Merge tag 'xfs-4.15-fixes-10' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[sfrench/cifs-2.6.git] / drivers / s390 / block / xpram.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Xpram.c -- the S/390 expanded memory RAM-disk
4  *           
5  * significant parts of this code are based on
6  * the sbull device driver presented in
7  * A. Rubini: Linux Device Drivers
8  *
9  * Author of XPRAM specific coding: Reinhard Buendgen
10  *                                  buendgen@de.ibm.com
11  * Rewrite for 2.5: Martin Schwidefsky <schwidefsky@de.ibm.com>
12  *
13  * External interfaces:
14  *   Interfaces to linux kernel
15  *        xpram_setup: read kernel parameters
16  *   Device specific file operations
17  *        xpram_iotcl
18  *        xpram_open
19  *
20  * "ad-hoc" partitioning:
21  *    the expanded memory can be partitioned among several devices 
22  *    (with different minors). The partitioning set up can be
23  *    set by kernel or module parameters (int devs & int sizes[])
24  *
25  * Potential future improvements:
26  *   generic hard disk support to replace ad-hoc partitioning
27  */
28
29 #define KMSG_COMPONENT "xpram"
30 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
31
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/ctype.h>  /* isdigit, isxdigit */
35 #include <linux/errno.h>
36 #include <linux/init.h>
37 #include <linux/blkdev.h>
38 #include <linux/blkpg.h>
39 #include <linux/hdreg.h>  /* HDIO_GETGEO */
40 #include <linux/device.h>
41 #include <linux/bio.h>
42 #include <linux/suspend.h>
43 #include <linux/platform_device.h>
44 #include <linux/gfp.h>
45 #include <linux/uaccess.h>
46
47 #define XPRAM_NAME      "xpram"
48 #define XPRAM_DEVS      1       /* one partition */
49 #define XPRAM_MAX_DEVS  32      /* maximal number of devices (partitions) */
50
51 typedef struct {
52         unsigned int    size;           /* size of xpram segment in pages */
53         unsigned int    offset;         /* start page of xpram segment */
54 } xpram_device_t;
55
56 static xpram_device_t xpram_devices[XPRAM_MAX_DEVS];
57 static unsigned int xpram_sizes[XPRAM_MAX_DEVS];
58 static struct gendisk *xpram_disks[XPRAM_MAX_DEVS];
59 static struct request_queue *xpram_queues[XPRAM_MAX_DEVS];
60 static unsigned int xpram_pages;
61 static int xpram_devs;
62
63 /*
64  * Parameter parsing functions.
65  */
66 static int devs = XPRAM_DEVS;
67 static char *sizes[XPRAM_MAX_DEVS];
68
69 module_param(devs, int, 0);
70 module_param_array(sizes, charp, NULL, 0);
71
72 MODULE_PARM_DESC(devs, "number of devices (\"partitions\"), " \
73                  "the default is " __MODULE_STRING(XPRAM_DEVS) "\n");
74 MODULE_PARM_DESC(sizes, "list of device (partition) sizes " \
75                  "the defaults are 0s \n" \
76                  "All devices with size 0 equally partition the "
77                  "remaining space on the expanded strorage not "
78                  "claimed by explicit sizes\n");
79 MODULE_LICENSE("GPL");
80
81 /*
82  * Copy expanded memory page (4kB) into main memory                  
83  * Arguments                                                         
84  *           page_addr:    address of target page                    
85  *           xpage_index:  index of expandeded memory page           
86  * Return value                                                      
87  *           0:            if operation succeeds
88  *           -EIO:         if pgin failed
89  *           -ENXIO:       if xpram has vanished
90  */
91 static int xpram_page_in (unsigned long page_addr, unsigned int xpage_index)
92 {
93         int cc = 2;     /* return unused cc 2 if pgin traps */
94
95         asm volatile(
96                 "       .insn   rre,0xb22e0000,%1,%2\n"  /* pgin %1,%2 */
97                 "0:     ipm     %0\n"
98                 "       srl     %0,28\n"
99                 "1:\n"
100                 EX_TABLE(0b,1b)
101                 : "+d" (cc) : "a" (__pa(page_addr)), "d" (xpage_index) : "cc");
102         if (cc == 3)
103                 return -ENXIO;
104         if (cc == 2)
105                 return -ENXIO;
106         if (cc == 1)
107                 return -EIO;
108         return 0;
109 }
110
111 /*
112  * Copy a 4kB page of main memory to an expanded memory page          
113  * Arguments                                                          
114  *           page_addr:    address of source page                     
115  *           xpage_index:  index of expandeded memory page            
116  * Return value                                                       
117  *           0:            if operation succeeds
118  *           -EIO:         if pgout failed
119  *           -ENXIO:       if xpram has vanished
120  */
121 static long xpram_page_out (unsigned long page_addr, unsigned int xpage_index)
122 {
123         int cc = 2;     /* return unused cc 2 if pgin traps */
124
125         asm volatile(
126                 "       .insn   rre,0xb22f0000,%1,%2\n"  /* pgout %1,%2 */
127                 "0:     ipm     %0\n"
128                 "       srl     %0,28\n"
129                 "1:\n"
130                 EX_TABLE(0b,1b)
131                 : "+d" (cc) : "a" (__pa(page_addr)), "d" (xpage_index) : "cc");
132         if (cc == 3)
133                 return -ENXIO;
134         if (cc == 2)
135                 return -ENXIO;
136         if (cc == 1)
137                 return -EIO;
138         return 0;
139 }
140
141 /*
142  * Check if xpram is available.
143  */
144 static int xpram_present(void)
145 {
146         unsigned long mem_page;
147         int rc;
148
149         mem_page = (unsigned long) __get_free_page(GFP_KERNEL);
150         if (!mem_page)
151                 return -ENOMEM;
152         rc = xpram_page_in(mem_page, 0);
153         free_page(mem_page);
154         return rc ? -ENXIO : 0;
155 }
156
157 /*
158  * Return index of the last available xpram page.
159  */
160 static unsigned long xpram_highest_page_index(void)
161 {
162         unsigned int page_index, add_bit;
163         unsigned long mem_page;
164
165         mem_page = (unsigned long) __get_free_page(GFP_KERNEL);
166         if (!mem_page)
167                 return 0;
168
169         page_index = 0;
170         add_bit = 1ULL << (sizeof(unsigned int)*8 - 1);
171         while (add_bit > 0) {
172                 if (xpram_page_in(mem_page, page_index | add_bit) == 0)
173                         page_index |= add_bit;
174                 add_bit >>= 1;
175         }
176
177         free_page (mem_page);
178
179         return page_index;
180 }
181
182 /*
183  * Block device make request function.
184  */
185 static blk_qc_t xpram_make_request(struct request_queue *q, struct bio *bio)
186 {
187         xpram_device_t *xdev = bio->bi_disk->private_data;
188         struct bio_vec bvec;
189         struct bvec_iter iter;
190         unsigned int index;
191         unsigned long page_addr;
192         unsigned long bytes;
193
194         blk_queue_split(q, &bio);
195
196         if ((bio->bi_iter.bi_sector & 7) != 0 ||
197             (bio->bi_iter.bi_size & 4095) != 0)
198                 /* Request is not page-aligned. */
199                 goto fail;
200         if ((bio->bi_iter.bi_size >> 12) > xdev->size)
201                 /* Request size is no page-aligned. */
202                 goto fail;
203         if ((bio->bi_iter.bi_sector >> 3) > 0xffffffffU - xdev->offset)
204                 goto fail;
205         index = (bio->bi_iter.bi_sector >> 3) + xdev->offset;
206         bio_for_each_segment(bvec, bio, iter) {
207                 page_addr = (unsigned long)
208                         kmap(bvec.bv_page) + bvec.bv_offset;
209                 bytes = bvec.bv_len;
210                 if ((page_addr & 4095) != 0 || (bytes & 4095) != 0)
211                         /* More paranoia. */
212                         goto fail;
213                 while (bytes > 0) {
214                         if (bio_data_dir(bio) == READ) {
215                                 if (xpram_page_in(page_addr, index) != 0)
216                                         goto fail;
217                         } else {
218                                 if (xpram_page_out(page_addr, index) != 0)
219                                         goto fail;
220                         }
221                         page_addr += 4096;
222                         bytes -= 4096;
223                         index++;
224                 }
225         }
226         bio_endio(bio);
227         return BLK_QC_T_NONE;
228 fail:
229         bio_io_error(bio);
230         return BLK_QC_T_NONE;
231 }
232
233 static int xpram_getgeo(struct block_device *bdev, struct hd_geometry *geo)
234 {
235         unsigned long size;
236
237         /*
238          * get geometry: we have to fake one...  trim the size to a
239          * multiple of 64 (32k): tell we have 16 sectors, 4 heads,
240          * whatever cylinders. Tell also that data starts at sector. 4.
241          */
242         size = (xpram_pages * 8) & ~0x3f;
243         geo->cylinders = size >> 6;
244         geo->heads = 4;
245         geo->sectors = 16;
246         geo->start = 4;
247         return 0;
248 }
249
250 static const struct block_device_operations xpram_devops =
251 {
252         .owner  = THIS_MODULE,
253         .getgeo = xpram_getgeo,
254 };
255
256 /*
257  * Setup xpram_sizes array.
258  */
259 static int __init xpram_setup_sizes(unsigned long pages)
260 {
261         unsigned long mem_needed;
262         unsigned long mem_auto;
263         unsigned long long size;
264         char *sizes_end;
265         int mem_auto_no;
266         int i;
267
268         /* Check number of devices. */
269         if (devs <= 0 || devs > XPRAM_MAX_DEVS) {
270                 pr_err("%d is not a valid number of XPRAM devices\n",devs);
271                 return -EINVAL;
272         }
273         xpram_devs = devs;
274
275         /*
276          * Copy sizes array to xpram_sizes and align partition
277          * sizes to page boundary.
278          */
279         mem_needed = 0;
280         mem_auto_no = 0;
281         for (i = 0; i < xpram_devs; i++) {
282                 if (sizes[i]) {
283                         size = simple_strtoull(sizes[i], &sizes_end, 0);
284                         switch (*sizes_end) {
285                         case 'g':
286                         case 'G':
287                                 size <<= 20;
288                                 break;
289                         case 'm':
290                         case 'M':
291                                 size <<= 10;
292                         }
293                         xpram_sizes[i] = (size + 3) & -4UL;
294                 }
295                 if (xpram_sizes[i])
296                         mem_needed += xpram_sizes[i];
297                 else
298                         mem_auto_no++;
299         }
300         
301         pr_info("  number of devices (partitions): %d \n", xpram_devs);
302         for (i = 0; i < xpram_devs; i++) {
303                 if (xpram_sizes[i])
304                         pr_info("  size of partition %d: %u kB\n",
305                                 i, xpram_sizes[i]);
306                 else
307                         pr_info("  size of partition %d to be set "
308                                 "automatically\n",i);
309         }
310         pr_info("  memory needed (for sized partitions): %lu kB\n",
311                 mem_needed);
312         pr_info("  partitions to be sized automatically: %d\n",
313                 mem_auto_no);
314
315         if (mem_needed > pages * 4) {
316                 pr_err("Not enough expanded memory available\n");
317                 return -EINVAL;
318         }
319
320         /*
321          * partitioning:
322          * xpram_sizes[i] != 0; partition i has size xpram_sizes[i] kB
323          * else:             ; all partitions with zero xpram_sizes[i]
324          *                     partition equally the remaining space
325          */
326         if (mem_auto_no) {
327                 mem_auto = ((pages - mem_needed / 4) / mem_auto_no) * 4;
328                 pr_info("  automatically determined "
329                         "partition size: %lu kB\n", mem_auto);
330                 for (i = 0; i < xpram_devs; i++)
331                         if (xpram_sizes[i] == 0)
332                                 xpram_sizes[i] = mem_auto;
333         }
334         return 0;
335 }
336
337 static int __init xpram_setup_blkdev(void)
338 {
339         unsigned long offset;
340         int i, rc = -ENOMEM;
341
342         for (i = 0; i < xpram_devs; i++) {
343                 xpram_disks[i] = alloc_disk(1);
344                 if (!xpram_disks[i])
345                         goto out;
346                 xpram_queues[i] = blk_alloc_queue(GFP_KERNEL);
347                 if (!xpram_queues[i]) {
348                         put_disk(xpram_disks[i]);
349                         goto out;
350                 }
351                 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, xpram_queues[i]);
352                 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, xpram_queues[i]);
353                 blk_queue_make_request(xpram_queues[i], xpram_make_request);
354                 blk_queue_logical_block_size(xpram_queues[i], 4096);
355         }
356
357         /*
358          * Register xpram major.
359          */
360         rc = register_blkdev(XPRAM_MAJOR, XPRAM_NAME);
361         if (rc < 0)
362                 goto out;
363
364         /*
365          * Setup device structures.
366          */
367         offset = 0;
368         for (i = 0; i < xpram_devs; i++) {
369                 struct gendisk *disk = xpram_disks[i];
370
371                 xpram_devices[i].size = xpram_sizes[i] / 4;
372                 xpram_devices[i].offset = offset;
373                 offset += xpram_devices[i].size;
374                 disk->major = XPRAM_MAJOR;
375                 disk->first_minor = i;
376                 disk->fops = &xpram_devops;
377                 disk->private_data = &xpram_devices[i];
378                 disk->queue = xpram_queues[i];
379                 sprintf(disk->disk_name, "slram%d", i);
380                 set_capacity(disk, xpram_sizes[i] << 1);
381                 add_disk(disk);
382         }
383
384         return 0;
385 out:
386         while (i--) {
387                 blk_cleanup_queue(xpram_queues[i]);
388                 put_disk(xpram_disks[i]);
389         }
390         return rc;
391 }
392
393 /*
394  * Resume failed: Print error message and call panic.
395  */
396 static void xpram_resume_error(const char *message)
397 {
398         pr_err("Resuming the system failed: %s\n", message);
399         panic("xpram resume error\n");
400 }
401
402 /*
403  * Check if xpram setup changed between suspend and resume.
404  */
405 static int xpram_restore(struct device *dev)
406 {
407         if (!xpram_pages)
408                 return 0;
409         if (xpram_present() != 0)
410                 xpram_resume_error("xpram disappeared");
411         if (xpram_pages != xpram_highest_page_index() + 1)
412                 xpram_resume_error("Size of xpram changed");
413         return 0;
414 }
415
416 static const struct dev_pm_ops xpram_pm_ops = {
417         .restore        = xpram_restore,
418 };
419
420 static struct platform_driver xpram_pdrv = {
421         .driver = {
422                 .name   = XPRAM_NAME,
423                 .pm     = &xpram_pm_ops,
424         },
425 };
426
427 static struct platform_device *xpram_pdev;
428
429 /*
430  * Finally, the init/exit functions.
431  */
432 static void __exit xpram_exit(void)
433 {
434         int i;
435         for (i = 0; i < xpram_devs; i++) {
436                 del_gendisk(xpram_disks[i]);
437                 blk_cleanup_queue(xpram_queues[i]);
438                 put_disk(xpram_disks[i]);
439         }
440         unregister_blkdev(XPRAM_MAJOR, XPRAM_NAME);
441         platform_device_unregister(xpram_pdev);
442         platform_driver_unregister(&xpram_pdrv);
443 }
444
445 static int __init xpram_init(void)
446 {
447         int rc;
448
449         /* Find out size of expanded memory. */
450         if (xpram_present() != 0) {
451                 pr_err("No expanded memory available\n");
452                 return -ENODEV;
453         }
454         xpram_pages = xpram_highest_page_index() + 1;
455         pr_info("  %u pages expanded memory found (%lu KB).\n",
456                 xpram_pages, (unsigned long) xpram_pages*4);
457         rc = xpram_setup_sizes(xpram_pages);
458         if (rc)
459                 return rc;
460         rc = platform_driver_register(&xpram_pdrv);
461         if (rc)
462                 return rc;
463         xpram_pdev = platform_device_register_simple(XPRAM_NAME, -1, NULL, 0);
464         if (IS_ERR(xpram_pdev)) {
465                 rc = PTR_ERR(xpram_pdev);
466                 goto fail_platform_driver_unregister;
467         }
468         rc = xpram_setup_blkdev();
469         if (rc)
470                 goto fail_platform_device_unregister;
471         return 0;
472
473 fail_platform_device_unregister:
474         platform_device_unregister(xpram_pdev);
475 fail_platform_driver_unregister:
476         platform_driver_unregister(&xpram_pdrv);
477         return rc;
478 }
479
480 module_init(xpram_init);
481 module_exit(xpram_exit);