Merge branch 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / drivers / scsi / aacraid / commsup.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *               2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; see the file COPYING.  If not, write to
24  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module Name:
27  *  commsup.c
28  *
29  * Abstract: Contain all routines that are required for FSA host/adapter
30  *    communication.
31  *
32  */
33
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/crash_dump.h>
37 #include <linux/types.h>
38 #include <linux/sched.h>
39 #include <linux/pci.h>
40 #include <linux/spinlock.h>
41 #include <linux/slab.h>
42 #include <linux/completion.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/kthread.h>
46 #include <linux/interrupt.h>
47 #include <linux/bcd.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_host.h>
50 #include <scsi/scsi_device.h>
51 #include <scsi/scsi_cmnd.h>
52
53 #include "aacraid.h"
54
55 /**
56  *      fib_map_alloc           -       allocate the fib objects
57  *      @dev: Adapter to allocate for
58  *
59  *      Allocate and map the shared PCI space for the FIB blocks used to
60  *      talk to the Adaptec firmware.
61  */
62
63 static int fib_map_alloc(struct aac_dev *dev)
64 {
65         if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
66                 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
67         else
68                 dev->max_cmd_size = dev->max_fib_size;
69         if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
70                 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
71         } else {
72                 dev->max_cmd_size = dev->max_fib_size;
73         }
74
75         dprintk((KERN_INFO
76           "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
77           &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
78           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
79         dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
80                 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
81                 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
82                 &dev->hw_fib_pa, GFP_KERNEL);
83         if (dev->hw_fib_va == NULL)
84                 return -ENOMEM;
85         return 0;
86 }
87
88 /**
89  *      aac_fib_map_free                -       free the fib objects
90  *      @dev: Adapter to free
91  *
92  *      Free the PCI mappings and the memory allocated for FIB blocks
93  *      on this adapter.
94  */
95
96 void aac_fib_map_free(struct aac_dev *dev)
97 {
98         size_t alloc_size;
99         size_t fib_size;
100         int num_fibs;
101
102         if(!dev->hw_fib_va || !dev->max_cmd_size)
103                 return;
104
105         num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
106         fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
107         alloc_size = fib_size * num_fibs + ALIGN32 - 1;
108
109         dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
110                           dev->hw_fib_pa);
111
112         dev->hw_fib_va = NULL;
113         dev->hw_fib_pa = 0;
114 }
115
116 void aac_fib_vector_assign(struct aac_dev *dev)
117 {
118         u32 i = 0;
119         u32 vector = 1;
120         struct fib *fibptr = NULL;
121
122         for (i = 0, fibptr = &dev->fibs[i];
123                 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
124                 i++, fibptr++) {
125                 if ((dev->max_msix == 1) ||
126                   (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
127                         - dev->vector_cap))) {
128                         fibptr->vector_no = 0;
129                 } else {
130                         fibptr->vector_no = vector;
131                         vector++;
132                         if (vector == dev->max_msix)
133                                 vector = 1;
134                 }
135         }
136 }
137
138 /**
139  *      aac_fib_setup   -       setup the fibs
140  *      @dev: Adapter to set up
141  *
142  *      Allocate the PCI space for the fibs, map it and then initialise the
143  *      fib area, the unmapped fib data and also the free list
144  */
145
146 int aac_fib_setup(struct aac_dev * dev)
147 {
148         struct fib *fibptr;
149         struct hw_fib *hw_fib;
150         dma_addr_t hw_fib_pa;
151         int i;
152         u32 max_cmds;
153
154         while (((i = fib_map_alloc(dev)) == -ENOMEM)
155          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
156                 max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
157                 dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
158                 if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
159                         dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
160         }
161         if (i<0)
162                 return -ENOMEM;
163
164         memset(dev->hw_fib_va, 0,
165                 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
166                 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
167
168         /* 32 byte alignment for PMC */
169         hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
170         hw_fib    = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
171                                         (hw_fib_pa - dev->hw_fib_pa));
172
173         /* add Xport header */
174         hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
175                 sizeof(struct aac_fib_xporthdr));
176         hw_fib_pa += sizeof(struct aac_fib_xporthdr);
177
178         /*
179          *      Initialise the fibs
180          */
181         for (i = 0, fibptr = &dev->fibs[i];
182                 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
183                 i++, fibptr++)
184         {
185                 fibptr->flags = 0;
186                 fibptr->size = sizeof(struct fib);
187                 fibptr->dev = dev;
188                 fibptr->hw_fib_va = hw_fib;
189                 fibptr->data = (void *) fibptr->hw_fib_va->data;
190                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
191                 init_completion(&fibptr->event_wait);
192                 spin_lock_init(&fibptr->event_lock);
193                 hw_fib->header.XferState = cpu_to_le32(0xffffffff);
194                 hw_fib->header.SenderSize =
195                         cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */
196                 fibptr->hw_fib_pa = hw_fib_pa;
197                 fibptr->hw_sgl_pa = hw_fib_pa +
198                         offsetof(struct aac_hba_cmd_req, sge[2]);
199                 /*
200                  * one element is for the ptr to the separate sg list,
201                  * second element for 32 byte alignment
202                  */
203                 fibptr->hw_error_pa = hw_fib_pa +
204                         offsetof(struct aac_native_hba, resp.resp_bytes[0]);
205
206                 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
207                         dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
208                 hw_fib_pa = hw_fib_pa +
209                         dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
210         }
211
212         /*
213          *Assign vector numbers to fibs
214          */
215         aac_fib_vector_assign(dev);
216
217         /*
218          *      Add the fib chain to the free list
219          */
220         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
221         /*
222         *       Set 8 fibs aside for management tools
223         */
224         dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
225         return 0;
226 }
227
228 /**
229  *      aac_fib_alloc_tag-allocate a fib using tags
230  *      @dev: Adapter to allocate the fib for
231  *
232  *      Allocate a fib from the adapter fib pool using tags
233  *      from the blk layer.
234  */
235
236 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
237 {
238         struct fib *fibptr;
239
240         fibptr = &dev->fibs[scmd->request->tag];
241         /*
242          *      Null out fields that depend on being zero at the start of
243          *      each I/O
244          */
245         fibptr->hw_fib_va->header.XferState = 0;
246         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
247         fibptr->callback_data = NULL;
248         fibptr->callback = NULL;
249
250         return fibptr;
251 }
252
253 /**
254  *      aac_fib_alloc   -       allocate a fib
255  *      @dev: Adapter to allocate the fib for
256  *
257  *      Allocate a fib from the adapter fib pool. If the pool is empty we
258  *      return NULL.
259  */
260
261 struct fib *aac_fib_alloc(struct aac_dev *dev)
262 {
263         struct fib * fibptr;
264         unsigned long flags;
265         spin_lock_irqsave(&dev->fib_lock, flags);
266         fibptr = dev->free_fib;
267         if(!fibptr){
268                 spin_unlock_irqrestore(&dev->fib_lock, flags);
269                 return fibptr;
270         }
271         dev->free_fib = fibptr->next;
272         spin_unlock_irqrestore(&dev->fib_lock, flags);
273         /*
274          *      Set the proper node type code and node byte size
275          */
276         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
277         fibptr->size = sizeof(struct fib);
278         /*
279          *      Null out fields that depend on being zero at the start of
280          *      each I/O
281          */
282         fibptr->hw_fib_va->header.XferState = 0;
283         fibptr->flags = 0;
284         fibptr->callback = NULL;
285         fibptr->callback_data = NULL;
286
287         return fibptr;
288 }
289
290 /**
291  *      aac_fib_free    -       free a fib
292  *      @fibptr: fib to free up
293  *
294  *      Frees up a fib and places it on the appropriate queue
295  */
296
297 void aac_fib_free(struct fib *fibptr)
298 {
299         unsigned long flags;
300
301         if (fibptr->done == 2)
302                 return;
303
304         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
305         if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
306                 aac_config.fib_timeouts++;
307         if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
308                 fibptr->hw_fib_va->header.XferState != 0) {
309                 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
310                          (void*)fibptr,
311                          le32_to_cpu(fibptr->hw_fib_va->header.XferState));
312         }
313         fibptr->next = fibptr->dev->free_fib;
314         fibptr->dev->free_fib = fibptr;
315         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
316 }
317
318 /**
319  *      aac_fib_init    -       initialise a fib
320  *      @fibptr: The fib to initialize
321  *
322  *      Set up the generic fib fields ready for use
323  */
324
325 void aac_fib_init(struct fib *fibptr)
326 {
327         struct hw_fib *hw_fib = fibptr->hw_fib_va;
328
329         memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
330         hw_fib->header.StructType = FIB_MAGIC;
331         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
332         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
333         hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
334         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
335 }
336
337 /**
338  *      fib_deallocate          -       deallocate a fib
339  *      @fibptr: fib to deallocate
340  *
341  *      Will deallocate and return to the free pool the FIB pointed to by the
342  *      caller.
343  */
344
345 static void fib_dealloc(struct fib * fibptr)
346 {
347         struct hw_fib *hw_fib = fibptr->hw_fib_va;
348         hw_fib->header.XferState = 0;
349 }
350
351 /*
352  *      Commuication primitives define and support the queuing method we use to
353  *      support host to adapter commuication. All queue accesses happen through
354  *      these routines and are the only routines which have a knowledge of the
355  *       how these queues are implemented.
356  */
357
358 /**
359  *      aac_get_entry           -       get a queue entry
360  *      @dev: Adapter
361  *      @qid: Queue Number
362  *      @entry: Entry return
363  *      @index: Index return
364  *      @nonotify: notification control
365  *
366  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
367  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
368  *      returned.
369  */
370
371 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
372 {
373         struct aac_queue * q;
374         unsigned long idx;
375
376         /*
377          *      All of the queues wrap when they reach the end, so we check
378          *      to see if they have reached the end and if they have we just
379          *      set the index back to zero. This is a wrap. You could or off
380          *      the high bits in all updates but this is a bit faster I think.
381          */
382
383         q = &dev->queues->queue[qid];
384
385         idx = *index = le32_to_cpu(*(q->headers.producer));
386         /* Interrupt Moderation, only interrupt for first two entries */
387         if (idx != le32_to_cpu(*(q->headers.consumer))) {
388                 if (--idx == 0) {
389                         if (qid == AdapNormCmdQueue)
390                                 idx = ADAP_NORM_CMD_ENTRIES;
391                         else
392                                 idx = ADAP_NORM_RESP_ENTRIES;
393                 }
394                 if (idx != le32_to_cpu(*(q->headers.consumer)))
395                         *nonotify = 1;
396         }
397
398         if (qid == AdapNormCmdQueue) {
399                 if (*index >= ADAP_NORM_CMD_ENTRIES)
400                         *index = 0; /* Wrap to front of the Producer Queue. */
401         } else {
402                 if (*index >= ADAP_NORM_RESP_ENTRIES)
403                         *index = 0; /* Wrap to front of the Producer Queue. */
404         }
405
406         /* Queue is full */
407         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
408                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
409                                 qid, atomic_read(&q->numpending));
410                 return 0;
411         } else {
412                 *entry = q->base + *index;
413                 return 1;
414         }
415 }
416
417 /**
418  *      aac_queue_get           -       get the next free QE
419  *      @dev: Adapter
420  *      @index: Returned index
421  *      @priority: Priority of fib
422  *      @fib: Fib to associate with the queue entry
423  *      @wait: Wait if queue full
424  *      @fibptr: Driver fib object to go with fib
425  *      @nonotify: Don't notify the adapter
426  *
427  *      Gets the next free QE off the requested priorty adapter command
428  *      queue and associates the Fib with the QE. The QE represented by
429  *      index is ready to insert on the queue when this routine returns
430  *      success.
431  */
432
433 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
434 {
435         struct aac_entry * entry = NULL;
436         int map = 0;
437
438         if (qid == AdapNormCmdQueue) {
439                 /*  if no entries wait for some if caller wants to */
440                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
441                         printk(KERN_ERR "GetEntries failed\n");
442                 }
443                 /*
444                  *      Setup queue entry with a command, status and fib mapped
445                  */
446                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
447                 map = 1;
448         } else {
449                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
450                         /* if no entries wait for some if caller wants to */
451                 }
452                 /*
453                  *      Setup queue entry with command, status and fib mapped
454                  */
455                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
456                 entry->addr = hw_fib->header.SenderFibAddress;
457                         /* Restore adapters pointer to the FIB */
458                 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
459                 map = 0;
460         }
461         /*
462          *      If MapFib is true than we need to map the Fib and put pointers
463          *      in the queue entry.
464          */
465         if (map)
466                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
467         return 0;
468 }
469
470 /*
471  *      Define the highest level of host to adapter communication routines.
472  *      These routines will support host to adapter FS commuication. These
473  *      routines have no knowledge of the commuication method used. This level
474  *      sends and receives FIBs. This level has no knowledge of how these FIBs
475  *      get passed back and forth.
476  */
477
478 /**
479  *      aac_fib_send    -       send a fib to the adapter
480  *      @command: Command to send
481  *      @fibptr: The fib
482  *      @size: Size of fib data area
483  *      @priority: Priority of Fib
484  *      @wait: Async/sync select
485  *      @reply: True if a reply is wanted
486  *      @callback: Called with reply
487  *      @callback_data: Passed to callback
488  *
489  *      Sends the requested FIB to the adapter and optionally will wait for a
490  *      response FIB. If the caller does not wish to wait for a response than
491  *      an event to wait on must be supplied. This event will be set when a
492  *      response FIB is received from the adapter.
493  */
494
495 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
496                 int priority, int wait, int reply, fib_callback callback,
497                 void *callback_data)
498 {
499         struct aac_dev * dev = fibptr->dev;
500         struct hw_fib * hw_fib = fibptr->hw_fib_va;
501         unsigned long flags = 0;
502         unsigned long mflags = 0;
503         unsigned long sflags = 0;
504
505         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
506                 return -EBUSY;
507
508         if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
509                 return -EINVAL;
510
511         /*
512          *      There are 5 cases with the wait and response requested flags.
513          *      The only invalid cases are if the caller requests to wait and
514          *      does not request a response and if the caller does not want a
515          *      response and the Fib is not allocated from pool. If a response
516          *      is not requested the Fib will just be deallocaed by the DPC
517          *      routine when the response comes back from the adapter. No
518          *      further processing will be done besides deleting the Fib. We
519          *      will have a debug mode where the adapter can notify the host
520          *      it had a problem and the host can log that fact.
521          */
522         fibptr->flags = 0;
523         if (wait && !reply) {
524                 return -EINVAL;
525         } else if (!wait && reply) {
526                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
527                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
528         } else if (!wait && !reply) {
529                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
530                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
531         } else if (wait && reply) {
532                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
533                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
534         }
535         /*
536          *      Map the fib into 32bits by using the fib number
537          */
538
539         hw_fib->header.SenderFibAddress =
540                 cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
541
542         /* use the same shifted value for handle to be compatible
543          * with the new native hba command handle
544          */
545         hw_fib->header.Handle =
546                 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
547
548         /*
549          *      Set FIB state to indicate where it came from and if we want a
550          *      response from the adapter. Also load the command from the
551          *      caller.
552          *
553          *      Map the hw fib pointer as a 32bit value
554          */
555         hw_fib->header.Command = cpu_to_le16(command);
556         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
557         /*
558          *      Set the size of the Fib we want to send to the adapter
559          */
560         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
561         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
562                 return -EMSGSIZE;
563         }
564         /*
565          *      Get a queue entry connect the FIB to it and send an notify
566          *      the adapter a command is ready.
567          */
568         hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
569
570         /*
571          *      Fill in the Callback and CallbackContext if we are not
572          *      going to wait.
573          */
574         if (!wait) {
575                 fibptr->callback = callback;
576                 fibptr->callback_data = callback_data;
577                 fibptr->flags = FIB_CONTEXT_FLAG;
578         }
579
580         fibptr->done = 0;
581
582         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
583
584         dprintk((KERN_DEBUG "Fib contents:.\n"));
585         dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
586         dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
587         dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
588         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
589         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
590         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
591
592         if (!dev->queues)
593                 return -EBUSY;
594
595         if (wait) {
596
597                 spin_lock_irqsave(&dev->manage_lock, mflags);
598                 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
599                         printk(KERN_INFO "No management Fibs Available:%d\n",
600                                                 dev->management_fib_count);
601                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
602                         return -EBUSY;
603                 }
604                 dev->management_fib_count++;
605                 spin_unlock_irqrestore(&dev->manage_lock, mflags);
606                 spin_lock_irqsave(&fibptr->event_lock, flags);
607         }
608
609         if (dev->sync_mode) {
610                 if (wait)
611                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
612                 spin_lock_irqsave(&dev->sync_lock, sflags);
613                 if (dev->sync_fib) {
614                         list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
615                         spin_unlock_irqrestore(&dev->sync_lock, sflags);
616                 } else {
617                         dev->sync_fib = fibptr;
618                         spin_unlock_irqrestore(&dev->sync_lock, sflags);
619                         aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
620                                 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
621                                 NULL, NULL, NULL, NULL, NULL);
622                 }
623                 if (wait) {
624                         fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
625                         if (wait_for_completion_interruptible(&fibptr->event_wait)) {
626                                 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
627                                 return -EFAULT;
628                         }
629                         return 0;
630                 }
631                 return -EINPROGRESS;
632         }
633
634         if (aac_adapter_deliver(fibptr) != 0) {
635                 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
636                 if (wait) {
637                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
638                         spin_lock_irqsave(&dev->manage_lock, mflags);
639                         dev->management_fib_count--;
640                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
641                 }
642                 return -EBUSY;
643         }
644
645
646         /*
647          *      If the caller wanted us to wait for response wait now.
648          */
649
650         if (wait) {
651                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
652                 /* Only set for first known interruptable command */
653                 if (wait < 0) {
654                         /*
655                          * *VERY* Dangerous to time out a command, the
656                          * assumption is made that we have no hope of
657                          * functioning because an interrupt routing or other
658                          * hardware failure has occurred.
659                          */
660                         unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
661                         while (!try_wait_for_completion(&fibptr->event_wait)) {
662                                 int blink;
663                                 if (time_is_before_eq_jiffies(timeout)) {
664                                         struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
665                                         atomic_dec(&q->numpending);
666                                         if (wait == -1) {
667                                                 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
668                                                   "Usually a result of a PCI interrupt routing problem;\n"
669                                                   "update mother board BIOS or consider utilizing one of\n"
670                                                   "the SAFE mode kernel options (acpi, apic etc)\n");
671                                         }
672                                         return -ETIMEDOUT;
673                                 }
674
675                                 if (unlikely(aac_pci_offline(dev)))
676                                         return -EFAULT;
677
678                                 if ((blink = aac_adapter_check_health(dev)) > 0) {
679                                         if (wait == -1) {
680                                                 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
681                                                   "Usually a result of a serious unrecoverable hardware problem\n",
682                                                   blink);
683                                         }
684                                         return -EFAULT;
685                                 }
686                                 /*
687                                  * Allow other processes / CPUS to use core
688                                  */
689                                 schedule();
690                         }
691                 } else if (wait_for_completion_interruptible(&fibptr->event_wait)) {
692                         /* Do nothing ... satisfy
693                          * wait_for_completion_interruptible must_check */
694                 }
695
696                 spin_lock_irqsave(&fibptr->event_lock, flags);
697                 if (fibptr->done == 0) {
698                         fibptr->done = 2; /* Tell interrupt we aborted */
699                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
700                         return -ERESTARTSYS;
701                 }
702                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
703                 BUG_ON(fibptr->done == 0);
704
705                 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
706                         return -ETIMEDOUT;
707                 return 0;
708         }
709         /*
710          *      If the user does not want a response than return success otherwise
711          *      return pending
712          */
713         if (reply)
714                 return -EINPROGRESS;
715         else
716                 return 0;
717 }
718
719 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
720                 void *callback_data)
721 {
722         struct aac_dev *dev = fibptr->dev;
723         int wait;
724         unsigned long flags = 0;
725         unsigned long mflags = 0;
726         struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)
727                         fibptr->hw_fib_va;
728
729         fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
730         if (callback) {
731                 wait = 0;
732                 fibptr->callback = callback;
733                 fibptr->callback_data = callback_data;
734         } else
735                 wait = 1;
736
737
738         hbacmd->iu_type = command;
739
740         if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
741                 /* bit1 of request_id must be 0 */
742                 hbacmd->request_id =
743                         cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
744                 fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
745         } else if (command != HBA_IU_TYPE_SCSI_TM_REQ)
746                 return -EINVAL;
747
748
749         if (wait) {
750                 spin_lock_irqsave(&dev->manage_lock, mflags);
751                 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
752                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
753                         return -EBUSY;
754                 }
755                 dev->management_fib_count++;
756                 spin_unlock_irqrestore(&dev->manage_lock, mflags);
757                 spin_lock_irqsave(&fibptr->event_lock, flags);
758         }
759
760         if (aac_adapter_deliver(fibptr) != 0) {
761                 if (wait) {
762                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
763                         spin_lock_irqsave(&dev->manage_lock, mflags);
764                         dev->management_fib_count--;
765                         spin_unlock_irqrestore(&dev->manage_lock, mflags);
766                 }
767                 return -EBUSY;
768         }
769         FIB_COUNTER_INCREMENT(aac_config.NativeSent);
770
771         if (wait) {
772
773                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
774
775                 if (unlikely(aac_pci_offline(dev)))
776                         return -EFAULT;
777
778                 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
779                 if (wait_for_completion_interruptible(&fibptr->event_wait))
780                         fibptr->done = 2;
781                 fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
782
783                 spin_lock_irqsave(&fibptr->event_lock, flags);
784                 if ((fibptr->done == 0) || (fibptr->done == 2)) {
785                         fibptr->done = 2; /* Tell interrupt we aborted */
786                         spin_unlock_irqrestore(&fibptr->event_lock, flags);
787                         return -ERESTARTSYS;
788                 }
789                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
790                 WARN_ON(fibptr->done == 0);
791
792                 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
793                         return -ETIMEDOUT;
794
795                 return 0;
796         }
797
798         return -EINPROGRESS;
799 }
800
801 /**
802  *      aac_consumer_get        -       get the top of the queue
803  *      @dev: Adapter
804  *      @q: Queue
805  *      @entry: Return entry
806  *
807  *      Will return a pointer to the entry on the top of the queue requested that
808  *      we are a consumer of, and return the address of the queue entry. It does
809  *      not change the state of the queue.
810  */
811
812 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
813 {
814         u32 index;
815         int status;
816         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
817                 status = 0;
818         } else {
819                 /*
820                  *      The consumer index must be wrapped if we have reached
821                  *      the end of the queue, else we just use the entry
822                  *      pointed to by the header index
823                  */
824                 if (le32_to_cpu(*q->headers.consumer) >= q->entries)
825                         index = 0;
826                 else
827                         index = le32_to_cpu(*q->headers.consumer);
828                 *entry = q->base + index;
829                 status = 1;
830         }
831         return(status);
832 }
833
834 /**
835  *      aac_consumer_free       -       free consumer entry
836  *      @dev: Adapter
837  *      @q: Queue
838  *      @qid: Queue ident
839  *
840  *      Frees up the current top of the queue we are a consumer of. If the
841  *      queue was full notify the producer that the queue is no longer full.
842  */
843
844 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
845 {
846         int wasfull = 0;
847         u32 notify;
848
849         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
850                 wasfull = 1;
851
852         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
853                 *q->headers.consumer = cpu_to_le32(1);
854         else
855                 le32_add_cpu(q->headers.consumer, 1);
856
857         if (wasfull) {
858                 switch (qid) {
859
860                 case HostNormCmdQueue:
861                         notify = HostNormCmdNotFull;
862                         break;
863                 case HostNormRespQueue:
864                         notify = HostNormRespNotFull;
865                         break;
866                 default:
867                         BUG();
868                         return;
869                 }
870                 aac_adapter_notify(dev, notify);
871         }
872 }
873
874 /**
875  *      aac_fib_adapter_complete        -       complete adapter issued fib
876  *      @fibptr: fib to complete
877  *      @size: size of fib
878  *
879  *      Will do all necessary work to complete a FIB that was sent from
880  *      the adapter.
881  */
882
883 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
884 {
885         struct hw_fib * hw_fib = fibptr->hw_fib_va;
886         struct aac_dev * dev = fibptr->dev;
887         struct aac_queue * q;
888         unsigned long nointr = 0;
889         unsigned long qflags;
890
891         if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
892                 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
893                 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
894                 kfree(hw_fib);
895                 return 0;
896         }
897
898         if (hw_fib->header.XferState == 0) {
899                 if (dev->comm_interface == AAC_COMM_MESSAGE)
900                         kfree(hw_fib);
901                 return 0;
902         }
903         /*
904          *      If we plan to do anything check the structure type first.
905          */
906         if (hw_fib->header.StructType != FIB_MAGIC &&
907             hw_fib->header.StructType != FIB_MAGIC2 &&
908             hw_fib->header.StructType != FIB_MAGIC2_64) {
909                 if (dev->comm_interface == AAC_COMM_MESSAGE)
910                         kfree(hw_fib);
911                 return -EINVAL;
912         }
913         /*
914          *      This block handles the case where the adapter had sent us a
915          *      command and we have finished processing the command. We
916          *      call completeFib when we are done processing the command
917          *      and want to send a response back to the adapter. This will
918          *      send the completed cdb to the adapter.
919          */
920         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
921                 if (dev->comm_interface == AAC_COMM_MESSAGE) {
922                         kfree (hw_fib);
923                 } else {
924                         u32 index;
925                         hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
926                         if (size) {
927                                 size += sizeof(struct aac_fibhdr);
928                                 if (size > le16_to_cpu(hw_fib->header.SenderSize))
929                                         return -EMSGSIZE;
930                                 hw_fib->header.Size = cpu_to_le16(size);
931                         }
932                         q = &dev->queues->queue[AdapNormRespQueue];
933                         spin_lock_irqsave(q->lock, qflags);
934                         aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
935                         *(q->headers.producer) = cpu_to_le32(index + 1);
936                         spin_unlock_irqrestore(q->lock, qflags);
937                         if (!(nointr & (int)aac_config.irq_mod))
938                                 aac_adapter_notify(dev, AdapNormRespQueue);
939                 }
940         } else {
941                 printk(KERN_WARNING "aac_fib_adapter_complete: "
942                         "Unknown xferstate detected.\n");
943                 BUG();
944         }
945         return 0;
946 }
947
948 /**
949  *      aac_fib_complete        -       fib completion handler
950  *      @fib: FIB to complete
951  *
952  *      Will do all necessary work to complete a FIB.
953  */
954
955 int aac_fib_complete(struct fib *fibptr)
956 {
957         struct hw_fib * hw_fib = fibptr->hw_fib_va;
958
959         if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
960                 fib_dealloc(fibptr);
961                 return 0;
962         }
963
964         /*
965          *      Check for a fib which has already been completed or with a
966          *      status wait timeout
967          */
968
969         if (hw_fib->header.XferState == 0 || fibptr->done == 2)
970                 return 0;
971         /*
972          *      If we plan to do anything check the structure type first.
973          */
974
975         if (hw_fib->header.StructType != FIB_MAGIC &&
976             hw_fib->header.StructType != FIB_MAGIC2 &&
977             hw_fib->header.StructType != FIB_MAGIC2_64)
978                 return -EINVAL;
979         /*
980          *      This block completes a cdb which orginated on the host and we
981          *      just need to deallocate the cdb or reinit it. At this point the
982          *      command is complete that we had sent to the adapter and this
983          *      cdb could be reused.
984          */
985
986         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
987                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
988         {
989                 fib_dealloc(fibptr);
990         }
991         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
992         {
993                 /*
994                  *      This handles the case when the host has aborted the I/O
995                  *      to the adapter because the adapter is not responding
996                  */
997                 fib_dealloc(fibptr);
998         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
999                 fib_dealloc(fibptr);
1000         } else {
1001                 BUG();
1002         }
1003         return 0;
1004 }
1005
1006 /**
1007  *      aac_printf      -       handle printf from firmware
1008  *      @dev: Adapter
1009  *      @val: Message info
1010  *
1011  *      Print a message passed to us by the controller firmware on the
1012  *      Adaptec board
1013  */
1014
1015 void aac_printf(struct aac_dev *dev, u32 val)
1016 {
1017         char *cp = dev->printfbuf;
1018         if (dev->printf_enabled)
1019         {
1020                 int length = val & 0xffff;
1021                 int level = (val >> 16) & 0xffff;
1022
1023                 /*
1024                  *      The size of the printfbuf is set in port.c
1025                  *      There is no variable or define for it
1026                  */
1027                 if (length > 255)
1028                         length = 255;
1029                 if (cp[length] != 0)
1030                         cp[length] = 0;
1031                 if (level == LOG_AAC_HIGH_ERROR)
1032                         printk(KERN_WARNING "%s:%s", dev->name, cp);
1033                 else
1034                         printk(KERN_INFO "%s:%s", dev->name, cp);
1035         }
1036         memset(cp, 0, 256);
1037 }
1038
1039 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1040 {
1041         return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1042 }
1043
1044
1045 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1046 {
1047         switch (aac_aif_data(aifcmd, 1)) {
1048         case AifBuCacheDataLoss:
1049                 if (aac_aif_data(aifcmd, 2))
1050                         dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1051                         aac_aif_data(aifcmd, 2));
1052                 else
1053                         dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1054                 break;
1055         case AifBuCacheDataRecover:
1056                 if (aac_aif_data(aifcmd, 2))
1057                         dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1058                         aac_aif_data(aifcmd, 2));
1059                 else
1060                         dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1061                 break;
1062         }
1063 }
1064
1065 /**
1066  *      aac_handle_aif          -       Handle a message from the firmware
1067  *      @dev: Which adapter this fib is from
1068  *      @fibptr: Pointer to fibptr from adapter
1069  *
1070  *      This routine handles a driver notify fib from the adapter and
1071  *      dispatches it to the appropriate routine for handling.
1072  */
1073
1074 #define AIF_SNIFF_TIMEOUT       (500*HZ)
1075 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1076 {
1077         struct hw_fib * hw_fib = fibptr->hw_fib_va;
1078         struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1079         u32 channel, id, lun, container;
1080         struct scsi_device *device;
1081         enum {
1082                 NOTHING,
1083                 DELETE,
1084                 ADD,
1085                 CHANGE
1086         } device_config_needed = NOTHING;
1087
1088         /* Sniff for container changes */
1089
1090         if (!dev || !dev->fsa_dev)
1091                 return;
1092         container = channel = id = lun = (u32)-1;
1093
1094         /*
1095          *      We have set this up to try and minimize the number of
1096          * re-configures that take place. As a result of this when
1097          * certain AIF's come in we will set a flag waiting for another
1098          * type of AIF before setting the re-config flag.
1099          */
1100         switch (le32_to_cpu(aifcmd->command)) {
1101         case AifCmdDriverNotify:
1102                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1103                 case AifRawDeviceRemove:
1104                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1105                         if ((container >> 28)) {
1106                                 container = (u32)-1;
1107                                 break;
1108                         }
1109                         channel = (container >> 24) & 0xF;
1110                         if (channel >= dev->maximum_num_channels) {
1111                                 container = (u32)-1;
1112                                 break;
1113                         }
1114                         id = container & 0xFFFF;
1115                         if (id >= dev->maximum_num_physicals) {
1116                                 container = (u32)-1;
1117                                 break;
1118                         }
1119                         lun = (container >> 16) & 0xFF;
1120                         container = (u32)-1;
1121                         channel = aac_phys_to_logical(channel);
1122                         device_config_needed = DELETE;
1123                         break;
1124
1125                 /*
1126                  *      Morph or Expand complete
1127                  */
1128                 case AifDenMorphComplete:
1129                 case AifDenVolumeExtendComplete:
1130                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1131                         if (container >= dev->maximum_num_containers)
1132                                 break;
1133
1134                         /*
1135                          *      Find the scsi_device associated with the SCSI
1136                          * address. Make sure we have the right array, and if
1137                          * so set the flag to initiate a new re-config once we
1138                          * see an AifEnConfigChange AIF come through.
1139                          */
1140
1141                         if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1142                                 device = scsi_device_lookup(dev->scsi_host_ptr,
1143                                         CONTAINER_TO_CHANNEL(container),
1144                                         CONTAINER_TO_ID(container),
1145                                         CONTAINER_TO_LUN(container));
1146                                 if (device) {
1147                                         dev->fsa_dev[container].config_needed = CHANGE;
1148                                         dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1149                                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1150                                         scsi_device_put(device);
1151                                 }
1152                         }
1153                 }
1154
1155                 /*
1156                  *      If we are waiting on something and this happens to be
1157                  * that thing then set the re-configure flag.
1158                  */
1159                 if (container != (u32)-1) {
1160                         if (container >= dev->maximum_num_containers)
1161                                 break;
1162                         if ((dev->fsa_dev[container].config_waiting_on ==
1163                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1164                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1165                                 dev->fsa_dev[container].config_waiting_on = 0;
1166                 } else for (container = 0;
1167                     container < dev->maximum_num_containers; ++container) {
1168                         if ((dev->fsa_dev[container].config_waiting_on ==
1169                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1170                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1171                                 dev->fsa_dev[container].config_waiting_on = 0;
1172                 }
1173                 break;
1174
1175         case AifCmdEventNotify:
1176                 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1177                 case AifEnBatteryEvent:
1178                         dev->cache_protected =
1179                                 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1180                         break;
1181                 /*
1182                  *      Add an Array.
1183                  */
1184                 case AifEnAddContainer:
1185                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1186                         if (container >= dev->maximum_num_containers)
1187                                 break;
1188                         dev->fsa_dev[container].config_needed = ADD;
1189                         dev->fsa_dev[container].config_waiting_on =
1190                                 AifEnConfigChange;
1191                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1192                         break;
1193
1194                 /*
1195                  *      Delete an Array.
1196                  */
1197                 case AifEnDeleteContainer:
1198                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1199                         if (container >= dev->maximum_num_containers)
1200                                 break;
1201                         dev->fsa_dev[container].config_needed = DELETE;
1202                         dev->fsa_dev[container].config_waiting_on =
1203                                 AifEnConfigChange;
1204                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1205                         break;
1206
1207                 /*
1208                  *      Container change detected. If we currently are not
1209                  * waiting on something else, setup to wait on a Config Change.
1210                  */
1211                 case AifEnContainerChange:
1212                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1213                         if (container >= dev->maximum_num_containers)
1214                                 break;
1215                         if (dev->fsa_dev[container].config_waiting_on &&
1216                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1217                                 break;
1218                         dev->fsa_dev[container].config_needed = CHANGE;
1219                         dev->fsa_dev[container].config_waiting_on =
1220                                 AifEnConfigChange;
1221                         dev->fsa_dev[container].config_waiting_stamp = jiffies;
1222                         break;
1223
1224                 case AifEnConfigChange:
1225                         break;
1226
1227                 case AifEnAddJBOD:
1228                 case AifEnDeleteJBOD:
1229                         container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1230                         if ((container >> 28)) {
1231                                 container = (u32)-1;
1232                                 break;
1233                         }
1234                         channel = (container >> 24) & 0xF;
1235                         if (channel >= dev->maximum_num_channels) {
1236                                 container = (u32)-1;
1237                                 break;
1238                         }
1239                         id = container & 0xFFFF;
1240                         if (id >= dev->maximum_num_physicals) {
1241                                 container = (u32)-1;
1242                                 break;
1243                         }
1244                         lun = (container >> 16) & 0xFF;
1245                         container = (u32)-1;
1246                         channel = aac_phys_to_logical(channel);
1247                         device_config_needed =
1248                           (((__le32 *)aifcmd->data)[0] ==
1249                             cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1250                         if (device_config_needed == ADD) {
1251                                 device = scsi_device_lookup(dev->scsi_host_ptr,
1252                                         channel,
1253                                         id,
1254                                         lun);
1255                                 if (device) {
1256                                         scsi_remove_device(device);
1257                                         scsi_device_put(device);
1258                                 }
1259                         }
1260                         break;
1261
1262                 case AifEnEnclosureManagement:
1263                         /*
1264                          * If in JBOD mode, automatic exposure of new
1265                          * physical target to be suppressed until configured.
1266                          */
1267                         if (dev->jbod)
1268                                 break;
1269                         switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1270                         case EM_DRIVE_INSERTION:
1271                         case EM_DRIVE_REMOVAL:
1272                         case EM_SES_DRIVE_INSERTION:
1273                         case EM_SES_DRIVE_REMOVAL:
1274                                 container = le32_to_cpu(
1275                                         ((__le32 *)aifcmd->data)[2]);
1276                                 if ((container >> 28)) {
1277                                         container = (u32)-1;
1278                                         break;
1279                                 }
1280                                 channel = (container >> 24) & 0xF;
1281                                 if (channel >= dev->maximum_num_channels) {
1282                                         container = (u32)-1;
1283                                         break;
1284                                 }
1285                                 id = container & 0xFFFF;
1286                                 lun = (container >> 16) & 0xFF;
1287                                 container = (u32)-1;
1288                                 if (id >= dev->maximum_num_physicals) {
1289                                         /* legacy dev_t ? */
1290                                         if ((0x2000 <= id) || lun || channel ||
1291                                           ((channel = (id >> 7) & 0x3F) >=
1292                                           dev->maximum_num_channels))
1293                                                 break;
1294                                         lun = (id >> 4) & 7;
1295                                         id &= 0xF;
1296                                 }
1297                                 channel = aac_phys_to_logical(channel);
1298                                 device_config_needed =
1299                                   ((((__le32 *)aifcmd->data)[3]
1300                                     == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1301                                     (((__le32 *)aifcmd->data)[3]
1302                                     == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1303                                   ADD : DELETE;
1304                                 break;
1305                         }
1306                         break;
1307                 case AifBuManagerEvent:
1308                         aac_handle_aif_bu(dev, aifcmd);
1309                         break;
1310                 }
1311
1312                 /*
1313                  *      If we are waiting on something and this happens to be
1314                  * that thing then set the re-configure flag.
1315                  */
1316                 if (container != (u32)-1) {
1317                         if (container >= dev->maximum_num_containers)
1318                                 break;
1319                         if ((dev->fsa_dev[container].config_waiting_on ==
1320                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1321                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1322                                 dev->fsa_dev[container].config_waiting_on = 0;
1323                 } else for (container = 0;
1324                     container < dev->maximum_num_containers; ++container) {
1325                         if ((dev->fsa_dev[container].config_waiting_on ==
1326                             le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1327                          time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1328                                 dev->fsa_dev[container].config_waiting_on = 0;
1329                 }
1330                 break;
1331
1332         case AifCmdJobProgress:
1333                 /*
1334                  *      These are job progress AIF's. When a Clear is being
1335                  * done on a container it is initially created then hidden from
1336                  * the OS. When the clear completes we don't get a config
1337                  * change so we monitor the job status complete on a clear then
1338                  * wait for a container change.
1339                  */
1340
1341                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1342                     (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1343                      ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1344                         for (container = 0;
1345                             container < dev->maximum_num_containers;
1346                             ++container) {
1347                                 /*
1348                                  * Stomp on all config sequencing for all
1349                                  * containers?
1350                                  */
1351                                 dev->fsa_dev[container].config_waiting_on =
1352                                         AifEnContainerChange;
1353                                 dev->fsa_dev[container].config_needed = ADD;
1354                                 dev->fsa_dev[container].config_waiting_stamp =
1355                                         jiffies;
1356                         }
1357                 }
1358                 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1359                     ((__le32 *)aifcmd->data)[6] == 0 &&
1360                     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1361                         for (container = 0;
1362                             container < dev->maximum_num_containers;
1363                             ++container) {
1364                                 /*
1365                                  * Stomp on all config sequencing for all
1366                                  * containers?
1367                                  */
1368                                 dev->fsa_dev[container].config_waiting_on =
1369                                         AifEnContainerChange;
1370                                 dev->fsa_dev[container].config_needed = DELETE;
1371                                 dev->fsa_dev[container].config_waiting_stamp =
1372                                         jiffies;
1373                         }
1374                 }
1375                 break;
1376         }
1377
1378         container = 0;
1379 retry_next:
1380         if (device_config_needed == NOTHING) {
1381                 for (; container < dev->maximum_num_containers; ++container) {
1382                         if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1383                             (dev->fsa_dev[container].config_needed != NOTHING) &&
1384                             time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1385                                 device_config_needed =
1386                                         dev->fsa_dev[container].config_needed;
1387                                 dev->fsa_dev[container].config_needed = NOTHING;
1388                                 channel = CONTAINER_TO_CHANNEL(container);
1389                                 id = CONTAINER_TO_ID(container);
1390                                 lun = CONTAINER_TO_LUN(container);
1391                                 break;
1392                         }
1393                 }
1394         }
1395         if (device_config_needed == NOTHING)
1396                 return;
1397
1398         /*
1399          *      If we decided that a re-configuration needs to be done,
1400          * schedule it here on the way out the door, please close the door
1401          * behind you.
1402          */
1403
1404         /*
1405          *      Find the scsi_device associated with the SCSI address,
1406          * and mark it as changed, invalidating the cache. This deals
1407          * with changes to existing device IDs.
1408          */
1409
1410         if (!dev || !dev->scsi_host_ptr)
1411                 return;
1412         /*
1413          * force reload of disk info via aac_probe_container
1414          */
1415         if ((channel == CONTAINER_CHANNEL) &&
1416           (device_config_needed != NOTHING)) {
1417                 if (dev->fsa_dev[container].valid == 1)
1418                         dev->fsa_dev[container].valid = 2;
1419                 aac_probe_container(dev, container);
1420         }
1421         device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1422         if (device) {
1423                 switch (device_config_needed) {
1424                 case DELETE:
1425 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1426                         scsi_remove_device(device);
1427 #else
1428                         if (scsi_device_online(device)) {
1429                                 scsi_device_set_state(device, SDEV_OFFLINE);
1430                                 sdev_printk(KERN_INFO, device,
1431                                         "Device offlined - %s\n",
1432                                         (channel == CONTAINER_CHANNEL) ?
1433                                                 "array deleted" :
1434                                                 "enclosure services event");
1435                         }
1436 #endif
1437                         break;
1438                 case ADD:
1439                         if (!scsi_device_online(device)) {
1440                                 sdev_printk(KERN_INFO, device,
1441                                         "Device online - %s\n",
1442                                         (channel == CONTAINER_CHANNEL) ?
1443                                                 "array created" :
1444                                                 "enclosure services event");
1445                                 scsi_device_set_state(device, SDEV_RUNNING);
1446                         }
1447                         /* FALLTHRU */
1448                 case CHANGE:
1449                         if ((channel == CONTAINER_CHANNEL)
1450                          && (!dev->fsa_dev[container].valid)) {
1451 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1452                                 scsi_remove_device(device);
1453 #else
1454                                 if (!scsi_device_online(device))
1455                                         break;
1456                                 scsi_device_set_state(device, SDEV_OFFLINE);
1457                                 sdev_printk(KERN_INFO, device,
1458                                         "Device offlined - %s\n",
1459                                         "array failed");
1460 #endif
1461                                 break;
1462                         }
1463                         scsi_rescan_device(&device->sdev_gendev);
1464
1465                 default:
1466                         break;
1467                 }
1468                 scsi_device_put(device);
1469                 device_config_needed = NOTHING;
1470         }
1471         if (device_config_needed == ADD)
1472                 scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1473         if (channel == CONTAINER_CHANNEL) {
1474                 container++;
1475                 device_config_needed = NOTHING;
1476                 goto retry_next;
1477         }
1478 }
1479
1480 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1481 {
1482         int index, quirks;
1483         int retval;
1484         struct Scsi_Host *host;
1485         struct scsi_device *dev;
1486         struct scsi_cmnd *command;
1487         struct scsi_cmnd *command_list;
1488         int jafo = 0;
1489         int bled;
1490         u64 dmamask;
1491         int num_of_fibs = 0;
1492
1493         /*
1494          * Assumptions:
1495          *      - host is locked, unless called by the aacraid thread.
1496          *        (a matter of convenience, due to legacy issues surrounding
1497          *        eh_host_adapter_reset).
1498          *      - in_reset is asserted, so no new i/o is getting to the
1499          *        card.
1500          *      - The card is dead, or will be very shortly ;-/ so no new
1501          *        commands are completing in the interrupt service.
1502          */
1503         host = aac->scsi_host_ptr;
1504         scsi_block_requests(host);
1505         aac_adapter_disable_int(aac);
1506         if (aac->thread && aac->thread->pid != current->pid) {
1507                 spin_unlock_irq(host->host_lock);
1508                 kthread_stop(aac->thread);
1509                 aac->thread = NULL;
1510                 jafo = 1;
1511         }
1512
1513         /*
1514          *      If a positive health, means in a known DEAD PANIC
1515          * state and the adapter could be reset to `try again'.
1516          */
1517         bled = forced ? 0 : aac_adapter_check_health(aac);
1518         retval = aac_adapter_restart(aac, bled, reset_type);
1519
1520         if (retval)
1521                 goto out;
1522
1523         /*
1524          *      Loop through the fibs, close the synchronous FIBS
1525          */
1526         retval = 1;
1527         num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1528         for (index = 0; index <  num_of_fibs; index++) {
1529
1530                 struct fib *fib = &aac->fibs[index];
1531                 __le32 XferState = fib->hw_fib_va->header.XferState;
1532                 bool is_response_expected = false;
1533
1534                 if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1535                    (XferState & cpu_to_le32(ResponseExpected)))
1536                         is_response_expected = true;
1537
1538                 if (is_response_expected
1539                   || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1540                         unsigned long flagv;
1541                         spin_lock_irqsave(&fib->event_lock, flagv);
1542                         complete(&fib->event_wait);
1543                         spin_unlock_irqrestore(&fib->event_lock, flagv);
1544                         schedule();
1545                         retval = 0;
1546                 }
1547         }
1548         /* Give some extra time for ioctls to complete. */
1549         if (retval == 0)
1550                 ssleep(2);
1551         index = aac->cardtype;
1552
1553         /*
1554          * Re-initialize the adapter, first free resources, then carefully
1555          * apply the initialization sequence to come back again. Only risk
1556          * is a change in Firmware dropping cache, it is assumed the caller
1557          * will ensure that i/o is queisced and the card is flushed in that
1558          * case.
1559          */
1560         aac_free_irq(aac);
1561         aac_fib_map_free(aac);
1562         dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1563                           aac->comm_phys);
1564         aac->comm_addr = NULL;
1565         aac->comm_phys = 0;
1566         kfree(aac->queues);
1567         aac->queues = NULL;
1568         kfree(aac->fsa_dev);
1569         aac->fsa_dev = NULL;
1570
1571         dmamask = DMA_BIT_MASK(32);
1572         quirks = aac_get_driver_ident(index)->quirks;
1573         if (quirks & AAC_QUIRK_31BIT)
1574                 retval = pci_set_dma_mask(aac->pdev, dmamask);
1575         else if (!(quirks & AAC_QUIRK_SRC))
1576                 retval = pci_set_dma_mask(aac->pdev, dmamask);
1577         else
1578                 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1579
1580         if (quirks & AAC_QUIRK_31BIT && !retval) {
1581                 dmamask = DMA_BIT_MASK(31);
1582                 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1583         }
1584
1585         if (retval)
1586                 goto out;
1587
1588         if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1589                 goto out;
1590
1591         if (jafo) {
1592                 aac->thread = kthread_run(aac_command_thread, aac, "%s",
1593                                           aac->name);
1594                 if (IS_ERR(aac->thread)) {
1595                         retval = PTR_ERR(aac->thread);
1596                         aac->thread = NULL;
1597                         goto out;
1598                 }
1599         }
1600         (void)aac_get_adapter_info(aac);
1601         if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1602                 host->sg_tablesize = 34;
1603                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1604         }
1605         if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1606                 host->sg_tablesize = 17;
1607                 host->max_sectors = (host->sg_tablesize * 8) + 112;
1608         }
1609         aac_get_config_status(aac, 1);
1610         aac_get_containers(aac);
1611         /*
1612          * This is where the assumption that the Adapter is quiesced
1613          * is important.
1614          */
1615         command_list = NULL;
1616         __shost_for_each_device(dev, host) {
1617                 unsigned long flags;
1618                 spin_lock_irqsave(&dev->list_lock, flags);
1619                 list_for_each_entry(command, &dev->cmd_list, list)
1620                         if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1621                                 command->SCp.buffer = (struct scatterlist *)command_list;
1622                                 command_list = command;
1623                         }
1624                 spin_unlock_irqrestore(&dev->list_lock, flags);
1625         }
1626         while ((command = command_list)) {
1627                 command_list = (struct scsi_cmnd *)command->SCp.buffer;
1628                 command->SCp.buffer = NULL;
1629                 command->result = DID_OK << 16
1630                   | COMMAND_COMPLETE << 8
1631                   | SAM_STAT_TASK_SET_FULL;
1632                 command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1633                 command->scsi_done(command);
1634         }
1635         /*
1636          * Any Device that was already marked offline needs to be marked
1637          * running
1638          */
1639         __shost_for_each_device(dev, host) {
1640                 if (!scsi_device_online(dev))
1641                         scsi_device_set_state(dev, SDEV_RUNNING);
1642         }
1643         retval = 0;
1644
1645 out:
1646         aac->in_reset = 0;
1647         scsi_unblock_requests(host);
1648
1649         /*
1650          * Issue bus rescan to catch any configuration that might have
1651          * occurred
1652          */
1653         if (!retval && !is_kdump_kernel()) {
1654                 dev_info(&aac->pdev->dev, "Scheduling bus rescan\n");
1655                 aac_schedule_safw_scan_worker(aac);
1656         }
1657
1658         if (jafo) {
1659                 spin_lock_irq(host->host_lock);
1660         }
1661         return retval;
1662 }
1663
1664 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1665 {
1666         unsigned long flagv = 0;
1667         int retval;
1668         struct Scsi_Host * host;
1669         int bled;
1670
1671         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1672                 return -EBUSY;
1673
1674         if (aac->in_reset) {
1675                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1676                 return -EBUSY;
1677         }
1678         aac->in_reset = 1;
1679         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1680
1681         /*
1682          * Wait for all commands to complete to this specific
1683          * target (block maximum 60 seconds). Although not necessary,
1684          * it does make us a good storage citizen.
1685          */
1686         host = aac->scsi_host_ptr;
1687         scsi_block_requests(host);
1688
1689         /* Quiesce build, flush cache, write through mode */
1690         if (forced < 2)
1691                 aac_send_shutdown(aac);
1692         spin_lock_irqsave(host->host_lock, flagv);
1693         bled = forced ? forced :
1694                         (aac_check_reset != 0 && aac_check_reset != 1);
1695         retval = _aac_reset_adapter(aac, bled, reset_type);
1696         spin_unlock_irqrestore(host->host_lock, flagv);
1697
1698         if ((forced < 2) && (retval == -ENODEV)) {
1699                 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1700                 struct fib * fibctx = aac_fib_alloc(aac);
1701                 if (fibctx) {
1702                         struct aac_pause *cmd;
1703                         int status;
1704
1705                         aac_fib_init(fibctx);
1706
1707                         cmd = (struct aac_pause *) fib_data(fibctx);
1708
1709                         cmd->command = cpu_to_le32(VM_ContainerConfig);
1710                         cmd->type = cpu_to_le32(CT_PAUSE_IO);
1711                         cmd->timeout = cpu_to_le32(1);
1712                         cmd->min = cpu_to_le32(1);
1713                         cmd->noRescan = cpu_to_le32(1);
1714                         cmd->count = cpu_to_le32(0);
1715
1716                         status = aac_fib_send(ContainerCommand,
1717                           fibctx,
1718                           sizeof(struct aac_pause),
1719                           FsaNormal,
1720                           -2 /* Timeout silently */, 1,
1721                           NULL, NULL);
1722
1723                         if (status >= 0)
1724                                 aac_fib_complete(fibctx);
1725                         /* FIB should be freed only after getting
1726                          * the response from the F/W */
1727                         if (status != -ERESTARTSYS)
1728                                 aac_fib_free(fibctx);
1729                 }
1730         }
1731
1732         return retval;
1733 }
1734
1735 int aac_check_health(struct aac_dev * aac)
1736 {
1737         int BlinkLED;
1738         unsigned long time_now, flagv = 0;
1739         struct list_head * entry;
1740
1741         /* Extending the scope of fib_lock slightly to protect aac->in_reset */
1742         if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1743                 return 0;
1744
1745         if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1746                 spin_unlock_irqrestore(&aac->fib_lock, flagv);
1747                 return 0; /* OK */
1748         }
1749
1750         aac->in_reset = 1;
1751
1752         /* Fake up an AIF:
1753          *      aac_aifcmd.command = AifCmdEventNotify = 1
1754          *      aac_aifcmd.seqnum = 0xFFFFFFFF
1755          *      aac_aifcmd.data[0] = AifEnExpEvent = 23
1756          *      aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1757          *      aac.aifcmd.data[2] = AifHighPriority = 3
1758          *      aac.aifcmd.data[3] = BlinkLED
1759          */
1760
1761         time_now = jiffies/HZ;
1762         entry = aac->fib_list.next;
1763
1764         /*
1765          * For each Context that is on the
1766          * fibctxList, make a copy of the
1767          * fib, and then set the event to wake up the
1768          * thread that is waiting for it.
1769          */
1770         while (entry != &aac->fib_list) {
1771                 /*
1772                  * Extract the fibctx
1773                  */
1774                 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1775                 struct hw_fib * hw_fib;
1776                 struct fib * fib;
1777                 /*
1778                  * Check if the queue is getting
1779                  * backlogged
1780                  */
1781                 if (fibctx->count > 20) {
1782                         /*
1783                          * It's *not* jiffies folks,
1784                          * but jiffies / HZ, so do not
1785                          * panic ...
1786                          */
1787                         u32 time_last = fibctx->jiffies;
1788                         /*
1789                          * Has it been > 2 minutes
1790                          * since the last read off
1791                          * the queue?
1792                          */
1793                         if ((time_now - time_last) > aif_timeout) {
1794                                 entry = entry->next;
1795                                 aac_close_fib_context(aac, fibctx);
1796                                 continue;
1797                         }
1798                 }
1799                 /*
1800                  * Warning: no sleep allowed while
1801                  * holding spinlock
1802                  */
1803                 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1804                 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1805                 if (fib && hw_fib) {
1806                         struct aac_aifcmd * aif;
1807
1808                         fib->hw_fib_va = hw_fib;
1809                         fib->dev = aac;
1810                         aac_fib_init(fib);
1811                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1812                         fib->size = sizeof (struct fib);
1813                         fib->data = hw_fib->data;
1814                         aif = (struct aac_aifcmd *)hw_fib->data;
1815                         aif->command = cpu_to_le32(AifCmdEventNotify);
1816                         aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1817                         ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1818                         ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1819                         ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1820                         ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1821
1822                         /*
1823                          * Put the FIB onto the
1824                          * fibctx's fibs
1825                          */
1826                         list_add_tail(&fib->fiblink, &fibctx->fib_list);
1827                         fibctx->count++;
1828                         /*
1829                          * Set the event to wake up the
1830                          * thread that will waiting.
1831                          */
1832                         complete(&fibctx->completion);
1833                 } else {
1834                         printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1835                         kfree(fib);
1836                         kfree(hw_fib);
1837                 }
1838                 entry = entry->next;
1839         }
1840
1841         spin_unlock_irqrestore(&aac->fib_lock, flagv);
1842
1843         if (BlinkLED < 0) {
1844                 printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
1845                                 aac->name, BlinkLED);
1846                 goto out;
1847         }
1848
1849         printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1850
1851 out:
1852         aac->in_reset = 0;
1853         return BlinkLED;
1854 }
1855
1856 static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target)
1857 {
1858         return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers;
1859 }
1860
1861 static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev,
1862                                                                 int bus,
1863                                                                 int target)
1864 {
1865         if (bus != CONTAINER_CHANNEL)
1866                 bus = aac_phys_to_logical(bus);
1867
1868         return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0);
1869 }
1870
1871 static int aac_add_safw_device(struct aac_dev *dev, int bus, int target)
1872 {
1873         if (bus != CONTAINER_CHANNEL)
1874                 bus = aac_phys_to_logical(bus);
1875
1876         return scsi_add_device(dev->scsi_host_ptr, bus, target, 0);
1877 }
1878
1879 static void aac_put_safw_scsi_device(struct scsi_device *sdev)
1880 {
1881         if (sdev)
1882                 scsi_device_put(sdev);
1883 }
1884
1885 static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target)
1886 {
1887         struct scsi_device *sdev;
1888
1889         sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1890         scsi_remove_device(sdev);
1891         aac_put_safw_scsi_device(sdev);
1892 }
1893
1894 static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev,
1895         int bus, int target)
1896 {
1897         return dev->hba_map[bus][target].scan_counter == dev->scan_counter;
1898 }
1899
1900 static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target)
1901 {
1902         if (is_safw_raid_volume(dev, bus, target))
1903                 return dev->fsa_dev[target].valid;
1904         else
1905                 return aac_is_safw_scan_count_equal(dev, bus, target);
1906 }
1907
1908 static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target)
1909 {
1910         int is_exposed = 0;
1911         struct scsi_device *sdev;
1912
1913         sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1914         if (sdev)
1915                 is_exposed = 1;
1916         aac_put_safw_scsi_device(sdev);
1917
1918         return is_exposed;
1919 }
1920
1921 static int aac_update_safw_host_devices(struct aac_dev *dev)
1922 {
1923         int i;
1924         int bus;
1925         int target;
1926         int is_exposed = 0;
1927         int rcode = 0;
1928
1929         rcode = aac_setup_safw_adapter(dev);
1930         if (unlikely(rcode < 0)) {
1931                 goto out;
1932         }
1933
1934         for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) {
1935
1936                 bus = get_bus_number(i);
1937                 target = get_target_number(i);
1938
1939                 is_exposed = aac_is_safw_device_exposed(dev, bus, target);
1940
1941                 if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed)
1942                         aac_add_safw_device(dev, bus, target);
1943                 else if (!aac_is_safw_target_valid(dev, bus, target) &&
1944                                                                 is_exposed)
1945                         aac_remove_safw_device(dev, bus, target);
1946         }
1947 out:
1948         return rcode;
1949 }
1950
1951 static int aac_scan_safw_host(struct aac_dev *dev)
1952 {
1953         int rcode = 0;
1954
1955         rcode = aac_update_safw_host_devices(dev);
1956         if (rcode)
1957                 aac_schedule_safw_scan_worker(dev);
1958
1959         return rcode;
1960 }
1961
1962 int aac_scan_host(struct aac_dev *dev)
1963 {
1964         int rcode = 0;
1965
1966         mutex_lock(&dev->scan_mutex);
1967         if (dev->sa_firmware)
1968                 rcode = aac_scan_safw_host(dev);
1969         else
1970                 scsi_scan_host(dev->scsi_host_ptr);
1971         mutex_unlock(&dev->scan_mutex);
1972
1973         return rcode;
1974 }
1975
1976 /**
1977  *      aac_handle_sa_aif       Handle a message from the firmware
1978  *      @dev: Which adapter this fib is from
1979  *      @fibptr: Pointer to fibptr from adapter
1980  *
1981  *      This routine handles a driver notify fib from the adapter and
1982  *      dispatches it to the appropriate routine for handling.
1983  */
1984 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1985 {
1986         int i;
1987         u32 events = 0;
1988
1989         if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1990                 events = SA_AIF_HOTPLUG;
1991         else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1992                 events = SA_AIF_HARDWARE;
1993         else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1994                 events = SA_AIF_PDEV_CHANGE;
1995         else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1996                 events = SA_AIF_LDEV_CHANGE;
1997         else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1998                 events = SA_AIF_BPSTAT_CHANGE;
1999         else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
2000                 events = SA_AIF_BPCFG_CHANGE;
2001
2002         switch (events) {
2003         case SA_AIF_HOTPLUG:
2004         case SA_AIF_HARDWARE:
2005         case SA_AIF_PDEV_CHANGE:
2006         case SA_AIF_LDEV_CHANGE:
2007         case SA_AIF_BPCFG_CHANGE:
2008
2009                 aac_scan_host(dev);
2010
2011                 break;
2012
2013         case SA_AIF_BPSTAT_CHANGE:
2014                 /* currently do nothing */
2015                 break;
2016         }
2017
2018         for (i = 1; i <= 10; ++i) {
2019                 events = src_readl(dev, MUnit.IDR);
2020                 if (events & (1<<23)) {
2021                         pr_warn(" AIF not cleared by firmware - %d/%d)\n",
2022                                 i, 10);
2023                         ssleep(1);
2024                 }
2025         }
2026 }
2027
2028 static int get_fib_count(struct aac_dev *dev)
2029 {
2030         unsigned int num = 0;
2031         struct list_head *entry;
2032         unsigned long flagv;
2033
2034         /*
2035          * Warning: no sleep allowed while
2036          * holding spinlock. We take the estimate
2037          * and pre-allocate a set of fibs outside the
2038          * lock.
2039          */
2040         num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
2041                         / sizeof(struct hw_fib); /* some extra */
2042         spin_lock_irqsave(&dev->fib_lock, flagv);
2043         entry = dev->fib_list.next;
2044         while (entry != &dev->fib_list) {
2045                 entry = entry->next;
2046                 ++num;
2047         }
2048         spin_unlock_irqrestore(&dev->fib_lock, flagv);
2049
2050         return num;
2051 }
2052
2053 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
2054                                                 struct fib **fib_pool,
2055                                                 unsigned int num)
2056 {
2057         struct hw_fib **hw_fib_p;
2058         struct fib **fib_p;
2059
2060         hw_fib_p = hw_fib_pool;
2061         fib_p = fib_pool;
2062         while (hw_fib_p < &hw_fib_pool[num]) {
2063                 *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
2064                 if (!(*(hw_fib_p++))) {
2065                         --hw_fib_p;
2066                         break;
2067                 }
2068
2069                 *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
2070                 if (!(*(fib_p++))) {
2071                         kfree(*(--hw_fib_p));
2072                         break;
2073                 }
2074         }
2075
2076         /*
2077          * Get the actual number of allocated fibs
2078          */
2079         num = hw_fib_p - hw_fib_pool;
2080         return num;
2081 }
2082
2083 static void wakeup_fibctx_threads(struct aac_dev *dev,
2084                                                 struct hw_fib **hw_fib_pool,
2085                                                 struct fib **fib_pool,
2086                                                 struct fib *fib,
2087                                                 struct hw_fib *hw_fib,
2088                                                 unsigned int num)
2089 {
2090         unsigned long flagv;
2091         struct list_head *entry;
2092         struct hw_fib **hw_fib_p;
2093         struct fib **fib_p;
2094         u32 time_now, time_last;
2095         struct hw_fib *hw_newfib;
2096         struct fib *newfib;
2097         struct aac_fib_context *fibctx;
2098
2099         time_now = jiffies/HZ;
2100         spin_lock_irqsave(&dev->fib_lock, flagv);
2101         entry = dev->fib_list.next;
2102         /*
2103          * For each Context that is on the
2104          * fibctxList, make a copy of the
2105          * fib, and then set the event to wake up the
2106          * thread that is waiting for it.
2107          */
2108
2109         hw_fib_p = hw_fib_pool;
2110         fib_p = fib_pool;
2111         while (entry != &dev->fib_list) {
2112                 /*
2113                  * Extract the fibctx
2114                  */
2115                 fibctx = list_entry(entry, struct aac_fib_context,
2116                                 next);
2117                 /*
2118                  * Check if the queue is getting
2119                  * backlogged
2120                  */
2121                 if (fibctx->count > 20) {
2122                         /*
2123                          * It's *not* jiffies folks,
2124                          * but jiffies / HZ so do not
2125                          * panic ...
2126                          */
2127                         time_last = fibctx->jiffies;
2128                         /*
2129                          * Has it been > 2 minutes
2130                          * since the last read off
2131                          * the queue?
2132                          */
2133                         if ((time_now - time_last) > aif_timeout) {
2134                                 entry = entry->next;
2135                                 aac_close_fib_context(dev, fibctx);
2136                                 continue;
2137                         }
2138                 }
2139                 /*
2140                  * Warning: no sleep allowed while
2141                  * holding spinlock
2142                  */
2143                 if (hw_fib_p >= &hw_fib_pool[num]) {
2144                         pr_warn("aifd: didn't allocate NewFib\n");
2145                         entry = entry->next;
2146                         continue;
2147                 }
2148
2149                 hw_newfib = *hw_fib_p;
2150                 *(hw_fib_p++) = NULL;
2151                 newfib = *fib_p;
2152                 *(fib_p++) = NULL;
2153                 /*
2154                  * Make the copy of the FIB
2155                  */
2156                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2157                 memcpy(newfib, fib, sizeof(struct fib));
2158                 newfib->hw_fib_va = hw_newfib;
2159                 /*
2160                  * Put the FIB onto the
2161                  * fibctx's fibs
2162                  */
2163                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2164                 fibctx->count++;
2165                 /*
2166                  * Set the event to wake up the
2167                  * thread that is waiting.
2168                  */
2169                 complete(&fibctx->completion);
2170
2171                 entry = entry->next;
2172         }
2173         /*
2174          *      Set the status of this FIB
2175          */
2176         *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2177         aac_fib_adapter_complete(fib, sizeof(u32));
2178         spin_unlock_irqrestore(&dev->fib_lock, flagv);
2179
2180 }
2181
2182 static void aac_process_events(struct aac_dev *dev)
2183 {
2184         struct hw_fib *hw_fib;
2185         struct fib *fib;
2186         unsigned long flags;
2187         spinlock_t *t_lock;
2188
2189         t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2190         spin_lock_irqsave(t_lock, flags);
2191
2192         while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2193                 struct list_head *entry;
2194                 struct aac_aifcmd *aifcmd;
2195                 unsigned int  num;
2196                 struct hw_fib **hw_fib_pool, **hw_fib_p;
2197                 struct fib **fib_pool, **fib_p;
2198
2199                 set_current_state(TASK_RUNNING);
2200
2201                 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2202                 list_del(entry);
2203
2204                 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2205                 spin_unlock_irqrestore(t_lock, flags);
2206
2207                 fib = list_entry(entry, struct fib, fiblink);
2208                 hw_fib = fib->hw_fib_va;
2209                 if (dev->sa_firmware) {
2210                         /* Thor AIF */
2211                         aac_handle_sa_aif(dev, fib);
2212                         aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2213                         goto free_fib;
2214                 }
2215                 /*
2216                  *      We will process the FIB here or pass it to a
2217                  *      worker thread that is TBD. We Really can't
2218                  *      do anything at this point since we don't have
2219                  *      anything defined for this thread to do.
2220                  */
2221                 memset(fib, 0, sizeof(struct fib));
2222                 fib->type = FSAFS_NTC_FIB_CONTEXT;
2223                 fib->size = sizeof(struct fib);
2224                 fib->hw_fib_va = hw_fib;
2225                 fib->data = hw_fib->data;
2226                 fib->dev = dev;
2227                 /*
2228                  *      We only handle AifRequest fibs from the adapter.
2229                  */
2230
2231                 aifcmd = (struct aac_aifcmd *) hw_fib->data;
2232                 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2233                         /* Handle Driver Notify Events */
2234                         aac_handle_aif(dev, fib);
2235                         *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2236                         aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2237                         goto free_fib;
2238                 }
2239                 /*
2240                  * The u32 here is important and intended. We are using
2241                  * 32bit wrapping time to fit the adapter field
2242                  */
2243
2244                 /* Sniff events */
2245                 if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2246                  || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2247                         aac_handle_aif(dev, fib);
2248                 }
2249
2250                 /*
2251                  * get number of fibs to process
2252                  */
2253                 num = get_fib_count(dev);
2254                 if (!num)
2255                         goto free_fib;
2256
2257                 hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2258                                                 GFP_KERNEL);
2259                 if (!hw_fib_pool)
2260                         goto free_fib;
2261
2262                 fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2263                 if (!fib_pool)
2264                         goto free_hw_fib_pool;
2265
2266                 /*
2267                  * Fill up fib pointer pools with actual fibs
2268                  * and hw_fibs
2269                  */
2270                 num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2271                 if (!num)
2272                         goto free_mem;
2273
2274                 /*
2275                  * wakeup the thread that is waiting for
2276                  * the response from fw (ioctl)
2277                  */
2278                 wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2279                                                             fib, hw_fib, num);
2280
2281 free_mem:
2282                 /* Free up the remaining resources */
2283                 hw_fib_p = hw_fib_pool;
2284                 fib_p = fib_pool;
2285                 while (hw_fib_p < &hw_fib_pool[num]) {
2286                         kfree(*hw_fib_p);
2287                         kfree(*fib_p);
2288                         ++fib_p;
2289                         ++hw_fib_p;
2290                 }
2291                 kfree(fib_pool);
2292 free_hw_fib_pool:
2293                 kfree(hw_fib_pool);
2294 free_fib:
2295                 kfree(fib);
2296                 t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2297                 spin_lock_irqsave(t_lock, flags);
2298         }
2299         /*
2300          *      There are no more AIF's
2301          */
2302         t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2303         spin_unlock_irqrestore(t_lock, flags);
2304 }
2305
2306 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2307                                                         u32 datasize)
2308 {
2309         struct aac_srb *srbcmd;
2310         struct sgmap64 *sg64;
2311         dma_addr_t addr;
2312         char *dma_buf;
2313         struct fib *fibptr;
2314         int ret = -ENOMEM;
2315         u32 vbus, vid;
2316
2317         fibptr = aac_fib_alloc(dev);
2318         if (!fibptr)
2319                 goto out;
2320
2321         dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2322                                      GFP_KERNEL);
2323         if (!dma_buf)
2324                 goto fib_free_out;
2325
2326         aac_fib_init(fibptr);
2327
2328         vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2329         vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2330
2331         srbcmd = (struct aac_srb *)fib_data(fibptr);
2332
2333         srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2334         srbcmd->channel = cpu_to_le32(vbus);
2335         srbcmd->id = cpu_to_le32(vid);
2336         srbcmd->lun = 0;
2337         srbcmd->flags = cpu_to_le32(SRB_DataOut);
2338         srbcmd->timeout = cpu_to_le32(10);
2339         srbcmd->retry_limit = 0;
2340         srbcmd->cdb_size = cpu_to_le32(12);
2341         srbcmd->count = cpu_to_le32(datasize);
2342
2343         memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2344         srbcmd->cdb[0] = BMIC_OUT;
2345         srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2346         memcpy(dma_buf, (char *)wellness_str, datasize);
2347
2348         sg64 = (struct sgmap64 *)&srbcmd->sg;
2349         sg64->count = cpu_to_le32(1);
2350         sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2351         sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2352         sg64->sg[0].count = cpu_to_le32(datasize);
2353
2354         ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
2355                                 FsaNormal, 1, 1, NULL, NULL);
2356
2357         dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2358
2359         /*
2360          * Do not set XferState to zero unless
2361          * receives a response from F/W
2362          */
2363         if (ret >= 0)
2364                 aac_fib_complete(fibptr);
2365
2366         /*
2367          * FIB should be freed only after
2368          * getting the response from the F/W
2369          */
2370         if (ret != -ERESTARTSYS)
2371                 goto fib_free_out;
2372
2373 out:
2374         return ret;
2375 fib_free_out:
2376         aac_fib_free(fibptr);
2377         goto out;
2378 }
2379
2380 int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
2381 {
2382         struct tm cur_tm;
2383         char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2384         u32 datasize = sizeof(wellness_str);
2385         time64_t local_time;
2386         int ret = -ENODEV;
2387
2388         if (!dev->sa_firmware)
2389                 goto out;
2390
2391         local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
2392         time64_to_tm(local_time, 0, &cur_tm);
2393         cur_tm.tm_mon += 1;
2394         cur_tm.tm_year += 1900;
2395         wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2396         wellness_str[9] = bin2bcd(cur_tm.tm_min);
2397         wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2398         wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2399         wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2400         wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2401         wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2402
2403         ret = aac_send_wellness_command(dev, wellness_str, datasize);
2404
2405 out:
2406         return ret;
2407 }
2408
2409 int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
2410 {
2411         int ret = -ENOMEM;
2412         struct fib *fibptr;
2413         __le32 *info;
2414
2415         fibptr = aac_fib_alloc(dev);
2416         if (!fibptr)
2417                 goto out;
2418
2419         aac_fib_init(fibptr);
2420         info = (__le32 *)fib_data(fibptr);
2421         *info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
2422         ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2423                                         1, 1, NULL, NULL);
2424
2425         /*
2426          * Do not set XferState to zero unless
2427          * receives a response from F/W
2428          */
2429         if (ret >= 0)
2430                 aac_fib_complete(fibptr);
2431
2432         /*
2433          * FIB should be freed only after
2434          * getting the response from the F/W
2435          */
2436         if (ret != -ERESTARTSYS)
2437                 aac_fib_free(fibptr);
2438
2439 out:
2440         return ret;
2441 }
2442
2443 /**
2444  *      aac_command_thread      -       command processing thread
2445  *      @dev: Adapter to monitor
2446  *
2447  *      Waits on the commandready event in it's queue. When the event gets set
2448  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
2449  *      until the queue is empty. When the queue is empty it will wait for
2450  *      more FIBs.
2451  */
2452
2453 int aac_command_thread(void *data)
2454 {
2455         struct aac_dev *dev = data;
2456         DECLARE_WAITQUEUE(wait, current);
2457         unsigned long next_jiffies = jiffies + HZ;
2458         unsigned long next_check_jiffies = next_jiffies;
2459         long difference = HZ;
2460
2461         /*
2462          *      We can only have one thread per adapter for AIF's.
2463          */
2464         if (dev->aif_thread)
2465                 return -EINVAL;
2466
2467         /*
2468          *      Let the DPC know it has a place to send the AIF's to.
2469          */
2470         dev->aif_thread = 1;
2471         add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2472         set_current_state(TASK_INTERRUPTIBLE);
2473         dprintk ((KERN_INFO "aac_command_thread start\n"));
2474         while (1) {
2475
2476                 aac_process_events(dev);
2477
2478                 /*
2479                  *      Background activity
2480                  */
2481                 if ((time_before(next_check_jiffies,next_jiffies))
2482                  && ((difference = next_check_jiffies - jiffies) <= 0)) {
2483                         next_check_jiffies = next_jiffies;
2484                         if (aac_adapter_check_health(dev) == 0) {
2485                                 difference = ((long)(unsigned)check_interval)
2486                                            * HZ;
2487                                 next_check_jiffies = jiffies + difference;
2488                         } else if (!dev->queues)
2489                                 break;
2490                 }
2491                 if (!time_before(next_check_jiffies,next_jiffies)
2492                  && ((difference = next_jiffies - jiffies) <= 0)) {
2493                         struct timespec64 now;
2494                         int ret;
2495
2496                         /* Don't even try to talk to adapter if its sick */
2497                         ret = aac_adapter_check_health(dev);
2498                         if (ret || !dev->queues)
2499                                 break;
2500                         next_check_jiffies = jiffies
2501                                            + ((long)(unsigned)check_interval)
2502                                            * HZ;
2503                         ktime_get_real_ts64(&now);
2504
2505                         /* Synchronize our watches */
2506                         if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
2507                          && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
2508                                 difference = HZ + HZ / 2 -
2509                                              now.tv_nsec / (NSEC_PER_SEC / HZ);
2510                         else {
2511                                 if (now.tv_nsec > NSEC_PER_SEC / 2)
2512                                         ++now.tv_sec;
2513
2514                                 if (dev->sa_firmware)
2515                                         ret =
2516                                         aac_send_safw_hostttime(dev, &now);
2517                                 else
2518                                         ret = aac_send_hosttime(dev, &now);
2519
2520                                 difference = (long)(unsigned)update_interval*HZ;
2521                         }
2522                         next_jiffies = jiffies + difference;
2523                         if (time_before(next_check_jiffies,next_jiffies))
2524                                 difference = next_check_jiffies - jiffies;
2525                 }
2526                 if (difference <= 0)
2527                         difference = 1;
2528                 set_current_state(TASK_INTERRUPTIBLE);
2529
2530                 if (kthread_should_stop())
2531                         break;
2532
2533                 /*
2534                  * we probably want usleep_range() here instead of the
2535                  * jiffies computation
2536                  */
2537                 schedule_timeout(difference);
2538
2539                 if (kthread_should_stop())
2540                         break;
2541         }
2542         if (dev->queues)
2543                 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2544         dev->aif_thread = 0;
2545         return 0;
2546 }
2547
2548 int aac_acquire_irq(struct aac_dev *dev)
2549 {
2550         int i;
2551         int j;
2552         int ret = 0;
2553
2554         if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2555                 for (i = 0; i < dev->max_msix; i++) {
2556                         dev->aac_msix[i].vector_no = i;
2557                         dev->aac_msix[i].dev = dev;
2558                         if (request_irq(pci_irq_vector(dev->pdev, i),
2559                                         dev->a_ops.adapter_intr,
2560                                         0, "aacraid", &(dev->aac_msix[i]))) {
2561                                 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2562                                                 dev->name, dev->id, i);
2563                                 for (j = 0 ; j < i ; j++)
2564                                         free_irq(pci_irq_vector(dev->pdev, j),
2565                                                  &(dev->aac_msix[j]));
2566                                 pci_disable_msix(dev->pdev);
2567                                 ret = -1;
2568                         }
2569                 }
2570         } else {
2571                 dev->aac_msix[0].vector_no = 0;
2572                 dev->aac_msix[0].dev = dev;
2573
2574                 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2575                         IRQF_SHARED, "aacraid",
2576                         &(dev->aac_msix[0])) < 0) {
2577                         if (dev->msi)
2578                                 pci_disable_msi(dev->pdev);
2579                         printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2580                                         dev->name, dev->id);
2581                         ret = -1;
2582                 }
2583         }
2584         return ret;
2585 }
2586
2587 void aac_free_irq(struct aac_dev *dev)
2588 {
2589         int i;
2590
2591         if (aac_is_src(dev)) {
2592                 if (dev->max_msix > 1) {
2593                         for (i = 0; i < dev->max_msix; i++)
2594                                 free_irq(pci_irq_vector(dev->pdev, i),
2595                                          &(dev->aac_msix[i]));
2596                 } else {
2597                         free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2598                 }
2599         } else {
2600                 free_irq(dev->pdev->irq, dev);
2601         }
2602         if (dev->msi)
2603                 pci_disable_msi(dev->pdev);
2604         else if (dev->max_msix > 1)
2605                 pci_disable_msix(dev->pdev);
2606 }