Merge with /pub/scm/linux/kernel/git/torvalds/linux-2.6.git
[sfrench/cifs-2.6.git] / drivers / s390 / crypto / z90main.c
1 /*
2  *  linux/drivers/s390/crypto/z90main.c
3  *
4  *  z90crypt 1.3.2
5  *
6  *  Copyright (C)  2001, 2004 IBM Corporation
7  *  Author(s): Robert Burroughs (burrough@us.ibm.com)
8  *             Eric Rossman (edrossma@us.ibm.com)
9  *
10  *  Hotplug & misc device support: Jochen Roehrig (roehrig@de.ibm.com)
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25  */
26
27 #include <asm/uaccess.h>       // copy_(from|to)_user
28 #include <linux/compat.h>
29 #include <linux/compiler.h>
30 #include <linux/delay.h>       // mdelay
31 #include <linux/init.h>
32 #include <linux/interrupt.h>   // for tasklets
33 #include <linux/ioctl32.h>
34 #include <linux/miscdevice.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/kobject_uevent.h>
38 #include <linux/proc_fs.h>
39 #include <linux/syscalls.h>
40 #include <linux/version.h>
41 #include "z90crypt.h"
42 #include "z90common.h"
43
44 #define VERSION_Z90MAIN_C "$Revision: 1.62 $"
45
46 static char z90main_version[] __initdata =
47         "z90main.o (" VERSION_Z90MAIN_C "/"
48                       VERSION_Z90COMMON_H "/" VERSION_Z90CRYPT_H ")";
49
50 extern char z90hardware_version[];
51
52 /**
53  * Defaults that may be modified.
54  */
55
56 /**
57  * You can specify a different minor at compile time.
58  */
59 #ifndef Z90CRYPT_MINOR
60 #define Z90CRYPT_MINOR  MISC_DYNAMIC_MINOR
61 #endif
62
63 /**
64  * You can specify a different domain at compile time or on the insmod
65  * command line.
66  */
67 #ifndef DOMAIN_INDEX
68 #define DOMAIN_INDEX    -1
69 #endif
70
71 /**
72  * This is the name under which the device is registered in /proc/modules.
73  */
74 #define REG_NAME        "z90crypt"
75
76 /**
77  * Cleanup should run every CLEANUPTIME seconds and should clean up requests
78  * older than CLEANUPTIME seconds in the past.
79  */
80 #ifndef CLEANUPTIME
81 #define CLEANUPTIME 15
82 #endif
83
84 /**
85  * Config should run every CONFIGTIME seconds
86  */
87 #ifndef CONFIGTIME
88 #define CONFIGTIME 30
89 #endif
90
91 /**
92  * The first execution of the config task should take place
93  * immediately after initialization
94  */
95 #ifndef INITIAL_CONFIGTIME
96 #define INITIAL_CONFIGTIME 1
97 #endif
98
99 /**
100  * Reader should run every READERTIME milliseconds
101  * With the 100Hz patch for s390, z90crypt can lock the system solid while
102  * under heavy load. We'll try to avoid that.
103  */
104 #ifndef READERTIME
105 #if HZ > 1000
106 #define READERTIME 2
107 #else
108 #define READERTIME 10
109 #endif
110 #endif
111
112 /**
113  * turn long device array index into device pointer
114  */
115 #define LONG2DEVPTR(ndx) (z90crypt.device_p[(ndx)])
116
117 /**
118  * turn short device array index into long device array index
119  */
120 #define SHRT2LONG(ndx) (z90crypt.overall_device_x.device_index[(ndx)])
121
122 /**
123  * turn short device array index into device pointer
124  */
125 #define SHRT2DEVPTR(ndx) LONG2DEVPTR(SHRT2LONG(ndx))
126
127 /**
128  * Status for a work-element
129  */
130 #define STAT_DEFAULT    0x00 // request has not been processed
131
132 #define STAT_ROUTED     0x80 // bit 7: requests get routed to specific device
133                              //        else, device is determined each write
134 #define STAT_FAILED     0x40 // bit 6: this bit is set if the request failed
135                              //        before being sent to the hardware.
136 #define STAT_WRITTEN    0x30 // bits 5-4: work to be done, not sent to device
137 //                      0x20 // UNUSED state
138 #define STAT_READPEND   0x10 // bits 5-4: work done, we're returning data now
139 #define STAT_NOWORK     0x00 // bits off: no work on any queue
140 #define STAT_RDWRMASK   0x30 // mask for bits 5-4
141
142 /**
143  * Macros to check the status RDWRMASK
144  */
145 #define CHK_RDWRMASK(statbyte) ((statbyte) & STAT_RDWRMASK)
146 #define SET_RDWRMASK(statbyte, newval) \
147         {(statbyte) &= ~STAT_RDWRMASK; (statbyte) |= newval;}
148
149 /**
150  * Audit Trail.  Progress of a Work element
151  * audit[0]: Unless noted otherwise, these bits are all set by the process
152  */
153 #define FP_COPYFROM     0x80 // Caller's buffer has been copied to work element
154 #define FP_BUFFREQ      0x40 // Low Level buffer requested
155 #define FP_BUFFGOT      0x20 // Low Level buffer obtained
156 #define FP_SENT         0x10 // Work element sent to a crypto device
157                              // (may be set by process or by reader task)
158 #define FP_PENDING      0x08 // Work element placed on pending queue
159                              // (may be set by process or by reader task)
160 #define FP_REQUEST      0x04 // Work element placed on request queue
161 #define FP_ASLEEP       0x02 // Work element about to sleep
162 #define FP_AWAKE        0x01 // Work element has been awakened
163
164 /**
165  * audit[1]: These bits are set by the reader task and/or the cleanup task
166  */
167 #define FP_NOTPENDING     0x80 // Work element removed from pending queue
168 #define FP_AWAKENING      0x40 // Caller about to be awakened
169 #define FP_TIMEDOUT       0x20 // Caller timed out
170 #define FP_RESPSIZESET    0x10 // Response size copied to work element
171 #define FP_RESPADDRCOPIED 0x08 // Response address copied to work element
172 #define FP_RESPBUFFCOPIED 0x04 // Response buffer copied to work element
173 #define FP_REMREQUEST     0x02 // Work element removed from request queue
174 #define FP_SIGNALED       0x01 // Work element was awakened by a signal
175
176 /**
177  * audit[2]: unused
178  */
179
180 /**
181  * state of the file handle in private_data.status
182  */
183 #define STAT_OPEN 0
184 #define STAT_CLOSED 1
185
186 /**
187  * PID() expands to the process ID of the current process
188  */
189 #define PID() (current->pid)
190
191 /**
192  * Selected Constants.  The number of APs and the number of devices
193  */
194 #ifndef Z90CRYPT_NUM_APS
195 #define Z90CRYPT_NUM_APS 64
196 #endif
197 #ifndef Z90CRYPT_NUM_DEVS
198 #define Z90CRYPT_NUM_DEVS Z90CRYPT_NUM_APS
199 #endif
200
201 /**
202  * Buffer size for receiving responses. The maximum Response Size
203  * is actually the maximum request size, since in an error condition
204  * the request itself may be returned unchanged.
205  */
206 #define MAX_RESPONSE_SIZE 0x0000077C
207
208 /**
209  * A count and status-byte mask
210  */
211 struct status {
212         int           st_count;             // # of enabled devices
213         int           disabled_count;       // # of disabled devices
214         int           user_disabled_count;  // # of devices disabled via proc fs
215         unsigned char st_mask[Z90CRYPT_NUM_APS]; // current status mask
216 };
217
218 /**
219  * The array of device indexes is a mechanism for fast indexing into
220  * a long (and sparse) array.  For instance, if APs 3, 9 and 47 are
221  * installed, z90CDeviceIndex[0] is 3, z90CDeviceIndex[1] is 9, and
222  * z90CDeviceIndex[2] is 47.
223  */
224 struct device_x {
225         int device_index[Z90CRYPT_NUM_DEVS];
226 };
227
228 /**
229  * All devices are arranged in a single array: 64 APs
230  */
231 struct device {
232         int              dev_type;          // PCICA, PCICC, PCIXCC_MCL2,
233                                             // PCIXCC_MCL3, CEX2C
234         enum devstat     dev_stat;          // current device status
235         int              dev_self_x;        // Index in array
236         int              disabled;          // Set when device is in error
237         int              user_disabled;     // Set when device is disabled by user
238         int              dev_q_depth;       // q depth
239         unsigned char *  dev_resp_p;        // Response buffer address
240         int              dev_resp_l;        // Response Buffer length
241         int              dev_caller_count;  // Number of callers
242         int              dev_total_req_cnt; // # requests for device since load
243         struct list_head dev_caller_list;   // List of callers
244 };
245
246 /**
247  * There's a struct status and a struct device_x for each device type.
248  */
249 struct hdware_block {
250         struct status   hdware_mask;
251         struct status   type_mask[Z90CRYPT_NUM_TYPES];
252         struct device_x type_x_addr[Z90CRYPT_NUM_TYPES];
253         unsigned char   device_type_array[Z90CRYPT_NUM_APS];
254 };
255
256 /**
257  * z90crypt is the topmost data structure in the hierarchy.
258  */
259 struct z90crypt {
260         int                  max_count;         // Nr of possible crypto devices
261         struct status        mask;
262         int                  q_depth_array[Z90CRYPT_NUM_DEVS];
263         int                  dev_type_array[Z90CRYPT_NUM_DEVS];
264         struct device_x      overall_device_x;  // array device indexes
265         struct device *      device_p[Z90CRYPT_NUM_DEVS];
266         int                  terminating;
267         int                  domain_established;// TRUE:  domain has been found
268         int                  cdx;               // Crypto Domain Index
269         int                  len;               // Length of this data structure
270         struct hdware_block *hdware_info;
271 };
272
273 /**
274  * An array of these structures is pointed to from dev_caller
275  * The length of the array depends on the device type. For APs,
276  * there are 8.
277  *
278  * The caller buffer is allocated to the user at OPEN. At WRITE,
279  * it contains the request; at READ, the response. The function
280  * send_to_crypto_device converts the request to device-dependent
281  * form and use the caller's OPEN-allocated buffer for the response.
282  *
283  * For the contents of caller_dev_dep_req and caller_dev_dep_req_p
284  * because that points to it, see the discussion in z90hardware.c.
285  * Search for "extended request message block".
286  */
287 struct caller {
288         int              caller_buf_l;           // length of original request
289         unsigned char *  caller_buf_p;           // Original request on WRITE
290         int              caller_dev_dep_req_l;   // len device dependent request
291         unsigned char *  caller_dev_dep_req_p;   // Device dependent form
292         unsigned char    caller_id[8];           // caller-supplied message id
293         struct list_head caller_liste;
294         unsigned char    caller_dev_dep_req[MAX_RESPONSE_SIZE];
295 };
296
297 /**
298  * Function prototypes from z90hardware.c
299  */
300 enum hdstat query_online(int, int, int, int *, int *);
301 enum devstat reset_device(int, int, int);
302 enum devstat send_to_AP(int, int, int, unsigned char *);
303 enum devstat receive_from_AP(int, int, int, unsigned char *, unsigned char *);
304 int convert_request(unsigned char *, int, short, int, int, int *,
305                     unsigned char *);
306 int convert_response(unsigned char *, unsigned char *, int *, unsigned char *);
307
308 /**
309  * Low level function prototypes
310  */
311 static int create_z90crypt(int *);
312 static int refresh_z90crypt(int *);
313 static int find_crypto_devices(struct status *);
314 static int create_crypto_device(int);
315 static int destroy_crypto_device(int);
316 static void destroy_z90crypt(void);
317 static int refresh_index_array(struct status *, struct device_x *);
318 static int probe_device_type(struct device *);
319 static int probe_PCIXCC_type(struct device *);
320
321 /**
322  * proc fs definitions
323  */
324 static struct proc_dir_entry *z90crypt_entry;
325
326 /**
327  * data structures
328  */
329
330 /**
331  * work_element.opener points back to this structure
332  */
333 struct priv_data {
334         pid_t   opener_pid;
335         unsigned char   status;         // 0: open  1: closed
336 };
337
338 /**
339  * A work element is allocated for each request
340  */
341 struct work_element {
342         struct priv_data *priv_data;
343         pid_t             pid;
344         int               devindex;       // index of device processing this w_e
345                                           // (If request did not specify device,
346                                           // -1 until placed onto a queue)
347         int               devtype;
348         struct list_head  liste;          // used for requestq and pendingq
349         char              buffer[128];    // local copy of user request
350         int               buff_size;      // size of the buffer for the request
351         char              resp_buff[RESPBUFFSIZE];
352         int               resp_buff_size;
353         char __user *     resp_addr;      // address of response in user space
354         unsigned int      funccode;       // function code of request
355         wait_queue_head_t waitq;
356         unsigned long     requestsent;    // time at which the request was sent
357         atomic_t          alarmrung;      // wake-up signal
358         unsigned char     caller_id[8];   // pid + counter, for this w_e
359         unsigned char     status[1];      // bits to mark status of the request
360         unsigned char     audit[3];       // record of work element's progress
361         unsigned char *   requestptr;     // address of request buffer
362         int               retcode;        // return code of request
363 };
364
365 /**
366  * High level function prototypes
367  */
368 static int z90crypt_open(struct inode *, struct file *);
369 static int z90crypt_release(struct inode *, struct file *);
370 static ssize_t z90crypt_read(struct file *, char __user *, size_t, loff_t *);
371 static ssize_t z90crypt_write(struct file *, const char __user *,
372                                                         size_t, loff_t *);
373 static long z90crypt_unlocked_ioctl(struct file *, unsigned int, unsigned long);
374 static long z90crypt_compat_ioctl(struct file *, unsigned int, unsigned long);
375
376 static void z90crypt_reader_task(unsigned long);
377 static void z90crypt_schedule_reader_task(unsigned long);
378 static void z90crypt_config_task(unsigned long);
379 static void z90crypt_cleanup_task(unsigned long);
380
381 static int z90crypt_status(char *, char **, off_t, int, int *, void *);
382 static int z90crypt_status_write(struct file *, const char __user *,
383                                  unsigned long, void *);
384
385 /**
386  * Storage allocated at initialization and used throughout the life of
387  * this insmod
388  */
389 static int domain = DOMAIN_INDEX;
390 static struct z90crypt z90crypt;
391 static int quiesce_z90crypt;
392 static spinlock_t queuespinlock;
393 static struct list_head request_list;
394 static int requestq_count;
395 static struct list_head pending_list;
396 static int pendingq_count;
397
398 static struct tasklet_struct reader_tasklet;
399 static struct timer_list reader_timer;
400 static struct timer_list config_timer;
401 static struct timer_list cleanup_timer;
402 static atomic_t total_open;
403 static atomic_t z90crypt_step;
404
405 static struct file_operations z90crypt_fops = {
406         .owner          = THIS_MODULE,
407         .read           = z90crypt_read,
408         .write          = z90crypt_write,
409         .unlocked_ioctl = z90crypt_unlocked_ioctl,
410 #ifdef CONFIG_COMPAT
411         .compat_ioctl   = z90crypt_compat_ioctl,
412 #endif
413         .open           = z90crypt_open,
414         .release        = z90crypt_release
415 };
416
417 static struct miscdevice z90crypt_misc_device = {
418         .minor      = Z90CRYPT_MINOR,
419         .name       = DEV_NAME,
420         .fops       = &z90crypt_fops,
421         .devfs_name = DEV_NAME
422 };
423
424 /**
425  * Documentation values.
426  */
427 MODULE_AUTHOR("zSeries Linux Crypto Team: Robert H. Burroughs, Eric D. Rossman"
428               "and Jochen Roehrig");
429 MODULE_DESCRIPTION("zSeries Linux Cryptographic Coprocessor device driver, "
430                    "Copyright 2001, 2004 IBM Corporation");
431 MODULE_LICENSE("GPL");
432 module_param(domain, int, 0);
433 MODULE_PARM_DESC(domain, "domain index for device");
434
435 #ifdef CONFIG_COMPAT
436 /**
437  * ioctl32 conversion routines
438  */
439 struct ica_rsa_modexpo_32 { // For 32-bit callers
440         compat_uptr_t   inputdata;
441         unsigned int    inputdatalength;
442         compat_uptr_t   outputdata;
443         unsigned int    outputdatalength;
444         compat_uptr_t   b_key;
445         compat_uptr_t   n_modulus;
446 };
447
448 static long
449 trans_modexpo32(struct file *filp, unsigned int cmd, unsigned long arg)
450 {
451         struct ica_rsa_modexpo_32 __user *mex32u = compat_ptr(arg);
452         struct ica_rsa_modexpo_32  mex32k;
453         struct ica_rsa_modexpo __user *mex64;
454         long ret = 0;
455         unsigned int i;
456
457         if (!access_ok(VERIFY_WRITE, mex32u, sizeof(struct ica_rsa_modexpo_32)))
458                 return -EFAULT;
459         mex64 = compat_alloc_user_space(sizeof(struct ica_rsa_modexpo));
460         if (!access_ok(VERIFY_WRITE, mex64, sizeof(struct ica_rsa_modexpo)))
461                 return -EFAULT;
462         if (copy_from_user(&mex32k, mex32u, sizeof(struct ica_rsa_modexpo_32)))
463                 return -EFAULT;
464         if (__put_user(compat_ptr(mex32k.inputdata), &mex64->inputdata)   ||
465             __put_user(mex32k.inputdatalength, &mex64->inputdatalength)   ||
466             __put_user(compat_ptr(mex32k.outputdata), &mex64->outputdata) ||
467             __put_user(mex32k.outputdatalength, &mex64->outputdatalength) ||
468             __put_user(compat_ptr(mex32k.b_key), &mex64->b_key)           ||
469             __put_user(compat_ptr(mex32k.n_modulus), &mex64->n_modulus))
470                 return -EFAULT;
471         ret = z90crypt_unlocked_ioctl(filp, cmd, (unsigned long)mex64);
472         if (!ret)
473                 if (__get_user(i, &mex64->outputdatalength) ||
474                     __put_user(i, &mex32u->outputdatalength))
475                         ret = -EFAULT;
476         return ret;
477 }
478
479 struct ica_rsa_modexpo_crt_32 { // For 32-bit callers
480         compat_uptr_t   inputdata;
481         unsigned int    inputdatalength;
482         compat_uptr_t   outputdata;
483         unsigned int    outputdatalength;
484         compat_uptr_t   bp_key;
485         compat_uptr_t   bq_key;
486         compat_uptr_t   np_prime;
487         compat_uptr_t   nq_prime;
488         compat_uptr_t   u_mult_inv;
489 };
490
491 static long
492 trans_modexpo_crt32(struct file *filp, unsigned int cmd, unsigned long arg)
493 {
494         struct ica_rsa_modexpo_crt_32 __user *crt32u = compat_ptr(arg);
495         struct ica_rsa_modexpo_crt_32  crt32k;
496         struct ica_rsa_modexpo_crt __user *crt64;
497         long ret = 0;
498         unsigned int i;
499
500         if (!access_ok(VERIFY_WRITE, crt32u,
501                        sizeof(struct ica_rsa_modexpo_crt_32)))
502                 return -EFAULT;
503         crt64 = compat_alloc_user_space(sizeof(struct ica_rsa_modexpo_crt));
504         if (!access_ok(VERIFY_WRITE, crt64, sizeof(struct ica_rsa_modexpo_crt)))
505                 return -EFAULT;
506         if (copy_from_user(&crt32k, crt32u,
507                            sizeof(struct ica_rsa_modexpo_crt_32)))
508                 return -EFAULT;
509         if (__put_user(compat_ptr(crt32k.inputdata), &crt64->inputdata)   ||
510             __put_user(crt32k.inputdatalength, &crt64->inputdatalength)   ||
511             __put_user(compat_ptr(crt32k.outputdata), &crt64->outputdata) ||
512             __put_user(crt32k.outputdatalength, &crt64->outputdatalength) ||
513             __put_user(compat_ptr(crt32k.bp_key), &crt64->bp_key)         ||
514             __put_user(compat_ptr(crt32k.bq_key), &crt64->bq_key)         ||
515             __put_user(compat_ptr(crt32k.np_prime), &crt64->np_prime)     ||
516             __put_user(compat_ptr(crt32k.nq_prime), &crt64->nq_prime)     ||
517             __put_user(compat_ptr(crt32k.u_mult_inv), &crt64->u_mult_inv))
518                 return -EFAULT;
519         ret = z90crypt_unlocked_ioctl(filp, cmd, (unsigned long)crt64);
520         if (!ret)
521                 if (__get_user(i, &crt64->outputdatalength) ||
522                     __put_user(i, &crt32u->outputdatalength))
523                         ret = -EFAULT;
524         return ret;
525 }
526
527 static long
528 z90crypt_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
529 {
530         switch (cmd) {
531         case ICAZ90STATUS:
532         case Z90QUIESCE:
533         case Z90STAT_TOTALCOUNT:
534         case Z90STAT_PCICACOUNT:
535         case Z90STAT_PCICCCOUNT:
536         case Z90STAT_PCIXCCCOUNT:
537         case Z90STAT_PCIXCCMCL2COUNT:
538         case Z90STAT_PCIXCCMCL3COUNT:
539         case Z90STAT_CEX2CCOUNT:
540         case Z90STAT_REQUESTQ_COUNT:
541         case Z90STAT_PENDINGQ_COUNT:
542         case Z90STAT_TOTALOPEN_COUNT:
543         case Z90STAT_DOMAIN_INDEX:
544         case Z90STAT_STATUS_MASK:
545         case Z90STAT_QDEPTH_MASK:
546         case Z90STAT_PERDEV_REQCNT:
547                 return z90crypt_unlocked_ioctl(filp, cmd, arg);
548         case ICARSAMODEXPO:
549                 return trans_modexpo32(filp, cmd, arg);
550         case ICARSACRT:
551                 return trans_modexpo_crt32(filp, cmd, arg);
552         default:
553                 return -ENOIOCTLCMD;
554         }
555 }
556 #endif
557
558 /**
559  * The module initialization code.
560  */
561 static int __init
562 z90crypt_init_module(void)
563 {
564         int result, nresult;
565         struct proc_dir_entry *entry;
566
567         PDEBUG("PID %d\n", PID());
568
569         if ((domain < -1) || (domain > 15)) {
570                 PRINTKW("Invalid param: domain = %d.  Not loading.\n", domain);
571                 return -EINVAL;
572         }
573
574         /* Register as misc device with given minor (or get a dynamic one). */
575         result = misc_register(&z90crypt_misc_device);
576         if (result < 0) {
577                 PRINTKW(KERN_ERR "misc_register (minor %d) failed with %d\n",
578                         z90crypt_misc_device.minor, result);
579                 return result;
580         }
581
582         PDEBUG("Registered " DEV_NAME " with result %d\n", result);
583
584         result = create_z90crypt(&domain);
585         if (result != 0) {
586                 PRINTKW("create_z90crypt (domain index %d) failed with %d.\n",
587                         domain, result);
588                 result = -ENOMEM;
589                 goto init_module_cleanup;
590         }
591
592         if (result == 0) {
593                 PRINTKN("Version %d.%d.%d loaded, built on %s %s\n",
594                         z90crypt_VERSION, z90crypt_RELEASE, z90crypt_VARIANT,
595                         __DATE__, __TIME__);
596                 PRINTKN("%s\n", z90main_version);
597                 PRINTKN("%s\n", z90hardware_version);
598                 PDEBUG("create_z90crypt (domain index %d) successful.\n",
599                        domain);
600         } else
601                 PRINTK("No devices at startup\n");
602
603         /* Initialize globals. */
604         spin_lock_init(&queuespinlock);
605
606         INIT_LIST_HEAD(&pending_list);
607         pendingq_count = 0;
608
609         INIT_LIST_HEAD(&request_list);
610         requestq_count = 0;
611
612         quiesce_z90crypt = 0;
613
614         atomic_set(&total_open, 0);
615         atomic_set(&z90crypt_step, 0);
616
617         /* Set up the cleanup task. */
618         init_timer(&cleanup_timer);
619         cleanup_timer.function = z90crypt_cleanup_task;
620         cleanup_timer.data = 0;
621         cleanup_timer.expires = jiffies + (CLEANUPTIME * HZ);
622         add_timer(&cleanup_timer);
623
624         /* Set up the proc file system */
625         entry = create_proc_entry("driver/z90crypt", 0644, 0);
626         if (entry) {
627                 entry->nlink = 1;
628                 entry->data = 0;
629                 entry->read_proc = z90crypt_status;
630                 entry->write_proc = z90crypt_status_write;
631         }
632         else
633                 PRINTK("Couldn't create z90crypt proc entry\n");
634         z90crypt_entry = entry;
635
636         /* Set up the configuration task. */
637         init_timer(&config_timer);
638         config_timer.function = z90crypt_config_task;
639         config_timer.data = 0;
640         config_timer.expires = jiffies + (INITIAL_CONFIGTIME * HZ);
641         add_timer(&config_timer);
642
643         /* Set up the reader task */
644         tasklet_init(&reader_tasklet, z90crypt_reader_task, 0);
645         init_timer(&reader_timer);
646         reader_timer.function = z90crypt_schedule_reader_task;
647         reader_timer.data = 0;
648         reader_timer.expires = jiffies + (READERTIME * HZ / 1000);
649         add_timer(&reader_timer);
650
651         return 0; // success
652
653 init_module_cleanup:
654         if ((nresult = misc_deregister(&z90crypt_misc_device)))
655                 PRINTK("misc_deregister failed with %d.\n", nresult);
656         else
657                 PDEBUG("misc_deregister successful.\n");
658
659         return result; // failure
660 }
661
662 /**
663  * The module termination code
664  */
665 static void __exit
666 z90crypt_cleanup_module(void)
667 {
668         int nresult;
669
670         PDEBUG("PID %d\n", PID());
671
672         remove_proc_entry("driver/z90crypt", 0);
673
674         if ((nresult = misc_deregister(&z90crypt_misc_device)))
675                 PRINTK("misc_deregister failed with %d.\n", nresult);
676         else
677                 PDEBUG("misc_deregister successful.\n");
678
679         /* Remove the tasks */
680         tasklet_kill(&reader_tasklet);
681         del_timer(&reader_timer);
682         del_timer(&config_timer);
683         del_timer(&cleanup_timer);
684
685         if (z90_device_work)
686                 destroy_workqueue(z90_device_work);
687
688         destroy_z90crypt();
689
690         PRINTKN("Unloaded.\n");
691 }
692
693 /**
694  * Functions running under a process id
695  *
696  * The I/O functions:
697  *     z90crypt_open
698  *     z90crypt_release
699  *     z90crypt_read
700  *     z90crypt_write
701  *     z90crypt_unlocked_ioctl
702  *     z90crypt_status
703  *     z90crypt_status_write
704  *       disable_card
705  *       enable_card
706  *
707  * Helper functions:
708  *     z90crypt_rsa
709  *       z90crypt_prepare
710  *       z90crypt_send
711  *       z90crypt_process_results
712  *
713  */
714 static int
715 z90crypt_open(struct inode *inode, struct file *filp)
716 {
717         struct priv_data *private_data_p;
718
719         if (quiesce_z90crypt)
720                 return -EQUIESCE;
721
722         private_data_p = kmalloc(sizeof(struct priv_data), GFP_KERNEL);
723         if (!private_data_p) {
724                 PRINTK("Memory allocate failed\n");
725                 return -ENOMEM;
726         }
727
728         memset((void *)private_data_p, 0, sizeof(struct priv_data));
729         private_data_p->status = STAT_OPEN;
730         private_data_p->opener_pid = PID();
731         filp->private_data = private_data_p;
732         atomic_inc(&total_open);
733
734         return 0;
735 }
736
737 static int
738 z90crypt_release(struct inode *inode, struct file *filp)
739 {
740         struct priv_data *private_data_p = filp->private_data;
741
742         PDEBUG("PID %d (filp %p)\n", PID(), filp);
743
744         private_data_p->status = STAT_CLOSED;
745         memset(private_data_p, 0, sizeof(struct priv_data));
746         kfree(private_data_p);
747         atomic_dec(&total_open);
748
749         return 0;
750 }
751
752 /*
753  * there are two read functions, of which compile options will choose one
754  * without USE_GET_RANDOM_BYTES
755  *   => read() always returns -EPERM;
756  * otherwise
757  *   => read() uses get_random_bytes() kernel function
758  */
759 #ifndef USE_GET_RANDOM_BYTES
760 /**
761  * z90crypt_read will not be supported beyond z90crypt 1.3.1
762  */
763 static ssize_t
764 z90crypt_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
765 {
766         PDEBUG("filp %p (PID %d)\n", filp, PID());
767         return -EPERM;
768 }
769 #else // we want to use get_random_bytes
770 /**
771  * read() just returns a string of random bytes.  Since we have no way
772  * to generate these cryptographically, we just execute get_random_bytes
773  * for the length specified.
774  */
775 #include <linux/random.h>
776 static ssize_t
777 z90crypt_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
778 {
779         unsigned char *temp_buff;
780
781         PDEBUG("filp %p (PID %d)\n", filp, PID());
782
783         if (quiesce_z90crypt)
784                 return -EQUIESCE;
785         if (count < 0) {
786                 PRINTK("Requested random byte count negative: %ld\n", count);
787                 return -EINVAL;
788         }
789         if (count > RESPBUFFSIZE) {
790                 PDEBUG("count[%d] > RESPBUFFSIZE", count);
791                 return -EINVAL;
792         }
793         if (count == 0)
794                 return 0;
795         temp_buff = kmalloc(RESPBUFFSIZE, GFP_KERNEL);
796         if (!temp_buff) {
797                 PRINTK("Memory allocate failed\n");
798                 return -ENOMEM;
799         }
800         get_random_bytes(temp_buff, count);
801
802         if (copy_to_user(buf, temp_buff, count) != 0) {
803                 kfree(temp_buff);
804                 return -EFAULT;
805         }
806         kfree(temp_buff);
807         return count;
808 }
809 #endif
810
811 /**
812  * Write is is not allowed
813  */
814 static ssize_t
815 z90crypt_write(struct file *filp, const char __user *buf, size_t count, loff_t *f_pos)
816 {
817         PDEBUG("filp %p (PID %d)\n", filp, PID());
818         return -EPERM;
819 }
820
821 /**
822  * New status functions
823  */
824 static inline int
825 get_status_totalcount(void)
826 {
827         return z90crypt.hdware_info->hdware_mask.st_count;
828 }
829
830 static inline int
831 get_status_PCICAcount(void)
832 {
833         return z90crypt.hdware_info->type_mask[PCICA].st_count;
834 }
835
836 static inline int
837 get_status_PCICCcount(void)
838 {
839         return z90crypt.hdware_info->type_mask[PCICC].st_count;
840 }
841
842 static inline int
843 get_status_PCIXCCcount(void)
844 {
845         return z90crypt.hdware_info->type_mask[PCIXCC_MCL2].st_count +
846                z90crypt.hdware_info->type_mask[PCIXCC_MCL3].st_count;
847 }
848
849 static inline int
850 get_status_PCIXCCMCL2count(void)
851 {
852         return z90crypt.hdware_info->type_mask[PCIXCC_MCL2].st_count;
853 }
854
855 static inline int
856 get_status_PCIXCCMCL3count(void)
857 {
858         return z90crypt.hdware_info->type_mask[PCIXCC_MCL3].st_count;
859 }
860
861 static inline int
862 get_status_CEX2Ccount(void)
863 {
864         return z90crypt.hdware_info->type_mask[CEX2C].st_count;
865 }
866
867 static inline int
868 get_status_requestq_count(void)
869 {
870         return requestq_count;
871 }
872
873 static inline int
874 get_status_pendingq_count(void)
875 {
876         return pendingq_count;
877 }
878
879 static inline int
880 get_status_totalopen_count(void)
881 {
882         return atomic_read(&total_open);
883 }
884
885 static inline int
886 get_status_domain_index(void)
887 {
888         return z90crypt.cdx;
889 }
890
891 static inline unsigned char *
892 get_status_status_mask(unsigned char status[Z90CRYPT_NUM_APS])
893 {
894         int i, ix;
895
896         memcpy(status, z90crypt.hdware_info->device_type_array,
897                Z90CRYPT_NUM_APS);
898
899         for (i = 0; i < get_status_totalcount(); i++) {
900                 ix = SHRT2LONG(i);
901                 if (LONG2DEVPTR(ix)->user_disabled)
902                         status[ix] = 0x0d;
903         }
904
905         return status;
906 }
907
908 static inline unsigned char *
909 get_status_qdepth_mask(unsigned char qdepth[Z90CRYPT_NUM_APS])
910 {
911         int i, ix;
912
913         memset(qdepth, 0, Z90CRYPT_NUM_APS);
914
915         for (i = 0; i < get_status_totalcount(); i++) {
916                 ix = SHRT2LONG(i);
917                 qdepth[ix] = LONG2DEVPTR(ix)->dev_caller_count;
918         }
919
920         return qdepth;
921 }
922
923 static inline unsigned int *
924 get_status_perdevice_reqcnt(unsigned int reqcnt[Z90CRYPT_NUM_APS])
925 {
926         int i, ix;
927
928         memset(reqcnt, 0, Z90CRYPT_NUM_APS * sizeof(int));
929
930         for (i = 0; i < get_status_totalcount(); i++) {
931                 ix = SHRT2LONG(i);
932                 reqcnt[ix] = LONG2DEVPTR(ix)->dev_total_req_cnt;
933         }
934
935         return reqcnt;
936 }
937
938 static inline void
939 init_work_element(struct work_element *we_p,
940                   struct priv_data *priv_data, pid_t pid)
941 {
942         int step;
943
944         we_p->requestptr = (unsigned char *)we_p + sizeof(struct work_element);
945         /* Come up with a unique id for this caller. */
946         step = atomic_inc_return(&z90crypt_step);
947         memcpy(we_p->caller_id+0, (void *) &pid, sizeof(pid));
948         memcpy(we_p->caller_id+4, (void *) &step, sizeof(step));
949         we_p->pid = pid;
950         we_p->priv_data = priv_data;
951         we_p->status[0] = STAT_DEFAULT;
952         we_p->audit[0] = 0x00;
953         we_p->audit[1] = 0x00;
954         we_p->audit[2] = 0x00;
955         we_p->resp_buff_size = 0;
956         we_p->retcode = 0;
957         we_p->devindex = -1;
958         we_p->devtype = -1;
959         atomic_set(&we_p->alarmrung, 0);
960         init_waitqueue_head(&we_p->waitq);
961         INIT_LIST_HEAD(&(we_p->liste));
962 }
963
964 static inline int
965 allocate_work_element(struct work_element **we_pp,
966                       struct priv_data *priv_data_p, pid_t pid)
967 {
968         struct work_element *we_p;
969
970         we_p = (struct work_element *) get_zeroed_page(GFP_KERNEL);
971         if (!we_p)
972                 return -ENOMEM;
973         init_work_element(we_p, priv_data_p, pid);
974         *we_pp = we_p;
975         return 0;
976 }
977
978 static inline void
979 remove_device(struct device *device_p)
980 {
981         if (!device_p || (device_p->disabled != 0))
982                 return;
983         device_p->disabled = 1;
984         z90crypt.hdware_info->type_mask[device_p->dev_type].disabled_count++;
985         z90crypt.hdware_info->hdware_mask.disabled_count++;
986 }
987
988 /**
989  * Bitlength limits for each card
990  *
991  * There are new MCLs which allow more bitlengths. See the table for details.
992  * The MCL must be applied and the newer bitlengths enabled for these to work.
993  *
994  * Card Type    Old limit    New limit
995  * PCICA          ??-2048     same (the lower limit is less than 128 bit...)
996  * PCICC         512-1024     512-2048
997  * PCIXCC_MCL2   512-2048     ----- (applying any GA LIC will make an MCL3 card)
998  * PCIXCC_MCL3   -----        128-2048
999  * CEX2C         512-2048     128-2048
1000  *
1001  * ext_bitlens (extended bitlengths) is a global, since you should not apply an
1002  * MCL to just one card in a machine. We assume, at first, that all cards have
1003  * these capabilities.
1004  */
1005 int ext_bitlens = 1; // This is global
1006 #define PCIXCC_MIN_MOD_SIZE      16     //  128 bits
1007 #define OLD_PCIXCC_MIN_MOD_SIZE  64     //  512 bits
1008 #define PCICC_MIN_MOD_SIZE       64     //  512 bits
1009 #define OLD_PCICC_MAX_MOD_SIZE  128     // 1024 bits
1010 #define MAX_MOD_SIZE            256     // 2048 bits
1011
1012 static inline int
1013 select_device_type(int *dev_type_p, int bytelength)
1014 {
1015         static int count = 0;
1016         int PCICA_avail, PCIXCC_MCL3_avail, CEX2C_avail, index_to_use;
1017         struct status *stat;
1018         if ((*dev_type_p != PCICC) && (*dev_type_p != PCICA) &&
1019             (*dev_type_p != PCIXCC_MCL2) && (*dev_type_p != PCIXCC_MCL3) &&
1020             (*dev_type_p != CEX2C) && (*dev_type_p != ANYDEV))
1021                 return -1;
1022         if (*dev_type_p != ANYDEV) {
1023                 stat = &z90crypt.hdware_info->type_mask[*dev_type_p];
1024                 if (stat->st_count >
1025                     (stat->disabled_count + stat->user_disabled_count))
1026                         return 0;
1027                 return -1;
1028         }
1029
1030         /* Assumption: PCICA, PCIXCC_MCL3, and CEX2C are all similar in speed */
1031         stat = &z90crypt.hdware_info->type_mask[PCICA];
1032         PCICA_avail = stat->st_count -
1033                         (stat->disabled_count + stat->user_disabled_count);
1034         stat = &z90crypt.hdware_info->type_mask[PCIXCC_MCL3];
1035         PCIXCC_MCL3_avail = stat->st_count -
1036                         (stat->disabled_count + stat->user_disabled_count);
1037         stat = &z90crypt.hdware_info->type_mask[CEX2C];
1038         CEX2C_avail = stat->st_count -
1039                         (stat->disabled_count + stat->user_disabled_count);
1040         if (PCICA_avail || PCIXCC_MCL3_avail || CEX2C_avail) {
1041                 /**
1042                  * bitlength is a factor, PCICA is the most capable, even with
1043                  * the new MCL for PCIXCC.
1044                  */
1045                 if ((bytelength < PCIXCC_MIN_MOD_SIZE) ||
1046                     (!ext_bitlens && (bytelength < OLD_PCIXCC_MIN_MOD_SIZE))) {
1047                         if (!PCICA_avail)
1048                                 return -1;
1049                         else {
1050                                 *dev_type_p = PCICA;
1051                                 return 0;
1052                         }
1053                 }
1054
1055                 index_to_use = count % (PCICA_avail + PCIXCC_MCL3_avail +
1056                                         CEX2C_avail);
1057                 if (index_to_use < PCICA_avail)
1058                         *dev_type_p = PCICA;
1059                 else if (index_to_use < (PCICA_avail + PCIXCC_MCL3_avail))
1060                         *dev_type_p = PCIXCC_MCL3;
1061                 else
1062                         *dev_type_p = CEX2C;
1063                 count++;
1064                 return 0;
1065         }
1066
1067         /* Less than OLD_PCIXCC_MIN_MOD_SIZE cannot go to a PCIXCC_MCL2 */
1068         if (bytelength < OLD_PCIXCC_MIN_MOD_SIZE)
1069                 return -1;
1070         stat = &z90crypt.hdware_info->type_mask[PCIXCC_MCL2];
1071         if (stat->st_count >
1072             (stat->disabled_count + stat->user_disabled_count)) {
1073                 *dev_type_p = PCIXCC_MCL2;
1074                 return 0;
1075         }
1076
1077         /**
1078          * Less than PCICC_MIN_MOD_SIZE or more than OLD_PCICC_MAX_MOD_SIZE
1079          * (if we don't have the MCL applied and the newer bitlengths enabled)
1080          * cannot go to a PCICC
1081          */
1082         if ((bytelength < PCICC_MIN_MOD_SIZE) ||
1083             (!ext_bitlens && (bytelength > OLD_PCICC_MAX_MOD_SIZE))) {
1084                 return -1;
1085         }
1086         stat = &z90crypt.hdware_info->type_mask[PCICC];
1087         if (stat->st_count >
1088             (stat->disabled_count + stat->user_disabled_count)) {
1089                 *dev_type_p = PCICC;
1090                 return 0;
1091         }
1092
1093         return -1;
1094 }
1095
1096 /**
1097  * Try the selected number, then the selected type (can be ANYDEV)
1098  */
1099 static inline int
1100 select_device(int *dev_type_p, int *device_nr_p, int bytelength)
1101 {
1102         int i, indx, devTp, low_count, low_indx;
1103         struct device_x *index_p;
1104         struct device *dev_ptr;
1105
1106         PDEBUG("device type = %d, index = %d\n", *dev_type_p, *device_nr_p);
1107         if ((*device_nr_p >= 0) && (*device_nr_p < Z90CRYPT_NUM_DEVS)) {
1108                 PDEBUG("trying index = %d\n", *device_nr_p);
1109                 dev_ptr = z90crypt.device_p[*device_nr_p];
1110
1111                 if (dev_ptr &&
1112                     (dev_ptr->dev_stat != DEV_GONE) &&
1113                     (dev_ptr->disabled == 0) &&
1114                     (dev_ptr->user_disabled == 0)) {
1115                         PDEBUG("selected by number, index = %d\n",
1116                                *device_nr_p);
1117                         *dev_type_p = dev_ptr->dev_type;
1118                         return *device_nr_p;
1119                 }
1120         }
1121         *device_nr_p = -1;
1122         PDEBUG("trying type = %d\n", *dev_type_p);
1123         devTp = *dev_type_p;
1124         if (select_device_type(&devTp, bytelength) == -1) {
1125                 PDEBUG("failed to select by type\n");
1126                 return -1;
1127         }
1128         PDEBUG("selected type = %d\n", devTp);
1129         index_p = &z90crypt.hdware_info->type_x_addr[devTp];
1130         low_count = 0x0000FFFF;
1131         low_indx = -1;
1132         for (i = 0; i < z90crypt.hdware_info->type_mask[devTp].st_count; i++) {
1133                 indx = index_p->device_index[i];
1134                 dev_ptr = z90crypt.device_p[indx];
1135                 if (dev_ptr &&
1136                     (dev_ptr->dev_stat != DEV_GONE) &&
1137                     (dev_ptr->disabled == 0) &&
1138                     (dev_ptr->user_disabled == 0) &&
1139                     (devTp == dev_ptr->dev_type) &&
1140                     (low_count > dev_ptr->dev_caller_count)) {
1141                         low_count = dev_ptr->dev_caller_count;
1142                         low_indx = indx;
1143                 }
1144         }
1145         *device_nr_p = low_indx;
1146         return low_indx;
1147 }
1148
1149 static inline int
1150 send_to_crypto_device(struct work_element *we_p)
1151 {
1152         struct caller *caller_p;
1153         struct device *device_p;
1154         int dev_nr;
1155         int bytelen = ((struct ica_rsa_modexpo *)we_p->buffer)->inputdatalength;
1156
1157         if (!we_p->requestptr)
1158                 return SEN_FATAL_ERROR;
1159         caller_p = (struct caller *)we_p->requestptr;
1160         dev_nr = we_p->devindex;
1161         if (select_device(&we_p->devtype, &dev_nr, bytelen) == -1) {
1162                 if (z90crypt.hdware_info->hdware_mask.st_count != 0)
1163                         return SEN_RETRY;
1164                 else
1165                         return SEN_NOT_AVAIL;
1166         }
1167         we_p->devindex = dev_nr;
1168         device_p = z90crypt.device_p[dev_nr];
1169         if (!device_p)
1170                 return SEN_NOT_AVAIL;
1171         if (device_p->dev_type != we_p->devtype)
1172                 return SEN_RETRY;
1173         if (device_p->dev_caller_count >= device_p->dev_q_depth)
1174                 return SEN_QUEUE_FULL;
1175         PDEBUG("device number prior to send: %d\n", dev_nr);
1176         switch (send_to_AP(dev_nr, z90crypt.cdx,
1177                            caller_p->caller_dev_dep_req_l,
1178                            caller_p->caller_dev_dep_req_p)) {
1179         case DEV_SEN_EXCEPTION:
1180                 PRINTKC("Exception during send to device %d\n", dev_nr);
1181                 z90crypt.terminating = 1;
1182                 return SEN_FATAL_ERROR;
1183         case DEV_GONE:
1184                 PRINTK("Device %d not available\n", dev_nr);
1185                 remove_device(device_p);
1186                 return SEN_NOT_AVAIL;
1187         case DEV_EMPTY:
1188                 return SEN_NOT_AVAIL;
1189         case DEV_NO_WORK:
1190                 return SEN_FATAL_ERROR;
1191         case DEV_BAD_MESSAGE:
1192                 return SEN_USER_ERROR;
1193         case DEV_QUEUE_FULL:
1194                 return SEN_QUEUE_FULL;
1195         default:
1196         case DEV_ONLINE:
1197                 break;
1198         }
1199         list_add_tail(&(caller_p->caller_liste), &(device_p->dev_caller_list));
1200         device_p->dev_caller_count++;
1201         return 0;
1202 }
1203
1204 /**
1205  * Send puts the user's work on one of two queues:
1206  *   the pending queue if the send was successful
1207  *   the request queue if the send failed because device full or busy
1208  */
1209 static inline int
1210 z90crypt_send(struct work_element *we_p, const char *buf)
1211 {
1212         int rv;
1213
1214         PDEBUG("PID %d\n", PID());
1215
1216         if (CHK_RDWRMASK(we_p->status[0]) != STAT_NOWORK) {
1217                 PDEBUG("PID %d tried to send more work but has outstanding "
1218                        "work.\n", PID());
1219                 return -EWORKPEND;
1220         }
1221         we_p->devindex = -1; // Reset device number
1222         spin_lock_irq(&queuespinlock);
1223         rv = send_to_crypto_device(we_p);
1224         switch (rv) {
1225         case 0:
1226                 we_p->requestsent = jiffies;
1227                 we_p->audit[0] |= FP_SENT;
1228                 list_add_tail(&we_p->liste, &pending_list);
1229                 ++pendingq_count;
1230                 we_p->audit[0] |= FP_PENDING;
1231                 break;
1232         case SEN_BUSY:
1233         case SEN_QUEUE_FULL:
1234                 rv = 0;
1235                 we_p->devindex = -1; // any device will do
1236                 we_p->requestsent = jiffies;
1237                 list_add_tail(&we_p->liste, &request_list);
1238                 ++requestq_count;
1239                 we_p->audit[0] |= FP_REQUEST;
1240                 break;
1241         case SEN_RETRY:
1242                 rv = -ERESTARTSYS;
1243                 break;
1244         case SEN_NOT_AVAIL:
1245                 PRINTK("*** No devices available.\n");
1246                 rv = we_p->retcode = -ENODEV;
1247                 we_p->status[0] |= STAT_FAILED;
1248                 break;
1249         case REC_OPERAND_INV:
1250         case REC_OPERAND_SIZE:
1251         case REC_EVEN_MOD:
1252         case REC_INVALID_PAD:
1253                 rv = we_p->retcode = -EINVAL;
1254                 we_p->status[0] |= STAT_FAILED;
1255                 break;
1256         default:
1257                 we_p->retcode = rv;
1258                 we_p->status[0] |= STAT_FAILED;
1259                 break;
1260         }
1261         if (rv != -ERESTARTSYS)
1262                 SET_RDWRMASK(we_p->status[0], STAT_WRITTEN);
1263         spin_unlock_irq(&queuespinlock);
1264         if (rv == 0)
1265                 tasklet_schedule(&reader_tasklet);
1266         return rv;
1267 }
1268
1269 /**
1270  * process_results copies the user's work from kernel space.
1271  */
1272 static inline int
1273 z90crypt_process_results(struct work_element *we_p, char __user *buf)
1274 {
1275         int rv;
1276
1277         PDEBUG("we_p %p (PID %d)\n", we_p, PID());
1278
1279         LONG2DEVPTR(we_p->devindex)->dev_total_req_cnt++;
1280         SET_RDWRMASK(we_p->status[0], STAT_READPEND);
1281
1282         rv = 0;
1283         if (!we_p->buffer) {
1284                 PRINTK("we_p %p PID %d in STAT_READPEND: buffer NULL.\n",
1285                         we_p, PID());
1286                 rv = -ENOBUFF;
1287         }
1288
1289         if (!rv)
1290                 if ((rv = copy_to_user(buf, we_p->buffer, we_p->buff_size))) {
1291                         PDEBUG("copy_to_user failed: rv = %d\n", rv);
1292                         rv = -EFAULT;
1293                 }
1294
1295         if (!rv)
1296                 rv = we_p->retcode;
1297         if (!rv)
1298                 if (we_p->resp_buff_size
1299                     &&  copy_to_user(we_p->resp_addr, we_p->resp_buff,
1300                                      we_p->resp_buff_size))
1301                         rv = -EFAULT;
1302
1303         SET_RDWRMASK(we_p->status[0], STAT_NOWORK);
1304         return rv;
1305 }
1306
1307 static unsigned char NULL_psmid[8] =
1308 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
1309
1310 /**
1311  * Used in device configuration functions
1312  */
1313 #define MAX_RESET 90
1314
1315 /**
1316  * This is used only for PCICC support
1317  */
1318 static inline int
1319 is_PKCS11_padded(unsigned char *buffer, int length)
1320 {
1321         int i;
1322         if ((buffer[0] != 0x00) || (buffer[1] != 0x01))
1323                 return 0;
1324         for (i = 2; i < length; i++)
1325                 if (buffer[i] != 0xFF)
1326                         break;
1327         if ((i < 10) || (i == length))
1328                 return 0;
1329         if (buffer[i] != 0x00)
1330                 return 0;
1331         return 1;
1332 }
1333
1334 /**
1335  * This is used only for PCICC support
1336  */
1337 static inline int
1338 is_PKCS12_padded(unsigned char *buffer, int length)
1339 {
1340         int i;
1341         if ((buffer[0] != 0x00) || (buffer[1] != 0x02))
1342                 return 0;
1343         for (i = 2; i < length; i++)
1344                 if (buffer[i] == 0x00)
1345                         break;
1346         if ((i < 10) || (i == length))
1347                 return 0;
1348         if (buffer[i] != 0x00)
1349                 return 0;
1350         return 1;
1351 }
1352
1353 /**
1354  * builds struct caller and converts message from generic format to
1355  * device-dependent format
1356  * func is ICARSAMODEXPO or ICARSACRT
1357  * function is PCI_FUNC_KEY_ENCRYPT or PCI_FUNC_KEY_DECRYPT
1358  */
1359 static inline int
1360 build_caller(struct work_element *we_p, short function)
1361 {
1362         int rv;
1363         struct caller *caller_p = (struct caller *)we_p->requestptr;
1364
1365         if ((we_p->devtype != PCICC) && (we_p->devtype != PCICA) &&
1366             (we_p->devtype != PCIXCC_MCL2) && (we_p->devtype != PCIXCC_MCL3) &&
1367             (we_p->devtype != CEX2C))
1368                 return SEN_NOT_AVAIL;
1369
1370         memcpy(caller_p->caller_id, we_p->caller_id,
1371                sizeof(caller_p->caller_id));
1372         caller_p->caller_dev_dep_req_p = caller_p->caller_dev_dep_req;
1373         caller_p->caller_dev_dep_req_l = MAX_RESPONSE_SIZE;
1374         caller_p->caller_buf_p = we_p->buffer;
1375         INIT_LIST_HEAD(&(caller_p->caller_liste));
1376
1377         rv = convert_request(we_p->buffer, we_p->funccode, function,
1378                              z90crypt.cdx, we_p->devtype,
1379                              &caller_p->caller_dev_dep_req_l,
1380                              caller_p->caller_dev_dep_req_p);
1381         if (rv) {
1382                 if (rv == SEN_NOT_AVAIL)
1383                         PDEBUG("request can't be processed on hdwr avail\n");
1384                 else
1385                         PRINTK("Error from convert_request: %d\n", rv);
1386         }
1387         else
1388                 memcpy(&(caller_p->caller_dev_dep_req_p[4]), we_p->caller_id,8);
1389         return rv;
1390 }
1391
1392 static inline void
1393 unbuild_caller(struct device *device_p, struct caller *caller_p)
1394 {
1395         if (!caller_p)
1396                 return;
1397         if (caller_p->caller_liste.next && caller_p->caller_liste.prev)
1398                 if (!list_empty(&caller_p->caller_liste)) {
1399                         list_del_init(&caller_p->caller_liste);
1400                         device_p->dev_caller_count--;
1401                 }
1402         memset(caller_p->caller_id, 0, sizeof(caller_p->caller_id));
1403 }
1404
1405 static inline int
1406 get_crypto_request_buffer(struct work_element *we_p)
1407 {
1408         struct ica_rsa_modexpo *mex_p;
1409         struct ica_rsa_modexpo_crt *crt_p;
1410         unsigned char *temp_buffer;
1411         short function;
1412         int rv;
1413
1414         mex_p = (struct ica_rsa_modexpo *) we_p->buffer;
1415         crt_p = (struct ica_rsa_modexpo_crt *) we_p->buffer;
1416
1417         PDEBUG("device type input = %d\n", we_p->devtype);
1418
1419         if (z90crypt.terminating)
1420                 return REC_NO_RESPONSE;
1421         if (memcmp(we_p->caller_id, NULL_psmid, 8) == 0) {
1422                 PRINTK("psmid zeroes\n");
1423                 return SEN_FATAL_ERROR;
1424         }
1425         if (!we_p->buffer) {
1426                 PRINTK("buffer pointer NULL\n");
1427                 return SEN_USER_ERROR;
1428         }
1429         if (!we_p->requestptr) {
1430                 PRINTK("caller pointer NULL\n");
1431                 return SEN_USER_ERROR;
1432         }
1433
1434         if ((we_p->devtype != PCICA) && (we_p->devtype != PCICC) &&
1435             (we_p->devtype != PCIXCC_MCL2) && (we_p->devtype != PCIXCC_MCL3) &&
1436             (we_p->devtype != CEX2C) && (we_p->devtype != ANYDEV)) {
1437                 PRINTK("invalid device type\n");
1438                 return SEN_USER_ERROR;
1439         }
1440
1441         if ((mex_p->inputdatalength < 1) ||
1442             (mex_p->inputdatalength > MAX_MOD_SIZE)) {
1443                 PRINTK("inputdatalength[%d] is not valid\n",
1444                        mex_p->inputdatalength);
1445                 return SEN_USER_ERROR;
1446         }
1447
1448         if (mex_p->outputdatalength < mex_p->inputdatalength) {
1449                 PRINTK("outputdatalength[%d] < inputdatalength[%d]\n",
1450                        mex_p->outputdatalength, mex_p->inputdatalength);
1451                 return SEN_USER_ERROR;
1452         }
1453
1454         if (!mex_p->inputdata || !mex_p->outputdata) {
1455                 PRINTK("inputdata[%p] or outputdata[%p] is NULL\n",
1456                        mex_p->outputdata, mex_p->inputdata);
1457                 return SEN_USER_ERROR;
1458         }
1459
1460         /**
1461          * As long as outputdatalength is big enough, we can set the
1462          * outputdatalength equal to the inputdatalength, since that is the
1463          * number of bytes we will copy in any case
1464          */
1465         mex_p->outputdatalength = mex_p->inputdatalength;
1466
1467         rv = 0;
1468         switch (we_p->funccode) {
1469         case ICARSAMODEXPO:
1470                 if (!mex_p->b_key || !mex_p->n_modulus)
1471                         rv = SEN_USER_ERROR;
1472                 break;
1473         case ICARSACRT:
1474                 if (!IS_EVEN(crt_p->inputdatalength)) {
1475                         PRINTK("inputdatalength[%d] is odd, CRT form\n",
1476                                crt_p->inputdatalength);
1477                         rv = SEN_USER_ERROR;
1478                         break;
1479                 }
1480                 if (!crt_p->bp_key ||
1481                     !crt_p->bq_key ||
1482                     !crt_p->np_prime ||
1483                     !crt_p->nq_prime ||
1484                     !crt_p->u_mult_inv) {
1485                         PRINTK("CRT form, bad data: %p/%p/%p/%p/%p\n",
1486                                crt_p->bp_key, crt_p->bq_key,
1487                                crt_p->np_prime, crt_p->nq_prime,
1488                                crt_p->u_mult_inv);
1489                         rv = SEN_USER_ERROR;
1490                 }
1491                 break;
1492         default:
1493                 PRINTK("bad func = %d\n", we_p->funccode);
1494                 rv = SEN_USER_ERROR;
1495                 break;
1496         }
1497         if (rv != 0)
1498                 return rv;
1499
1500         if (select_device_type(&we_p->devtype, mex_p->inputdatalength) < 0)
1501                 return SEN_NOT_AVAIL;
1502
1503         temp_buffer = (unsigned char *)we_p + sizeof(struct work_element) +
1504                       sizeof(struct caller);
1505         if (copy_from_user(temp_buffer, mex_p->inputdata,
1506                            mex_p->inputdatalength) != 0)
1507                 return SEN_RELEASED;
1508
1509         function = PCI_FUNC_KEY_ENCRYPT;
1510         switch (we_p->devtype) {
1511         /* PCICA does everything with a simple RSA mod-expo operation */
1512         case PCICA:
1513                 function = PCI_FUNC_KEY_ENCRYPT;
1514                 break;
1515         /**
1516          * PCIXCC_MCL2 does all Mod-Expo form with a simple RSA mod-expo
1517          * operation, and all CRT forms with a PKCS-1.2 format decrypt.
1518          * PCIXCC_MCL3 and CEX2C do all Mod-Expo and CRT forms with a simple RSA
1519          * mod-expo operation
1520          */
1521         case PCIXCC_MCL2:
1522                 if (we_p->funccode == ICARSAMODEXPO)
1523                         function = PCI_FUNC_KEY_ENCRYPT;
1524                 else
1525                         function = PCI_FUNC_KEY_DECRYPT;
1526                 break;
1527         case PCIXCC_MCL3:
1528         case CEX2C:
1529                 if (we_p->funccode == ICARSAMODEXPO)
1530                         function = PCI_FUNC_KEY_ENCRYPT;
1531                 else
1532                         function = PCI_FUNC_KEY_DECRYPT;
1533                 break;
1534         /**
1535          * PCICC does everything as a PKCS-1.2 format request
1536          */
1537         case PCICC:
1538                 /* PCICC cannot handle input that is is PKCS#1.1 padded */
1539                 if (is_PKCS11_padded(temp_buffer, mex_p->inputdatalength)) {
1540                         return SEN_NOT_AVAIL;
1541                 }
1542                 if (we_p->funccode == ICARSAMODEXPO) {
1543                         if (is_PKCS12_padded(temp_buffer,
1544                                              mex_p->inputdatalength))
1545                                 function = PCI_FUNC_KEY_ENCRYPT;
1546                         else
1547                                 function = PCI_FUNC_KEY_DECRYPT;
1548                 } else
1549                         /* all CRT forms are decrypts */
1550                         function = PCI_FUNC_KEY_DECRYPT;
1551                 break;
1552         }
1553         PDEBUG("function: %04x\n", function);
1554         rv = build_caller(we_p, function);
1555         PDEBUG("rv from build_caller = %d\n", rv);
1556         return rv;
1557 }
1558
1559 static inline int
1560 z90crypt_prepare(struct work_element *we_p, unsigned int funccode,
1561                  const char __user *buffer)
1562 {
1563         int rv;
1564
1565         we_p->devindex = -1;
1566         if (funccode == ICARSAMODEXPO)
1567                 we_p->buff_size = sizeof(struct ica_rsa_modexpo);
1568         else
1569                 we_p->buff_size = sizeof(struct ica_rsa_modexpo_crt);
1570
1571         if (copy_from_user(we_p->buffer, buffer, we_p->buff_size))
1572                 return -EFAULT;
1573
1574         we_p->audit[0] |= FP_COPYFROM;
1575         SET_RDWRMASK(we_p->status[0], STAT_WRITTEN);
1576         we_p->funccode = funccode;
1577         we_p->devtype = -1;
1578         we_p->audit[0] |= FP_BUFFREQ;
1579         rv = get_crypto_request_buffer(we_p);
1580         switch (rv) {
1581         case 0:
1582                 we_p->audit[0] |= FP_BUFFGOT;
1583                 break;
1584         case SEN_USER_ERROR:
1585                 rv = -EINVAL;
1586                 break;
1587         case SEN_QUEUE_FULL:
1588                 rv = 0;
1589                 break;
1590         case SEN_RELEASED:
1591                 rv = -EFAULT;
1592                 break;
1593         case REC_NO_RESPONSE:
1594                 rv = -ENODEV;
1595                 break;
1596         case SEN_NOT_AVAIL:
1597         case EGETBUFF:
1598                 rv = -EGETBUFF;
1599                 break;
1600         default:
1601                 PRINTK("rv = %d\n", rv);
1602                 rv = -EGETBUFF;
1603                 break;
1604         }
1605         if (CHK_RDWRMASK(we_p->status[0]) == STAT_WRITTEN)
1606                 SET_RDWRMASK(we_p->status[0], STAT_DEFAULT);
1607         return rv;
1608 }
1609
1610 static inline void
1611 purge_work_element(struct work_element *we_p)
1612 {
1613         struct list_head *lptr;
1614
1615         spin_lock_irq(&queuespinlock);
1616         list_for_each(lptr, &request_list) {
1617                 if (lptr == &we_p->liste) {
1618                         list_del_init(lptr);
1619                         requestq_count--;
1620                         break;
1621                 }
1622         }
1623         list_for_each(lptr, &pending_list) {
1624                 if (lptr == &we_p->liste) {
1625                         list_del_init(lptr);
1626                         pendingq_count--;
1627                         break;
1628                 }
1629         }
1630         spin_unlock_irq(&queuespinlock);
1631 }
1632
1633 /**
1634  * Build the request and send it.
1635  */
1636 static inline int
1637 z90crypt_rsa(struct priv_data *private_data_p, pid_t pid,
1638              unsigned int cmd, unsigned long arg)
1639 {
1640         struct work_element *we_p;
1641         int rv;
1642
1643         if ((rv = allocate_work_element(&we_p, private_data_p, pid))) {
1644                 PDEBUG("PID %d: allocate_work_element returned ENOMEM\n", pid);
1645                 return rv;
1646         }
1647         if ((rv = z90crypt_prepare(we_p, cmd, (const char __user *)arg)))
1648                 PDEBUG("PID %d: rv = %d from z90crypt_prepare\n", pid, rv);
1649         if (!rv)
1650                 if ((rv = z90crypt_send(we_p, (const char *)arg)))
1651                         PDEBUG("PID %d: rv %d from z90crypt_send.\n", pid, rv);
1652         if (!rv) {
1653                 we_p->audit[0] |= FP_ASLEEP;
1654                 wait_event(we_p->waitq, atomic_read(&we_p->alarmrung));
1655                 we_p->audit[0] |= FP_AWAKE;
1656                 rv = we_p->retcode;
1657         }
1658         if (!rv)
1659                 rv = z90crypt_process_results(we_p, (char __user *)arg);
1660
1661         if ((we_p->status[0] & STAT_FAILED)) {
1662                 switch (rv) {
1663                 /**
1664                  * EINVAL *after* receive is almost always a padding error or
1665                  * length error issued by a coprocessor (not an accelerator).
1666                  * We convert this return value to -EGETBUFF which should
1667                  * trigger a fallback to software.
1668                  */
1669                 case -EINVAL:
1670                         if (we_p->devtype != PCICA)
1671                                 rv = -EGETBUFF;
1672                         break;
1673                 case -ETIMEOUT:
1674                         if (z90crypt.mask.st_count > 0)
1675                                 rv = -ERESTARTSYS; // retry with another
1676                         else
1677                                 rv = -ENODEV; // no cards left
1678                 /* fall through to clean up request queue */
1679                 case -ERESTARTSYS:
1680                 case -ERELEASED:
1681                         switch (CHK_RDWRMASK(we_p->status[0])) {
1682                         case STAT_WRITTEN:
1683                                 purge_work_element(we_p);
1684                                 break;
1685                         case STAT_READPEND:
1686                         case STAT_NOWORK:
1687                         default:
1688                                 break;
1689                         }
1690                         break;
1691                 default:
1692                         we_p->status[0] ^= STAT_FAILED;
1693                         break;
1694                 }
1695         }
1696         free_page((long)we_p);
1697         return rv;
1698 }
1699
1700 /**
1701  * This function is a little long, but it's really just one large switch
1702  * statement.
1703  */
1704 static long
1705 z90crypt_unlocked_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1706 {
1707         struct priv_data *private_data_p = filp->private_data;
1708         unsigned char *status;
1709         unsigned char *qdepth;
1710         unsigned int *reqcnt;
1711         struct ica_z90_status *pstat;
1712         int ret, i, loopLim, tempstat;
1713         static int deprecated_msg_count1 = 0;
1714         static int deprecated_msg_count2 = 0;
1715
1716         PDEBUG("filp %p (PID %d), cmd 0x%08X\n", filp, PID(), cmd);
1717         PDEBUG("cmd 0x%08X: dir %s, size 0x%04X, type 0x%02X, nr 0x%02X\n",
1718                 cmd,
1719                 !_IOC_DIR(cmd) ? "NO"
1720                 : ((_IOC_DIR(cmd) == (_IOC_READ|_IOC_WRITE)) ? "RW"
1721                 : ((_IOC_DIR(cmd) == _IOC_READ) ? "RD"
1722                 : "WR")),
1723                 _IOC_SIZE(cmd), _IOC_TYPE(cmd), _IOC_NR(cmd));
1724
1725         if (_IOC_TYPE(cmd) != Z90_IOCTL_MAGIC) {
1726                 PRINTK("cmd 0x%08X contains bad magic\n", cmd);
1727                 return -ENOTTY;
1728         }
1729
1730         ret = 0;
1731         switch (cmd) {
1732         case ICARSAMODEXPO:
1733         case ICARSACRT:
1734                 if (quiesce_z90crypt) {
1735                         ret = -EQUIESCE;
1736                         break;
1737                 }
1738                 ret = -ENODEV; // Default if no devices
1739                 loopLim = z90crypt.hdware_info->hdware_mask.st_count -
1740                         (z90crypt.hdware_info->hdware_mask.disabled_count +
1741                          z90crypt.hdware_info->hdware_mask.user_disabled_count);
1742                 for (i = 0; i < loopLim; i++) {
1743                         ret = z90crypt_rsa(private_data_p, PID(), cmd, arg);
1744                         if (ret != -ERESTARTSYS)
1745                                 break;
1746                 }
1747                 if (ret == -ERESTARTSYS)
1748                         ret = -ENODEV;
1749                 break;
1750
1751         case Z90STAT_TOTALCOUNT:
1752                 tempstat = get_status_totalcount();
1753                 if (copy_to_user((int __user *)arg, &tempstat,sizeof(int)) != 0)
1754                         ret = -EFAULT;
1755                 break;
1756
1757         case Z90STAT_PCICACOUNT:
1758                 tempstat = get_status_PCICAcount();
1759                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1760                         ret = -EFAULT;
1761                 break;
1762
1763         case Z90STAT_PCICCCOUNT:
1764                 tempstat = get_status_PCICCcount();
1765                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1766                         ret = -EFAULT;
1767                 break;
1768
1769         case Z90STAT_PCIXCCMCL2COUNT:
1770                 tempstat = get_status_PCIXCCMCL2count();
1771                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1772                         ret = -EFAULT;
1773                 break;
1774
1775         case Z90STAT_PCIXCCMCL3COUNT:
1776                 tempstat = get_status_PCIXCCMCL3count();
1777                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1778                         ret = -EFAULT;
1779                 break;
1780
1781         case Z90STAT_CEX2CCOUNT:
1782                 tempstat = get_status_CEX2Ccount();
1783                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1784                         ret = -EFAULT;
1785                 break;
1786
1787         case Z90STAT_REQUESTQ_COUNT:
1788                 tempstat = get_status_requestq_count();
1789                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1790                         ret = -EFAULT;
1791                 break;
1792
1793         case Z90STAT_PENDINGQ_COUNT:
1794                 tempstat = get_status_pendingq_count();
1795                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1796                         ret = -EFAULT;
1797                 break;
1798
1799         case Z90STAT_TOTALOPEN_COUNT:
1800                 tempstat = get_status_totalopen_count();
1801                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1802                         ret = -EFAULT;
1803                 break;
1804
1805         case Z90STAT_DOMAIN_INDEX:
1806                 tempstat = get_status_domain_index();
1807                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1808                         ret = -EFAULT;
1809                 break;
1810
1811         case Z90STAT_STATUS_MASK:
1812                 status = kmalloc(Z90CRYPT_NUM_APS, GFP_KERNEL);
1813                 if (!status) {
1814                         PRINTK("kmalloc for status failed!\n");
1815                         ret = -ENOMEM;
1816                         break;
1817                 }
1818                 get_status_status_mask(status);
1819                 if (copy_to_user((char __user *) arg, status, Z90CRYPT_NUM_APS)
1820                                                                         != 0)
1821                         ret = -EFAULT;
1822                 kfree(status);
1823                 break;
1824
1825         case Z90STAT_QDEPTH_MASK:
1826                 qdepth = kmalloc(Z90CRYPT_NUM_APS, GFP_KERNEL);
1827                 if (!qdepth) {
1828                         PRINTK("kmalloc for qdepth failed!\n");
1829                         ret = -ENOMEM;
1830                         break;
1831                 }
1832                 get_status_qdepth_mask(qdepth);
1833                 if (copy_to_user((char __user *) arg, qdepth, Z90CRYPT_NUM_APS) != 0)
1834                         ret = -EFAULT;
1835                 kfree(qdepth);
1836                 break;
1837
1838         case Z90STAT_PERDEV_REQCNT:
1839                 reqcnt = kmalloc(sizeof(int) * Z90CRYPT_NUM_APS, GFP_KERNEL);
1840                 if (!reqcnt) {
1841                         PRINTK("kmalloc for reqcnt failed!\n");
1842                         ret = -ENOMEM;
1843                         break;
1844                 }
1845                 get_status_perdevice_reqcnt(reqcnt);
1846                 if (copy_to_user((char __user *) arg, reqcnt,
1847                                  Z90CRYPT_NUM_APS * sizeof(int)) != 0)
1848                         ret = -EFAULT;
1849                 kfree(reqcnt);
1850                 break;
1851
1852                 /* THIS IS DEPRECATED.  USE THE NEW STATUS CALLS */
1853         case ICAZ90STATUS:
1854                 if (deprecated_msg_count1 < 20) {
1855                         PRINTK("deprecated call to ioctl (ICAZ90STATUS)!\n");
1856                         deprecated_msg_count1++;
1857                         if (deprecated_msg_count1 == 20)
1858                                 PRINTK("No longer issuing messages related to "
1859                                        "deprecated call to ICAZ90STATUS.\n");
1860                 }
1861
1862                 pstat = kmalloc(sizeof(struct ica_z90_status), GFP_KERNEL);
1863                 if (!pstat) {
1864                         PRINTK("kmalloc for pstat failed!\n");
1865                         ret = -ENOMEM;
1866                         break;
1867                 }
1868
1869                 pstat->totalcount        = get_status_totalcount();
1870                 pstat->leedslitecount    = get_status_PCICAcount();
1871                 pstat->leeds2count       = get_status_PCICCcount();
1872                 pstat->requestqWaitCount = get_status_requestq_count();
1873                 pstat->pendingqWaitCount = get_status_pendingq_count();
1874                 pstat->totalOpenCount    = get_status_totalopen_count();
1875                 pstat->cryptoDomain      = get_status_domain_index();
1876                 get_status_status_mask(pstat->status);
1877                 get_status_qdepth_mask(pstat->qdepth);
1878
1879                 if (copy_to_user((struct ica_z90_status __user *) arg, pstat,
1880                                  sizeof(struct ica_z90_status)) != 0)
1881                         ret = -EFAULT;
1882                 kfree(pstat);
1883                 break;
1884
1885                 /* THIS IS DEPRECATED.  USE THE NEW STATUS CALLS */
1886         case Z90STAT_PCIXCCCOUNT:
1887                 if (deprecated_msg_count2 < 20) {
1888                         PRINTK("deprecated ioctl (Z90STAT_PCIXCCCOUNT)!\n");
1889                         deprecated_msg_count2++;
1890                         if (deprecated_msg_count2 == 20)
1891                                 PRINTK("No longer issuing messages about depre"
1892                                        "cated ioctl Z90STAT_PCIXCCCOUNT.\n");
1893                 }
1894
1895                 tempstat = get_status_PCIXCCcount();
1896                 if (copy_to_user((int *)arg, &tempstat, sizeof(int)) != 0)
1897                         ret = -EFAULT;
1898                 break;
1899
1900         case Z90QUIESCE:
1901                 if (current->euid != 0) {
1902                         PRINTK("QUIESCE fails: euid %d\n",
1903                                current->euid);
1904                         ret = -EACCES;
1905                 } else {
1906                         PRINTK("QUIESCE device from PID %d\n", PID());
1907                         quiesce_z90crypt = 1;
1908                 }
1909                 break;
1910
1911         default:
1912                 /* user passed an invalid IOCTL number */
1913                 PDEBUG("cmd 0x%08X contains invalid ioctl code\n", cmd);
1914                 ret = -ENOTTY;
1915                 break;
1916         }
1917
1918         return ret;
1919 }
1920
1921 static inline int
1922 sprintcl(unsigned char *outaddr, unsigned char *addr, unsigned int len)
1923 {
1924         int hl, i;
1925
1926         hl = 0;
1927         for (i = 0; i < len; i++)
1928                 hl += sprintf(outaddr+hl, "%01x", (unsigned int) addr[i]);
1929         hl += sprintf(outaddr+hl, " ");
1930
1931         return hl;
1932 }
1933
1934 static inline int
1935 sprintrw(unsigned char *outaddr, unsigned char *addr, unsigned int len)
1936 {
1937         int hl, inl, c, cx;
1938
1939         hl = sprintf(outaddr, "    ");
1940         inl = 0;
1941         for (c = 0; c < (len / 16); c++) {
1942                 hl += sprintcl(outaddr+hl, addr+inl, 16);
1943                 inl += 16;
1944         }
1945
1946         cx = len%16;
1947         if (cx) {
1948                 hl += sprintcl(outaddr+hl, addr+inl, cx);
1949                 inl += cx;
1950         }
1951
1952         hl += sprintf(outaddr+hl, "\n");
1953
1954         return hl;
1955 }
1956
1957 static inline int
1958 sprinthx(unsigned char *title, unsigned char *outaddr,
1959          unsigned char *addr, unsigned int len)
1960 {
1961         int hl, inl, r, rx;
1962
1963         hl = sprintf(outaddr, "\n%s\n", title);
1964         inl = 0;
1965         for (r = 0; r < (len / 64); r++) {
1966                 hl += sprintrw(outaddr+hl, addr+inl, 64);
1967                 inl += 64;
1968         }
1969         rx = len % 64;
1970         if (rx) {
1971                 hl += sprintrw(outaddr+hl, addr+inl, rx);
1972                 inl += rx;
1973         }
1974
1975         hl += sprintf(outaddr+hl, "\n");
1976
1977         return hl;
1978 }
1979
1980 static inline int
1981 sprinthx4(unsigned char *title, unsigned char *outaddr,
1982           unsigned int *array, unsigned int len)
1983 {
1984         int hl, r;
1985
1986         hl = sprintf(outaddr, "\n%s\n", title);
1987
1988         for (r = 0; r < len; r++) {
1989                 if ((r % 8) == 0)
1990                         hl += sprintf(outaddr+hl, "    ");
1991                 hl += sprintf(outaddr+hl, "%08X ", array[r]);
1992                 if ((r % 8) == 7)
1993                         hl += sprintf(outaddr+hl, "\n");
1994         }
1995
1996         hl += sprintf(outaddr+hl, "\n");
1997
1998         return hl;
1999 }
2000
2001 static int
2002 z90crypt_status(char *resp_buff, char **start, off_t offset,
2003                 int count, int *eof, void *data)
2004 {
2005         unsigned char *workarea;
2006         int len;
2007
2008         /* resp_buff is a page. Use the right half for a work area */
2009         workarea = resp_buff+2000;
2010         len = 0;
2011         len += sprintf(resp_buff+len, "\nz90crypt version: %d.%d.%d\n",
2012                 z90crypt_VERSION, z90crypt_RELEASE, z90crypt_VARIANT);
2013         len += sprintf(resp_buff+len, "Cryptographic domain: %d\n",
2014                 get_status_domain_index());
2015         len += sprintf(resp_buff+len, "Total device count: %d\n",
2016                 get_status_totalcount());
2017         len += sprintf(resp_buff+len, "PCICA count: %d\n",
2018                 get_status_PCICAcount());
2019         len += sprintf(resp_buff+len, "PCICC count: %d\n",
2020                 get_status_PCICCcount());
2021         len += sprintf(resp_buff+len, "PCIXCC MCL2 count: %d\n",
2022                 get_status_PCIXCCMCL2count());
2023         len += sprintf(resp_buff+len, "PCIXCC MCL3 count: %d\n",
2024                 get_status_PCIXCCMCL3count());
2025         len += sprintf(resp_buff+len, "CEX2C count: %d\n",
2026                 get_status_CEX2Ccount());
2027         len += sprintf(resp_buff+len, "requestq count: %d\n",
2028                 get_status_requestq_count());
2029         len += sprintf(resp_buff+len, "pendingq count: %d\n",
2030                 get_status_pendingq_count());
2031         len += sprintf(resp_buff+len, "Total open handles: %d\n\n",
2032                 get_status_totalopen_count());
2033         len += sprinthx(
2034                 "Online devices: 1: PCICA, 2: PCICC, 3: PCIXCC (MCL2), "
2035                 "4: PCIXCC (MCL3), 5: CEX2C",
2036                 resp_buff+len,
2037                 get_status_status_mask(workarea),
2038                 Z90CRYPT_NUM_APS);
2039         len += sprinthx("Waiting work element counts",
2040                 resp_buff+len,
2041                 get_status_qdepth_mask(workarea),
2042                 Z90CRYPT_NUM_APS);
2043         len += sprinthx4(
2044                 "Per-device successfully completed request counts",
2045                 resp_buff+len,
2046                 get_status_perdevice_reqcnt((unsigned int *)workarea),
2047                 Z90CRYPT_NUM_APS);
2048         *eof = 1;
2049         memset(workarea, 0, Z90CRYPT_NUM_APS * sizeof(unsigned int));
2050         return len;
2051 }
2052
2053 static inline void
2054 disable_card(int card_index)
2055 {
2056         struct device *devp;
2057
2058         devp = LONG2DEVPTR(card_index);
2059         if (!devp || devp->user_disabled)
2060                 return;
2061         devp->user_disabled = 1;
2062         z90crypt.hdware_info->hdware_mask.user_disabled_count++;
2063         if (devp->dev_type == -1)
2064                 return;
2065         z90crypt.hdware_info->type_mask[devp->dev_type].user_disabled_count++;
2066 }
2067
2068 static inline void
2069 enable_card(int card_index)
2070 {
2071         struct device *devp;
2072
2073         devp = LONG2DEVPTR(card_index);
2074         if (!devp || !devp->user_disabled)
2075                 return;
2076         devp->user_disabled = 0;
2077         z90crypt.hdware_info->hdware_mask.user_disabled_count--;
2078         if (devp->dev_type == -1)
2079                 return;
2080         z90crypt.hdware_info->type_mask[devp->dev_type].user_disabled_count--;
2081 }
2082
2083 static int
2084 z90crypt_status_write(struct file *file, const char __user *buffer,
2085                       unsigned long count, void *data)
2086 {
2087         int j, eol;
2088         unsigned char *lbuf, *ptr;
2089         unsigned int local_count;
2090
2091 #define LBUFSIZE 1200
2092         lbuf = kmalloc(LBUFSIZE, GFP_KERNEL);
2093         if (!lbuf) {
2094                 PRINTK("kmalloc failed!\n");
2095                 return 0;
2096         }
2097
2098         if (count <= 0)
2099                 return 0;
2100
2101         local_count = UMIN((unsigned int)count, LBUFSIZE-1);
2102
2103         if (copy_from_user(lbuf, buffer, local_count) != 0) {
2104                 kfree(lbuf);
2105                 return -EFAULT;
2106         }
2107
2108         lbuf[local_count] = '\0';
2109
2110         ptr = strstr(lbuf, "Online devices");
2111         if (ptr == 0) {
2112                 PRINTK("Unable to parse data (missing \"Online devices\")\n");
2113                 kfree(lbuf);
2114                 return count;
2115         }
2116
2117         ptr = strstr(ptr, "\n");
2118         if (ptr == 0) {
2119                 PRINTK("Unable to parse data (missing newline after \"Online devices\")\n");
2120                 kfree(lbuf);
2121                 return count;
2122         }
2123         ptr++;
2124
2125         if (strstr(ptr, "Waiting work element counts") == NULL) {
2126                 PRINTK("Unable to parse data (missing \"Waiting work element counts\")\n");
2127                 kfree(lbuf);
2128                 return count;
2129         }
2130
2131         j = 0;
2132         eol = 0;
2133         while ((j < 64) && (*ptr != '\0')) {
2134                 switch (*ptr) {
2135                 case '\t':
2136                 case ' ':
2137                         break;
2138                 case '\n':
2139                 default:
2140                         eol = 1;
2141                         break;
2142                 case '0':       // no device
2143                 case '1':       // PCICA
2144                 case '2':       // PCICC
2145                 case '3':       // PCIXCC_MCL2
2146                 case '4':       // PCIXCC_MCL3
2147                 case '5':       // CEX2C
2148                         j++;
2149                         break;
2150                 case 'd':
2151                 case 'D':
2152                         disable_card(j);
2153                         j++;
2154                         break;
2155                 case 'e':
2156                 case 'E':
2157                         enable_card(j);
2158                         j++;
2159                         break;
2160                 }
2161                 if (eol)
2162                         break;
2163                 ptr++;
2164         }
2165
2166         kfree(lbuf);
2167         return count;
2168 }
2169
2170 /**
2171  * Functions that run under a timer, with no process id
2172  *
2173  * The task functions:
2174  *     z90crypt_reader_task
2175  *       helper_send_work
2176  *       helper_handle_work_element
2177  *       helper_receive_rc
2178  *     z90crypt_config_task
2179  *     z90crypt_cleanup_task
2180  *
2181  * Helper functions:
2182  *     z90crypt_schedule_reader_timer
2183  *     z90crypt_schedule_reader_task
2184  *     z90crypt_schedule_config_task
2185  *     z90crypt_schedule_cleanup_task
2186  */
2187 static inline int
2188 receive_from_crypto_device(int index, unsigned char *psmid, int *buff_len_p,
2189                            unsigned char *buff, unsigned char __user **dest_p_p)
2190 {
2191         int dv, rv;
2192         struct device *dev_ptr;
2193         struct caller *caller_p;
2194         struct ica_rsa_modexpo *icaMsg_p;
2195         struct list_head *ptr, *tptr;
2196
2197         memcpy(psmid, NULL_psmid, sizeof(NULL_psmid));
2198
2199         if (z90crypt.terminating)
2200                 return REC_FATAL_ERROR;
2201
2202         caller_p = 0;
2203         dev_ptr = z90crypt.device_p[index];
2204         rv = 0;
2205         do {
2206                 if (!dev_ptr || dev_ptr->disabled) {
2207                         rv = REC_NO_WORK; // a disabled device can't return work
2208                         break;
2209                 }
2210                 if (dev_ptr->dev_self_x != index) {
2211                         PRINTKC("Corrupt dev ptr\n");
2212                         z90crypt.terminating = 1;
2213                         rv = REC_FATAL_ERROR;
2214                         break;
2215                 }
2216                 if (!dev_ptr->dev_resp_l || !dev_ptr->dev_resp_p) {
2217                         dv = DEV_REC_EXCEPTION;
2218                         PRINTK("dev_resp_l = %d, dev_resp_p = %p\n",
2219                                dev_ptr->dev_resp_l, dev_ptr->dev_resp_p);
2220                 } else {
2221                         PDEBUG("Dequeue called for device %d\n", index);
2222                         dv = receive_from_AP(index, z90crypt.cdx,
2223                                              dev_ptr->dev_resp_l,
2224                                              dev_ptr->dev_resp_p, psmid);
2225                 }
2226                 switch (dv) {
2227                 case DEV_REC_EXCEPTION:
2228                         rv = REC_FATAL_ERROR;
2229                         z90crypt.terminating = 1;
2230                         PRINTKC("Exception in receive from device %d\n",
2231                                 index);
2232                         break;
2233                 case DEV_ONLINE:
2234                         rv = 0;
2235                         break;
2236                 case DEV_EMPTY:
2237                         rv = REC_EMPTY;
2238                         break;
2239                 case DEV_NO_WORK:
2240                         rv = REC_NO_WORK;
2241                         break;
2242                 case DEV_BAD_MESSAGE:
2243                 case DEV_GONE:
2244                 case REC_HARDWAR_ERR:
2245                 default:
2246                         rv = REC_NO_RESPONSE;
2247                         break;
2248                 }
2249                 if (rv)
2250                         break;
2251                 if (dev_ptr->dev_caller_count <= 0) {
2252                         rv = REC_USER_GONE;
2253                         break;
2254                 }
2255
2256                 list_for_each_safe(ptr, tptr, &dev_ptr->dev_caller_list) {
2257                         caller_p = list_entry(ptr, struct caller, caller_liste);
2258                         if (!memcmp(caller_p->caller_id, psmid,
2259                                     sizeof(caller_p->caller_id))) {
2260                                 if (!list_empty(&caller_p->caller_liste)) {
2261                                         list_del_init(ptr);
2262                                         dev_ptr->dev_caller_count--;
2263                                         break;
2264                                 }
2265                         }
2266                         caller_p = 0;
2267                 }
2268                 if (!caller_p) {
2269                         PRINTKW("Unable to locate PSMID %02X%02X%02X%02X%02X"
2270                                 "%02X%02X%02X in device list\n",
2271                                 psmid[0], psmid[1], psmid[2], psmid[3],
2272                                 psmid[4], psmid[5], psmid[6], psmid[7]);
2273                         rv = REC_USER_GONE;
2274                         break;
2275                 }
2276
2277                 PDEBUG("caller_p after successful receive: %p\n", caller_p);
2278                 rv = convert_response(dev_ptr->dev_resp_p,
2279                                       caller_p->caller_buf_p, buff_len_p, buff);
2280                 switch (rv) {
2281                 case REC_USE_PCICA:
2282                         break;
2283                 case REC_OPERAND_INV:
2284                 case REC_OPERAND_SIZE:
2285                 case REC_EVEN_MOD:
2286                 case REC_INVALID_PAD:
2287                         PDEBUG("device %d: 'user error' %d\n", index, rv);
2288                         break;
2289                 case WRONG_DEVICE_TYPE:
2290                 case REC_HARDWAR_ERR:
2291                 case REC_BAD_MESSAGE:
2292                         PRINTKW("device %d: hardware error %d\n", index, rv);
2293                         rv = REC_NO_RESPONSE;
2294                         break;
2295                 default:
2296                         PDEBUG("device %d: rv = %d\n", index, rv);
2297                         break;
2298                 }
2299         } while (0);
2300
2301         switch (rv) {
2302         case 0:
2303                 PDEBUG("Successful receive from device %d\n", index);
2304                 icaMsg_p = (struct ica_rsa_modexpo *)caller_p->caller_buf_p;
2305                 *dest_p_p = icaMsg_p->outputdata;
2306                 if (*buff_len_p == 0)
2307                         PRINTK("Zero *buff_len_p\n");
2308                 break;
2309         case REC_NO_RESPONSE:
2310                 PRINTKW("Removing device %d from availability\n", index);
2311                 remove_device(dev_ptr);
2312                 break;
2313         }
2314
2315         if (caller_p)
2316                 unbuild_caller(dev_ptr, caller_p);
2317
2318         return rv;
2319 }
2320
2321 static inline void
2322 helper_send_work(int index)
2323 {
2324         struct work_element *rq_p;
2325         int rv;
2326
2327         if (list_empty(&request_list))
2328                 return;
2329         requestq_count--;
2330         rq_p = list_entry(request_list.next, struct work_element, liste);
2331         list_del_init(&rq_p->liste);
2332         rq_p->audit[1] |= FP_REMREQUEST;
2333         if (rq_p->devtype == SHRT2DEVPTR(index)->dev_type) {
2334                 rq_p->devindex = SHRT2LONG(index);
2335                 rv = send_to_crypto_device(rq_p);
2336                 if (rv == 0) {
2337                         rq_p->requestsent = jiffies;
2338                         rq_p->audit[0] |= FP_SENT;
2339                         list_add_tail(&rq_p->liste, &pending_list);
2340                         ++pendingq_count;
2341                         rq_p->audit[0] |= FP_PENDING;
2342                 } else {
2343                         switch (rv) {
2344                         case REC_OPERAND_INV:
2345                         case REC_OPERAND_SIZE:
2346                         case REC_EVEN_MOD:
2347                         case REC_INVALID_PAD:
2348                                 rq_p->retcode = -EINVAL;
2349                                 break;
2350                         case SEN_NOT_AVAIL:
2351                         case SEN_RETRY:
2352                         case REC_NO_RESPONSE:
2353                         default:
2354                                 if (z90crypt.mask.st_count > 1)
2355                                         rq_p->retcode =
2356                                                 -ERESTARTSYS;
2357                                 else
2358                                         rq_p->retcode = -ENODEV;
2359                                 break;
2360                         }
2361                         rq_p->status[0] |= STAT_FAILED;
2362                         rq_p->audit[1] |= FP_AWAKENING;
2363                         atomic_set(&rq_p->alarmrung, 1);
2364                         wake_up(&rq_p->waitq);
2365                 }
2366         } else {
2367                 if (z90crypt.mask.st_count > 1)
2368                         rq_p->retcode = -ERESTARTSYS;
2369                 else
2370                         rq_p->retcode = -ENODEV;
2371                 rq_p->status[0] |= STAT_FAILED;
2372                 rq_p->audit[1] |= FP_AWAKENING;
2373                 atomic_set(&rq_p->alarmrung, 1);
2374                 wake_up(&rq_p->waitq);
2375         }
2376 }
2377
2378 static inline void
2379 helper_handle_work_element(int index, unsigned char psmid[8], int rc,
2380                            int buff_len, unsigned char *buff,
2381                            unsigned char __user *resp_addr)
2382 {
2383         struct work_element *pq_p;
2384         struct list_head *lptr, *tptr;
2385
2386         pq_p = 0;
2387         list_for_each_safe(lptr, tptr, &pending_list) {
2388                 pq_p = list_entry(lptr, struct work_element, liste);
2389                 if (!memcmp(pq_p->caller_id, psmid, sizeof(pq_p->caller_id))) {
2390                         list_del_init(lptr);
2391                         pendingq_count--;
2392                         pq_p->audit[1] |= FP_NOTPENDING;
2393                         break;
2394                 }
2395                 pq_p = 0;
2396         }
2397
2398         if (!pq_p) {
2399                 PRINTK("device %d has work but no caller exists on pending Q\n",
2400                        SHRT2LONG(index));
2401                 return;
2402         }
2403
2404         switch (rc) {
2405                 case 0:
2406                         pq_p->resp_buff_size = buff_len;
2407                         pq_p->audit[1] |= FP_RESPSIZESET;
2408                         if (buff_len) {
2409                                 pq_p->resp_addr = resp_addr;
2410                                 pq_p->audit[1] |= FP_RESPADDRCOPIED;
2411                                 memcpy(pq_p->resp_buff, buff, buff_len);
2412                                 pq_p->audit[1] |= FP_RESPBUFFCOPIED;
2413                         }
2414                         break;
2415                 case REC_OPERAND_INV:
2416                 case REC_OPERAND_SIZE:
2417                 case REC_EVEN_MOD:
2418                 case REC_INVALID_PAD:
2419                         PDEBUG("-EINVAL after application error %d\n", rc);
2420                         pq_p->retcode = -EINVAL;
2421                         pq_p->status[0] |= STAT_FAILED;
2422                         break;
2423                 case REC_USE_PCICA:
2424                         pq_p->retcode = -ERESTARTSYS;
2425                         pq_p->status[0] |= STAT_FAILED;
2426                         break;
2427                 case REC_NO_RESPONSE:
2428                 default:
2429                         if (z90crypt.mask.st_count > 1)
2430                                 pq_p->retcode = -ERESTARTSYS;
2431                         else
2432                                 pq_p->retcode = -ENODEV;
2433                         pq_p->status[0] |= STAT_FAILED;
2434                         break;
2435         }
2436         if ((pq_p->status[0] != STAT_FAILED) || (pq_p->retcode != -ERELEASED)) {
2437                 pq_p->audit[1] |= FP_AWAKENING;
2438                 atomic_set(&pq_p->alarmrung, 1);
2439                 wake_up(&pq_p->waitq);
2440         }
2441 }
2442
2443 /**
2444  * return TRUE if the work element should be removed from the queue
2445  */
2446 static inline int
2447 helper_receive_rc(int index, int *rc_p)
2448 {
2449         switch (*rc_p) {
2450         case 0:
2451         case REC_OPERAND_INV:
2452         case REC_OPERAND_SIZE:
2453         case REC_EVEN_MOD:
2454         case REC_INVALID_PAD:
2455         case REC_USE_PCICA:
2456                 break;
2457
2458         case REC_BUSY:
2459         case REC_NO_WORK:
2460         case REC_EMPTY:
2461         case REC_RETRY_DEV:
2462         case REC_FATAL_ERROR:
2463                 return 0;
2464
2465         case REC_NO_RESPONSE:
2466                 break;
2467
2468         default:
2469                 PRINTK("rc %d, device %d converted to REC_NO_RESPONSE\n",
2470                        *rc_p, SHRT2LONG(index));
2471                 *rc_p = REC_NO_RESPONSE;
2472                 break;
2473         }
2474         return 1;
2475 }
2476
2477 static inline void
2478 z90crypt_schedule_reader_timer(void)
2479 {
2480         if (timer_pending(&reader_timer))
2481                 return;
2482         if (mod_timer(&reader_timer, jiffies+(READERTIME*HZ/1000)) != 0)
2483                 PRINTK("Timer pending while modifying reader timer\n");
2484 }
2485
2486 static void
2487 z90crypt_reader_task(unsigned long ptr)
2488 {
2489         int workavail, index, rc, buff_len;
2490         unsigned char   psmid[8];
2491         unsigned char __user *resp_addr;
2492         static unsigned char buff[1024];
2493
2494         /**
2495          * we use workavail = 2 to ensure 2 passes with nothing dequeued before
2496          * exiting the loop. If (pendingq_count+requestq_count) == 0 after the
2497          * loop, there is no work remaining on the queues.
2498          */
2499         resp_addr = 0;
2500         workavail = 2;
2501         buff_len = 0;
2502         while (workavail) {
2503                 workavail--;
2504                 rc = 0;
2505                 spin_lock_irq(&queuespinlock);
2506                 memset(buff, 0x00, sizeof(buff));
2507
2508                 /* Dequeue once from each device in round robin. */
2509                 for (index = 0; index < z90crypt.mask.st_count; index++) {
2510                         PDEBUG("About to receive.\n");
2511                         rc = receive_from_crypto_device(SHRT2LONG(index),
2512                                                         psmid,
2513                                                         &buff_len,
2514                                                         buff,
2515                                                         &resp_addr);
2516                         PDEBUG("Dequeued: rc = %d.\n", rc);
2517
2518                         if (helper_receive_rc(index, &rc)) {
2519                                 if (rc != REC_NO_RESPONSE) {
2520                                         helper_send_work(index);
2521                                         workavail = 2;
2522                                 }
2523
2524                                 helper_handle_work_element(index, psmid, rc,
2525                                                            buff_len, buff,
2526                                                            resp_addr);
2527                         }
2528
2529                         if (rc == REC_FATAL_ERROR)
2530                                 PRINTKW("REC_FATAL_ERROR from device %d!\n",
2531                                         SHRT2LONG(index));
2532                 }
2533                 spin_unlock_irq(&queuespinlock);
2534         }
2535
2536         if (pendingq_count + requestq_count)
2537                 z90crypt_schedule_reader_timer();
2538 }
2539
2540 static inline void
2541 z90crypt_schedule_config_task(unsigned int expiration)
2542 {
2543         if (timer_pending(&config_timer))
2544                 return;
2545         if (mod_timer(&config_timer, jiffies+(expiration*HZ)) != 0)
2546                 PRINTK("Timer pending while modifying config timer\n");
2547 }
2548
2549 static void
2550 z90crypt_config_task(unsigned long ptr)
2551 {
2552         int rc;
2553
2554         PDEBUG("jiffies %ld\n", jiffies);
2555
2556         if ((rc = refresh_z90crypt(&z90crypt.cdx)))
2557                 PRINTK("Error %d detected in refresh_z90crypt.\n", rc);
2558         /* If return was fatal, don't bother reconfiguring */
2559         if ((rc != TSQ_FATAL_ERROR) && (rc != RSQ_FATAL_ERROR))
2560                 z90crypt_schedule_config_task(CONFIGTIME);
2561 }
2562
2563 static inline void
2564 z90crypt_schedule_cleanup_task(void)
2565 {
2566         if (timer_pending(&cleanup_timer))
2567                 return;
2568         if (mod_timer(&cleanup_timer, jiffies+(CLEANUPTIME*HZ)) != 0)
2569                 PRINTK("Timer pending while modifying cleanup timer\n");
2570 }
2571
2572 static inline void
2573 helper_drain_queues(void)
2574 {
2575         struct work_element *pq_p;
2576         struct list_head *lptr, *tptr;
2577
2578         list_for_each_safe(lptr, tptr, &pending_list) {
2579                 pq_p = list_entry(lptr, struct work_element, liste);
2580                 pq_p->retcode = -ENODEV;
2581                 pq_p->status[0] |= STAT_FAILED;
2582                 unbuild_caller(LONG2DEVPTR(pq_p->devindex),
2583                                (struct caller *)pq_p->requestptr);
2584                 list_del_init(lptr);
2585                 pendingq_count--;
2586                 pq_p->audit[1] |= FP_NOTPENDING;
2587                 pq_p->audit[1] |= FP_AWAKENING;
2588                 atomic_set(&pq_p->alarmrung, 1);
2589                 wake_up(&pq_p->waitq);
2590         }
2591
2592         list_for_each_safe(lptr, tptr, &request_list) {
2593                 pq_p = list_entry(lptr, struct work_element, liste);
2594                 pq_p->retcode = -ENODEV;
2595                 pq_p->status[0] |= STAT_FAILED;
2596                 list_del_init(lptr);
2597                 requestq_count--;
2598                 pq_p->audit[1] |= FP_REMREQUEST;
2599                 pq_p->audit[1] |= FP_AWAKENING;
2600                 atomic_set(&pq_p->alarmrung, 1);
2601                 wake_up(&pq_p->waitq);
2602         }
2603 }
2604
2605 static inline void
2606 helper_timeout_requests(void)
2607 {
2608         struct work_element *pq_p;
2609         struct list_head *lptr, *tptr;
2610         long timelimit;
2611
2612         timelimit = jiffies - (CLEANUPTIME * HZ);
2613         /* The list is in strict chronological order */
2614         list_for_each_safe(lptr, tptr, &pending_list) {
2615                 pq_p = list_entry(lptr, struct work_element, liste);
2616                 if (pq_p->requestsent >= timelimit)
2617                         break;
2618                 PRINTKW("Purging(PQ) PSMID %02X%02X%02X%02X%02X%02X%02X%02X\n",
2619                        ((struct caller *)pq_p->requestptr)->caller_id[0],
2620                        ((struct caller *)pq_p->requestptr)->caller_id[1],
2621                        ((struct caller *)pq_p->requestptr)->caller_id[2],
2622                        ((struct caller *)pq_p->requestptr)->caller_id[3],
2623                        ((struct caller *)pq_p->requestptr)->caller_id[4],
2624                        ((struct caller *)pq_p->requestptr)->caller_id[5],
2625                        ((struct caller *)pq_p->requestptr)->caller_id[6],
2626                        ((struct caller *)pq_p->requestptr)->caller_id[7]);
2627                 pq_p->retcode = -ETIMEOUT;
2628                 pq_p->status[0] |= STAT_FAILED;
2629                 /* get this off any caller queue it may be on */
2630                 unbuild_caller(LONG2DEVPTR(pq_p->devindex),
2631                                (struct caller *) pq_p->requestptr);
2632                 list_del_init(lptr);
2633                 pendingq_count--;
2634                 pq_p->audit[1] |= FP_TIMEDOUT;
2635                 pq_p->audit[1] |= FP_NOTPENDING;
2636                 pq_p->audit[1] |= FP_AWAKENING;
2637                 atomic_set(&pq_p->alarmrung, 1);
2638                 wake_up(&pq_p->waitq);
2639         }
2640
2641         /**
2642          * If pending count is zero, items left on the request queue may
2643          * never be processed.
2644          */
2645         if (pendingq_count <= 0) {
2646                 list_for_each_safe(lptr, tptr, &request_list) {
2647                         pq_p = list_entry(lptr, struct work_element, liste);
2648                         if (pq_p->requestsent >= timelimit)
2649                                 break;
2650                 PRINTKW("Purging(RQ) PSMID %02X%02X%02X%02X%02X%02X%02X%02X\n",
2651                        ((struct caller *)pq_p->requestptr)->caller_id[0],
2652                        ((struct caller *)pq_p->requestptr)->caller_id[1],
2653                        ((struct caller *)pq_p->requestptr)->caller_id[2],
2654                        ((struct caller *)pq_p->requestptr)->caller_id[3],
2655                        ((struct caller *)pq_p->requestptr)->caller_id[4],
2656                        ((struct caller *)pq_p->requestptr)->caller_id[5],
2657                        ((struct caller *)pq_p->requestptr)->caller_id[6],
2658                        ((struct caller *)pq_p->requestptr)->caller_id[7]);
2659                         pq_p->retcode = -ETIMEOUT;
2660                         pq_p->status[0] |= STAT_FAILED;
2661                         list_del_init(lptr);
2662                         requestq_count--;
2663                         pq_p->audit[1] |= FP_TIMEDOUT;
2664                         pq_p->audit[1] |= FP_REMREQUEST;
2665                         pq_p->audit[1] |= FP_AWAKENING;
2666                         atomic_set(&pq_p->alarmrung, 1);
2667                         wake_up(&pq_p->waitq);
2668                 }
2669         }
2670 }
2671
2672 static void
2673 z90crypt_cleanup_task(unsigned long ptr)
2674 {
2675         PDEBUG("jiffies %ld\n", jiffies);
2676         spin_lock_irq(&queuespinlock);
2677         if (z90crypt.mask.st_count <= 0) // no devices!
2678                 helper_drain_queues();
2679         else
2680                 helper_timeout_requests();
2681         spin_unlock_irq(&queuespinlock);
2682         z90crypt_schedule_cleanup_task();
2683 }
2684
2685 static void
2686 z90crypt_schedule_reader_task(unsigned long ptr)
2687 {
2688         tasklet_schedule(&reader_tasklet);
2689 }
2690
2691 /**
2692  * Lowlevel Functions:
2693  *
2694  *   create_z90crypt:  creates and initializes basic data structures
2695  *   refresh_z90crypt:  re-initializes basic data structures
2696  *   find_crypto_devices: returns a count and mask of hardware status
2697  *   create_crypto_device:  builds the descriptor for a device
2698  *   destroy_crypto_device:  unallocates the descriptor for a device
2699  *   destroy_z90crypt:  drains all work, unallocates structs
2700  */
2701
2702 /**
2703  * build the z90crypt root structure using the given domain index
2704  */
2705 static int
2706 create_z90crypt(int *cdx_p)
2707 {
2708         struct hdware_block *hdware_blk_p;
2709
2710         memset(&z90crypt, 0x00, sizeof(struct z90crypt));
2711         z90crypt.domain_established = 0;
2712         z90crypt.len = sizeof(struct z90crypt);
2713         z90crypt.max_count = Z90CRYPT_NUM_DEVS;
2714         z90crypt.cdx = *cdx_p;
2715
2716         hdware_blk_p = (struct hdware_block *)
2717                 kmalloc(sizeof(struct hdware_block), GFP_ATOMIC);
2718         if (!hdware_blk_p) {
2719                 PDEBUG("kmalloc for hardware block failed\n");
2720                 return ENOMEM;
2721         }
2722         memset(hdware_blk_p, 0x00, sizeof(struct hdware_block));
2723         z90crypt.hdware_info = hdware_blk_p;
2724
2725         return 0;
2726 }
2727
2728 static inline int
2729 helper_scan_devices(int cdx_array[16], int *cdx_p, int *correct_cdx_found)
2730 {
2731         enum hdstat hd_stat;
2732         int q_depth, dev_type;
2733         int indx, chkdom, numdomains;
2734
2735         q_depth = dev_type = numdomains = 0;
2736         for (chkdom = 0; chkdom <= 15; cdx_array[chkdom++] = -1);
2737         for (indx = 0; indx < z90crypt.max_count; indx++) {
2738                 hd_stat = HD_NOT_THERE;
2739                 numdomains = 0;
2740                 for (chkdom = 0; chkdom <= 15; chkdom++) {
2741                         hd_stat = query_online(indx, chkdom, MAX_RESET,
2742                                                &q_depth, &dev_type);
2743                         if (hd_stat == HD_TSQ_EXCEPTION) {
2744                                 z90crypt.terminating = 1;
2745                                 PRINTKC("exception taken!\n");
2746                                 break;
2747                         }
2748                         if (hd_stat == HD_ONLINE) {
2749                                 cdx_array[numdomains++] = chkdom;
2750                                 if (*cdx_p == chkdom) {
2751                                         *correct_cdx_found  = 1;
2752                                         break;
2753                                 }
2754                         }
2755                 }
2756                 if ((*correct_cdx_found == 1) || (numdomains != 0))
2757                         break;
2758                 if (z90crypt.terminating)
2759                         break;
2760         }
2761         return numdomains;
2762 }
2763
2764 static inline int
2765 probe_crypto_domain(int *cdx_p)
2766 {
2767         int cdx_array[16];
2768         char cdx_array_text[53], temp[5];
2769         int correct_cdx_found, numdomains;
2770
2771         correct_cdx_found = 0;
2772         numdomains = helper_scan_devices(cdx_array, cdx_p, &correct_cdx_found);
2773
2774         if (z90crypt.terminating)
2775                 return TSQ_FATAL_ERROR;
2776
2777         if (correct_cdx_found)
2778                 return 0;
2779
2780         if (numdomains == 0) {
2781                 PRINTKW("Unable to find crypto domain: No devices found\n");
2782                 return Z90C_NO_DEVICES;
2783         }
2784
2785         if (numdomains == 1) {
2786                 if (*cdx_p == -1) {
2787                         *cdx_p = cdx_array[0];
2788                         return 0;
2789                 }
2790                 PRINTKW("incorrect domain: specified = %d, found = %d\n",
2791                        *cdx_p, cdx_array[0]);
2792                 return Z90C_INCORRECT_DOMAIN;
2793         }
2794
2795         numdomains--;
2796         sprintf(cdx_array_text, "%d", cdx_array[numdomains]);
2797         while (numdomains) {
2798                 numdomains--;
2799                 sprintf(temp, ", %d", cdx_array[numdomains]);
2800                 strcat(cdx_array_text, temp);
2801         }
2802
2803         PRINTKW("ambiguous domain detected: specified = %d, found array = %s\n",
2804                 *cdx_p, cdx_array_text);
2805         return Z90C_AMBIGUOUS_DOMAIN;
2806 }
2807
2808 static int
2809 refresh_z90crypt(int *cdx_p)
2810 {
2811         int i, j, indx, rv;
2812         static struct status local_mask;
2813         struct device *devPtr;
2814         unsigned char oldStat, newStat;
2815         int return_unchanged;
2816
2817         if (z90crypt.len != sizeof(z90crypt))
2818                 return ENOTINIT;
2819         if (z90crypt.terminating)
2820                 return TSQ_FATAL_ERROR;
2821         rv = 0;
2822         if (!z90crypt.hdware_info->hdware_mask.st_count &&
2823             !z90crypt.domain_established) {
2824                 rv = probe_crypto_domain(cdx_p);
2825                 if (z90crypt.terminating)
2826                         return TSQ_FATAL_ERROR;
2827                 if (rv == Z90C_NO_DEVICES)
2828                         return 0; // try later
2829                 if (rv)
2830                         return rv;
2831                 z90crypt.cdx = *cdx_p;
2832                 z90crypt.domain_established = 1;
2833         }
2834         rv = find_crypto_devices(&local_mask);
2835         if (rv) {
2836                 PRINTK("find crypto devices returned %d\n", rv);
2837                 return rv;
2838         }
2839         if (!memcmp(&local_mask, &z90crypt.hdware_info->hdware_mask,
2840                     sizeof(struct status))) {
2841                 return_unchanged = 1;
2842                 for (i = 0; i < Z90CRYPT_NUM_TYPES; i++) {
2843                         /**
2844                          * Check for disabled cards.  If any device is marked
2845                          * disabled, destroy it.
2846                          */
2847                         for (j = 0;
2848                              j < z90crypt.hdware_info->type_mask[i].st_count;
2849                              j++) {
2850                                 indx = z90crypt.hdware_info->type_x_addr[i].
2851                                                                 device_index[j];
2852                                 devPtr = z90crypt.device_p[indx];
2853                                 if (devPtr && devPtr->disabled) {
2854                                         local_mask.st_mask[indx] = HD_NOT_THERE;
2855                                         return_unchanged = 0;
2856                                 }
2857                         }
2858                 }
2859                 if (return_unchanged == 1)
2860                         return 0;
2861         }
2862
2863         spin_lock_irq(&queuespinlock);
2864         for (i = 0; i < z90crypt.max_count; i++) {
2865                 oldStat = z90crypt.hdware_info->hdware_mask.st_mask[i];
2866                 newStat = local_mask.st_mask[i];
2867                 if ((oldStat == HD_ONLINE) && (newStat != HD_ONLINE))
2868                         destroy_crypto_device(i);
2869                 else if ((oldStat != HD_ONLINE) && (newStat == HD_ONLINE)) {
2870                         rv = create_crypto_device(i);
2871                         if (rv >= REC_FATAL_ERROR)
2872                                 return rv;
2873                         if (rv != 0) {
2874                                 local_mask.st_mask[i] = HD_NOT_THERE;
2875                                 local_mask.st_count--;
2876                         }
2877                 }
2878         }
2879         memcpy(z90crypt.hdware_info->hdware_mask.st_mask, local_mask.st_mask,
2880                sizeof(local_mask.st_mask));
2881         z90crypt.hdware_info->hdware_mask.st_count = local_mask.st_count;
2882         z90crypt.hdware_info->hdware_mask.disabled_count =
2883                                                       local_mask.disabled_count;
2884         refresh_index_array(&z90crypt.mask, &z90crypt.overall_device_x);
2885         for (i = 0; i < Z90CRYPT_NUM_TYPES; i++)
2886                 refresh_index_array(&(z90crypt.hdware_info->type_mask[i]),
2887                                     &(z90crypt.hdware_info->type_x_addr[i]));
2888         spin_unlock_irq(&queuespinlock);
2889
2890         return rv;
2891 }
2892
2893 static int
2894 find_crypto_devices(struct status *deviceMask)
2895 {
2896         int i, q_depth, dev_type;
2897         enum hdstat hd_stat;
2898
2899         deviceMask->st_count = 0;
2900         deviceMask->disabled_count = 0;
2901         deviceMask->user_disabled_count = 0;
2902
2903         for (i = 0; i < z90crypt.max_count; i++) {
2904                 hd_stat = query_online(i, z90crypt.cdx, MAX_RESET, &q_depth,
2905                                        &dev_type);
2906                 if (hd_stat == HD_TSQ_EXCEPTION) {
2907                         z90crypt.terminating = 1;
2908                         PRINTKC("Exception during probe for crypto devices\n");
2909                         return TSQ_FATAL_ERROR;
2910                 }
2911                 deviceMask->st_mask[i] = hd_stat;
2912                 if (hd_stat == HD_ONLINE) {
2913                         PDEBUG("Got an online crypto!: %d\n", i);
2914                         PDEBUG("Got a queue depth of %d\n", q_depth);
2915                         PDEBUG("Got a device type of %d\n", dev_type);
2916                         if (q_depth <= 0)
2917                                 return TSQ_FATAL_ERROR;
2918                         deviceMask->st_count++;
2919                         z90crypt.q_depth_array[i] = q_depth;
2920                         z90crypt.dev_type_array[i] = dev_type;
2921                 }
2922         }
2923
2924         return 0;
2925 }
2926
2927 static int
2928 refresh_index_array(struct status *status_str, struct device_x *index_array)
2929 {
2930         int i, count;
2931         enum devstat stat;
2932
2933         i = -1;
2934         count = 0;
2935         do {
2936                 stat = status_str->st_mask[++i];
2937                 if (stat == DEV_ONLINE)
2938                         index_array->device_index[count++] = i;
2939         } while ((i < Z90CRYPT_NUM_DEVS) && (count < status_str->st_count));
2940
2941         return count;
2942 }
2943
2944 static int
2945 create_crypto_device(int index)
2946 {
2947         int rv, devstat, total_size;
2948         struct device *dev_ptr;
2949         struct status *type_str_p;
2950         int deviceType;
2951
2952         dev_ptr = z90crypt.device_p[index];
2953         if (!dev_ptr) {
2954                 total_size = sizeof(struct device) +
2955                              z90crypt.q_depth_array[index] * sizeof(int);
2956
2957                 dev_ptr = (struct device *) kmalloc(total_size, GFP_ATOMIC);
2958                 if (!dev_ptr) {
2959                         PRINTK("kmalloc device %d failed\n", index);
2960                         return ENOMEM;
2961                 }
2962                 memset(dev_ptr, 0, total_size);
2963                 dev_ptr->dev_resp_p = kmalloc(MAX_RESPONSE_SIZE, GFP_ATOMIC);
2964                 if (!dev_ptr->dev_resp_p) {
2965                         kfree(dev_ptr);
2966                         PRINTK("kmalloc device %d rec buffer failed\n", index);
2967                         return ENOMEM;
2968                 }
2969                 dev_ptr->dev_resp_l = MAX_RESPONSE_SIZE;
2970                 INIT_LIST_HEAD(&(dev_ptr->dev_caller_list));
2971         }
2972
2973         devstat = reset_device(index, z90crypt.cdx, MAX_RESET);
2974         if (devstat == DEV_RSQ_EXCEPTION) {
2975                 PRINTK("exception during reset device %d\n", index);
2976                 kfree(dev_ptr->dev_resp_p);
2977                 kfree(dev_ptr);
2978                 return RSQ_FATAL_ERROR;
2979         }
2980         if (devstat == DEV_ONLINE) {
2981                 dev_ptr->dev_self_x = index;
2982                 dev_ptr->dev_type = z90crypt.dev_type_array[index];
2983                 if (dev_ptr->dev_type == NILDEV) {
2984                         rv = probe_device_type(dev_ptr);
2985                         if (rv) {
2986                                 PRINTK("rv = %d from probe_device_type %d\n",
2987                                        rv, index);
2988                                 kfree(dev_ptr->dev_resp_p);
2989                                 kfree(dev_ptr);
2990                                 return rv;
2991                         }
2992                 }
2993                 if (dev_ptr->dev_type == PCIXCC_UNK) {
2994                         rv = probe_PCIXCC_type(dev_ptr);
2995                         if (rv) {
2996                                 PRINTK("rv = %d from probe_PCIXCC_type %d\n",
2997                                        rv, index);
2998                                 kfree(dev_ptr->dev_resp_p);
2999                                 kfree(dev_ptr);
3000                                 return rv;
3001                         }
3002                 }
3003                 deviceType = dev_ptr->dev_type;
3004                 z90crypt.dev_type_array[index] = deviceType;
3005                 if (deviceType == PCICA)
3006                         z90crypt.hdware_info->device_type_array[index] = 1;
3007                 else if (deviceType == PCICC)
3008                         z90crypt.hdware_info->device_type_array[index] = 2;
3009                 else if (deviceType == PCIXCC_MCL2)
3010                         z90crypt.hdware_info->device_type_array[index] = 3;
3011                 else if (deviceType == PCIXCC_MCL3)
3012                         z90crypt.hdware_info->device_type_array[index] = 4;
3013                 else if (deviceType == CEX2C)
3014                         z90crypt.hdware_info->device_type_array[index] = 5;
3015                 else
3016                         z90crypt.hdware_info->device_type_array[index] = -1;
3017         }
3018
3019         /**
3020          * 'q_depth' returned by the hardware is one less than
3021          * the actual depth
3022          */
3023         dev_ptr->dev_q_depth = z90crypt.q_depth_array[index];
3024         dev_ptr->dev_type = z90crypt.dev_type_array[index];
3025         dev_ptr->dev_stat = devstat;
3026         dev_ptr->disabled = 0;
3027         z90crypt.device_p[index] = dev_ptr;
3028
3029         if (devstat == DEV_ONLINE) {
3030                 if (z90crypt.mask.st_mask[index] != DEV_ONLINE) {
3031                         z90crypt.mask.st_mask[index] = DEV_ONLINE;
3032                         z90crypt.mask.st_count++;
3033                 }
3034                 deviceType = dev_ptr->dev_type;
3035                 type_str_p = &z90crypt.hdware_info->type_mask[deviceType];
3036                 if (type_str_p->st_mask[index] != DEV_ONLINE) {
3037                         type_str_p->st_mask[index] = DEV_ONLINE;
3038                         type_str_p->st_count++;
3039                 }
3040         }
3041
3042         return 0;
3043 }
3044
3045 static int
3046 destroy_crypto_device(int index)
3047 {
3048         struct device *dev_ptr;
3049         int t, disabledFlag;
3050
3051         dev_ptr = z90crypt.device_p[index];
3052
3053         /* remember device type; get rid of device struct */
3054         if (dev_ptr) {
3055                 disabledFlag = dev_ptr->disabled;
3056                 t = dev_ptr->dev_type;
3057                 if (dev_ptr->dev_resp_p)
3058                         kfree(dev_ptr->dev_resp_p);
3059                 kfree(dev_ptr);
3060         } else {
3061                 disabledFlag = 0;
3062                 t = -1;
3063         }
3064         z90crypt.device_p[index] = 0;
3065
3066         /* if the type is valid, remove the device from the type_mask */
3067         if ((t != -1) && z90crypt.hdware_info->type_mask[t].st_mask[index]) {
3068                   z90crypt.hdware_info->type_mask[t].st_mask[index] = 0x00;
3069                   z90crypt.hdware_info->type_mask[t].st_count--;
3070                   if (disabledFlag == 1)
3071                         z90crypt.hdware_info->type_mask[t].disabled_count--;
3072         }
3073         if (z90crypt.mask.st_mask[index] != DEV_GONE) {
3074                 z90crypt.mask.st_mask[index] = DEV_GONE;
3075                 z90crypt.mask.st_count--;
3076         }
3077         z90crypt.hdware_info->device_type_array[index] = 0;
3078
3079         return 0;
3080 }
3081
3082 static void
3083 destroy_z90crypt(void)
3084 {
3085         int i;
3086         for (i = 0; i < z90crypt.max_count; i++)
3087                 if (z90crypt.device_p[i])
3088                         destroy_crypto_device(i);
3089         if (z90crypt.hdware_info)
3090                 kfree((void *)z90crypt.hdware_info);
3091         memset((void *)&z90crypt, 0, sizeof(z90crypt));
3092 }
3093
3094 static unsigned char static_testmsg[384] = {
3095 0x00,0x00,0x00,0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x00,0x06,0x00,0x00,
3096 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x58,
3097 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x43,0x43,
3098 0x41,0x2d,0x41,0x50,0x50,0x4c,0x20,0x20,0x20,0x01,0x01,0x01,0x00,0x00,0x00,0x00,
3099 0x50,0x4b,0x00,0x00,0x00,0x00,0x01,0x1c,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3100 0x00,0x00,0x00,0x00,0x00,0x00,0x05,0xb8,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3101 0x00,0x00,0x00,0x00,0x70,0x00,0x41,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x54,0x32,
3102 0x01,0x00,0xa0,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3103 0xb8,0x05,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3104 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3105 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3106 0x00,0x00,0x00,0x00,0x00,0x00,0x0a,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3107 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00,0x49,0x43,0x53,0x46,
3108 0x20,0x20,0x20,0x20,0x50,0x4b,0x0a,0x00,0x50,0x4b,0x43,0x53,0x2d,0x31,0x2e,0x32,
3109 0x37,0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,
3110 0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,
3111 0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,0x55,0x66,
3112 0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x5d,0x00,0x5b,0x00,0x77,0x88,0x1e,0x00,0x00,
3113 0x57,0x00,0x00,0x00,0x00,0x04,0x00,0x00,0x4f,0x00,0x00,0x00,0x03,0x02,0x00,0x00,
3114 0x40,0x01,0x00,0x01,0xce,0x02,0x68,0x2d,0x5f,0xa9,0xde,0x0c,0xf6,0xd2,0x7b,0x58,
3115 0x4b,0xf9,0x28,0x68,0x3d,0xb4,0xf4,0xef,0x78,0xd5,0xbe,0x66,0x63,0x42,0xef,0xf8,
3116 0xfd,0xa4,0xf8,0xb0,0x8e,0x29,0xc2,0xc9,0x2e,0xd8,0x45,0xb8,0x53,0x8c,0x6f,0x4e,
3117 0x72,0x8f,0x6c,0x04,0x9c,0x88,0xfc,0x1e,0xc5,0x83,0x55,0x57,0xf7,0xdd,0xfd,0x4f,
3118 0x11,0x36,0x95,0x5d,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
3119 };
3120
3121 static int
3122 probe_device_type(struct device *devPtr)
3123 {
3124         int rv, dv, i, index, length;
3125         unsigned char psmid[8];
3126         static unsigned char loc_testmsg[sizeof(static_testmsg)];
3127
3128         index = devPtr->dev_self_x;
3129         rv = 0;
3130         do {
3131                 memcpy(loc_testmsg, static_testmsg, sizeof(static_testmsg));
3132                 length = sizeof(static_testmsg) - 24;
3133                 /* the -24 allows for the header */
3134                 dv = send_to_AP(index, z90crypt.cdx, length, loc_testmsg);
3135                 if (dv) {
3136                         PDEBUG("dv returned by send during probe: %d\n", dv);
3137                         if (dv == DEV_SEN_EXCEPTION) {
3138                                 rv = SEN_FATAL_ERROR;
3139                                 PRINTKC("exception in send to AP %d\n", index);
3140                                 break;
3141                         }
3142                         PDEBUG("return value from send_to_AP: %d\n", rv);
3143                         switch (dv) {
3144                         case DEV_GONE:
3145                                 PDEBUG("dev %d not available\n", index);
3146                                 rv = SEN_NOT_AVAIL;
3147                                 break;
3148                         case DEV_ONLINE:
3149                                 rv = 0;
3150                                 break;
3151                         case DEV_EMPTY:
3152                                 rv = SEN_NOT_AVAIL;
3153                                 break;
3154                         case DEV_NO_WORK:
3155                                 rv = SEN_FATAL_ERROR;
3156                                 break;
3157                         case DEV_BAD_MESSAGE:
3158                                 rv = SEN_USER_ERROR;
3159                                 break;
3160                         case DEV_QUEUE_FULL:
3161                                 rv = SEN_QUEUE_FULL;
3162                                 break;
3163                         default:
3164                                 PRINTK("unknown dv=%d for dev %d\n", dv, index);
3165                                 rv = SEN_NOT_AVAIL;
3166                                 break;
3167                         }
3168                 }
3169
3170                 if (rv)
3171                         break;
3172
3173                 for (i = 0; i < 6; i++) {
3174                         mdelay(300);
3175                         dv = receive_from_AP(index, z90crypt.cdx,
3176                                              devPtr->dev_resp_l,
3177                                              devPtr->dev_resp_p, psmid);
3178                         PDEBUG("dv returned by DQ = %d\n", dv);
3179                         if (dv == DEV_REC_EXCEPTION) {
3180                                 rv = REC_FATAL_ERROR;
3181                                 PRINTKC("exception in dequeue %d\n",
3182                                         index);
3183                                 break;
3184                         }
3185                         switch (dv) {
3186                         case DEV_ONLINE:
3187                                 rv = 0;
3188                                 break;
3189                         case DEV_EMPTY:
3190                                 rv = REC_EMPTY;
3191                                 break;
3192                         case DEV_NO_WORK:
3193                                 rv = REC_NO_WORK;
3194                                 break;
3195                         case DEV_BAD_MESSAGE:
3196                         case DEV_GONE:
3197                         default:
3198                                 rv = REC_NO_RESPONSE;
3199                                 break;
3200                         }
3201                         if ((rv != 0) && (rv != REC_NO_WORK))
3202                                 break;
3203                         if (rv == 0)
3204                                 break;
3205                 }
3206                 if (rv)
3207                         break;
3208                 rv = (devPtr->dev_resp_p[0] == 0x00) &&
3209                      (devPtr->dev_resp_p[1] == 0x86);
3210                 if (rv)
3211                         devPtr->dev_type = PCICC;
3212                 else
3213                         devPtr->dev_type = PCICA;
3214                 rv = 0;
3215         } while (0);
3216         /* In a general error case, the card is not marked online */
3217         return rv;
3218 }
3219
3220 static unsigned char MCL3_testmsg[] = {
3221 0x00,0x00,0x00,0x00,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,
3222 0x00,0x06,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3223 0x00,0x00,0x00,0x58,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3224 0x43,0x41,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3225 0x00,0x00,0x00,0x00,0x50,0x4B,0x00,0x00,0x00,0x00,0x01,0xC4,0x00,0x00,0x00,0x00,
3226 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x07,0x24,0x00,0x00,0x00,0x00,
3227 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xDC,0x02,0x00,0x00,0x00,0x54,0x32,
3228 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xE8,0x00,0x00,0x00,0x00,0x00,0x00,0x07,0x24,
3229 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3230 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3231 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3232 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3233 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3234 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3235 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3236 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3237 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3238 0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3239 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3240 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3241 0x00,0x00,0x00,0x00,0x50,0x4B,0x00,0x0A,0x4D,0x52,0x50,0x20,0x20,0x20,0x20,0x20,
3242 0x00,0x42,0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,
3243 0x0E,0x0F,0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xAA,0xBB,0xCC,0xDD,
3244 0xEE,0xFF,0xFF,0xEE,0xDD,0xCC,0xBB,0xAA,0x99,0x88,0x77,0x66,0x55,0x44,0x33,0x22,
3245 0x11,0x00,0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF,0xFE,0xDC,0xBA,0x98,0x76,0x54,
3246 0x32,0x10,0x00,0x9A,0x00,0x98,0x00,0x00,0x1E,0x00,0x00,0x94,0x00,0x00,0x00,0x00,
3247 0x04,0x00,0x00,0x8C,0x00,0x00,0x00,0x40,0x02,0x00,0x00,0x40,0xBA,0xE8,0x23,0x3C,
3248 0x75,0xF3,0x91,0x61,0xD6,0x73,0x39,0xCF,0x7B,0x6D,0x8E,0x61,0x97,0x63,0x9E,0xD9,
3249 0x60,0x55,0xD6,0xC7,0xEF,0xF8,0x1E,0x63,0x95,0x17,0xCC,0x28,0x45,0x60,0x11,0xC5,
3250 0xC4,0x4E,0x66,0xC6,0xE6,0xC3,0xDE,0x8A,0x19,0x30,0xCF,0x0E,0xD7,0xAA,0xDB,0x01,
3251 0xD8,0x00,0xBB,0x8F,0x39,0x9F,0x64,0x28,0xF5,0x7A,0x77,0x49,0xCC,0x6B,0xA3,0x91,
3252 0x97,0x70,0xE7,0x60,0x1E,0x39,0xE1,0xE5,0x33,0xE1,0x15,0x63,0x69,0x08,0x80,0x4C,
3253 0x67,0xC4,0x41,0x8F,0x48,0xDF,0x26,0x98,0xF1,0xD5,0x8D,0x88,0xD9,0x6A,0xA4,0x96,
3254 0xC5,0x84,0xD9,0x30,0x49,0x67,0x7D,0x19,0xB1,0xB3,0x45,0x4D,0xB2,0x53,0x9A,0x47,
3255 0x3C,0x7C,0x55,0xBF,0xCC,0x85,0x00,0x36,0xF1,0x3D,0x93,0x53
3256 };
3257
3258 static int
3259 probe_PCIXCC_type(struct device *devPtr)
3260 {
3261         int rv, dv, i, index, length;
3262         unsigned char psmid[8];
3263         static unsigned char loc_testmsg[548];
3264         struct CPRBX *cprbx_p;
3265
3266         index = devPtr->dev_self_x;
3267         rv = 0;
3268         do {
3269                 memcpy(loc_testmsg, MCL3_testmsg, sizeof(MCL3_testmsg));
3270                 length = sizeof(MCL3_testmsg) - 0x0C;
3271                 dv = send_to_AP(index, z90crypt.cdx, length, loc_testmsg);
3272                 if (dv) {
3273                         PDEBUG("dv returned = %d\n", dv);
3274                         if (dv == DEV_SEN_EXCEPTION) {
3275                                 rv = SEN_FATAL_ERROR;
3276                                 PRINTKC("exception in send to AP %d\n", index);
3277                                 break;
3278                         }
3279                         PDEBUG("return value from send_to_AP: %d\n", rv);
3280                         switch (dv) {
3281                         case DEV_GONE:
3282                                 PDEBUG("dev %d not available\n", index);
3283                                 rv = SEN_NOT_AVAIL;
3284                                 break;
3285                         case DEV_ONLINE:
3286                                 rv = 0;
3287                                 break;
3288                         case DEV_EMPTY:
3289                                 rv = SEN_NOT_AVAIL;
3290                                 break;
3291                         case DEV_NO_WORK:
3292                                 rv = SEN_FATAL_ERROR;
3293                                 break;
3294                         case DEV_BAD_MESSAGE:
3295                                 rv = SEN_USER_ERROR;
3296                                 break;
3297                         case DEV_QUEUE_FULL:
3298                                 rv = SEN_QUEUE_FULL;
3299                                 break;
3300                         default:
3301                                 PRINTK("unknown dv=%d for dev %d\n", dv, index);
3302                                 rv = SEN_NOT_AVAIL;
3303                                 break;
3304                         }
3305                 }
3306
3307                 if (rv)
3308                         break;
3309
3310                 for (i = 0; i < 6; i++) {
3311                         mdelay(300);
3312                         dv = receive_from_AP(index, z90crypt.cdx,
3313                                              devPtr->dev_resp_l,
3314                                              devPtr->dev_resp_p, psmid);
3315                         PDEBUG("dv returned by DQ = %d\n", dv);
3316                         if (dv == DEV_REC_EXCEPTION) {
3317                                 rv = REC_FATAL_ERROR;
3318                                 PRINTKC("exception in dequeue %d\n",
3319                                         index);
3320                                 break;
3321                         }
3322                         switch (dv) {
3323                         case DEV_ONLINE:
3324                                 rv = 0;
3325                                 break;
3326                         case DEV_EMPTY:
3327                                 rv = REC_EMPTY;
3328                                 break;
3329                         case DEV_NO_WORK:
3330                                 rv = REC_NO_WORK;
3331                                 break;
3332                         case DEV_BAD_MESSAGE:
3333                         case DEV_GONE:
3334                         default:
3335                                 rv = REC_NO_RESPONSE;
3336                                 break;
3337                         }
3338                         if ((rv != 0) && (rv != REC_NO_WORK))
3339                                 break;
3340                         if (rv == 0)
3341                                 break;
3342                 }
3343                 if (rv)
3344                         break;
3345                 cprbx_p = (struct CPRBX *) (devPtr->dev_resp_p + 48);
3346                 if ((cprbx_p->ccp_rtcode == 8) && (cprbx_p->ccp_rscode == 33)) {
3347                         devPtr->dev_type = PCIXCC_MCL2;
3348                         PDEBUG("device %d is MCL2\n", index);
3349                 } else {
3350                         devPtr->dev_type = PCIXCC_MCL3;
3351                         PDEBUG("device %d is MCL3\n", index);
3352                 }
3353         } while (0);
3354         /* In a general error case, the card is not marked online */
3355         return rv;
3356 }
3357
3358 module_init(z90crypt_init_module);
3359 module_exit(z90crypt_cleanup_module);