Manual merge with Linus.
[sfrench/cifs-2.6.git] / drivers / scsi / aacraid / commsup.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  commsup.c
26  *
27  * Abstract: Contain all routines that are required for FSA host/adapter
28  *    communication.
29  *
30  */
31
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <scsi/scsi_host.h>
44 #include <scsi/scsi_device.h>
45 #include <asm/semaphore.h>
46
47 #include "aacraid.h"
48
49 /**
50  *      fib_map_alloc           -       allocate the fib objects
51  *      @dev: Adapter to allocate for
52  *
53  *      Allocate and map the shared PCI space for the FIB blocks used to
54  *      talk to the Adaptec firmware.
55  */
56  
57 static int fib_map_alloc(struct aac_dev *dev)
58 {
59         dprintk((KERN_INFO
60           "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
61           dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
62           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
63         if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
64           * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
65           &dev->hw_fib_pa))==NULL)
66                 return -ENOMEM;
67         return 0;
68 }
69
70 /**
71  *      aac_fib_map_free                -       free the fib objects
72  *      @dev: Adapter to free
73  *
74  *      Free the PCI mappings and the memory allocated for FIB blocks
75  *      on this adapter.
76  */
77
78 void aac_fib_map_free(struct aac_dev *dev)
79 {
80         pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
81 }
82
83 /**
84  *      aac_fib_setup   -       setup the fibs
85  *      @dev: Adapter to set up
86  *
87  *      Allocate the PCI space for the fibs, map it and then intialise the
88  *      fib area, the unmapped fib data and also the free list
89  */
90
91 int aac_fib_setup(struct aac_dev * dev)
92 {
93         struct fib *fibptr;
94         struct hw_fib *hw_fib_va;
95         dma_addr_t hw_fib_pa;
96         int i;
97
98         while (((i = fib_map_alloc(dev)) == -ENOMEM)
99          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
100                 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
101                 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
102         }
103         if (i<0)
104                 return -ENOMEM;
105                 
106         hw_fib_va = dev->hw_fib_va;
107         hw_fib_pa = dev->hw_fib_pa;
108         memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
109         /*
110          *      Initialise the fibs
111          */
112         for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++) 
113         {
114                 fibptr->dev = dev;
115                 fibptr->hw_fib = hw_fib_va;
116                 fibptr->data = (void *) fibptr->hw_fib->data;
117                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
118                 init_MUTEX_LOCKED(&fibptr->event_wait);
119                 spin_lock_init(&fibptr->event_lock);
120                 hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
121                 hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size);
122                 fibptr->hw_fib_pa = hw_fib_pa;
123                 hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size);
124                 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
125         }
126         /*
127          *      Add the fib chain to the free list
128          */
129         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
130         /*
131          *      Enable this to debug out of queue space
132          */
133         dev->free_fib = &dev->fibs[0];
134         return 0;
135 }
136
137 /**
138  *      aac_fib_alloc   -       allocate a fib
139  *      @dev: Adapter to allocate the fib for
140  *
141  *      Allocate a fib from the adapter fib pool. If the pool is empty we
142  *      return NULL.
143  */
144  
145 struct fib *aac_fib_alloc(struct aac_dev *dev)
146 {
147         struct fib * fibptr;
148         unsigned long flags;
149         spin_lock_irqsave(&dev->fib_lock, flags);
150         fibptr = dev->free_fib; 
151         if(!fibptr){
152                 spin_unlock_irqrestore(&dev->fib_lock, flags);
153                 return fibptr;
154         }
155         dev->free_fib = fibptr->next;
156         spin_unlock_irqrestore(&dev->fib_lock, flags);
157         /*
158          *      Set the proper node type code and node byte size
159          */
160         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
161         fibptr->size = sizeof(struct fib);
162         /*
163          *      Null out fields that depend on being zero at the start of
164          *      each I/O
165          */
166         fibptr->hw_fib->header.XferState = 0;
167         fibptr->callback = NULL;
168         fibptr->callback_data = NULL;
169
170         return fibptr;
171 }
172
173 /**
174  *      aac_fib_free    -       free a fib
175  *      @fibptr: fib to free up
176  *
177  *      Frees up a fib and places it on the appropriate queue
178  *      (either free or timed out)
179  */
180  
181 void aac_fib_free(struct fib *fibptr)
182 {
183         unsigned long flags;
184
185         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
186         if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
187                 aac_config.fib_timeouts++;
188                 fibptr->next = fibptr->dev->timeout_fib;
189                 fibptr->dev->timeout_fib = fibptr;
190         } else {
191                 if (fibptr->hw_fib->header.XferState != 0) {
192                         printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
193                                  (void*)fibptr, 
194                                  le32_to_cpu(fibptr->hw_fib->header.XferState));
195                 }
196                 fibptr->next = fibptr->dev->free_fib;
197                 fibptr->dev->free_fib = fibptr;
198         }       
199         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
200 }
201
202 /**
203  *      aac_fib_init    -       initialise a fib
204  *      @fibptr: The fib to initialize
205  *      
206  *      Set up the generic fib fields ready for use
207  */
208  
209 void aac_fib_init(struct fib *fibptr)
210 {
211         struct hw_fib *hw_fib = fibptr->hw_fib;
212
213         hw_fib->header.StructType = FIB_MAGIC;
214         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
215         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
216         hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
217         hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
218         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
219 }
220
221 /**
222  *      fib_deallocate          -       deallocate a fib
223  *      @fibptr: fib to deallocate
224  *
225  *      Will deallocate and return to the free pool the FIB pointed to by the
226  *      caller.
227  */
228  
229 static void fib_dealloc(struct fib * fibptr)
230 {
231         struct hw_fib *hw_fib = fibptr->hw_fib;
232         if(hw_fib->header.StructType != FIB_MAGIC) 
233                 BUG();
234         hw_fib->header.XferState = 0;        
235 }
236
237 /*
238  *      Commuication primitives define and support the queuing method we use to
239  *      support host to adapter commuication. All queue accesses happen through
240  *      these routines and are the only routines which have a knowledge of the
241  *       how these queues are implemented.
242  */
243  
244 /**
245  *      aac_get_entry           -       get a queue entry
246  *      @dev: Adapter
247  *      @qid: Queue Number
248  *      @entry: Entry return
249  *      @index: Index return
250  *      @nonotify: notification control
251  *
252  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
253  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
254  *      returned.
255  */
256  
257 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
258 {
259         struct aac_queue * q;
260         unsigned long idx;
261
262         /*
263          *      All of the queues wrap when they reach the end, so we check
264          *      to see if they have reached the end and if they have we just
265          *      set the index back to zero. This is a wrap. You could or off
266          *      the high bits in all updates but this is a bit faster I think.
267          */
268
269         q = &dev->queues->queue[qid];
270
271         idx = *index = le32_to_cpu(*(q->headers.producer));
272         /* Interrupt Moderation, only interrupt for first two entries */
273         if (idx != le32_to_cpu(*(q->headers.consumer))) {
274                 if (--idx == 0) {
275                         if (qid == AdapNormCmdQueue)
276                                 idx = ADAP_NORM_CMD_ENTRIES;
277                         else
278                                 idx = ADAP_NORM_RESP_ENTRIES;
279                 }
280                 if (idx != le32_to_cpu(*(q->headers.consumer)))
281                         *nonotify = 1; 
282         }
283
284         if (qid == AdapNormCmdQueue) {
285                 if (*index >= ADAP_NORM_CMD_ENTRIES) 
286                         *index = 0; /* Wrap to front of the Producer Queue. */
287         } else {
288                 if (*index >= ADAP_NORM_RESP_ENTRIES) 
289                         *index = 0; /* Wrap to front of the Producer Queue. */
290         }
291
292         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
293                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
294                                 qid, q->numpending);
295                 return 0;
296         } else {
297                 *entry = q->base + *index;
298                 return 1;
299         }
300 }   
301
302 /**
303  *      aac_queue_get           -       get the next free QE
304  *      @dev: Adapter
305  *      @index: Returned index
306  *      @priority: Priority of fib
307  *      @fib: Fib to associate with the queue entry
308  *      @wait: Wait if queue full
309  *      @fibptr: Driver fib object to go with fib
310  *      @nonotify: Don't notify the adapter
311  *
312  *      Gets the next free QE off the requested priorty adapter command
313  *      queue and associates the Fib with the QE. The QE represented by
314  *      index is ready to insert on the queue when this routine returns
315  *      success.
316  */
317
318 static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
319 {
320         struct aac_entry * entry = NULL;
321         int map = 0;
322             
323         if (qid == AdapNormCmdQueue) {
324                 /*  if no entries wait for some if caller wants to */
325                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) 
326                 {
327                         printk(KERN_ERR "GetEntries failed\n");
328                 }
329                 /*
330                  *      Setup queue entry with a command, status and fib mapped
331                  */
332                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
333                 map = 1;
334         } else {
335                 while(!aac_get_entry(dev, qid, &entry, index, nonotify)) 
336                 {
337                         /* if no entries wait for some if caller wants to */
338                 }
339                 /*
340                  *      Setup queue entry with command, status and fib mapped
341                  */
342                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
343                 entry->addr = hw_fib->header.SenderFibAddress;
344                         /* Restore adapters pointer to the FIB */
345                 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;    /* Let the adapter now where to find its data */
346                 map = 0;
347         }
348         /*
349          *      If MapFib is true than we need to map the Fib and put pointers
350          *      in the queue entry.
351          */
352         if (map)
353                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
354         return 0;
355 }
356
357 /*
358  *      Define the highest level of host to adapter communication routines. 
359  *      These routines will support host to adapter FS commuication. These 
360  *      routines have no knowledge of the commuication method used. This level
361  *      sends and receives FIBs. This level has no knowledge of how these FIBs
362  *      get passed back and forth.
363  */
364
365 /**
366  *      aac_fib_send    -       send a fib to the adapter
367  *      @command: Command to send
368  *      @fibptr: The fib
369  *      @size: Size of fib data area
370  *      @priority: Priority of Fib
371  *      @wait: Async/sync select
372  *      @reply: True if a reply is wanted
373  *      @callback: Called with reply
374  *      @callback_data: Passed to callback
375  *
376  *      Sends the requested FIB to the adapter and optionally will wait for a
377  *      response FIB. If the caller does not wish to wait for a response than
378  *      an event to wait on must be supplied. This event will be set when a
379  *      response FIB is received from the adapter.
380  */
381  
382 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
383                 int priority, int wait, int reply, fib_callback callback,
384                 void *callback_data)
385 {
386         struct aac_dev * dev = fibptr->dev;
387         struct hw_fib * hw_fib = fibptr->hw_fib;
388         struct aac_queue * q;
389         unsigned long flags = 0;
390         unsigned long qflags;
391
392         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
393                 return -EBUSY;
394         /*
395          *      There are 5 cases with the wait and reponse requested flags. 
396          *      The only invalid cases are if the caller requests to wait and
397          *      does not request a response and if the caller does not want a
398          *      response and the Fib is not allocated from pool. If a response
399          *      is not requesed the Fib will just be deallocaed by the DPC
400          *      routine when the response comes back from the adapter. No
401          *      further processing will be done besides deleting the Fib. We 
402          *      will have a debug mode where the adapter can notify the host
403          *      it had a problem and the host can log that fact.
404          */
405         if (wait && !reply) {
406                 return -EINVAL;
407         } else if (!wait && reply) {
408                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
409                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
410         } else if (!wait && !reply) {
411                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
412                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
413         } else if (wait && reply) {
414                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
415                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
416         } 
417         /*
418          *      Map the fib into 32bits by using the fib number
419          */
420
421         hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
422         hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
423         /*
424          *      Set FIB state to indicate where it came from and if we want a
425          *      response from the adapter. Also load the command from the
426          *      caller.
427          *
428          *      Map the hw fib pointer as a 32bit value
429          */
430         hw_fib->header.Command = cpu_to_le16(command);
431         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
432         fibptr->hw_fib->header.Flags = 0;       /* 0 the flags field - internal only*/
433         /*
434          *      Set the size of the Fib we want to send to the adapter
435          */
436         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
437         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
438                 return -EMSGSIZE;
439         }                
440         /*
441          *      Get a queue entry connect the FIB to it and send an notify
442          *      the adapter a command is ready.
443          */
444         hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
445
446         /*
447          *      Fill in the Callback and CallbackContext if we are not
448          *      going to wait.
449          */
450         if (!wait) {
451                 fibptr->callback = callback;
452                 fibptr->callback_data = callback_data;
453         }
454
455         fibptr->done = 0;
456         fibptr->flags = 0;
457
458         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
459
460         dprintk((KERN_DEBUG "Fib contents:.\n"));
461         dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
462         dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
463         dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
464         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib));
465         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
466         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
467
468         q = &dev->queues->queue[AdapNormCmdQueue];
469
470         if(wait)
471                 spin_lock_irqsave(&fibptr->event_lock, flags);
472         spin_lock_irqsave(q->lock, qflags);
473         if (dev->new_comm_interface) {
474                 unsigned long count = 10000000L; /* 50 seconds */
475                 list_add_tail(&fibptr->queue, &q->pendingq);
476                 q->numpending++;
477                 spin_unlock_irqrestore(q->lock, qflags);
478                 while (aac_adapter_send(fibptr) != 0) {
479                         if (--count == 0) {
480                                 if (wait)
481                                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
482                                 spin_lock_irqsave(q->lock, qflags);
483                                 q->numpending--;
484                                 list_del(&fibptr->queue);
485                                 spin_unlock_irqrestore(q->lock, qflags);
486                                 return -ETIMEDOUT;
487                         }
488                         udelay(5);
489                 }
490         } else {
491                 u32 index;
492                 unsigned long nointr = 0;
493                 aac_queue_get( dev, &index, AdapNormCmdQueue, hw_fib, 1, fibptr, &nointr);
494
495                 list_add_tail(&fibptr->queue, &q->pendingq);
496                 q->numpending++;
497                 *(q->headers.producer) = cpu_to_le32(index + 1);
498                 spin_unlock_irqrestore(q->lock, qflags);
499                 dprintk((KERN_DEBUG "aac_fib_send: inserting a queue entry at index %d.\n",index));
500                 if (!(nointr & aac_config.irq_mod))
501                         aac_adapter_notify(dev, AdapNormCmdQueue);
502         }
503
504         /*
505          *      If the caller wanted us to wait for response wait now. 
506          */
507     
508         if (wait) {
509                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
510                 /* Only set for first known interruptable command */
511                 if (wait < 0) {
512                         /*
513                          * *VERY* Dangerous to time out a command, the
514                          * assumption is made that we have no hope of
515                          * functioning because an interrupt routing or other
516                          * hardware failure has occurred.
517                          */
518                         unsigned long count = 36000000L; /* 3 minutes */
519                         while (down_trylock(&fibptr->event_wait)) {
520                                 if (--count == 0) {
521                                         spin_lock_irqsave(q->lock, qflags);
522                                         q->numpending--;
523                                         list_del(&fibptr->queue);
524                                         spin_unlock_irqrestore(q->lock, qflags);
525                                         if (wait == -1) {
526                                                 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
527                                                   "Usually a result of a PCI interrupt routing problem;\n"
528                                                   "update mother board BIOS or consider utilizing one of\n"
529                                                   "the SAFE mode kernel options (acpi, apic etc)\n");
530                                         }
531                                         return -ETIMEDOUT;
532                                 }
533                                 udelay(5);
534                         }
535                 } else
536                         down(&fibptr->event_wait);
537                 if(fibptr->done == 0)
538                         BUG();
539                         
540                 if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
541                         return -ETIMEDOUT;
542                 } else {
543                         return 0;
544                 }
545         }
546         /*
547          *      If the user does not want a response than return success otherwise
548          *      return pending
549          */
550         if (reply)
551                 return -EINPROGRESS;
552         else
553                 return 0;
554 }
555
556 /** 
557  *      aac_consumer_get        -       get the top of the queue
558  *      @dev: Adapter
559  *      @q: Queue
560  *      @entry: Return entry
561  *
562  *      Will return a pointer to the entry on the top of the queue requested that
563  *      we are a consumer of, and return the address of the queue entry. It does
564  *      not change the state of the queue. 
565  */
566
567 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
568 {
569         u32 index;
570         int status;
571         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
572                 status = 0;
573         } else {
574                 /*
575                  *      The consumer index must be wrapped if we have reached
576                  *      the end of the queue, else we just use the entry
577                  *      pointed to by the header index
578                  */
579                 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 
580                         index = 0;              
581                 else
582                         index = le32_to_cpu(*q->headers.consumer);
583                 *entry = q->base + index;
584                 status = 1;
585         }
586         return(status);
587 }
588
589 /**
590  *      aac_consumer_free       -       free consumer entry
591  *      @dev: Adapter
592  *      @q: Queue
593  *      @qid: Queue ident
594  *
595  *      Frees up the current top of the queue we are a consumer of. If the
596  *      queue was full notify the producer that the queue is no longer full.
597  */
598
599 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
600 {
601         int wasfull = 0;
602         u32 notify;
603
604         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
605                 wasfull = 1;
606         
607         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
608                 *q->headers.consumer = cpu_to_le32(1);
609         else
610                 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
611         
612         if (wasfull) {
613                 switch (qid) {
614
615                 case HostNormCmdQueue:
616                         notify = HostNormCmdNotFull;
617                         break;
618                 case HostNormRespQueue:
619                         notify = HostNormRespNotFull;
620                         break;
621                 default:
622                         BUG();
623                         return;
624                 }
625                 aac_adapter_notify(dev, notify);
626         }
627 }        
628
629 /**
630  *      aac_fib_adapter_complete        -       complete adapter issued fib
631  *      @fibptr: fib to complete
632  *      @size: size of fib
633  *
634  *      Will do all necessary work to complete a FIB that was sent from
635  *      the adapter.
636  */
637
638 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
639 {
640         struct hw_fib * hw_fib = fibptr->hw_fib;
641         struct aac_dev * dev = fibptr->dev;
642         struct aac_queue * q;
643         unsigned long nointr = 0;
644         unsigned long qflags;
645
646         if (hw_fib->header.XferState == 0) {
647                 if (dev->new_comm_interface)
648                         kfree (hw_fib);
649                 return 0;
650         }
651         /*
652          *      If we plan to do anything check the structure type first.
653          */ 
654         if ( hw_fib->header.StructType != FIB_MAGIC ) {
655                 if (dev->new_comm_interface)
656                         kfree (hw_fib);
657                 return -EINVAL;
658         }
659         /*
660          *      This block handles the case where the adapter had sent us a
661          *      command and we have finished processing the command. We
662          *      call completeFib when we are done processing the command 
663          *      and want to send a response back to the adapter. This will 
664          *      send the completed cdb to the adapter.
665          */
666         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
667                 if (dev->new_comm_interface) {
668                         kfree (hw_fib);
669                 } else {
670                         u32 index;
671                         hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
672                         if (size) {
673                                 size += sizeof(struct aac_fibhdr);
674                                 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 
675                                         return -EMSGSIZE;
676                                 hw_fib->header.Size = cpu_to_le16(size);
677                         }
678                         q = &dev->queues->queue[AdapNormRespQueue];
679                         spin_lock_irqsave(q->lock, qflags);
680                         aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
681                         *(q->headers.producer) = cpu_to_le32(index + 1);
682                         spin_unlock_irqrestore(q->lock, qflags);
683                         if (!(nointr & (int)aac_config.irq_mod))
684                                 aac_adapter_notify(dev, AdapNormRespQueue);
685                 }
686         }
687         else 
688         {
689                 printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n");
690                 BUG();
691         }   
692         return 0;
693 }
694
695 /**
696  *      aac_fib_complete        -       fib completion handler
697  *      @fib: FIB to complete
698  *
699  *      Will do all necessary work to complete a FIB.
700  */
701  
702 int aac_fib_complete(struct fib *fibptr)
703 {
704         struct hw_fib * hw_fib = fibptr->hw_fib;
705
706         /*
707          *      Check for a fib which has already been completed
708          */
709
710         if (hw_fib->header.XferState == 0)
711                 return 0;
712         /*
713          *      If we plan to do anything check the structure type first.
714          */ 
715
716         if (hw_fib->header.StructType != FIB_MAGIC)
717                 return -EINVAL;
718         /*
719          *      This block completes a cdb which orginated on the host and we 
720          *      just need to deallocate the cdb or reinit it. At this point the
721          *      command is complete that we had sent to the adapter and this
722          *      cdb could be reused.
723          */
724         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
725                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
726         {
727                 fib_dealloc(fibptr);
728         }
729         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
730         {
731                 /*
732                  *      This handles the case when the host has aborted the I/O
733                  *      to the adapter because the adapter is not responding
734                  */
735                 fib_dealloc(fibptr);
736         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
737                 fib_dealloc(fibptr);
738         } else {
739                 BUG();
740         }   
741         return 0;
742 }
743
744 /**
745  *      aac_printf      -       handle printf from firmware
746  *      @dev: Adapter
747  *      @val: Message info
748  *
749  *      Print a message passed to us by the controller firmware on the
750  *      Adaptec board
751  */
752
753 void aac_printf(struct aac_dev *dev, u32 val)
754 {
755         char *cp = dev->printfbuf;
756         if (dev->printf_enabled)
757         {
758                 int length = val & 0xffff;
759                 int level = (val >> 16) & 0xffff;
760                 
761                 /*
762                  *      The size of the printfbuf is set in port.c
763                  *      There is no variable or define for it
764                  */
765                 if (length > 255)
766                         length = 255;
767                 if (cp[length] != 0)
768                         cp[length] = 0;
769                 if (level == LOG_AAC_HIGH_ERROR)
770                         printk(KERN_WARNING "aacraid:%s", cp);
771                 else
772                         printk(KERN_INFO "aacraid:%s", cp);
773         }
774         memset(cp, 0,  256);
775 }
776
777
778 /**
779  *      aac_handle_aif          -       Handle a message from the firmware
780  *      @dev: Which adapter this fib is from
781  *      @fibptr: Pointer to fibptr from adapter
782  *
783  *      This routine handles a driver notify fib from the adapter and
784  *      dispatches it to the appropriate routine for handling.
785  */
786
787 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
788 {
789         struct hw_fib * hw_fib = fibptr->hw_fib;
790         struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
791         int busy;
792         u32 container;
793         struct scsi_device *device;
794         enum {
795                 NOTHING,
796                 DELETE,
797                 ADD,
798                 CHANGE
799         } device_config_needed;
800
801         /* Sniff for container changes */
802
803         if (!dev)
804                 return;
805         container = (u32)-1;
806
807         /*
808          *      We have set this up to try and minimize the number of
809          * re-configures that take place. As a result of this when
810          * certain AIF's come in we will set a flag waiting for another
811          * type of AIF before setting the re-config flag.
812          */
813         switch (le32_to_cpu(aifcmd->command)) {
814         case AifCmdDriverNotify:
815                 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
816                 /*
817                  *      Morph or Expand complete
818                  */
819                 case AifDenMorphComplete:
820                 case AifDenVolumeExtendComplete:
821                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
822                         if (container >= dev->maximum_num_containers)
823                                 break;
824
825                         /*
826                          *      Find the scsi_device associated with the SCSI
827                          * address. Make sure we have the right array, and if
828                          * so set the flag to initiate a new re-config once we
829                          * see an AifEnConfigChange AIF come through.
830                          */
831
832                         if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
833                                 device = scsi_device_lookup(dev->scsi_host_ptr, 
834                                         CONTAINER_TO_CHANNEL(container), 
835                                         CONTAINER_TO_ID(container), 
836                                         CONTAINER_TO_LUN(container));
837                                 if (device) {
838                                         dev->fsa_dev[container].config_needed = CHANGE;
839                                         dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
840                                         scsi_device_put(device);
841                                 }
842                         }
843                 }
844
845                 /*
846                  *      If we are waiting on something and this happens to be
847                  * that thing then set the re-configure flag.
848                  */
849                 if (container != (u32)-1) {
850                         if (container >= dev->maximum_num_containers)
851                                 break;
852                         if (dev->fsa_dev[container].config_waiting_on ==
853                             le32_to_cpu(*(u32 *)aifcmd->data))
854                                 dev->fsa_dev[container].config_waiting_on = 0;
855                 } else for (container = 0;
856                     container < dev->maximum_num_containers; ++container) {
857                         if (dev->fsa_dev[container].config_waiting_on ==
858                             le32_to_cpu(*(u32 *)aifcmd->data))
859                                 dev->fsa_dev[container].config_waiting_on = 0;
860                 }
861                 break;
862
863         case AifCmdEventNotify:
864                 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
865                 /*
866                  *      Add an Array.
867                  */
868                 case AifEnAddContainer:
869                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
870                         if (container >= dev->maximum_num_containers)
871                                 break;
872                         dev->fsa_dev[container].config_needed = ADD;
873                         dev->fsa_dev[container].config_waiting_on =
874                                 AifEnConfigChange;
875                         break;
876
877                 /*
878                  *      Delete an Array.
879                  */
880                 case AifEnDeleteContainer:
881                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
882                         if (container >= dev->maximum_num_containers)
883                                 break;
884                         dev->fsa_dev[container].config_needed = DELETE;
885                         dev->fsa_dev[container].config_waiting_on =
886                                 AifEnConfigChange;
887                         break;
888
889                 /*
890                  *      Container change detected. If we currently are not
891                  * waiting on something else, setup to wait on a Config Change.
892                  */
893                 case AifEnContainerChange:
894                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
895                         if (container >= dev->maximum_num_containers)
896                                 break;
897                         if (dev->fsa_dev[container].config_waiting_on)
898                                 break;
899                         dev->fsa_dev[container].config_needed = CHANGE;
900                         dev->fsa_dev[container].config_waiting_on =
901                                 AifEnConfigChange;
902                         break;
903
904                 case AifEnConfigChange:
905                         break;
906
907                 }
908
909                 /*
910                  *      If we are waiting on something and this happens to be
911                  * that thing then set the re-configure flag.
912                  */
913                 if (container != (u32)-1) {
914                         if (container >= dev->maximum_num_containers)
915                                 break;
916                         if (dev->fsa_dev[container].config_waiting_on ==
917                             le32_to_cpu(*(u32 *)aifcmd->data))
918                                 dev->fsa_dev[container].config_waiting_on = 0;
919                 } else for (container = 0;
920                     container < dev->maximum_num_containers; ++container) {
921                         if (dev->fsa_dev[container].config_waiting_on ==
922                             le32_to_cpu(*(u32 *)aifcmd->data))
923                                 dev->fsa_dev[container].config_waiting_on = 0;
924                 }
925                 break;
926
927         case AifCmdJobProgress:
928                 /*
929                  *      These are job progress AIF's. When a Clear is being
930                  * done on a container it is initially created then hidden from
931                  * the OS. When the clear completes we don't get a config
932                  * change so we monitor the job status complete on a clear then
933                  * wait for a container change.
934                  */
935
936                 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
937                  && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
938                   || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
939                         for (container = 0;
940                             container < dev->maximum_num_containers;
941                             ++container) {
942                                 /*
943                                  * Stomp on all config sequencing for all
944                                  * containers?
945                                  */
946                                 dev->fsa_dev[container].config_waiting_on =
947                                         AifEnContainerChange;
948                                 dev->fsa_dev[container].config_needed = ADD;
949                         }
950                 }
951                 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
952                  && (((u32 *)aifcmd->data)[6] == 0)
953                  && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
954                         for (container = 0;
955                             container < dev->maximum_num_containers;
956                             ++container) {
957                                 /*
958                                  * Stomp on all config sequencing for all
959                                  * containers?
960                                  */
961                                 dev->fsa_dev[container].config_waiting_on =
962                                         AifEnContainerChange;
963                                 dev->fsa_dev[container].config_needed = DELETE;
964                         }
965                 }
966                 break;
967         }
968
969         device_config_needed = NOTHING;
970         for (container = 0; container < dev->maximum_num_containers;
971             ++container) {
972                 if ((dev->fsa_dev[container].config_waiting_on == 0)
973                  && (dev->fsa_dev[container].config_needed != NOTHING)) {
974                         device_config_needed =
975                                 dev->fsa_dev[container].config_needed;
976                         dev->fsa_dev[container].config_needed = NOTHING;
977                         break;
978                 }
979         }
980         if (device_config_needed == NOTHING)
981                 return;
982
983         /*
984          *      If we decided that a re-configuration needs to be done,
985          * schedule it here on the way out the door, please close the door
986          * behind you.
987          */
988
989         busy = 0;
990
991
992         /*
993          *      Find the scsi_device associated with the SCSI address,
994          * and mark it as changed, invalidating the cache. This deals
995          * with changes to existing device IDs.
996          */
997
998         if (!dev || !dev->scsi_host_ptr)
999                 return;
1000         /*
1001          * force reload of disk info via aac_probe_container
1002          */
1003         if ((device_config_needed == CHANGE)
1004          && (dev->fsa_dev[container].valid == 1))
1005                 dev->fsa_dev[container].valid = 2;
1006         if ((device_config_needed == CHANGE) ||
1007                         (device_config_needed == ADD))
1008                 aac_probe_container(dev, container);
1009         device = scsi_device_lookup(dev->scsi_host_ptr, 
1010                 CONTAINER_TO_CHANNEL(container), 
1011                 CONTAINER_TO_ID(container), 
1012                 CONTAINER_TO_LUN(container));
1013         if (device) {
1014                 switch (device_config_needed) {
1015                 case DELETE:
1016                         scsi_remove_device(device);
1017                         break;
1018                 case CHANGE:
1019                         if (!dev->fsa_dev[container].valid) {
1020                                 scsi_remove_device(device);
1021                                 break;
1022                         }
1023                         scsi_rescan_device(&device->sdev_gendev);
1024
1025                 default:
1026                         break;
1027                 }
1028                 scsi_device_put(device);
1029         }
1030         if (device_config_needed == ADD) {
1031                 scsi_add_device(dev->scsi_host_ptr,
1032                   CONTAINER_TO_CHANNEL(container),
1033                   CONTAINER_TO_ID(container),
1034                   CONTAINER_TO_LUN(container));
1035         }
1036
1037 }
1038
1039 /**
1040  *      aac_command_thread      -       command processing thread
1041  *      @dev: Adapter to monitor
1042  *
1043  *      Waits on the commandready event in it's queue. When the event gets set
1044  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
1045  *      until the queue is empty. When the queue is empty it will wait for
1046  *      more FIBs.
1047  */
1048  
1049 int aac_command_thread(void *data)
1050 {
1051         struct aac_dev *dev = data;
1052         struct hw_fib *hw_fib, *hw_newfib;
1053         struct fib *fib, *newfib;
1054         struct aac_fib_context *fibctx;
1055         unsigned long flags;
1056         DECLARE_WAITQUEUE(wait, current);
1057
1058         /*
1059          *      We can only have one thread per adapter for AIF's.
1060          */
1061         if (dev->aif_thread)
1062                 return -EINVAL;
1063
1064         /*
1065          *      Let the DPC know it has a place to send the AIF's to.
1066          */
1067         dev->aif_thread = 1;
1068         add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1069         set_current_state(TASK_INTERRUPTIBLE);
1070         dprintk ((KERN_INFO "aac_command_thread start\n"));
1071         while(1) 
1072         {
1073                 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1074                 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1075                         struct list_head *entry;
1076                         struct aac_aifcmd * aifcmd;
1077
1078                         set_current_state(TASK_RUNNING);
1079         
1080                         entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1081                         list_del(entry);
1082                 
1083                         spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1084                         fib = list_entry(entry, struct fib, fiblink);
1085                         /*
1086                          *      We will process the FIB here or pass it to a 
1087                          *      worker thread that is TBD. We Really can't 
1088                          *      do anything at this point since we don't have
1089                          *      anything defined for this thread to do.
1090                          */
1091                         hw_fib = fib->hw_fib;
1092                         memset(fib, 0, sizeof(struct fib));
1093                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1094                         fib->size = sizeof( struct fib );
1095                         fib->hw_fib = hw_fib;
1096                         fib->data = hw_fib->data;
1097                         fib->dev = dev;
1098                         /*
1099                          *      We only handle AifRequest fibs from the adapter.
1100                          */
1101                         aifcmd = (struct aac_aifcmd *) hw_fib->data;
1102                         if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1103                                 /* Handle Driver Notify Events */
1104                                 aac_handle_aif(dev, fib);
1105                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1106                                 aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1107                         } else {
1108                                 struct list_head *entry;
1109                                 /* The u32 here is important and intended. We are using
1110                                    32bit wrapping time to fit the adapter field */
1111                                    
1112                                 u32 time_now, time_last;
1113                                 unsigned long flagv;
1114                                 unsigned num;
1115                                 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1116                                 struct fib ** fib_pool, ** fib_p;
1117                         
1118                                 /* Sniff events */
1119                                 if ((aifcmd->command == 
1120                                      cpu_to_le32(AifCmdEventNotify)) ||
1121                                     (aifcmd->command == 
1122                                      cpu_to_le32(AifCmdJobProgress))) {
1123                                         aac_handle_aif(dev, fib);
1124                                 }
1125                                 
1126                                 time_now = jiffies/HZ;
1127
1128                                 /*
1129                                  * Warning: no sleep allowed while
1130                                  * holding spinlock. We take the estimate
1131                                  * and pre-allocate a set of fibs outside the
1132                                  * lock.
1133                                  */
1134                                 num = le32_to_cpu(dev->init->AdapterFibsSize)
1135                                     / sizeof(struct hw_fib); /* some extra */
1136                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1137                                 entry = dev->fib_list.next;
1138                                 while (entry != &dev->fib_list) {
1139                                         entry = entry->next;
1140                                         ++num;
1141                                 }
1142                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1143                                 hw_fib_pool = NULL;
1144                                 fib_pool = NULL;
1145                                 if (num
1146                                  && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1147                                  && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1148                                         hw_fib_p = hw_fib_pool;
1149                                         fib_p = fib_pool;
1150                                         while (hw_fib_p < &hw_fib_pool[num]) {
1151                                                 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1152                                                         --hw_fib_p;
1153                                                         break;
1154                                                 }
1155                                                 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1156                                                         kfree(*(--hw_fib_p));
1157                                                         break;
1158                                                 }
1159                                         }
1160                                         if ((num = hw_fib_p - hw_fib_pool) == 0) {
1161                                                 kfree(fib_pool);
1162                                                 fib_pool = NULL;
1163                                                 kfree(hw_fib_pool);
1164                                                 hw_fib_pool = NULL;
1165                                         }
1166                                 } else {
1167                                         kfree(hw_fib_pool);
1168                                         hw_fib_pool = NULL;
1169                                 }
1170                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1171                                 entry = dev->fib_list.next;
1172                                 /*
1173                                  * For each Context that is on the 
1174                                  * fibctxList, make a copy of the
1175                                  * fib, and then set the event to wake up the
1176                                  * thread that is waiting for it.
1177                                  */
1178                                 hw_fib_p = hw_fib_pool;
1179                                 fib_p = fib_pool;
1180                                 while (entry != &dev->fib_list) {
1181                                         /*
1182                                          * Extract the fibctx
1183                                          */
1184                                         fibctx = list_entry(entry, struct aac_fib_context, next);
1185                                         /*
1186                                          * Check if the queue is getting
1187                                          * backlogged
1188                                          */
1189                                         if (fibctx->count > 20)
1190                                         {
1191                                                 /*
1192                                                  * It's *not* jiffies folks,
1193                                                  * but jiffies / HZ so do not
1194                                                  * panic ...
1195                                                  */
1196                                                 time_last = fibctx->jiffies;
1197                                                 /*
1198                                                  * Has it been > 2 minutes 
1199                                                  * since the last read off
1200                                                  * the queue?
1201                                                  */
1202                                                 if ((time_now - time_last) > 120) {
1203                                                         entry = entry->next;
1204                                                         aac_close_fib_context(dev, fibctx);
1205                                                         continue;
1206                                                 }
1207                                         }
1208                                         /*
1209                                          * Warning: no sleep allowed while
1210                                          * holding spinlock
1211                                          */
1212                                         if (hw_fib_p < &hw_fib_pool[num]) {
1213                                                 hw_newfib = *hw_fib_p;
1214                                                 *(hw_fib_p++) = NULL;
1215                                                 newfib = *fib_p;
1216                                                 *(fib_p++) = NULL;
1217                                                 /*
1218                                                  * Make the copy of the FIB
1219                                                  */
1220                                                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1221                                                 memcpy(newfib, fib, sizeof(struct fib));
1222                                                 newfib->hw_fib = hw_newfib;
1223                                                 /*
1224                                                  * Put the FIB onto the
1225                                                  * fibctx's fibs
1226                                                  */
1227                                                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1228                                                 fibctx->count++;
1229                                                 /* 
1230                                                  * Set the event to wake up the
1231                                                  * thread that is waiting.
1232                                                  */
1233                                                 up(&fibctx->wait_sem);
1234                                         } else {
1235                                                 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1236                                         }
1237                                         entry = entry->next;
1238                                 }
1239                                 /*
1240                                  *      Set the status of this FIB
1241                                  */
1242                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1243                                 aac_fib_adapter_complete(fib, sizeof(u32));
1244                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1245                                 /* Free up the remaining resources */
1246                                 hw_fib_p = hw_fib_pool;
1247                                 fib_p = fib_pool;
1248                                 while (hw_fib_p < &hw_fib_pool[num]) {
1249                                         kfree(*hw_fib_p);
1250                                         kfree(*fib_p);
1251                                         ++fib_p;
1252                                         ++hw_fib_p;
1253                                 }
1254                                 kfree(hw_fib_pool);
1255                                 kfree(fib_pool);
1256                         }
1257                         kfree(fib);
1258                         spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1259                 }
1260                 /*
1261                  *      There are no more AIF's
1262                  */
1263                 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1264                 schedule();
1265
1266                 if (kthread_should_stop())
1267                         break;
1268                 set_current_state(TASK_INTERRUPTIBLE);
1269         }
1270         if (dev->queues)
1271                 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1272         dev->aif_thread = 0;
1273         return 0;
1274 }