kill dentry_update_name_case()
[sfrench/cifs-2.6.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-125"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80         HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84 MODULE_ALIAS("cciss");
85
86 static int hpsa_simple_mode;
87 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
88 MODULE_PARM_DESC(hpsa_simple_mode,
89         "Use 'simple mode' rather than 'performant mode'");
90
91 /* define the PCI info for the cards we can control */
92 static const struct pci_device_id hpsa_pci_device_id[] = {
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
135         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
147                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148         {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
149                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150         {0,}
151 };
152
153 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
154
155 /*  board_id = Subsystem Device ID & Vendor ID
156  *  product = Marketing Name for the board
157  *  access = Address of the struct of function pointers
158  */
159 static struct board_type products[] = {
160         {0x40700E11, "Smart Array 5300", &SA5A_access},
161         {0x40800E11, "Smart Array 5i", &SA5B_access},
162         {0x40820E11, "Smart Array 532", &SA5B_access},
163         {0x40830E11, "Smart Array 5312", &SA5B_access},
164         {0x409A0E11, "Smart Array 641", &SA5A_access},
165         {0x409B0E11, "Smart Array 642", &SA5A_access},
166         {0x409C0E11, "Smart Array 6400", &SA5A_access},
167         {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
168         {0x40910E11, "Smart Array 6i", &SA5A_access},
169         {0x3225103C, "Smart Array P600", &SA5A_access},
170         {0x3223103C, "Smart Array P800", &SA5A_access},
171         {0x3234103C, "Smart Array P400", &SA5A_access},
172         {0x3235103C, "Smart Array P400i", &SA5A_access},
173         {0x3211103C, "Smart Array E200i", &SA5A_access},
174         {0x3212103C, "Smart Array E200", &SA5A_access},
175         {0x3213103C, "Smart Array E200i", &SA5A_access},
176         {0x3214103C, "Smart Array E200i", &SA5A_access},
177         {0x3215103C, "Smart Array E200i", &SA5A_access},
178         {0x3237103C, "Smart Array E500", &SA5A_access},
179         {0x323D103C, "Smart Array P700m", &SA5A_access},
180         {0x3241103C, "Smart Array P212", &SA5_access},
181         {0x3243103C, "Smart Array P410", &SA5_access},
182         {0x3245103C, "Smart Array P410i", &SA5_access},
183         {0x3247103C, "Smart Array P411", &SA5_access},
184         {0x3249103C, "Smart Array P812", &SA5_access},
185         {0x324A103C, "Smart Array P712m", &SA5_access},
186         {0x324B103C, "Smart Array P711m", &SA5_access},
187         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
188         {0x3350103C, "Smart Array P222", &SA5_access},
189         {0x3351103C, "Smart Array P420", &SA5_access},
190         {0x3352103C, "Smart Array P421", &SA5_access},
191         {0x3353103C, "Smart Array P822", &SA5_access},
192         {0x3354103C, "Smart Array P420i", &SA5_access},
193         {0x3355103C, "Smart Array P220i", &SA5_access},
194         {0x3356103C, "Smart Array P721m", &SA5_access},
195         {0x1920103C, "Smart Array P430i", &SA5_access},
196         {0x1921103C, "Smart Array P830i", &SA5_access},
197         {0x1922103C, "Smart Array P430", &SA5_access},
198         {0x1923103C, "Smart Array P431", &SA5_access},
199         {0x1924103C, "Smart Array P830", &SA5_access},
200         {0x1925103C, "Smart Array P831", &SA5_access},
201         {0x1926103C, "Smart Array P731m", &SA5_access},
202         {0x1928103C, "Smart Array P230i", &SA5_access},
203         {0x1929103C, "Smart Array P530", &SA5_access},
204         {0x21BD103C, "Smart Array P244br", &SA5_access},
205         {0x21BE103C, "Smart Array P741m", &SA5_access},
206         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
207         {0x21C0103C, "Smart Array P440ar", &SA5_access},
208         {0x21C1103C, "Smart Array P840ar", &SA5_access},
209         {0x21C2103C, "Smart Array P440", &SA5_access},
210         {0x21C3103C, "Smart Array P441", &SA5_access},
211         {0x21C4103C, "Smart Array", &SA5_access},
212         {0x21C5103C, "Smart Array P841", &SA5_access},
213         {0x21C6103C, "Smart HBA H244br", &SA5_access},
214         {0x21C7103C, "Smart HBA H240", &SA5_access},
215         {0x21C8103C, "Smart HBA H241", &SA5_access},
216         {0x21C9103C, "Smart Array", &SA5_access},
217         {0x21CA103C, "Smart Array P246br", &SA5_access},
218         {0x21CB103C, "Smart Array P840", &SA5_access},
219         {0x21CC103C, "Smart Array", &SA5_access},
220         {0x21CD103C, "Smart Array", &SA5_access},
221         {0x21CE103C, "Smart HBA", &SA5_access},
222         {0x05809005, "SmartHBA-SA", &SA5_access},
223         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
224         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
225         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
226         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
227         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
228         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
229         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
230         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
231         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
232         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
233         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
234 };
235
236 static struct scsi_transport_template *hpsa_sas_transport_template;
237 static int hpsa_add_sas_host(struct ctlr_info *h);
238 static void hpsa_delete_sas_host(struct ctlr_info *h);
239 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
240                         struct hpsa_scsi_dev_t *device);
241 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
242 static struct hpsa_scsi_dev_t
243         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
244                 struct sas_rphy *rphy);
245
246 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
247 static const struct scsi_cmnd hpsa_cmd_busy;
248 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
249 static const struct scsi_cmnd hpsa_cmd_idle;
250 static int number_of_controllers;
251
252 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
253 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
254 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
255
256 #ifdef CONFIG_COMPAT
257 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
258         void __user *arg);
259 #endif
260
261 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
262 static struct CommandList *cmd_alloc(struct ctlr_info *h);
263 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
264 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
265                                             struct scsi_cmnd *scmd);
266 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
267         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
268         int cmd_type);
269 static void hpsa_free_cmd_pool(struct ctlr_info *h);
270 #define VPD_PAGE (1 << 8)
271 #define HPSA_SIMPLE_ERROR_BITS 0x03
272
273 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
274 static void hpsa_scan_start(struct Scsi_Host *);
275 static int hpsa_scan_finished(struct Scsi_Host *sh,
276         unsigned long elapsed_time);
277 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
278
279 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
280 static int hpsa_slave_alloc(struct scsi_device *sdev);
281 static int hpsa_slave_configure(struct scsi_device *sdev);
282 static void hpsa_slave_destroy(struct scsi_device *sdev);
283
284 static void hpsa_update_scsi_devices(struct ctlr_info *h);
285 static int check_for_unit_attention(struct ctlr_info *h,
286         struct CommandList *c);
287 static void check_ioctl_unit_attention(struct ctlr_info *h,
288         struct CommandList *c);
289 /* performant mode helper functions */
290 static void calc_bucket_map(int *bucket, int num_buckets,
291         int nsgs, int min_blocks, u32 *bucket_map);
292 static void hpsa_free_performant_mode(struct ctlr_info *h);
293 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
294 static inline u32 next_command(struct ctlr_info *h, u8 q);
295 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
296                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
297                                u64 *cfg_offset);
298 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
299                                     unsigned long *memory_bar);
300 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
301                                 bool *legacy_board);
302 static int wait_for_device_to_become_ready(struct ctlr_info *h,
303                                            unsigned char lunaddr[],
304                                            int reply_queue);
305 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
306                                      int wait_for_ready);
307 static inline void finish_cmd(struct CommandList *c);
308 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
309 #define BOARD_NOT_READY 0
310 #define BOARD_READY 1
311 static void hpsa_drain_accel_commands(struct ctlr_info *h);
312 static void hpsa_flush_cache(struct ctlr_info *h);
313 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
314         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
315         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
316 static void hpsa_command_resubmit_worker(struct work_struct *work);
317 static u32 lockup_detected(struct ctlr_info *h);
318 static int detect_controller_lockup(struct ctlr_info *h);
319 static void hpsa_disable_rld_caching(struct ctlr_info *h);
320 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
321         struct ReportExtendedLUNdata *buf, int bufsize);
322 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
323         unsigned char scsi3addr[], u8 page);
324 static int hpsa_luns_changed(struct ctlr_info *h);
325 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
326                                struct hpsa_scsi_dev_t *dev,
327                                unsigned char *scsi3addr);
328
329 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
330 {
331         unsigned long *priv = shost_priv(sdev->host);
332         return (struct ctlr_info *) *priv;
333 }
334
335 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
336 {
337         unsigned long *priv = shost_priv(sh);
338         return (struct ctlr_info *) *priv;
339 }
340
341 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
342 {
343         return c->scsi_cmd == SCSI_CMD_IDLE;
344 }
345
346 static inline bool hpsa_is_pending_event(struct CommandList *c)
347 {
348         return c->reset_pending;
349 }
350
351 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
352 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
353                         u8 *sense_key, u8 *asc, u8 *ascq)
354 {
355         struct scsi_sense_hdr sshdr;
356         bool rc;
357
358         *sense_key = -1;
359         *asc = -1;
360         *ascq = -1;
361
362         if (sense_data_len < 1)
363                 return;
364
365         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
366         if (rc) {
367                 *sense_key = sshdr.sense_key;
368                 *asc = sshdr.asc;
369                 *ascq = sshdr.ascq;
370         }
371 }
372
373 static int check_for_unit_attention(struct ctlr_info *h,
374         struct CommandList *c)
375 {
376         u8 sense_key, asc, ascq;
377         int sense_len;
378
379         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
380                 sense_len = sizeof(c->err_info->SenseInfo);
381         else
382                 sense_len = c->err_info->SenseLen;
383
384         decode_sense_data(c->err_info->SenseInfo, sense_len,
385                                 &sense_key, &asc, &ascq);
386         if (sense_key != UNIT_ATTENTION || asc == 0xff)
387                 return 0;
388
389         switch (asc) {
390         case STATE_CHANGED:
391                 dev_warn(&h->pdev->dev,
392                         "%s: a state change detected, command retried\n",
393                         h->devname);
394                 break;
395         case LUN_FAILED:
396                 dev_warn(&h->pdev->dev,
397                         "%s: LUN failure detected\n", h->devname);
398                 break;
399         case REPORT_LUNS_CHANGED:
400                 dev_warn(&h->pdev->dev,
401                         "%s: report LUN data changed\n", h->devname);
402         /*
403          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
404          * target (array) devices.
405          */
406                 break;
407         case POWER_OR_RESET:
408                 dev_warn(&h->pdev->dev,
409                         "%s: a power on or device reset detected\n",
410                         h->devname);
411                 break;
412         case UNIT_ATTENTION_CLEARED:
413                 dev_warn(&h->pdev->dev,
414                         "%s: unit attention cleared by another initiator\n",
415                         h->devname);
416                 break;
417         default:
418                 dev_warn(&h->pdev->dev,
419                         "%s: unknown unit attention detected\n",
420                         h->devname);
421                 break;
422         }
423         return 1;
424 }
425
426 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
427 {
428         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
429                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
430                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
431                 return 0;
432         dev_warn(&h->pdev->dev, HPSA "device busy");
433         return 1;
434 }
435
436 static u32 lockup_detected(struct ctlr_info *h);
437 static ssize_t host_show_lockup_detected(struct device *dev,
438                 struct device_attribute *attr, char *buf)
439 {
440         int ld;
441         struct ctlr_info *h;
442         struct Scsi_Host *shost = class_to_shost(dev);
443
444         h = shost_to_hba(shost);
445         ld = lockup_detected(h);
446
447         return sprintf(buf, "ld=%d\n", ld);
448 }
449
450 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
451                                          struct device_attribute *attr,
452                                          const char *buf, size_t count)
453 {
454         int status, len;
455         struct ctlr_info *h;
456         struct Scsi_Host *shost = class_to_shost(dev);
457         char tmpbuf[10];
458
459         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
460                 return -EACCES;
461         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
462         strncpy(tmpbuf, buf, len);
463         tmpbuf[len] = '\0';
464         if (sscanf(tmpbuf, "%d", &status) != 1)
465                 return -EINVAL;
466         h = shost_to_hba(shost);
467         h->acciopath_status = !!status;
468         dev_warn(&h->pdev->dev,
469                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
470                 h->acciopath_status ? "enabled" : "disabled");
471         return count;
472 }
473
474 static ssize_t host_store_raid_offload_debug(struct device *dev,
475                                          struct device_attribute *attr,
476                                          const char *buf, size_t count)
477 {
478         int debug_level, len;
479         struct ctlr_info *h;
480         struct Scsi_Host *shost = class_to_shost(dev);
481         char tmpbuf[10];
482
483         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
484                 return -EACCES;
485         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
486         strncpy(tmpbuf, buf, len);
487         tmpbuf[len] = '\0';
488         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
489                 return -EINVAL;
490         if (debug_level < 0)
491                 debug_level = 0;
492         h = shost_to_hba(shost);
493         h->raid_offload_debug = debug_level;
494         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
495                 h->raid_offload_debug);
496         return count;
497 }
498
499 static ssize_t host_store_rescan(struct device *dev,
500                                  struct device_attribute *attr,
501                                  const char *buf, size_t count)
502 {
503         struct ctlr_info *h;
504         struct Scsi_Host *shost = class_to_shost(dev);
505         h = shost_to_hba(shost);
506         hpsa_scan_start(h->scsi_host);
507         return count;
508 }
509
510 static ssize_t host_show_firmware_revision(struct device *dev,
511              struct device_attribute *attr, char *buf)
512 {
513         struct ctlr_info *h;
514         struct Scsi_Host *shost = class_to_shost(dev);
515         unsigned char *fwrev;
516
517         h = shost_to_hba(shost);
518         if (!h->hba_inquiry_data)
519                 return 0;
520         fwrev = &h->hba_inquiry_data[32];
521         return snprintf(buf, 20, "%c%c%c%c\n",
522                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
523 }
524
525 static ssize_t host_show_commands_outstanding(struct device *dev,
526              struct device_attribute *attr, char *buf)
527 {
528         struct Scsi_Host *shost = class_to_shost(dev);
529         struct ctlr_info *h = shost_to_hba(shost);
530
531         return snprintf(buf, 20, "%d\n",
532                         atomic_read(&h->commands_outstanding));
533 }
534
535 static ssize_t host_show_transport_mode(struct device *dev,
536         struct device_attribute *attr, char *buf)
537 {
538         struct ctlr_info *h;
539         struct Scsi_Host *shost = class_to_shost(dev);
540
541         h = shost_to_hba(shost);
542         return snprintf(buf, 20, "%s\n",
543                 h->transMethod & CFGTBL_Trans_Performant ?
544                         "performant" : "simple");
545 }
546
547 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
548         struct device_attribute *attr, char *buf)
549 {
550         struct ctlr_info *h;
551         struct Scsi_Host *shost = class_to_shost(dev);
552
553         h = shost_to_hba(shost);
554         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
555                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
556 }
557
558 /* List of controllers which cannot be hard reset on kexec with reset_devices */
559 static u32 unresettable_controller[] = {
560         0x324a103C, /* Smart Array P712m */
561         0x324b103C, /* Smart Array P711m */
562         0x3223103C, /* Smart Array P800 */
563         0x3234103C, /* Smart Array P400 */
564         0x3235103C, /* Smart Array P400i */
565         0x3211103C, /* Smart Array E200i */
566         0x3212103C, /* Smart Array E200 */
567         0x3213103C, /* Smart Array E200i */
568         0x3214103C, /* Smart Array E200i */
569         0x3215103C, /* Smart Array E200i */
570         0x3237103C, /* Smart Array E500 */
571         0x323D103C, /* Smart Array P700m */
572         0x40800E11, /* Smart Array 5i */
573         0x409C0E11, /* Smart Array 6400 */
574         0x409D0E11, /* Smart Array 6400 EM */
575         0x40700E11, /* Smart Array 5300 */
576         0x40820E11, /* Smart Array 532 */
577         0x40830E11, /* Smart Array 5312 */
578         0x409A0E11, /* Smart Array 641 */
579         0x409B0E11, /* Smart Array 642 */
580         0x40910E11, /* Smart Array 6i */
581 };
582
583 /* List of controllers which cannot even be soft reset */
584 static u32 soft_unresettable_controller[] = {
585         0x40800E11, /* Smart Array 5i */
586         0x40700E11, /* Smart Array 5300 */
587         0x40820E11, /* Smart Array 532 */
588         0x40830E11, /* Smart Array 5312 */
589         0x409A0E11, /* Smart Array 641 */
590         0x409B0E11, /* Smart Array 642 */
591         0x40910E11, /* Smart Array 6i */
592         /* Exclude 640x boards.  These are two pci devices in one slot
593          * which share a battery backed cache module.  One controls the
594          * cache, the other accesses the cache through the one that controls
595          * it.  If we reset the one controlling the cache, the other will
596          * likely not be happy.  Just forbid resetting this conjoined mess.
597          * The 640x isn't really supported by hpsa anyway.
598          */
599         0x409C0E11, /* Smart Array 6400 */
600         0x409D0E11, /* Smart Array 6400 EM */
601 };
602
603 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
604 {
605         int i;
606
607         for (i = 0; i < nelems; i++)
608                 if (a[i] == board_id)
609                         return 1;
610         return 0;
611 }
612
613 static int ctlr_is_hard_resettable(u32 board_id)
614 {
615         return !board_id_in_array(unresettable_controller,
616                         ARRAY_SIZE(unresettable_controller), board_id);
617 }
618
619 static int ctlr_is_soft_resettable(u32 board_id)
620 {
621         return !board_id_in_array(soft_unresettable_controller,
622                         ARRAY_SIZE(soft_unresettable_controller), board_id);
623 }
624
625 static int ctlr_is_resettable(u32 board_id)
626 {
627         return ctlr_is_hard_resettable(board_id) ||
628                 ctlr_is_soft_resettable(board_id);
629 }
630
631 static ssize_t host_show_resettable(struct device *dev,
632         struct device_attribute *attr, char *buf)
633 {
634         struct ctlr_info *h;
635         struct Scsi_Host *shost = class_to_shost(dev);
636
637         h = shost_to_hba(shost);
638         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
639 }
640
641 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
642 {
643         return (scsi3addr[3] & 0xC0) == 0x40;
644 }
645
646 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
647         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
648 };
649 #define HPSA_RAID_0     0
650 #define HPSA_RAID_4     1
651 #define HPSA_RAID_1     2       /* also used for RAID 10 */
652 #define HPSA_RAID_5     3       /* also used for RAID 50 */
653 #define HPSA_RAID_51    4
654 #define HPSA_RAID_6     5       /* also used for RAID 60 */
655 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
656 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
657 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
658
659 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
660 {
661         return !device->physical_device;
662 }
663
664 static ssize_t raid_level_show(struct device *dev,
665              struct device_attribute *attr, char *buf)
666 {
667         ssize_t l = 0;
668         unsigned char rlevel;
669         struct ctlr_info *h;
670         struct scsi_device *sdev;
671         struct hpsa_scsi_dev_t *hdev;
672         unsigned long flags;
673
674         sdev = to_scsi_device(dev);
675         h = sdev_to_hba(sdev);
676         spin_lock_irqsave(&h->lock, flags);
677         hdev = sdev->hostdata;
678         if (!hdev) {
679                 spin_unlock_irqrestore(&h->lock, flags);
680                 return -ENODEV;
681         }
682
683         /* Is this even a logical drive? */
684         if (!is_logical_device(hdev)) {
685                 spin_unlock_irqrestore(&h->lock, flags);
686                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
687                 return l;
688         }
689
690         rlevel = hdev->raid_level;
691         spin_unlock_irqrestore(&h->lock, flags);
692         if (rlevel > RAID_UNKNOWN)
693                 rlevel = RAID_UNKNOWN;
694         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
695         return l;
696 }
697
698 static ssize_t lunid_show(struct device *dev,
699              struct device_attribute *attr, char *buf)
700 {
701         struct ctlr_info *h;
702         struct scsi_device *sdev;
703         struct hpsa_scsi_dev_t *hdev;
704         unsigned long flags;
705         unsigned char lunid[8];
706
707         sdev = to_scsi_device(dev);
708         h = sdev_to_hba(sdev);
709         spin_lock_irqsave(&h->lock, flags);
710         hdev = sdev->hostdata;
711         if (!hdev) {
712                 spin_unlock_irqrestore(&h->lock, flags);
713                 return -ENODEV;
714         }
715         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
716         spin_unlock_irqrestore(&h->lock, flags);
717         return snprintf(buf, 20, "0x%8phN\n", lunid);
718 }
719
720 static ssize_t unique_id_show(struct device *dev,
721              struct device_attribute *attr, char *buf)
722 {
723         struct ctlr_info *h;
724         struct scsi_device *sdev;
725         struct hpsa_scsi_dev_t *hdev;
726         unsigned long flags;
727         unsigned char sn[16];
728
729         sdev = to_scsi_device(dev);
730         h = sdev_to_hba(sdev);
731         spin_lock_irqsave(&h->lock, flags);
732         hdev = sdev->hostdata;
733         if (!hdev) {
734                 spin_unlock_irqrestore(&h->lock, flags);
735                 return -ENODEV;
736         }
737         memcpy(sn, hdev->device_id, sizeof(sn));
738         spin_unlock_irqrestore(&h->lock, flags);
739         return snprintf(buf, 16 * 2 + 2,
740                         "%02X%02X%02X%02X%02X%02X%02X%02X"
741                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
742                         sn[0], sn[1], sn[2], sn[3],
743                         sn[4], sn[5], sn[6], sn[7],
744                         sn[8], sn[9], sn[10], sn[11],
745                         sn[12], sn[13], sn[14], sn[15]);
746 }
747
748 static ssize_t sas_address_show(struct device *dev,
749               struct device_attribute *attr, char *buf)
750 {
751         struct ctlr_info *h;
752         struct scsi_device *sdev;
753         struct hpsa_scsi_dev_t *hdev;
754         unsigned long flags;
755         u64 sas_address;
756
757         sdev = to_scsi_device(dev);
758         h = sdev_to_hba(sdev);
759         spin_lock_irqsave(&h->lock, flags);
760         hdev = sdev->hostdata;
761         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
762                 spin_unlock_irqrestore(&h->lock, flags);
763                 return -ENODEV;
764         }
765         sas_address = hdev->sas_address;
766         spin_unlock_irqrestore(&h->lock, flags);
767
768         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
769 }
770
771 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
772              struct device_attribute *attr, char *buf)
773 {
774         struct ctlr_info *h;
775         struct scsi_device *sdev;
776         struct hpsa_scsi_dev_t *hdev;
777         unsigned long flags;
778         int offload_enabled;
779
780         sdev = to_scsi_device(dev);
781         h = sdev_to_hba(sdev);
782         spin_lock_irqsave(&h->lock, flags);
783         hdev = sdev->hostdata;
784         if (!hdev) {
785                 spin_unlock_irqrestore(&h->lock, flags);
786                 return -ENODEV;
787         }
788         offload_enabled = hdev->offload_enabled;
789         spin_unlock_irqrestore(&h->lock, flags);
790
791         if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
792                 return snprintf(buf, 20, "%d\n", offload_enabled);
793         else
794                 return snprintf(buf, 40, "%s\n",
795                                 "Not applicable for a controller");
796 }
797
798 #define MAX_PATHS 8
799 static ssize_t path_info_show(struct device *dev,
800              struct device_attribute *attr, char *buf)
801 {
802         struct ctlr_info *h;
803         struct scsi_device *sdev;
804         struct hpsa_scsi_dev_t *hdev;
805         unsigned long flags;
806         int i;
807         int output_len = 0;
808         u8 box;
809         u8 bay;
810         u8 path_map_index = 0;
811         char *active;
812         unsigned char phys_connector[2];
813
814         sdev = to_scsi_device(dev);
815         h = sdev_to_hba(sdev);
816         spin_lock_irqsave(&h->devlock, flags);
817         hdev = sdev->hostdata;
818         if (!hdev) {
819                 spin_unlock_irqrestore(&h->devlock, flags);
820                 return -ENODEV;
821         }
822
823         bay = hdev->bay;
824         for (i = 0; i < MAX_PATHS; i++) {
825                 path_map_index = 1<<i;
826                 if (i == hdev->active_path_index)
827                         active = "Active";
828                 else if (hdev->path_map & path_map_index)
829                         active = "Inactive";
830                 else
831                         continue;
832
833                 output_len += scnprintf(buf + output_len,
834                                 PAGE_SIZE - output_len,
835                                 "[%d:%d:%d:%d] %20.20s ",
836                                 h->scsi_host->host_no,
837                                 hdev->bus, hdev->target, hdev->lun,
838                                 scsi_device_type(hdev->devtype));
839
840                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
841                         output_len += scnprintf(buf + output_len,
842                                                 PAGE_SIZE - output_len,
843                                                 "%s\n", active);
844                         continue;
845                 }
846
847                 box = hdev->box[i];
848                 memcpy(&phys_connector, &hdev->phys_connector[i],
849                         sizeof(phys_connector));
850                 if (phys_connector[0] < '0')
851                         phys_connector[0] = '0';
852                 if (phys_connector[1] < '0')
853                         phys_connector[1] = '0';
854                 output_len += scnprintf(buf + output_len,
855                                 PAGE_SIZE - output_len,
856                                 "PORT: %.2s ",
857                                 phys_connector);
858                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
859                         hdev->expose_device) {
860                         if (box == 0 || box == 0xFF) {
861                                 output_len += scnprintf(buf + output_len,
862                                         PAGE_SIZE - output_len,
863                                         "BAY: %hhu %s\n",
864                                         bay, active);
865                         } else {
866                                 output_len += scnprintf(buf + output_len,
867                                         PAGE_SIZE - output_len,
868                                         "BOX: %hhu BAY: %hhu %s\n",
869                                         box, bay, active);
870                         }
871                 } else if (box != 0 && box != 0xFF) {
872                         output_len += scnprintf(buf + output_len,
873                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
874                                 box, active);
875                 } else
876                         output_len += scnprintf(buf + output_len,
877                                 PAGE_SIZE - output_len, "%s\n", active);
878         }
879
880         spin_unlock_irqrestore(&h->devlock, flags);
881         return output_len;
882 }
883
884 static ssize_t host_show_ctlr_num(struct device *dev,
885         struct device_attribute *attr, char *buf)
886 {
887         struct ctlr_info *h;
888         struct Scsi_Host *shost = class_to_shost(dev);
889
890         h = shost_to_hba(shost);
891         return snprintf(buf, 20, "%d\n", h->ctlr);
892 }
893
894 static ssize_t host_show_legacy_board(struct device *dev,
895         struct device_attribute *attr, char *buf)
896 {
897         struct ctlr_info *h;
898         struct Scsi_Host *shost = class_to_shost(dev);
899
900         h = shost_to_hba(shost);
901         return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
902 }
903
904 static DEVICE_ATTR_RO(raid_level);
905 static DEVICE_ATTR_RO(lunid);
906 static DEVICE_ATTR_RO(unique_id);
907 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
908 static DEVICE_ATTR_RO(sas_address);
909 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
910                         host_show_hp_ssd_smart_path_enabled, NULL);
911 static DEVICE_ATTR_RO(path_info);
912 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
913                 host_show_hp_ssd_smart_path_status,
914                 host_store_hp_ssd_smart_path_status);
915 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
916                         host_store_raid_offload_debug);
917 static DEVICE_ATTR(firmware_revision, S_IRUGO,
918         host_show_firmware_revision, NULL);
919 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
920         host_show_commands_outstanding, NULL);
921 static DEVICE_ATTR(transport_mode, S_IRUGO,
922         host_show_transport_mode, NULL);
923 static DEVICE_ATTR(resettable, S_IRUGO,
924         host_show_resettable, NULL);
925 static DEVICE_ATTR(lockup_detected, S_IRUGO,
926         host_show_lockup_detected, NULL);
927 static DEVICE_ATTR(ctlr_num, S_IRUGO,
928         host_show_ctlr_num, NULL);
929 static DEVICE_ATTR(legacy_board, S_IRUGO,
930         host_show_legacy_board, NULL);
931
932 static struct device_attribute *hpsa_sdev_attrs[] = {
933         &dev_attr_raid_level,
934         &dev_attr_lunid,
935         &dev_attr_unique_id,
936         &dev_attr_hp_ssd_smart_path_enabled,
937         &dev_attr_path_info,
938         &dev_attr_sas_address,
939         NULL,
940 };
941
942 static struct device_attribute *hpsa_shost_attrs[] = {
943         &dev_attr_rescan,
944         &dev_attr_firmware_revision,
945         &dev_attr_commands_outstanding,
946         &dev_attr_transport_mode,
947         &dev_attr_resettable,
948         &dev_attr_hp_ssd_smart_path_status,
949         &dev_attr_raid_offload_debug,
950         &dev_attr_lockup_detected,
951         &dev_attr_ctlr_num,
952         &dev_attr_legacy_board,
953         NULL,
954 };
955
956 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_DRIVER +\
957                                  HPSA_MAX_CONCURRENT_PASSTHRUS)
958
959 static struct scsi_host_template hpsa_driver_template = {
960         .module                 = THIS_MODULE,
961         .name                   = HPSA,
962         .proc_name              = HPSA,
963         .queuecommand           = hpsa_scsi_queue_command,
964         .scan_start             = hpsa_scan_start,
965         .scan_finished          = hpsa_scan_finished,
966         .change_queue_depth     = hpsa_change_queue_depth,
967         .this_id                = -1,
968         .use_clustering         = ENABLE_CLUSTERING,
969         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
970         .ioctl                  = hpsa_ioctl,
971         .slave_alloc            = hpsa_slave_alloc,
972         .slave_configure        = hpsa_slave_configure,
973         .slave_destroy          = hpsa_slave_destroy,
974 #ifdef CONFIG_COMPAT
975         .compat_ioctl           = hpsa_compat_ioctl,
976 #endif
977         .sdev_attrs = hpsa_sdev_attrs,
978         .shost_attrs = hpsa_shost_attrs,
979         .max_sectors = 1024,
980         .no_write_same = 1,
981 };
982
983 static inline u32 next_command(struct ctlr_info *h, u8 q)
984 {
985         u32 a;
986         struct reply_queue_buffer *rq = &h->reply_queue[q];
987
988         if (h->transMethod & CFGTBL_Trans_io_accel1)
989                 return h->access.command_completed(h, q);
990
991         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
992                 return h->access.command_completed(h, q);
993
994         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
995                 a = rq->head[rq->current_entry];
996                 rq->current_entry++;
997                 atomic_dec(&h->commands_outstanding);
998         } else {
999                 a = FIFO_EMPTY;
1000         }
1001         /* Check for wraparound */
1002         if (rq->current_entry == h->max_commands) {
1003                 rq->current_entry = 0;
1004                 rq->wraparound ^= 1;
1005         }
1006         return a;
1007 }
1008
1009 /*
1010  * There are some special bits in the bus address of the
1011  * command that we have to set for the controller to know
1012  * how to process the command:
1013  *
1014  * Normal performant mode:
1015  * bit 0: 1 means performant mode, 0 means simple mode.
1016  * bits 1-3 = block fetch table entry
1017  * bits 4-6 = command type (== 0)
1018  *
1019  * ioaccel1 mode:
1020  * bit 0 = "performant mode" bit.
1021  * bits 1-3 = block fetch table entry
1022  * bits 4-6 = command type (== 110)
1023  * (command type is needed because ioaccel1 mode
1024  * commands are submitted through the same register as normal
1025  * mode commands, so this is how the controller knows whether
1026  * the command is normal mode or ioaccel1 mode.)
1027  *
1028  * ioaccel2 mode:
1029  * bit 0 = "performant mode" bit.
1030  * bits 1-4 = block fetch table entry (note extra bit)
1031  * bits 4-6 = not needed, because ioaccel2 mode has
1032  * a separate special register for submitting commands.
1033  */
1034
1035 /*
1036  * set_performant_mode: Modify the tag for cciss performant
1037  * set bit 0 for pull model, bits 3-1 for block fetch
1038  * register number
1039  */
1040 #define DEFAULT_REPLY_QUEUE (-1)
1041 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1042                                         int reply_queue)
1043 {
1044         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1045                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1046                 if (unlikely(!h->msix_vectors))
1047                         return;
1048                 c->Header.ReplyQueue = reply_queue;
1049         }
1050 }
1051
1052 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1053                                                 struct CommandList *c,
1054                                                 int reply_queue)
1055 {
1056         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1057
1058         /*
1059          * Tell the controller to post the reply to the queue for this
1060          * processor.  This seems to give the best I/O throughput.
1061          */
1062         cp->ReplyQueue = reply_queue;
1063         /*
1064          * Set the bits in the address sent down to include:
1065          *  - performant mode bit (bit 0)
1066          *  - pull count (bits 1-3)
1067          *  - command type (bits 4-6)
1068          */
1069         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1070                                         IOACCEL1_BUSADDR_CMDTYPE;
1071 }
1072
1073 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1074                                                 struct CommandList *c,
1075                                                 int reply_queue)
1076 {
1077         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1078                 &h->ioaccel2_cmd_pool[c->cmdindex];
1079
1080         /* Tell the controller to post the reply to the queue for this
1081          * processor.  This seems to give the best I/O throughput.
1082          */
1083         cp->reply_queue = reply_queue;
1084         /* Set the bits in the address sent down to include:
1085          *  - performant mode bit not used in ioaccel mode 2
1086          *  - pull count (bits 0-3)
1087          *  - command type isn't needed for ioaccel2
1088          */
1089         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1090 }
1091
1092 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1093                                                 struct CommandList *c,
1094                                                 int reply_queue)
1095 {
1096         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1097
1098         /*
1099          * Tell the controller to post the reply to the queue for this
1100          * processor.  This seems to give the best I/O throughput.
1101          */
1102         cp->reply_queue = reply_queue;
1103         /*
1104          * Set the bits in the address sent down to include:
1105          *  - performant mode bit not used in ioaccel mode 2
1106          *  - pull count (bits 0-3)
1107          *  - command type isn't needed for ioaccel2
1108          */
1109         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1110 }
1111
1112 static int is_firmware_flash_cmd(u8 *cdb)
1113 {
1114         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1115 }
1116
1117 /*
1118  * During firmware flash, the heartbeat register may not update as frequently
1119  * as it should.  So we dial down lockup detection during firmware flash. and
1120  * dial it back up when firmware flash completes.
1121  */
1122 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1123 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1124 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1125 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1126                 struct CommandList *c)
1127 {
1128         if (!is_firmware_flash_cmd(c->Request.CDB))
1129                 return;
1130         atomic_inc(&h->firmware_flash_in_progress);
1131         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1132 }
1133
1134 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1135                 struct CommandList *c)
1136 {
1137         if (is_firmware_flash_cmd(c->Request.CDB) &&
1138                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1139                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1140 }
1141
1142 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1143         struct CommandList *c, int reply_queue)
1144 {
1145         dial_down_lockup_detection_during_fw_flash(h, c);
1146         atomic_inc(&h->commands_outstanding);
1147
1148         reply_queue = h->reply_map[raw_smp_processor_id()];
1149         switch (c->cmd_type) {
1150         case CMD_IOACCEL1:
1151                 set_ioaccel1_performant_mode(h, c, reply_queue);
1152                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1153                 break;
1154         case CMD_IOACCEL2:
1155                 set_ioaccel2_performant_mode(h, c, reply_queue);
1156                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1157                 break;
1158         case IOACCEL2_TMF:
1159                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1160                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1161                 break;
1162         default:
1163                 set_performant_mode(h, c, reply_queue);
1164                 h->access.submit_command(h, c);
1165         }
1166 }
1167
1168 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1169 {
1170         if (unlikely(hpsa_is_pending_event(c)))
1171                 return finish_cmd(c);
1172
1173         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1174 }
1175
1176 static inline int is_hba_lunid(unsigned char scsi3addr[])
1177 {
1178         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1179 }
1180
1181 static inline int is_scsi_rev_5(struct ctlr_info *h)
1182 {
1183         if (!h->hba_inquiry_data)
1184                 return 0;
1185         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1186                 return 1;
1187         return 0;
1188 }
1189
1190 static int hpsa_find_target_lun(struct ctlr_info *h,
1191         unsigned char scsi3addr[], int bus, int *target, int *lun)
1192 {
1193         /* finds an unused bus, target, lun for a new physical device
1194          * assumes h->devlock is held
1195          */
1196         int i, found = 0;
1197         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1198
1199         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1200
1201         for (i = 0; i < h->ndevices; i++) {
1202                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1203                         __set_bit(h->dev[i]->target, lun_taken);
1204         }
1205
1206         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1207         if (i < HPSA_MAX_DEVICES) {
1208                 /* *bus = 1; */
1209                 *target = i;
1210                 *lun = 0;
1211                 found = 1;
1212         }
1213         return !found;
1214 }
1215
1216 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1217         struct hpsa_scsi_dev_t *dev, char *description)
1218 {
1219 #define LABEL_SIZE 25
1220         char label[LABEL_SIZE];
1221
1222         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1223                 return;
1224
1225         switch (dev->devtype) {
1226         case TYPE_RAID:
1227                 snprintf(label, LABEL_SIZE, "controller");
1228                 break;
1229         case TYPE_ENCLOSURE:
1230                 snprintf(label, LABEL_SIZE, "enclosure");
1231                 break;
1232         case TYPE_DISK:
1233         case TYPE_ZBC:
1234                 if (dev->external)
1235                         snprintf(label, LABEL_SIZE, "external");
1236                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1237                         snprintf(label, LABEL_SIZE, "%s",
1238                                 raid_label[PHYSICAL_DRIVE]);
1239                 else
1240                         snprintf(label, LABEL_SIZE, "RAID-%s",
1241                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1242                                 raid_label[dev->raid_level]);
1243                 break;
1244         case TYPE_ROM:
1245                 snprintf(label, LABEL_SIZE, "rom");
1246                 break;
1247         case TYPE_TAPE:
1248                 snprintf(label, LABEL_SIZE, "tape");
1249                 break;
1250         case TYPE_MEDIUM_CHANGER:
1251                 snprintf(label, LABEL_SIZE, "changer");
1252                 break;
1253         default:
1254                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1255                 break;
1256         }
1257
1258         dev_printk(level, &h->pdev->dev,
1259                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1260                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1261                         description,
1262                         scsi_device_type(dev->devtype),
1263                         dev->vendor,
1264                         dev->model,
1265                         label,
1266                         dev->offload_config ? '+' : '-',
1267                         dev->offload_to_be_enabled ? '+' : '-',
1268                         dev->expose_device);
1269 }
1270
1271 /* Add an entry into h->dev[] array. */
1272 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1273                 struct hpsa_scsi_dev_t *device,
1274                 struct hpsa_scsi_dev_t *added[], int *nadded)
1275 {
1276         /* assumes h->devlock is held */
1277         int n = h->ndevices;
1278         int i;
1279         unsigned char addr1[8], addr2[8];
1280         struct hpsa_scsi_dev_t *sd;
1281
1282         if (n >= HPSA_MAX_DEVICES) {
1283                 dev_err(&h->pdev->dev, "too many devices, some will be "
1284                         "inaccessible.\n");
1285                 return -1;
1286         }
1287
1288         /* physical devices do not have lun or target assigned until now. */
1289         if (device->lun != -1)
1290                 /* Logical device, lun is already assigned. */
1291                 goto lun_assigned;
1292
1293         /* If this device a non-zero lun of a multi-lun device
1294          * byte 4 of the 8-byte LUN addr will contain the logical
1295          * unit no, zero otherwise.
1296          */
1297         if (device->scsi3addr[4] == 0) {
1298                 /* This is not a non-zero lun of a multi-lun device */
1299                 if (hpsa_find_target_lun(h, device->scsi3addr,
1300                         device->bus, &device->target, &device->lun) != 0)
1301                         return -1;
1302                 goto lun_assigned;
1303         }
1304
1305         /* This is a non-zero lun of a multi-lun device.
1306          * Search through our list and find the device which
1307          * has the same 8 byte LUN address, excepting byte 4 and 5.
1308          * Assign the same bus and target for this new LUN.
1309          * Use the logical unit number from the firmware.
1310          */
1311         memcpy(addr1, device->scsi3addr, 8);
1312         addr1[4] = 0;
1313         addr1[5] = 0;
1314         for (i = 0; i < n; i++) {
1315                 sd = h->dev[i];
1316                 memcpy(addr2, sd->scsi3addr, 8);
1317                 addr2[4] = 0;
1318                 addr2[5] = 0;
1319                 /* differ only in byte 4 and 5? */
1320                 if (memcmp(addr1, addr2, 8) == 0) {
1321                         device->bus = sd->bus;
1322                         device->target = sd->target;
1323                         device->lun = device->scsi3addr[4];
1324                         break;
1325                 }
1326         }
1327         if (device->lun == -1) {
1328                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1329                         " suspect firmware bug or unsupported hardware "
1330                         "configuration.\n");
1331                         return -1;
1332         }
1333
1334 lun_assigned:
1335
1336         h->dev[n] = device;
1337         h->ndevices++;
1338         added[*nadded] = device;
1339         (*nadded)++;
1340         hpsa_show_dev_msg(KERN_INFO, h, device,
1341                 device->expose_device ? "added" : "masked");
1342         return 0;
1343 }
1344
1345 /*
1346  * Called during a scan operation.
1347  *
1348  * Update an entry in h->dev[] array.
1349  */
1350 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1351         int entry, struct hpsa_scsi_dev_t *new_entry)
1352 {
1353         /* assumes h->devlock is held */
1354         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1355
1356         /* Raid level changed. */
1357         h->dev[entry]->raid_level = new_entry->raid_level;
1358
1359         /*
1360          * ioacccel_handle may have changed for a dual domain disk
1361          */
1362         h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1363
1364         /* Raid offload parameters changed.  Careful about the ordering. */
1365         if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1366                 /*
1367                  * if drive is newly offload_enabled, we want to copy the
1368                  * raid map data first.  If previously offload_enabled and
1369                  * offload_config were set, raid map data had better be
1370                  * the same as it was before. If raid map data has changed
1371                  * then it had better be the case that
1372                  * h->dev[entry]->offload_enabled is currently 0.
1373                  */
1374                 h->dev[entry]->raid_map = new_entry->raid_map;
1375                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1376         }
1377         if (new_entry->offload_to_be_enabled) {
1378                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1379                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1380         }
1381         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1382         h->dev[entry]->offload_config = new_entry->offload_config;
1383         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1384         h->dev[entry]->queue_depth = new_entry->queue_depth;
1385
1386         /*
1387          * We can turn off ioaccel offload now, but need to delay turning
1388          * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1389          * can't do that until all the devices are updated.
1390          */
1391         h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1392
1393         /*
1394          * turn ioaccel off immediately if told to do so.
1395          */
1396         if (!new_entry->offload_to_be_enabled)
1397                 h->dev[entry]->offload_enabled = 0;
1398
1399         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1400 }
1401
1402 /* Replace an entry from h->dev[] array. */
1403 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1404         int entry, struct hpsa_scsi_dev_t *new_entry,
1405         struct hpsa_scsi_dev_t *added[], int *nadded,
1406         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1407 {
1408         /* assumes h->devlock is held */
1409         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1410         removed[*nremoved] = h->dev[entry];
1411         (*nremoved)++;
1412
1413         /*
1414          * New physical devices won't have target/lun assigned yet
1415          * so we need to preserve the values in the slot we are replacing.
1416          */
1417         if (new_entry->target == -1) {
1418                 new_entry->target = h->dev[entry]->target;
1419                 new_entry->lun = h->dev[entry]->lun;
1420         }
1421
1422         h->dev[entry] = new_entry;
1423         added[*nadded] = new_entry;
1424         (*nadded)++;
1425
1426         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1427 }
1428
1429 /* Remove an entry from h->dev[] array. */
1430 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1431         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1432 {
1433         /* assumes h->devlock is held */
1434         int i;
1435         struct hpsa_scsi_dev_t *sd;
1436
1437         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1438
1439         sd = h->dev[entry];
1440         removed[*nremoved] = h->dev[entry];
1441         (*nremoved)++;
1442
1443         for (i = entry; i < h->ndevices-1; i++)
1444                 h->dev[i] = h->dev[i+1];
1445         h->ndevices--;
1446         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1447 }
1448
1449 #define SCSI3ADDR_EQ(a, b) ( \
1450         (a)[7] == (b)[7] && \
1451         (a)[6] == (b)[6] && \
1452         (a)[5] == (b)[5] && \
1453         (a)[4] == (b)[4] && \
1454         (a)[3] == (b)[3] && \
1455         (a)[2] == (b)[2] && \
1456         (a)[1] == (b)[1] && \
1457         (a)[0] == (b)[0])
1458
1459 static void fixup_botched_add(struct ctlr_info *h,
1460         struct hpsa_scsi_dev_t *added)
1461 {
1462         /* called when scsi_add_device fails in order to re-adjust
1463          * h->dev[] to match the mid layer's view.
1464          */
1465         unsigned long flags;
1466         int i, j;
1467
1468         spin_lock_irqsave(&h->lock, flags);
1469         for (i = 0; i < h->ndevices; i++) {
1470                 if (h->dev[i] == added) {
1471                         for (j = i; j < h->ndevices-1; j++)
1472                                 h->dev[j] = h->dev[j+1];
1473                         h->ndevices--;
1474                         break;
1475                 }
1476         }
1477         spin_unlock_irqrestore(&h->lock, flags);
1478         kfree(added);
1479 }
1480
1481 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1482         struct hpsa_scsi_dev_t *dev2)
1483 {
1484         /* we compare everything except lun and target as these
1485          * are not yet assigned.  Compare parts likely
1486          * to differ first
1487          */
1488         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1489                 sizeof(dev1->scsi3addr)) != 0)
1490                 return 0;
1491         if (memcmp(dev1->device_id, dev2->device_id,
1492                 sizeof(dev1->device_id)) != 0)
1493                 return 0;
1494         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1495                 return 0;
1496         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1497                 return 0;
1498         if (dev1->devtype != dev2->devtype)
1499                 return 0;
1500         if (dev1->bus != dev2->bus)
1501                 return 0;
1502         return 1;
1503 }
1504
1505 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1506         struct hpsa_scsi_dev_t *dev2)
1507 {
1508         /* Device attributes that can change, but don't mean
1509          * that the device is a different device, nor that the OS
1510          * needs to be told anything about the change.
1511          */
1512         if (dev1->raid_level != dev2->raid_level)
1513                 return 1;
1514         if (dev1->offload_config != dev2->offload_config)
1515                 return 1;
1516         if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1517                 return 1;
1518         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1519                 if (dev1->queue_depth != dev2->queue_depth)
1520                         return 1;
1521         /*
1522          * This can happen for dual domain devices. An active
1523          * path change causes the ioaccel handle to change
1524          *
1525          * for example note the handle differences between p0 and p1
1526          * Device                    WWN               ,WWN hash,Handle
1527          * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1528          *      p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1529          */
1530         if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1531                 return 1;
1532         return 0;
1533 }
1534
1535 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1536  * and return needle location in *index.  If scsi3addr matches, but not
1537  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1538  * location in *index.
1539  * In the case of a minor device attribute change, such as RAID level, just
1540  * return DEVICE_UPDATED, along with the updated device's location in index.
1541  * If needle not found, return DEVICE_NOT_FOUND.
1542  */
1543 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1544         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1545         int *index)
1546 {
1547         int i;
1548 #define DEVICE_NOT_FOUND 0
1549 #define DEVICE_CHANGED 1
1550 #define DEVICE_SAME 2
1551 #define DEVICE_UPDATED 3
1552         if (needle == NULL)
1553                 return DEVICE_NOT_FOUND;
1554
1555         for (i = 0; i < haystack_size; i++) {
1556                 if (haystack[i] == NULL) /* previously removed. */
1557                         continue;
1558                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1559                         *index = i;
1560                         if (device_is_the_same(needle, haystack[i])) {
1561                                 if (device_updated(needle, haystack[i]))
1562                                         return DEVICE_UPDATED;
1563                                 return DEVICE_SAME;
1564                         } else {
1565                                 /* Keep offline devices offline */
1566                                 if (needle->volume_offline)
1567                                         return DEVICE_NOT_FOUND;
1568                                 return DEVICE_CHANGED;
1569                         }
1570                 }
1571         }
1572         *index = -1;
1573         return DEVICE_NOT_FOUND;
1574 }
1575
1576 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1577                                         unsigned char scsi3addr[])
1578 {
1579         struct offline_device_entry *device;
1580         unsigned long flags;
1581
1582         /* Check to see if device is already on the list */
1583         spin_lock_irqsave(&h->offline_device_lock, flags);
1584         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1585                 if (memcmp(device->scsi3addr, scsi3addr,
1586                         sizeof(device->scsi3addr)) == 0) {
1587                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1588                         return;
1589                 }
1590         }
1591         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1592
1593         /* Device is not on the list, add it. */
1594         device = kmalloc(sizeof(*device), GFP_KERNEL);
1595         if (!device)
1596                 return;
1597
1598         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1599         spin_lock_irqsave(&h->offline_device_lock, flags);
1600         list_add_tail(&device->offline_list, &h->offline_device_list);
1601         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1602 }
1603
1604 /* Print a message explaining various offline volume states */
1605 static void hpsa_show_volume_status(struct ctlr_info *h,
1606         struct hpsa_scsi_dev_t *sd)
1607 {
1608         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1609                 dev_info(&h->pdev->dev,
1610                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1611                         h->scsi_host->host_no,
1612                         sd->bus, sd->target, sd->lun);
1613         switch (sd->volume_offline) {
1614         case HPSA_LV_OK:
1615                 break;
1616         case HPSA_LV_UNDERGOING_ERASE:
1617                 dev_info(&h->pdev->dev,
1618                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1619                         h->scsi_host->host_no,
1620                         sd->bus, sd->target, sd->lun);
1621                 break;
1622         case HPSA_LV_NOT_AVAILABLE:
1623                 dev_info(&h->pdev->dev,
1624                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1625                         h->scsi_host->host_no,
1626                         sd->bus, sd->target, sd->lun);
1627                 break;
1628         case HPSA_LV_UNDERGOING_RPI:
1629                 dev_info(&h->pdev->dev,
1630                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1631                         h->scsi_host->host_no,
1632                         sd->bus, sd->target, sd->lun);
1633                 break;
1634         case HPSA_LV_PENDING_RPI:
1635                 dev_info(&h->pdev->dev,
1636                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1637                         h->scsi_host->host_no,
1638                         sd->bus, sd->target, sd->lun);
1639                 break;
1640         case HPSA_LV_ENCRYPTED_NO_KEY:
1641                 dev_info(&h->pdev->dev,
1642                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1643                         h->scsi_host->host_no,
1644                         sd->bus, sd->target, sd->lun);
1645                 break;
1646         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1647                 dev_info(&h->pdev->dev,
1648                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1649                         h->scsi_host->host_no,
1650                         sd->bus, sd->target, sd->lun);
1651                 break;
1652         case HPSA_LV_UNDERGOING_ENCRYPTION:
1653                 dev_info(&h->pdev->dev,
1654                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1655                         h->scsi_host->host_no,
1656                         sd->bus, sd->target, sd->lun);
1657                 break;
1658         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1659                 dev_info(&h->pdev->dev,
1660                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1661                         h->scsi_host->host_no,
1662                         sd->bus, sd->target, sd->lun);
1663                 break;
1664         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1665                 dev_info(&h->pdev->dev,
1666                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1667                         h->scsi_host->host_no,
1668                         sd->bus, sd->target, sd->lun);
1669                 break;
1670         case HPSA_LV_PENDING_ENCRYPTION:
1671                 dev_info(&h->pdev->dev,
1672                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1673                         h->scsi_host->host_no,
1674                         sd->bus, sd->target, sd->lun);
1675                 break;
1676         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1677                 dev_info(&h->pdev->dev,
1678                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1679                         h->scsi_host->host_no,
1680                         sd->bus, sd->target, sd->lun);
1681                 break;
1682         }
1683 }
1684
1685 /*
1686  * Figure the list of physical drive pointers for a logical drive with
1687  * raid offload configured.
1688  */
1689 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1690                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1691                                 struct hpsa_scsi_dev_t *logical_drive)
1692 {
1693         struct raid_map_data *map = &logical_drive->raid_map;
1694         struct raid_map_disk_data *dd = &map->data[0];
1695         int i, j;
1696         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1697                                 le16_to_cpu(map->metadata_disks_per_row);
1698         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1699                                 le16_to_cpu(map->layout_map_count) *
1700                                 total_disks_per_row;
1701         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1702                                 total_disks_per_row;
1703         int qdepth;
1704
1705         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1706                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1707
1708         logical_drive->nphysical_disks = nraid_map_entries;
1709
1710         qdepth = 0;
1711         for (i = 0; i < nraid_map_entries; i++) {
1712                 logical_drive->phys_disk[i] = NULL;
1713                 if (!logical_drive->offload_config)
1714                         continue;
1715                 for (j = 0; j < ndevices; j++) {
1716                         if (dev[j] == NULL)
1717                                 continue;
1718                         if (dev[j]->devtype != TYPE_DISK &&
1719                             dev[j]->devtype != TYPE_ZBC)
1720                                 continue;
1721                         if (is_logical_device(dev[j]))
1722                                 continue;
1723                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1724                                 continue;
1725
1726                         logical_drive->phys_disk[i] = dev[j];
1727                         if (i < nphys_disk)
1728                                 qdepth = min(h->nr_cmds, qdepth +
1729                                     logical_drive->phys_disk[i]->queue_depth);
1730                         break;
1731                 }
1732
1733                 /*
1734                  * This can happen if a physical drive is removed and
1735                  * the logical drive is degraded.  In that case, the RAID
1736                  * map data will refer to a physical disk which isn't actually
1737                  * present.  And in that case offload_enabled should already
1738                  * be 0, but we'll turn it off here just in case
1739                  */
1740                 if (!logical_drive->phys_disk[i]) {
1741                         dev_warn(&h->pdev->dev,
1742                                 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1743                                 __func__,
1744                                 h->scsi_host->host_no, logical_drive->bus,
1745                                 logical_drive->target, logical_drive->lun);
1746                         logical_drive->offload_enabled = 0;
1747                         logical_drive->offload_to_be_enabled = 0;
1748                         logical_drive->queue_depth = 8;
1749                 }
1750         }
1751         if (nraid_map_entries)
1752                 /*
1753                  * This is correct for reads, too high for full stripe writes,
1754                  * way too high for partial stripe writes
1755                  */
1756                 logical_drive->queue_depth = qdepth;
1757         else {
1758                 if (logical_drive->external)
1759                         logical_drive->queue_depth = EXTERNAL_QD;
1760                 else
1761                         logical_drive->queue_depth = h->nr_cmds;
1762         }
1763 }
1764
1765 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1766                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1767 {
1768         int i;
1769
1770         for (i = 0; i < ndevices; i++) {
1771                 if (dev[i] == NULL)
1772                         continue;
1773                 if (dev[i]->devtype != TYPE_DISK &&
1774                     dev[i]->devtype != TYPE_ZBC)
1775                         continue;
1776                 if (!is_logical_device(dev[i]))
1777                         continue;
1778
1779                 /*
1780                  * If offload is currently enabled, the RAID map and
1781                  * phys_disk[] assignment *better* not be changing
1782                  * because we would be changing ioaccel phsy_disk[] pointers
1783                  * on a ioaccel volume processing I/O requests.
1784                  *
1785                  * If an ioaccel volume status changed, initially because it was
1786                  * re-configured and thus underwent a transformation, or
1787                  * a drive failed, we would have received a state change
1788                  * request and ioaccel should have been turned off. When the
1789                  * transformation completes, we get another state change
1790                  * request to turn ioaccel back on. In this case, we need
1791                  * to update the ioaccel information.
1792                  *
1793                  * Thus: If it is not currently enabled, but will be after
1794                  * the scan completes, make sure the ioaccel pointers
1795                  * are up to date.
1796                  */
1797
1798                 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1799                         hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1800         }
1801 }
1802
1803 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1804 {
1805         int rc = 0;
1806
1807         if (!h->scsi_host)
1808                 return 1;
1809
1810         if (is_logical_device(device)) /* RAID */
1811                 rc = scsi_add_device(h->scsi_host, device->bus,
1812                                         device->target, device->lun);
1813         else /* HBA */
1814                 rc = hpsa_add_sas_device(h->sas_host, device);
1815
1816         return rc;
1817 }
1818
1819 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1820                                                 struct hpsa_scsi_dev_t *dev)
1821 {
1822         int i;
1823         int count = 0;
1824
1825         for (i = 0; i < h->nr_cmds; i++) {
1826                 struct CommandList *c = h->cmd_pool + i;
1827                 int refcount = atomic_inc_return(&c->refcount);
1828
1829                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1830                                 dev->scsi3addr)) {
1831                         unsigned long flags;
1832
1833                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1834                         if (!hpsa_is_cmd_idle(c))
1835                                 ++count;
1836                         spin_unlock_irqrestore(&h->lock, flags);
1837                 }
1838
1839                 cmd_free(h, c);
1840         }
1841
1842         return count;
1843 }
1844
1845 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1846                                                 struct hpsa_scsi_dev_t *device)
1847 {
1848         int cmds = 0;
1849         int waits = 0;
1850
1851         while (1) {
1852                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1853                 if (cmds == 0)
1854                         break;
1855                 if (++waits > 20)
1856                         break;
1857                 msleep(1000);
1858         }
1859
1860         if (waits > 20)
1861                 dev_warn(&h->pdev->dev,
1862                         "%s: removing device with %d outstanding commands!\n",
1863                         __func__, cmds);
1864 }
1865
1866 static void hpsa_remove_device(struct ctlr_info *h,
1867                         struct hpsa_scsi_dev_t *device)
1868 {
1869         struct scsi_device *sdev = NULL;
1870
1871         if (!h->scsi_host)
1872                 return;
1873
1874         /*
1875          * Allow for commands to drain
1876          */
1877         device->removed = 1;
1878         hpsa_wait_for_outstanding_commands_for_dev(h, device);
1879
1880         if (is_logical_device(device)) { /* RAID */
1881                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1882                                                 device->target, device->lun);
1883                 if (sdev) {
1884                         scsi_remove_device(sdev);
1885                         scsi_device_put(sdev);
1886                 } else {
1887                         /*
1888                          * We don't expect to get here.  Future commands
1889                          * to this device will get a selection timeout as
1890                          * if the device were gone.
1891                          */
1892                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1893                                         "didn't find device for removal.");
1894                 }
1895         } else { /* HBA */
1896
1897                 hpsa_remove_sas_device(device);
1898         }
1899 }
1900
1901 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1902         struct hpsa_scsi_dev_t *sd[], int nsds)
1903 {
1904         /* sd contains scsi3 addresses and devtypes, and inquiry
1905          * data.  This function takes what's in sd to be the current
1906          * reality and updates h->dev[] to reflect that reality.
1907          */
1908         int i, entry, device_change, changes = 0;
1909         struct hpsa_scsi_dev_t *csd;
1910         unsigned long flags;
1911         struct hpsa_scsi_dev_t **added, **removed;
1912         int nadded, nremoved;
1913
1914         /*
1915          * A reset can cause a device status to change
1916          * re-schedule the scan to see what happened.
1917          */
1918         spin_lock_irqsave(&h->reset_lock, flags);
1919         if (h->reset_in_progress) {
1920                 h->drv_req_rescan = 1;
1921                 spin_unlock_irqrestore(&h->reset_lock, flags);
1922                 return;
1923         }
1924         spin_unlock_irqrestore(&h->reset_lock, flags);
1925
1926         added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1927         removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1928
1929         if (!added || !removed) {
1930                 dev_warn(&h->pdev->dev, "out of memory in "
1931                         "adjust_hpsa_scsi_table\n");
1932                 goto free_and_out;
1933         }
1934
1935         spin_lock_irqsave(&h->devlock, flags);
1936
1937         /* find any devices in h->dev[] that are not in
1938          * sd[] and remove them from h->dev[], and for any
1939          * devices which have changed, remove the old device
1940          * info and add the new device info.
1941          * If minor device attributes change, just update
1942          * the existing device structure.
1943          */
1944         i = 0;
1945         nremoved = 0;
1946         nadded = 0;
1947         while (i < h->ndevices) {
1948                 csd = h->dev[i];
1949                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1950                 if (device_change == DEVICE_NOT_FOUND) {
1951                         changes++;
1952                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1953                         continue; /* remove ^^^, hence i not incremented */
1954                 } else if (device_change == DEVICE_CHANGED) {
1955                         changes++;
1956                         hpsa_scsi_replace_entry(h, i, sd[entry],
1957                                 added, &nadded, removed, &nremoved);
1958                         /* Set it to NULL to prevent it from being freed
1959                          * at the bottom of hpsa_update_scsi_devices()
1960                          */
1961                         sd[entry] = NULL;
1962                 } else if (device_change == DEVICE_UPDATED) {
1963                         hpsa_scsi_update_entry(h, i, sd[entry]);
1964                 }
1965                 i++;
1966         }
1967
1968         /* Now, make sure every device listed in sd[] is also
1969          * listed in h->dev[], adding them if they aren't found
1970          */
1971
1972         for (i = 0; i < nsds; i++) {
1973                 if (!sd[i]) /* if already added above. */
1974                         continue;
1975
1976                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1977                  * as the SCSI mid-layer does not handle such devices well.
1978                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1979                  * at 160Hz, and prevents the system from coming up.
1980                  */
1981                 if (sd[i]->volume_offline) {
1982                         hpsa_show_volume_status(h, sd[i]);
1983                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1984                         continue;
1985                 }
1986
1987                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1988                                         h->ndevices, &entry);
1989                 if (device_change == DEVICE_NOT_FOUND) {
1990                         changes++;
1991                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1992                                 break;
1993                         sd[i] = NULL; /* prevent from being freed later. */
1994                 } else if (device_change == DEVICE_CHANGED) {
1995                         /* should never happen... */
1996                         changes++;
1997                         dev_warn(&h->pdev->dev,
1998                                 "device unexpectedly changed.\n");
1999                         /* but if it does happen, we just ignore that device */
2000                 }
2001         }
2002         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2003
2004         /*
2005          * Now that h->dev[]->phys_disk[] is coherent, we can enable
2006          * any logical drives that need it enabled.
2007          *
2008          * The raid map should be current by now.
2009          *
2010          * We are updating the device list used for I/O requests.
2011          */
2012         for (i = 0; i < h->ndevices; i++) {
2013                 if (h->dev[i] == NULL)
2014                         continue;
2015                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2016         }
2017
2018         spin_unlock_irqrestore(&h->devlock, flags);
2019
2020         /* Monitor devices which are in one of several NOT READY states to be
2021          * brought online later. This must be done without holding h->devlock,
2022          * so don't touch h->dev[]
2023          */
2024         for (i = 0; i < nsds; i++) {
2025                 if (!sd[i]) /* if already added above. */
2026                         continue;
2027                 if (sd[i]->volume_offline)
2028                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2029         }
2030
2031         /* Don't notify scsi mid layer of any changes the first time through
2032          * (or if there are no changes) scsi_scan_host will do it later the
2033          * first time through.
2034          */
2035         if (!changes)
2036                 goto free_and_out;
2037
2038         /* Notify scsi mid layer of any removed devices */
2039         for (i = 0; i < nremoved; i++) {
2040                 if (removed[i] == NULL)
2041                         continue;
2042                 if (removed[i]->expose_device)
2043                         hpsa_remove_device(h, removed[i]);
2044                 kfree(removed[i]);
2045                 removed[i] = NULL;
2046         }
2047
2048         /* Notify scsi mid layer of any added devices */
2049         for (i = 0; i < nadded; i++) {
2050                 int rc = 0;
2051
2052                 if (added[i] == NULL)
2053                         continue;
2054                 if (!(added[i]->expose_device))
2055                         continue;
2056                 rc = hpsa_add_device(h, added[i]);
2057                 if (!rc)
2058                         continue;
2059                 dev_warn(&h->pdev->dev,
2060                         "addition failed %d, device not added.", rc);
2061                 /* now we have to remove it from h->dev,
2062                  * since it didn't get added to scsi mid layer
2063                  */
2064                 fixup_botched_add(h, added[i]);
2065                 h->drv_req_rescan = 1;
2066         }
2067
2068 free_and_out:
2069         kfree(added);
2070         kfree(removed);
2071 }
2072
2073 /*
2074  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2075  * Assume's h->devlock is held.
2076  */
2077 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2078         int bus, int target, int lun)
2079 {
2080         int i;
2081         struct hpsa_scsi_dev_t *sd;
2082
2083         for (i = 0; i < h->ndevices; i++) {
2084                 sd = h->dev[i];
2085                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2086                         return sd;
2087         }
2088         return NULL;
2089 }
2090
2091 static int hpsa_slave_alloc(struct scsi_device *sdev)
2092 {
2093         struct hpsa_scsi_dev_t *sd = NULL;
2094         unsigned long flags;
2095         struct ctlr_info *h;
2096
2097         h = sdev_to_hba(sdev);
2098         spin_lock_irqsave(&h->devlock, flags);
2099         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2100                 struct scsi_target *starget;
2101                 struct sas_rphy *rphy;
2102
2103                 starget = scsi_target(sdev);
2104                 rphy = target_to_rphy(starget);
2105                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2106                 if (sd) {
2107                         sd->target = sdev_id(sdev);
2108                         sd->lun = sdev->lun;
2109                 }
2110         }
2111         if (!sd)
2112                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2113                                         sdev_id(sdev), sdev->lun);
2114
2115         if (sd && sd->expose_device) {
2116                 atomic_set(&sd->ioaccel_cmds_out, 0);
2117                 sdev->hostdata = sd;
2118         } else
2119                 sdev->hostdata = NULL;
2120         spin_unlock_irqrestore(&h->devlock, flags);
2121         return 0;
2122 }
2123
2124 /* configure scsi device based on internal per-device structure */
2125 static int hpsa_slave_configure(struct scsi_device *sdev)
2126 {
2127         struct hpsa_scsi_dev_t *sd;
2128         int queue_depth;
2129
2130         sd = sdev->hostdata;
2131         sdev->no_uld_attach = !sd || !sd->expose_device;
2132
2133         if (sd) {
2134                 if (sd->external)
2135                         queue_depth = EXTERNAL_QD;
2136                 else
2137                         queue_depth = sd->queue_depth != 0 ?
2138                                         sd->queue_depth : sdev->host->can_queue;
2139         } else
2140                 queue_depth = sdev->host->can_queue;
2141
2142         scsi_change_queue_depth(sdev, queue_depth);
2143
2144         return 0;
2145 }
2146
2147 static void hpsa_slave_destroy(struct scsi_device *sdev)
2148 {
2149         /* nothing to do. */
2150 }
2151
2152 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2153 {
2154         int i;
2155
2156         if (!h->ioaccel2_cmd_sg_list)
2157                 return;
2158         for (i = 0; i < h->nr_cmds; i++) {
2159                 kfree(h->ioaccel2_cmd_sg_list[i]);
2160                 h->ioaccel2_cmd_sg_list[i] = NULL;
2161         }
2162         kfree(h->ioaccel2_cmd_sg_list);
2163         h->ioaccel2_cmd_sg_list = NULL;
2164 }
2165
2166 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2167 {
2168         int i;
2169
2170         if (h->chainsize <= 0)
2171                 return 0;
2172
2173         h->ioaccel2_cmd_sg_list =
2174                 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2175                                         GFP_KERNEL);
2176         if (!h->ioaccel2_cmd_sg_list)
2177                 return -ENOMEM;
2178         for (i = 0; i < h->nr_cmds; i++) {
2179                 h->ioaccel2_cmd_sg_list[i] =
2180                         kmalloc_array(h->maxsgentries,
2181                                       sizeof(*h->ioaccel2_cmd_sg_list[i]),
2182                                       GFP_KERNEL);
2183                 if (!h->ioaccel2_cmd_sg_list[i])
2184                         goto clean;
2185         }
2186         return 0;
2187
2188 clean:
2189         hpsa_free_ioaccel2_sg_chain_blocks(h);
2190         return -ENOMEM;
2191 }
2192
2193 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2194 {
2195         int i;
2196
2197         if (!h->cmd_sg_list)
2198                 return;
2199         for (i = 0; i < h->nr_cmds; i++) {
2200                 kfree(h->cmd_sg_list[i]);
2201                 h->cmd_sg_list[i] = NULL;
2202         }
2203         kfree(h->cmd_sg_list);
2204         h->cmd_sg_list = NULL;
2205 }
2206
2207 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2208 {
2209         int i;
2210
2211         if (h->chainsize <= 0)
2212                 return 0;
2213
2214         h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2215                                  GFP_KERNEL);
2216         if (!h->cmd_sg_list)
2217                 return -ENOMEM;
2218
2219         for (i = 0; i < h->nr_cmds; i++) {
2220                 h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2221                                                   sizeof(*h->cmd_sg_list[i]),
2222                                                   GFP_KERNEL);
2223                 if (!h->cmd_sg_list[i])
2224                         goto clean;
2225
2226         }
2227         return 0;
2228
2229 clean:
2230         hpsa_free_sg_chain_blocks(h);
2231         return -ENOMEM;
2232 }
2233
2234 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2235         struct io_accel2_cmd *cp, struct CommandList *c)
2236 {
2237         struct ioaccel2_sg_element *chain_block;
2238         u64 temp64;
2239         u32 chain_size;
2240
2241         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2242         chain_size = le32_to_cpu(cp->sg[0].length);
2243         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2244                                 PCI_DMA_TODEVICE);
2245         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2246                 /* prevent subsequent unmapping */
2247                 cp->sg->address = 0;
2248                 return -1;
2249         }
2250         cp->sg->address = cpu_to_le64(temp64);
2251         return 0;
2252 }
2253
2254 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2255         struct io_accel2_cmd *cp)
2256 {
2257         struct ioaccel2_sg_element *chain_sg;
2258         u64 temp64;
2259         u32 chain_size;
2260
2261         chain_sg = cp->sg;
2262         temp64 = le64_to_cpu(chain_sg->address);
2263         chain_size = le32_to_cpu(cp->sg[0].length);
2264         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2265 }
2266
2267 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2268         struct CommandList *c)
2269 {
2270         struct SGDescriptor *chain_sg, *chain_block;
2271         u64 temp64;
2272         u32 chain_len;
2273
2274         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2275         chain_block = h->cmd_sg_list[c->cmdindex];
2276         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2277         chain_len = sizeof(*chain_sg) *
2278                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2279         chain_sg->Len = cpu_to_le32(chain_len);
2280         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2281                                 PCI_DMA_TODEVICE);
2282         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2283                 /* prevent subsequent unmapping */
2284                 chain_sg->Addr = cpu_to_le64(0);
2285                 return -1;
2286         }
2287         chain_sg->Addr = cpu_to_le64(temp64);
2288         return 0;
2289 }
2290
2291 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2292         struct CommandList *c)
2293 {
2294         struct SGDescriptor *chain_sg;
2295
2296         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2297                 return;
2298
2299         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2300         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2301                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2302 }
2303
2304
2305 /* Decode the various types of errors on ioaccel2 path.
2306  * Return 1 for any error that should generate a RAID path retry.
2307  * Return 0 for errors that don't require a RAID path retry.
2308  */
2309 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2310                                         struct CommandList *c,
2311                                         struct scsi_cmnd *cmd,
2312                                         struct io_accel2_cmd *c2,
2313                                         struct hpsa_scsi_dev_t *dev)
2314 {
2315         int data_len;
2316         int retry = 0;
2317         u32 ioaccel2_resid = 0;
2318
2319         switch (c2->error_data.serv_response) {
2320         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2321                 switch (c2->error_data.status) {
2322                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2323                         break;
2324                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2325                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2326                         if (c2->error_data.data_present !=
2327                                         IOACCEL2_SENSE_DATA_PRESENT) {
2328                                 memset(cmd->sense_buffer, 0,
2329                                         SCSI_SENSE_BUFFERSIZE);
2330                                 break;
2331                         }
2332                         /* copy the sense data */
2333                         data_len = c2->error_data.sense_data_len;
2334                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2335                                 data_len = SCSI_SENSE_BUFFERSIZE;
2336                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2337                                 data_len =
2338                                         sizeof(c2->error_data.sense_data_buff);
2339                         memcpy(cmd->sense_buffer,
2340                                 c2->error_data.sense_data_buff, data_len);
2341                         retry = 1;
2342                         break;
2343                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2344                         retry = 1;
2345                         break;
2346                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2347                         retry = 1;
2348                         break;
2349                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2350                         retry = 1;
2351                         break;
2352                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2353                         retry = 1;
2354                         break;
2355                 default:
2356                         retry = 1;
2357                         break;
2358                 }
2359                 break;
2360         case IOACCEL2_SERV_RESPONSE_FAILURE:
2361                 switch (c2->error_data.status) {
2362                 case IOACCEL2_STATUS_SR_IO_ERROR:
2363                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2364                 case IOACCEL2_STATUS_SR_OVERRUN:
2365                         retry = 1;
2366                         break;
2367                 case IOACCEL2_STATUS_SR_UNDERRUN:
2368                         cmd->result = (DID_OK << 16);           /* host byte */
2369                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2370                         ioaccel2_resid = get_unaligned_le32(
2371                                                 &c2->error_data.resid_cnt[0]);
2372                         scsi_set_resid(cmd, ioaccel2_resid);
2373                         break;
2374                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2375                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2376                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2377                         /*
2378                          * Did an HBA disk disappear? We will eventually
2379                          * get a state change event from the controller but
2380                          * in the meantime, we need to tell the OS that the
2381                          * HBA disk is no longer there and stop I/O
2382                          * from going down. This allows the potential re-insert
2383                          * of the disk to get the same device node.
2384                          */
2385                         if (dev->physical_device && dev->expose_device) {
2386                                 cmd->result = DID_NO_CONNECT << 16;
2387                                 dev->removed = 1;
2388                                 h->drv_req_rescan = 1;
2389                                 dev_warn(&h->pdev->dev,
2390                                         "%s: device is gone!\n", __func__);
2391                         } else
2392                                 /*
2393                                  * Retry by sending down the RAID path.
2394                                  * We will get an event from ctlr to
2395                                  * trigger rescan regardless.
2396                                  */
2397                                 retry = 1;
2398                         break;
2399                 default:
2400                         retry = 1;
2401                 }
2402                 break;
2403         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2404                 break;
2405         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2406                 break;
2407         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2408                 retry = 1;
2409                 break;
2410         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2411                 break;
2412         default:
2413                 retry = 1;
2414                 break;
2415         }
2416
2417         return retry;   /* retry on raid path? */
2418 }
2419
2420 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2421                 struct CommandList *c)
2422 {
2423         bool do_wake = false;
2424
2425         /*
2426          * Reset c->scsi_cmd here so that the reset handler will know
2427          * this command has completed.  Then, check to see if the handler is
2428          * waiting for this command, and, if so, wake it.
2429          */
2430         c->scsi_cmd = SCSI_CMD_IDLE;
2431         mb();   /* Declare command idle before checking for pending events. */
2432         if (c->reset_pending) {
2433                 unsigned long flags;
2434                 struct hpsa_scsi_dev_t *dev;
2435
2436                 /*
2437                  * There appears to be a reset pending; lock the lock and
2438                  * reconfirm.  If so, then decrement the count of outstanding
2439                  * commands and wake the reset command if this is the last one.
2440                  */
2441                 spin_lock_irqsave(&h->lock, flags);
2442                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2443                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2444                         do_wake = true;
2445                 c->reset_pending = NULL;
2446                 spin_unlock_irqrestore(&h->lock, flags);
2447         }
2448
2449         if (do_wake)
2450                 wake_up_all(&h->event_sync_wait_queue);
2451 }
2452
2453 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2454                                       struct CommandList *c)
2455 {
2456         hpsa_cmd_resolve_events(h, c);
2457         cmd_tagged_free(h, c);
2458 }
2459
2460 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2461                 struct CommandList *c, struct scsi_cmnd *cmd)
2462 {
2463         hpsa_cmd_resolve_and_free(h, c);
2464         if (cmd && cmd->scsi_done)
2465                 cmd->scsi_done(cmd);
2466 }
2467
2468 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2469 {
2470         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2471         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2472 }
2473
2474 static void process_ioaccel2_completion(struct ctlr_info *h,
2475                 struct CommandList *c, struct scsi_cmnd *cmd,
2476                 struct hpsa_scsi_dev_t *dev)
2477 {
2478         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2479
2480         /* check for good status */
2481         if (likely(c2->error_data.serv_response == 0 &&
2482                         c2->error_data.status == 0))
2483                 return hpsa_cmd_free_and_done(h, c, cmd);
2484
2485         /*
2486          * Any RAID offload error results in retry which will use
2487          * the normal I/O path so the controller can handle whatever is
2488          * wrong.
2489          */
2490         if (is_logical_device(dev) &&
2491                 c2->error_data.serv_response ==
2492                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2493                 if (c2->error_data.status ==
2494                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2495                         dev->offload_enabled = 0;
2496                         dev->offload_to_be_enabled = 0;
2497                 }
2498
2499                 return hpsa_retry_cmd(h, c);
2500         }
2501
2502         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2503                 return hpsa_retry_cmd(h, c);
2504
2505         return hpsa_cmd_free_and_done(h, c, cmd);
2506 }
2507
2508 /* Returns 0 on success, < 0 otherwise. */
2509 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2510                                         struct CommandList *cp)
2511 {
2512         u8 tmf_status = cp->err_info->ScsiStatus;
2513
2514         switch (tmf_status) {
2515         case CISS_TMF_COMPLETE:
2516                 /*
2517                  * CISS_TMF_COMPLETE never happens, instead,
2518                  * ei->CommandStatus == 0 for this case.
2519                  */
2520         case CISS_TMF_SUCCESS:
2521                 return 0;
2522         case CISS_TMF_INVALID_FRAME:
2523         case CISS_TMF_NOT_SUPPORTED:
2524         case CISS_TMF_FAILED:
2525         case CISS_TMF_WRONG_LUN:
2526         case CISS_TMF_OVERLAPPED_TAG:
2527                 break;
2528         default:
2529                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2530                                 tmf_status);
2531                 break;
2532         }
2533         return -tmf_status;
2534 }
2535
2536 static void complete_scsi_command(struct CommandList *cp)
2537 {
2538         struct scsi_cmnd *cmd;
2539         struct ctlr_info *h;
2540         struct ErrorInfo *ei;
2541         struct hpsa_scsi_dev_t *dev;
2542         struct io_accel2_cmd *c2;
2543
2544         u8 sense_key;
2545         u8 asc;      /* additional sense code */
2546         u8 ascq;     /* additional sense code qualifier */
2547         unsigned long sense_data_size;
2548
2549         ei = cp->err_info;
2550         cmd = cp->scsi_cmd;
2551         h = cp->h;
2552
2553         if (!cmd->device) {
2554                 cmd->result = DID_NO_CONNECT << 16;
2555                 return hpsa_cmd_free_and_done(h, cp, cmd);
2556         }
2557
2558         dev = cmd->device->hostdata;
2559         if (!dev) {
2560                 cmd->result = DID_NO_CONNECT << 16;
2561                 return hpsa_cmd_free_and_done(h, cp, cmd);
2562         }
2563         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2564
2565         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2566         if ((cp->cmd_type == CMD_SCSI) &&
2567                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2568                 hpsa_unmap_sg_chain_block(h, cp);
2569
2570         if ((cp->cmd_type == CMD_IOACCEL2) &&
2571                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2572                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2573
2574         cmd->result = (DID_OK << 16);           /* host byte */
2575         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2576
2577         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2578                 if (dev->physical_device && dev->expose_device &&
2579                         dev->removed) {
2580                         cmd->result = DID_NO_CONNECT << 16;
2581                         return hpsa_cmd_free_and_done(h, cp, cmd);
2582                 }
2583                 if (likely(cp->phys_disk != NULL))
2584                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2585         }
2586
2587         /*
2588          * We check for lockup status here as it may be set for
2589          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2590          * fail_all_oustanding_cmds()
2591          */
2592         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2593                 /* DID_NO_CONNECT will prevent a retry */
2594                 cmd->result = DID_NO_CONNECT << 16;
2595                 return hpsa_cmd_free_and_done(h, cp, cmd);
2596         }
2597
2598         if ((unlikely(hpsa_is_pending_event(cp))))
2599                 if (cp->reset_pending)
2600                         return hpsa_cmd_free_and_done(h, cp, cmd);
2601
2602         if (cp->cmd_type == CMD_IOACCEL2)
2603                 return process_ioaccel2_completion(h, cp, cmd, dev);
2604
2605         scsi_set_resid(cmd, ei->ResidualCnt);
2606         if (ei->CommandStatus == 0)
2607                 return hpsa_cmd_free_and_done(h, cp, cmd);
2608
2609         /* For I/O accelerator commands, copy over some fields to the normal
2610          * CISS header used below for error handling.
2611          */
2612         if (cp->cmd_type == CMD_IOACCEL1) {
2613                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2614                 cp->Header.SGList = scsi_sg_count(cmd);
2615                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2616                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2617                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2618                 cp->Header.tag = c->tag;
2619                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2620                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2621
2622                 /* Any RAID offload error results in retry which will use
2623                  * the normal I/O path so the controller can handle whatever's
2624                  * wrong.
2625                  */
2626                 if (is_logical_device(dev)) {
2627                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2628                                 dev->offload_enabled = 0;
2629                         return hpsa_retry_cmd(h, cp);
2630                 }
2631         }
2632
2633         /* an error has occurred */
2634         switch (ei->CommandStatus) {
2635
2636         case CMD_TARGET_STATUS:
2637                 cmd->result |= ei->ScsiStatus;
2638                 /* copy the sense data */
2639                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2640                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2641                 else
2642                         sense_data_size = sizeof(ei->SenseInfo);
2643                 if (ei->SenseLen < sense_data_size)
2644                         sense_data_size = ei->SenseLen;
2645                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2646                 if (ei->ScsiStatus)
2647                         decode_sense_data(ei->SenseInfo, sense_data_size,
2648                                 &sense_key, &asc, &ascq);
2649                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2650                         if (sense_key == ABORTED_COMMAND) {
2651                                 cmd->result |= DID_SOFT_ERROR << 16;
2652                                 break;
2653                         }
2654                         break;
2655                 }
2656                 /* Problem was not a check condition
2657                  * Pass it up to the upper layers...
2658                  */
2659                 if (ei->ScsiStatus) {
2660                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2661                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2662                                 "Returning result: 0x%x\n",
2663                                 cp, ei->ScsiStatus,
2664                                 sense_key, asc, ascq,
2665                                 cmd->result);
2666                 } else {  /* scsi status is zero??? How??? */
2667                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2668                                 "Returning no connection.\n", cp),
2669
2670                         /* Ordinarily, this case should never happen,
2671                          * but there is a bug in some released firmware
2672                          * revisions that allows it to happen if, for
2673                          * example, a 4100 backplane loses power and
2674                          * the tape drive is in it.  We assume that
2675                          * it's a fatal error of some kind because we
2676                          * can't show that it wasn't. We will make it
2677                          * look like selection timeout since that is
2678                          * the most common reason for this to occur,
2679                          * and it's severe enough.
2680                          */
2681
2682                         cmd->result = DID_NO_CONNECT << 16;
2683                 }
2684                 break;
2685
2686         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2687                 break;
2688         case CMD_DATA_OVERRUN:
2689                 dev_warn(&h->pdev->dev,
2690                         "CDB %16phN data overrun\n", cp->Request.CDB);
2691                 break;
2692         case CMD_INVALID: {
2693                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2694                 print_cmd(cp); */
2695                 /* We get CMD_INVALID if you address a non-existent device
2696                  * instead of a selection timeout (no response).  You will
2697                  * see this if you yank out a drive, then try to access it.
2698                  * This is kind of a shame because it means that any other
2699                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2700                  * missing target. */
2701                 cmd->result = DID_NO_CONNECT << 16;
2702         }
2703                 break;
2704         case CMD_PROTOCOL_ERR:
2705                 cmd->result = DID_ERROR << 16;
2706                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2707                                 cp->Request.CDB);
2708                 break;
2709         case CMD_HARDWARE_ERR:
2710                 cmd->result = DID_ERROR << 16;
2711                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2712                         cp->Request.CDB);
2713                 break;
2714         case CMD_CONNECTION_LOST:
2715                 cmd->result = DID_ERROR << 16;
2716                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2717                         cp->Request.CDB);
2718                 break;
2719         case CMD_ABORTED:
2720                 cmd->result = DID_ABORT << 16;
2721                 break;
2722         case CMD_ABORT_FAILED:
2723                 cmd->result = DID_ERROR << 16;
2724                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2725                         cp->Request.CDB);
2726                 break;
2727         case CMD_UNSOLICITED_ABORT:
2728                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2729                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2730                         cp->Request.CDB);
2731                 break;
2732         case CMD_TIMEOUT:
2733                 cmd->result = DID_TIME_OUT << 16;
2734                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2735                         cp->Request.CDB);
2736                 break;
2737         case CMD_UNABORTABLE:
2738                 cmd->result = DID_ERROR << 16;
2739                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2740                 break;
2741         case CMD_TMF_STATUS:
2742                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2743                         cmd->result = DID_ERROR << 16;
2744                 break;
2745         case CMD_IOACCEL_DISABLED:
2746                 /* This only handles the direct pass-through case since RAID
2747                  * offload is handled above.  Just attempt a retry.
2748                  */
2749                 cmd->result = DID_SOFT_ERROR << 16;
2750                 dev_warn(&h->pdev->dev,
2751                                 "cp %p had HP SSD Smart Path error\n", cp);
2752                 break;
2753         default:
2754                 cmd->result = DID_ERROR << 16;
2755                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2756                                 cp, ei->CommandStatus);
2757         }
2758
2759         return hpsa_cmd_free_and_done(h, cp, cmd);
2760 }
2761
2762 static void hpsa_pci_unmap(struct pci_dev *pdev,
2763         struct CommandList *c, int sg_used, int data_direction)
2764 {
2765         int i;
2766
2767         for (i = 0; i < sg_used; i++)
2768                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2769                                 le32_to_cpu(c->SG[i].Len),
2770                                 data_direction);
2771 }
2772
2773 static int hpsa_map_one(struct pci_dev *pdev,
2774                 struct CommandList *cp,
2775                 unsigned char *buf,
2776                 size_t buflen,
2777                 int data_direction)
2778 {
2779         u64 addr64;
2780
2781         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2782                 cp->Header.SGList = 0;
2783                 cp->Header.SGTotal = cpu_to_le16(0);
2784                 return 0;
2785         }
2786
2787         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2788         if (dma_mapping_error(&pdev->dev, addr64)) {
2789                 /* Prevent subsequent unmap of something never mapped */
2790                 cp->Header.SGList = 0;
2791                 cp->Header.SGTotal = cpu_to_le16(0);
2792                 return -1;
2793         }
2794         cp->SG[0].Addr = cpu_to_le64(addr64);
2795         cp->SG[0].Len = cpu_to_le32(buflen);
2796         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2797         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2798         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2799         return 0;
2800 }
2801
2802 #define NO_TIMEOUT ((unsigned long) -1)
2803 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2804 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2805         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2806 {
2807         DECLARE_COMPLETION_ONSTACK(wait);
2808
2809         c->waiting = &wait;
2810         __enqueue_cmd_and_start_io(h, c, reply_queue);
2811         if (timeout_msecs == NO_TIMEOUT) {
2812                 /* TODO: get rid of this no-timeout thing */
2813                 wait_for_completion_io(&wait);
2814                 return IO_OK;
2815         }
2816         if (!wait_for_completion_io_timeout(&wait,
2817                                         msecs_to_jiffies(timeout_msecs))) {
2818                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2819                 return -ETIMEDOUT;
2820         }
2821         return IO_OK;
2822 }
2823
2824 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2825                                    int reply_queue, unsigned long timeout_msecs)
2826 {
2827         if (unlikely(lockup_detected(h))) {
2828                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2829                 return IO_OK;
2830         }
2831         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2832 }
2833
2834 static u32 lockup_detected(struct ctlr_info *h)
2835 {
2836         int cpu;
2837         u32 rc, *lockup_detected;
2838
2839         cpu = get_cpu();
2840         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2841         rc = *lockup_detected;
2842         put_cpu();
2843         return rc;
2844 }
2845
2846 #define MAX_DRIVER_CMD_RETRIES 25
2847 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2848         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2849 {
2850         int backoff_time = 10, retry_count = 0;
2851         int rc;
2852
2853         do {
2854                 memset(c->err_info, 0, sizeof(*c->err_info));
2855                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2856                                                   timeout_msecs);
2857                 if (rc)
2858                         break;
2859                 retry_count++;
2860                 if (retry_count > 3) {
2861                         msleep(backoff_time);
2862                         if (backoff_time < 1000)
2863                                 backoff_time *= 2;
2864                 }
2865         } while ((check_for_unit_attention(h, c) ||
2866                         check_for_busy(h, c)) &&
2867                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2868         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2869         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2870                 rc = -EIO;
2871         return rc;
2872 }
2873
2874 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2875                                 struct CommandList *c)
2876 {
2877         const u8 *cdb = c->Request.CDB;
2878         const u8 *lun = c->Header.LUN.LunAddrBytes;
2879
2880         dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2881                  txt, lun, cdb);
2882 }
2883
2884 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2885                         struct CommandList *cp)
2886 {
2887         const struct ErrorInfo *ei = cp->err_info;
2888         struct device *d = &cp->h->pdev->dev;
2889         u8 sense_key, asc, ascq;
2890         int sense_len;
2891
2892         switch (ei->CommandStatus) {
2893         case CMD_TARGET_STATUS:
2894                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2895                         sense_len = sizeof(ei->SenseInfo);
2896                 else
2897                         sense_len = ei->SenseLen;
2898                 decode_sense_data(ei->SenseInfo, sense_len,
2899                                         &sense_key, &asc, &ascq);
2900                 hpsa_print_cmd(h, "SCSI status", cp);
2901                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2902                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2903                                 sense_key, asc, ascq);
2904                 else
2905                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2906                 if (ei->ScsiStatus == 0)
2907                         dev_warn(d, "SCSI status is abnormally zero.  "
2908                         "(probably indicates selection timeout "
2909                         "reported incorrectly due to a known "
2910                         "firmware bug, circa July, 2001.)\n");
2911                 break;
2912         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2913                 break;
2914         case CMD_DATA_OVERRUN:
2915                 hpsa_print_cmd(h, "overrun condition", cp);
2916                 break;
2917         case CMD_INVALID: {
2918                 /* controller unfortunately reports SCSI passthru's
2919                  * to non-existent targets as invalid commands.
2920                  */
2921                 hpsa_print_cmd(h, "invalid command", cp);
2922                 dev_warn(d, "probably means device no longer present\n");
2923                 }
2924                 break;
2925         case CMD_PROTOCOL_ERR:
2926                 hpsa_print_cmd(h, "protocol error", cp);
2927                 break;
2928         case CMD_HARDWARE_ERR:
2929                 hpsa_print_cmd(h, "hardware error", cp);
2930                 break;
2931         case CMD_CONNECTION_LOST:
2932                 hpsa_print_cmd(h, "connection lost", cp);
2933                 break;
2934         case CMD_ABORTED:
2935                 hpsa_print_cmd(h, "aborted", cp);
2936                 break;
2937         case CMD_ABORT_FAILED:
2938                 hpsa_print_cmd(h, "abort failed", cp);
2939                 break;
2940         case CMD_UNSOLICITED_ABORT:
2941                 hpsa_print_cmd(h, "unsolicited abort", cp);
2942                 break;
2943         case CMD_TIMEOUT:
2944                 hpsa_print_cmd(h, "timed out", cp);
2945                 break;
2946         case CMD_UNABORTABLE:
2947                 hpsa_print_cmd(h, "unabortable", cp);
2948                 break;
2949         case CMD_CTLR_LOCKUP:
2950                 hpsa_print_cmd(h, "controller lockup detected", cp);
2951                 break;
2952         default:
2953                 hpsa_print_cmd(h, "unknown status", cp);
2954                 dev_warn(d, "Unknown command status %x\n",
2955                                 ei->CommandStatus);
2956         }
2957 }
2958
2959 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2960                                         u8 page, u8 *buf, size_t bufsize)
2961 {
2962         int rc = IO_OK;
2963         struct CommandList *c;
2964         struct ErrorInfo *ei;
2965
2966         c = cmd_alloc(h);
2967         if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2968                         page, scsi3addr, TYPE_CMD)) {
2969                 rc = -1;
2970                 goto out;
2971         }
2972         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2973                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2974         if (rc)
2975                 goto out;
2976         ei = c->err_info;
2977         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2978                 hpsa_scsi_interpret_error(h, c);
2979                 rc = -1;
2980         }
2981 out:
2982         cmd_free(h, c);
2983         return rc;
2984 }
2985
2986 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
2987                                                 u8 *scsi3addr)
2988 {
2989         u8 *buf;
2990         u64 sa = 0;
2991         int rc = 0;
2992
2993         buf = kzalloc(1024, GFP_KERNEL);
2994         if (!buf)
2995                 return 0;
2996
2997         rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
2998                                         buf, 1024);
2999
3000         if (rc)
3001                 goto out;
3002
3003         sa = get_unaligned_be64(buf+12);
3004
3005 out:
3006         kfree(buf);
3007         return sa;
3008 }
3009
3010 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3011                         u16 page, unsigned char *buf,
3012                         unsigned char bufsize)
3013 {
3014         int rc = IO_OK;
3015         struct CommandList *c;
3016         struct ErrorInfo *ei;
3017
3018         c = cmd_alloc(h);
3019
3020         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3021                         page, scsi3addr, TYPE_CMD)) {
3022                 rc = -1;
3023                 goto out;
3024         }
3025         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3026                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3027         if (rc)
3028                 goto out;
3029         ei = c->err_info;
3030         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3031                 hpsa_scsi_interpret_error(h, c);
3032                 rc = -1;
3033         }
3034 out:
3035         cmd_free(h, c);
3036         return rc;
3037 }
3038
3039 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3040         u8 reset_type, int reply_queue)
3041 {
3042         int rc = IO_OK;
3043         struct CommandList *c;
3044         struct ErrorInfo *ei;
3045
3046         c = cmd_alloc(h);
3047
3048
3049         /* fill_cmd can't fail here, no data buffer to map. */
3050         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
3051                         scsi3addr, TYPE_MSG);
3052         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3053         if (rc) {
3054                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3055                 goto out;
3056         }
3057         /* no unmap needed here because no data xfer. */
3058
3059         ei = c->err_info;
3060         if (ei->CommandStatus != 0) {
3061                 hpsa_scsi_interpret_error(h, c);
3062                 rc = -1;
3063         }
3064 out:
3065         cmd_free(h, c);
3066         return rc;
3067 }
3068
3069 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3070                                struct hpsa_scsi_dev_t *dev,
3071                                unsigned char *scsi3addr)
3072 {
3073         int i;
3074         bool match = false;
3075         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3076         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3077
3078         if (hpsa_is_cmd_idle(c))
3079                 return false;
3080
3081         switch (c->cmd_type) {
3082         case CMD_SCSI:
3083         case CMD_IOCTL_PEND:
3084                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3085                                 sizeof(c->Header.LUN.LunAddrBytes));
3086                 break;
3087
3088         case CMD_IOACCEL1:
3089         case CMD_IOACCEL2:
3090                 if (c->phys_disk == dev) {
3091                         /* HBA mode match */
3092                         match = true;
3093                 } else {
3094                         /* Possible RAID mode -- check each phys dev. */
3095                         /* FIXME:  Do we need to take out a lock here?  If
3096                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3097                          * instead. */
3098                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3099                                 /* FIXME: an alternate test might be
3100                                  *
3101                                  * match = dev->phys_disk[i]->ioaccel_handle
3102                                  *              == c2->scsi_nexus;      */
3103                                 match = dev->phys_disk[i] == c->phys_disk;
3104                         }
3105                 }
3106                 break;
3107
3108         case IOACCEL2_TMF:
3109                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3110                         match = dev->phys_disk[i]->ioaccel_handle ==
3111                                         le32_to_cpu(ac->it_nexus);
3112                 }
3113                 break;
3114
3115         case 0:         /* The command is in the middle of being initialized. */
3116                 match = false;
3117                 break;
3118
3119         default:
3120                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3121                         c->cmd_type);
3122                 BUG();
3123         }
3124
3125         return match;
3126 }
3127
3128 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3129         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3130 {
3131         int i;
3132         int rc = 0;
3133
3134         /* We can really only handle one reset at a time */
3135         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3136                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3137                 return -EINTR;
3138         }
3139
3140         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3141
3142         for (i = 0; i < h->nr_cmds; i++) {
3143                 struct CommandList *c = h->cmd_pool + i;
3144                 int refcount = atomic_inc_return(&c->refcount);
3145
3146                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3147                         unsigned long flags;
3148
3149                         /*
3150                          * Mark the target command as having a reset pending,
3151                          * then lock a lock so that the command cannot complete
3152                          * while we're considering it.  If the command is not
3153                          * idle then count it; otherwise revoke the event.
3154                          */
3155                         c->reset_pending = dev;
3156                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
3157                         if (!hpsa_is_cmd_idle(c))
3158                                 atomic_inc(&dev->reset_cmds_out);
3159                         else
3160                                 c->reset_pending = NULL;
3161                         spin_unlock_irqrestore(&h->lock, flags);
3162                 }
3163
3164                 cmd_free(h, c);
3165         }
3166
3167         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3168         if (!rc)
3169                 wait_event(h->event_sync_wait_queue,
3170                         atomic_read(&dev->reset_cmds_out) == 0 ||
3171                         lockup_detected(h));
3172
3173         if (unlikely(lockup_detected(h))) {
3174                 dev_warn(&h->pdev->dev,
3175                          "Controller lockup detected during reset wait\n");
3176                 rc = -ENODEV;
3177         }
3178
3179         if (unlikely(rc))
3180                 atomic_set(&dev->reset_cmds_out, 0);
3181         else
3182                 rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3183
3184         mutex_unlock(&h->reset_mutex);
3185         return rc;
3186 }
3187
3188 static void hpsa_get_raid_level(struct ctlr_info *h,
3189         unsigned char *scsi3addr, unsigned char *raid_level)
3190 {
3191         int rc;
3192         unsigned char *buf;
3193
3194         *raid_level = RAID_UNKNOWN;
3195         buf = kzalloc(64, GFP_KERNEL);
3196         if (!buf)
3197                 return;
3198
3199         if (!hpsa_vpd_page_supported(h, scsi3addr,
3200                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3201                 goto exit;
3202
3203         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3204                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3205
3206         if (rc == 0)
3207                 *raid_level = buf[8];
3208         if (*raid_level > RAID_UNKNOWN)
3209                 *raid_level = RAID_UNKNOWN;
3210 exit:
3211         kfree(buf);
3212         return;
3213 }
3214
3215 #define HPSA_MAP_DEBUG
3216 #ifdef HPSA_MAP_DEBUG
3217 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3218                                 struct raid_map_data *map_buff)
3219 {
3220         struct raid_map_disk_data *dd = &map_buff->data[0];
3221         int map, row, col;
3222         u16 map_cnt, row_cnt, disks_per_row;
3223
3224         if (rc != 0)
3225                 return;
3226
3227         /* Show details only if debugging has been activated. */
3228         if (h->raid_offload_debug < 2)
3229                 return;
3230
3231         dev_info(&h->pdev->dev, "structure_size = %u\n",
3232                                 le32_to_cpu(map_buff->structure_size));
3233         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3234                         le32_to_cpu(map_buff->volume_blk_size));
3235         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3236                         le64_to_cpu(map_buff->volume_blk_cnt));
3237         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3238                         map_buff->phys_blk_shift);
3239         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3240                         map_buff->parity_rotation_shift);
3241         dev_info(&h->pdev->dev, "strip_size = %u\n",
3242                         le16_to_cpu(map_buff->strip_size));
3243         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3244                         le64_to_cpu(map_buff->disk_starting_blk));
3245         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3246                         le64_to_cpu(map_buff->disk_blk_cnt));
3247         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3248                         le16_to_cpu(map_buff->data_disks_per_row));
3249         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3250                         le16_to_cpu(map_buff->metadata_disks_per_row));
3251         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3252                         le16_to_cpu(map_buff->row_cnt));
3253         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3254                         le16_to_cpu(map_buff->layout_map_count));
3255         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3256                         le16_to_cpu(map_buff->flags));
3257         dev_info(&h->pdev->dev, "encryption = %s\n",
3258                         le16_to_cpu(map_buff->flags) &
3259                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3260         dev_info(&h->pdev->dev, "dekindex = %u\n",
3261                         le16_to_cpu(map_buff->dekindex));
3262         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3263         for (map = 0; map < map_cnt; map++) {
3264                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3265                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3266                 for (row = 0; row < row_cnt; row++) {
3267                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3268                         disks_per_row =
3269                                 le16_to_cpu(map_buff->data_disks_per_row);
3270                         for (col = 0; col < disks_per_row; col++, dd++)
3271                                 dev_info(&h->pdev->dev,
3272                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3273                                         col, dd->ioaccel_handle,
3274                                         dd->xor_mult[0], dd->xor_mult[1]);
3275                         disks_per_row =
3276                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3277                         for (col = 0; col < disks_per_row; col++, dd++)
3278                                 dev_info(&h->pdev->dev,
3279                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3280                                         col, dd->ioaccel_handle,
3281                                         dd->xor_mult[0], dd->xor_mult[1]);
3282                 }
3283         }
3284 }
3285 #else
3286 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3287                         __attribute__((unused)) int rc,
3288                         __attribute__((unused)) struct raid_map_data *map_buff)
3289 {
3290 }
3291 #endif
3292
3293 static int hpsa_get_raid_map(struct ctlr_info *h,
3294         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3295 {
3296         int rc = 0;
3297         struct CommandList *c;
3298         struct ErrorInfo *ei;
3299
3300         c = cmd_alloc(h);
3301
3302         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3303                         sizeof(this_device->raid_map), 0,
3304                         scsi3addr, TYPE_CMD)) {
3305                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3306                 cmd_free(h, c);
3307                 return -1;
3308         }
3309         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3310                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3311         if (rc)
3312                 goto out;
3313         ei = c->err_info;
3314         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3315                 hpsa_scsi_interpret_error(h, c);
3316                 rc = -1;
3317                 goto out;
3318         }
3319         cmd_free(h, c);
3320
3321         /* @todo in the future, dynamically allocate RAID map memory */
3322         if (le32_to_cpu(this_device->raid_map.structure_size) >
3323                                 sizeof(this_device->raid_map)) {
3324                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3325                 rc = -1;
3326         }
3327         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3328         return rc;
3329 out:
3330         cmd_free(h, c);
3331         return rc;
3332 }
3333
3334 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3335                 unsigned char scsi3addr[], u16 bmic_device_index,
3336                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3337 {
3338         int rc = IO_OK;
3339         struct CommandList *c;
3340         struct ErrorInfo *ei;
3341
3342         c = cmd_alloc(h);
3343
3344         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3345                 0, RAID_CTLR_LUNID, TYPE_CMD);
3346         if (rc)
3347                 goto out;
3348
3349         c->Request.CDB[2] = bmic_device_index & 0xff;
3350         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3351
3352         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3353                                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3354         if (rc)
3355                 goto out;
3356         ei = c->err_info;
3357         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3358                 hpsa_scsi_interpret_error(h, c);
3359                 rc = -1;
3360         }
3361 out:
3362         cmd_free(h, c);
3363         return rc;
3364 }
3365
3366 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3367         struct bmic_identify_controller *buf, size_t bufsize)
3368 {
3369         int rc = IO_OK;
3370         struct CommandList *c;
3371         struct ErrorInfo *ei;
3372
3373         c = cmd_alloc(h);
3374
3375         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3376                 0, RAID_CTLR_LUNID, TYPE_CMD);
3377         if (rc)
3378                 goto out;
3379
3380         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3381                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3382         if (rc)
3383                 goto out;
3384         ei = c->err_info;
3385         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3386                 hpsa_scsi_interpret_error(h, c);
3387                 rc = -1;
3388         }
3389 out:
3390         cmd_free(h, c);
3391         return rc;
3392 }
3393
3394 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3395                 unsigned char scsi3addr[], u16 bmic_device_index,
3396                 struct bmic_identify_physical_device *buf, size_t bufsize)
3397 {
3398         int rc = IO_OK;
3399         struct CommandList *c;
3400         struct ErrorInfo *ei;
3401
3402         c = cmd_alloc(h);
3403         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3404                 0, RAID_CTLR_LUNID, TYPE_CMD);
3405         if (rc)
3406                 goto out;
3407
3408         c->Request.CDB[2] = bmic_device_index & 0xff;
3409         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3410
3411         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3412                                                 NO_TIMEOUT);
3413         ei = c->err_info;
3414         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3415                 hpsa_scsi_interpret_error(h, c);
3416                 rc = -1;
3417         }
3418 out:
3419         cmd_free(h, c);
3420
3421         return rc;
3422 }
3423
3424 /*
3425  * get enclosure information
3426  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3427  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3428  * Uses id_physical_device to determine the box_index.
3429  */
3430 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3431                         unsigned char *scsi3addr,
3432                         struct ReportExtendedLUNdata *rlep, int rle_index,
3433                         struct hpsa_scsi_dev_t *encl_dev)
3434 {
3435         int rc = -1;
3436         struct CommandList *c = NULL;
3437         struct ErrorInfo *ei = NULL;
3438         struct bmic_sense_storage_box_params *bssbp = NULL;
3439         struct bmic_identify_physical_device *id_phys = NULL;
3440         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3441         u16 bmic_device_index = 0;
3442
3443         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3444
3445         encl_dev->sas_address =
3446                 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3447
3448         if (encl_dev->target == -1 || encl_dev->lun == -1) {
3449                 rc = IO_OK;
3450                 goto out;
3451         }
3452
3453         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3454                 rc = IO_OK;
3455                 goto out;
3456         }
3457
3458         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3459         if (!bssbp)
3460                 goto out;
3461
3462         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3463         if (!id_phys)
3464                 goto out;
3465
3466         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3467                                                 id_phys, sizeof(*id_phys));
3468         if (rc) {
3469                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3470                         __func__, encl_dev->external, bmic_device_index);
3471                 goto out;
3472         }
3473
3474         c = cmd_alloc(h);
3475
3476         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3477                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3478
3479         if (rc)
3480                 goto out;
3481
3482         if (id_phys->phys_connector[1] == 'E')
3483                 c->Request.CDB[5] = id_phys->box_index;
3484         else
3485                 c->Request.CDB[5] = 0;
3486
3487         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3488                                                 NO_TIMEOUT);
3489         if (rc)
3490                 goto out;
3491
3492         ei = c->err_info;
3493         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3494                 rc = -1;
3495                 goto out;
3496         }
3497
3498         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3499         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3500                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3501
3502         rc = IO_OK;
3503 out:
3504         kfree(bssbp);
3505         kfree(id_phys);
3506
3507         if (c)
3508                 cmd_free(h, c);
3509
3510         if (rc != IO_OK)
3511                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3512                         "Error, could not get enclosure information");
3513 }
3514
3515 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3516                                                 unsigned char *scsi3addr)
3517 {
3518         struct ReportExtendedLUNdata *physdev;
3519         u32 nphysicals;
3520         u64 sa = 0;
3521         int i;
3522
3523         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3524         if (!physdev)
3525                 return 0;
3526
3527         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3528                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3529                 kfree(physdev);
3530                 return 0;
3531         }
3532         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3533
3534         for (i = 0; i < nphysicals; i++)
3535                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3536                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3537                         break;
3538                 }
3539
3540         kfree(physdev);
3541
3542         return sa;
3543 }
3544
3545 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3546                                         struct hpsa_scsi_dev_t *dev)
3547 {
3548         int rc;
3549         u64 sa = 0;
3550
3551         if (is_hba_lunid(scsi3addr)) {
3552                 struct bmic_sense_subsystem_info *ssi;
3553
3554                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3555                 if (!ssi)
3556                         return;
3557
3558                 rc = hpsa_bmic_sense_subsystem_information(h,
3559                                         scsi3addr, 0, ssi, sizeof(*ssi));
3560                 if (rc == 0) {
3561                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3562                         h->sas_address = sa;
3563                 }
3564
3565                 kfree(ssi);
3566         } else
3567                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3568
3569         dev->sas_address = sa;
3570 }
3571
3572 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3573         struct ReportExtendedLUNdata *physdev)
3574 {
3575         u32 nphysicals;
3576         int i;
3577
3578         if (h->discovery_polling)
3579                 return;
3580
3581         nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3582
3583         for (i = 0; i < nphysicals; i++) {
3584                 if (physdev->LUN[i].device_type ==
3585                         BMIC_DEVICE_TYPE_CONTROLLER
3586                         && !is_hba_lunid(physdev->LUN[i].lunid)) {
3587                         dev_info(&h->pdev->dev,
3588                                 "External controller present, activate discovery polling and disable rld caching\n");
3589                         hpsa_disable_rld_caching(h);
3590                         h->discovery_polling = 1;
3591                         break;
3592                 }
3593         }
3594 }
3595
3596 /* Get a device id from inquiry page 0x83 */
3597 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3598         unsigned char scsi3addr[], u8 page)
3599 {
3600         int rc;
3601         int i;
3602         int pages;
3603         unsigned char *buf, bufsize;
3604
3605         buf = kzalloc(256, GFP_KERNEL);
3606         if (!buf)
3607                 return false;
3608
3609         /* Get the size of the page list first */
3610         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3611                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3612                                 buf, HPSA_VPD_HEADER_SZ);
3613         if (rc != 0)
3614                 goto exit_unsupported;
3615         pages = buf[3];
3616         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3617                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3618         else
3619                 bufsize = 255;
3620
3621         /* Get the whole VPD page list */
3622         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3623                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3624                                 buf, bufsize);
3625         if (rc != 0)
3626                 goto exit_unsupported;
3627
3628         pages = buf[3];
3629         for (i = 1; i <= pages; i++)
3630                 if (buf[3 + i] == page)
3631                         goto exit_supported;
3632 exit_unsupported:
3633         kfree(buf);
3634         return false;
3635 exit_supported:
3636         kfree(buf);
3637         return true;
3638 }
3639
3640 /*
3641  * Called during a scan operation.
3642  * Sets ioaccel status on the new device list, not the existing device list
3643  *
3644  * The device list used during I/O will be updated later in
3645  * adjust_hpsa_scsi_table.
3646  */
3647 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3648         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3649 {
3650         int rc;
3651         unsigned char *buf;
3652         u8 ioaccel_status;
3653
3654         this_device->offload_config = 0;
3655         this_device->offload_enabled = 0;
3656         this_device->offload_to_be_enabled = 0;
3657
3658         buf = kzalloc(64, GFP_KERNEL);
3659         if (!buf)
3660                 return;
3661         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3662                 goto out;
3663         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3664                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3665         if (rc != 0)
3666                 goto out;
3667
3668 #define IOACCEL_STATUS_BYTE 4
3669 #define OFFLOAD_CONFIGURED_BIT 0x01
3670 #define OFFLOAD_ENABLED_BIT 0x02
3671         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3672         this_device->offload_config =
3673                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3674         if (this_device->offload_config) {
3675                 this_device->offload_to_be_enabled =
3676                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3677                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3678                         this_device->offload_to_be_enabled = 0;
3679         }
3680
3681 out:
3682         kfree(buf);
3683         return;
3684 }
3685
3686 /* Get the device id from inquiry page 0x83 */
3687 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3688         unsigned char *device_id, int index, int buflen)
3689 {
3690         int rc;
3691         unsigned char *buf;
3692
3693         /* Does controller have VPD for device id? */
3694         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3695                 return 1; /* not supported */
3696
3697         buf = kzalloc(64, GFP_KERNEL);
3698         if (!buf)
3699                 return -ENOMEM;
3700
3701         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3702                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3703         if (rc == 0) {
3704                 if (buflen > 16)
3705                         buflen = 16;
3706                 memcpy(device_id, &buf[8], buflen);
3707         }
3708
3709         kfree(buf);
3710
3711         return rc; /*0 - got id,  otherwise, didn't */
3712 }
3713
3714 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3715                 void *buf, int bufsize,
3716                 int extended_response)
3717 {
3718         int rc = IO_OK;
3719         struct CommandList *c;
3720         unsigned char scsi3addr[8];
3721         struct ErrorInfo *ei;
3722
3723         c = cmd_alloc(h);
3724
3725         /* address the controller */
3726         memset(scsi3addr, 0, sizeof(scsi3addr));
3727         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3728                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3729                 rc = -EAGAIN;
3730                 goto out;
3731         }
3732         if (extended_response)
3733                 c->Request.CDB[1] = extended_response;
3734         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3735                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3736         if (rc)
3737                 goto out;
3738         ei = c->err_info;
3739         if (ei->CommandStatus != 0 &&
3740             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3741                 hpsa_scsi_interpret_error(h, c);
3742                 rc = -EIO;
3743         } else {
3744                 struct ReportLUNdata *rld = buf;
3745
3746                 if (rld->extended_response_flag != extended_response) {
3747                         if (!h->legacy_board) {
3748                                 dev_err(&h->pdev->dev,
3749                                         "report luns requested format %u, got %u\n",
3750                                         extended_response,
3751                                         rld->extended_response_flag);
3752                                 rc = -EINVAL;
3753                         } else
3754                                 rc = -EOPNOTSUPP;
3755                 }
3756         }
3757 out:
3758         cmd_free(h, c);
3759         return rc;
3760 }
3761
3762 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3763                 struct ReportExtendedLUNdata *buf, int bufsize)
3764 {
3765         int rc;
3766         struct ReportLUNdata *lbuf;
3767
3768         rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3769                                       HPSA_REPORT_PHYS_EXTENDED);
3770         if (!rc || rc != -EOPNOTSUPP)
3771                 return rc;
3772
3773         /* REPORT PHYS EXTENDED is not supported */
3774         lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3775         if (!lbuf)
3776                 return -ENOMEM;
3777
3778         rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3779         if (!rc) {
3780                 int i;
3781                 u32 nphys;
3782
3783                 /* Copy ReportLUNdata header */
3784                 memcpy(buf, lbuf, 8);
3785                 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3786                 for (i = 0; i < nphys; i++)
3787                         memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3788         }
3789         kfree(lbuf);
3790         return rc;
3791 }
3792
3793 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3794                 struct ReportLUNdata *buf, int bufsize)
3795 {
3796         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3797 }
3798
3799 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3800         int bus, int target, int lun)
3801 {
3802         device->bus = bus;
3803         device->target = target;
3804         device->lun = lun;
3805 }
3806
3807 /* Use VPD inquiry to get details of volume status */
3808 static int hpsa_get_volume_status(struct ctlr_info *h,
3809                                         unsigned char scsi3addr[])
3810 {
3811         int rc;
3812         int status;
3813         int size;
3814         unsigned char *buf;
3815
3816         buf = kzalloc(64, GFP_KERNEL);
3817         if (!buf)
3818                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3819
3820         /* Does controller have VPD for logical volume status? */
3821         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3822                 goto exit_failed;
3823
3824         /* Get the size of the VPD return buffer */
3825         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3826                                         buf, HPSA_VPD_HEADER_SZ);
3827         if (rc != 0)
3828                 goto exit_failed;
3829         size = buf[3];
3830
3831         /* Now get the whole VPD buffer */
3832         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3833                                         buf, size + HPSA_VPD_HEADER_SZ);
3834         if (rc != 0)
3835                 goto exit_failed;
3836         status = buf[4]; /* status byte */
3837
3838         kfree(buf);
3839         return status;
3840 exit_failed:
3841         kfree(buf);
3842         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3843 }
3844
3845 /* Determine offline status of a volume.
3846  * Return either:
3847  *  0 (not offline)
3848  *  0xff (offline for unknown reasons)
3849  *  # (integer code indicating one of several NOT READY states
3850  *     describing why a volume is to be kept offline)
3851  */
3852 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3853                                         unsigned char scsi3addr[])
3854 {
3855         struct CommandList *c;
3856         unsigned char *sense;
3857         u8 sense_key, asc, ascq;
3858         int sense_len;
3859         int rc, ldstat = 0;
3860         u16 cmd_status;
3861         u8 scsi_status;
3862 #define ASC_LUN_NOT_READY 0x04
3863 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3864 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3865
3866         c = cmd_alloc(h);
3867
3868         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3869         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3870                                         NO_TIMEOUT);
3871         if (rc) {
3872                 cmd_free(h, c);
3873                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3874         }
3875         sense = c->err_info->SenseInfo;
3876         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3877                 sense_len = sizeof(c->err_info->SenseInfo);
3878         else
3879                 sense_len = c->err_info->SenseLen;
3880         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3881         cmd_status = c->err_info->CommandStatus;
3882         scsi_status = c->err_info->ScsiStatus;
3883         cmd_free(h, c);
3884
3885         /* Determine the reason for not ready state */
3886         ldstat = hpsa_get_volume_status(h, scsi3addr);
3887
3888         /* Keep volume offline in certain cases: */
3889         switch (ldstat) {
3890         case HPSA_LV_FAILED:
3891         case HPSA_LV_UNDERGOING_ERASE:
3892         case HPSA_LV_NOT_AVAILABLE:
3893         case HPSA_LV_UNDERGOING_RPI:
3894         case HPSA_LV_PENDING_RPI:
3895         case HPSA_LV_ENCRYPTED_NO_KEY:
3896         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3897         case HPSA_LV_UNDERGOING_ENCRYPTION:
3898         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3899         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3900                 return ldstat;
3901         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3902                 /* If VPD status page isn't available,
3903                  * use ASC/ASCQ to determine state
3904                  */
3905                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3906                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3907                         return ldstat;
3908                 break;
3909         default:
3910                 break;
3911         }
3912         return HPSA_LV_OK;
3913 }
3914
3915 static int hpsa_update_device_info(struct ctlr_info *h,
3916         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3917         unsigned char *is_OBDR_device)
3918 {
3919
3920 #define OBDR_SIG_OFFSET 43
3921 #define OBDR_TAPE_SIG "$DR-10"
3922 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3923 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3924
3925         unsigned char *inq_buff;
3926         unsigned char *obdr_sig;
3927         int rc = 0;
3928
3929         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3930         if (!inq_buff) {
3931                 rc = -ENOMEM;
3932                 goto bail_out;
3933         }
3934
3935         /* Do an inquiry to the device to see what it is. */
3936         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3937                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3938                 dev_err(&h->pdev->dev,
3939                         "%s: inquiry failed, device will be skipped.\n",
3940                         __func__);
3941                 rc = HPSA_INQUIRY_FAILED;
3942                 goto bail_out;
3943         }
3944
3945         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3946         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3947
3948         this_device->devtype = (inq_buff[0] & 0x1f);
3949         memcpy(this_device->scsi3addr, scsi3addr, 8);
3950         memcpy(this_device->vendor, &inq_buff[8],
3951                 sizeof(this_device->vendor));
3952         memcpy(this_device->model, &inq_buff[16],
3953                 sizeof(this_device->model));
3954         this_device->rev = inq_buff[2];
3955         memset(this_device->device_id, 0,
3956                 sizeof(this_device->device_id));
3957         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3958                 sizeof(this_device->device_id)) < 0)
3959                 dev_err(&h->pdev->dev,
3960                         "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3961                         h->ctlr, __func__,
3962                         h->scsi_host->host_no,
3963                         this_device->target, this_device->lun,
3964                         scsi_device_type(this_device->devtype),
3965                         this_device->model);
3966
3967         if ((this_device->devtype == TYPE_DISK ||
3968                 this_device->devtype == TYPE_ZBC) &&
3969                 is_logical_dev_addr_mode(scsi3addr)) {
3970                 unsigned char volume_offline;
3971
3972                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3973                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3974                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3975                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3976                 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3977                     h->legacy_board) {
3978                         /*
3979                          * Legacy boards might not support volume status
3980                          */
3981                         dev_info(&h->pdev->dev,
3982                                  "C0:T%d:L%d Volume status not available, assuming online.\n",
3983                                  this_device->target, this_device->lun);
3984                         volume_offline = 0;
3985                 }
3986                 this_device->volume_offline = volume_offline;
3987                 if (volume_offline == HPSA_LV_FAILED) {
3988                         rc = HPSA_LV_FAILED;
3989                         dev_err(&h->pdev->dev,
3990                                 "%s: LV failed, device will be skipped.\n",
3991                                 __func__);
3992                         goto bail_out;
3993                 }
3994         } else {
3995                 this_device->raid_level = RAID_UNKNOWN;
3996                 this_device->offload_config = 0;
3997                 this_device->offload_enabled = 0;
3998                 this_device->offload_to_be_enabled = 0;
3999                 this_device->hba_ioaccel_enabled = 0;
4000                 this_device->volume_offline = 0;
4001                 this_device->queue_depth = h->nr_cmds;
4002         }
4003
4004         if (this_device->external)
4005                 this_device->queue_depth = EXTERNAL_QD;
4006
4007         if (is_OBDR_device) {
4008                 /* See if this is a One-Button-Disaster-Recovery device
4009                  * by looking for "$DR-10" at offset 43 in inquiry data.
4010                  */
4011                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4012                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4013                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
4014                                                 OBDR_SIG_LEN) == 0);
4015         }
4016         kfree(inq_buff);
4017         return 0;
4018
4019 bail_out:
4020         kfree(inq_buff);
4021         return rc;
4022 }
4023
4024 /*
4025  * Helper function to assign bus, target, lun mapping of devices.
4026  * Logical drive target and lun are assigned at this time, but
4027  * physical device lun and target assignment are deferred (assigned
4028  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4029 */
4030 static void figure_bus_target_lun(struct ctlr_info *h,
4031         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4032 {
4033         u32 lunid = get_unaligned_le32(lunaddrbytes);
4034
4035         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4036                 /* physical device, target and lun filled in later */
4037                 if (is_hba_lunid(lunaddrbytes)) {
4038                         int bus = HPSA_HBA_BUS;
4039
4040                         if (!device->rev)
4041                                 bus = HPSA_LEGACY_HBA_BUS;
4042                         hpsa_set_bus_target_lun(device,
4043                                         bus, 0, lunid & 0x3fff);
4044                 } else
4045                         /* defer target, lun assignment for physical devices */
4046                         hpsa_set_bus_target_lun(device,
4047                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4048                 return;
4049         }
4050         /* It's a logical device */
4051         if (device->external) {
4052                 hpsa_set_bus_target_lun(device,
4053                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4054                         lunid & 0x00ff);
4055                 return;
4056         }
4057         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4058                                 0, lunid & 0x3fff);
4059 }
4060
4061 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4062         int i, int nphysicals, int nlocal_logicals)
4063 {
4064         /* In report logicals, local logicals are listed first,
4065         * then any externals.
4066         */
4067         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4068
4069         if (i == raid_ctlr_position)
4070                 return 0;
4071
4072         if (i < logicals_start)
4073                 return 0;
4074
4075         /* i is in logicals range, but still within local logicals */
4076         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4077                 return 0;
4078
4079         return 1; /* it's an external lun */
4080 }
4081
4082 /*
4083  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4084  * logdev.  The number of luns in physdev and logdev are returned in
4085  * *nphysicals and *nlogicals, respectively.
4086  * Returns 0 on success, -1 otherwise.
4087  */
4088 static int hpsa_gather_lun_info(struct ctlr_info *h,
4089         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4090         struct ReportLUNdata *logdev, u32 *nlogicals)
4091 {
4092         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4093                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4094                 return -1;
4095         }
4096         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4097         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4098                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4099                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4100                 *nphysicals = HPSA_MAX_PHYS_LUN;
4101         }
4102         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4103                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4104                 return -1;
4105         }
4106         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4107         /* Reject Logicals in excess of our max capability. */
4108         if (*nlogicals > HPSA_MAX_LUN) {
4109                 dev_warn(&h->pdev->dev,
4110                         "maximum logical LUNs (%d) exceeded.  "
4111                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
4112                         *nlogicals - HPSA_MAX_LUN);
4113                         *nlogicals = HPSA_MAX_LUN;
4114         }
4115         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4116                 dev_warn(&h->pdev->dev,
4117                         "maximum logical + physical LUNs (%d) exceeded. "
4118                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4119                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4120                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4121         }
4122         return 0;
4123 }
4124
4125 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4126         int i, int nphysicals, int nlogicals,
4127         struct ReportExtendedLUNdata *physdev_list,
4128         struct ReportLUNdata *logdev_list)
4129 {
4130         /* Helper function, figure out where the LUN ID info is coming from
4131          * given index i, lists of physical and logical devices, where in
4132          * the list the raid controller is supposed to appear (first or last)
4133          */
4134
4135         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4136         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4137
4138         if (i == raid_ctlr_position)
4139                 return RAID_CTLR_LUNID;
4140
4141         if (i < logicals_start)
4142                 return &physdev_list->LUN[i -
4143                                 (raid_ctlr_position == 0)].lunid[0];
4144
4145         if (i < last_device)
4146                 return &logdev_list->LUN[i - nphysicals -
4147                         (raid_ctlr_position == 0)][0];
4148         BUG();
4149         return NULL;
4150 }
4151
4152 /* get physical drive ioaccel handle and queue depth */
4153 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4154                 struct hpsa_scsi_dev_t *dev,
4155                 struct ReportExtendedLUNdata *rlep, int rle_index,
4156                 struct bmic_identify_physical_device *id_phys)
4157 {
4158         int rc;
4159         struct ext_report_lun_entry *rle;
4160
4161         rle = &rlep->LUN[rle_index];
4162
4163         dev->ioaccel_handle = rle->ioaccel_handle;
4164         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4165                 dev->hba_ioaccel_enabled = 1;
4166         memset(id_phys, 0, sizeof(*id_phys));
4167         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4168                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4169                         sizeof(*id_phys));
4170         if (!rc)
4171                 /* Reserve space for FW operations */
4172 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4173 #define DRIVE_QUEUE_DEPTH 7
4174                 dev->queue_depth =
4175                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4176                                 DRIVE_CMDS_RESERVED_FOR_FW;
4177         else
4178                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4179 }
4180
4181 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4182         struct ReportExtendedLUNdata *rlep, int rle_index,
4183         struct bmic_identify_physical_device *id_phys)
4184 {
4185         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4186
4187         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4188                 this_device->hba_ioaccel_enabled = 1;
4189
4190         memcpy(&this_device->active_path_index,
4191                 &id_phys->active_path_number,
4192                 sizeof(this_device->active_path_index));
4193         memcpy(&this_device->path_map,
4194                 &id_phys->redundant_path_present_map,
4195                 sizeof(this_device->path_map));
4196         memcpy(&this_device->box,
4197                 &id_phys->alternate_paths_phys_box_on_port,
4198                 sizeof(this_device->box));
4199         memcpy(&this_device->phys_connector,
4200                 &id_phys->alternate_paths_phys_connector,
4201                 sizeof(this_device->phys_connector));
4202         memcpy(&this_device->bay,
4203                 &id_phys->phys_bay_in_box,
4204                 sizeof(this_device->bay));
4205 }
4206
4207 /* get number of local logical disks. */
4208 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4209         struct bmic_identify_controller *id_ctlr,
4210         u32 *nlocals)
4211 {
4212         int rc;
4213
4214         if (!id_ctlr) {
4215                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4216                         __func__);
4217                 return -ENOMEM;
4218         }
4219         memset(id_ctlr, 0, sizeof(*id_ctlr));
4220         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4221         if (!rc)
4222                 if (id_ctlr->configured_logical_drive_count < 255)
4223                         *nlocals = id_ctlr->configured_logical_drive_count;
4224                 else
4225                         *nlocals = le16_to_cpu(
4226                                         id_ctlr->extended_logical_unit_count);
4227         else
4228                 *nlocals = -1;
4229         return rc;
4230 }
4231
4232 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4233 {
4234         struct bmic_identify_physical_device *id_phys;
4235         bool is_spare = false;
4236         int rc;
4237
4238         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4239         if (!id_phys)
4240                 return false;
4241
4242         rc = hpsa_bmic_id_physical_device(h,
4243                                         lunaddrbytes,
4244                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4245                                         id_phys, sizeof(*id_phys));
4246         if (rc == 0)
4247                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4248
4249         kfree(id_phys);
4250         return is_spare;
4251 }
4252
4253 #define RPL_DEV_FLAG_NON_DISK                           0x1
4254 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4255 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4256
4257 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4258
4259 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4260                                 struct ext_report_lun_entry *rle)
4261 {
4262         u8 device_flags;
4263         u8 device_type;
4264
4265         if (!MASKED_DEVICE(lunaddrbytes))
4266                 return false;
4267
4268         device_flags = rle->device_flags;
4269         device_type = rle->device_type;
4270
4271         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4272                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4273                         return false;
4274                 return true;
4275         }
4276
4277         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4278                 return false;
4279
4280         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4281                 return false;
4282
4283         /*
4284          * Spares may be spun down, we do not want to
4285          * do an Inquiry to a RAID set spare drive as
4286          * that would have them spun up, that is a
4287          * performance hit because I/O to the RAID device
4288          * stops while the spin up occurs which can take
4289          * over 50 seconds.
4290          */
4291         if (hpsa_is_disk_spare(h, lunaddrbytes))
4292                 return true;
4293
4294         return false;
4295 }
4296
4297 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4298 {
4299         /* the idea here is we could get notified
4300          * that some devices have changed, so we do a report
4301          * physical luns and report logical luns cmd, and adjust
4302          * our list of devices accordingly.
4303          *
4304          * The scsi3addr's of devices won't change so long as the
4305          * adapter is not reset.  That means we can rescan and
4306          * tell which devices we already know about, vs. new
4307          * devices, vs.  disappearing devices.
4308          */
4309         struct ReportExtendedLUNdata *physdev_list = NULL;
4310         struct ReportLUNdata *logdev_list = NULL;
4311         struct bmic_identify_physical_device *id_phys = NULL;
4312         struct bmic_identify_controller *id_ctlr = NULL;
4313         u32 nphysicals = 0;
4314         u32 nlogicals = 0;
4315         u32 nlocal_logicals = 0;
4316         u32 ndev_allocated = 0;
4317         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4318         int ncurrent = 0;
4319         int i, n_ext_target_devs, ndevs_to_allocate;
4320         int raid_ctlr_position;
4321         bool physical_device;
4322         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4323
4324         currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4325         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4326         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4327         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4328         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4329         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4330
4331         if (!currentsd || !physdev_list || !logdev_list ||
4332                 !tmpdevice || !id_phys || !id_ctlr) {
4333                 dev_err(&h->pdev->dev, "out of memory\n");
4334                 goto out;
4335         }
4336         memset(lunzerobits, 0, sizeof(lunzerobits));
4337
4338         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4339
4340         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4341                         logdev_list, &nlogicals)) {
4342                 h->drv_req_rescan = 1;
4343                 goto out;
4344         }
4345
4346         /* Set number of local logicals (non PTRAID) */
4347         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4348                 dev_warn(&h->pdev->dev,
4349                         "%s: Can't determine number of local logical devices.\n",
4350                         __func__);
4351         }
4352
4353         /* We might see up to the maximum number of logical and physical disks
4354          * plus external target devices, and a device for the local RAID
4355          * controller.
4356          */
4357         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4358
4359         hpsa_ext_ctrl_present(h, physdev_list);
4360
4361         /* Allocate the per device structures */
4362         for (i = 0; i < ndevs_to_allocate; i++) {
4363                 if (i >= HPSA_MAX_DEVICES) {
4364                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4365                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4366                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4367                         break;
4368                 }
4369
4370                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4371                 if (!currentsd[i]) {
4372                         h->drv_req_rescan = 1;
4373                         goto out;
4374                 }
4375                 ndev_allocated++;
4376         }
4377
4378         if (is_scsi_rev_5(h))
4379                 raid_ctlr_position = 0;
4380         else
4381                 raid_ctlr_position = nphysicals + nlogicals;
4382
4383         /* adjust our table of devices */
4384         n_ext_target_devs = 0;
4385         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4386                 u8 *lunaddrbytes, is_OBDR = 0;
4387                 int rc = 0;
4388                 int phys_dev_index = i - (raid_ctlr_position == 0);
4389                 bool skip_device = false;
4390
4391                 memset(tmpdevice, 0, sizeof(*tmpdevice));
4392
4393                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4394
4395                 /* Figure out where the LUN ID info is coming from */
4396                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4397                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4398
4399                 /* Determine if this is a lun from an external target array */
4400                 tmpdevice->external =
4401                         figure_external_status(h, raid_ctlr_position, i,
4402                                                 nphysicals, nlocal_logicals);
4403
4404                 /*
4405                  * Skip over some devices such as a spare.
4406                  */
4407                 if (!tmpdevice->external && physical_device) {
4408                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4409                                         &physdev_list->LUN[phys_dev_index]);
4410                         if (skip_device)
4411                                 continue;
4412                 }
4413
4414                 /* Get device type, vendor, model, device id, raid_map */
4415                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4416                                                         &is_OBDR);
4417                 if (rc == -ENOMEM) {
4418                         dev_warn(&h->pdev->dev,
4419                                 "Out of memory, rescan deferred.\n");
4420                         h->drv_req_rescan = 1;
4421                         goto out;
4422                 }
4423                 if (rc) {
4424                         h->drv_req_rescan = 1;
4425                         continue;
4426                 }
4427
4428                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4429                 this_device = currentsd[ncurrent];
4430
4431                 *this_device = *tmpdevice;
4432                 this_device->physical_device = physical_device;
4433
4434                 /*
4435                  * Expose all devices except for physical devices that
4436                  * are masked.
4437                  */
4438                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4439                         this_device->expose_device = 0;
4440                 else
4441                         this_device->expose_device = 1;
4442
4443
4444                 /*
4445                  * Get the SAS address for physical devices that are exposed.
4446                  */
4447                 if (this_device->physical_device && this_device->expose_device)
4448                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4449
4450                 switch (this_device->devtype) {
4451                 case TYPE_ROM:
4452                         /* We don't *really* support actual CD-ROM devices,
4453                          * just "One Button Disaster Recovery" tape drive
4454                          * which temporarily pretends to be a CD-ROM drive.
4455                          * So we check that the device is really an OBDR tape
4456                          * device by checking for "$DR-10" in bytes 43-48 of
4457                          * the inquiry data.
4458                          */
4459                         if (is_OBDR)
4460                                 ncurrent++;
4461                         break;
4462                 case TYPE_DISK:
4463                 case TYPE_ZBC:
4464                         if (this_device->physical_device) {
4465                                 /* The disk is in HBA mode. */
4466                                 /* Never use RAID mapper in HBA mode. */
4467                                 this_device->offload_enabled = 0;
4468                                 hpsa_get_ioaccel_drive_info(h, this_device,
4469                                         physdev_list, phys_dev_index, id_phys);
4470                                 hpsa_get_path_info(this_device,
4471                                         physdev_list, phys_dev_index, id_phys);
4472                         }
4473                         ncurrent++;
4474                         break;
4475                 case TYPE_TAPE:
4476                 case TYPE_MEDIUM_CHANGER:
4477                         ncurrent++;
4478                         break;
4479                 case TYPE_ENCLOSURE:
4480                         if (!this_device->external)
4481                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4482                                                 physdev_list, phys_dev_index,
4483                                                 this_device);
4484                         ncurrent++;
4485                         break;
4486                 case TYPE_RAID:
4487                         /* Only present the Smartarray HBA as a RAID controller.
4488                          * If it's a RAID controller other than the HBA itself
4489                          * (an external RAID controller, MSA500 or similar)
4490                          * don't present it.
4491                          */
4492                         if (!is_hba_lunid(lunaddrbytes))
4493                                 break;
4494                         ncurrent++;
4495                         break;
4496                 default:
4497                         break;
4498                 }
4499                 if (ncurrent >= HPSA_MAX_DEVICES)
4500                         break;
4501         }
4502
4503         if (h->sas_host == NULL) {
4504                 int rc = 0;
4505
4506                 rc = hpsa_add_sas_host(h);
4507                 if (rc) {
4508                         dev_warn(&h->pdev->dev,
4509                                 "Could not add sas host %d\n", rc);
4510                         goto out;
4511                 }
4512         }
4513
4514         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4515 out:
4516         kfree(tmpdevice);
4517         for (i = 0; i < ndev_allocated; i++)
4518                 kfree(currentsd[i]);
4519         kfree(currentsd);
4520         kfree(physdev_list);
4521         kfree(logdev_list);
4522         kfree(id_ctlr);
4523         kfree(id_phys);
4524 }
4525
4526 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4527                                    struct scatterlist *sg)
4528 {
4529         u64 addr64 = (u64) sg_dma_address(sg);
4530         unsigned int len = sg_dma_len(sg);
4531
4532         desc->Addr = cpu_to_le64(addr64);
4533         desc->Len = cpu_to_le32(len);
4534         desc->Ext = 0;
4535 }
4536
4537 /*
4538  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4539  * dma mapping  and fills in the scatter gather entries of the
4540  * hpsa command, cp.
4541  */
4542 static int hpsa_scatter_gather(struct ctlr_info *h,
4543                 struct CommandList *cp,
4544                 struct scsi_cmnd *cmd)
4545 {
4546         struct scatterlist *sg;
4547         int use_sg, i, sg_limit, chained, last_sg;
4548         struct SGDescriptor *curr_sg;
4549
4550         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4551
4552         use_sg = scsi_dma_map(cmd);
4553         if (use_sg < 0)
4554                 return use_sg;
4555
4556         if (!use_sg)
4557                 goto sglist_finished;
4558
4559         /*
4560          * If the number of entries is greater than the max for a single list,
4561          * then we have a chained list; we will set up all but one entry in the
4562          * first list (the last entry is saved for link information);
4563          * otherwise, we don't have a chained list and we'll set up at each of
4564          * the entries in the one list.
4565          */
4566         curr_sg = cp->SG;
4567         chained = use_sg > h->max_cmd_sg_entries;
4568         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4569         last_sg = scsi_sg_count(cmd) - 1;
4570         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4571                 hpsa_set_sg_descriptor(curr_sg, sg);
4572                 curr_sg++;
4573         }
4574
4575         if (chained) {
4576                 /*
4577                  * Continue with the chained list.  Set curr_sg to the chained
4578                  * list.  Modify the limit to the total count less the entries
4579                  * we've already set up.  Resume the scan at the list entry
4580                  * where the previous loop left off.
4581                  */
4582                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4583                 sg_limit = use_sg - sg_limit;
4584                 for_each_sg(sg, sg, sg_limit, i) {
4585                         hpsa_set_sg_descriptor(curr_sg, sg);
4586                         curr_sg++;
4587                 }
4588         }
4589
4590         /* Back the pointer up to the last entry and mark it as "last". */
4591         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4592
4593         if (use_sg + chained > h->maxSG)
4594                 h->maxSG = use_sg + chained;
4595
4596         if (chained) {
4597                 cp->Header.SGList = h->max_cmd_sg_entries;
4598                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4599                 if (hpsa_map_sg_chain_block(h, cp)) {
4600                         scsi_dma_unmap(cmd);
4601                         return -1;
4602                 }
4603                 return 0;
4604         }
4605
4606 sglist_finished:
4607
4608         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4609         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4610         return 0;
4611 }
4612
4613 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4614                                                 u8 *cdb, int cdb_len,
4615                                                 const char *func)
4616 {
4617         dev_warn(&h->pdev->dev,
4618                  "%s: Blocking zero-length request: CDB:%*phN\n",
4619                  func, cdb_len, cdb);
4620 }
4621
4622 #define IO_ACCEL_INELIGIBLE 1
4623 /* zero-length transfers trigger hardware errors. */
4624 static bool is_zero_length_transfer(u8 *cdb)
4625 {
4626         u32 block_cnt;
4627
4628         /* Block zero-length transfer sizes on certain commands. */
4629         switch (cdb[0]) {
4630         case READ_10:
4631         case WRITE_10:
4632         case VERIFY:            /* 0x2F */
4633         case WRITE_VERIFY:      /* 0x2E */
4634                 block_cnt = get_unaligned_be16(&cdb[7]);
4635                 break;
4636         case READ_12:
4637         case WRITE_12:
4638         case VERIFY_12: /* 0xAF */
4639         case WRITE_VERIFY_12:   /* 0xAE */
4640                 block_cnt = get_unaligned_be32(&cdb[6]);
4641                 break;
4642         case READ_16:
4643         case WRITE_16:
4644         case VERIFY_16:         /* 0x8F */
4645                 block_cnt = get_unaligned_be32(&cdb[10]);
4646                 break;
4647         default:
4648                 return false;
4649         }
4650
4651         return block_cnt == 0;
4652 }
4653
4654 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4655 {
4656         int is_write = 0;
4657         u32 block;
4658         u32 block_cnt;
4659
4660         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4661         switch (cdb[0]) {
4662         case WRITE_6:
4663         case WRITE_12:
4664                 is_write = 1;
4665         case READ_6:
4666         case READ_12:
4667                 if (*cdb_len == 6) {
4668                         block = (((cdb[1] & 0x1F) << 16) |
4669                                 (cdb[2] << 8) |
4670                                 cdb[3]);
4671                         block_cnt = cdb[4];
4672                         if (block_cnt == 0)
4673                                 block_cnt = 256;
4674                 } else {
4675                         BUG_ON(*cdb_len != 12);
4676                         block = get_unaligned_be32(&cdb[2]);
4677                         block_cnt = get_unaligned_be32(&cdb[6]);
4678                 }
4679                 if (block_cnt > 0xffff)
4680                         return IO_ACCEL_INELIGIBLE;
4681
4682                 cdb[0] = is_write ? WRITE_10 : READ_10;
4683                 cdb[1] = 0;
4684                 cdb[2] = (u8) (block >> 24);
4685                 cdb[3] = (u8) (block >> 16);
4686                 cdb[4] = (u8) (block >> 8);
4687                 cdb[5] = (u8) (block);
4688                 cdb[6] = 0;
4689                 cdb[7] = (u8) (block_cnt >> 8);
4690                 cdb[8] = (u8) (block_cnt);
4691                 cdb[9] = 0;
4692                 *cdb_len = 10;
4693                 break;
4694         }
4695         return 0;
4696 }
4697
4698 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4699         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4700         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4701 {
4702         struct scsi_cmnd *cmd = c->scsi_cmd;
4703         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4704         unsigned int len;
4705         unsigned int total_len = 0;
4706         struct scatterlist *sg;
4707         u64 addr64;
4708         int use_sg, i;
4709         struct SGDescriptor *curr_sg;
4710         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4711
4712         /* TODO: implement chaining support */
4713         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4714                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4715                 return IO_ACCEL_INELIGIBLE;
4716         }
4717
4718         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4719
4720         if (is_zero_length_transfer(cdb)) {
4721                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4722                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4723                 return IO_ACCEL_INELIGIBLE;
4724         }
4725
4726         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4727                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4728                 return IO_ACCEL_INELIGIBLE;
4729         }
4730
4731         c->cmd_type = CMD_IOACCEL1;
4732
4733         /* Adjust the DMA address to point to the accelerated command buffer */
4734         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4735                                 (c->cmdindex * sizeof(*cp));
4736         BUG_ON(c->busaddr & 0x0000007F);
4737
4738         use_sg = scsi_dma_map(cmd);
4739         if (use_sg < 0) {
4740                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4741                 return use_sg;
4742         }
4743
4744         if (use_sg) {
4745                 curr_sg = cp->SG;
4746                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4747                         addr64 = (u64) sg_dma_address(sg);
4748                         len  = sg_dma_len(sg);
4749                         total_len += len;
4750                         curr_sg->Addr = cpu_to_le64(addr64);
4751                         curr_sg->Len = cpu_to_le32(len);
4752                         curr_sg->Ext = cpu_to_le32(0);
4753                         curr_sg++;
4754                 }
4755                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4756
4757                 switch (cmd->sc_data_direction) {
4758                 case DMA_TO_DEVICE:
4759                         control |= IOACCEL1_CONTROL_DATA_OUT;
4760                         break;
4761                 case DMA_FROM_DEVICE:
4762                         control |= IOACCEL1_CONTROL_DATA_IN;
4763                         break;
4764                 case DMA_NONE:
4765                         control |= IOACCEL1_CONTROL_NODATAXFER;
4766                         break;
4767                 default:
4768                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4769                         cmd->sc_data_direction);
4770                         BUG();
4771                         break;
4772                 }
4773         } else {
4774                 control |= IOACCEL1_CONTROL_NODATAXFER;
4775         }
4776
4777         c->Header.SGList = use_sg;
4778         /* Fill out the command structure to submit */
4779         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4780         cp->transfer_len = cpu_to_le32(total_len);
4781         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4782                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4783         cp->control = cpu_to_le32(control);
4784         memcpy(cp->CDB, cdb, cdb_len);
4785         memcpy(cp->CISS_LUN, scsi3addr, 8);
4786         /* Tag was already set at init time. */
4787         enqueue_cmd_and_start_io(h, c);
4788         return 0;
4789 }
4790
4791 /*
4792  * Queue a command directly to a device behind the controller using the
4793  * I/O accelerator path.
4794  */
4795 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4796         struct CommandList *c)
4797 {
4798         struct scsi_cmnd *cmd = c->scsi_cmd;
4799         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4800
4801         if (!dev)
4802                 return -1;
4803
4804         c->phys_disk = dev;
4805
4806         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4807                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4808 }
4809
4810 /*
4811  * Set encryption parameters for the ioaccel2 request
4812  */
4813 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4814         struct CommandList *c, struct io_accel2_cmd *cp)
4815 {
4816         struct scsi_cmnd *cmd = c->scsi_cmd;
4817         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4818         struct raid_map_data *map = &dev->raid_map;
4819         u64 first_block;
4820
4821         /* Are we doing encryption on this device */
4822         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4823                 return;
4824         /* Set the data encryption key index. */
4825         cp->dekindex = map->dekindex;
4826
4827         /* Set the encryption enable flag, encoded into direction field. */
4828         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4829
4830         /* Set encryption tweak values based on logical block address
4831          * If block size is 512, tweak value is LBA.
4832          * For other block sizes, tweak is (LBA * block size)/ 512)
4833          */
4834         switch (cmd->cmnd[0]) {
4835         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4836         case READ_6:
4837         case WRITE_6:
4838                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4839                                 (cmd->cmnd[2] << 8) |
4840                                 cmd->cmnd[3]);
4841                 break;
4842         case WRITE_10:
4843         case READ_10:
4844         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4845         case WRITE_12:
4846         case READ_12:
4847                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4848                 break;
4849         case WRITE_16:
4850         case READ_16:
4851                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4852                 break;
4853         default:
4854                 dev_err(&h->pdev->dev,
4855                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4856                         __func__, cmd->cmnd[0]);
4857                 BUG();
4858                 break;
4859         }
4860
4861         if (le32_to_cpu(map->volume_blk_size) != 512)
4862                 first_block = first_block *
4863                                 le32_to_cpu(map->volume_blk_size)/512;
4864
4865         cp->tweak_lower = cpu_to_le32(first_block);
4866         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4867 }
4868
4869 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4870         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4871         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4872 {
4873         struct scsi_cmnd *cmd = c->scsi_cmd;
4874         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4875         struct ioaccel2_sg_element *curr_sg;
4876         int use_sg, i;
4877         struct scatterlist *sg;
4878         u64 addr64;
4879         u32 len;
4880         u32 total_len = 0;
4881
4882         if (!cmd->device)
4883                 return -1;
4884
4885         if (!cmd->device->hostdata)
4886                 return -1;
4887
4888         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4889
4890         if (is_zero_length_transfer(cdb)) {
4891                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4892                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4893                 return IO_ACCEL_INELIGIBLE;
4894         }
4895
4896         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4897                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4898                 return IO_ACCEL_INELIGIBLE;
4899         }
4900
4901         c->cmd_type = CMD_IOACCEL2;
4902         /* Adjust the DMA address to point to the accelerated command buffer */
4903         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4904                                 (c->cmdindex * sizeof(*cp));
4905         BUG_ON(c->busaddr & 0x0000007F);
4906
4907         memset(cp, 0, sizeof(*cp));
4908         cp->IU_type = IOACCEL2_IU_TYPE;
4909
4910         use_sg = scsi_dma_map(cmd);
4911         if (use_sg < 0) {
4912                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4913                 return use_sg;
4914         }
4915
4916         if (use_sg) {
4917                 curr_sg = cp->sg;
4918                 if (use_sg > h->ioaccel_maxsg) {
4919                         addr64 = le64_to_cpu(
4920                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4921                         curr_sg->address = cpu_to_le64(addr64);
4922                         curr_sg->length = 0;
4923                         curr_sg->reserved[0] = 0;
4924                         curr_sg->reserved[1] = 0;
4925                         curr_sg->reserved[2] = 0;
4926                         curr_sg->chain_indicator = 0x80;
4927
4928                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4929                 }
4930                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4931                         addr64 = (u64) sg_dma_address(sg);
4932                         len  = sg_dma_len(sg);
4933                         total_len += len;
4934                         curr_sg->address = cpu_to_le64(addr64);
4935                         curr_sg->length = cpu_to_le32(len);
4936                         curr_sg->reserved[0] = 0;
4937                         curr_sg->reserved[1] = 0;
4938                         curr_sg->reserved[2] = 0;
4939                         curr_sg->chain_indicator = 0;
4940                         curr_sg++;
4941                 }
4942
4943                 switch (cmd->sc_data_direction) {
4944                 case DMA_TO_DEVICE:
4945                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4946                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4947                         break;
4948                 case DMA_FROM_DEVICE:
4949                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4950                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4951                         break;
4952                 case DMA_NONE:
4953                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4954                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4955                         break;
4956                 default:
4957                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4958                                 cmd->sc_data_direction);
4959                         BUG();
4960                         break;
4961                 }
4962         } else {
4963                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4964                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4965         }
4966
4967         /* Set encryption parameters, if necessary */
4968         set_encrypt_ioaccel2(h, c, cp);
4969
4970         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4971         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4972         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4973
4974         cp->data_len = cpu_to_le32(total_len);
4975         cp->err_ptr = cpu_to_le64(c->busaddr +
4976                         offsetof(struct io_accel2_cmd, error_data));
4977         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4978
4979         /* fill in sg elements */
4980         if (use_sg > h->ioaccel_maxsg) {
4981                 cp->sg_count = 1;
4982                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4983                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4984                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4985                         scsi_dma_unmap(cmd);
4986                         return -1;
4987                 }
4988         } else
4989                 cp->sg_count = (u8) use_sg;
4990
4991         enqueue_cmd_and_start_io(h, c);
4992         return 0;
4993 }
4994
4995 /*
4996  * Queue a command to the correct I/O accelerator path.
4997  */
4998 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4999         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5000         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5001 {
5002         if (!c->scsi_cmd->device)
5003                 return -1;
5004
5005         if (!c->scsi_cmd->device->hostdata)
5006                 return -1;
5007
5008         /* Try to honor the device's queue depth */
5009         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5010                                         phys_disk->queue_depth) {
5011                 atomic_dec(&phys_disk->ioaccel_cmds_out);
5012                 return IO_ACCEL_INELIGIBLE;
5013         }
5014         if (h->transMethod & CFGTBL_Trans_io_accel1)
5015                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5016                                                 cdb, cdb_len, scsi3addr,
5017                                                 phys_disk);
5018         else
5019                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5020                                                 cdb, cdb_len, scsi3addr,
5021                                                 phys_disk);
5022 }
5023
5024 static void raid_map_helper(struct raid_map_data *map,
5025                 int offload_to_mirror, u32 *map_index, u32 *current_group)
5026 {
5027         if (offload_to_mirror == 0)  {
5028                 /* use physical disk in the first mirrored group. */
5029                 *map_index %= le16_to_cpu(map->data_disks_per_row);
5030                 return;
5031         }
5032         do {
5033                 /* determine mirror group that *map_index indicates */
5034                 *current_group = *map_index /
5035                         le16_to_cpu(map->data_disks_per_row);
5036                 if (offload_to_mirror == *current_group)
5037                         continue;
5038                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5039                         /* select map index from next group */
5040                         *map_index += le16_to_cpu(map->data_disks_per_row);
5041                         (*current_group)++;
5042                 } else {
5043                         /* select map index from first group */
5044                         *map_index %= le16_to_cpu(map->data_disks_per_row);
5045                         *current_group = 0;
5046                 }
5047         } while (offload_to_mirror != *current_group);
5048 }
5049
5050 /*
5051  * Attempt to perform offload RAID mapping for a logical volume I/O.
5052  */
5053 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5054         struct CommandList *c)
5055 {
5056         struct scsi_cmnd *cmd = c->scsi_cmd;
5057         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5058         struct raid_map_data *map = &dev->raid_map;
5059         struct raid_map_disk_data *dd = &map->data[0];
5060         int is_write = 0;
5061         u32 map_index;
5062         u64 first_block, last_block;
5063         u32 block_cnt;
5064         u32 blocks_per_row;
5065         u64 first_row, last_row;
5066         u32 first_row_offset, last_row_offset;
5067         u32 first_column, last_column;
5068         u64 r0_first_row, r0_last_row;
5069         u32 r5or6_blocks_per_row;
5070         u64 r5or6_first_row, r5or6_last_row;
5071         u32 r5or6_first_row_offset, r5or6_last_row_offset;
5072         u32 r5or6_first_column, r5or6_last_column;
5073         u32 total_disks_per_row;
5074         u32 stripesize;
5075         u32 first_group, last_group, current_group;
5076         u32 map_row;
5077         u32 disk_handle;
5078         u64 disk_block;
5079         u32 disk_block_cnt;
5080         u8 cdb[16];
5081         u8 cdb_len;
5082         u16 strip_size;
5083 #if BITS_PER_LONG == 32
5084         u64 tmpdiv;
5085 #endif
5086         int offload_to_mirror;
5087
5088         if (!dev)
5089                 return -1;
5090
5091         /* check for valid opcode, get LBA and block count */
5092         switch (cmd->cmnd[0]) {
5093         case WRITE_6:
5094                 is_write = 1;
5095         case READ_6:
5096                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5097                                 (cmd->cmnd[2] << 8) |
5098                                 cmd->cmnd[3]);
5099                 block_cnt = cmd->cmnd[4];
5100                 if (block_cnt == 0)
5101                         block_cnt = 256;
5102                 break;
5103         case WRITE_10:
5104                 is_write = 1;
5105         case READ_10:
5106                 first_block =
5107                         (((u64) cmd->cmnd[2]) << 24) |
5108                         (((u64) cmd->cmnd[3]) << 16) |
5109                         (((u64) cmd->cmnd[4]) << 8) |
5110                         cmd->cmnd[5];
5111                 block_cnt =
5112                         (((u32) cmd->cmnd[7]) << 8) |
5113                         cmd->cmnd[8];
5114                 break;
5115         case WRITE_12:
5116                 is_write = 1;
5117         case READ_12:
5118                 first_block =
5119                         (((u64) cmd->cmnd[2]) << 24) |
5120                         (((u64) cmd->cmnd[3]) << 16) |
5121                         (((u64) cmd->cmnd[4]) << 8) |
5122                         cmd->cmnd[5];
5123                 block_cnt =
5124                         (((u32) cmd->cmnd[6]) << 24) |
5125                         (((u32) cmd->cmnd[7]) << 16) |
5126                         (((u32) cmd->cmnd[8]) << 8) |
5127                 cmd->cmnd[9];
5128                 break;
5129         case WRITE_16:
5130                 is_write = 1;
5131         case READ_16:
5132                 first_block =
5133                         (((u64) cmd->cmnd[2]) << 56) |
5134                         (((u64) cmd->cmnd[3]) << 48) |
5135                         (((u64) cmd->cmnd[4]) << 40) |
5136                         (((u64) cmd->cmnd[5]) << 32) |
5137                         (((u64) cmd->cmnd[6]) << 24) |
5138                         (((u64) cmd->cmnd[7]) << 16) |
5139                         (((u64) cmd->cmnd[8]) << 8) |
5140                         cmd->cmnd[9];
5141                 block_cnt =
5142                         (((u32) cmd->cmnd[10]) << 24) |
5143                         (((u32) cmd->cmnd[11]) << 16) |
5144                         (((u32) cmd->cmnd[12]) << 8) |
5145                         cmd->cmnd[13];
5146                 break;
5147         default:
5148                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5149         }
5150         last_block = first_block + block_cnt - 1;
5151
5152         /* check for write to non-RAID-0 */
5153         if (is_write && dev->raid_level != 0)
5154                 return IO_ACCEL_INELIGIBLE;
5155
5156         /* check for invalid block or wraparound */
5157         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5158                 last_block < first_block)
5159                 return IO_ACCEL_INELIGIBLE;
5160
5161         /* calculate stripe information for the request */
5162         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5163                                 le16_to_cpu(map->strip_size);
5164         strip_size = le16_to_cpu(map->strip_size);
5165 #if BITS_PER_LONG == 32
5166         tmpdiv = first_block;
5167         (void) do_div(tmpdiv, blocks_per_row);
5168         first_row = tmpdiv;
5169         tmpdiv = last_block;
5170         (void) do_div(tmpdiv, blocks_per_row);
5171         last_row = tmpdiv;
5172         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5173         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5174         tmpdiv = first_row_offset;
5175         (void) do_div(tmpdiv, strip_size);
5176         first_column = tmpdiv;
5177         tmpdiv = last_row_offset;
5178         (void) do_div(tmpdiv, strip_size);
5179         last_column = tmpdiv;
5180 #else
5181         first_row = first_block / blocks_per_row;
5182         last_row = last_block / blocks_per_row;
5183         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5184         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5185         first_column = first_row_offset / strip_size;
5186         last_column = last_row_offset / strip_size;
5187 #endif
5188
5189         /* if this isn't a single row/column then give to the controller */
5190         if ((first_row != last_row) || (first_column != last_column))
5191                 return IO_ACCEL_INELIGIBLE;
5192
5193         /* proceeding with driver mapping */
5194         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5195                                 le16_to_cpu(map->metadata_disks_per_row);
5196         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5197                                 le16_to_cpu(map->row_cnt);
5198         map_index = (map_row * total_disks_per_row) + first_column;
5199
5200         switch (dev->raid_level) {
5201         case HPSA_RAID_0:
5202                 break; /* nothing special to do */
5203         case HPSA_RAID_1:
5204                 /* Handles load balance across RAID 1 members.
5205                  * (2-drive R1 and R10 with even # of drives.)
5206                  * Appropriate for SSDs, not optimal for HDDs
5207                  */
5208                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5209                 if (dev->offload_to_mirror)
5210                         map_index += le16_to_cpu(map->data_disks_per_row);
5211                 dev->offload_to_mirror = !dev->offload_to_mirror;
5212                 break;
5213         case HPSA_RAID_ADM:
5214                 /* Handles N-way mirrors  (R1-ADM)
5215                  * and R10 with # of drives divisible by 3.)
5216                  */
5217                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5218
5219                 offload_to_mirror = dev->offload_to_mirror;
5220                 raid_map_helper(map, offload_to_mirror,
5221                                 &map_index, &current_group);
5222                 /* set mirror group to use next time */
5223                 offload_to_mirror =
5224                         (offload_to_mirror >=
5225                         le16_to_cpu(map->layout_map_count) - 1)
5226                         ? 0 : offload_to_mirror + 1;
5227                 dev->offload_to_mirror = offload_to_mirror;
5228                 /* Avoid direct use of dev->offload_to_mirror within this
5229                  * function since multiple threads might simultaneously
5230                  * increment it beyond the range of dev->layout_map_count -1.
5231                  */
5232                 break;
5233         case HPSA_RAID_5:
5234         case HPSA_RAID_6:
5235                 if (le16_to_cpu(map->layout_map_count) <= 1)
5236                         break;
5237
5238                 /* Verify first and last block are in same RAID group */
5239                 r5or6_blocks_per_row =
5240                         le16_to_cpu(map->strip_size) *
5241                         le16_to_cpu(map->data_disks_per_row);
5242                 BUG_ON(r5or6_blocks_per_row == 0);
5243                 stripesize = r5or6_blocks_per_row *
5244                         le16_to_cpu(map->layout_map_count);
5245 #if BITS_PER_LONG == 32
5246                 tmpdiv = first_block;
5247                 first_group = do_div(tmpdiv, stripesize);
5248                 tmpdiv = first_group;
5249                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5250                 first_group = tmpdiv;
5251                 tmpdiv = last_block;
5252                 last_group = do_div(tmpdiv, stripesize);
5253                 tmpdiv = last_group;
5254                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5255                 last_group = tmpdiv;
5256 #else
5257                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5258                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5259 #endif
5260                 if (first_group != last_group)
5261                         return IO_ACCEL_INELIGIBLE;
5262
5263                 /* Verify request is in a single row of RAID 5/6 */
5264 #if BITS_PER_LONG == 32
5265                 tmpdiv = first_block;
5266                 (void) do_div(tmpdiv, stripesize);
5267                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5268                 tmpdiv = last_block;
5269                 (void) do_div(tmpdiv, stripesize);
5270                 r5or6_last_row = r0_last_row = tmpdiv;
5271 #else
5272                 first_row = r5or6_first_row = r0_first_row =
5273                                                 first_block / stripesize;
5274                 r5or6_last_row = r0_last_row = last_block / stripesize;
5275 #endif
5276                 if (r5or6_first_row != r5or6_last_row)
5277                         return IO_ACCEL_INELIGIBLE;
5278
5279
5280                 /* Verify request is in a single column */
5281 #if BITS_PER_LONG == 32
5282                 tmpdiv = first_block;
5283                 first_row_offset = do_div(tmpdiv, stripesize);
5284                 tmpdiv = first_row_offset;
5285                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5286                 r5or6_first_row_offset = first_row_offset;
5287                 tmpdiv = last_block;
5288                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5289                 tmpdiv = r5or6_last_row_offset;
5290                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5291                 tmpdiv = r5or6_first_row_offset;
5292                 (void) do_div(tmpdiv, map->strip_size);
5293                 first_column = r5or6_first_column = tmpdiv;
5294                 tmpdiv = r5or6_last_row_offset;
5295                 (void) do_div(tmpdiv, map->strip_size);
5296                 r5or6_last_column = tmpdiv;
5297 #else
5298                 first_row_offset = r5or6_first_row_offset =
5299                         (u32)((first_block % stripesize) %
5300                                                 r5or6_blocks_per_row);
5301
5302                 r5or6_last_row_offset =
5303                         (u32)((last_block % stripesize) %
5304                                                 r5or6_blocks_per_row);
5305
5306                 first_column = r5or6_first_column =
5307                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5308                 r5or6_last_column =
5309                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5310 #endif
5311                 if (r5or6_first_column != r5or6_last_column)
5312                         return IO_ACCEL_INELIGIBLE;
5313
5314                 /* Request is eligible */
5315                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5316                         le16_to_cpu(map->row_cnt);
5317
5318                 map_index = (first_group *
5319                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5320                         (map_row * total_disks_per_row) + first_column;
5321                 break;
5322         default:
5323                 return IO_ACCEL_INELIGIBLE;
5324         }
5325
5326         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5327                 return IO_ACCEL_INELIGIBLE;
5328
5329         c->phys_disk = dev->phys_disk[map_index];
5330         if (!c->phys_disk)
5331                 return IO_ACCEL_INELIGIBLE;
5332
5333         disk_handle = dd[map_index].ioaccel_handle;
5334         disk_block = le64_to_cpu(map->disk_starting_blk) +
5335                         first_row * le16_to_cpu(map->strip_size) +
5336                         (first_row_offset - first_column *
5337                         le16_to_cpu(map->strip_size));
5338         disk_block_cnt = block_cnt;
5339
5340         /* handle differing logical/physical block sizes */
5341         if (map->phys_blk_shift) {
5342                 disk_block <<= map->phys_blk_shift;
5343                 disk_block_cnt <<= map->phys_blk_shift;
5344         }
5345         BUG_ON(disk_block_cnt > 0xffff);
5346
5347         /* build the new CDB for the physical disk I/O */
5348         if (disk_block > 0xffffffff) {
5349                 cdb[0] = is_write ? WRITE_16 : READ_16;
5350                 cdb[1] = 0;
5351                 cdb[2] = (u8) (disk_block >> 56);
5352                 cdb[3] = (u8) (disk_block >> 48);
5353                 cdb[4] = (u8) (disk_block >> 40);
5354                 cdb[5] = (u8) (disk_block >> 32);
5355                 cdb[6] = (u8) (disk_block >> 24);
5356                 cdb[7] = (u8) (disk_block >> 16);
5357                 cdb[8] = (u8) (disk_block >> 8);
5358                 cdb[9] = (u8) (disk_block);
5359                 cdb[10] = (u8) (disk_block_cnt >> 24);
5360                 cdb[11] = (u8) (disk_block_cnt >> 16);
5361                 cdb[12] = (u8) (disk_block_cnt >> 8);
5362                 cdb[13] = (u8) (disk_block_cnt);
5363                 cdb[14] = 0;
5364                 cdb[15] = 0;
5365                 cdb_len = 16;
5366         } else {
5367                 cdb[0] = is_write ? WRITE_10 : READ_10;
5368                 cdb[1] = 0;
5369                 cdb[2] = (u8) (disk_block >> 24);
5370                 cdb[3] = (u8) (disk_block >> 16);
5371                 cdb[4] = (u8) (disk_block >> 8);
5372                 cdb[5] = (u8) (disk_block);
5373                 cdb[6] = 0;
5374                 cdb[7] = (u8) (disk_block_cnt >> 8);
5375                 cdb[8] = (u8) (disk_block_cnt);
5376                 cdb[9] = 0;
5377                 cdb_len = 10;
5378         }
5379         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5380                                                 dev->scsi3addr,
5381                                                 dev->phys_disk[map_index]);
5382 }
5383
5384 /*
5385  * Submit commands down the "normal" RAID stack path
5386  * All callers to hpsa_ciss_submit must check lockup_detected
5387  * beforehand, before (opt.) and after calling cmd_alloc
5388  */
5389 static int hpsa_ciss_submit(struct ctlr_info *h,
5390         struct CommandList *c, struct scsi_cmnd *cmd,
5391         unsigned char scsi3addr[])
5392 {
5393         cmd->host_scribble = (unsigned char *) c;
5394         c->cmd_type = CMD_SCSI;
5395         c->scsi_cmd = cmd;
5396         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5397         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5398         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5399
5400         /* Fill in the request block... */
5401
5402         c->Request.Timeout = 0;
5403         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5404         c->Request.CDBLen = cmd->cmd_len;
5405         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5406         switch (cmd->sc_data_direction) {
5407         case DMA_TO_DEVICE:
5408                 c->Request.type_attr_dir =
5409                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5410                 break;
5411         case DMA_FROM_DEVICE:
5412                 c->Request.type_attr_dir =
5413                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5414                 break;
5415         case DMA_NONE:
5416                 c->Request.type_attr_dir =
5417                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5418                 break;
5419         case DMA_BIDIRECTIONAL:
5420                 /* This can happen if a buggy application does a scsi passthru
5421                  * and sets both inlen and outlen to non-zero. ( see
5422                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5423                  */
5424
5425                 c->Request.type_attr_dir =
5426                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5427                 /* This is technically wrong, and hpsa controllers should
5428                  * reject it with CMD_INVALID, which is the most correct
5429                  * response, but non-fibre backends appear to let it
5430                  * slide by, and give the same results as if this field
5431                  * were set correctly.  Either way is acceptable for
5432                  * our purposes here.
5433                  */
5434
5435                 break;
5436
5437         default:
5438                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5439                         cmd->sc_data_direction);
5440                 BUG();
5441                 break;
5442         }
5443
5444         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5445                 hpsa_cmd_resolve_and_free(h, c);
5446                 return SCSI_MLQUEUE_HOST_BUSY;
5447         }
5448         enqueue_cmd_and_start_io(h, c);
5449         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5450         return 0;
5451 }
5452
5453 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5454                                 struct CommandList *c)
5455 {
5456         dma_addr_t cmd_dma_handle, err_dma_handle;
5457
5458         /* Zero out all of commandlist except the last field, refcount */
5459         memset(c, 0, offsetof(struct CommandList, refcount));
5460         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5461         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5462         c->err_info = h->errinfo_pool + index;
5463         memset(c->err_info, 0, sizeof(*c->err_info));
5464         err_dma_handle = h->errinfo_pool_dhandle
5465             + index * sizeof(*c->err_info);
5466         c->cmdindex = index;
5467         c->busaddr = (u32) cmd_dma_handle;
5468         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5469         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5470         c->h = h;
5471         c->scsi_cmd = SCSI_CMD_IDLE;
5472 }
5473
5474 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5475 {
5476         int i;
5477
5478         for (i = 0; i < h->nr_cmds; i++) {
5479                 struct CommandList *c = h->cmd_pool + i;
5480
5481                 hpsa_cmd_init(h, i, c);
5482                 atomic_set(&c->refcount, 0);
5483         }
5484 }
5485
5486 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5487                                 struct CommandList *c)
5488 {
5489         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5490
5491         BUG_ON(c->cmdindex != index);
5492
5493         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5494         memset(c->err_info, 0, sizeof(*c->err_info));
5495         c->busaddr = (u32) cmd_dma_handle;
5496 }
5497
5498 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5499                 struct CommandList *c, struct scsi_cmnd *cmd,
5500                 unsigned char *scsi3addr)
5501 {
5502         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5503         int rc = IO_ACCEL_INELIGIBLE;
5504
5505         if (!dev)
5506                 return SCSI_MLQUEUE_HOST_BUSY;
5507
5508         cmd->host_scribble = (unsigned char *) c;
5509
5510         if (dev->offload_enabled) {
5511                 hpsa_cmd_init(h, c->cmdindex, c);
5512                 c->cmd_type = CMD_SCSI;
5513                 c->scsi_cmd = cmd;
5514                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5515                 if (rc < 0)     /* scsi_dma_map failed. */
5516                         rc = SCSI_MLQUEUE_HOST_BUSY;
5517         } else if (dev->hba_ioaccel_enabled) {
5518                 hpsa_cmd_init(h, c->cmdindex, c);
5519                 c->cmd_type = CMD_SCSI;
5520                 c->scsi_cmd = cmd;
5521                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5522                 if (rc < 0)     /* scsi_dma_map failed. */
5523                         rc = SCSI_MLQUEUE_HOST_BUSY;
5524         }
5525         return rc;
5526 }
5527
5528 static void hpsa_command_resubmit_worker(struct work_struct *work)
5529 {
5530         struct scsi_cmnd *cmd;
5531         struct hpsa_scsi_dev_t *dev;
5532         struct CommandList *c = container_of(work, struct CommandList, work);
5533
5534         cmd = c->scsi_cmd;
5535         dev = cmd->device->hostdata;
5536         if (!dev) {
5537                 cmd->result = DID_NO_CONNECT << 16;
5538                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5539         }
5540         if (c->reset_pending)
5541                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5542         if (c->cmd_type == CMD_IOACCEL2) {
5543                 struct ctlr_info *h = c->h;
5544                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5545                 int rc;
5546
5547                 if (c2->error_data.serv_response ==
5548                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5549                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5550                         if (rc == 0)
5551                                 return;
5552                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5553                                 /*
5554                                  * If we get here, it means dma mapping failed.
5555                                  * Try again via scsi mid layer, which will
5556                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5557                                  */
5558                                 cmd->result = DID_IMM_RETRY << 16;
5559                                 return hpsa_cmd_free_and_done(h, c, cmd);
5560                         }
5561                         /* else, fall thru and resubmit down CISS path */
5562                 }
5563         }
5564         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5565         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5566                 /*
5567                  * If we get here, it means dma mapping failed. Try
5568                  * again via scsi mid layer, which will then get
5569                  * SCSI_MLQUEUE_HOST_BUSY.
5570                  *
5571                  * hpsa_ciss_submit will have already freed c
5572                  * if it encountered a dma mapping failure.
5573                  */
5574                 cmd->result = DID_IMM_RETRY << 16;
5575                 cmd->scsi_done(cmd);
5576         }
5577 }
5578
5579 /* Running in struct Scsi_Host->host_lock less mode */
5580 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5581 {
5582         struct ctlr_info *h;
5583         struct hpsa_scsi_dev_t *dev;
5584         unsigned char scsi3addr[8];
5585         struct CommandList *c;
5586         int rc = 0;
5587
5588         /* Get the ptr to our adapter structure out of cmd->host. */
5589         h = sdev_to_hba(cmd->device);
5590
5591         BUG_ON(cmd->request->tag < 0);
5592
5593         dev = cmd->device->hostdata;
5594         if (!dev) {
5595                 cmd->result = DID_NO_CONNECT << 16;
5596                 cmd->scsi_done(cmd);
5597                 return 0;
5598         }
5599
5600         if (dev->removed) {
5601                 cmd->result = DID_NO_CONNECT << 16;
5602                 cmd->scsi_done(cmd);
5603                 return 0;
5604         }
5605
5606         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5607
5608         if (unlikely(lockup_detected(h))) {
5609                 cmd->result = DID_NO_CONNECT << 16;
5610                 cmd->scsi_done(cmd);
5611                 return 0;
5612         }
5613         c = cmd_tagged_alloc(h, cmd);
5614
5615         /*
5616          * Call alternate submit routine for I/O accelerated commands.
5617          * Retries always go down the normal I/O path.
5618          */
5619         if (likely(cmd->retries == 0 &&
5620                         !blk_rq_is_passthrough(cmd->request) &&
5621                         h->acciopath_status)) {
5622                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5623                 if (rc == 0)
5624                         return 0;
5625                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5626                         hpsa_cmd_resolve_and_free(h, c);
5627                         return SCSI_MLQUEUE_HOST_BUSY;
5628                 }
5629         }
5630         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5631 }
5632
5633 static void hpsa_scan_complete(struct ctlr_info *h)
5634 {
5635         unsigned long flags;
5636
5637         spin_lock_irqsave(&h->scan_lock, flags);
5638         h->scan_finished = 1;
5639         wake_up(&h->scan_wait_queue);
5640         spin_unlock_irqrestore(&h->scan_lock, flags);
5641 }
5642
5643 static void hpsa_scan_start(struct Scsi_Host *sh)
5644 {
5645         struct ctlr_info *h = shost_to_hba(sh);
5646         unsigned long flags;
5647
5648         /*
5649          * Don't let rescans be initiated on a controller known to be locked
5650          * up.  If the controller locks up *during* a rescan, that thread is
5651          * probably hosed, but at least we can prevent new rescan threads from
5652          * piling up on a locked up controller.
5653          */
5654         if (unlikely(lockup_detected(h)))
5655                 return hpsa_scan_complete(h);
5656
5657         /*
5658          * If a scan is already waiting to run, no need to add another
5659          */
5660         spin_lock_irqsave(&h->scan_lock, flags);
5661         if (h->scan_waiting) {
5662                 spin_unlock_irqrestore(&h->scan_lock, flags);
5663                 return;
5664         }
5665
5666         spin_unlock_irqrestore(&h->scan_lock, flags);
5667
5668         /* wait until any scan already in progress is finished. */
5669         while (1) {
5670                 spin_lock_irqsave(&h->scan_lock, flags);
5671                 if (h->scan_finished)
5672                         break;
5673                 h->scan_waiting = 1;
5674                 spin_unlock_irqrestore(&h->scan_lock, flags);
5675                 wait_event(h->scan_wait_queue, h->scan_finished);
5676                 /* Note: We don't need to worry about a race between this
5677                  * thread and driver unload because the midlayer will
5678                  * have incremented the reference count, so unload won't
5679                  * happen if we're in here.
5680                  */
5681         }
5682         h->scan_finished = 0; /* mark scan as in progress */
5683         h->scan_waiting = 0;
5684         spin_unlock_irqrestore(&h->scan_lock, flags);
5685
5686         if (unlikely(lockup_detected(h)))
5687                 return hpsa_scan_complete(h);
5688
5689         /*
5690          * Do the scan after a reset completion
5691          */
5692         spin_lock_irqsave(&h->reset_lock, flags);
5693         if (h->reset_in_progress) {
5694                 h->drv_req_rescan = 1;
5695                 spin_unlock_irqrestore(&h->reset_lock, flags);
5696                 hpsa_scan_complete(h);
5697                 return;
5698         }
5699         spin_unlock_irqrestore(&h->reset_lock, flags);
5700
5701         hpsa_update_scsi_devices(h);
5702
5703         hpsa_scan_complete(h);
5704 }
5705
5706 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5707 {
5708         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5709
5710         if (!logical_drive)
5711                 return -ENODEV;
5712
5713         if (qdepth < 1)
5714                 qdepth = 1;
5715         else if (qdepth > logical_drive->queue_depth)
5716                 qdepth = logical_drive->queue_depth;
5717
5718         return scsi_change_queue_depth(sdev, qdepth);
5719 }
5720
5721 static int hpsa_scan_finished(struct Scsi_Host *sh,
5722         unsigned long elapsed_time)
5723 {
5724         struct ctlr_info *h = shost_to_hba(sh);
5725         unsigned long flags;
5726         int finished;
5727
5728         spin_lock_irqsave(&h->scan_lock, flags);
5729         finished = h->scan_finished;
5730         spin_unlock_irqrestore(&h->scan_lock, flags);
5731         return finished;
5732 }
5733
5734 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5735 {
5736         struct Scsi_Host *sh;
5737
5738         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5739         if (sh == NULL) {
5740                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5741                 return -ENOMEM;
5742         }
5743
5744         sh->io_port = 0;
5745         sh->n_io_port = 0;
5746         sh->this_id = -1;
5747         sh->max_channel = 3;
5748         sh->max_cmd_len = MAX_COMMAND_SIZE;
5749         sh->max_lun = HPSA_MAX_LUN;
5750         sh->max_id = HPSA_MAX_LUN;
5751         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5752         sh->cmd_per_lun = sh->can_queue;
5753         sh->sg_tablesize = h->maxsgentries;
5754         sh->transportt = hpsa_sas_transport_template;
5755         sh->hostdata[0] = (unsigned long) h;
5756         sh->irq = pci_irq_vector(h->pdev, 0);
5757         sh->unique_id = sh->irq;
5758
5759         h->scsi_host = sh;
5760         return 0;
5761 }
5762
5763 static int hpsa_scsi_add_host(struct ctlr_info *h)
5764 {
5765         int rv;
5766
5767         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5768         if (rv) {
5769                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5770                 return rv;
5771         }
5772         scsi_scan_host(h->scsi_host);
5773         return 0;
5774 }
5775
5776 /*
5777  * The block layer has already gone to the trouble of picking out a unique,
5778  * small-integer tag for this request.  We use an offset from that value as
5779  * an index to select our command block.  (The offset allows us to reserve the
5780  * low-numbered entries for our own uses.)
5781  */
5782 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5783 {
5784         int idx = scmd->request->tag;
5785
5786         if (idx < 0)
5787                 return idx;
5788
5789         /* Offset to leave space for internal cmds. */
5790         return idx += HPSA_NRESERVED_CMDS;
5791 }
5792
5793 /*
5794  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5795  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5796  */
5797 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5798                                 struct CommandList *c, unsigned char lunaddr[],
5799                                 int reply_queue)
5800 {
5801         int rc;
5802
5803         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5804         (void) fill_cmd(c, TEST_UNIT_READY, h,
5805                         NULL, 0, 0, lunaddr, TYPE_CMD);
5806         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5807         if (rc)
5808                 return rc;
5809         /* no unmap needed here because no data xfer. */
5810
5811         /* Check if the unit is already ready. */
5812         if (c->err_info->CommandStatus == CMD_SUCCESS)
5813                 return 0;
5814
5815         /*
5816          * The first command sent after reset will receive "unit attention" to
5817          * indicate that the LUN has been reset...this is actually what we're
5818          * looking for (but, success is good too).
5819          */
5820         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5821                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5822                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5823                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5824                 return 0;
5825
5826         return 1;
5827 }
5828
5829 /*
5830  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5831  * returns zero when the unit is ready, and non-zero when giving up.
5832  */
5833 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5834                                 struct CommandList *c,
5835                                 unsigned char lunaddr[], int reply_queue)
5836 {
5837         int rc;
5838         int count = 0;
5839         int waittime = 1; /* seconds */
5840
5841         /* Send test unit ready until device ready, or give up. */
5842         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5843
5844                 /*
5845                  * Wait for a bit.  do this first, because if we send
5846                  * the TUR right away, the reset will just abort it.
5847                  */
5848                 msleep(1000 * waittime);
5849
5850                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5851                 if (!rc)
5852                         break;
5853
5854                 /* Increase wait time with each try, up to a point. */
5855                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5856                         waittime *= 2;
5857
5858                 dev_warn(&h->pdev->dev,
5859                          "waiting %d secs for device to become ready.\n",
5860                          waittime);
5861         }
5862
5863         return rc;
5864 }
5865
5866 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5867                                            unsigned char lunaddr[],
5868                                            int reply_queue)
5869 {
5870         int first_queue;
5871         int last_queue;
5872         int rq;
5873         int rc = 0;
5874         struct CommandList *c;
5875
5876         c = cmd_alloc(h);
5877
5878         /*
5879          * If no specific reply queue was requested, then send the TUR
5880          * repeatedly, requesting a reply on each reply queue; otherwise execute
5881          * the loop exactly once using only the specified queue.
5882          */
5883         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5884                 first_queue = 0;
5885                 last_queue = h->nreply_queues - 1;
5886         } else {
5887                 first_queue = reply_queue;
5888                 last_queue = reply_queue;
5889         }
5890
5891         for (rq = first_queue; rq <= last_queue; rq++) {
5892                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5893                 if (rc)
5894                         break;
5895         }
5896
5897         if (rc)
5898                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5899         else
5900                 dev_warn(&h->pdev->dev, "device is ready.\n");
5901
5902         cmd_free(h, c);
5903         return rc;
5904 }
5905
5906 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5907  * complaining.  Doing a host- or bus-reset can't do anything good here.
5908  */
5909 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5910 {
5911         int rc = SUCCESS;
5912         struct ctlr_info *h;
5913         struct hpsa_scsi_dev_t *dev;
5914         u8 reset_type;
5915         char msg[48];
5916         unsigned long flags;
5917
5918         /* find the controller to which the command to be aborted was sent */
5919         h = sdev_to_hba(scsicmd->device);
5920         if (h == NULL) /* paranoia */
5921                 return FAILED;
5922
5923         spin_lock_irqsave(&h->reset_lock, flags);
5924         h->reset_in_progress = 1;
5925         spin_unlock_irqrestore(&h->reset_lock, flags);
5926
5927         if (lockup_detected(h)) {
5928                 rc = FAILED;
5929                 goto return_reset_status;
5930         }
5931
5932         dev = scsicmd->device->hostdata;
5933         if (!dev) {
5934                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5935                 rc = FAILED;
5936                 goto return_reset_status;
5937         }
5938
5939         if (dev->devtype == TYPE_ENCLOSURE) {
5940                 rc = SUCCESS;
5941                 goto return_reset_status;
5942         }
5943
5944         /* if controller locked up, we can guarantee command won't complete */
5945         if (lockup_detected(h)) {
5946                 snprintf(msg, sizeof(msg),
5947                          "cmd %d RESET FAILED, lockup detected",
5948                          hpsa_get_cmd_index(scsicmd));
5949                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5950                 rc = FAILED;
5951                 goto return_reset_status;
5952         }
5953
5954         /* this reset request might be the result of a lockup; check */
5955         if (detect_controller_lockup(h)) {
5956                 snprintf(msg, sizeof(msg),
5957                          "cmd %d RESET FAILED, new lockup detected",
5958                          hpsa_get_cmd_index(scsicmd));
5959                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5960                 rc = FAILED;
5961                 goto return_reset_status;
5962         }
5963
5964         /* Do not attempt on controller */
5965         if (is_hba_lunid(dev->scsi3addr)) {
5966                 rc = SUCCESS;
5967                 goto return_reset_status;
5968         }
5969
5970         if (is_logical_dev_addr_mode(dev->scsi3addr))
5971                 reset_type = HPSA_DEVICE_RESET_MSG;
5972         else
5973                 reset_type = HPSA_PHYS_TARGET_RESET;
5974
5975         sprintf(msg, "resetting %s",
5976                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5977         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5978
5979         /* send a reset to the SCSI LUN which the command was sent to */
5980         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5981                            DEFAULT_REPLY_QUEUE);
5982         if (rc == 0)
5983                 rc = SUCCESS;
5984         else
5985                 rc = FAILED;
5986
5987         sprintf(msg, "reset %s %s",
5988                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5989                 rc == SUCCESS ? "completed successfully" : "failed");
5990         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5991
5992 return_reset_status:
5993         spin_lock_irqsave(&h->reset_lock, flags);
5994         h->reset_in_progress = 0;
5995         spin_unlock_irqrestore(&h->reset_lock, flags);
5996         return rc;
5997 }
5998
5999 /*
6000  * For operations with an associated SCSI command, a command block is allocated
6001  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6002  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6003  * the complement, although cmd_free() may be called instead.
6004  */
6005 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6006                                             struct scsi_cmnd *scmd)
6007 {
6008         int idx = hpsa_get_cmd_index(scmd);
6009         struct CommandList *c = h->cmd_pool + idx;
6010
6011         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6012                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6013                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6014                 /* The index value comes from the block layer, so if it's out of
6015                  * bounds, it's probably not our bug.
6016                  */
6017                 BUG();
6018         }
6019
6020         atomic_inc(&c->refcount);
6021         if (unlikely(!hpsa_is_cmd_idle(c))) {
6022                 /*
6023                  * We expect that the SCSI layer will hand us a unique tag
6024                  * value.  Thus, there should never be a collision here between
6025                  * two requests...because if the selected command isn't idle
6026                  * then someone is going to be very disappointed.
6027                  */
6028                 dev_err(&h->pdev->dev,
6029                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6030                         idx);
6031                 if (c->scsi_cmd != NULL)
6032                         scsi_print_command(c->scsi_cmd);
6033                 scsi_print_command(scmd);
6034         }
6035
6036         hpsa_cmd_partial_init(h, idx, c);
6037         return c;
6038 }
6039
6040 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6041 {
6042         /*
6043          * Release our reference to the block.  We don't need to do anything
6044          * else to free it, because it is accessed by index.
6045          */
6046         (void)atomic_dec(&c->refcount);
6047 }
6048
6049 /*
6050  * For operations that cannot sleep, a command block is allocated at init,
6051  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6052  * which ones are free or in use.  Lock must be held when calling this.
6053  * cmd_free() is the complement.
6054  * This function never gives up and returns NULL.  If it hangs,
6055  * another thread must call cmd_free() to free some tags.
6056  */
6057
6058 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6059 {
6060         struct CommandList *c;
6061         int refcount, i;
6062         int offset = 0;
6063
6064         /*
6065          * There is some *extremely* small but non-zero chance that that
6066          * multiple threads could get in here, and one thread could
6067          * be scanning through the list of bits looking for a free
6068          * one, but the free ones are always behind him, and other
6069          * threads sneak in behind him and eat them before he can
6070          * get to them, so that while there is always a free one, a
6071          * very unlucky thread might be starved anyway, never able to
6072          * beat the other threads.  In reality, this happens so
6073          * infrequently as to be indistinguishable from never.
6074          *
6075          * Note that we start allocating commands before the SCSI host structure
6076          * is initialized.  Since the search starts at bit zero, this
6077          * all works, since we have at least one command structure available;
6078          * however, it means that the structures with the low indexes have to be
6079          * reserved for driver-initiated requests, while requests from the block
6080          * layer will use the higher indexes.
6081          */
6082
6083         for (;;) {
6084                 i = find_next_zero_bit(h->cmd_pool_bits,
6085                                         HPSA_NRESERVED_CMDS,
6086                                         offset);
6087                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6088                         offset = 0;
6089                         continue;
6090                 }
6091                 c = h->cmd_pool + i;
6092                 refcount = atomic_inc_return(&c->refcount);
6093                 if (unlikely(refcount > 1)) {
6094                         cmd_free(h, c); /* already in use */
6095                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6096                         continue;
6097                 }
6098                 set_bit(i & (BITS_PER_LONG - 1),
6099                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6100                 break; /* it's ours now. */
6101         }
6102         hpsa_cmd_partial_init(h, i, c);
6103         return c;
6104 }
6105
6106 /*
6107  * This is the complementary operation to cmd_alloc().  Note, however, in some
6108  * corner cases it may also be used to free blocks allocated by
6109  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6110  * the clear-bit is harmless.
6111  */
6112 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6113 {
6114         if (atomic_dec_and_test(&c->refcount)) {
6115                 int i;
6116
6117                 i = c - h->cmd_pool;
6118                 clear_bit(i & (BITS_PER_LONG - 1),
6119                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6120         }
6121 }
6122
6123 #ifdef CONFIG_COMPAT
6124
6125 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6126         void __user *arg)
6127 {
6128         IOCTL32_Command_struct __user *arg32 =
6129             (IOCTL32_Command_struct __user *) arg;
6130         IOCTL_Command_struct arg64;
6131         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6132         int err;
6133         u32 cp;
6134
6135         memset(&arg64, 0, sizeof(arg64));
6136         err = 0;
6137         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6138                            sizeof(arg64.LUN_info));
6139         err |= copy_from_user(&arg64.Request, &arg32->Request,
6140                            sizeof(arg64.Request));
6141         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6142                            sizeof(arg64.error_info));
6143         err |= get_user(arg64.buf_size, &arg32->buf_size);
6144         err |= get_user(cp, &arg32->buf);
6145         arg64.buf = compat_ptr(cp);
6146         err |= copy_to_user(p, &arg64, sizeof(arg64));
6147
6148         if (err)
6149                 return -EFAULT;
6150
6151         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6152         if (err)
6153                 return err;
6154         err |= copy_in_user(&arg32->error_info, &p->error_info,
6155                          sizeof(arg32->error_info));
6156         if (err)
6157                 return -EFAULT;
6158         return err;
6159 }
6160
6161 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6162         int cmd, void __user *arg)
6163 {
6164         BIG_IOCTL32_Command_struct __user *arg32 =
6165             (BIG_IOCTL32_Command_struct __user *) arg;
6166         BIG_IOCTL_Command_struct arg64;
6167         BIG_IOCTL_Command_struct __user *p =
6168             compat_alloc_user_space(sizeof(arg64));
6169         int err;
6170         u32 cp;
6171
6172         memset(&arg64, 0, sizeof(arg64));
6173         err = 0;
6174         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6175                            sizeof(arg64.LUN_info));
6176         err |= copy_from_user(&arg64.Request, &arg32->Request,
6177                            sizeof(arg64.Request));
6178         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6179                            sizeof(arg64.error_info));
6180         err |= get_user(arg64.buf_size, &arg32->buf_size);
6181         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6182         err |= get_user(cp, &arg32->buf);
6183         arg64.buf = compat_ptr(cp);
6184         err |= copy_to_user(p, &arg64, sizeof(arg64));
6185
6186         if (err)
6187                 return -EFAULT;
6188
6189         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6190         if (err)
6191                 return err;
6192         err |= copy_in_user(&arg32->error_info, &p->error_info,
6193                          sizeof(arg32->error_info));
6194         if (err)
6195                 return -EFAULT;
6196         return err;
6197 }
6198
6199 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6200 {
6201         switch (cmd) {
6202         case CCISS_GETPCIINFO:
6203         case CCISS_GETINTINFO:
6204         case CCISS_SETINTINFO:
6205         case CCISS_GETNODENAME:
6206         case CCISS_SETNODENAME:
6207         case CCISS_GETHEARTBEAT:
6208         case CCISS_GETBUSTYPES:
6209         case CCISS_GETFIRMVER:
6210         case CCISS_GETDRIVVER:
6211         case CCISS_REVALIDVOLS:
6212         case CCISS_DEREGDISK:
6213         case CCISS_REGNEWDISK:
6214         case CCISS_REGNEWD:
6215         case CCISS_RESCANDISK:
6216         case CCISS_GETLUNINFO:
6217                 return hpsa_ioctl(dev, cmd, arg);
6218
6219         case CCISS_PASSTHRU32:
6220                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6221         case CCISS_BIG_PASSTHRU32:
6222                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6223
6224         default:
6225                 return -ENOIOCTLCMD;
6226         }
6227 }
6228 #endif
6229
6230 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6231 {
6232         struct hpsa_pci_info pciinfo;
6233
6234         if (!argp)
6235                 return -EINVAL;
6236         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6237         pciinfo.bus = h->pdev->bus->number;
6238         pciinfo.dev_fn = h->pdev->devfn;
6239         pciinfo.board_id = h->board_id;
6240         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6241                 return -EFAULT;
6242         return 0;
6243 }
6244
6245 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6246 {
6247         DriverVer_type DriverVer;
6248         unsigned char vmaj, vmin, vsubmin;
6249         int rc;
6250
6251         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6252                 &vmaj, &vmin, &vsubmin);
6253         if (rc != 3) {
6254                 dev_info(&h->pdev->dev, "driver version string '%s' "
6255                         "unrecognized.", HPSA_DRIVER_VERSION);
6256                 vmaj = 0;
6257                 vmin = 0;
6258                 vsubmin = 0;
6259         }
6260         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6261         if (!argp)
6262                 return -EINVAL;
6263         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6264                 return -EFAULT;
6265         return 0;
6266 }
6267
6268 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6269 {
6270         IOCTL_Command_struct iocommand;
6271         struct CommandList *c;
6272         char *buff = NULL;
6273         u64 temp64;
6274         int rc = 0;
6275
6276         if (!argp)
6277                 return -EINVAL;
6278         if (!capable(CAP_SYS_RAWIO))
6279                 return -EPERM;
6280         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6281                 return -EFAULT;
6282         if ((iocommand.buf_size < 1) &&
6283             (iocommand.Request.Type.Direction != XFER_NONE)) {
6284                 return -EINVAL;
6285         }
6286         if (iocommand.buf_size > 0) {
6287                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6288                 if (buff == NULL)
6289                         return -ENOMEM;
6290                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6291                         /* Copy the data into the buffer we created */
6292                         if (copy_from_user(buff, iocommand.buf,
6293                                 iocommand.buf_size)) {
6294                                 rc = -EFAULT;
6295                                 goto out_kfree;
6296                         }
6297                 } else {
6298                         memset(buff, 0, iocommand.buf_size);
6299                 }
6300         }
6301         c = cmd_alloc(h);
6302
6303         /* Fill in the command type */
6304         c->cmd_type = CMD_IOCTL_PEND;
6305         c->scsi_cmd = SCSI_CMD_BUSY;
6306         /* Fill in Command Header */
6307         c->Header.ReplyQueue = 0; /* unused in simple mode */
6308         if (iocommand.buf_size > 0) {   /* buffer to fill */
6309                 c->Header.SGList = 1;
6310                 c->Header.SGTotal = cpu_to_le16(1);
6311         } else  { /* no buffers to fill */
6312                 c->Header.SGList = 0;
6313                 c->Header.SGTotal = cpu_to_le16(0);
6314         }
6315         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6316
6317         /* Fill in Request block */
6318         memcpy(&c->Request, &iocommand.Request,
6319                 sizeof(c->Request));
6320
6321         /* Fill in the scatter gather information */
6322         if (iocommand.buf_size > 0) {
6323                 temp64 = pci_map_single(h->pdev, buff,
6324                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6325                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6326                         c->SG[0].Addr = cpu_to_le64(0);
6327                         c->SG[0].Len = cpu_to_le32(0);
6328                         rc = -ENOMEM;
6329                         goto out;
6330                 }
6331                 c->SG[0].Addr = cpu_to_le64(temp64);
6332                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6333                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6334         }
6335         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6336                                         NO_TIMEOUT);
6337         if (iocommand.buf_size > 0)
6338                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6339         check_ioctl_unit_attention(h, c);
6340         if (rc) {
6341                 rc = -EIO;
6342                 goto out;
6343         }
6344
6345         /* Copy the error information out */
6346         memcpy(&iocommand.error_info, c->err_info,
6347                 sizeof(iocommand.error_info));
6348         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6349                 rc = -EFAULT;
6350                 goto out;
6351         }
6352         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6353                 iocommand.buf_size > 0) {
6354                 /* Copy the data out of the buffer we created */
6355                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6356                         rc = -EFAULT;
6357                         goto out;
6358                 }
6359         }
6360 out:
6361         cmd_free(h, c);
6362 out_kfree:
6363         kfree(buff);
6364         return rc;
6365 }
6366
6367 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6368 {
6369         BIG_IOCTL_Command_struct *ioc;
6370         struct CommandList *c;
6371         unsigned char **buff = NULL;
6372         int *buff_size = NULL;
6373         u64 temp64;
6374         BYTE sg_used = 0;
6375         int status = 0;
6376         u32 left;
6377         u32 sz;
6378         BYTE __user *data_ptr;
6379
6380         if (!argp)
6381                 return -EINVAL;
6382         if (!capable(CAP_SYS_RAWIO))
6383                 return -EPERM;
6384         ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6385         if (!ioc) {
6386                 status = -ENOMEM;
6387                 goto cleanup1;
6388         }
6389         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6390                 status = -EFAULT;
6391                 goto cleanup1;
6392         }
6393         if ((ioc->buf_size < 1) &&
6394             (ioc->Request.Type.Direction != XFER_NONE)) {
6395                 status = -EINVAL;
6396                 goto cleanup1;
6397         }
6398         /* Check kmalloc limits  using all SGs */
6399         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6400                 status = -EINVAL;
6401                 goto cleanup1;
6402         }
6403         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6404                 status = -EINVAL;
6405                 goto cleanup1;
6406         }
6407         buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6408         if (!buff) {
6409                 status = -ENOMEM;
6410                 goto cleanup1;
6411         }
6412         buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6413         if (!buff_size) {
6414                 status = -ENOMEM;
6415                 goto cleanup1;
6416         }
6417         left = ioc->buf_size;
6418         data_ptr = ioc->buf;
6419         while (left) {
6420                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6421                 buff_size[sg_used] = sz;
6422                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6423                 if (buff[sg_used] == NULL) {
6424                         status = -ENOMEM;
6425                         goto cleanup1;
6426                 }
6427                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6428                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6429                                 status = -EFAULT;
6430                                 goto cleanup1;
6431                         }
6432                 } else
6433                         memset(buff[sg_used], 0, sz);
6434                 left -= sz;
6435                 data_ptr += sz;
6436                 sg_used++;
6437         }
6438         c = cmd_alloc(h);
6439
6440         c->cmd_type = CMD_IOCTL_PEND;
6441         c->scsi_cmd = SCSI_CMD_BUSY;
6442         c->Header.ReplyQueue = 0;
6443         c->Header.SGList = (u8) sg_used;
6444         c->Header.SGTotal = cpu_to_le16(sg_used);
6445         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6446         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6447         if (ioc->buf_size > 0) {
6448                 int i;
6449                 for (i = 0; i < sg_used; i++) {
6450                         temp64 = pci_map_single(h->pdev, buff[i],
6451                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6452                         if (dma_mapping_error(&h->pdev->dev,
6453                                                         (dma_addr_t) temp64)) {
6454                                 c->SG[i].Addr = cpu_to_le64(0);
6455                                 c->SG[i].Len = cpu_to_le32(0);
6456                                 hpsa_pci_unmap(h->pdev, c, i,
6457                                         PCI_DMA_BIDIRECTIONAL);
6458                                 status = -ENOMEM;
6459                                 goto cleanup0;
6460                         }
6461                         c->SG[i].Addr = cpu_to_le64(temp64);
6462                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6463                         c->SG[i].Ext = cpu_to_le32(0);
6464                 }
6465                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6466         }
6467         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6468                                                 NO_TIMEOUT);
6469         if (sg_used)
6470                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6471         check_ioctl_unit_attention(h, c);
6472         if (status) {
6473                 status = -EIO;
6474                 goto cleanup0;
6475         }
6476
6477         /* Copy the error information out */
6478         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6479         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6480                 status = -EFAULT;
6481                 goto cleanup0;
6482         }
6483         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6484                 int i;
6485
6486                 /* Copy the data out of the buffer we created */
6487                 BYTE __user *ptr = ioc->buf;
6488                 for (i = 0; i < sg_used; i++) {
6489                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6490                                 status = -EFAULT;
6491                                 goto cleanup0;
6492                         }
6493                         ptr += buff_size[i];
6494                 }
6495         }
6496         status = 0;
6497 cleanup0:
6498         cmd_free(h, c);
6499 cleanup1:
6500         if (buff) {
6501                 int i;
6502
6503                 for (i = 0; i < sg_used; i++)
6504                         kfree(buff[i]);
6505                 kfree(buff);
6506         }
6507         kfree(buff_size);
6508         kfree(ioc);
6509         return status;
6510 }
6511
6512 static void check_ioctl_unit_attention(struct ctlr_info *h,
6513         struct CommandList *c)
6514 {
6515         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6516                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6517                 (void) check_for_unit_attention(h, c);
6518 }
6519
6520 /*
6521  * ioctl
6522  */
6523 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6524 {
6525         struct ctlr_info *h;
6526         void __user *argp = (void __user *)arg;
6527         int rc;
6528
6529         h = sdev_to_hba(dev);
6530
6531         switch (cmd) {
6532         case CCISS_DEREGDISK:
6533         case CCISS_REGNEWDISK:
6534         case CCISS_REGNEWD:
6535                 hpsa_scan_start(h->scsi_host);
6536                 return 0;
6537         case CCISS_GETPCIINFO:
6538                 return hpsa_getpciinfo_ioctl(h, argp);
6539         case CCISS_GETDRIVVER:
6540                 return hpsa_getdrivver_ioctl(h, argp);
6541         case CCISS_PASSTHRU:
6542                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6543                         return -EAGAIN;
6544                 rc = hpsa_passthru_ioctl(h, argp);
6545                 atomic_inc(&h->passthru_cmds_avail);
6546                 return rc;
6547         case CCISS_BIG_PASSTHRU:
6548                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6549                         return -EAGAIN;
6550                 rc = hpsa_big_passthru_ioctl(h, argp);
6551                 atomic_inc(&h->passthru_cmds_avail);
6552                 return rc;
6553         default:
6554                 return -ENOTTY;
6555         }
6556 }
6557
6558 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6559                                 u8 reset_type)
6560 {
6561         struct CommandList *c;
6562
6563         c = cmd_alloc(h);
6564
6565         /* fill_cmd can't fail here, no data buffer to map */
6566         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6567                 RAID_CTLR_LUNID, TYPE_MSG);
6568         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6569         c->waiting = NULL;
6570         enqueue_cmd_and_start_io(h, c);
6571         /* Don't wait for completion, the reset won't complete.  Don't free
6572          * the command either.  This is the last command we will send before
6573          * re-initializing everything, so it doesn't matter and won't leak.
6574          */
6575         return;
6576 }
6577
6578 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6579         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6580         int cmd_type)
6581 {
6582         int pci_dir = XFER_NONE;
6583
6584         c->cmd_type = CMD_IOCTL_PEND;
6585         c->scsi_cmd = SCSI_CMD_BUSY;
6586         c->Header.ReplyQueue = 0;
6587         if (buff != NULL && size > 0) {
6588                 c->Header.SGList = 1;
6589                 c->Header.SGTotal = cpu_to_le16(1);
6590         } else {
6591                 c->Header.SGList = 0;
6592                 c->Header.SGTotal = cpu_to_le16(0);
6593         }
6594         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6595
6596         if (cmd_type == TYPE_CMD) {
6597                 switch (cmd) {
6598                 case HPSA_INQUIRY:
6599                         /* are we trying to read a vital product page */
6600                         if (page_code & VPD_PAGE) {
6601                                 c->Request.CDB[1] = 0x01;
6602                                 c->Request.CDB[2] = (page_code & 0xff);
6603                         }
6604                         c->Request.CDBLen = 6;
6605                         c->Request.type_attr_dir =
6606                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6607                         c->Request.Timeout = 0;
6608                         c->Request.CDB[0] = HPSA_INQUIRY;
6609                         c->Request.CDB[4] = size & 0xFF;
6610                         break;
6611                 case RECEIVE_DIAGNOSTIC:
6612                         c->Request.CDBLen = 6;
6613                         c->Request.type_attr_dir =
6614                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6615                         c->Request.Timeout = 0;
6616                         c->Request.CDB[0] = cmd;
6617                         c->Request.CDB[1] = 1;
6618                         c->Request.CDB[2] = 1;
6619                         c->Request.CDB[3] = (size >> 8) & 0xFF;
6620                         c->Request.CDB[4] = size & 0xFF;
6621                         break;
6622                 case HPSA_REPORT_LOG:
6623                 case HPSA_REPORT_PHYS:
6624                         /* Talking to controller so It's a physical command
6625                            mode = 00 target = 0.  Nothing to write.
6626                          */
6627                         c->Request.CDBLen = 12;
6628                         c->Request.type_attr_dir =
6629                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6630                         c->Request.Timeout = 0;
6631                         c->Request.CDB[0] = cmd;
6632                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6633                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6634                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6635                         c->Request.CDB[9] = size & 0xFF;
6636                         break;
6637                 case BMIC_SENSE_DIAG_OPTIONS:
6638                         c->Request.CDBLen = 16;
6639                         c->Request.type_attr_dir =
6640                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6641                         c->Request.Timeout = 0;
6642                         /* Spec says this should be BMIC_WRITE */
6643                         c->Request.CDB[0] = BMIC_READ;
6644                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6645                         break;
6646                 case BMIC_SET_DIAG_OPTIONS:
6647                         c->Request.CDBLen = 16;
6648                         c->Request.type_attr_dir =
6649                                         TYPE_ATTR_DIR(cmd_type,
6650                                                 ATTR_SIMPLE, XFER_WRITE);
6651                         c->Request.Timeout = 0;
6652                         c->Request.CDB[0] = BMIC_WRITE;
6653                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6654                         break;
6655                 case HPSA_CACHE_FLUSH:
6656                         c->Request.CDBLen = 12;
6657                         c->Request.type_attr_dir =
6658                                         TYPE_ATTR_DIR(cmd_type,
6659                                                 ATTR_SIMPLE, XFER_WRITE);
6660                         c->Request.Timeout = 0;
6661                         c->Request.CDB[0] = BMIC_WRITE;
6662                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6663                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6664                         c->Request.CDB[8] = size & 0xFF;
6665                         break;
6666                 case TEST_UNIT_READY:
6667                         c->Request.CDBLen = 6;
6668                         c->Request.type_attr_dir =
6669                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6670                         c->Request.Timeout = 0;
6671                         break;
6672                 case HPSA_GET_RAID_MAP:
6673                         c->Request.CDBLen = 12;
6674                         c->Request.type_attr_dir =
6675                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6676                         c->Request.Timeout = 0;
6677                         c->Request.CDB[0] = HPSA_CISS_READ;
6678                         c->Request.CDB[1] = cmd;
6679                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6680                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6681                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6682                         c->Request.CDB[9] = size & 0xFF;
6683                         break;
6684                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6685                         c->Request.CDBLen = 10;
6686                         c->Request.type_attr_dir =
6687                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6688                         c->Request.Timeout = 0;
6689                         c->Request.CDB[0] = BMIC_READ;
6690                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6691                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6692                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6693                         break;
6694                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6695                         c->Request.CDBLen = 10;
6696                         c->Request.type_attr_dir =
6697                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6698                         c->Request.Timeout = 0;
6699                         c->Request.CDB[0] = BMIC_READ;
6700                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6701                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6702                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6703                         break;
6704                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6705                         c->Request.CDBLen = 10;
6706                         c->Request.type_attr_dir =
6707                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6708                         c->Request.Timeout = 0;
6709                         c->Request.CDB[0] = BMIC_READ;
6710                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6711                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6712                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6713                         break;
6714                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6715                         c->Request.CDBLen = 10;
6716                         c->Request.type_attr_dir =
6717                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6718                         c->Request.Timeout = 0;
6719                         c->Request.CDB[0] = BMIC_READ;
6720                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6721                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6722                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6723                         break;
6724                 case BMIC_IDENTIFY_CONTROLLER:
6725                         c->Request.CDBLen = 10;
6726                         c->Request.type_attr_dir =
6727                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6728                         c->Request.Timeout = 0;
6729                         c->Request.CDB[0] = BMIC_READ;
6730                         c->Request.CDB[1] = 0;
6731                         c->Request.CDB[2] = 0;
6732                         c->Request.CDB[3] = 0;
6733                         c->Request.CDB[4] = 0;
6734                         c->Request.CDB[5] = 0;
6735                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6736                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6737                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6738                         c->Request.CDB[9] = 0;
6739                         break;
6740                 default:
6741                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6742                         BUG();
6743                 }
6744         } else if (cmd_type == TYPE_MSG) {
6745                 switch (cmd) {
6746
6747                 case  HPSA_PHYS_TARGET_RESET:
6748                         c->Request.CDBLen = 16;
6749                         c->Request.type_attr_dir =
6750                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6751                         c->Request.Timeout = 0; /* Don't time out */
6752                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6753                         c->Request.CDB[0] = HPSA_RESET;
6754                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6755                         /* Physical target reset needs no control bytes 4-7*/
6756                         c->Request.CDB[4] = 0x00;
6757                         c->Request.CDB[5] = 0x00;
6758                         c->Request.CDB[6] = 0x00;
6759                         c->Request.CDB[7] = 0x00;
6760                         break;
6761                 case  HPSA_DEVICE_RESET_MSG:
6762                         c->Request.CDBLen = 16;
6763                         c->Request.type_attr_dir =
6764                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6765                         c->Request.Timeout = 0; /* Don't time out */
6766                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6767                         c->Request.CDB[0] =  cmd;
6768                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6769                         /* If bytes 4-7 are zero, it means reset the */
6770                         /* LunID device */
6771                         c->Request.CDB[4] = 0x00;
6772                         c->Request.CDB[5] = 0x00;
6773                         c->Request.CDB[6] = 0x00;
6774                         c->Request.CDB[7] = 0x00;
6775                         break;
6776                 default:
6777                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6778                                 cmd);
6779                         BUG();
6780                 }
6781         } else {
6782                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6783                 BUG();
6784         }
6785
6786         switch (GET_DIR(c->Request.type_attr_dir)) {
6787         case XFER_READ:
6788                 pci_dir = PCI_DMA_FROMDEVICE;
6789                 break;
6790         case XFER_WRITE:
6791                 pci_dir = PCI_DMA_TODEVICE;
6792                 break;
6793         case XFER_NONE:
6794                 pci_dir = PCI_DMA_NONE;
6795                 break;
6796         default:
6797                 pci_dir = PCI_DMA_BIDIRECTIONAL;
6798         }
6799         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6800                 return -1;
6801         return 0;
6802 }
6803
6804 /*
6805  * Map (physical) PCI mem into (virtual) kernel space
6806  */
6807 static void __iomem *remap_pci_mem(ulong base, ulong size)
6808 {
6809         ulong page_base = ((ulong) base) & PAGE_MASK;
6810         ulong page_offs = ((ulong) base) - page_base;
6811         void __iomem *page_remapped = ioremap_nocache(page_base,
6812                 page_offs + size);
6813
6814         return page_remapped ? (page_remapped + page_offs) : NULL;
6815 }
6816
6817 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6818 {
6819         return h->access.command_completed(h, q);
6820 }
6821
6822 static inline bool interrupt_pending(struct ctlr_info *h)
6823 {
6824         return h->access.intr_pending(h);
6825 }
6826
6827 static inline long interrupt_not_for_us(struct ctlr_info *h)
6828 {
6829         return (h->access.intr_pending(h) == 0) ||
6830                 (h->interrupts_enabled == 0);
6831 }
6832
6833 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6834         u32 raw_tag)
6835 {
6836         if (unlikely(tag_index >= h->nr_cmds)) {
6837                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6838                 return 1;
6839         }
6840         return 0;
6841 }
6842
6843 static inline void finish_cmd(struct CommandList *c)
6844 {
6845         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6846         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6847                         || c->cmd_type == CMD_IOACCEL2))
6848                 complete_scsi_command(c);
6849         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6850                 complete(c->waiting);
6851 }
6852
6853 /* process completion of an indexed ("direct lookup") command */
6854 static inline void process_indexed_cmd(struct ctlr_info *h,
6855         u32 raw_tag)
6856 {
6857         u32 tag_index;
6858         struct CommandList *c;
6859
6860         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6861         if (!bad_tag(h, tag_index, raw_tag)) {
6862                 c = h->cmd_pool + tag_index;
6863                 finish_cmd(c);
6864         }
6865 }
6866
6867 /* Some controllers, like p400, will give us one interrupt
6868  * after a soft reset, even if we turned interrupts off.
6869  * Only need to check for this in the hpsa_xxx_discard_completions
6870  * functions.
6871  */
6872 static int ignore_bogus_interrupt(struct ctlr_info *h)
6873 {
6874         if (likely(!reset_devices))
6875                 return 0;
6876
6877         if (likely(h->interrupts_enabled))
6878                 return 0;
6879
6880         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6881                 "(known firmware bug.)  Ignoring.\n");
6882
6883         return 1;
6884 }
6885
6886 /*
6887  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6888  * Relies on (h-q[x] == x) being true for x such that
6889  * 0 <= x < MAX_REPLY_QUEUES.
6890  */
6891 static struct ctlr_info *queue_to_hba(u8 *queue)
6892 {
6893         return container_of((queue - *queue), struct ctlr_info, q[0]);
6894 }
6895
6896 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6897 {
6898         struct ctlr_info *h = queue_to_hba(queue);
6899         u8 q = *(u8 *) queue;
6900         u32 raw_tag;
6901
6902         if (ignore_bogus_interrupt(h))
6903                 return IRQ_NONE;
6904
6905         if (interrupt_not_for_us(h))
6906                 return IRQ_NONE;
6907         h->last_intr_timestamp = get_jiffies_64();
6908         while (interrupt_pending(h)) {
6909                 raw_tag = get_next_completion(h, q);
6910                 while (raw_tag != FIFO_EMPTY)
6911                         raw_tag = next_command(h, q);
6912         }
6913         return IRQ_HANDLED;
6914 }
6915
6916 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6917 {
6918         struct ctlr_info *h = queue_to_hba(queue);
6919         u32 raw_tag;
6920         u8 q = *(u8 *) queue;
6921
6922         if (ignore_bogus_interrupt(h))
6923                 return IRQ_NONE;
6924
6925         h->last_intr_timestamp = get_jiffies_64();
6926         raw_tag = get_next_completion(h, q);
6927         while (raw_tag != FIFO_EMPTY)
6928                 raw_tag = next_command(h, q);
6929         return IRQ_HANDLED;
6930 }
6931
6932 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6933 {
6934         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6935         u32 raw_tag;
6936         u8 q = *(u8 *) queue;
6937
6938         if (interrupt_not_for_us(h))
6939                 return IRQ_NONE;
6940         h->last_intr_timestamp = get_jiffies_64();
6941         while (interrupt_pending(h)) {
6942                 raw_tag = get_next_completion(h, q);
6943                 while (raw_tag != FIFO_EMPTY) {
6944                         process_indexed_cmd(h, raw_tag);
6945                         raw_tag = next_command(h, q);
6946                 }
6947         }
6948         return IRQ_HANDLED;
6949 }
6950
6951 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6952 {
6953         struct ctlr_info *h = queue_to_hba(queue);
6954         u32 raw_tag;
6955         u8 q = *(u8 *) queue;
6956
6957         h->last_intr_timestamp = get_jiffies_64();
6958         raw_tag = get_next_completion(h, q);
6959         while (raw_tag != FIFO_EMPTY) {
6960                 process_indexed_cmd(h, raw_tag);
6961                 raw_tag = next_command(h, q);
6962         }
6963         return IRQ_HANDLED;
6964 }
6965
6966 /* Send a message CDB to the firmware. Careful, this only works
6967  * in simple mode, not performant mode due to the tag lookup.
6968  * We only ever use this immediately after a controller reset.
6969  */
6970 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6971                         unsigned char type)
6972 {
6973         struct Command {
6974                 struct CommandListHeader CommandHeader;
6975                 struct RequestBlock Request;
6976                 struct ErrDescriptor ErrorDescriptor;
6977         };
6978         struct Command *cmd;
6979         static const size_t cmd_sz = sizeof(*cmd) +
6980                                         sizeof(cmd->ErrorDescriptor);
6981         dma_addr_t paddr64;
6982         __le32 paddr32;
6983         u32 tag;
6984         void __iomem *vaddr;
6985         int i, err;
6986
6987         vaddr = pci_ioremap_bar(pdev, 0);
6988         if (vaddr == NULL)
6989                 return -ENOMEM;
6990
6991         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6992          * CCISS commands, so they must be allocated from the lower 4GiB of
6993          * memory.
6994          */
6995         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6996         if (err) {
6997                 iounmap(vaddr);
6998                 return err;
6999         }
7000
7001         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7002         if (cmd == NULL) {
7003                 iounmap(vaddr);
7004                 return -ENOMEM;
7005         }
7006
7007         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7008          * although there's no guarantee, we assume that the address is at
7009          * least 4-byte aligned (most likely, it's page-aligned).
7010          */
7011         paddr32 = cpu_to_le32(paddr64);
7012
7013         cmd->CommandHeader.ReplyQueue = 0;
7014         cmd->CommandHeader.SGList = 0;
7015         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7016         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7017         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7018
7019         cmd->Request.CDBLen = 16;
7020         cmd->Request.type_attr_dir =
7021                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7022         cmd->Request.Timeout = 0; /* Don't time out */
7023         cmd->Request.CDB[0] = opcode;
7024         cmd->Request.CDB[1] = type;
7025         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7026         cmd->ErrorDescriptor.Addr =
7027                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7028         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7029
7030         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7031
7032         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7033                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7034                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7035                         break;
7036                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7037         }
7038
7039         iounmap(vaddr);
7040
7041         /* we leak the DMA buffer here ... no choice since the controller could
7042          *  still complete the command.
7043          */
7044         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7045                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7046                         opcode, type);
7047                 return -ETIMEDOUT;
7048         }
7049
7050         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7051
7052         if (tag & HPSA_ERROR_BIT) {
7053                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7054                         opcode, type);
7055                 return -EIO;
7056         }
7057
7058         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7059                 opcode, type);
7060         return 0;
7061 }
7062
7063 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7064
7065 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7066         void __iomem *vaddr, u32 use_doorbell)
7067 {
7068
7069         if (use_doorbell) {
7070                 /* For everything after the P600, the PCI power state method
7071                  * of resetting the controller doesn't work, so we have this
7072                  * other way using the doorbell register.
7073                  */
7074                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7075                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7076
7077                 /* PMC hardware guys tell us we need a 10 second delay after
7078                  * doorbell reset and before any attempt to talk to the board
7079                  * at all to ensure that this actually works and doesn't fall
7080                  * over in some weird corner cases.
7081                  */
7082                 msleep(10000);
7083         } else { /* Try to do it the PCI power state way */
7084
7085                 /* Quoting from the Open CISS Specification: "The Power
7086                  * Management Control/Status Register (CSR) controls the power
7087                  * state of the device.  The normal operating state is D0,
7088                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7089                  * the controller, place the interface device in D3 then to D0,
7090                  * this causes a secondary PCI reset which will reset the
7091                  * controller." */
7092
7093                 int rc = 0;
7094
7095                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7096
7097                 /* enter the D3hot power management state */
7098                 rc = pci_set_power_state(pdev, PCI_D3hot);
7099                 if (rc)
7100                         return rc;
7101
7102                 msleep(500);
7103
7104                 /* enter the D0 power management state */
7105                 rc = pci_set_power_state(pdev, PCI_D0);
7106                 if (rc)
7107                         return rc;
7108
7109                 /*
7110                  * The P600 requires a small delay when changing states.
7111                  * Otherwise we may think the board did not reset and we bail.
7112                  * This for kdump only and is particular to the P600.
7113                  */
7114                 msleep(500);
7115         }
7116         return 0;
7117 }
7118
7119 static void init_driver_version(char *driver_version, int len)
7120 {
7121         memset(driver_version, 0, len);
7122         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7123 }
7124
7125 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7126 {
7127         char *driver_version;
7128         int i, size = sizeof(cfgtable->driver_version);
7129
7130         driver_version = kmalloc(size, GFP_KERNEL);
7131         if (!driver_version)
7132                 return -ENOMEM;
7133
7134         init_driver_version(driver_version, size);
7135         for (i = 0; i < size; i++)
7136                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7137         kfree(driver_version);
7138         return 0;
7139 }
7140
7141 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7142                                           unsigned char *driver_ver)
7143 {
7144         int i;
7145
7146         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7147                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7148 }
7149
7150 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7151 {
7152
7153         char *driver_ver, *old_driver_ver;
7154         int rc, size = sizeof(cfgtable->driver_version);
7155
7156         old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7157         if (!old_driver_ver)
7158                 return -ENOMEM;
7159         driver_ver = old_driver_ver + size;
7160
7161         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7162          * should have been changed, otherwise we know the reset failed.
7163          */
7164         init_driver_version(old_driver_ver, size);
7165         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7166         rc = !memcmp(driver_ver, old_driver_ver, size);
7167         kfree(old_driver_ver);
7168         return rc;
7169 }
7170 /* This does a hard reset of the controller using PCI power management
7171  * states or the using the doorbell register.
7172  */
7173 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7174 {
7175         u64 cfg_offset;
7176         u32 cfg_base_addr;
7177         u64 cfg_base_addr_index;
7178         void __iomem *vaddr;
7179         unsigned long paddr;
7180         u32 misc_fw_support;
7181         int rc;
7182         struct CfgTable __iomem *cfgtable;
7183         u32 use_doorbell;
7184         u16 command_register;
7185
7186         /* For controllers as old as the P600, this is very nearly
7187          * the same thing as
7188          *
7189          * pci_save_state(pci_dev);
7190          * pci_set_power_state(pci_dev, PCI_D3hot);
7191          * pci_set_power_state(pci_dev, PCI_D0);
7192          * pci_restore_state(pci_dev);
7193          *
7194          * For controllers newer than the P600, the pci power state
7195          * method of resetting doesn't work so we have another way
7196          * using the doorbell register.
7197          */
7198
7199         if (!ctlr_is_resettable(board_id)) {
7200                 dev_warn(&pdev->dev, "Controller not resettable\n");
7201                 return -ENODEV;
7202         }
7203
7204         /* if controller is soft- but not hard resettable... */
7205         if (!ctlr_is_hard_resettable(board_id))
7206                 return -ENOTSUPP; /* try soft reset later. */
7207
7208         /* Save the PCI command register */
7209         pci_read_config_word(pdev, 4, &command_register);
7210         pci_save_state(pdev);
7211
7212         /* find the first memory BAR, so we can find the cfg table */
7213         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7214         if (rc)
7215                 return rc;
7216         vaddr = remap_pci_mem(paddr, 0x250);
7217         if (!vaddr)
7218                 return -ENOMEM;
7219
7220         /* find cfgtable in order to check if reset via doorbell is supported */
7221         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7222                                         &cfg_base_addr_index, &cfg_offset);
7223         if (rc)
7224                 goto unmap_vaddr;
7225         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7226                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7227         if (!cfgtable) {
7228                 rc = -ENOMEM;
7229                 goto unmap_vaddr;
7230         }
7231         rc = write_driver_ver_to_cfgtable(cfgtable);
7232         if (rc)
7233                 goto unmap_cfgtable;
7234
7235         /* If reset via doorbell register is supported, use that.
7236          * There are two such methods.  Favor the newest method.
7237          */
7238         misc_fw_support = readl(&cfgtable->misc_fw_support);
7239         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7240         if (use_doorbell) {
7241                 use_doorbell = DOORBELL_CTLR_RESET2;
7242         } else {
7243                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7244                 if (use_doorbell) {
7245                         dev_warn(&pdev->dev,
7246                                 "Soft reset not supported. Firmware update is required.\n");
7247                         rc = -ENOTSUPP; /* try soft reset */
7248                         goto unmap_cfgtable;
7249                 }
7250         }
7251
7252         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7253         if (rc)
7254                 goto unmap_cfgtable;
7255
7256         pci_restore_state(pdev);
7257         pci_write_config_word(pdev, 4, command_register);
7258
7259         /* Some devices (notably the HP Smart Array 5i Controller)
7260            need a little pause here */
7261         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7262
7263         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7264         if (rc) {
7265                 dev_warn(&pdev->dev,
7266                         "Failed waiting for board to become ready after hard reset\n");
7267                 goto unmap_cfgtable;
7268         }
7269
7270         rc = controller_reset_failed(vaddr);
7271         if (rc < 0)
7272                 goto unmap_cfgtable;
7273         if (rc) {
7274                 dev_warn(&pdev->dev, "Unable to successfully reset "
7275                         "controller. Will try soft reset.\n");
7276                 rc = -ENOTSUPP;
7277         } else {
7278                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7279         }
7280
7281 unmap_cfgtable:
7282         iounmap(cfgtable);
7283
7284 unmap_vaddr:
7285         iounmap(vaddr);
7286         return rc;
7287 }
7288
7289 /*
7290  *  We cannot read the structure directly, for portability we must use
7291  *   the io functions.
7292  *   This is for debug only.
7293  */
7294 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7295 {
7296 #ifdef HPSA_DEBUG
7297         int i;
7298         char temp_name[17];
7299
7300         dev_info(dev, "Controller Configuration information\n");
7301         dev_info(dev, "------------------------------------\n");
7302         for (i = 0; i < 4; i++)
7303                 temp_name[i] = readb(&(tb->Signature[i]));
7304         temp_name[4] = '\0';
7305         dev_info(dev, "   Signature = %s\n", temp_name);
7306         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7307         dev_info(dev, "   Transport methods supported = 0x%x\n",
7308                readl(&(tb->TransportSupport)));
7309         dev_info(dev, "   Transport methods active = 0x%x\n",
7310                readl(&(tb->TransportActive)));
7311         dev_info(dev, "   Requested transport Method = 0x%x\n",
7312                readl(&(tb->HostWrite.TransportRequest)));
7313         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7314                readl(&(tb->HostWrite.CoalIntDelay)));
7315         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7316                readl(&(tb->HostWrite.CoalIntCount)));
7317         dev_info(dev, "   Max outstanding commands = %d\n",
7318                readl(&(tb->CmdsOutMax)));
7319         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7320         for (i = 0; i < 16; i++)
7321                 temp_name[i] = readb(&(tb->ServerName[i]));
7322         temp_name[16] = '\0';
7323         dev_info(dev, "   Server Name = %s\n", temp_name);
7324         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7325                 readl(&(tb->HeartBeat)));
7326 #endif                          /* HPSA_DEBUG */
7327 }
7328
7329 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7330 {
7331         int i, offset, mem_type, bar_type;
7332
7333         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7334                 return 0;
7335         offset = 0;
7336         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7337                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7338                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7339                         offset += 4;
7340                 else {
7341                         mem_type = pci_resource_flags(pdev, i) &
7342                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7343                         switch (mem_type) {
7344                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7345                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7346                                 offset += 4;    /* 32 bit */
7347                                 break;
7348                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7349                                 offset += 8;
7350                                 break;
7351                         default:        /* reserved in PCI 2.2 */
7352                                 dev_warn(&pdev->dev,
7353                                        "base address is invalid\n");
7354                                 return -1;
7355                                 break;
7356                         }
7357                 }
7358                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7359                         return i + 1;
7360         }
7361         return -1;
7362 }
7363
7364 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7365 {
7366         pci_free_irq_vectors(h->pdev);
7367         h->msix_vectors = 0;
7368 }
7369
7370 static void hpsa_setup_reply_map(struct ctlr_info *h)
7371 {
7372         const struct cpumask *mask;
7373         unsigned int queue, cpu;
7374
7375         for (queue = 0; queue < h->msix_vectors; queue++) {
7376                 mask = pci_irq_get_affinity(h->pdev, queue);
7377                 if (!mask)
7378                         goto fallback;
7379
7380                 for_each_cpu(cpu, mask)
7381                         h->reply_map[cpu] = queue;
7382         }
7383         return;
7384
7385 fallback:
7386         for_each_possible_cpu(cpu)
7387                 h->reply_map[cpu] = 0;
7388 }
7389
7390 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7391  * controllers that are capable. If not, we use legacy INTx mode.
7392  */
7393 static int hpsa_interrupt_mode(struct ctlr_info *h)
7394 {
7395         unsigned int flags = PCI_IRQ_LEGACY;
7396         int ret;
7397
7398         /* Some boards advertise MSI but don't really support it */
7399         switch (h->board_id) {
7400         case 0x40700E11:
7401         case 0x40800E11:
7402         case 0x40820E11:
7403         case 0x40830E11:
7404                 break;
7405         default:
7406                 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7407                                 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7408                 if (ret > 0) {
7409                         h->msix_vectors = ret;
7410                         return 0;
7411                 }
7412
7413                 flags |= PCI_IRQ_MSI;
7414                 break;
7415         }
7416
7417         ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7418         if (ret < 0)
7419                 return ret;
7420         return 0;
7421 }
7422
7423 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7424                                 bool *legacy_board)
7425 {
7426         int i;
7427         u32 subsystem_vendor_id, subsystem_device_id;
7428
7429         subsystem_vendor_id = pdev->subsystem_vendor;
7430         subsystem_device_id = pdev->subsystem_device;
7431         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7432                     subsystem_vendor_id;
7433
7434         if (legacy_board)
7435                 *legacy_board = false;
7436         for (i = 0; i < ARRAY_SIZE(products); i++)
7437                 if (*board_id == products[i].board_id) {
7438                         if (products[i].access != &SA5A_access &&
7439                             products[i].access != &SA5B_access)
7440                                 return i;
7441                         dev_warn(&pdev->dev,
7442                                  "legacy board ID: 0x%08x\n",
7443                                  *board_id);
7444                         if (legacy_board)
7445                             *legacy_board = true;
7446                         return i;
7447                 }
7448
7449         dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7450         if (legacy_board)
7451                 *legacy_board = true;
7452         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7453 }
7454
7455 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7456                                     unsigned long *memory_bar)
7457 {
7458         int i;
7459
7460         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7461                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7462                         /* addressing mode bits already removed */
7463                         *memory_bar = pci_resource_start(pdev, i);
7464                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7465                                 *memory_bar);
7466                         return 0;
7467                 }
7468         dev_warn(&pdev->dev, "no memory BAR found\n");
7469         return -ENODEV;
7470 }
7471
7472 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7473                                      int wait_for_ready)
7474 {
7475         int i, iterations;
7476         u32 scratchpad;
7477         if (wait_for_ready)
7478                 iterations = HPSA_BOARD_READY_ITERATIONS;
7479         else
7480                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7481
7482         for (i = 0; i < iterations; i++) {
7483                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7484                 if (wait_for_ready) {
7485                         if (scratchpad == HPSA_FIRMWARE_READY)
7486                                 return 0;
7487                 } else {
7488                         if (scratchpad != HPSA_FIRMWARE_READY)
7489                                 return 0;
7490                 }
7491                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7492         }
7493         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7494         return -ENODEV;
7495 }
7496
7497 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7498                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7499                                u64 *cfg_offset)
7500 {
7501         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7502         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7503         *cfg_base_addr &= (u32) 0x0000ffff;
7504         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7505         if (*cfg_base_addr_index == -1) {
7506                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7507                 return -ENODEV;
7508         }
7509         return 0;
7510 }
7511
7512 static void hpsa_free_cfgtables(struct ctlr_info *h)
7513 {
7514         if (h->transtable) {
7515                 iounmap(h->transtable);
7516                 h->transtable = NULL;
7517         }
7518         if (h->cfgtable) {
7519                 iounmap(h->cfgtable);
7520                 h->cfgtable = NULL;
7521         }
7522 }
7523
7524 /* Find and map CISS config table and transfer table
7525 + * several items must be unmapped (freed) later
7526 + * */
7527 static int hpsa_find_cfgtables(struct ctlr_info *h)
7528 {
7529         u64 cfg_offset;
7530         u32 cfg_base_addr;
7531         u64 cfg_base_addr_index;
7532         u32 trans_offset;
7533         int rc;
7534
7535         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7536                 &cfg_base_addr_index, &cfg_offset);
7537         if (rc)
7538                 return rc;
7539         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7540                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7541         if (!h->cfgtable) {
7542                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7543                 return -ENOMEM;
7544         }
7545         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7546         if (rc)
7547                 return rc;
7548         /* Find performant mode table. */
7549         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7550         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7551                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7552                                 sizeof(*h->transtable));
7553         if (!h->transtable) {
7554                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7555                 hpsa_free_cfgtables(h);
7556                 return -ENOMEM;
7557         }
7558         return 0;
7559 }
7560
7561 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7562 {
7563 #define MIN_MAX_COMMANDS 16
7564         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7565
7566         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7567
7568         /* Limit commands in memory limited kdump scenario. */
7569         if (reset_devices && h->max_commands > 32)
7570                 h->max_commands = 32;
7571
7572         if (h->max_commands < MIN_MAX_COMMANDS) {
7573                 dev_warn(&h->pdev->dev,
7574                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7575                         h->max_commands,
7576                         MIN_MAX_COMMANDS);
7577                 h->max_commands = MIN_MAX_COMMANDS;
7578         }
7579 }
7580
7581 /* If the controller reports that the total max sg entries is greater than 512,
7582  * then we know that chained SG blocks work.  (Original smart arrays did not
7583  * support chained SG blocks and would return zero for max sg entries.)
7584  */
7585 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7586 {
7587         return h->maxsgentries > 512;
7588 }
7589
7590 /* Interrogate the hardware for some limits:
7591  * max commands, max SG elements without chaining, and with chaining,
7592  * SG chain block size, etc.
7593  */
7594 static void hpsa_find_board_params(struct ctlr_info *h)
7595 {
7596         hpsa_get_max_perf_mode_cmds(h);
7597         h->nr_cmds = h->max_commands;
7598         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7599         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7600         if (hpsa_supports_chained_sg_blocks(h)) {
7601                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7602                 h->max_cmd_sg_entries = 32;
7603                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7604                 h->maxsgentries--; /* save one for chain pointer */
7605         } else {
7606                 /*
7607                  * Original smart arrays supported at most 31 s/g entries
7608                  * embedded inline in the command (trying to use more
7609                  * would lock up the controller)
7610                  */
7611                 h->max_cmd_sg_entries = 31;
7612                 h->maxsgentries = 31; /* default to traditional values */
7613                 h->chainsize = 0;
7614         }
7615
7616         /* Find out what task management functions are supported and cache */
7617         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7618         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7619                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7620         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7621                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7622         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7623                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7624 }
7625
7626 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7627 {
7628         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7629                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7630                 return false;
7631         }
7632         return true;
7633 }
7634
7635 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7636 {
7637         u32 driver_support;
7638
7639         driver_support = readl(&(h->cfgtable->driver_support));
7640         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7641 #ifdef CONFIG_X86
7642         driver_support |= ENABLE_SCSI_PREFETCH;
7643 #endif
7644         driver_support |= ENABLE_UNIT_ATTN;
7645         writel(driver_support, &(h->cfgtable->driver_support));
7646 }
7647
7648 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7649  * in a prefetch beyond physical memory.
7650  */
7651 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7652 {
7653         u32 dma_prefetch;
7654
7655         if (h->board_id != 0x3225103C)
7656                 return;
7657         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7658         dma_prefetch |= 0x8000;
7659         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7660 }
7661
7662 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7663 {
7664         int i;
7665         u32 doorbell_value;
7666         unsigned long flags;
7667         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7668         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7669                 spin_lock_irqsave(&h->lock, flags);
7670                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7671                 spin_unlock_irqrestore(&h->lock, flags);
7672                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7673                         goto done;
7674                 /* delay and try again */
7675                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7676         }
7677         return -ENODEV;
7678 done:
7679         return 0;
7680 }
7681
7682 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7683 {
7684         int i;
7685         u32 doorbell_value;
7686         unsigned long flags;
7687
7688         /* under certain very rare conditions, this can take awhile.
7689          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7690          * as we enter this code.)
7691          */
7692         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7693                 if (h->remove_in_progress)
7694                         goto done;
7695                 spin_lock_irqsave(&h->lock, flags);
7696                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7697                 spin_unlock_irqrestore(&h->lock, flags);
7698                 if (!(doorbell_value & CFGTBL_ChangeReq))
7699                         goto done;
7700                 /* delay and try again */
7701                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7702         }
7703         return -ENODEV;
7704 done:
7705         return 0;
7706 }
7707
7708 /* return -ENODEV or other reason on error, 0 on success */
7709 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7710 {
7711         u32 trans_support;
7712
7713         trans_support = readl(&(h->cfgtable->TransportSupport));
7714         if (!(trans_support & SIMPLE_MODE))
7715                 return -ENOTSUPP;
7716
7717         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7718
7719         /* Update the field, and then ring the doorbell */
7720         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7721         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7722         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7723         if (hpsa_wait_for_mode_change_ack(h))
7724                 goto error;
7725         print_cfg_table(&h->pdev->dev, h->cfgtable);
7726         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7727                 goto error;
7728         h->transMethod = CFGTBL_Trans_Simple;
7729         return 0;
7730 error:
7731         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7732         return -ENODEV;
7733 }
7734
7735 /* free items allocated or mapped by hpsa_pci_init */
7736 static void hpsa_free_pci_init(struct ctlr_info *h)
7737 {
7738         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7739         iounmap(h->vaddr);                      /* pci_init 3 */
7740         h->vaddr = NULL;
7741         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7742         /*
7743          * call pci_disable_device before pci_release_regions per
7744          * Documentation/PCI/pci.txt
7745          */
7746         pci_disable_device(h->pdev);            /* pci_init 1 */
7747         pci_release_regions(h->pdev);           /* pci_init 2 */
7748 }
7749
7750 /* several items must be freed later */
7751 static int hpsa_pci_init(struct ctlr_info *h)
7752 {
7753         int prod_index, err;
7754         bool legacy_board;
7755
7756         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7757         if (prod_index < 0)
7758                 return prod_index;
7759         h->product_name = products[prod_index].product_name;
7760         h->access = *(products[prod_index].access);
7761         h->legacy_board = legacy_board;
7762         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7763                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7764
7765         err = pci_enable_device(h->pdev);
7766         if (err) {
7767                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7768                 pci_disable_device(h->pdev);
7769                 return err;
7770         }
7771
7772         err = pci_request_regions(h->pdev, HPSA);
7773         if (err) {
7774                 dev_err(&h->pdev->dev,
7775                         "failed to obtain PCI resources\n");
7776                 pci_disable_device(h->pdev);
7777                 return err;
7778         }
7779
7780         pci_set_master(h->pdev);
7781
7782         err = hpsa_interrupt_mode(h);
7783         if (err)
7784                 goto clean1;
7785
7786         /* setup mapping between CPU and reply queue */
7787         hpsa_setup_reply_map(h);
7788
7789         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7790         if (err)
7791                 goto clean2;    /* intmode+region, pci */
7792         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7793         if (!h->vaddr) {
7794                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7795                 err = -ENOMEM;
7796                 goto clean2;    /* intmode+region, pci */
7797         }
7798         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7799         if (err)
7800                 goto clean3;    /* vaddr, intmode+region, pci */
7801         err = hpsa_find_cfgtables(h);
7802         if (err)
7803                 goto clean3;    /* vaddr, intmode+region, pci */
7804         hpsa_find_board_params(h);
7805
7806         if (!hpsa_CISS_signature_present(h)) {
7807                 err = -ENODEV;
7808                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7809         }
7810         hpsa_set_driver_support_bits(h);
7811         hpsa_p600_dma_prefetch_quirk(h);
7812         err = hpsa_enter_simple_mode(h);
7813         if (err)
7814                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7815         return 0;
7816
7817 clean4: /* cfgtables, vaddr, intmode+region, pci */
7818         hpsa_free_cfgtables(h);
7819 clean3: /* vaddr, intmode+region, pci */
7820         iounmap(h->vaddr);
7821         h->vaddr = NULL;
7822 clean2: /* intmode+region, pci */
7823         hpsa_disable_interrupt_mode(h);
7824 clean1:
7825         /*
7826          * call pci_disable_device before pci_release_regions per
7827          * Documentation/PCI/pci.txt
7828          */
7829         pci_disable_device(h->pdev);
7830         pci_release_regions(h->pdev);
7831         return err;
7832 }
7833
7834 static void hpsa_hba_inquiry(struct ctlr_info *h)
7835 {
7836         int rc;
7837
7838 #define HBA_INQUIRY_BYTE_COUNT 64
7839         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7840         if (!h->hba_inquiry_data)
7841                 return;
7842         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7843                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7844         if (rc != 0) {
7845                 kfree(h->hba_inquiry_data);
7846                 h->hba_inquiry_data = NULL;
7847         }
7848 }
7849
7850 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7851 {
7852         int rc, i;
7853         void __iomem *vaddr;
7854
7855         if (!reset_devices)
7856                 return 0;
7857
7858         /* kdump kernel is loading, we don't know in which state is
7859          * the pci interface. The dev->enable_cnt is equal zero
7860          * so we call enable+disable, wait a while and switch it on.
7861          */
7862         rc = pci_enable_device(pdev);
7863         if (rc) {
7864                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7865                 return -ENODEV;
7866         }
7867         pci_disable_device(pdev);
7868         msleep(260);                    /* a randomly chosen number */
7869         rc = pci_enable_device(pdev);
7870         if (rc) {
7871                 dev_warn(&pdev->dev, "failed to enable device.\n");
7872                 return -ENODEV;
7873         }
7874
7875         pci_set_master(pdev);
7876
7877         vaddr = pci_ioremap_bar(pdev, 0);
7878         if (vaddr == NULL) {
7879                 rc = -ENOMEM;
7880                 goto out_disable;
7881         }
7882         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7883         iounmap(vaddr);
7884
7885         /* Reset the controller with a PCI power-cycle or via doorbell */
7886         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7887
7888         /* -ENOTSUPP here means we cannot reset the controller
7889          * but it's already (and still) up and running in
7890          * "performant mode".  Or, it might be 640x, which can't reset
7891          * due to concerns about shared bbwc between 6402/6404 pair.
7892          */
7893         if (rc)
7894                 goto out_disable;
7895
7896         /* Now try to get the controller to respond to a no-op */
7897         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7898         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7899                 if (hpsa_noop(pdev) == 0)
7900                         break;
7901                 else
7902                         dev_warn(&pdev->dev, "no-op failed%s\n",
7903                                         (i < 11 ? "; re-trying" : ""));
7904         }
7905
7906 out_disable:
7907
7908         pci_disable_device(pdev);
7909         return rc;
7910 }
7911
7912 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7913 {
7914         kfree(h->cmd_pool_bits);
7915         h->cmd_pool_bits = NULL;
7916         if (h->cmd_pool) {
7917                 pci_free_consistent(h->pdev,
7918                                 h->nr_cmds * sizeof(struct CommandList),
7919                                 h->cmd_pool,
7920                                 h->cmd_pool_dhandle);
7921                 h->cmd_pool = NULL;
7922                 h->cmd_pool_dhandle = 0;
7923         }
7924         if (h->errinfo_pool) {
7925                 pci_free_consistent(h->pdev,
7926                                 h->nr_cmds * sizeof(struct ErrorInfo),
7927                                 h->errinfo_pool,
7928                                 h->errinfo_pool_dhandle);
7929                 h->errinfo_pool = NULL;
7930                 h->errinfo_pool_dhandle = 0;
7931         }
7932 }
7933
7934 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7935 {
7936         h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
7937                                    sizeof(unsigned long),
7938                                    GFP_KERNEL);
7939         h->cmd_pool = pci_alloc_consistent(h->pdev,
7940                     h->nr_cmds * sizeof(*h->cmd_pool),
7941                     &(h->cmd_pool_dhandle));
7942         h->errinfo_pool = pci_alloc_consistent(h->pdev,
7943                     h->nr_cmds * sizeof(*h->errinfo_pool),
7944                     &(h->errinfo_pool_dhandle));
7945         if ((h->cmd_pool_bits == NULL)
7946             || (h->cmd_pool == NULL)
7947             || (h->errinfo_pool == NULL)) {
7948                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7949                 goto clean_up;
7950         }
7951         hpsa_preinitialize_commands(h);
7952         return 0;
7953 clean_up:
7954         hpsa_free_cmd_pool(h);
7955         return -ENOMEM;
7956 }
7957
7958 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7959 static void hpsa_free_irqs(struct ctlr_info *h)
7960 {
7961         int i;
7962
7963         if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7964                 /* Single reply queue, only one irq to free */
7965                 free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
7966                 h->q[h->intr_mode] = 0;
7967                 return;
7968         }
7969
7970         for (i = 0; i < h->msix_vectors; i++) {
7971                 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7972                 h->q[i] = 0;
7973         }
7974         for (; i < MAX_REPLY_QUEUES; i++)
7975                 h->q[i] = 0;
7976 }
7977
7978 /* returns 0 on success; cleans up and returns -Enn on error */
7979 static int hpsa_request_irqs(struct ctlr_info *h,
7980         irqreturn_t (*msixhandler)(int, void *),
7981         irqreturn_t (*intxhandler)(int, void *))
7982 {
7983         int rc, i;
7984
7985         /*
7986          * initialize h->q[x] = x so that interrupt handlers know which
7987          * queue to process.
7988          */
7989         for (i = 0; i < MAX_REPLY_QUEUES; i++)
7990                 h->q[i] = (u8) i;
7991
7992         if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
7993                 /* If performant mode and MSI-X, use multiple reply queues */
7994                 for (i = 0; i < h->msix_vectors; i++) {
7995                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7996                         rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
7997                                         0, h->intrname[i],
7998                                         &h->q[i]);
7999                         if (rc) {
8000                                 int j;
8001
8002                                 dev_err(&h->pdev->dev,
8003                                         "failed to get irq %d for %s\n",
8004                                        pci_irq_vector(h->pdev, i), h->devname);
8005                                 for (j = 0; j < i; j++) {
8006                                         free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8007                                         h->q[j] = 0;
8008                                 }
8009                                 for (; j < MAX_REPLY_QUEUES; j++)
8010                                         h->q[j] = 0;
8011                                 return rc;
8012                         }
8013                 }
8014         } else {
8015                 /* Use single reply pool */
8016                 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8017                         sprintf(h->intrname[0], "%s-msi%s", h->devname,
8018                                 h->msix_vectors ? "x" : "");
8019                         rc = request_irq(pci_irq_vector(h->pdev, 0),
8020                                 msixhandler, 0,
8021                                 h->intrname[0],
8022                                 &h->q[h->intr_mode]);
8023                 } else {
8024                         sprintf(h->intrname[h->intr_mode],
8025                                 "%s-intx", h->devname);
8026                         rc = request_irq(pci_irq_vector(h->pdev, 0),
8027                                 intxhandler, IRQF_SHARED,
8028                                 h->intrname[0],
8029                                 &h->q[h->intr_mode]);
8030                 }
8031         }
8032         if (rc) {
8033                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8034                        pci_irq_vector(h->pdev, 0), h->devname);
8035                 hpsa_free_irqs(h);
8036                 return -ENODEV;
8037         }
8038         return 0;
8039 }
8040
8041 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8042 {
8043         int rc;
8044         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8045
8046         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8047         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8048         if (rc) {
8049                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8050                 return rc;
8051         }
8052
8053         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8054         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8055         if (rc) {
8056                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8057                         "after soft reset.\n");
8058                 return rc;
8059         }
8060
8061         return 0;
8062 }
8063
8064 static void hpsa_free_reply_queues(struct ctlr_info *h)
8065 {
8066         int i;
8067
8068         for (i = 0; i < h->nreply_queues; i++) {
8069                 if (!h->reply_queue[i].head)
8070                         continue;
8071                 pci_free_consistent(h->pdev,
8072                                         h->reply_queue_size,
8073                                         h->reply_queue[i].head,
8074                                         h->reply_queue[i].busaddr);
8075                 h->reply_queue[i].head = NULL;
8076                 h->reply_queue[i].busaddr = 0;
8077         }
8078         h->reply_queue_size = 0;
8079 }
8080
8081 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8082 {
8083         hpsa_free_performant_mode(h);           /* init_one 7 */
8084         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8085         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8086         hpsa_free_irqs(h);                      /* init_one 4 */
8087         scsi_host_put(h->scsi_host);            /* init_one 3 */
8088         h->scsi_host = NULL;                    /* init_one 3 */
8089         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8090         free_percpu(h->lockup_detected);        /* init_one 2 */
8091         h->lockup_detected = NULL;              /* init_one 2 */
8092         if (h->resubmit_wq) {
8093                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8094                 h->resubmit_wq = NULL;
8095         }
8096         if (h->rescan_ctlr_wq) {
8097                 destroy_workqueue(h->rescan_ctlr_wq);
8098                 h->rescan_ctlr_wq = NULL;
8099         }
8100         kfree(h);                               /* init_one 1 */
8101 }
8102
8103 /* Called when controller lockup detected. */
8104 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8105 {
8106         int i, refcount;
8107         struct CommandList *c;
8108         int failcount = 0;
8109
8110         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8111         for (i = 0; i < h->nr_cmds; i++) {
8112                 c = h->cmd_pool + i;
8113                 refcount = atomic_inc_return(&c->refcount);
8114                 if (refcount > 1) {
8115                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8116                         finish_cmd(c);
8117                         atomic_dec(&h->commands_outstanding);
8118                         failcount++;
8119                 }
8120                 cmd_free(h, c);
8121         }
8122         dev_warn(&h->pdev->dev,
8123                 "failed %d commands in fail_all\n", failcount);
8124 }
8125
8126 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8127 {
8128         int cpu;
8129
8130         for_each_online_cpu(cpu) {
8131                 u32 *lockup_detected;
8132                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8133                 *lockup_detected = value;
8134         }
8135         wmb(); /* be sure the per-cpu variables are out to memory */
8136 }
8137
8138 static void controller_lockup_detected(struct ctlr_info *h)
8139 {
8140         unsigned long flags;
8141         u32 lockup_detected;
8142
8143         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8144         spin_lock_irqsave(&h->lock, flags);
8145         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8146         if (!lockup_detected) {
8147                 /* no heartbeat, but controller gave us a zero. */
8148                 dev_warn(&h->pdev->dev,
8149                         "lockup detected after %d but scratchpad register is zero\n",
8150                         h->heartbeat_sample_interval / HZ);
8151                 lockup_detected = 0xffffffff;
8152         }
8153         set_lockup_detected_for_all_cpus(h, lockup_detected);
8154         spin_unlock_irqrestore(&h->lock, flags);
8155         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8156                         lockup_detected, h->heartbeat_sample_interval / HZ);
8157         if (lockup_detected == 0xffff0000) {
8158                 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8159                 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8160         }
8161         pci_disable_device(h->pdev);
8162         fail_all_outstanding_cmds(h);
8163 }
8164
8165 static int detect_controller_lockup(struct ctlr_info *h)
8166 {
8167         u64 now;
8168         u32 heartbeat;
8169         unsigned long flags;
8170
8171         now = get_jiffies_64();
8172         /* If we've received an interrupt recently, we're ok. */
8173         if (time_after64(h->last_intr_timestamp +
8174                                 (h->heartbeat_sample_interval), now))
8175                 return false;
8176
8177         /*
8178          * If we've already checked the heartbeat recently, we're ok.
8179          * This could happen if someone sends us a signal. We
8180          * otherwise don't care about signals in this thread.
8181          */
8182         if (time_after64(h->last_heartbeat_timestamp +
8183                                 (h->heartbeat_sample_interval), now))
8184                 return false;
8185
8186         /* If heartbeat has not changed since we last looked, we're not ok. */
8187         spin_lock_irqsave(&h->lock, flags);
8188         heartbeat = readl(&h->cfgtable->HeartBeat);
8189         spin_unlock_irqrestore(&h->lock, flags);
8190         if (h->last_heartbeat == heartbeat) {
8191                 controller_lockup_detected(h);
8192                 return true;
8193         }
8194
8195         /* We're ok. */
8196         h->last_heartbeat = heartbeat;
8197         h->last_heartbeat_timestamp = now;
8198         return false;
8199 }
8200
8201 /*
8202  * Set ioaccel status for all ioaccel volumes.
8203  *
8204  * Called from monitor controller worker (hpsa_event_monitor_worker)
8205  *
8206  * A Volume (or Volumes that comprise an Array set may be undergoing a
8207  * transformation, so we will be turning off ioaccel for all volumes that
8208  * make up the Array.
8209  */
8210 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8211 {
8212         int rc;
8213         int i;
8214         u8 ioaccel_status;
8215         unsigned char *buf;
8216         struct hpsa_scsi_dev_t *device;
8217
8218         if (!h)
8219                 return;
8220
8221         buf = kmalloc(64, GFP_KERNEL);
8222         if (!buf)
8223                 return;
8224
8225         /*
8226          * Run through current device list used during I/O requests.
8227          */
8228         for (i = 0; i < h->ndevices; i++) {
8229                 device = h->dev[i];
8230
8231                 if (!device)
8232                         continue;
8233                 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8234                                                 HPSA_VPD_LV_IOACCEL_STATUS))
8235                         continue;
8236
8237                 memset(buf, 0, 64);
8238
8239                 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8240                                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8241                                         buf, 64);
8242                 if (rc != 0)
8243                         continue;
8244
8245                 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8246                 device->offload_config =
8247                                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8248                 if (device->offload_config)
8249                         device->offload_to_be_enabled =
8250                                 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8251
8252                 /*
8253                  * Immediately turn off ioaccel for any volume the
8254                  * controller tells us to. Some of the reasons could be:
8255                  *    transformation - change to the LVs of an Array.
8256                  *    degraded volume - component failure
8257                  *
8258                  * If ioaccel is to be re-enabled, re-enable later during the
8259                  * scan operation so the driver can get a fresh raidmap
8260                  * before turning ioaccel back on.
8261                  *
8262                  */
8263                 if (!device->offload_to_be_enabled)
8264                         device->offload_enabled = 0;
8265         }
8266
8267         kfree(buf);
8268 }
8269
8270 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8271 {
8272         char *event_type;
8273
8274         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8275                 return;
8276
8277         /* Ask the controller to clear the events we're handling. */
8278         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8279                         | CFGTBL_Trans_io_accel2)) &&
8280                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8281                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8282
8283                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8284                         event_type = "state change";
8285                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8286                         event_type = "configuration change";
8287                 /* Stop sending new RAID offload reqs via the IO accelerator */
8288                 scsi_block_requests(h->scsi_host);
8289                 hpsa_set_ioaccel_status(h);
8290                 hpsa_drain_accel_commands(h);
8291                 /* Set 'accelerator path config change' bit */
8292                 dev_warn(&h->pdev->dev,
8293                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8294                         h->events, event_type);
8295                 writel(h->events, &(h->cfgtable->clear_event_notify));
8296                 /* Set the "clear event notify field update" bit 6 */
8297                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8298                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8299                 hpsa_wait_for_clear_event_notify_ack(h);
8300                 scsi_unblock_requests(h->scsi_host);
8301         } else {
8302                 /* Acknowledge controller notification events. */
8303                 writel(h->events, &(h->cfgtable->clear_event_notify));
8304                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8305                 hpsa_wait_for_clear_event_notify_ack(h);
8306         }
8307         return;
8308 }
8309
8310 /* Check a register on the controller to see if there are configuration
8311  * changes (added/changed/removed logical drives, etc.) which mean that
8312  * we should rescan the controller for devices.
8313  * Also check flag for driver-initiated rescan.
8314  */
8315 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8316 {
8317         if (h->drv_req_rescan) {
8318                 h->drv_req_rescan = 0;
8319                 return 1;
8320         }
8321
8322         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8323                 return 0;
8324
8325         h->events = readl(&(h->cfgtable->event_notify));
8326         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8327 }
8328
8329 /*
8330  * Check if any of the offline devices have become ready
8331  */
8332 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8333 {
8334         unsigned long flags;
8335         struct offline_device_entry *d;
8336         struct list_head *this, *tmp;
8337
8338         spin_lock_irqsave(&h->offline_device_lock, flags);
8339         list_for_each_safe(this, tmp, &h->offline_device_list) {
8340                 d = list_entry(this, struct offline_device_entry,
8341                                 offline_list);
8342                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8343                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8344                         spin_lock_irqsave(&h->offline_device_lock, flags);
8345                         list_del(&d->offline_list);
8346                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8347                         return 1;
8348                 }
8349                 spin_lock_irqsave(&h->offline_device_lock, flags);
8350         }
8351         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8352         return 0;
8353 }
8354
8355 static int hpsa_luns_changed(struct ctlr_info *h)
8356 {
8357         int rc = 1; /* assume there are changes */
8358         struct ReportLUNdata *logdev = NULL;
8359
8360         /* if we can't find out if lun data has changed,
8361          * assume that it has.
8362          */
8363
8364         if (!h->lastlogicals)
8365                 return rc;
8366
8367         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8368         if (!logdev)
8369                 return rc;
8370
8371         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8372                 dev_warn(&h->pdev->dev,
8373                         "report luns failed, can't track lun changes.\n");
8374                 goto out;
8375         }
8376         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8377                 dev_info(&h->pdev->dev,
8378                         "Lun changes detected.\n");
8379                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8380                 goto out;
8381         } else
8382                 rc = 0; /* no changes detected. */
8383 out:
8384         kfree(logdev);
8385         return rc;
8386 }
8387
8388 static void hpsa_perform_rescan(struct ctlr_info *h)
8389 {
8390         struct Scsi_Host *sh = NULL;
8391         unsigned long flags;
8392
8393         /*
8394          * Do the scan after the reset
8395          */
8396         spin_lock_irqsave(&h->reset_lock, flags);
8397         if (h->reset_in_progress) {
8398                 h->drv_req_rescan = 1;
8399                 spin_unlock_irqrestore(&h->reset_lock, flags);
8400                 return;
8401         }
8402         spin_unlock_irqrestore(&h->reset_lock, flags);
8403
8404         sh = scsi_host_get(h->scsi_host);
8405         if (sh != NULL) {
8406                 hpsa_scan_start(sh);
8407                 scsi_host_put(sh);
8408                 h->drv_req_rescan = 0;
8409         }
8410 }
8411
8412 /*
8413  * watch for controller events
8414  */
8415 static void hpsa_event_monitor_worker(struct work_struct *work)
8416 {
8417         struct ctlr_info *h = container_of(to_delayed_work(work),
8418                                         struct ctlr_info, event_monitor_work);
8419         unsigned long flags;
8420
8421         spin_lock_irqsave(&h->lock, flags);
8422         if (h->remove_in_progress) {
8423                 spin_unlock_irqrestore(&h->lock, flags);
8424                 return;
8425         }
8426         spin_unlock_irqrestore(&h->lock, flags);
8427
8428         if (hpsa_ctlr_needs_rescan(h)) {
8429                 hpsa_ack_ctlr_events(h);
8430                 hpsa_perform_rescan(h);
8431         }
8432
8433         spin_lock_irqsave(&h->lock, flags);
8434         if (!h->remove_in_progress)
8435                 schedule_delayed_work(&h->event_monitor_work,
8436                                         HPSA_EVENT_MONITOR_INTERVAL);
8437         spin_unlock_irqrestore(&h->lock, flags);
8438 }
8439
8440 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8441 {
8442         unsigned long flags;
8443         struct ctlr_info *h = container_of(to_delayed_work(work),
8444                                         struct ctlr_info, rescan_ctlr_work);
8445
8446         spin_lock_irqsave(&h->lock, flags);
8447         if (h->remove_in_progress) {
8448                 spin_unlock_irqrestore(&h->lock, flags);
8449                 return;
8450         }
8451         spin_unlock_irqrestore(&h->lock, flags);
8452
8453         if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8454                 hpsa_perform_rescan(h);
8455         } else if (h->discovery_polling) {
8456                 if (hpsa_luns_changed(h)) {
8457                         dev_info(&h->pdev->dev,
8458                                 "driver discovery polling rescan.\n");
8459                         hpsa_perform_rescan(h);
8460                 }
8461         }
8462         spin_lock_irqsave(&h->lock, flags);
8463         if (!h->remove_in_progress)
8464                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8465                                 h->heartbeat_sample_interval);
8466         spin_unlock_irqrestore(&h->lock, flags);
8467 }
8468
8469 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8470 {
8471         unsigned long flags;
8472         struct ctlr_info *h = container_of(to_delayed_work(work),
8473                                         struct ctlr_info, monitor_ctlr_work);
8474
8475         detect_controller_lockup(h);
8476         if (lockup_detected(h))
8477                 return;
8478
8479         spin_lock_irqsave(&h->lock, flags);
8480         if (!h->remove_in_progress)
8481                 schedule_delayed_work(&h->monitor_ctlr_work,
8482                                 h->heartbeat_sample_interval);
8483         spin_unlock_irqrestore(&h->lock, flags);
8484 }
8485
8486 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8487                                                 char *name)
8488 {
8489         struct workqueue_struct *wq = NULL;
8490
8491         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8492         if (!wq)
8493                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8494
8495         return wq;
8496 }
8497
8498 static void hpda_free_ctlr_info(struct ctlr_info *h)
8499 {
8500         kfree(h->reply_map);
8501         kfree(h);
8502 }
8503
8504 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8505 {
8506         struct ctlr_info *h;
8507
8508         h = kzalloc(sizeof(*h), GFP_KERNEL);
8509         if (!h)
8510                 return NULL;
8511
8512         h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8513         if (!h->reply_map) {
8514                 kfree(h);
8515                 return NULL;
8516         }
8517         return h;
8518 }
8519
8520 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8521 {
8522         int dac, rc;
8523         struct ctlr_info *h;
8524         int try_soft_reset = 0;
8525         unsigned long flags;
8526         u32 board_id;
8527
8528         if (number_of_controllers == 0)
8529                 printk(KERN_INFO DRIVER_NAME "\n");
8530
8531         rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8532         if (rc < 0) {
8533                 dev_warn(&pdev->dev, "Board ID not found\n");
8534                 return rc;
8535         }
8536
8537         rc = hpsa_init_reset_devices(pdev, board_id);
8538         if (rc) {
8539                 if (rc != -ENOTSUPP)
8540                         return rc;
8541                 /* If the reset fails in a particular way (it has no way to do
8542                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8543                  * a soft reset once we get the controller configured up to the
8544                  * point that it can accept a command.
8545                  */
8546                 try_soft_reset = 1;
8547                 rc = 0;
8548         }
8549
8550 reinit_after_soft_reset:
8551
8552         /* Command structures must be aligned on a 32-byte boundary because
8553          * the 5 lower bits of the address are used by the hardware. and by
8554          * the driver.  See comments in hpsa.h for more info.
8555          */
8556         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8557         h = hpda_alloc_ctlr_info();
8558         if (!h) {
8559                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8560                 return -ENOMEM;
8561         }
8562
8563         h->pdev = pdev;
8564
8565         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8566         INIT_LIST_HEAD(&h->offline_device_list);
8567         spin_lock_init(&h->lock);
8568         spin_lock_init(&h->offline_device_lock);
8569         spin_lock_init(&h->scan_lock);
8570         spin_lock_init(&h->reset_lock);
8571         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8572
8573         /* Allocate and clear per-cpu variable lockup_detected */
8574         h->lockup_detected = alloc_percpu(u32);
8575         if (!h->lockup_detected) {
8576                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8577                 rc = -ENOMEM;
8578                 goto clean1;    /* aer/h */
8579         }
8580         set_lockup_detected_for_all_cpus(h, 0);
8581
8582         rc = hpsa_pci_init(h);
8583         if (rc)
8584                 goto clean2;    /* lu, aer/h */
8585
8586         /* relies on h-> settings made by hpsa_pci_init, including
8587          * interrupt_mode h->intr */
8588         rc = hpsa_scsi_host_alloc(h);
8589         if (rc)
8590                 goto clean2_5;  /* pci, lu, aer/h */
8591
8592         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8593         h->ctlr = number_of_controllers;
8594         number_of_controllers++;
8595
8596         /* configure PCI DMA stuff */
8597         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8598         if (rc == 0) {
8599                 dac = 1;
8600         } else {
8601                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8602                 if (rc == 0) {
8603                         dac = 0;
8604                 } else {
8605                         dev_err(&pdev->dev, "no suitable DMA available\n");
8606                         goto clean3;    /* shost, pci, lu, aer/h */
8607                 }
8608         }
8609
8610         /* make sure the board interrupts are off */
8611         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8612
8613         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8614         if (rc)
8615                 goto clean3;    /* shost, pci, lu, aer/h */
8616         rc = hpsa_alloc_cmd_pool(h);
8617         if (rc)
8618                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8619         rc = hpsa_alloc_sg_chain_blocks(h);
8620         if (rc)
8621                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8622         init_waitqueue_head(&h->scan_wait_queue);
8623         init_waitqueue_head(&h->event_sync_wait_queue);
8624         mutex_init(&h->reset_mutex);
8625         h->scan_finished = 1; /* no scan currently in progress */
8626         h->scan_waiting = 0;
8627
8628         pci_set_drvdata(pdev, h);
8629         h->ndevices = 0;
8630
8631         spin_lock_init(&h->devlock);
8632         rc = hpsa_put_ctlr_into_performant_mode(h);
8633         if (rc)
8634                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8635
8636         /* create the resubmit workqueue */
8637         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8638         if (!h->rescan_ctlr_wq) {
8639                 rc = -ENOMEM;
8640                 goto clean7;
8641         }
8642
8643         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8644         if (!h->resubmit_wq) {
8645                 rc = -ENOMEM;
8646                 goto clean7;    /* aer/h */
8647         }
8648
8649         /*
8650          * At this point, the controller is ready to take commands.
8651          * Now, if reset_devices and the hard reset didn't work, try
8652          * the soft reset and see if that works.
8653          */
8654         if (try_soft_reset) {
8655
8656                 /* This is kind of gross.  We may or may not get a completion
8657                  * from the soft reset command, and if we do, then the value
8658                  * from the fifo may or may not be valid.  So, we wait 10 secs
8659                  * after the reset throwing away any completions we get during
8660                  * that time.  Unregister the interrupt handler and register
8661                  * fake ones to scoop up any residual completions.
8662                  */
8663                 spin_lock_irqsave(&h->lock, flags);
8664                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8665                 spin_unlock_irqrestore(&h->lock, flags);
8666                 hpsa_free_irqs(h);
8667                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8668                                         hpsa_intx_discard_completions);
8669                 if (rc) {
8670                         dev_warn(&h->pdev->dev,
8671                                 "Failed to request_irq after soft reset.\n");
8672                         /*
8673                          * cannot goto clean7 or free_irqs will be called
8674                          * again. Instead, do its work
8675                          */
8676                         hpsa_free_performant_mode(h);   /* clean7 */
8677                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8678                         hpsa_free_cmd_pool(h);          /* clean5 */
8679                         /*
8680                          * skip hpsa_free_irqs(h) clean4 since that
8681                          * was just called before request_irqs failed
8682                          */
8683                         goto clean3;
8684                 }
8685
8686                 rc = hpsa_kdump_soft_reset(h);
8687                 if (rc)
8688                         /* Neither hard nor soft reset worked, we're hosed. */
8689                         goto clean7;
8690
8691                 dev_info(&h->pdev->dev, "Board READY.\n");
8692                 dev_info(&h->pdev->dev,
8693                         "Waiting for stale completions to drain.\n");
8694                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8695                 msleep(10000);
8696                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8697
8698                 rc = controller_reset_failed(h->cfgtable);
8699                 if (rc)
8700                         dev_info(&h->pdev->dev,
8701                                 "Soft reset appears to have failed.\n");
8702
8703                 /* since the controller's reset, we have to go back and re-init
8704                  * everything.  Easiest to just forget what we've done and do it
8705                  * all over again.
8706                  */
8707                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8708                 try_soft_reset = 0;
8709                 if (rc)
8710                         /* don't goto clean, we already unallocated */
8711                         return -ENODEV;
8712
8713                 goto reinit_after_soft_reset;
8714         }
8715
8716         /* Enable Accelerated IO path at driver layer */
8717         h->acciopath_status = 1;
8718         /* Disable discovery polling.*/
8719         h->discovery_polling = 0;
8720
8721
8722         /* Turn the interrupts on so we can service requests */
8723         h->access.set_intr_mask(h, HPSA_INTR_ON);
8724
8725         hpsa_hba_inquiry(h);
8726
8727         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8728         if (!h->lastlogicals)
8729                 dev_info(&h->pdev->dev,
8730                         "Can't track change to report lun data\n");
8731
8732         /* hook into SCSI subsystem */
8733         rc = hpsa_scsi_add_host(h);
8734         if (rc)
8735                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8736
8737         /* Monitor the controller for firmware lockups */
8738         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8739         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8740         schedule_delayed_work(&h->monitor_ctlr_work,
8741                                 h->heartbeat_sample_interval);
8742         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8743         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8744                                 h->heartbeat_sample_interval);
8745         INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8746         schedule_delayed_work(&h->event_monitor_work,
8747                                 HPSA_EVENT_MONITOR_INTERVAL);
8748         return 0;
8749
8750 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8751         hpsa_free_performant_mode(h);
8752         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8753 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8754         hpsa_free_sg_chain_blocks(h);
8755 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8756         hpsa_free_cmd_pool(h);
8757 clean4: /* irq, shost, pci, lu, aer/h */
8758         hpsa_free_irqs(h);
8759 clean3: /* shost, pci, lu, aer/h */
8760         scsi_host_put(h->scsi_host);
8761         h->scsi_host = NULL;
8762 clean2_5: /* pci, lu, aer/h */
8763         hpsa_free_pci_init(h);
8764 clean2: /* lu, aer/h */
8765         if (h->lockup_detected) {
8766                 free_percpu(h->lockup_detected);
8767                 h->lockup_detected = NULL;
8768         }
8769 clean1: /* wq/aer/h */
8770         if (h->resubmit_wq) {
8771                 destroy_workqueue(h->resubmit_wq);
8772                 h->resubmit_wq = NULL;
8773         }
8774         if (h->rescan_ctlr_wq) {
8775                 destroy_workqueue(h->rescan_ctlr_wq);
8776                 h->rescan_ctlr_wq = NULL;
8777         }
8778         kfree(h);
8779         return rc;
8780 }
8781
8782 static void hpsa_flush_cache(struct ctlr_info *h)
8783 {
8784         char *flush_buf;
8785         struct CommandList *c;
8786         int rc;
8787
8788         if (unlikely(lockup_detected(h)))
8789                 return;
8790         flush_buf = kzalloc(4, GFP_KERNEL);
8791         if (!flush_buf)
8792                 return;
8793
8794         c = cmd_alloc(h);
8795
8796         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8797                 RAID_CTLR_LUNID, TYPE_CMD)) {
8798                 goto out;
8799         }
8800         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8801                                         PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8802         if (rc)
8803                 goto out;
8804         if (c->err_info->CommandStatus != 0)
8805 out:
8806                 dev_warn(&h->pdev->dev,
8807                         "error flushing cache on controller\n");
8808         cmd_free(h, c);
8809         kfree(flush_buf);
8810 }
8811
8812 /* Make controller gather fresh report lun data each time we
8813  * send down a report luns request
8814  */
8815 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8816 {
8817         u32 *options;
8818         struct CommandList *c;
8819         int rc;
8820
8821         /* Don't bother trying to set diag options if locked up */
8822         if (unlikely(h->lockup_detected))
8823                 return;
8824
8825         options = kzalloc(sizeof(*options), GFP_KERNEL);
8826         if (!options)
8827                 return;
8828
8829         c = cmd_alloc(h);
8830
8831         /* first, get the current diag options settings */
8832         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8833                 RAID_CTLR_LUNID, TYPE_CMD))
8834                 goto errout;
8835
8836         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8837                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8838         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8839                 goto errout;
8840
8841         /* Now, set the bit for disabling the RLD caching */
8842         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8843
8844         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8845                 RAID_CTLR_LUNID, TYPE_CMD))
8846                 goto errout;
8847
8848         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8849                 PCI_DMA_TODEVICE, NO_TIMEOUT);
8850         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8851                 goto errout;
8852
8853         /* Now verify that it got set: */
8854         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8855                 RAID_CTLR_LUNID, TYPE_CMD))
8856                 goto errout;
8857
8858         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8859                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8860         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8861                 goto errout;
8862
8863         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8864                 goto out;
8865
8866 errout:
8867         dev_err(&h->pdev->dev,
8868                         "Error: failed to disable report lun data caching.\n");
8869 out:
8870         cmd_free(h, c);
8871         kfree(options);
8872 }
8873
8874 static void __hpsa_shutdown(struct pci_dev *pdev)
8875 {
8876         struct ctlr_info *h;
8877
8878         h = pci_get_drvdata(pdev);
8879         /* Turn board interrupts off  and send the flush cache command
8880          * sendcmd will turn off interrupt, and send the flush...
8881          * To write all data in the battery backed cache to disks
8882          */
8883         hpsa_flush_cache(h);
8884         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8885         hpsa_free_irqs(h);                      /* init_one 4 */
8886         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8887 }
8888
8889 static void hpsa_shutdown(struct pci_dev *pdev)
8890 {
8891         __hpsa_shutdown(pdev);
8892         pci_disable_device(pdev);
8893 }
8894
8895 static void hpsa_free_device_info(struct ctlr_info *h)
8896 {
8897         int i;
8898
8899         for (i = 0; i < h->ndevices; i++) {
8900                 kfree(h->dev[i]);
8901                 h->dev[i] = NULL;
8902         }
8903 }
8904
8905 static void hpsa_remove_one(struct pci_dev *pdev)
8906 {
8907         struct ctlr_info *h;
8908         unsigned long flags;
8909
8910         if (pci_get_drvdata(pdev) == NULL) {
8911                 dev_err(&pdev->dev, "unable to remove device\n");
8912                 return;
8913         }
8914         h = pci_get_drvdata(pdev);
8915
8916         /* Get rid of any controller monitoring work items */
8917         spin_lock_irqsave(&h->lock, flags);
8918         h->remove_in_progress = 1;
8919         spin_unlock_irqrestore(&h->lock, flags);
8920         cancel_delayed_work_sync(&h->monitor_ctlr_work);
8921         cancel_delayed_work_sync(&h->rescan_ctlr_work);
8922         cancel_delayed_work_sync(&h->event_monitor_work);
8923         destroy_workqueue(h->rescan_ctlr_wq);
8924         destroy_workqueue(h->resubmit_wq);
8925
8926         hpsa_delete_sas_host(h);
8927
8928         /*
8929          * Call before disabling interrupts.
8930          * scsi_remove_host can trigger I/O operations especially
8931          * when multipath is enabled. There can be SYNCHRONIZE CACHE
8932          * operations which cannot complete and will hang the system.
8933          */
8934         if (h->scsi_host)
8935                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
8936         /* includes hpsa_free_irqs - init_one 4 */
8937         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8938         __hpsa_shutdown(pdev);
8939
8940         hpsa_free_device_info(h);               /* scan */
8941
8942         kfree(h->hba_inquiry_data);                     /* init_one 10 */
8943         h->hba_inquiry_data = NULL;                     /* init_one 10 */
8944         hpsa_free_ioaccel2_sg_chain_blocks(h);
8945         hpsa_free_performant_mode(h);                   /* init_one 7 */
8946         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8947         hpsa_free_cmd_pool(h);                          /* init_one 5 */
8948         kfree(h->lastlogicals);
8949
8950         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8951
8952         scsi_host_put(h->scsi_host);                    /* init_one 3 */
8953         h->scsi_host = NULL;                            /* init_one 3 */
8954
8955         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8956         hpsa_free_pci_init(h);                          /* init_one 2.5 */
8957
8958         free_percpu(h->lockup_detected);                /* init_one 2 */
8959         h->lockup_detected = NULL;                      /* init_one 2 */
8960         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
8961
8962         hpda_free_ctlr_info(h);                         /* init_one 1 */
8963 }
8964
8965 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8966         __attribute__((unused)) pm_message_t state)
8967 {
8968         return -ENOSYS;
8969 }
8970
8971 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8972 {
8973         return -ENOSYS;
8974 }
8975
8976 static struct pci_driver hpsa_pci_driver = {
8977         .name = HPSA,
8978         .probe = hpsa_init_one,
8979         .remove = hpsa_remove_one,
8980         .id_table = hpsa_pci_device_id, /* id_table */
8981         .shutdown = hpsa_shutdown,
8982         .suspend = hpsa_suspend,
8983         .resume = hpsa_resume,
8984 };
8985
8986 /* Fill in bucket_map[], given nsgs (the max number of
8987  * scatter gather elements supported) and bucket[],
8988  * which is an array of 8 integers.  The bucket[] array
8989  * contains 8 different DMA transfer sizes (in 16
8990  * byte increments) which the controller uses to fetch
8991  * commands.  This function fills in bucket_map[], which
8992  * maps a given number of scatter gather elements to one of
8993  * the 8 DMA transfer sizes.  The point of it is to allow the
8994  * controller to only do as much DMA as needed to fetch the
8995  * command, with the DMA transfer size encoded in the lower
8996  * bits of the command address.
8997  */
8998 static void  calc_bucket_map(int bucket[], int num_buckets,
8999         int nsgs, int min_blocks, u32 *bucket_map)
9000 {
9001         int i, j, b, size;
9002
9003         /* Note, bucket_map must have nsgs+1 entries. */
9004         for (i = 0; i <= nsgs; i++) {
9005                 /* Compute size of a command with i SG entries */
9006                 size = i + min_blocks;
9007                 b = num_buckets; /* Assume the biggest bucket */
9008                 /* Find the bucket that is just big enough */
9009                 for (j = 0; j < num_buckets; j++) {
9010                         if (bucket[j] >= size) {
9011                                 b = j;
9012                                 break;
9013                         }
9014                 }
9015                 /* for a command with i SG entries, use bucket b. */
9016                 bucket_map[i] = b;
9017         }
9018 }
9019
9020 /*
9021  * return -ENODEV on err, 0 on success (or no action)
9022  * allocates numerous items that must be freed later
9023  */
9024 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9025 {
9026         int i;
9027         unsigned long register_value;
9028         unsigned long transMethod = CFGTBL_Trans_Performant |
9029                         (trans_support & CFGTBL_Trans_use_short_tags) |
9030                                 CFGTBL_Trans_enable_directed_msix |
9031                         (trans_support & (CFGTBL_Trans_io_accel1 |
9032                                 CFGTBL_Trans_io_accel2));
9033         struct access_method access = SA5_performant_access;
9034
9035         /* This is a bit complicated.  There are 8 registers on
9036          * the controller which we write to to tell it 8 different
9037          * sizes of commands which there may be.  It's a way of
9038          * reducing the DMA done to fetch each command.  Encoded into
9039          * each command's tag are 3 bits which communicate to the controller
9040          * which of the eight sizes that command fits within.  The size of
9041          * each command depends on how many scatter gather entries there are.
9042          * Each SG entry requires 16 bytes.  The eight registers are programmed
9043          * with the number of 16-byte blocks a command of that size requires.
9044          * The smallest command possible requires 5 such 16 byte blocks.
9045          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9046          * blocks.  Note, this only extends to the SG entries contained
9047          * within the command block, and does not extend to chained blocks
9048          * of SG elements.   bft[] contains the eight values we write to
9049          * the registers.  They are not evenly distributed, but have more
9050          * sizes for small commands, and fewer sizes for larger commands.
9051          */
9052         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9053 #define MIN_IOACCEL2_BFT_ENTRY 5
9054 #define HPSA_IOACCEL2_HEADER_SZ 4
9055         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9056                         13, 14, 15, 16, 17, 18, 19,
9057                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9058         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9059         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9060         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9061                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9062         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9063         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9064         /*  5 = 1 s/g entry or 4k
9065          *  6 = 2 s/g entry or 8k
9066          *  8 = 4 s/g entry or 16k
9067          * 10 = 6 s/g entry or 24k
9068          */
9069
9070         /* If the controller supports either ioaccel method then
9071          * we can also use the RAID stack submit path that does not
9072          * perform the superfluous readl() after each command submission.
9073          */
9074         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9075                 access = SA5_performant_access_no_read;
9076
9077         /* Controller spec: zero out this buffer. */
9078         for (i = 0; i < h->nreply_queues; i++)
9079                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9080
9081         bft[7] = SG_ENTRIES_IN_CMD + 4;
9082         calc_bucket_map(bft, ARRAY_SIZE(bft),
9083                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9084         for (i = 0; i < 8; i++)
9085                 writel(bft[i], &h->transtable->BlockFetch[i]);
9086
9087         /* size of controller ring buffer */
9088         writel(h->max_commands, &h->transtable->RepQSize);
9089         writel(h->nreply_queues, &h->transtable->RepQCount);
9090         writel(0, &h->transtable->RepQCtrAddrLow32);
9091         writel(0, &h->transtable->RepQCtrAddrHigh32);
9092
9093         for (i = 0; i < h->nreply_queues; i++) {
9094                 writel(0, &h->transtable->RepQAddr[i].upper);
9095                 writel(h->reply_queue[i].busaddr,
9096                         &h->transtable->RepQAddr[i].lower);
9097         }
9098
9099         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9100         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9101         /*
9102          * enable outbound interrupt coalescing in accelerator mode;
9103          */
9104         if (trans_support & CFGTBL_Trans_io_accel1) {
9105                 access = SA5_ioaccel_mode1_access;
9106                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9107                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9108         } else
9109                 if (trans_support & CFGTBL_Trans_io_accel2)
9110                         access = SA5_ioaccel_mode2_access;
9111         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9112         if (hpsa_wait_for_mode_change_ack(h)) {
9113                 dev_err(&h->pdev->dev,
9114                         "performant mode problem - doorbell timeout\n");
9115                 return -ENODEV;
9116         }
9117         register_value = readl(&(h->cfgtable->TransportActive));
9118         if (!(register_value & CFGTBL_Trans_Performant)) {
9119                 dev_err(&h->pdev->dev,
9120                         "performant mode problem - transport not active\n");
9121                 return -ENODEV;
9122         }
9123         /* Change the access methods to the performant access methods */
9124         h->access = access;
9125         h->transMethod = transMethod;
9126
9127         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9128                 (trans_support & CFGTBL_Trans_io_accel2)))
9129                 return 0;
9130
9131         if (trans_support & CFGTBL_Trans_io_accel1) {
9132                 /* Set up I/O accelerator mode */
9133                 for (i = 0; i < h->nreply_queues; i++) {
9134                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9135                         h->reply_queue[i].current_entry =
9136                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9137                 }
9138                 bft[7] = h->ioaccel_maxsg + 8;
9139                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9140                                 h->ioaccel1_blockFetchTable);
9141
9142                 /* initialize all reply queue entries to unused */
9143                 for (i = 0; i < h->nreply_queues; i++)
9144                         memset(h->reply_queue[i].head,
9145                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9146                                 h->reply_queue_size);
9147
9148                 /* set all the constant fields in the accelerator command
9149                  * frames once at init time to save CPU cycles later.
9150                  */
9151                 for (i = 0; i < h->nr_cmds; i++) {
9152                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9153
9154                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9155                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9156                                         (i * sizeof(struct ErrorInfo)));
9157                         cp->err_info_len = sizeof(struct ErrorInfo);
9158                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9159                         cp->host_context_flags =
9160                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9161                         cp->timeout_sec = 0;
9162                         cp->ReplyQueue = 0;
9163                         cp->tag =
9164                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9165                         cp->host_addr =
9166                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9167                                         (i * sizeof(struct io_accel1_cmd)));
9168                 }
9169         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9170                 u64 cfg_offset, cfg_base_addr_index;
9171                 u32 bft2_offset, cfg_base_addr;
9172                 int rc;
9173
9174                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9175                         &cfg_base_addr_index, &cfg_offset);
9176                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9177                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9178                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9179                                 4, h->ioaccel2_blockFetchTable);
9180                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9181                 BUILD_BUG_ON(offsetof(struct CfgTable,
9182                                 io_accel_request_size_offset) != 0xb8);
9183                 h->ioaccel2_bft2_regs =
9184                         remap_pci_mem(pci_resource_start(h->pdev,
9185                                         cfg_base_addr_index) +
9186                                         cfg_offset + bft2_offset,
9187                                         ARRAY_SIZE(bft2) *
9188                                         sizeof(*h->ioaccel2_bft2_regs));
9189                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9190                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9191         }
9192         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9193         if (hpsa_wait_for_mode_change_ack(h)) {
9194                 dev_err(&h->pdev->dev,
9195                         "performant mode problem - enabling ioaccel mode\n");
9196                 return -ENODEV;
9197         }
9198         return 0;
9199 }
9200
9201 /* Free ioaccel1 mode command blocks and block fetch table */
9202 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9203 {
9204         if (h->ioaccel_cmd_pool) {
9205                 pci_free_consistent(h->pdev,
9206                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9207                         h->ioaccel_cmd_pool,
9208                         h->ioaccel_cmd_pool_dhandle);
9209                 h->ioaccel_cmd_pool = NULL;
9210                 h->ioaccel_cmd_pool_dhandle = 0;
9211         }
9212         kfree(h->ioaccel1_blockFetchTable);
9213         h->ioaccel1_blockFetchTable = NULL;
9214 }
9215
9216 /* Allocate ioaccel1 mode command blocks and block fetch table */
9217 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9218 {
9219         h->ioaccel_maxsg =
9220                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9221         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9222                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9223
9224         /* Command structures must be aligned on a 128-byte boundary
9225          * because the 7 lower bits of the address are used by the
9226          * hardware.
9227          */
9228         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9229                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9230         h->ioaccel_cmd_pool =
9231                 pci_alloc_consistent(h->pdev,
9232                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9233                         &(h->ioaccel_cmd_pool_dhandle));
9234
9235         h->ioaccel1_blockFetchTable =
9236                 kmalloc(((h->ioaccel_maxsg + 1) *
9237                                 sizeof(u32)), GFP_KERNEL);
9238
9239         if ((h->ioaccel_cmd_pool == NULL) ||
9240                 (h->ioaccel1_blockFetchTable == NULL))
9241                 goto clean_up;
9242
9243         memset(h->ioaccel_cmd_pool, 0,
9244                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9245         return 0;
9246
9247 clean_up:
9248         hpsa_free_ioaccel1_cmd_and_bft(h);
9249         return -ENOMEM;
9250 }
9251
9252 /* Free ioaccel2 mode command blocks and block fetch table */
9253 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9254 {
9255         hpsa_free_ioaccel2_sg_chain_blocks(h);
9256
9257         if (h->ioaccel2_cmd_pool) {
9258                 pci_free_consistent(h->pdev,
9259                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9260                         h->ioaccel2_cmd_pool,
9261                         h->ioaccel2_cmd_pool_dhandle);
9262                 h->ioaccel2_cmd_pool = NULL;
9263                 h->ioaccel2_cmd_pool_dhandle = 0;
9264         }
9265         kfree(h->ioaccel2_blockFetchTable);
9266         h->ioaccel2_blockFetchTable = NULL;
9267 }
9268
9269 /* Allocate ioaccel2 mode command blocks and block fetch table */
9270 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9271 {
9272         int rc;
9273
9274         /* Allocate ioaccel2 mode command blocks and block fetch table */
9275
9276         h->ioaccel_maxsg =
9277                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9278         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9279                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9280
9281         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9282                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9283         h->ioaccel2_cmd_pool =
9284                 pci_alloc_consistent(h->pdev,
9285                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9286                         &(h->ioaccel2_cmd_pool_dhandle));
9287
9288         h->ioaccel2_blockFetchTable =
9289                 kmalloc(((h->ioaccel_maxsg + 1) *
9290                                 sizeof(u32)), GFP_KERNEL);
9291
9292         if ((h->ioaccel2_cmd_pool == NULL) ||
9293                 (h->ioaccel2_blockFetchTable == NULL)) {
9294                 rc = -ENOMEM;
9295                 goto clean_up;
9296         }
9297
9298         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9299         if (rc)
9300                 goto clean_up;
9301
9302         memset(h->ioaccel2_cmd_pool, 0,
9303                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9304         return 0;
9305
9306 clean_up:
9307         hpsa_free_ioaccel2_cmd_and_bft(h);
9308         return rc;
9309 }
9310
9311 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9312 static void hpsa_free_performant_mode(struct ctlr_info *h)
9313 {
9314         kfree(h->blockFetchTable);
9315         h->blockFetchTable = NULL;
9316         hpsa_free_reply_queues(h);
9317         hpsa_free_ioaccel1_cmd_and_bft(h);
9318         hpsa_free_ioaccel2_cmd_and_bft(h);
9319 }
9320
9321 /* return -ENODEV on error, 0 on success (or no action)
9322  * allocates numerous items that must be freed later
9323  */
9324 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9325 {
9326         u32 trans_support;
9327         unsigned long transMethod = CFGTBL_Trans_Performant |
9328                                         CFGTBL_Trans_use_short_tags;
9329         int i, rc;
9330
9331         if (hpsa_simple_mode)
9332                 return 0;
9333
9334         trans_support = readl(&(h->cfgtable->TransportSupport));
9335         if (!(trans_support & PERFORMANT_MODE))
9336                 return 0;
9337
9338         /* Check for I/O accelerator mode support */
9339         if (trans_support & CFGTBL_Trans_io_accel1) {
9340                 transMethod |= CFGTBL_Trans_io_accel1 |
9341                                 CFGTBL_Trans_enable_directed_msix;
9342                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9343                 if (rc)
9344                         return rc;
9345         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9346                 transMethod |= CFGTBL_Trans_io_accel2 |
9347                                 CFGTBL_Trans_enable_directed_msix;
9348                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9349                 if (rc)
9350                         return rc;
9351         }
9352
9353         h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9354         hpsa_get_max_perf_mode_cmds(h);
9355         /* Performant mode ring buffer and supporting data structures */
9356         h->reply_queue_size = h->max_commands * sizeof(u64);
9357
9358         for (i = 0; i < h->nreply_queues; i++) {
9359                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9360                                                 h->reply_queue_size,
9361                                                 &(h->reply_queue[i].busaddr));
9362                 if (!h->reply_queue[i].head) {
9363                         rc = -ENOMEM;
9364                         goto clean1;    /* rq, ioaccel */
9365                 }
9366                 h->reply_queue[i].size = h->max_commands;
9367                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9368                 h->reply_queue[i].current_entry = 0;
9369         }
9370
9371         /* Need a block fetch table for performant mode */
9372         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9373                                 sizeof(u32)), GFP_KERNEL);
9374         if (!h->blockFetchTable) {
9375                 rc = -ENOMEM;
9376                 goto clean1;    /* rq, ioaccel */
9377         }
9378
9379         rc = hpsa_enter_performant_mode(h, trans_support);
9380         if (rc)
9381                 goto clean2;    /* bft, rq, ioaccel */
9382         return 0;
9383
9384 clean2: /* bft, rq, ioaccel */
9385         kfree(h->blockFetchTable);
9386         h->blockFetchTable = NULL;
9387 clean1: /* rq, ioaccel */
9388         hpsa_free_reply_queues(h);
9389         hpsa_free_ioaccel1_cmd_and_bft(h);
9390         hpsa_free_ioaccel2_cmd_and_bft(h);
9391         return rc;
9392 }
9393
9394 static int is_accelerated_cmd(struct CommandList *c)
9395 {
9396         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9397 }
9398
9399 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9400 {
9401         struct CommandList *c = NULL;
9402         int i, accel_cmds_out;
9403         int refcount;
9404
9405         do { /* wait for all outstanding ioaccel commands to drain out */
9406                 accel_cmds_out = 0;
9407                 for (i = 0; i < h->nr_cmds; i++) {
9408                         c = h->cmd_pool + i;
9409                         refcount = atomic_inc_return(&c->refcount);
9410                         if (refcount > 1) /* Command is allocated */
9411                                 accel_cmds_out += is_accelerated_cmd(c);
9412                         cmd_free(h, c);
9413                 }
9414                 if (accel_cmds_out <= 0)
9415                         break;
9416                 msleep(100);
9417         } while (1);
9418 }
9419
9420 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9421                                 struct hpsa_sas_port *hpsa_sas_port)
9422 {
9423         struct hpsa_sas_phy *hpsa_sas_phy;
9424         struct sas_phy *phy;
9425
9426         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9427         if (!hpsa_sas_phy)
9428                 return NULL;
9429
9430         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9431                 hpsa_sas_port->next_phy_index);
9432         if (!phy) {
9433                 kfree(hpsa_sas_phy);
9434                 return NULL;
9435         }
9436
9437         hpsa_sas_port->next_phy_index++;
9438         hpsa_sas_phy->phy = phy;
9439         hpsa_sas_phy->parent_port = hpsa_sas_port;
9440
9441         return hpsa_sas_phy;
9442 }
9443
9444 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9445 {
9446         struct sas_phy *phy = hpsa_sas_phy->phy;
9447
9448         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9449         if (hpsa_sas_phy->added_to_port)
9450                 list_del(&hpsa_sas_phy->phy_list_entry);
9451         sas_phy_delete(phy);
9452         kfree(hpsa_sas_phy);
9453 }
9454
9455 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9456 {
9457         int rc;
9458         struct hpsa_sas_port *hpsa_sas_port;
9459         struct sas_phy *phy;
9460         struct sas_identify *identify;
9461
9462         hpsa_sas_port = hpsa_sas_phy->parent_port;
9463         phy = hpsa_sas_phy->phy;
9464
9465         identify = &phy->identify;
9466         memset(identify, 0, sizeof(*identify));
9467         identify->sas_address = hpsa_sas_port->sas_address;
9468         identify->device_type = SAS_END_DEVICE;
9469         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9470         identify->target_port_protocols = SAS_PROTOCOL_STP;
9471         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9472         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9473         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9474         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9475         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9476
9477         rc = sas_phy_add(hpsa_sas_phy->phy);
9478         if (rc)
9479                 return rc;
9480
9481         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9482         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9483                         &hpsa_sas_port->phy_list_head);
9484         hpsa_sas_phy->added_to_port = true;
9485
9486         return 0;
9487 }
9488
9489 static int
9490         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9491                                 struct sas_rphy *rphy)
9492 {
9493         struct sas_identify *identify;
9494
9495         identify = &rphy->identify;
9496         identify->sas_address = hpsa_sas_port->sas_address;
9497         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9498         identify->target_port_protocols = SAS_PROTOCOL_STP;
9499
9500         return sas_rphy_add(rphy);
9501 }
9502
9503 static struct hpsa_sas_port
9504         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9505                                 u64 sas_address)
9506 {
9507         int rc;
9508         struct hpsa_sas_port *hpsa_sas_port;
9509         struct sas_port *port;
9510
9511         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9512         if (!hpsa_sas_port)
9513                 return NULL;
9514
9515         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9516         hpsa_sas_port->parent_node = hpsa_sas_node;
9517
9518         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9519         if (!port)
9520                 goto free_hpsa_port;
9521
9522         rc = sas_port_add(port);
9523         if (rc)
9524                 goto free_sas_port;
9525
9526         hpsa_sas_port->port = port;
9527         hpsa_sas_port->sas_address = sas_address;
9528         list_add_tail(&hpsa_sas_port->port_list_entry,
9529                         &hpsa_sas_node->port_list_head);
9530
9531         return hpsa_sas_port;
9532
9533 free_sas_port:
9534         sas_port_free(port);
9535 free_hpsa_port:
9536         kfree(hpsa_sas_port);
9537
9538         return NULL;
9539 }
9540
9541 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9542 {
9543         struct hpsa_sas_phy *hpsa_sas_phy;
9544         struct hpsa_sas_phy *next;
9545
9546         list_for_each_entry_safe(hpsa_sas_phy, next,
9547                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9548                 hpsa_free_sas_phy(hpsa_sas_phy);
9549
9550         sas_port_delete(hpsa_sas_port->port);
9551         list_del(&hpsa_sas_port->port_list_entry);
9552         kfree(hpsa_sas_port);
9553 }
9554
9555 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9556 {
9557         struct hpsa_sas_node *hpsa_sas_node;
9558
9559         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9560         if (hpsa_sas_node) {
9561                 hpsa_sas_node->parent_dev = parent_dev;
9562                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9563         }
9564
9565         return hpsa_sas_node;
9566 }
9567
9568 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9569 {
9570         struct hpsa_sas_port *hpsa_sas_port;
9571         struct hpsa_sas_port *next;
9572
9573         if (!hpsa_sas_node)
9574                 return;
9575
9576         list_for_each_entry_safe(hpsa_sas_port, next,
9577                         &hpsa_sas_node->port_list_head, port_list_entry)
9578                 hpsa_free_sas_port(hpsa_sas_port);
9579
9580         kfree(hpsa_sas_node);
9581 }
9582
9583 static struct hpsa_scsi_dev_t
9584         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9585                                         struct sas_rphy *rphy)
9586 {
9587         int i;
9588         struct hpsa_scsi_dev_t *device;
9589
9590         for (i = 0; i < h->ndevices; i++) {
9591                 device = h->dev[i];
9592                 if (!device->sas_port)
9593                         continue;
9594                 if (device->sas_port->rphy == rphy)
9595                         return device;
9596         }
9597
9598         return NULL;
9599 }
9600
9601 static int hpsa_add_sas_host(struct ctlr_info *h)
9602 {
9603         int rc;
9604         struct device *parent_dev;
9605         struct hpsa_sas_node *hpsa_sas_node;
9606         struct hpsa_sas_port *hpsa_sas_port;
9607         struct hpsa_sas_phy *hpsa_sas_phy;
9608
9609         parent_dev = &h->scsi_host->shost_dev;
9610
9611         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9612         if (!hpsa_sas_node)
9613                 return -ENOMEM;
9614
9615         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9616         if (!hpsa_sas_port) {
9617                 rc = -ENODEV;
9618                 goto free_sas_node;
9619         }
9620
9621         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9622         if (!hpsa_sas_phy) {
9623                 rc = -ENODEV;
9624                 goto free_sas_port;
9625         }
9626
9627         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9628         if (rc)
9629                 goto free_sas_phy;
9630
9631         h->sas_host = hpsa_sas_node;
9632
9633         return 0;
9634
9635 free_sas_phy:
9636         hpsa_free_sas_phy(hpsa_sas_phy);
9637 free_sas_port:
9638         hpsa_free_sas_port(hpsa_sas_port);
9639 free_sas_node:
9640         hpsa_free_sas_node(hpsa_sas_node);
9641
9642         return rc;
9643 }
9644
9645 static void hpsa_delete_sas_host(struct ctlr_info *h)
9646 {
9647         hpsa_free_sas_node(h->sas_host);
9648 }
9649
9650 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9651                                 struct hpsa_scsi_dev_t *device)
9652 {
9653         int rc;
9654         struct hpsa_sas_port *hpsa_sas_port;
9655         struct sas_rphy *rphy;
9656
9657         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9658         if (!hpsa_sas_port)
9659                 return -ENOMEM;
9660
9661         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9662         if (!rphy) {
9663                 rc = -ENODEV;
9664                 goto free_sas_port;
9665         }
9666
9667         hpsa_sas_port->rphy = rphy;
9668         device->sas_port = hpsa_sas_port;
9669
9670         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9671         if (rc)
9672                 goto free_sas_port;
9673
9674         return 0;
9675
9676 free_sas_port:
9677         hpsa_free_sas_port(hpsa_sas_port);
9678         device->sas_port = NULL;
9679
9680         return rc;
9681 }
9682
9683 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9684 {
9685         if (device->sas_port) {
9686                 hpsa_free_sas_port(device->sas_port);
9687                 device->sas_port = NULL;
9688         }
9689 }
9690
9691 static int
9692 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9693 {
9694         return 0;
9695 }
9696
9697 static int
9698 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9699 {
9700         *identifier = rphy->identify.sas_address;
9701         return 0;
9702 }
9703
9704 static int
9705 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9706 {
9707         return -ENXIO;
9708 }
9709
9710 static int
9711 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9712 {
9713         return 0;
9714 }
9715
9716 static int
9717 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9718 {
9719         return 0;
9720 }
9721
9722 static int
9723 hpsa_sas_phy_setup(struct sas_phy *phy)
9724 {
9725         return 0;
9726 }
9727
9728 static void
9729 hpsa_sas_phy_release(struct sas_phy *phy)
9730 {
9731 }
9732
9733 static int
9734 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9735 {
9736         return -EINVAL;
9737 }
9738
9739 static struct sas_function_template hpsa_sas_transport_functions = {
9740         .get_linkerrors = hpsa_sas_get_linkerrors,
9741         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9742         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9743         .phy_reset = hpsa_sas_phy_reset,
9744         .phy_enable = hpsa_sas_phy_enable,
9745         .phy_setup = hpsa_sas_phy_setup,
9746         .phy_release = hpsa_sas_phy_release,
9747         .set_phy_speed = hpsa_sas_phy_speed,
9748 };
9749
9750 /*
9751  *  This is it.  Register the PCI driver information for the cards we control
9752  *  the OS will call our registered routines when it finds one of our cards.
9753  */
9754 static int __init hpsa_init(void)
9755 {
9756         int rc;
9757
9758         hpsa_sas_transport_template =
9759                 sas_attach_transport(&hpsa_sas_transport_functions);
9760         if (!hpsa_sas_transport_template)
9761                 return -ENODEV;
9762
9763         rc = pci_register_driver(&hpsa_pci_driver);
9764
9765         if (rc)
9766                 sas_release_transport(hpsa_sas_transport_template);
9767
9768         return rc;
9769 }
9770
9771 static void __exit hpsa_cleanup(void)
9772 {
9773         pci_unregister_driver(&hpsa_pci_driver);
9774         sas_release_transport(hpsa_sas_transport_template);
9775 }
9776
9777 static void __attribute__((unused)) verify_offsets(void)
9778 {
9779 #define VERIFY_OFFSET(member, offset) \
9780         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9781
9782         VERIFY_OFFSET(structure_size, 0);
9783         VERIFY_OFFSET(volume_blk_size, 4);
9784         VERIFY_OFFSET(volume_blk_cnt, 8);
9785         VERIFY_OFFSET(phys_blk_shift, 16);
9786         VERIFY_OFFSET(parity_rotation_shift, 17);
9787         VERIFY_OFFSET(strip_size, 18);
9788         VERIFY_OFFSET(disk_starting_blk, 20);
9789         VERIFY_OFFSET(disk_blk_cnt, 28);
9790         VERIFY_OFFSET(data_disks_per_row, 36);
9791         VERIFY_OFFSET(metadata_disks_per_row, 38);
9792         VERIFY_OFFSET(row_cnt, 40);
9793         VERIFY_OFFSET(layout_map_count, 42);
9794         VERIFY_OFFSET(flags, 44);
9795         VERIFY_OFFSET(dekindex, 46);
9796         /* VERIFY_OFFSET(reserved, 48 */
9797         VERIFY_OFFSET(data, 64);
9798
9799 #undef VERIFY_OFFSET
9800
9801 #define VERIFY_OFFSET(member, offset) \
9802         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9803
9804         VERIFY_OFFSET(IU_type, 0);
9805         VERIFY_OFFSET(direction, 1);
9806         VERIFY_OFFSET(reply_queue, 2);
9807         /* VERIFY_OFFSET(reserved1, 3);  */
9808         VERIFY_OFFSET(scsi_nexus, 4);
9809         VERIFY_OFFSET(Tag, 8);
9810         VERIFY_OFFSET(cdb, 16);
9811         VERIFY_OFFSET(cciss_lun, 32);
9812         VERIFY_OFFSET(data_len, 40);
9813         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9814         VERIFY_OFFSET(sg_count, 45);
9815         /* VERIFY_OFFSET(reserved3 */
9816         VERIFY_OFFSET(err_ptr, 48);
9817         VERIFY_OFFSET(err_len, 56);
9818         /* VERIFY_OFFSET(reserved4  */
9819         VERIFY_OFFSET(sg, 64);
9820
9821 #undef VERIFY_OFFSET
9822
9823 #define VERIFY_OFFSET(member, offset) \
9824         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9825
9826         VERIFY_OFFSET(dev_handle, 0x00);
9827         VERIFY_OFFSET(reserved1, 0x02);
9828         VERIFY_OFFSET(function, 0x03);
9829         VERIFY_OFFSET(reserved2, 0x04);
9830         VERIFY_OFFSET(err_info, 0x0C);
9831         VERIFY_OFFSET(reserved3, 0x10);
9832         VERIFY_OFFSET(err_info_len, 0x12);
9833         VERIFY_OFFSET(reserved4, 0x13);
9834         VERIFY_OFFSET(sgl_offset, 0x14);
9835         VERIFY_OFFSET(reserved5, 0x15);
9836         VERIFY_OFFSET(transfer_len, 0x1C);
9837         VERIFY_OFFSET(reserved6, 0x20);
9838         VERIFY_OFFSET(io_flags, 0x24);
9839         VERIFY_OFFSET(reserved7, 0x26);
9840         VERIFY_OFFSET(LUN, 0x34);
9841         VERIFY_OFFSET(control, 0x3C);
9842         VERIFY_OFFSET(CDB, 0x40);
9843         VERIFY_OFFSET(reserved8, 0x50);
9844         VERIFY_OFFSET(host_context_flags, 0x60);
9845         VERIFY_OFFSET(timeout_sec, 0x62);
9846         VERIFY_OFFSET(ReplyQueue, 0x64);
9847         VERIFY_OFFSET(reserved9, 0x65);
9848         VERIFY_OFFSET(tag, 0x68);
9849         VERIFY_OFFSET(host_addr, 0x70);
9850         VERIFY_OFFSET(CISS_LUN, 0x78);
9851         VERIFY_OFFSET(SG, 0x78 + 8);
9852 #undef VERIFY_OFFSET
9853 }
9854
9855 module_init(hpsa_init);
9856 module_exit(hpsa_cleanup);