Merge branch 'for-2.6.32' into for-2.6.33
[sfrench/cifs-2.6.git] / drivers / rtc / rtc-sh.c
1 /*
2  * SuperH On-Chip RTC Support
3  *
4  * Copyright (C) 2006 - 2009  Paul Mundt
5  * Copyright (C) 2006  Jamie Lenehan
6  * Copyright (C) 2008  Angelo Castello
7  *
8  * Based on the old arch/sh/kernel/cpu/rtc.c by:
9  *
10  *  Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
11  *  Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
12  *
13  * This file is subject to the terms and conditions of the GNU General Public
14  * License.  See the file "COPYING" in the main directory of this archive
15  * for more details.
16  */
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/bcd.h>
20 #include <linux/rtc.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/seq_file.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/io.h>
27 #include <linux/log2.h>
28 #include <linux/clk.h>
29 #include <asm/rtc.h>
30
31 #define DRV_NAME        "sh-rtc"
32 #define DRV_VERSION     "0.2.3"
33
34 #define RTC_REG(r)      ((r) * rtc_reg_size)
35
36 #define R64CNT          RTC_REG(0)
37
38 #define RSECCNT         RTC_REG(1)      /* RTC sec */
39 #define RMINCNT         RTC_REG(2)      /* RTC min */
40 #define RHRCNT          RTC_REG(3)      /* RTC hour */
41 #define RWKCNT          RTC_REG(4)      /* RTC week */
42 #define RDAYCNT         RTC_REG(5)      /* RTC day */
43 #define RMONCNT         RTC_REG(6)      /* RTC month */
44 #define RYRCNT          RTC_REG(7)      /* RTC year */
45 #define RSECAR          RTC_REG(8)      /* ALARM sec */
46 #define RMINAR          RTC_REG(9)      /* ALARM min */
47 #define RHRAR           RTC_REG(10)     /* ALARM hour */
48 #define RWKAR           RTC_REG(11)     /* ALARM week */
49 #define RDAYAR          RTC_REG(12)     /* ALARM day */
50 #define RMONAR          RTC_REG(13)     /* ALARM month */
51 #define RCR1            RTC_REG(14)     /* Control */
52 #define RCR2            RTC_REG(15)     /* Control */
53
54 /*
55  * Note on RYRAR and RCR3: Up until this point most of the register
56  * definitions are consistent across all of the available parts. However,
57  * the placement of the optional RYRAR and RCR3 (the RYRAR control
58  * register used to control RYRCNT/RYRAR compare) varies considerably
59  * across various parts, occasionally being mapped in to a completely
60  * unrelated address space. For proper RYRAR support a separate resource
61  * would have to be handed off, but as this is purely optional in
62  * practice, we simply opt not to support it, thereby keeping the code
63  * quite a bit more simplified.
64  */
65
66 /* ALARM Bits - or with BCD encoded value */
67 #define AR_ENB          0x80    /* Enable for alarm cmp   */
68
69 /* Period Bits */
70 #define PF_HP           0x100   /* Enable Half Period to support 8,32,128Hz */
71 #define PF_COUNT        0x200   /* Half periodic counter */
72 #define PF_OXS          0x400   /* Periodic One x Second */
73 #define PF_KOU          0x800   /* Kernel or User periodic request 1=kernel */
74 #define PF_MASK         0xf00
75
76 /* RCR1 Bits */
77 #define RCR1_CF         0x80    /* Carry Flag             */
78 #define RCR1_CIE        0x10    /* Carry Interrupt Enable */
79 #define RCR1_AIE        0x08    /* Alarm Interrupt Enable */
80 #define RCR1_AF         0x01    /* Alarm Flag             */
81
82 /* RCR2 Bits */
83 #define RCR2_PEF        0x80    /* PEriodic interrupt Flag */
84 #define RCR2_PESMASK    0x70    /* Periodic interrupt Set  */
85 #define RCR2_RTCEN      0x08    /* ENable RTC              */
86 #define RCR2_ADJ        0x04    /* ADJustment (30-second)  */
87 #define RCR2_RESET      0x02    /* Reset bit               */
88 #define RCR2_START      0x01    /* Start bit               */
89
90 struct sh_rtc {
91         void __iomem            *regbase;
92         unsigned long           regsize;
93         struct resource         *res;
94         int                     alarm_irq;
95         int                     periodic_irq;
96         int                     carry_irq;
97         struct clk              *clk;
98         struct rtc_device       *rtc_dev;
99         spinlock_t              lock;
100         unsigned long           capabilities;   /* See asm/rtc.h for cap bits */
101         unsigned short          periodic_freq;
102 };
103
104 static int __sh_rtc_interrupt(struct sh_rtc *rtc)
105 {
106         unsigned int tmp, pending;
107
108         tmp = readb(rtc->regbase + RCR1);
109         pending = tmp & RCR1_CF;
110         tmp &= ~RCR1_CF;
111         writeb(tmp, rtc->regbase + RCR1);
112
113         /* Users have requested One x Second IRQ */
114         if (pending && rtc->periodic_freq & PF_OXS)
115                 rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
116
117         return pending;
118 }
119
120 static int __sh_rtc_alarm(struct sh_rtc *rtc)
121 {
122         unsigned int tmp, pending;
123
124         tmp = readb(rtc->regbase + RCR1);
125         pending = tmp & RCR1_AF;
126         tmp &= ~(RCR1_AF | RCR1_AIE);
127         writeb(tmp, rtc->regbase + RCR1);
128
129         if (pending)
130                 rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
131
132         return pending;
133 }
134
135 static int __sh_rtc_periodic(struct sh_rtc *rtc)
136 {
137         struct rtc_device *rtc_dev = rtc->rtc_dev;
138         struct rtc_task *irq_task;
139         unsigned int tmp, pending;
140
141         tmp = readb(rtc->regbase + RCR2);
142         pending = tmp & RCR2_PEF;
143         tmp &= ~RCR2_PEF;
144         writeb(tmp, rtc->regbase + RCR2);
145
146         if (!pending)
147                 return 0;
148
149         /* Half period enabled than one skipped and the next notified */
150         if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
151                 rtc->periodic_freq &= ~PF_COUNT;
152         else {
153                 if (rtc->periodic_freq & PF_HP)
154                         rtc->periodic_freq |= PF_COUNT;
155                 if (rtc->periodic_freq & PF_KOU) {
156                         spin_lock(&rtc_dev->irq_task_lock);
157                         irq_task = rtc_dev->irq_task;
158                         if (irq_task)
159                                 irq_task->func(irq_task->private_data);
160                         spin_unlock(&rtc_dev->irq_task_lock);
161                 } else
162                         rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
163         }
164
165         return pending;
166 }
167
168 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
169 {
170         struct sh_rtc *rtc = dev_id;
171         int ret;
172
173         spin_lock(&rtc->lock);
174         ret = __sh_rtc_interrupt(rtc);
175         spin_unlock(&rtc->lock);
176
177         return IRQ_RETVAL(ret);
178 }
179
180 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
181 {
182         struct sh_rtc *rtc = dev_id;
183         int ret;
184
185         spin_lock(&rtc->lock);
186         ret = __sh_rtc_alarm(rtc);
187         spin_unlock(&rtc->lock);
188
189         return IRQ_RETVAL(ret);
190 }
191
192 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
193 {
194         struct sh_rtc *rtc = dev_id;
195         int ret;
196
197         spin_lock(&rtc->lock);
198         ret = __sh_rtc_periodic(rtc);
199         spin_unlock(&rtc->lock);
200
201         return IRQ_RETVAL(ret);
202 }
203
204 static irqreturn_t sh_rtc_shared(int irq, void *dev_id)
205 {
206         struct sh_rtc *rtc = dev_id;
207         int ret;
208
209         spin_lock(&rtc->lock);
210         ret = __sh_rtc_interrupt(rtc);
211         ret |= __sh_rtc_alarm(rtc);
212         ret |= __sh_rtc_periodic(rtc);
213         spin_unlock(&rtc->lock);
214
215         return IRQ_RETVAL(ret);
216 }
217
218 static int sh_rtc_irq_set_state(struct device *dev, int enable)
219 {
220         struct sh_rtc *rtc = dev_get_drvdata(dev);
221         unsigned int tmp;
222
223         spin_lock_irq(&rtc->lock);
224
225         tmp = readb(rtc->regbase + RCR2);
226
227         if (enable) {
228                 rtc->periodic_freq |= PF_KOU;
229                 tmp &= ~RCR2_PEF;       /* Clear PES bit */
230                 tmp |= (rtc->periodic_freq & ~PF_HP);   /* Set PES2-0 */
231         } else {
232                 rtc->periodic_freq &= ~PF_KOU;
233                 tmp &= ~(RCR2_PESMASK | RCR2_PEF);
234         }
235
236         writeb(tmp, rtc->regbase + RCR2);
237
238         spin_unlock_irq(&rtc->lock);
239
240         return 0;
241 }
242
243 static int sh_rtc_irq_set_freq(struct device *dev, int freq)
244 {
245         struct sh_rtc *rtc = dev_get_drvdata(dev);
246         int tmp, ret = 0;
247
248         spin_lock_irq(&rtc->lock);
249         tmp = rtc->periodic_freq & PF_MASK;
250
251         switch (freq) {
252         case 0:
253                 rtc->periodic_freq = 0x00;
254                 break;
255         case 1:
256                 rtc->periodic_freq = 0x60;
257                 break;
258         case 2:
259                 rtc->periodic_freq = 0x50;
260                 break;
261         case 4:
262                 rtc->periodic_freq = 0x40;
263                 break;
264         case 8:
265                 rtc->periodic_freq = 0x30 | PF_HP;
266                 break;
267         case 16:
268                 rtc->periodic_freq = 0x30;
269                 break;
270         case 32:
271                 rtc->periodic_freq = 0x20 | PF_HP;
272                 break;
273         case 64:
274                 rtc->periodic_freq = 0x20;
275                 break;
276         case 128:
277                 rtc->periodic_freq = 0x10 | PF_HP;
278                 break;
279         case 256:
280                 rtc->periodic_freq = 0x10;
281                 break;
282         default:
283                 ret = -ENOTSUPP;
284         }
285
286         if (ret == 0)
287                 rtc->periodic_freq |= tmp;
288
289         spin_unlock_irq(&rtc->lock);
290         return ret;
291 }
292
293 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
294 {
295         struct sh_rtc *rtc = dev_get_drvdata(dev);
296         unsigned int tmp;
297
298         spin_lock_irq(&rtc->lock);
299
300         tmp = readb(rtc->regbase + RCR1);
301
302         if (enable)
303                 tmp |= RCR1_AIE;
304         else
305                 tmp &= ~RCR1_AIE;
306
307         writeb(tmp, rtc->regbase + RCR1);
308
309         spin_unlock_irq(&rtc->lock);
310 }
311
312 static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
313 {
314         struct sh_rtc *rtc = dev_get_drvdata(dev);
315         unsigned int tmp;
316
317         tmp = readb(rtc->regbase + RCR1);
318         seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
319
320         tmp = readb(rtc->regbase + RCR2);
321         seq_printf(seq, "periodic_IRQ\t: %s\n",
322                    (tmp & RCR2_PESMASK) ? "yes" : "no");
323
324         return 0;
325 }
326
327 static inline void sh_rtc_setcie(struct device *dev, unsigned int enable)
328 {
329         struct sh_rtc *rtc = dev_get_drvdata(dev);
330         unsigned int tmp;
331
332         spin_lock_irq(&rtc->lock);
333
334         tmp = readb(rtc->regbase + RCR1);
335
336         if (!enable)
337                 tmp &= ~RCR1_CIE;
338         else
339                 tmp |= RCR1_CIE;
340
341         writeb(tmp, rtc->regbase + RCR1);
342
343         spin_unlock_irq(&rtc->lock);
344 }
345
346 static int sh_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
347 {
348         struct sh_rtc *rtc = dev_get_drvdata(dev);
349         unsigned int ret = 0;
350
351         switch (cmd) {
352         case RTC_AIE_OFF:
353         case RTC_AIE_ON:
354                 sh_rtc_setaie(dev, cmd == RTC_AIE_ON);
355                 break;
356         case RTC_UIE_OFF:
357                 rtc->periodic_freq &= ~PF_OXS;
358                 sh_rtc_setcie(dev, 0);
359                 break;
360         case RTC_UIE_ON:
361                 rtc->periodic_freq |= PF_OXS;
362                 sh_rtc_setcie(dev, 1);
363                 break;
364         default:
365                 ret = -ENOIOCTLCMD;
366         }
367
368         return ret;
369 }
370
371 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
372 {
373         struct platform_device *pdev = to_platform_device(dev);
374         struct sh_rtc *rtc = platform_get_drvdata(pdev);
375         unsigned int sec128, sec2, yr, yr100, cf_bit;
376
377         do {
378                 unsigned int tmp;
379
380                 spin_lock_irq(&rtc->lock);
381
382                 tmp = readb(rtc->regbase + RCR1);
383                 tmp &= ~RCR1_CF; /* Clear CF-bit */
384                 tmp |= RCR1_CIE;
385                 writeb(tmp, rtc->regbase + RCR1);
386
387                 sec128 = readb(rtc->regbase + R64CNT);
388
389                 tm->tm_sec      = bcd2bin(readb(rtc->regbase + RSECCNT));
390                 tm->tm_min      = bcd2bin(readb(rtc->regbase + RMINCNT));
391                 tm->tm_hour     = bcd2bin(readb(rtc->regbase + RHRCNT));
392                 tm->tm_wday     = bcd2bin(readb(rtc->regbase + RWKCNT));
393                 tm->tm_mday     = bcd2bin(readb(rtc->regbase + RDAYCNT));
394                 tm->tm_mon      = bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
395
396                 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
397                         yr  = readw(rtc->regbase + RYRCNT);
398                         yr100 = bcd2bin(yr >> 8);
399                         yr &= 0xff;
400                 } else {
401                         yr  = readb(rtc->regbase + RYRCNT);
402                         yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
403                 }
404
405                 tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
406
407                 sec2 = readb(rtc->regbase + R64CNT);
408                 cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
409
410                 spin_unlock_irq(&rtc->lock);
411         } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
412
413 #if RTC_BIT_INVERTED != 0
414         if ((sec128 & RTC_BIT_INVERTED))
415                 tm->tm_sec--;
416 #endif
417
418         /* only keep the carry interrupt enabled if UIE is on */
419         if (!(rtc->periodic_freq & PF_OXS))
420                 sh_rtc_setcie(dev, 0);
421
422         dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
423                 "mday=%d, mon=%d, year=%d, wday=%d\n",
424                 __func__,
425                 tm->tm_sec, tm->tm_min, tm->tm_hour,
426                 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
427
428         return rtc_valid_tm(tm);
429 }
430
431 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
432 {
433         struct platform_device *pdev = to_platform_device(dev);
434         struct sh_rtc *rtc = platform_get_drvdata(pdev);
435         unsigned int tmp;
436         int year;
437
438         spin_lock_irq(&rtc->lock);
439
440         /* Reset pre-scaler & stop RTC */
441         tmp = readb(rtc->regbase + RCR2);
442         tmp |= RCR2_RESET;
443         tmp &= ~RCR2_START;
444         writeb(tmp, rtc->regbase + RCR2);
445
446         writeb(bin2bcd(tm->tm_sec),  rtc->regbase + RSECCNT);
447         writeb(bin2bcd(tm->tm_min),  rtc->regbase + RMINCNT);
448         writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
449         writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
450         writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
451         writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);
452
453         if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
454                 year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
455                         bin2bcd(tm->tm_year % 100);
456                 writew(year, rtc->regbase + RYRCNT);
457         } else {
458                 year = tm->tm_year % 100;
459                 writeb(bin2bcd(year), rtc->regbase + RYRCNT);
460         }
461
462         /* Start RTC */
463         tmp = readb(rtc->regbase + RCR2);
464         tmp &= ~RCR2_RESET;
465         tmp |= RCR2_RTCEN | RCR2_START;
466         writeb(tmp, rtc->regbase + RCR2);
467
468         spin_unlock_irq(&rtc->lock);
469
470         return 0;
471 }
472
473 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
474 {
475         unsigned int byte;
476         int value = 0xff;       /* return 0xff for ignored values */
477
478         byte = readb(rtc->regbase + reg_off);
479         if (byte & AR_ENB) {
480                 byte &= ~AR_ENB;        /* strip the enable bit */
481                 value = bcd2bin(byte);
482         }
483
484         return value;
485 }
486
487 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
488 {
489         struct platform_device *pdev = to_platform_device(dev);
490         struct sh_rtc *rtc = platform_get_drvdata(pdev);
491         struct rtc_time *tm = &wkalrm->time;
492
493         spin_lock_irq(&rtc->lock);
494
495         tm->tm_sec      = sh_rtc_read_alarm_value(rtc, RSECAR);
496         tm->tm_min      = sh_rtc_read_alarm_value(rtc, RMINAR);
497         tm->tm_hour     = sh_rtc_read_alarm_value(rtc, RHRAR);
498         tm->tm_wday     = sh_rtc_read_alarm_value(rtc, RWKAR);
499         tm->tm_mday     = sh_rtc_read_alarm_value(rtc, RDAYAR);
500         tm->tm_mon      = sh_rtc_read_alarm_value(rtc, RMONAR);
501         if (tm->tm_mon > 0)
502                 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
503         tm->tm_year     = 0xffff;
504
505         wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
506
507         spin_unlock_irq(&rtc->lock);
508
509         return 0;
510 }
511
512 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
513                                             int value, int reg_off)
514 {
515         /* < 0 for a value that is ignored */
516         if (value < 0)
517                 writeb(0, rtc->regbase + reg_off);
518         else
519                 writeb(bin2bcd(value) | AR_ENB,  rtc->regbase + reg_off);
520 }
521
522 static int sh_rtc_check_alarm(struct rtc_time *tm)
523 {
524         /*
525          * The original rtc says anything > 0xc0 is "don't care" or "match
526          * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
527          * The original rtc doesn't support years - some things use -1 and
528          * some 0xffff. We use -1 to make out tests easier.
529          */
530         if (tm->tm_year == 0xffff)
531                 tm->tm_year = -1;
532         if (tm->tm_mon >= 0xff)
533                 tm->tm_mon = -1;
534         if (tm->tm_mday >= 0xff)
535                 tm->tm_mday = -1;
536         if (tm->tm_wday >= 0xff)
537                 tm->tm_wday = -1;
538         if (tm->tm_hour >= 0xff)
539                 tm->tm_hour = -1;
540         if (tm->tm_min >= 0xff)
541                 tm->tm_min = -1;
542         if (tm->tm_sec >= 0xff)
543                 tm->tm_sec = -1;
544
545         if (tm->tm_year > 9999 ||
546                 tm->tm_mon >= 12 ||
547                 tm->tm_mday == 0 || tm->tm_mday >= 32 ||
548                 tm->tm_wday >= 7 ||
549                 tm->tm_hour >= 24 ||
550                 tm->tm_min >= 60 ||
551                 tm->tm_sec >= 60)
552                 return -EINVAL;
553
554         return 0;
555 }
556
557 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
558 {
559         struct platform_device *pdev = to_platform_device(dev);
560         struct sh_rtc *rtc = platform_get_drvdata(pdev);
561         unsigned int rcr1;
562         struct rtc_time *tm = &wkalrm->time;
563         int mon, err;
564
565         err = sh_rtc_check_alarm(tm);
566         if (unlikely(err < 0))
567                 return err;
568
569         spin_lock_irq(&rtc->lock);
570
571         /* disable alarm interrupt and clear the alarm flag */
572         rcr1 = readb(rtc->regbase + RCR1);
573         rcr1 &= ~(RCR1_AF | RCR1_AIE);
574         writeb(rcr1, rtc->regbase + RCR1);
575
576         /* set alarm time */
577         sh_rtc_write_alarm_value(rtc, tm->tm_sec,  RSECAR);
578         sh_rtc_write_alarm_value(rtc, tm->tm_min,  RMINAR);
579         sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
580         sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
581         sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
582         mon = tm->tm_mon;
583         if (mon >= 0)
584                 mon += 1;
585         sh_rtc_write_alarm_value(rtc, mon, RMONAR);
586
587         if (wkalrm->enabled) {
588                 rcr1 |= RCR1_AIE;
589                 writeb(rcr1, rtc->regbase + RCR1);
590         }
591
592         spin_unlock_irq(&rtc->lock);
593
594         return 0;
595 }
596
597 static struct rtc_class_ops sh_rtc_ops = {
598         .ioctl          = sh_rtc_ioctl,
599         .read_time      = sh_rtc_read_time,
600         .set_time       = sh_rtc_set_time,
601         .read_alarm     = sh_rtc_read_alarm,
602         .set_alarm      = sh_rtc_set_alarm,
603         .irq_set_state  = sh_rtc_irq_set_state,
604         .irq_set_freq   = sh_rtc_irq_set_freq,
605         .proc           = sh_rtc_proc,
606 };
607
608 static int __init sh_rtc_probe(struct platform_device *pdev)
609 {
610         struct sh_rtc *rtc;
611         struct resource *res;
612         struct rtc_time r;
613         char clk_name[6];
614         int clk_id, ret;
615
616         rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL);
617         if (unlikely(!rtc))
618                 return -ENOMEM;
619
620         spin_lock_init(&rtc->lock);
621
622         /* get periodic/carry/alarm irqs */
623         ret = platform_get_irq(pdev, 0);
624         if (unlikely(ret <= 0)) {
625                 ret = -ENOENT;
626                 dev_err(&pdev->dev, "No IRQ resource\n");
627                 goto err_badres;
628         }
629
630         rtc->periodic_irq = ret;
631         rtc->carry_irq = platform_get_irq(pdev, 1);
632         rtc->alarm_irq = platform_get_irq(pdev, 2);
633
634         res = platform_get_resource(pdev, IORESOURCE_IO, 0);
635         if (unlikely(res == NULL)) {
636                 ret = -ENOENT;
637                 dev_err(&pdev->dev, "No IO resource\n");
638                 goto err_badres;
639         }
640
641         rtc->regsize = resource_size(res);
642
643         rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name);
644         if (unlikely(!rtc->res)) {
645                 ret = -EBUSY;
646                 goto err_badres;
647         }
648
649         rtc->regbase = ioremap_nocache(rtc->res->start, rtc->regsize);
650         if (unlikely(!rtc->regbase)) {
651                 ret = -EINVAL;
652                 goto err_badmap;
653         }
654
655         clk_id = pdev->id;
656         /* With a single device, the clock id is still "rtc0" */
657         if (clk_id < 0)
658                 clk_id = 0;
659
660         snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id);
661
662         rtc->clk = clk_get(&pdev->dev, clk_name);
663         if (IS_ERR(rtc->clk)) {
664                 /*
665                  * No error handling for rtc->clk intentionally, not all
666                  * platforms will have a unique clock for the RTC, and
667                  * the clk API can handle the struct clk pointer being
668                  * NULL.
669                  */
670                 rtc->clk = NULL;
671         }
672
673         clk_enable(rtc->clk);
674
675         rtc->capabilities = RTC_DEF_CAPABILITIES;
676         if (pdev->dev.platform_data) {
677                 struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data;
678
679                 /*
680                  * Some CPUs have special capabilities in addition to the
681                  * default set. Add those in here.
682                  */
683                 rtc->capabilities |= pinfo->capabilities;
684         }
685
686         if (rtc->carry_irq <= 0) {
687                 /* register shared periodic/carry/alarm irq */
688                 ret = request_irq(rtc->periodic_irq, sh_rtc_shared,
689                                   IRQF_DISABLED, "sh-rtc", rtc);
690                 if (unlikely(ret)) {
691                         dev_err(&pdev->dev,
692                                 "request IRQ failed with %d, IRQ %d\n", ret,
693                                 rtc->periodic_irq);
694                         goto err_unmap;
695                 }
696         } else {
697                 /* register periodic/carry/alarm irqs */
698                 ret = request_irq(rtc->periodic_irq, sh_rtc_periodic,
699                                   IRQF_DISABLED, "sh-rtc period", rtc);
700                 if (unlikely(ret)) {
701                         dev_err(&pdev->dev,
702                                 "request period IRQ failed with %d, IRQ %d\n",
703                                 ret, rtc->periodic_irq);
704                         goto err_unmap;
705                 }
706
707                 ret = request_irq(rtc->carry_irq, sh_rtc_interrupt,
708                                   IRQF_DISABLED, "sh-rtc carry", rtc);
709                 if (unlikely(ret)) {
710                         dev_err(&pdev->dev,
711                                 "request carry IRQ failed with %d, IRQ %d\n",
712                                 ret, rtc->carry_irq);
713                         free_irq(rtc->periodic_irq, rtc);
714                         goto err_unmap;
715                 }
716
717                 ret = request_irq(rtc->alarm_irq, sh_rtc_alarm,
718                                   IRQF_DISABLED, "sh-rtc alarm", rtc);
719                 if (unlikely(ret)) {
720                         dev_err(&pdev->dev,
721                                 "request alarm IRQ failed with %d, IRQ %d\n",
722                                 ret, rtc->alarm_irq);
723                         free_irq(rtc->carry_irq, rtc);
724                         free_irq(rtc->periodic_irq, rtc);
725                         goto err_unmap;
726                 }
727         }
728
729         platform_set_drvdata(pdev, rtc);
730
731         /* everything disabled by default */
732         sh_rtc_irq_set_freq(&pdev->dev, 0);
733         sh_rtc_irq_set_state(&pdev->dev, 0);
734         sh_rtc_setaie(&pdev->dev, 0);
735         sh_rtc_setcie(&pdev->dev, 0);
736
737         rtc->rtc_dev = rtc_device_register("sh", &pdev->dev,
738                                            &sh_rtc_ops, THIS_MODULE);
739         if (IS_ERR(rtc->rtc_dev)) {
740                 ret = PTR_ERR(rtc->rtc_dev);
741                 free_irq(rtc->periodic_irq, rtc);
742                 free_irq(rtc->carry_irq, rtc);
743                 free_irq(rtc->alarm_irq, rtc);
744                 goto err_unmap;
745         }
746
747         rtc->rtc_dev->max_user_freq = 256;
748
749         /* reset rtc to epoch 0 if time is invalid */
750         if (rtc_read_time(rtc->rtc_dev, &r) < 0) {
751                 rtc_time_to_tm(0, &r);
752                 rtc_set_time(rtc->rtc_dev, &r);
753         }
754
755         device_init_wakeup(&pdev->dev, 1);
756         return 0;
757
758 err_unmap:
759         clk_disable(rtc->clk);
760         clk_put(rtc->clk);
761         iounmap(rtc->regbase);
762 err_badmap:
763         release_resource(rtc->res);
764 err_badres:
765         kfree(rtc);
766
767         return ret;
768 }
769
770 static int __exit sh_rtc_remove(struct platform_device *pdev)
771 {
772         struct sh_rtc *rtc = platform_get_drvdata(pdev);
773
774         rtc_device_unregister(rtc->rtc_dev);
775         sh_rtc_irq_set_state(&pdev->dev, 0);
776
777         sh_rtc_setaie(&pdev->dev, 0);
778         sh_rtc_setcie(&pdev->dev, 0);
779
780         free_irq(rtc->periodic_irq, rtc);
781
782         if (rtc->carry_irq > 0) {
783                 free_irq(rtc->carry_irq, rtc);
784                 free_irq(rtc->alarm_irq, rtc);
785         }
786
787         iounmap(rtc->regbase);
788         release_resource(rtc->res);
789
790         clk_disable(rtc->clk);
791         clk_put(rtc->clk);
792
793         platform_set_drvdata(pdev, NULL);
794
795         kfree(rtc);
796
797         return 0;
798 }
799
800 static void sh_rtc_set_irq_wake(struct device *dev, int enabled)
801 {
802         struct platform_device *pdev = to_platform_device(dev);
803         struct sh_rtc *rtc = platform_get_drvdata(pdev);
804
805         set_irq_wake(rtc->periodic_irq, enabled);
806
807         if (rtc->carry_irq > 0) {
808                 set_irq_wake(rtc->carry_irq, enabled);
809                 set_irq_wake(rtc->alarm_irq, enabled);
810         }
811 }
812
813 static int sh_rtc_suspend(struct device *dev)
814 {
815         if (device_may_wakeup(dev))
816                 sh_rtc_set_irq_wake(dev, 1);
817
818         return 0;
819 }
820
821 static int sh_rtc_resume(struct device *dev)
822 {
823         if (device_may_wakeup(dev))
824                 sh_rtc_set_irq_wake(dev, 0);
825
826         return 0;
827 }
828
829 static struct dev_pm_ops sh_rtc_dev_pm_ops = {
830         .suspend = sh_rtc_suspend,
831         .resume = sh_rtc_resume,
832 };
833
834 static struct platform_driver sh_rtc_platform_driver = {
835         .driver         = {
836                 .name   = DRV_NAME,
837                 .owner  = THIS_MODULE,
838                 .pm     = &sh_rtc_dev_pm_ops,
839         },
840         .remove         = __exit_p(sh_rtc_remove),
841 };
842
843 static int __init sh_rtc_init(void)
844 {
845         return platform_driver_probe(&sh_rtc_platform_driver, sh_rtc_probe);
846 }
847
848 static void __exit sh_rtc_exit(void)
849 {
850         platform_driver_unregister(&sh_rtc_platform_driver);
851 }
852
853 module_init(sh_rtc_init);
854 module_exit(sh_rtc_exit);
855
856 MODULE_DESCRIPTION("SuperH on-chip RTC driver");
857 MODULE_VERSION(DRV_VERSION);
858 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
859               "Jamie Lenehan <lenehan@twibble.org>, "
860               "Angelo Castello <angelo.castello@st.com>");
861 MODULE_LICENSE("GPL");
862 MODULE_ALIAS("platform:" DRV_NAME);