST_START_PENDING, &ihost->flags))
658                 return 0;
659
660         sas_drain_work(ha);
661
662         return 1;
663 }
664
665 /**
666  * sci_controller_get_suggested_start_timeout() - This method returns the
667  *    suggested sci_controller_start() timeout amount.  The user is free to
668  *    use any timeout value, but this method provides the suggested minimum
669  *    start timeout value.  The returned value is based upon empirical
670  *    information determined as a result of interoperability testing.
671  * @ihost: the handle to the controller object for which to return the
672  *    suggested start timeout.
673  *
674  * This method returns the number of milliseconds for the suggested start
675  * operation timeout.
676  */
677 static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
678 {
679         /* Validate the user supplied parameters. */
680         if (!ihost)
681                 return 0;
682
683         /*
684          * The suggested minimum timeout value for a controller start operation:
685          *
686          *     Signature FIS Timeout
687          *   + Phy Start Timeout
688          *   + Number of Phy Spin Up Intervals
689          *   ---------------------------------
690          *   Number of milliseconds for the controller start operation.
691          *
692          * NOTE: The number of phy spin up intervals will be equivalent
693          *       to the number of phys divided by the number phys allowed
694          *       per interval - 1 (once OEM parameters are supported).
695          *       Currently we assume only 1 phy per interval. */
696
697         return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
698                 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
699                 + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
700 }
701
702 static void sci_controller_enable_interrupts(struct isci_host *ihost)
703 {
704         set_bit(IHOST_IRQ_ENABLED, &ihost->flags);
705         writel(0, &ihost->smu_registers->interrupt_mask);
706 }
707
708 void sci_controller_disable_interrupts(struct isci_host *ihost)
709 {
710         clear_bit(IHOST_IRQ_ENABLED, &ihost->flags);
711         writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
712         readl(&ihost->smu_registers->interrupt_mask); /* flush */
713 }
714
715 static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
716 {
717         u32 port_task_scheduler_value;
718
719         port_task_scheduler_value =
720                 readl(&ihost->scu_registers->peg0.ptsg.control);
721         port_task_scheduler_value |=
722                 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
723                  SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
724         writel(port_task_scheduler_value,
725                &ihost->scu_registers->peg0.ptsg.control);
726 }
727
728 static void sci_controller_assign_task_entries(struct isci_host *ihost)
729 {
730         u32 task_assignment;
731
732         /*
733          * Assign all the TCs to function 0
734          * TODO: Do we actually need to read this register to write it back?
735          */
736
737         task_assignment =
738                 readl(&ihost->smu_registers->task_context_assignment[0]);
739
740         task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
741                 (SMU_TCA_GEN_VAL(ENDING,  ihost->task_context_entries - 1)) |
742                 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
743
744         writel(task_assignment,
745                 &ihost->smu_registers->task_context_assignment[0]);
746
747 }
748
749 static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
750 {
751         u32 index;
752         u32 completion_queue_control_value;
753         u32 completion_queue_get_value;
754         u32 completion_queue_put_value;
755
756         ihost->completion_queue_get = 0;
757
758         completion_queue_control_value =
759                 (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
760                  SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
761
762         writel(completion_queue_control_value,
763                &ihost->smu_registers->completion_queue_control);
764
765
766         /* Set the completion queue get pointer and enable the queue */
767         completion_queue_get_value = (
768                 (SMU_CQGR_GEN_VAL(POINTER, 0))
769                 | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
770                 | (SMU_CQGR_GEN_BIT(ENABLE))
771                 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
772                 );
773
774         writel(completion_queue_get_value,
775                &ihost->smu_registers->completion_queue_get);
776
777         /* Set the completion queue put pointer */
778         completion_queue_put_value = (
779                 (SMU_CQPR_GEN_VAL(POINTER, 0))
780                 | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
781                 );
782
783         writel(completion_queue_put_value,
784                &ihost->smu_registers->completion_queue_put);
785
786         /* Initialize the cycle bit of the completion queue entries */
787         for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
788                 /*
789                  * If get.cycle_bit != completion_queue.cycle_bit
790                  * its not a valid completion queue entry
791                  * so at system start all entries are invalid */
792                 ihost->completion_queue[index] = 0x80000000;
793         }
794 }
795
796 static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
797 {
798         u32 frame_queue_control_value;
799         u32 frame_queue_get_value;
800         u32 frame_queue_put_value;
801
802         /* Write the queue size */
803         frame_queue_control_value =
804                 SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
805
806         writel(frame_queue_control_value,
807                &ihost->scu_registers->sdma.unsolicited_frame_queue_control);
808
809         /* Setup the get pointer for the unsolicited frame queue */
810         frame_queue_get_value = (
811                 SCU_UFQGP_GEN_VAL(POINTER, 0)
812                 |  SCU_UFQGP_GEN_BIT(ENABLE_BIT)
813                 );
814
815         writel(frame_queue_get_value,
816                &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
817         /* Setup the put pointer for the unsolicited frame queue */
818         frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
819         writel(frame_queue_put_value,
820                &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
821 }
822
823 void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
824 {
825         if (ihost->sm.current_state_id == SCIC_STARTING) {
826                 /*
827                  * We move into the ready state, because some of the phys/ports
828                  * may be up and operational.
829                  */
830                 sci_change_state(&ihost->sm, SCIC_READY);
831
832                 isci_host_start_complete(ihost, status);
833         }
834 }
835
836 static bool is_phy_starting(struct isci_phy *iphy)
837 {
838         enum sci_phy_states state;
839
840         state = iphy->sm.current_state_id;
841         switch (state) {
842         case SCI_PHY_STARTING:
843         case SCI_PHY_SUB_INITIAL:
844         case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
845         case SCI_PHY_SUB_AWAIT_IAF_UF:
846         case SCI_PHY_SUB_AWAIT_SAS_POWER:
847         case SCI_PHY_SUB_AWAIT_SATA_POWER:
848         case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
849         case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
850         case SCI_PHY_SUB_AWAIT_OSSP_EN:
851         case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
852         case SCI_PHY_SUB_FINAL:
853                 return true;
854         default:
855                 return false;
856         }
857 }
858
859 bool is_controller_start_complete(struct isci_host *ihost)
860 {
861         int i;
862
863         for (i = 0; i < SCI_MAX_PHYS; i++) {
864                 struct isci_phy *iphy = &ihost->phys[i];
865                 u32 state = iphy->sm.current_state_id;
866
867                 /* in apc mode we need to check every phy, in
868                  * mpc mode we only need to check phys that have
869                  * been configured into a port
870                  */
871                 if (is_port_config_apc(ihost))
872                         /* pass */;
873                 else if (!phy_get_non_dummy_port(iphy))
874                         continue;
875
876                 /* The controller start operation is complete iff:
877                  * - all links have been given an opportunity to start
878                  * - have no indication of a connected device
879                  * - have an indication of a connected device and it has
880                  *   finished the link training process.
881                  */
882                 if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
883                     (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
884                     (iphy->is_in_link_training == true && is_phy_starting(iphy)) ||
885                     (ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask))
886                         return false;
887         }
888
889         return true;
890 }
891
892 /**
893  * sci_controller_start_next_phy - start phy
894  * @ihost: controller
895  *
896  * If all the phys have been started, then attempt to transition the
897  * controller to the READY state and inform the user
898  * (sci_cb_controller_start_complete()).
899  */
900 static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
901 {
902         struct sci_oem_params *oem = &ihost->oem_parameters;
903         struct isci_phy *iphy;
904         enum sci_status status;
905
906         status = SCI_SUCCESS;
907
908         if (ihost->phy_startup_timer_pending)
909                 return status;
910
911         if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
912                 if (is_controller_start_complete(ihost)) {
913                         sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
914                         sci_del_timer(&ihost->phy_timer);
915                         ihost->phy_startup_timer_pending = false;
916                 }
917         } else {
918                 iphy = &ihost->phys[ihost->next_phy_to_start];
919
920                 if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
921                         if (phy_get_non_dummy_port(iphy) == NULL) {
922                                 ihost->next_phy_to_start++;
923
924                                 /* Caution recursion ahead be forwarned
925                                  *
926                                  * The PHY was never added to a PORT in MPC mode
927                                  * so start the next phy in sequence This phy
928                                  * will never go link up and will not draw power
929                                  * the OEM parameters either configured the phy
930                                  * incorrectly for the PORT or it was never
931                                  * assigned to a PORT
932                                  */
933                                 return sci_controller_start_next_phy(ihost);
934                         }
935                 }
936
937                 status = sci_phy_start(iphy);
938
939                 if (status == SCI_SUCCESS) {
940                         sci_mod_timer(&ihost->phy_timer,
941                                       SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
942                         ihost->phy_startup_timer_pending = true;
943                 } else {
944                         dev_warn(&ihost->pdev->dev,
945                                  "%s: Controller stop operation failed "
946                                  "to stop phy %d because of status "
947                                  "%d.\n",
948                                  __func__,
949                                  ihost->phys[ihost->next_phy_to_start].phy_index,
950                                  status);
951                 }
952
953                 ihost->next_phy_to_start++;
954         }
955
956         return status;
957 }
958
959 static void phy_startup_timeout(struct timer_list *t)
960 {
961         struct sci_timer *tmr = from_timer(tmr, t, timer);
962         struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
963         unsigned long flags;
964         enum sci_status status;
965
966         spin_lock_irqsave(&ihost->scic_lock, flags);
967
968         if (tmr->cancel)
969                 goto done;
970
971         ihost->phy_startup_timer_pending = false;
972
973         do {
974                 status = sci_controller_start_next_phy(ihost);
975         } while (status != SCI_SUCCESS);
976
977 done:
978         spin_unlock_irqrestore(&ihost->scic_lock, flags);
979 }
980
981 static u16 isci_tci_active(struct isci_host *ihost)
982 {
983         return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
984 }
985
986 static enum sci_status sci_controller_start(struct isci_host *ihost,
987                                              u32 timeout)
988 {
989         enum sci_status result;
990         u16 index;
991
992         if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
993                 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
994                          __func__, ihost->sm.current_state_id);
995                 return SCI_FAILURE_INVALID_STATE;
996         }
997
998         /* Build the TCi free pool */
999         BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
1000         ihost->tci_head = 0;
1001         ihost->tci_tail = 0;
1002         for (index = 0; index < ihost->task_context_entries; index++)
1003                 isci_tci_free(ihost, index);
1004
1005         /* Build the RNi free pool */
1006         sci_remote_node_table_initialize(&ihost->available_remote_nodes,
1007                                          ihost->remote_node_entries);
1008
1009         /*
1010          * Before anything else lets make sure we will not be
1011          * interrupted by the hardware.
1012          */
1013         sci_controller_disable_interrupts(ihost);
1014
1015         /* Enable the port task scheduler */
1016         sci_controller_enable_port_task_scheduler(ihost);
1017
1018         /* Assign all the task entries to ihost physical function */
1019         sci_controller_assign_task_entries(ihost);
1020
1021         /* Now initialize the completion queue */
1022         sci_controller_initialize_completion_queue(ihost);
1023
1024         /* Initialize the unsolicited frame queue for use */
1025         sci_controller_initialize_unsolicited_frame_queue(ihost);
1026
1027         /* Start all of the ports on this controller */
1028         for (index = 0; index < ihost->logical_port_entries; index++) {
1029                 struct isci_port *iport = &ihost->ports[index];
1030
1031                 result = sci_port_start(iport);
1032                 if (result)
1033                         return result;
1034         }
1035
1036         sci_controller_start_next_phy(ihost);
1037
1038         sci_mod_timer(&ihost->timer, timeout);
1039
1040         sci_change_state(&ihost->sm, SCIC_STARTING);
1041
1042         return SCI_SUCCESS;
1043 }
1044
1045 void isci_host_start(struct Scsi_Host *shost)
1046 {
1047         struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1048         unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
1049
1050         set_bit(IHOST_START_PENDING, &ihost->flags);
1051
1052         spin_lock_irq(&ihost->scic_lock);
1053         sci_controller_start(ihost, tmo);
1054         sci_controller_enable_interrupts(ihost);
1055         spin_unlock_irq(&ihost->scic_lock);
1056 }
1057
1058 static void isci_host_stop_complete(struct isci_host *ihost)
1059 {
1060         sci_controller_disable_interrupts(ihost);
1061         clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1062         wake_up(&ihost->eventq);
1063 }
1064
1065 static void sci_controller_completion_handler(struct isci_host *ihost)
1066 {
1067         /* Empty out the completion queue */
1068         if (sci_controller_completion_queue_has_entries(ihost))
1069                 sci_controller_process_completions(ihost);
1070
1071         /* Clear the interrupt and enable all interrupts again */
1072         writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
1073         /* Could we write the value of SMU_ISR_COMPLETION? */
1074         writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
1075         writel(0, &ihost->smu_registers->interrupt_mask);
1076 }
1077
1078 void ireq_done(struct isci_host *ihost, struct isci_request *ireq, struct sas_task *task)
1079 {
1080         if (!test_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags) &&
1081             !(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1082                 if (test_bit(IREQ_COMPLETE_IN_TARGET, &ireq->flags)) {
1083                         /* Normal notification (task_done) */
1084                         dev_dbg(&ihost->pdev->dev,
1085                                 "%s: Normal - ireq/task = %p/%p\n",
1086                                 __func__, ireq, task);
1087                         task->lldd_task = NULL;
1088                         task->task_done(task);
1089                 } else {
1090                         dev_dbg(&ihost->pdev->dev,
1091                                 "%s: Error - ireq/task = %p/%p\n",
1092                                 __func__, ireq, task);
1093                         if (sas_protocol_ata(task->task_proto))
1094                                 task->lldd_task = NULL;
1095                         sas_task_abort(task);
1096                 }
1097         } else
1098                 task->lldd_task = NULL;
1099
1100         if (test_and_clear_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags))
1101                 wake_up_all(&ihost->eventq);
1102
1103         if (!test_bit(IREQ_NO_AUTO_FREE_TAG, &ireq->flags))
1104                 isci_free_tag(ihost, ireq->io_tag);
1105 }
1106 /**
1107  * isci_host_completion_routine() - This function is the delayed service
1108  *    routine that calls the sci core library's completion handler. It's
1109  *    scheduled as a tasklet from the interrupt service routine when interrupts
1110  *    in use, or set as the timeout function in polled mode.
1111  * @data: This parameter specifies the ISCI host object
1112  *
1113  */
1114 void isci_host_completion_routine(unsigned long data)
1115 {
1116         struct isci_host *ihost = (struct isci_host *)data;
1117         u16 active;
1118
1119         spin_lock_irq(&ihost->scic_lock);
1120         sci_controller_completion_handler(ihost);
1121         spin_unlock_irq(&ihost->scic_lock);
1122
1123         /*
1124          * we subtract SCI_MAX_PORTS to account for the number of dummy TCs
1125          * issued for hardware issue workaround
1126          */
1127         active = isci_tci_active(ihost) - SCI_MAX_PORTS;
1128
1129         /*
1130          * the coalesence timeout doubles at each encoding step, so
1131          * update it based on the ilog2 value of the outstanding requests
1132          */
1133         writel(SMU_ICC_GEN_VAL(NUMBER, active) |
1134                SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)),
1135                &ihost->smu_registers->interrupt_coalesce_control);
1136 }
1137
1138 /**
1139  * sci_controller_stop() - This method will stop an individual controller
1140  *    object.This method will invoke the associated user callback upon
1141  *    completion.  The completion callback is called when the following
1142  *    conditions are met: -# the method return status is SCI_SUCCESS. -# the
1143  *    controller has been quiesced. This method will ensure that all IO
1144  *    requests are quiesced, phys are stopped, and all additional operation by
1145  *    the hardware is halted.
1146  * @ihost: the handle to the controller object to stop.
1147  * @timeout: This parameter specifies the number of milliseconds in which the
1148  *    stop operation should complete.
1149  *
1150  * The controller must be in the STARTED or STOPPED state. Indicate if the
1151  * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1152  * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1153  * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1154  * controller is not either in the STARTED or STOPPED states.
1155  */
1156 static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
1157 {
1158         if (ihost->sm.current_state_id != SCIC_READY) {
1159                 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
1160                          __func__, ihost->sm.current_state_id);
1161                 return SCI_FAILURE_INVALID_STATE;
1162         }
1163
1164         sci_mod_timer(&ihost->timer, timeout);
1165         sci_change_state(&ihost->sm, SCIC_STOPPING);
1166         return SCI_SUCCESS;
1167 }
1168
1169 /**
1170  * sci_controller_reset() - This method will reset the supplied core
1171  *    controller regardless of the state of said controller.  This operation is
1172  *    considered destructive.  In other words, all current operations are wiped
1173  *    out.  No IO completions for outstanding devices occur.  Outstanding IO
1174  *    requests are not aborted or completed at the actual remote device.
1175  * @ihost: the handle to the controller object to reset.
1176  *
1177  * Indicate if the controller reset method succeeded or failed in some way.
1178  * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1179  * the controller reset operation is unable to complete.
1180  */
1181 static enum sci_status sci_controller_reset(struct isci_host *ihost)
1182 {
1183         switch (ihost->sm.current_state_id) {
1184         case SCIC_RESET:
1185         case SCIC_READY:
1186         case SCIC_STOPPING:
1187         case SCIC_FAILED:
1188                 /*
1189                  * The reset operation is not a graceful cleanup, just
1190                  * perform the state transition.
1191                  */
1192                 sci_change_state(&ihost->sm, SCIC_RESETTING);
1193                 return SCI_SUCCESS;
1194         default:
1195                 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
1196                          __func__, ihost->sm.current_state_id);
1197                 return SCI_FAILURE_INVALID_STATE;
1198         }
1199 }
1200
1201 static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
1202 {
1203         u32 index;
1204         enum sci_status status;
1205         enum sci_status phy_status;
1206
1207         status = SCI_SUCCESS;
1208
1209         for (index = 0; index < SCI_MAX_PHYS; index++) {
1210                 phy_status = sci_phy_stop(&ihost->phys[index]);
1211
1212                 if (phy_status != SCI_SUCCESS &&
1213                     phy_status != SCI_FAILURE_INVALID_STATE) {
1214                         status = SCI_FAILURE;
1215
1216                         dev_warn(&ihost->pdev->dev,
1217                                  "%s: Controller stop operation failed to stop "
1218                                  "phy %d because of status %d.\n",
1219                                  __func__,
1220                                  ihost->phys[index].phy_index, phy_status);
1221                 }
1222         }
1223
1224         return status;
1225 }
1226
1227
1228 /**
1229  * isci_host_deinit - shutdown frame reception and dma
1230  * @ihost: host to take down
1231  *
1232  * This is called in either the driver shutdown or the suspend path.  In
1233  * the shutdown case libsas went through port teardown and normal device
1234  * removal (i.e. physical links stayed up to service scsi_device removal
1235  * commands).  In the suspend case we disable the hardware without
1236  * notifying libsas of the link down events since we want libsas to
1237  * remember the domain across the suspend/resume cycle
1238  */
1239 void isci_host_deinit(struct isci_host *ihost)
1240 {
1241         int i;
1242
1243         /* disable output data selects */
1244         for (i = 0; i < isci_gpio_count(ihost); i++)
1245                 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
1246
1247         set_bit(IHOST_STOP_PENDING, &ihost->flags);
1248
1249         spin_lock_irq(&ihost->scic_lock);
1250         sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
1251         spin_unlock_irq(&ihost->scic_lock);
1252
1253         wait_for_stop(ihost);
1254
1255         /* phy stop is after controller stop to allow port and device to
1256          * go idle before shutting down the phys, but the expectation is
1257          * that i/o has been shut off well before we reach this
1258          * function.
1259          */
1260         sci_controller_stop_phys(ihost);
1261
1262         /* disable sgpio: where the above wait should give time for the
1263          * enclosure to sample the gpios going inactive
1264          */
1265         writel(0, &ihost->scu_registers->peg0.sgpio.interface_control);
1266
1267         spin_lock_irq(&ihost->scic_lock);
1268         sci_controller_reset(ihost);
1269         spin_unlock_irq(&ihost->scic_lock);
1270
1271         /* Cancel any/all outstanding port timers */
1272         for (i = 0; i < ihost->logical_port_entries; i++) {
1273                 struct isci_port *iport = &ihost->ports[i];
1274                 del_timer_sync(&iport->timer.timer);
1275         }
1276
1277         /* Cancel any/all outstanding phy timers */
1278         for (i = 0; i < SCI_MAX_PHYS; i++) {
1279                 struct isci_phy *iphy = &ihost->phys[i];
1280                 del_timer_sync(&iphy->sata_timer.timer);
1281         }
1282
1283         del_timer_sync(&ihost->port_agent.timer.timer);
1284
1285         del_timer_sync(&ihost->power_control.timer.timer);
1286
1287         del_timer_sync(&ihost->timer.timer);
1288
1289         del_timer_sync(&ihost->phy_timer.timer);
1290 }
1291
1292 static void __iomem *scu_base(struct isci_host *isci_host)
1293 {
1294         struct pci_dev *pdev = isci_host->pdev;
1295         int id = isci_host->id;
1296
1297         return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1298 }
1299
1300 static void __iomem *smu_base(struct isci_host *isci_host)
1301 {
1302         struct pci_dev *pdev = isci_host->pdev;
1303         int id = isci_host->id;
1304
1305         return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1306 }
1307
1308 static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
1309 {
1310         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1311
1312         sci_change_state(&ihost->sm, SCIC_RESET);
1313 }
1314
1315 static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
1316 {
1317         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1318
1319         sci_del_timer(&ihost->timer);
1320 }
1321
1322 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1323 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1324 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US                    2700000
1325 #define INTERRUPT_COALESCE_NUMBER_MAX                        256
1326 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN                7
1327 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX                28
1328
1329 /**
1330  * sci_controller_set_interrupt_coalescence() - This method allows the user to
1331  *    configure the interrupt coalescence.
1332  * @ihost: This parameter represents the handle to the controller object
1333  *    for which its interrupt coalesce register is overridden.
1334  * @coalesce_number: Used to control the number of entries in the Completion
1335  *    Queue before an interrupt is generated. If the number of entries exceed
1336  *    this number, an interrupt will be generated. The valid range of the input
1337  *    is [0, 256]. A setting of 0 results in coalescing being disabled.
1338  * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1339  *    input is [0, 2700000] . A setting of 0 is allowed and results in no
1340  *    interrupt coalescing timeout.
1341  *
1342  * Indicate if the user successfully set the interrupt coalesce parameters.
1343  * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1344  * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1345  */
1346 static enum sci_status
1347 sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
1348                                          u32 coalesce_number,
1349                                          u32 coalesce_timeout)
1350 {
1351         u8 timeout_encode = 0;
1352         u32 min = 0;
1353         u32 max = 0;
1354
1355         /* Check if the input parameters fall in the range. */
1356         if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1357                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1358
1359         /*
1360          *  Defined encoding for interrupt coalescing timeout:
1361          *              Value   Min      Max     Units
1362          *              -----   ---      ---     -----
1363          *              0       -        -       Disabled
1364          *              1       13.3     20.0    ns
1365          *              2       26.7     40.0
1366          *              3       53.3     80.0
1367          *              4       106.7    160.0
1368          *              5       213.3    320.0
1369          *              6       426.7    640.0
1370          *              7       853.3    1280.0
1371          *              8       1.7      2.6     us
1372          *              9       3.4      5.1
1373          *              10      6.8      10.2
1374          *              11      13.7     20.5
1375          *              12      27.3     41.0
1376          *              13      54.6     81.9
1377          *              14      109.2    163.8
1378          *              15      218.5    327.7
1379          *              16      436.9    655.4
1380          *              17      873.8    1310.7
1381          *              18      1.7      2.6     ms
1382          *              19      3.5      5.2
1383          *              20      7.0      10.5
1384          *              21      14.0     21.0
1385          *              22      28.0     41.9
1386          *              23      55.9     83.9
1387          *              24      111.8    167.8
1388          *              25      223.7    335.5
1389          *              26      447.4    671.1
1390          *              27      894.8    1342.2
1391          *              28      1.8      2.7     s
1392          *              Others Undefined */
1393
1394         /*
1395          * Use the table above to decide the encode of interrupt coalescing timeout
1396          * value for register writing. */
1397         if (coalesce_timeout == 0)
1398                 timeout_encode = 0;
1399         else{
1400                 /* make the timeout value in unit of (10 ns). */
1401                 coalesce_timeout = coalesce_timeout * 100;
1402                 min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1403                 max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1404
1405                 /* get the encode of timeout for register writing. */
1406                 for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1407                       timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1408                       timeout_encode++) {
1409                         if (min <= coalesce_timeout &&  max > coalesce_timeout)
1410                                 break;
1411                         else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1412                                  && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1413                                 if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1414                                         break;
1415                                 else{
1416                                         timeout_encode++;
1417                                         break;
1418                                 }
1419                         } else {
1420                                 max = max * 2;
1421                                 min = min * 2;
1422                         }
1423                 }
1424
1425                 if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1426                         /* the value is out of range. */
1427                         return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1428         }
1429
1430         writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1431                SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1432                &ihost->smu_registers->interrupt_coalesce_control);
1433
1434
1435         ihost->interrupt_coalesce_number = (u16)coalesce_number;
1436         ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
1437
1438         return SCI_SUCCESS;
1439 }
1440
1441
1442 static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
1443 {
1444         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1445         u32 val;
1446
1447         /* enable clock gating for power control of the scu unit */
1448         val = readl(&ihost->smu_registers->clock_gating_control);
1449         val &= ~(SMU_CGUCR_GEN_BIT(REGCLK_ENABLE) |
1450                  SMU_CGUCR_GEN_BIT(TXCLK_ENABLE) |
1451                  SMU_CGUCR_GEN_BIT(XCLK_ENABLE));
1452         val |= SMU_CGUCR_GEN_BIT(IDLE_ENABLE);
1453         writel(val, &ihost->smu_registers->clock_gating_control);
1454
1455         /* set the default interrupt coalescence number and timeout value. */
1456         sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1457 }
1458
1459 static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
1460 {
1461         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1462
1463         /* disable interrupt coalescence. */
1464         sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1465 }
1466
1467 static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
1468 {
1469         u32 index;
1470         enum sci_status port_status;
1471         enum sci_status status = SCI_SUCCESS;
1472
1473         for (index = 0; index < ihost->logical_port_entries; index++) {
1474                 struct isci_port *iport = &ihost->ports[index];
1475
1476                 port_status = sci_port_stop(iport);
1477
1478                 if ((port_status != SCI_SUCCESS) &&
1479                     (port_status != SCI_FAILURE_INVALID_STATE)) {
1480                         status = SCI_FAILURE;
1481
1482                         dev_warn(&ihost->pdev->dev,
1483                                  "%s: Controller stop operation failed to "
1484                                  "stop port %d because of status %d.\n",
1485                                  __func__,
1486                                  iport->logical_port_index,
1487                                  port_status);
1488                 }
1489         }
1490
1491         return status;
1492 }
1493
1494 static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
1495 {
1496         u32 index;
1497         enum sci_status status;
1498         enum sci_status device_status;
1499
1500         status = SCI_SUCCESS;
1501
1502         for (index = 0; index < ihost->remote_node_entries; index++) {
1503                 if (ihost->device_table[index] != NULL) {
1504                         /* / @todo What timeout value do we want to provide to this request? */
1505                         device_status = sci_remote_device_stop(ihost->device_table[index], 0);
1506
1507                         if ((device_status != SCI_SUCCESS) &&
1508                             (device_status != SCI_FAILURE_INVALID_STATE)) {
1509                                 dev_warn(&ihost->pdev->dev,
1510                                          "%s: Controller stop operation failed "
1511                                          "to stop device 0x%p because of "
1512                                          "status %d.\n",
1513                                          __func__,
1514                                          ihost->device_table[index], device_status);
1515                         }
1516                 }
1517         }
1518
1519         return status;
1520 }
1521
1522 static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
1523 {
1524         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1525
1526         sci_controller_stop_devices(ihost);
1527         sci_controller_stop_ports(ihost);
1528
1529         if (!sci_controller_has_remote_devices_stopping(ihost))
1530                 isci_host_stop_complete(ihost);
1531 }
1532
1533 static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
1534 {
1535         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1536
1537         sci_del_timer(&ihost->timer);
1538 }
1539
1540 static void sci_controller_reset_hardware(struct isci_host *ihost)
1541 {
1542         /* Disable interrupts so we dont take any spurious interrupts */
1543         sci_controller_disable_interrupts(ihost);
1544
1545         /* Reset the SCU */
1546         writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
1547
1548         /* Delay for 1ms to before clearing the CQP and UFQPR. */
1549         udelay(1000);
1550
1551         /* The write to the CQGR clears the CQP */
1552         writel(0x00000000, &ihost->smu_registers->completion_queue_get);
1553
1554         /* The write to the UFQGP clears the UFQPR */
1555         writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
1556
1557         /* clear all interrupts */
1558         writel(~SMU_INTERRUPT_STATUS_RESERVED_MASK, &ihost->smu_registers->interrupt_status);
1559 }
1560
1561 static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
1562 {
1563         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1564
1565         sci_controller_reset_hardware(ihost);
1566         sci_change_state(&ihost->sm, SCIC_RESET);
1567 }
1568
1569 static const struct sci_base_state sci_controller_state_table[] = {
1570         [SCIC_INITIAL] = {
1571                 .enter_state = sci_controller_initial_state_enter,
1572         },
1573         [SCIC_RESET] = {},
1574         [SCIC_INITIALIZING] = {},
1575         [SCIC_INITIALIZED] = {},
1576         [SCIC_STARTING] = {
1577                 .exit_state  = sci_controller_starting_state_exit,
1578         },
1579         [SCIC_READY] = {
1580                 .enter_state = sci_controller_ready_state_enter,
1581                 .exit_state  = sci_controller_ready_state_exit,
1582         },
1583         [SCIC_RESETTING] = {
1584                 .enter_state = sci_controller_resetting_state_enter,
1585         },
1586         [SCIC_STOPPING] = {
1587                 .enter_state = sci_controller_stopping_state_enter,
1588                 .exit_state = sci_controller_stopping_state_exit,
1589         },
1590         [SCIC_FAILED] = {}
1591 };
1592
1593 static void controller_timeout(struct timer_list *t)
1594 {
1595         struct sci_timer *tmr = from_timer(tmr, t, timer);
1596         struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
1597         struct sci_base_state_machine *sm = &ihost->sm;
1598         unsigned long flags;
1599
1600         spin_lock_irqsave(&ihost->scic_lock, flags);
1601
1602         if (tmr->cancel)
1603                 goto done;
1604
1605         if (sm->current_state_id == SCIC_STARTING)
1606                 sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
1607         else if (sm->current_state_id == SCIC_STOPPING) {
1608                 sci_change_state(sm, SCIC_FAILED);
1609                 isci_host_stop_complete(ihost);
1610         } else  /* / @todo Now what do we want to do in this case? */
1611                 dev_err(&ihost->pdev->dev,
1612                         "%s: Controller timer fired when controller was not "
1613                         "in a state being timed.\n",
1614                         __func__);
1615
1616 done:
1617         spin_unlock_irqrestore(&ihost->scic_lock, flags);
1618 }
1619
1620 static enum sci_status sci_controller_construct(struct isci_host *ihost,
1621                                                 void __iomem *scu_base,
1622                                                 void __iomem *smu_base)
1623 {
1624         u8 i;
1625
1626         sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
1627
1628         ihost->scu_registers = scu_base;
1629         ihost->smu_registers = smu_base;
1630
1631         sci_port_configuration_agent_construct(&ihost->port_agent);
1632
1633         /* Construct the ports for this controller */
1634         for (i = 0; i < SCI_MAX_PORTS; i++)
1635                 sci_port_construct(&ihost->ports[i], i, ihost);
1636         sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
1637
1638         /* Construct the phys for this controller */
1639         for (i = 0; i < SCI_MAX_PHYS; i++) {
1640                 /* Add all the PHYs to the dummy port */
1641                 sci_phy_construct(&ihost->phys[i],
1642                                   &ihost->ports[SCI_MAX_PORTS], i);
1643         }
1644
1645         ihost->invalid_phy_mask = 0;
1646
1647         sci_init_timer(&ihost->timer, controller_timeout);
1648
1649         return sci_controller_reset(ihost);
1650 }
1651
1652 int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version)
1653 {
1654         int i;
1655
1656         for (i = 0; i < SCI_MAX_PORTS; i++)
1657                 if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1658                         return -EINVAL;
1659
1660         for (i = 0; i < SCI_MAX_PHYS; i++)
1661                 if (oem->phys[i].sas_address.high == 0 &&
1662                     oem->phys[i].sas_address.low == 0)
1663                         return -EINVAL;
1664
1665         if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1666                 for (i = 0; i < SCI_MAX_PHYS; i++)
1667                         if (oem->ports[i].phy_mask != 0)
1668                                 return -EINVAL;
1669         } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1670                 u8 phy_mask = 0;
1671
1672                 for (i = 0; i < SCI_MAX_PHYS; i++)
1673                         phy_mask |= oem->ports[i].phy_mask;
1674
1675                 if (phy_mask == 0)
1676                         return -EINVAL;
1677         } else
1678                 return -EINVAL;
1679
1680         if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT ||
1681             oem->controller.max_concurr_spin_up < 1)
1682                 return -EINVAL;
1683
1684         if (oem->controller.do_enable_ssc) {
1685                 if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1)
1686                         return -EINVAL;
1687
1688                 if (version >= ISCI_ROM_VER_1_1) {
1689                         u8 test = oem->controller.ssc_sata_tx_spread_level;
1690
1691                         switch (test) {
1692                         case 0:
1693                         case 2:
1694                         case 3:
1695                         case 6:
1696                         case 7:
1697                                 break;
1698                         default:
1699                                 return -EINVAL;
1700                         }
1701
1702                         test = oem->controller.ssc_sas_tx_spread_level;
1703                         if (oem->controller.ssc_sas_tx_type == 0) {
1704                                 switch (test) {
1705                                 case 0:
1706                                 case 2:
1707                                 case 3:
1708                                         break;
1709                                 default:
1710                                         return -EINVAL;
1711                                 }
1712                         } else if (oem->controller.ssc_sas_tx_type == 1) {
1713                                 switch (test) {
1714                                 case 0:
1715                                 case 3:
1716                                 case 6:
1717                                         break;
1718                                 default:
1719                                         return -EINVAL;
1720                                 }
1721                         }
1722                 }
1723         }
1724
1725         return 0;
1726 }
1727
1728 static u8 max_spin_up(struct isci_host *ihost)
1729 {
1730         if (ihost->user_parameters.max_concurr_spinup)
1731                 return min_t(u8, ihost->user_parameters.max_concurr_spinup,
1732                              MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1733         else
1734                 return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up,
1735                              MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT);
1736 }
1737
1738 static void power_control_timeout(struct timer_list *t)
1739 {
1740         struct sci_timer *tmr = from_timer(tmr, t, timer);
1741         struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
1742         struct isci_phy *iphy;
1743         unsigned long flags;
1744         u8 i;
1745
1746         spin_lock_irqsave(&ihost->scic_lock, flags);
1747
1748         if (tmr->cancel)
1749                 goto done;
1750
1751         ihost->power_control.phys_granted_power = 0;
1752
1753         if (ihost->power_control.phys_waiting == 0) {
1754                 ihost->power_control.timer_started = false;
1755                 goto done;
1756         }
1757
1758         for (i = 0; i < SCI_MAX_PHYS; i++) {
1759
1760                 if (ihost->power_control.phys_waiting == 0)
1761                         break;
1762
1763                 iphy = ihost->power_control.requesters[i];
1764                 if (iphy == NULL)
1765                         continue;
1766
1767                 if (ihost->power_control.phys_granted_power >= max_spin_up(ihost))
1768                         break;
1769
1770                 ihost->power_control.requesters[i] = NULL;
1771                 ihost->power_control.phys_waiting--;
1772                 ihost->power_control.phys_granted_power++;
1773                 sci_phy_consume_power_handler(iphy);
1774
1775                 if (iphy->protocol == SAS_PROTOCOL_SSP) {
1776                         u8 j;
1777
1778                         for (j = 0; j < SCI_MAX_PHYS; j++) {
1779                                 struct isci_phy *requester = ihost->power_control.requesters[j];
1780
1781                                 /*
1782                                  * Search the power_control queue to see if there are other phys
1783                                  * attached to the same remote device. If found, take all of
1784                                  * them out of await_sas_power state.
1785                                  */
1786                                 if (requester != NULL && requester != iphy) {
1787                                         u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr,
1788                                                           iphy->frame_rcvd.iaf.sas_addr,
1789                                                           sizeof(requester->frame_rcvd.iaf.sas_addr));
1790
1791                                         if (other == 0) {
1792                                                 ihost->power_control.requesters[j] = NULL;
1793                                                 ihost->power_control.phys_waiting--;
1794                                                 sci_phy_consume_power_handler(requester);
1795                                         }
1796                                 }
1797                         }
1798                 }
1799         }
1800
1801         /*
1802          * It doesn't matter if the power list is empty, we need to start the
1803          * timer in case another phy becomes ready.
1804          */
1805         sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1806         ihost->power_control.timer_started = true;
1807
1808 done:
1809         spin_unlock_irqrestore(&ihost->scic_lock, flags);
1810 }
1811
1812 void sci_controller_power_control_queue_insert(struct isci_host *ihost,
1813                                                struct isci_phy *iphy)
1814 {
1815         BUG_ON(iphy == NULL);
1816
1817         if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) {
1818                 ihost->power_control.phys_granted_power++;
1819                 sci_phy_consume_power_handler(iphy);
1820
1821                 /*
1822                  * stop and start the power_control timer. When the timer fires, the
1823                  * no_of_phys_granted_power will be set to 0
1824                  */
1825                 if (ihost->power_control.timer_started)
1826                         sci_del_timer(&ihost->power_control.timer);
1827
1828                 sci_mod_timer(&ihost->power_control.timer,
1829                                  SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1830                 ihost->power_control.timer_started = true;
1831
1832         } else {
1833                 /*
1834                  * There are phys, attached to the same sas address as this phy, are
1835                  * already in READY state, this phy don't need wait.
1836                  */
1837                 u8 i;
1838                 struct isci_phy *current_phy;
1839
1840                 for (i = 0; i < SCI_MAX_PHYS; i++) {
1841                         u8 other;
1842                         current_phy = &ihost->phys[i];
1843
1844                         other = memcmp(current_phy->frame_rcvd.iaf.sas_addr,
1845                                        iphy->frame_rcvd.iaf.sas_addr,
1846                                        sizeof(current_phy->frame_rcvd.iaf.sas_addr));
1847
1848                         if (current_phy->sm.current_state_id == SCI_PHY_READY &&
1849                             current_phy->protocol == SAS_PROTOCOL_SSP &&
1850                             other == 0) {
1851                                 sci_phy_consume_power_handler(iphy);
1852                                 break;
1853                         }
1854                 }
1855
1856                 if (i == SCI_MAX_PHYS) {
1857                         /* Add the phy in the waiting list */
1858                         ihost->power_control.requesters[iphy->phy_index] = iphy;
1859                         ihost->power_control.phys_waiting++;
1860                 }
1861         }
1862 }
1863
1864 void sci_controller_power_control_queue_remove(struct isci_host *ihost,
1865                                                struct isci_phy *iphy)
1866 {
1867         BUG_ON(iphy == NULL);
1868
1869         if (ihost->power_control.requesters[iphy->phy_index])
1870                 ihost->power_control.phys_waiting--;
1871
1872         ihost->power_control.requesters[iphy->phy_index] = NULL;
1873 }
1874
1875 static int is_long_cable(int phy, unsigned char selection_byte)
1876 {
1877         return !!(selection_byte & (1 << phy));
1878 }
1879
1880 static int is_medium_cable(int phy, unsigned char selection_byte)
1881 {
1882         return !!(selection_byte & (1 << (phy + 4)));
1883 }
1884
1885 static enum cable_selections decode_selection_byte(
1886         int phy,
1887         unsigned char selection_byte)
1888 {
1889         return ((selection_byte & (1 << phy)) ? 1 : 0)
1890                 + (selection_byte & (1 << (phy + 4)) ? 2 : 0);
1891 }
1892
1893 static unsigned char *to_cable_select(struct isci_host *ihost)
1894 {
1895         if (is_cable_select_overridden())
1896                 return ((unsigned char *)&cable_selection_override)
1897                         + ihost->id;
1898         else
1899                 return &ihost->oem_parameters.controller.cable_selection_mask;
1900 }
1901
1902 enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy)
1903 {
1904         return decode_selection_byte(phy, *to_cable_select(ihost));
1905 }
1906
1907 char *lookup_cable_names(enum cable_selections selection)
1908 {
1909         static char *cable_names[] = {
1910                 [short_cable]     = "short",
1911                 [long_cable]      = "long",
1912                 [medium_cable]    = "medium",
1913                 [undefined_cable] = "<undefined, assumed long>" /* bit 0==1 */
1914         };
1915         return (selection <= undefined_cable) ? cable_names[selection]
1916                                               : cable_names[undefined_cable];
1917 }
1918
1919 #define AFE_REGISTER_WRITE_DELAY 10
1920
1921 static void sci_controller_afe_initialization(struct isci_host *ihost)
1922 {
1923         struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
1924         const struct sci_oem_params *oem = &ihost->oem_parameters;
1925         struct pci_dev *pdev = ihost->pdev;
1926         u32 afe_status;
1927         u32 phy_id;
1928         unsigned char cable_selection_mask = *to_cable_select(ihost);
1929
1930         /* Clear DFX Status registers */
1931         writel(0x0081000f, &afe->afe_dfx_master_control0);
1932         udelay(AFE_REGISTER_WRITE_DELAY);
1933
1934         if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) {
1935                 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
1936                  * Timer, PM Stagger Timer
1937                  */
1938                 writel(0x0007FFFF, &afe->afe_pmsn_master_control2);
1939                 udelay(AFE_REGISTER_WRITE_DELAY);
1940         }
1941
1942         /* Configure bias currents to normal */
1943         if (is_a2(pdev))
1944                 writel(0x00005A00, &afe->afe_bias_control);
1945         else if (is_b0(pdev) || is_c0(pdev))
1946                 writel(0x00005F00, &afe->afe_bias_control);
1947         else if (is_c1(pdev))
1948                 writel(0x00005500, &afe->afe_bias_control);
1949
1950         udelay(AFE_REGISTER_WRITE_DELAY);
1951
1952         /* Enable PLL */
1953         if (is_a2(pdev))
1954                 writel(0x80040908, &afe->afe_pll_control0);
1955         else if (is_b0(pdev) || is_c0(pdev))
1956                 writel(0x80040A08, &afe->afe_pll_control0);
1957         else if (is_c1(pdev)) {
1958                 writel(0x80000B08, &afe->afe_pll_control0);
1959                 udelay(AFE_REGISTER_WRITE_DELAY);
1960                 writel(0x00000B08, &afe->afe_pll_control0);
1961                 udelay(AFE_REGISTER_WRITE_DELAY);
1962                 writel(0x80000B08, &afe->afe_pll_control0);
1963         }
1964
1965         udelay(AFE_REGISTER_WRITE_DELAY);
1966
1967         /* Wait for the PLL to lock */
1968         do {
1969                 afe_status = readl(&afe->afe_common_block_status);
1970                 udelay(AFE_REGISTER_WRITE_DELAY);
1971         } while ((afe_status & 0x00001000) == 0);
1972
1973         if (is_a2(pdev)) {
1974                 /* Shorten SAS SNW lock time (RxLock timer value from 76
1975                  * us to 50 us)
1976                  */
1977                 writel(0x7bcc96ad, &afe->afe_pmsn_master_control0);
1978                 udelay(AFE_REGISTER_WRITE_DELAY);
1979         }
1980
1981         for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
1982                 struct scu_afe_transceiver __iomem *xcvr = &afe->scu_afe_xcvr[phy_id];
1983                 const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
1984                 int cable_length_long =
1985                         is_long_cable(phy_id, cable_selection_mask);
1986                 int cable_length_medium =
1987                         is_medium_cable(phy_id, cable_selection_mask);
1988
1989                 if (is_a2(pdev)) {
1990                         /* All defaults, except the Receive Word
1991                          * Alignament/Comma Detect Enable....(0xe800)
1992                          */
1993                         writel(0x00004512, &xcvr->afe_xcvr_control0);
1994                         udelay(AFE_REGISTER_WRITE_DELAY);
1995
1996                         writel(0x0050100F, &xcvr->afe_xcvr_control1);
1997                         udelay(AFE_REGISTER_WRITE_DELAY);
1998                 } else if (is_b0(pdev)) {
1999                         /* Configure transmitter SSC parameters */
2000                         writel(0x00030000, &xcvr->afe_tx_ssc_control);
2001                         udelay(AFE_REGISTER_WRITE_DELAY);
2002                 } else if (is_c0(pdev)) {
2003                         /* Configure transmitter SSC parameters */
2004                         writel(0x00010202, &xcvr->afe_tx_ssc_control);
2005                         udelay(AFE_REGISTER_WRITE_DELAY);
2006
2007                         /* All defaults, except the Receive Word
2008                          * Alignament/Comma Detect Enable....(0xe800)
2009                          */
2010                         writel(0x00014500, &xcvr->afe_xcvr_control0);
2011                         udelay(AFE_REGISTER_WRITE_DELAY);
2012                 } else if (is_c1(pdev)) {
2013                         /* Configure transmitter SSC parameters */
2014                         writel(0x00010202, &xcvr->afe_tx_ssc_control);
2015                         udelay(AFE_REGISTER_WRITE_DELAY);
2016
2017                         /* All defaults, except the Receive Word
2018                          * Alignament/Comma Detect Enable....(0xe800)
2019                          */
2020                         writel(0x0001C500, &xcvr->afe_xcvr_control0);
2021                         udelay(AFE_REGISTER_WRITE_DELAY);
2022                 }
2023
2024                 /* Power up TX and RX out from power down (PWRDNTX and
2025                  * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c)
2026                  */
2027                 if (is_a2(pdev))
2028                         writel(0x000003F0, &xcvr->afe_channel_control);
2029                 else if (is_b0(pdev)) {
2030                         writel(0x000003D7, &xcvr->afe_channel_control);
2031                         udelay(AFE_REGISTER_WRITE_DELAY);
2032
2033                         writel(0x000003D4, &xcvr->afe_channel_control);
2034                 } else if (is_c0(pdev)) {
2035                         writel(0x000001E7, &xcvr->afe_channel_control);
2036                         udelay(AFE_REGISTER_WRITE_DELAY);
2037
2038                         writel(0x000001E4, &xcvr->afe_channel_control);
2039                 } else if (is_c1(pdev)) {
2040                         writel(cable_length_long ? 0x000002F7 : 0x000001F7,
2041                                &xcvr->afe_channel_control);
2042                         udelay(AFE_REGISTER_WRITE_DELAY);
2043
2044                         writel(cable_length_long ? 0x000002F4 : 0x000001F4,
2045                                &xcvr->afe_channel_control);
2046                 }
2047                 udelay(AFE_REGISTER_WRITE_DELAY);
2048
2049                 if (is_a2(pdev)) {
2050                         /* Enable TX equalization (0xe824) */
2051                         writel(0x00040000, &xcvr->afe_tx_control);
2052                         udelay(AFE_REGISTER_WRITE_DELAY);
2053                 }
2054
2055                 if (is_a2(pdev) || is_b0(pdev))
2056                         /* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0,
2057                          * TPD=0x0(TX Power On), RDD=0x0(RX Detect
2058                          * Enabled) ....(0xe800)
2059                          */
2060                         writel(0x00004100, &xcvr->afe_xcvr_control0);
2061                 else if (is_c0(pdev))
2062                         writel(0x00014100, &xcvr->afe_xcvr_control0);
2063                 else if (is_c1(pdev))
2064                         writel(0x0001C100, &xcvr->afe_xcvr_control0);
2065                 udelay(AFE_REGISTER_WRITE_DELAY);
2066
2067                 /* Leave DFE/FFE on */
2068                 if (is_a2(pdev))
2069                         writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2070                 else if (is_b0(pdev)) {
2071                         writel(0x3F11103F, &xcvr->afe_rx_ssc_control0);
2072                         udelay(AFE_REGISTER_WRITE_DELAY);
2073                         /* Enable TX equalization (0xe824) */
2074                         writel(0x00040000, &xcvr->afe_tx_control);
2075                 } else if (is_c0(pdev)) {
2076                         writel(0x01400C0F, &xcvr->afe_rx_ssc_control1);
2077                         udelay(AFE_REGISTER_WRITE_DELAY);
2078
2079                         writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0);
2080                         udelay(AFE_REGISTER_WRITE_DELAY);
2081
2082                         /* Enable TX equalization (0xe824) */
2083                         writel(0x00040000, &xcvr->afe_tx_control);
2084                 } else if (is_c1(pdev)) {
2085                         writel(cable_length_long ? 0x01500C0C :
2086                                cable_length_medium ? 0x01400C0D : 0x02400C0D,
2087                                &xcvr->afe_xcvr_control1);
2088                         udelay(AFE_REGISTER_WRITE_DELAY);
2089
2090                         writel(0x000003E0, &xcvr->afe_dfx_rx_control1);
2091                         udelay(AFE_REGISTER_WRITE_DELAY);
2092
2093                         writel(cable_length_long ? 0x33091C1F :
2094                                cable_length_medium ? 0x3315181F : 0x2B17161F,
2095                                &xcvr->afe_rx_ssc_control0);
2096                         udelay(AFE_REGISTER_WRITE_DELAY);
2097
2098                         /* Enable TX equalization (0xe824) */
2099                         writel(0x00040000, &xcvr->afe_tx_control);
2100                 }
2101
2102                 udelay(AFE_REGISTER_WRITE_DELAY);
2103
2104                 writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0);
2105                 udelay(AFE_REGISTER_WRITE_DELAY);
2106
2107                 writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1);
2108                 udelay(AFE_REGISTER_WRITE_DELAY);
2109
2110                 writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2);
2111                 udelay(AFE_REGISTER_WRITE_DELAY);
2112
2113                 writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3);
2114                 udelay(AFE_REGISTER_WRITE_DELAY);
2115         }
2116
2117         /* Transfer control to the PEs */
2118         writel(0x00010f00, &afe->afe_dfx_master_control0);
2119         udelay(AFE_REGISTER_WRITE_DELAY);
2120 }
2121
2122 static void sci_controller_initialize_power_control(struct isci_host *ihost)
2123 {
2124         sci_init_timer(&ihost->power_control.timer, power_control_timeout);
2125
2126         memset(ihost->power_control.requesters, 0,
2127                sizeof(ihost->power_control.requesters));
2128
2129         ihost->power_control.phys_waiting = 0;
2130         ihost->power_control.phys_granted_power = 0;
2131 }
2132
2133 static enum sci_status sci_controller_initialize(struct isci_host *ihost)
2134 {
2135         struct sci_base_state_machine *sm = &ihost->sm;
2136         enum sci_status result = SCI_FAILURE;
2137         unsigned long i, state, val;
2138
2139         if (ihost->sm.current_state_id != SCIC_RESET) {
2140                 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2141                          __func__, ihost->sm.current_state_id);
2142                 return SCI_FAILURE_INVALID_STATE;
2143         }
2144
2145         sci_change_state(sm, SCIC_INITIALIZING);
2146
2147         sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
2148
2149         ihost->next_phy_to_start = 0;
2150         ihost->phy_startup_timer_pending = false;
2151
2152         sci_controller_initialize_power_control(ihost);
2153
2154         /*
2155          * There is nothing to do here for B0 since we do not have to
2156          * program the AFE registers.
2157          * / @todo The AFE settings are supposed to be correct for the B0 but
2158          * /       presently they seem to be wrong. */
2159         sci_controller_afe_initialization(ihost);
2160
2161
2162         /* Take the hardware out of reset */
2163         writel(0, &ihost->smu_registers->soft_reset_control);
2164
2165         /*
2166          * / @todo Provide meaningfull error code for hardware failure
2167          * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2168         for (i = 100; i >= 1; i--) {
2169                 u32 status;
2170
2171                 /* Loop until the hardware reports success */
2172                 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2173                 status = readl(&ihost->smu_registers->control_status);
2174
2175                 if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
2176                         break;
2177         }
2178         if (i == 0)
2179                 goto out;
2180
2181         /*
2182          * Determine what are the actaul device capacities that the
2183          * hardware will support */
2184         val = readl(&ihost->smu_registers->device_context_capacity);
2185
2186         /* Record the smaller of the two capacity values */
2187         ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
2188         ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
2189         ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
2190
2191         /*
2192          * Make all PEs that are unassigned match up with the
2193          * logical ports
2194          */
2195         for (i = 0; i < ihost->logical_port_entries; i++) {
2196                 struct scu_port_task_scheduler_group_registers __iomem
2197                         *ptsg = &ihost->scu_registers->peg0.ptsg;
2198
2199                 writel(i, &ptsg->protocol_engine[i]);
2200         }
2201
2202         /* Initialize hardware PCI Relaxed ordering in DMA engines */
2203         val = readl(&ihost->scu_registers->sdma.pdma_configuration);
2204         val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2205         writel(val, &ihost->scu_registers->sdma.pdma_configuration);
2206
2207         val = readl(&ihost->scu_registers->sdma.cdma_configuration);
2208         val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2209         writel(val, &ihost->scu_registers->sdma.cdma_configuration);
2210
2211         /*
2212          * Initialize the PHYs before the PORTs because the PHY registers
2213          * are accessed during the port initialization.
2214          */
2215         for (i = 0; i < SCI_MAX_PHYS; i++) {
2216                 result = sci_phy_initialize(&ihost->phys[i],
2217                                             &ihost->scu_registers->peg0.pe[i].tl,
2218                                             &ihost->scu_registers->peg0.pe[i].ll);
2219                 if (result != SCI_SUCCESS)
2220                         goto out;
2221         }
2222
2223         for (i = 0; i < ihost->logical_port_entries; i++) {
2224                 struct isci_port *iport = &ihost->ports[i];
2225
2226                 iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
2227                 iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
2228                 iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
2229         }
2230
2231         result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
2232
2233  out:
2234         /* Advance the controller state machine */
2235         if (result == SCI_SUCCESS)
2236                 state = SCIC_INITIALIZED;
2237         else
2238                 state = SCIC_FAILED;
2239         sci_change_state(sm, state);
2240
2241         return result;
2242 }
2243
2244 static int sci_controller_dma_alloc(struct isci_host *ihost)
2245 {
2246         struct device *dev = &ihost->pdev->dev;
2247         size_t size;
2248         int i;
2249
2250         /* detect re-initialization */
2251         if (ihost->completion_queue)
2252                 return 0;
2253
2254         size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
2255         ihost->completion_queue = dmam_alloc_coherent(dev, size, &ihost->cq_dma,
2256                                                       GFP_KERNEL);
2257         if (!ihost->completion_queue)
2258                 return -ENOMEM;
2259
2260         size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
2261         ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &ihost->rnc_dma,
2262                                                                GFP_KERNEL);
2263
2264         if (!ihost->remote_node_context_table)
2265                 return -ENOMEM;
2266
2267         size = ihost->task_context_entries * sizeof(struct scu_task_context),
2268         ihost->task_context_table = dmam_alloc_coherent(dev, size, &ihost->tc_dma,
2269                                                         GFP_KERNEL);
2270         if (!ihost->task_context_table)
2271                 return -ENOMEM;
2272
2273         size = SCI_UFI_TOTAL_SIZE;
2274         ihost->ufi_buf = dmam_alloc_coherent(dev, size, &ihost->ufi_dma, GFP_KERNEL);
2275         if (!ihost->ufi_buf)
2276                 return -ENOMEM;
2277
2278         for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
2279                 struct isci_request *ireq;
2280                 dma_addr_t dma;
2281
2282                 ireq = dmam_alloc_coherent(dev, sizeof(*ireq), &dma, GFP_KERNEL);
2283                 if (!ireq)
2284                         return -ENOMEM;
2285
2286                 ireq->tc = &ihost->task_context_table[i];
2287                 ireq->owning_controller = ihost;
2288                 ireq->request_daddr = dma;
2289                 ireq->isci_host = ihost;
2290                 ihost->reqs[i] = ireq;
2291         }
2292
2293         return 0;
2294 }
2295
2296 static int sci_controller_mem_init(struct isci_host *ihost)
2297 {
2298         int err = sci_controller_dma_alloc(ihost);
2299
2300         if (err)
2301                 return err;
2302
2303         writel(lower_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_lower);
2304         writel(upper_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_upper);
2305
2306         writel(lower_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_lower);
2307         writel(upper_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_upper);
2308
2309         writel(lower_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_lower);
2310         writel(upper_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_upper);
2311
2312         sci_unsolicited_frame_control_construct(ihost);
2313
2314         /*
2315          * Inform the silicon as to the location of the UF headers and
2316          * address table.
2317          */
2318         writel(lower_32_bits(ihost->uf_control.headers.physical_address),
2319                 &ihost->scu_registers->sdma.uf_header_base_address_lower);
2320         writel(upper_32_bits(ihost->uf_control.headers.physical_address),
2321                 &ihost->scu_registers->sdma.uf_header_base_address_upper);
2322
2323         writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
2324                 &ihost->scu_registers->sdma.uf_address_table_lower);
2325         writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
2326                 &ihost->scu_registers->sdma.uf_address_table_upper);
2327
2328         return 0;
2329 }
2330
2331 /**
2332  * isci_host_init - (re-)initialize hardware and internal (private) state
2333  * @ihost: host to init
2334  *
2335  * Any public facing objects (like asd_sas_port, and asd_sas_phys), or
2336  * one-time initialization objects like locks and waitqueues, are
2337  * not touched (they are initialized in isci_host_alloc)
2338  */
2339 int isci_host_init(struct isci_host *ihost)
2340 {
2341         int i, err;
2342         enum sci_status status;
2343
2344         spin_lock_irq(&ihost->scic_lock);
2345         status = sci_controller_construct(ihost, scu_base(ihost), smu_base(ihost));
2346         spin_unlock_irq(&ihost->scic_lock);
2347         if (status != SCI_SUCCESS) {
2348                 dev_err(&ihost->pdev->dev,
2349                         "%s: sci_controller_construct failed - status = %x\n",
2350                         __func__,
2351                         status);
2352                 return -ENODEV;
2353         }
2354
2355         spin_lock_irq(&ihost->scic_lock);
2356         status = sci_controller_initialize(ihost);
2357         spin_unlock_irq(&ihost->scic_lock);
2358         if (status != SCI_SUCCESS) {
2359                 dev_warn(&ihost->pdev->dev,
2360                          "%s: sci_controller_initialize failed -"
2361                          " status = 0x%x\n",
2362                          __func__, status);
2363                 return -ENODEV;
2364         }
2365
2366         err = sci_controller_mem_init(ihost);
2367         if (err)
2368                 return err;
2369
2370         /* enable sgpio */
2371         writel(1, &ihost->scu_registers->peg0.sgpio.interface_control);
2372         for (i = 0; i < isci_gpio_count(ihost); i++)
2373                 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
2374         writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code);
2375
2376         return 0;
2377 }
2378
2379 void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
2380                             struct isci_phy *iphy)
2381 {
2382         switch (ihost->sm.current_state_id) {
2383         case SCIC_STARTING:
2384                 sci_del_timer(&ihost->phy_timer);
2385                 ihost->phy_startup_timer_pending = false;
2386                 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2387                                                   iport, iphy);
2388                 sci_controller_start_next_phy(ihost);
2389                 break;
2390         case SCIC_READY:
2391                 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2392                                                   iport, iphy);
2393                 break;
2394         default:
2395                 dev_dbg(&ihost->pdev->dev,
2396                         "%s: SCIC Controller linkup event from phy %d in "
2397                         "unexpected state %d\n", __func__, iphy->phy_index,
2398                         ihost->sm.current_state_id);
2399         }
2400 }
2401
2402 void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
2403                               struct isci_phy *iphy)
2404 {
2405         switch (ihost->sm.current_state_id) {
2406         case SCIC_STARTING:
2407         case SCIC_READY:
2408                 ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
2409                                                    iport, iphy);
2410                 break;
2411         default:
2412                 dev_dbg(&ihost->pdev->dev,
2413                         "%s: SCIC Controller linkdown event from phy %d in "
2414                         "unexpected state %d\n",
2415                         __func__,
2416                         iphy->phy_index,
2417                         ihost->sm.current_state_id);
2418         }
2419 }
2420
2421 bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
2422 {
2423         u32 index;
2424
2425         for (index = 0; index < ihost->remote_node_entries; index++) {
2426                 if ((ihost->device_table[index] != NULL) &&
2427                    (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
2428                         return true;
2429         }
2430
2431         return false;
2432 }
2433
2434 void sci_controller_remote_device_stopped(struct isci_host *ihost,
2435                                           struct isci_remote_device *idev)
2436 {
2437         if (ihost->sm.current_state_id != SCIC_STOPPING) {
2438                 dev_dbg(&ihost->pdev->dev,
2439                         "SCIC Controller 0x%p remote device stopped event "
2440                         "from device 0x%p in unexpected state %d\n",
2441                         ihost, idev,
2442                         ihost->sm.current_state_id);
2443                 return;
2444         }
2445
2446         if (!sci_controller_has_remote_devices_stopping(ihost))
2447                 isci_host_stop_complete(ihost);
2448 }
2449
2450 void sci_controller_post_request(struct isci_host *ihost, u32 request)
2451 {
2452         dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
2453                 __func__, ihost->id, request);
2454
2455         writel(request, &ihost->smu_registers->post_context_port);
2456 }
2457
2458 struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
2459 {
2460         u16 task_index;
2461         u16 task_sequence;
2462
2463         task_index = ISCI_TAG_TCI(io_tag);
2464
2465         if (task_index < ihost->task_context_entries) {
2466                 struct isci_request *ireq = ihost->reqs[task_index];
2467
2468                 if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
2469                         task_sequence = ISCI_TAG_SEQ(io_tag);
2470
2471                         if (task_sequence == ihost->io_request_sequence[task_index])
2472                                 return ireq;
2473                 }
2474         }
2475
2476         return NULL;
2477 }
2478
2479 /**
2480  * sci_controller_allocate_remote_node_context()
2481  * This method allocates remote node index and the reserves the remote node
2482  *    context space for use. This method can fail if there are no more remote
2483  *    node index available.
2484  * @ihost: This is the controller object which contains the set of
2485  *    free remote node ids
2486  * @idev: This is the device object which is requesting the a remote node
2487  *    id
2488  * @node_id: This is the remote node id that is assinged to the device if one
2489  *    is available
2490  *
2491  * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2492  * node index available.
2493  */
2494 enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
2495                                                             struct isci_remote_device *idev,
2496                                                             u16 *node_id)
2497 {
2498         u16 node_index;
2499         u32 remote_node_count = sci_remote_device_node_count(idev);
2500
2501         node_index = sci_remote_node_table_allocate_remote_node(
2502                 &ihost->available_remote_nodes, remote_node_count
2503                 );
2504
2505         if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2506                 ihost->device_table[node_index] = idev;
2507
2508                 *node_id = node_index;
2509
2510                 return SCI_SUCCESS;
2511         }
2512
2513         return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2514 }
2515
2516 void sci_controller_free_remote_node_context(struct isci_host *ihost,
2517                                              struct isci_remote_device *idev,
2518                                              u16 node_id)
2519 {
2520         u32 remote_node_count = sci_remote_device_node_count(idev);
2521
2522         if (ihost->device_table[node_id] == idev) {
2523                 ihost->device_table[node_id] = NULL;
2524
2525                 sci_remote_node_table_release_remote_node_index(
2526                         &ihost->available_remote_nodes, remote_node_count, node_id
2527                         );
2528         }
2529 }
2530
2531 void sci_controller_copy_sata_response(void *response_buffer,
2532                                        void *frame_header,
2533                                        void *frame_buffer)
2534 {
2535         /* XXX type safety? */
2536         memcpy(response_buffer, frame_header, sizeof(u32));
2537
2538         memcpy(response_buffer + sizeof(u32),
2539                frame_buffer,
2540                sizeof(struct dev_to_host_fis) - sizeof(u32));
2541 }
2542
2543 void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
2544 {
2545         if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
2546                 writel(ihost->uf_control.get,
2547                         &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
2548 }
2549
2550 void isci_tci_free(struct isci_host *ihost, u16 tci)
2551 {
2552         u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
2553
2554         ihost->tci_pool[tail] = tci;
2555         ihost->tci_tail = tail + 1;
2556 }
2557
2558 static u16 isci_tci_alloc(struct isci_host *ihost)
2559 {
2560         u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
2561         u16 tci = ihost->tci_pool[head];
2562
2563         ihost->tci_head = head + 1;
2564         return tci;
2565 }
2566
2567 static u16 isci_tci_space(struct isci_host *ihost)
2568 {
2569         return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
2570 }
2571
2572 u16 isci_alloc_tag(struct isci_host *ihost)
2573 {
2574         if (isci_tci_space(ihost)) {
2575                 u16 tci = isci_tci_alloc(ihost);
2576                 u8 seq = ihost->io_request_sequence[tci];
2577
2578                 return ISCI_TAG(seq, tci);
2579         }
2580
2581         return SCI_CONTROLLER_INVALID_IO_TAG;
2582 }
2583
2584 enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
2585 {
2586         u16 tci = ISCI_TAG_TCI(io_tag);
2587         u16 seq = ISCI_TAG_SEQ(io_tag);
2588
2589         /* prevent tail from passing head */
2590         if (isci_tci_active(ihost) == 0)
2591                 return SCI_FAILURE_INVALID_IO_TAG;
2592
2593         if (seq == ihost->io_request_sequence[tci]) {
2594                 ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
2595
2596                 isci_tci_free(ihost, tci);
2597
2598                 return SCI_SUCCESS;
2599         }
2600         return SCI_FAILURE_INVALID_IO_TAG;
2601 }
2602
2603 enum sci_status sci_controller_start_io(struct isci_host *ihost,
2604                                         struct isci_remote_device *idev,
2605                                         struct isci_request *ireq)
2606 {
2607         enum sci_status status;
2608
2609         if (ihost->sm.current_state_id != SCIC_READY) {
2610                 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2611                          __func__, ihost->sm.current_state_id);
2612                 return SCI_FAILURE_INVALID_STATE;
2613         }
2614
2615         status = sci_remote_device_start_io(ihost, idev, ireq);
2616         if (status != SCI_SUCCESS)
2617                 return status;
2618
2619         set_bit(IREQ_ACTIVE, &ireq->flags);
2620         sci_controller_post_request(ihost, ireq->post_context);
2621         return SCI_SUCCESS;
2622 }
2623
2624 enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
2625                                                  struct isci_remote_device *idev,
2626                                                  struct isci_request *ireq)
2627 {
2628         /* terminate an ongoing (i.e. started) core IO request.  This does not
2629          * abort the IO request at the target, but rather removes the IO
2630          * request from the host controller.
2631          */
2632         enum sci_status status;
2633
2634         if (ihost->sm.current_state_id != SCIC_READY) {
2635                 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2636                          __func__, ihost->sm.current_state_id);
2637                 return SCI_FAILURE_INVALID_STATE;
2638         }
2639         status = sci_io_request_terminate(ireq);
2640
2641         dev_dbg(&ihost->pdev->dev, "%s: status=%d; ireq=%p; flags=%lx\n",
2642                 __func__, status, ireq, ireq->flags);
2643
2644         if ((status == SCI_SUCCESS) &&
2645             !test_bit(IREQ_PENDING_ABORT, &ireq->flags) &&
2646             !test_and_set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags)) {
2647                 /* Utilize the original post context command and or in the
2648                  * POST_TC_ABORT request sub-type.
2649                  */
2650                 sci_controller_post_request(
2651                         ihost, ireq->post_context |
2652                                 SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
2653         }
2654         return status;
2655 }
2656
2657 /**
2658  * sci_controller_complete_io() - This method will perform core specific
2659  *    completion operations for an IO request.  After this method is invoked,
2660  *    the user should consider the IO request as invalid until it is properly
2661  *    reused (i.e. re-constructed).
2662  * @ihost: The handle to the controller object for which to complete the
2663  *    IO request.
2664  * @idev: The handle to the remote device object for which to complete
2665  *    the IO request.
2666  * @ireq: the handle to the io request object to complete.
2667  */
2668 enum sci_status sci_controller_complete_io(struct isci_host *ihost,
2669                                            struct isci_remote_device *idev,
2670                                            struct isci_request *ireq)
2671 {
2672         enum sci_status status;
2673
2674         switch (ihost->sm.current_state_id) {
2675         case SCIC_STOPPING:
2676                 /* XXX: Implement this function */
2677                 return SCI_FAILURE;
2678         case SCIC_READY:
2679                 status = sci_remote_device_complete_io(ihost, idev, ireq);
2680                 if (status != SCI_SUCCESS)
2681                         return status;
2682
2683                 clear_bit(IREQ_ACTIVE, &ireq->flags);
2684                 return SCI_SUCCESS;
2685         default:
2686                 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2687                          __func__, ihost->sm.current_state_id);
2688                 return SCI_FAILURE_INVALID_STATE;
2689         }
2690
2691 }
2692
2693 enum sci_status sci_controller_continue_io(struct isci_request *ireq)
2694 {
2695         struct isci_host *ihost = ireq->owning_controller;
2696
2697         if (ihost->sm.current_state_id != SCIC_READY) {
2698                 dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n",
2699                          __func__, ihost->sm.current_state_id);
2700                 return SCI_FAILURE_INVALID_STATE;
2701         }
2702
2703         set_bit(IREQ_ACTIVE, &ireq->flags);
2704         sci_controller_post_request(ihost, ireq->post_context);
2705         return SCI_SUCCESS;
2706 }
2707
2708 /**
2709  * sci_controller_start_task() - This method is called by the SCIC user to
2710  *    send/start a framework task management request.
2711  * @ihost: the handle to the controller object for which to start the task
2712  *    management request.
2713  * @idev: the handle to the remote device object for which to start
2714  *    the task management request.
2715  * @ireq: the handle to the task request object to start.
2716  */
2717 enum sci_status sci_controller_start_task(struct isci_host *ihost,
2718                                           struct isci_remote_device *idev,
2719                                           struct isci_request *ireq)
2720 {
2721         enum sci_status status;
2722
2723         if (ihost->sm.current_state_id != SCIC_READY) {
2724                 dev_warn(&ihost->pdev->dev,
2725                          "%s: SCIC Controller starting task from invalid "
2726                          "state\n",
2727                          __func__);
2728                 return SCI_FAILURE_INVALID_STATE;
2729         }
2730
2731         status = sci_remote_device_start_task(ihost, idev, ireq);
2732         switch (status) {
2733         case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
2734                 set_bit(IREQ_ACTIVE, &ireq->flags);
2735
2736                 /*
2737                  * We will let framework know this task request started successfully,
2738                  * although core is still woring on starting the request (to post tc when
2739                  * RNC is resumed.)
2740                  */
2741                 return SCI_SUCCESS;
2742         case SCI_SUCCESS:
2743                 set_bit(IREQ_ACTIVE, &ireq->flags);
2744                 sci_controller_post_request(ihost, ireq->post_context);
2745                 break;
2746         default:
2747                 break;
2748         }
2749
2750         return status;
2751 }
2752
2753 static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data)
2754 {
2755         int d;
2756
2757         /* no support for TX_GP_CFG */
2758         if (reg_index == 0)
2759                 return -EINVAL;
2760
2761         for (d = 0; d < isci_gpio_count(ihost); d++) {
2762                 u32 val = 0x444; /* all ODx.n clear */
2763                 int i;
2764
2765                 for (i = 0; i < 3; i++) {
2766                         int bit;
2767
2768                         bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i),
2769                                                        write_data, reg_index,
2770                                                        reg_count);
2771                         if (bit < 0)
2772                                 break;
2773
2774                         /* if od is set, clear the 'invert' bit */
2775                         val &= ~(bit << ((i << 2) + 2));
2776                 }
2777
2778                 if (i < 3)
2779                         break;
2780                 writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]);
2781         }
2782
2783         /* unless reg_index is > 1, we should always be able to write at
2784          * least one register
2785          */
2786         return d > 0;
2787 }
2788
2789 int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index,
2790                     u8 reg_count, u8 *write_data)
2791 {
2792         struct isci_host *ihost = sas_ha->lldd_ha;
2793         int written;
2794
2795         switch (reg_type) {
2796         case SAS_GPIO_REG_TX_GP:
2797                 written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data);
2798                 break;
2799         default:
2800                 written = -EINVAL;
2801         }
2802
2803         return written;
2804 }