Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[sfrench/cifs-2.6.git] / drivers / rtc / rtc-cmos.c
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
41 #include <linux/pm.h>
42 #include <linux/of.h>
43 #include <linux/of_platform.h>
44 #ifdef CONFIG_X86
45 #include <asm/i8259.h>
46 #include <asm/processor.h>
47 #include <linux/dmi.h>
48 #endif
49
50 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
51 #include <linux/mc146818rtc.h>
52
53 #ifdef CONFIG_ACPI
54 /*
55  * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
56  *
57  * If cleared, ACPI SCI is only used to wake up the system from suspend
58  *
59  * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
60  */
61
62 static bool use_acpi_alarm;
63 module_param(use_acpi_alarm, bool, 0444);
64
65 static inline int cmos_use_acpi_alarm(void)
66 {
67         return use_acpi_alarm;
68 }
69 #else /* !CONFIG_ACPI */
70
71 static inline int cmos_use_acpi_alarm(void)
72 {
73         return 0;
74 }
75 #endif
76
77 struct cmos_rtc {
78         struct rtc_device       *rtc;
79         struct device           *dev;
80         int                     irq;
81         struct resource         *iomem;
82         time64_t                alarm_expires;
83
84         void                    (*wake_on)(struct device *);
85         void                    (*wake_off)(struct device *);
86
87         u8                      enabled_wake;
88         u8                      suspend_ctrl;
89
90         /* newer hardware extends the original register set */
91         u8                      day_alrm;
92         u8                      mon_alrm;
93         u8                      century;
94
95         struct rtc_wkalrm       saved_wkalrm;
96 };
97
98 /* both platform and pnp busses use negative numbers for invalid irqs */
99 #define is_valid_irq(n)         ((n) > 0)
100
101 static const char driver_name[] = "rtc_cmos";
102
103 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
104  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
105  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
106  */
107 #define RTC_IRQMASK     (RTC_PF | RTC_AF | RTC_UF)
108
109 static inline int is_intr(u8 rtc_intr)
110 {
111         if (!(rtc_intr & RTC_IRQF))
112                 return 0;
113         return rtc_intr & RTC_IRQMASK;
114 }
115
116 /*----------------------------------------------------------------*/
117
118 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
119  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
120  * used in a broken "legacy replacement" mode.  The breakage includes
121  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
122  * other (better) use.
123  *
124  * When that broken mode is in use, platform glue provides a partial
125  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
126  * want to use HPET for anything except those IRQs though...
127  */
128 #ifdef CONFIG_HPET_EMULATE_RTC
129 #include <asm/hpet.h>
130 #else
131
132 static inline int is_hpet_enabled(void)
133 {
134         return 0;
135 }
136
137 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
138 {
139         return 0;
140 }
141
142 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
143 {
144         return 0;
145 }
146
147 static inline int
148 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
149 {
150         return 0;
151 }
152
153 static inline int hpet_set_periodic_freq(unsigned long freq)
154 {
155         return 0;
156 }
157
158 static inline int hpet_rtc_dropped_irq(void)
159 {
160         return 0;
161 }
162
163 static inline int hpet_rtc_timer_init(void)
164 {
165         return 0;
166 }
167
168 extern irq_handler_t hpet_rtc_interrupt;
169
170 static inline int hpet_register_irq_handler(irq_handler_t handler)
171 {
172         return 0;
173 }
174
175 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
176 {
177         return 0;
178 }
179
180 #endif
181
182 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
183 static inline int use_hpet_alarm(void)
184 {
185         return is_hpet_enabled() && !cmos_use_acpi_alarm();
186 }
187
188 /*----------------------------------------------------------------*/
189
190 #ifdef RTC_PORT
191
192 /* Most newer x86 systems have two register banks, the first used
193  * for RTC and NVRAM and the second only for NVRAM.  Caller must
194  * own rtc_lock ... and we won't worry about access during NMI.
195  */
196 #define can_bank2       true
197
198 static inline unsigned char cmos_read_bank2(unsigned char addr)
199 {
200         outb(addr, RTC_PORT(2));
201         return inb(RTC_PORT(3));
202 }
203
204 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
205 {
206         outb(addr, RTC_PORT(2));
207         outb(val, RTC_PORT(3));
208 }
209
210 #else
211
212 #define can_bank2       false
213
214 static inline unsigned char cmos_read_bank2(unsigned char addr)
215 {
216         return 0;
217 }
218
219 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
220 {
221 }
222
223 #endif
224
225 /*----------------------------------------------------------------*/
226
227 static int cmos_read_time(struct device *dev, struct rtc_time *t)
228 {
229         /*
230          * If pm_trace abused the RTC for storage, set the timespec to 0,
231          * which tells the caller that this RTC value is unusable.
232          */
233         if (!pm_trace_rtc_valid())
234                 return -EIO;
235
236         /* REVISIT:  if the clock has a "century" register, use
237          * that instead of the heuristic in mc146818_get_time().
238          * That'll make Y3K compatility (year > 2070) easy!
239          */
240         mc146818_get_time(t);
241         return 0;
242 }
243
244 static int cmos_set_time(struct device *dev, struct rtc_time *t)
245 {
246         /* REVISIT:  set the "century" register if available
247          *
248          * NOTE: this ignores the issue whereby updating the seconds
249          * takes effect exactly 500ms after we write the register.
250          * (Also queueing and other delays before we get this far.)
251          */
252         return mc146818_set_time(t);
253 }
254
255 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
256 {
257         struct cmos_rtc *cmos = dev_get_drvdata(dev);
258         unsigned char   rtc_control;
259
260         if (!is_valid_irq(cmos->irq))
261                 return -EIO;
262
263         /* Basic alarms only support hour, minute, and seconds fields.
264          * Some also support day and month, for alarms up to a year in
265          * the future.
266          */
267
268         spin_lock_irq(&rtc_lock);
269         t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
270         t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
271         t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
272
273         if (cmos->day_alrm) {
274                 /* ignore upper bits on readback per ACPI spec */
275                 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
276                 if (!t->time.tm_mday)
277                         t->time.tm_mday = -1;
278
279                 if (cmos->mon_alrm) {
280                         t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
281                         if (!t->time.tm_mon)
282                                 t->time.tm_mon = -1;
283                 }
284         }
285
286         rtc_control = CMOS_READ(RTC_CONTROL);
287         spin_unlock_irq(&rtc_lock);
288
289         if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
290                 if (((unsigned)t->time.tm_sec) < 0x60)
291                         t->time.tm_sec = bcd2bin(t->time.tm_sec);
292                 else
293                         t->time.tm_sec = -1;
294                 if (((unsigned)t->time.tm_min) < 0x60)
295                         t->time.tm_min = bcd2bin(t->time.tm_min);
296                 else
297                         t->time.tm_min = -1;
298                 if (((unsigned)t->time.tm_hour) < 0x24)
299                         t->time.tm_hour = bcd2bin(t->time.tm_hour);
300                 else
301                         t->time.tm_hour = -1;
302
303                 if (cmos->day_alrm) {
304                         if (((unsigned)t->time.tm_mday) <= 0x31)
305                                 t->time.tm_mday = bcd2bin(t->time.tm_mday);
306                         else
307                                 t->time.tm_mday = -1;
308
309                         if (cmos->mon_alrm) {
310                                 if (((unsigned)t->time.tm_mon) <= 0x12)
311                                         t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
312                                 else
313                                         t->time.tm_mon = -1;
314                         }
315                 }
316         }
317
318         t->enabled = !!(rtc_control & RTC_AIE);
319         t->pending = 0;
320
321         return 0;
322 }
323
324 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
325 {
326         unsigned char   rtc_intr;
327
328         /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
329          * allegedly some older rtcs need that to handle irqs properly
330          */
331         rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
332
333         if (use_hpet_alarm())
334                 return;
335
336         rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
337         if (is_intr(rtc_intr))
338                 rtc_update_irq(cmos->rtc, 1, rtc_intr);
339 }
340
341 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
342 {
343         unsigned char   rtc_control;
344
345         /* flush any pending IRQ status, notably for update irqs,
346          * before we enable new IRQs
347          */
348         rtc_control = CMOS_READ(RTC_CONTROL);
349         cmos_checkintr(cmos, rtc_control);
350
351         rtc_control |= mask;
352         CMOS_WRITE(rtc_control, RTC_CONTROL);
353         if (use_hpet_alarm())
354                 hpet_set_rtc_irq_bit(mask);
355
356         if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
357                 if (cmos->wake_on)
358                         cmos->wake_on(cmos->dev);
359         }
360
361         cmos_checkintr(cmos, rtc_control);
362 }
363
364 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
365 {
366         unsigned char   rtc_control;
367
368         rtc_control = CMOS_READ(RTC_CONTROL);
369         rtc_control &= ~mask;
370         CMOS_WRITE(rtc_control, RTC_CONTROL);
371         if (use_hpet_alarm())
372                 hpet_mask_rtc_irq_bit(mask);
373
374         if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
375                 if (cmos->wake_off)
376                         cmos->wake_off(cmos->dev);
377         }
378
379         cmos_checkintr(cmos, rtc_control);
380 }
381
382 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
383 {
384         struct cmos_rtc *cmos = dev_get_drvdata(dev);
385         struct rtc_time now;
386
387         cmos_read_time(dev, &now);
388
389         if (!cmos->day_alrm) {
390                 time64_t t_max_date;
391                 time64_t t_alrm;
392
393                 t_max_date = rtc_tm_to_time64(&now);
394                 t_max_date += 24 * 60 * 60 - 1;
395                 t_alrm = rtc_tm_to_time64(&t->time);
396                 if (t_alrm > t_max_date) {
397                         dev_err(dev,
398                                 "Alarms can be up to one day in the future\n");
399                         return -EINVAL;
400                 }
401         } else if (!cmos->mon_alrm) {
402                 struct rtc_time max_date = now;
403                 time64_t t_max_date;
404                 time64_t t_alrm;
405                 int max_mday;
406
407                 if (max_date.tm_mon == 11) {
408                         max_date.tm_mon = 0;
409                         max_date.tm_year += 1;
410                 } else {
411                         max_date.tm_mon += 1;
412                 }
413                 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
414                 if (max_date.tm_mday > max_mday)
415                         max_date.tm_mday = max_mday;
416
417                 t_max_date = rtc_tm_to_time64(&max_date);
418                 t_max_date -= 1;
419                 t_alrm = rtc_tm_to_time64(&t->time);
420                 if (t_alrm > t_max_date) {
421                         dev_err(dev,
422                                 "Alarms can be up to one month in the future\n");
423                         return -EINVAL;
424                 }
425         } else {
426                 struct rtc_time max_date = now;
427                 time64_t t_max_date;
428                 time64_t t_alrm;
429                 int max_mday;
430
431                 max_date.tm_year += 1;
432                 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
433                 if (max_date.tm_mday > max_mday)
434                         max_date.tm_mday = max_mday;
435
436                 t_max_date = rtc_tm_to_time64(&max_date);
437                 t_max_date -= 1;
438                 t_alrm = rtc_tm_to_time64(&t->time);
439                 if (t_alrm > t_max_date) {
440                         dev_err(dev,
441                                 "Alarms can be up to one year in the future\n");
442                         return -EINVAL;
443                 }
444         }
445
446         return 0;
447 }
448
449 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
450 {
451         struct cmos_rtc *cmos = dev_get_drvdata(dev);
452         unsigned char mon, mday, hrs, min, sec, rtc_control;
453         int ret;
454
455         if (!is_valid_irq(cmos->irq))
456                 return -EIO;
457
458         ret = cmos_validate_alarm(dev, t);
459         if (ret < 0)
460                 return ret;
461
462         mon = t->time.tm_mon + 1;
463         mday = t->time.tm_mday;
464         hrs = t->time.tm_hour;
465         min = t->time.tm_min;
466         sec = t->time.tm_sec;
467
468         rtc_control = CMOS_READ(RTC_CONTROL);
469         if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
470                 /* Writing 0xff means "don't care" or "match all".  */
471                 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
472                 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
473                 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
474                 min = (min < 60) ? bin2bcd(min) : 0xff;
475                 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
476         }
477
478         spin_lock_irq(&rtc_lock);
479
480         /* next rtc irq must not be from previous alarm setting */
481         cmos_irq_disable(cmos, RTC_AIE);
482
483         /* update alarm */
484         CMOS_WRITE(hrs, RTC_HOURS_ALARM);
485         CMOS_WRITE(min, RTC_MINUTES_ALARM);
486         CMOS_WRITE(sec, RTC_SECONDS_ALARM);
487
488         /* the system may support an "enhanced" alarm */
489         if (cmos->day_alrm) {
490                 CMOS_WRITE(mday, cmos->day_alrm);
491                 if (cmos->mon_alrm)
492                         CMOS_WRITE(mon, cmos->mon_alrm);
493         }
494
495         if (use_hpet_alarm()) {
496                 /*
497                  * FIXME the HPET alarm glue currently ignores day_alrm
498                  * and mon_alrm ...
499                  */
500                 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min,
501                                     t->time.tm_sec);
502         }
503
504         if (t->enabled)
505                 cmos_irq_enable(cmos, RTC_AIE);
506
507         spin_unlock_irq(&rtc_lock);
508
509         cmos->alarm_expires = rtc_tm_to_time64(&t->time);
510
511         return 0;
512 }
513
514 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
515 {
516         struct cmos_rtc *cmos = dev_get_drvdata(dev);
517         unsigned long   flags;
518
519         if (!is_valid_irq(cmos->irq))
520                 return -EINVAL;
521
522         spin_lock_irqsave(&rtc_lock, flags);
523
524         if (enabled)
525                 cmos_irq_enable(cmos, RTC_AIE);
526         else
527                 cmos_irq_disable(cmos, RTC_AIE);
528
529         spin_unlock_irqrestore(&rtc_lock, flags);
530         return 0;
531 }
532
533 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
534
535 static int cmos_procfs(struct device *dev, struct seq_file *seq)
536 {
537         struct cmos_rtc *cmos = dev_get_drvdata(dev);
538         unsigned char   rtc_control, valid;
539
540         spin_lock_irq(&rtc_lock);
541         rtc_control = CMOS_READ(RTC_CONTROL);
542         valid = CMOS_READ(RTC_VALID);
543         spin_unlock_irq(&rtc_lock);
544
545         /* NOTE:  at least ICH6 reports battery status using a different
546          * (non-RTC) bit; and SQWE is ignored on many current systems.
547          */
548         seq_printf(seq,
549                    "periodic_IRQ\t: %s\n"
550                    "update_IRQ\t: %s\n"
551                    "HPET_emulated\t: %s\n"
552                    // "square_wave\t: %s\n"
553                    "BCD\t\t: %s\n"
554                    "DST_enable\t: %s\n"
555                    "periodic_freq\t: %d\n"
556                    "batt_status\t: %s\n",
557                    (rtc_control & RTC_PIE) ? "yes" : "no",
558                    (rtc_control & RTC_UIE) ? "yes" : "no",
559                    use_hpet_alarm() ? "yes" : "no",
560                    // (rtc_control & RTC_SQWE) ? "yes" : "no",
561                    (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
562                    (rtc_control & RTC_DST_EN) ? "yes" : "no",
563                    cmos->rtc->irq_freq,
564                    (valid & RTC_VRT) ? "okay" : "dead");
565
566         return 0;
567 }
568
569 #else
570 #define cmos_procfs     NULL
571 #endif
572
573 static const struct rtc_class_ops cmos_rtc_ops = {
574         .read_time              = cmos_read_time,
575         .set_time               = cmos_set_time,
576         .read_alarm             = cmos_read_alarm,
577         .set_alarm              = cmos_set_alarm,
578         .proc                   = cmos_procfs,
579         .alarm_irq_enable       = cmos_alarm_irq_enable,
580 };
581
582 /*----------------------------------------------------------------*/
583
584 /*
585  * All these chips have at least 64 bytes of address space, shared by
586  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
587  * by boot firmware.  Modern chips have 128 or 256 bytes.
588  */
589
590 #define NVRAM_OFFSET    (RTC_REG_D + 1)
591
592 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
593                            size_t count)
594 {
595         unsigned char *buf = val;
596         int     retval;
597
598         off += NVRAM_OFFSET;
599         spin_lock_irq(&rtc_lock);
600         for (retval = 0; count; count--, off++, retval++) {
601                 if (off < 128)
602                         *buf++ = CMOS_READ(off);
603                 else if (can_bank2)
604                         *buf++ = cmos_read_bank2(off);
605                 else
606                         break;
607         }
608         spin_unlock_irq(&rtc_lock);
609
610         return retval;
611 }
612
613 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
614                             size_t count)
615 {
616         struct cmos_rtc *cmos = priv;
617         unsigned char   *buf = val;
618         int             retval;
619
620         /* NOTE:  on at least PCs and Ataris, the boot firmware uses a
621          * checksum on part of the NVRAM data.  That's currently ignored
622          * here.  If userspace is smart enough to know what fields of
623          * NVRAM to update, updating checksums is also part of its job.
624          */
625         off += NVRAM_OFFSET;
626         spin_lock_irq(&rtc_lock);
627         for (retval = 0; count; count--, off++, retval++) {
628                 /* don't trash RTC registers */
629                 if (off == cmos->day_alrm
630                                 || off == cmos->mon_alrm
631                                 || off == cmos->century)
632                         buf++;
633                 else if (off < 128)
634                         CMOS_WRITE(*buf++, off);
635                 else if (can_bank2)
636                         cmos_write_bank2(*buf++, off);
637                 else
638                         break;
639         }
640         spin_unlock_irq(&rtc_lock);
641
642         return retval;
643 }
644
645 /*----------------------------------------------------------------*/
646
647 static struct cmos_rtc  cmos_rtc;
648
649 static irqreturn_t cmos_interrupt(int irq, void *p)
650 {
651         u8              irqstat;
652         u8              rtc_control;
653
654         spin_lock(&rtc_lock);
655
656         /* When the HPET interrupt handler calls us, the interrupt
657          * status is passed as arg1 instead of the irq number.  But
658          * always clear irq status, even when HPET is in the way.
659          *
660          * Note that HPET and RTC are almost certainly out of phase,
661          * giving different IRQ status ...
662          */
663         irqstat = CMOS_READ(RTC_INTR_FLAGS);
664         rtc_control = CMOS_READ(RTC_CONTROL);
665         if (use_hpet_alarm())
666                 irqstat = (unsigned long)irq & 0xF0;
667
668         /* If we were suspended, RTC_CONTROL may not be accurate since the
669          * bios may have cleared it.
670          */
671         if (!cmos_rtc.suspend_ctrl)
672                 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
673         else
674                 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
675
676         /* All Linux RTC alarms should be treated as if they were oneshot.
677          * Similar code may be needed in system wakeup paths, in case the
678          * alarm woke the system.
679          */
680         if (irqstat & RTC_AIE) {
681                 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
682                 rtc_control &= ~RTC_AIE;
683                 CMOS_WRITE(rtc_control, RTC_CONTROL);
684                 if (use_hpet_alarm())
685                         hpet_mask_rtc_irq_bit(RTC_AIE);
686                 CMOS_READ(RTC_INTR_FLAGS);
687         }
688         spin_unlock(&rtc_lock);
689
690         if (is_intr(irqstat)) {
691                 rtc_update_irq(p, 1, irqstat);
692                 return IRQ_HANDLED;
693         } else
694                 return IRQ_NONE;
695 }
696
697 #ifdef  CONFIG_PNP
698 #define INITSECTION
699
700 #else
701 #define INITSECTION     __init
702 #endif
703
704 static int INITSECTION
705 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
706 {
707         struct cmos_rtc_board_info      *info = dev_get_platdata(dev);
708         int                             retval = 0;
709         unsigned char                   rtc_control;
710         unsigned                        address_space;
711         u32                             flags = 0;
712         struct nvmem_config nvmem_cfg = {
713                 .name = "cmos_nvram",
714                 .word_size = 1,
715                 .stride = 1,
716                 .reg_read = cmos_nvram_read,
717                 .reg_write = cmos_nvram_write,
718                 .priv = &cmos_rtc,
719         };
720
721         /* there can be only one ... */
722         if (cmos_rtc.dev)
723                 return -EBUSY;
724
725         if (!ports)
726                 return -ENODEV;
727
728         /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
729          *
730          * REVISIT non-x86 systems may instead use memory space resources
731          * (needing ioremap etc), not i/o space resources like this ...
732          */
733         if (RTC_IOMAPPED)
734                 ports = request_region(ports->start, resource_size(ports),
735                                        driver_name);
736         else
737                 ports = request_mem_region(ports->start, resource_size(ports),
738                                            driver_name);
739         if (!ports) {
740                 dev_dbg(dev, "i/o registers already in use\n");
741                 return -EBUSY;
742         }
743
744         cmos_rtc.irq = rtc_irq;
745         cmos_rtc.iomem = ports;
746
747         /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
748          * driver did, but don't reject unknown configs.   Old hardware
749          * won't address 128 bytes.  Newer chips have multiple banks,
750          * though they may not be listed in one I/O resource.
751          */
752 #if     defined(CONFIG_ATARI)
753         address_space = 64;
754 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
755                         || defined(__sparc__) || defined(__mips__) \
756                         || defined(__powerpc__)
757         address_space = 128;
758 #else
759 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
760         address_space = 128;
761 #endif
762         if (can_bank2 && ports->end > (ports->start + 1))
763                 address_space = 256;
764
765         /* For ACPI systems extension info comes from the FADT.  On others,
766          * board specific setup provides it as appropriate.  Systems where
767          * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
768          * some almost-clones) can provide hooks to make that behave.
769          *
770          * Note that ACPI doesn't preclude putting these registers into
771          * "extended" areas of the chip, including some that we won't yet
772          * expect CMOS_READ and friends to handle.
773          */
774         if (info) {
775                 if (info->flags)
776                         flags = info->flags;
777                 if (info->address_space)
778                         address_space = info->address_space;
779
780                 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
781                         cmos_rtc.day_alrm = info->rtc_day_alarm;
782                 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
783                         cmos_rtc.mon_alrm = info->rtc_mon_alarm;
784                 if (info->rtc_century && info->rtc_century < 128)
785                         cmos_rtc.century = info->rtc_century;
786
787                 if (info->wake_on && info->wake_off) {
788                         cmos_rtc.wake_on = info->wake_on;
789                         cmos_rtc.wake_off = info->wake_off;
790                 }
791         }
792
793         cmos_rtc.dev = dev;
794         dev_set_drvdata(dev, &cmos_rtc);
795
796         cmos_rtc.rtc = devm_rtc_allocate_device(dev);
797         if (IS_ERR(cmos_rtc.rtc)) {
798                 retval = PTR_ERR(cmos_rtc.rtc);
799                 goto cleanup0;
800         }
801
802         rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
803
804         spin_lock_irq(&rtc_lock);
805
806         if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
807                 /* force periodic irq to CMOS reset default of 1024Hz;
808                  *
809                  * REVISIT it's been reported that at least one x86_64 ALI
810                  * mobo doesn't use 32KHz here ... for portability we might
811                  * need to do something about other clock frequencies.
812                  */
813                 cmos_rtc.rtc->irq_freq = 1024;
814                 if (use_hpet_alarm())
815                         hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
816                 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
817         }
818
819         /* disable irqs */
820         if (is_valid_irq(rtc_irq))
821                 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
822
823         rtc_control = CMOS_READ(RTC_CONTROL);
824
825         spin_unlock_irq(&rtc_lock);
826
827         if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
828                 dev_warn(dev, "only 24-hr supported\n");
829                 retval = -ENXIO;
830                 goto cleanup1;
831         }
832
833         if (use_hpet_alarm())
834                 hpet_rtc_timer_init();
835
836         if (is_valid_irq(rtc_irq)) {
837                 irq_handler_t rtc_cmos_int_handler;
838
839                 if (use_hpet_alarm()) {
840                         rtc_cmos_int_handler = hpet_rtc_interrupt;
841                         retval = hpet_register_irq_handler(cmos_interrupt);
842                         if (retval) {
843                                 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
844                                 dev_warn(dev, "hpet_register_irq_handler "
845                                                 " failed in rtc_init().");
846                                 goto cleanup1;
847                         }
848                 } else
849                         rtc_cmos_int_handler = cmos_interrupt;
850
851                 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
852                                 IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
853                                 cmos_rtc.rtc);
854                 if (retval < 0) {
855                         dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
856                         goto cleanup1;
857                 }
858         }
859
860         cmos_rtc.rtc->ops = &cmos_rtc_ops;
861         cmos_rtc.rtc->nvram_old_abi = true;
862         retval = rtc_register_device(cmos_rtc.rtc);
863         if (retval)
864                 goto cleanup2;
865
866         /* export at least the first block of NVRAM */
867         nvmem_cfg.size = address_space - NVRAM_OFFSET;
868         if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg))
869                 dev_err(dev, "nvmem registration failed\n");
870
871         dev_info(dev, "%s%s, %d bytes nvram%s\n",
872                  !is_valid_irq(rtc_irq) ? "no alarms" :
873                  cmos_rtc.mon_alrm ? "alarms up to one year" :
874                  cmos_rtc.day_alrm ? "alarms up to one month" :
875                  "alarms up to one day",
876                  cmos_rtc.century ? ", y3k" : "",
877                  nvmem_cfg.size,
878                  use_hpet_alarm() ? ", hpet irqs" : "");
879
880         return 0;
881
882 cleanup2:
883         if (is_valid_irq(rtc_irq))
884                 free_irq(rtc_irq, cmos_rtc.rtc);
885 cleanup1:
886         cmos_rtc.dev = NULL;
887 cleanup0:
888         if (RTC_IOMAPPED)
889                 release_region(ports->start, resource_size(ports));
890         else
891                 release_mem_region(ports->start, resource_size(ports));
892         return retval;
893 }
894
895 static void cmos_do_shutdown(int rtc_irq)
896 {
897         spin_lock_irq(&rtc_lock);
898         if (is_valid_irq(rtc_irq))
899                 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
900         spin_unlock_irq(&rtc_lock);
901 }
902
903 static void cmos_do_remove(struct device *dev)
904 {
905         struct cmos_rtc *cmos = dev_get_drvdata(dev);
906         struct resource *ports;
907
908         cmos_do_shutdown(cmos->irq);
909
910         if (is_valid_irq(cmos->irq)) {
911                 free_irq(cmos->irq, cmos->rtc);
912                 if (use_hpet_alarm())
913                         hpet_unregister_irq_handler(cmos_interrupt);
914         }
915
916         cmos->rtc = NULL;
917
918         ports = cmos->iomem;
919         if (RTC_IOMAPPED)
920                 release_region(ports->start, resource_size(ports));
921         else
922                 release_mem_region(ports->start, resource_size(ports));
923         cmos->iomem = NULL;
924
925         cmos->dev = NULL;
926 }
927
928 static int cmos_aie_poweroff(struct device *dev)
929 {
930         struct cmos_rtc *cmos = dev_get_drvdata(dev);
931         struct rtc_time now;
932         time64_t t_now;
933         int retval = 0;
934         unsigned char rtc_control;
935
936         if (!cmos->alarm_expires)
937                 return -EINVAL;
938
939         spin_lock_irq(&rtc_lock);
940         rtc_control = CMOS_READ(RTC_CONTROL);
941         spin_unlock_irq(&rtc_lock);
942
943         /* We only care about the situation where AIE is disabled. */
944         if (rtc_control & RTC_AIE)
945                 return -EBUSY;
946
947         cmos_read_time(dev, &now);
948         t_now = rtc_tm_to_time64(&now);
949
950         /*
951          * When enabling "RTC wake-up" in BIOS setup, the machine reboots
952          * automatically right after shutdown on some buggy boxes.
953          * This automatic rebooting issue won't happen when the alarm
954          * time is larger than now+1 seconds.
955          *
956          * If the alarm time is equal to now+1 seconds, the issue can be
957          * prevented by cancelling the alarm.
958          */
959         if (cmos->alarm_expires == t_now + 1) {
960                 struct rtc_wkalrm alarm;
961
962                 /* Cancel the AIE timer by configuring the past time. */
963                 rtc_time64_to_tm(t_now - 1, &alarm.time);
964                 alarm.enabled = 0;
965                 retval = cmos_set_alarm(dev, &alarm);
966         } else if (cmos->alarm_expires > t_now + 1) {
967                 retval = -EBUSY;
968         }
969
970         return retval;
971 }
972
973 static int cmos_suspend(struct device *dev)
974 {
975         struct cmos_rtc *cmos = dev_get_drvdata(dev);
976         unsigned char   tmp;
977
978         /* only the alarm might be a wakeup event source */
979         spin_lock_irq(&rtc_lock);
980         cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
981         if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
982                 unsigned char   mask;
983
984                 if (device_may_wakeup(dev))
985                         mask = RTC_IRQMASK & ~RTC_AIE;
986                 else
987                         mask = RTC_IRQMASK;
988                 tmp &= ~mask;
989                 CMOS_WRITE(tmp, RTC_CONTROL);
990                 if (use_hpet_alarm())
991                         hpet_mask_rtc_irq_bit(mask);
992                 cmos_checkintr(cmos, tmp);
993         }
994         spin_unlock_irq(&rtc_lock);
995
996         if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
997                 cmos->enabled_wake = 1;
998                 if (cmos->wake_on)
999                         cmos->wake_on(dev);
1000                 else
1001                         enable_irq_wake(cmos->irq);
1002         }
1003
1004         cmos_read_alarm(dev, &cmos->saved_wkalrm);
1005
1006         dev_dbg(dev, "suspend%s, ctrl %02x\n",
1007                         (tmp & RTC_AIE) ? ", alarm may wake" : "",
1008                         tmp);
1009
1010         return 0;
1011 }
1012
1013 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1014  * after a detour through G3 "mechanical off", although the ACPI spec
1015  * says wakeup should only work from G1/S4 "hibernate".  To most users,
1016  * distinctions between S4 and S5 are pointless.  So when the hardware
1017  * allows, don't draw that distinction.
1018  */
1019 static inline int cmos_poweroff(struct device *dev)
1020 {
1021         if (!IS_ENABLED(CONFIG_PM))
1022                 return -ENOSYS;
1023
1024         return cmos_suspend(dev);
1025 }
1026
1027 static void cmos_check_wkalrm(struct device *dev)
1028 {
1029         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1030         struct rtc_wkalrm current_alarm;
1031         time64_t t_now;
1032         time64_t t_current_expires;
1033         time64_t t_saved_expires;
1034         struct rtc_time now;
1035
1036         /* Check if we have RTC Alarm armed */
1037         if (!(cmos->suspend_ctrl & RTC_AIE))
1038                 return;
1039
1040         cmos_read_time(dev, &now);
1041         t_now = rtc_tm_to_time64(&now);
1042
1043         /*
1044          * ACPI RTC wake event is cleared after resume from STR,
1045          * ACK the rtc irq here
1046          */
1047         if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1048                 cmos_interrupt(0, (void *)cmos->rtc);
1049                 return;
1050         }
1051
1052         cmos_read_alarm(dev, &current_alarm);
1053         t_current_expires = rtc_tm_to_time64(&current_alarm.time);
1054         t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1055         if (t_current_expires != t_saved_expires ||
1056             cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1057                 cmos_set_alarm(dev, &cmos->saved_wkalrm);
1058         }
1059 }
1060
1061 static void cmos_check_acpi_rtc_status(struct device *dev,
1062                                        unsigned char *rtc_control);
1063
1064 static int __maybe_unused cmos_resume(struct device *dev)
1065 {
1066         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1067         unsigned char tmp;
1068
1069         if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1070                 if (cmos->wake_off)
1071                         cmos->wake_off(dev);
1072                 else
1073                         disable_irq_wake(cmos->irq);
1074                 cmos->enabled_wake = 0;
1075         }
1076
1077         /* The BIOS might have changed the alarm, restore it */
1078         cmos_check_wkalrm(dev);
1079
1080         spin_lock_irq(&rtc_lock);
1081         tmp = cmos->suspend_ctrl;
1082         cmos->suspend_ctrl = 0;
1083         /* re-enable any irqs previously active */
1084         if (tmp & RTC_IRQMASK) {
1085                 unsigned char   mask;
1086
1087                 if (device_may_wakeup(dev) && use_hpet_alarm())
1088                         hpet_rtc_timer_init();
1089
1090                 do {
1091                         CMOS_WRITE(tmp, RTC_CONTROL);
1092                         if (use_hpet_alarm())
1093                                 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1094
1095                         mask = CMOS_READ(RTC_INTR_FLAGS);
1096                         mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1097                         if (!use_hpet_alarm() || !is_intr(mask))
1098                                 break;
1099
1100                         /* force one-shot behavior if HPET blocked
1101                          * the wake alarm's irq
1102                          */
1103                         rtc_update_irq(cmos->rtc, 1, mask);
1104                         tmp &= ~RTC_AIE;
1105                         hpet_mask_rtc_irq_bit(RTC_AIE);
1106                 } while (mask & RTC_AIE);
1107
1108                 if (tmp & RTC_AIE)
1109                         cmos_check_acpi_rtc_status(dev, &tmp);
1110         }
1111         spin_unlock_irq(&rtc_lock);
1112
1113         dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1114
1115         return 0;
1116 }
1117
1118 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1119
1120 /*----------------------------------------------------------------*/
1121
1122 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1123  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1124  * probably list them in similar PNPBIOS tables; so PNP is more common.
1125  *
1126  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1127  * predate even PNPBIOS should set up platform_bus devices.
1128  */
1129
1130 #ifdef  CONFIG_ACPI
1131
1132 #include <linux/acpi.h>
1133
1134 static u32 rtc_handler(void *context)
1135 {
1136         struct device *dev = context;
1137         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1138         unsigned char rtc_control = 0;
1139         unsigned char rtc_intr;
1140         unsigned long flags;
1141
1142
1143         /*
1144          * Always update rtc irq when ACPI is used as RTC Alarm.
1145          * Or else, ACPI SCI is enabled during suspend/resume only,
1146          * update rtc irq in that case.
1147          */
1148         if (cmos_use_acpi_alarm())
1149                 cmos_interrupt(0, (void *)cmos->rtc);
1150         else {
1151                 /* Fix me: can we use cmos_interrupt() here as well? */
1152                 spin_lock_irqsave(&rtc_lock, flags);
1153                 if (cmos_rtc.suspend_ctrl)
1154                         rtc_control = CMOS_READ(RTC_CONTROL);
1155                 if (rtc_control & RTC_AIE) {
1156                         cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1157                         CMOS_WRITE(rtc_control, RTC_CONTROL);
1158                         rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1159                         rtc_update_irq(cmos->rtc, 1, rtc_intr);
1160                 }
1161                 spin_unlock_irqrestore(&rtc_lock, flags);
1162         }
1163
1164         pm_wakeup_hard_event(dev);
1165         acpi_clear_event(ACPI_EVENT_RTC);
1166         acpi_disable_event(ACPI_EVENT_RTC, 0);
1167         return ACPI_INTERRUPT_HANDLED;
1168 }
1169
1170 static inline void rtc_wake_setup(struct device *dev)
1171 {
1172         acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1173         /*
1174          * After the RTC handler is installed, the Fixed_RTC event should
1175          * be disabled. Only when the RTC alarm is set will it be enabled.
1176          */
1177         acpi_clear_event(ACPI_EVENT_RTC);
1178         acpi_disable_event(ACPI_EVENT_RTC, 0);
1179 }
1180
1181 static void rtc_wake_on(struct device *dev)
1182 {
1183         acpi_clear_event(ACPI_EVENT_RTC);
1184         acpi_enable_event(ACPI_EVENT_RTC, 0);
1185 }
1186
1187 static void rtc_wake_off(struct device *dev)
1188 {
1189         acpi_disable_event(ACPI_EVENT_RTC, 0);
1190 }
1191
1192 #ifdef CONFIG_X86
1193 /* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
1194 static void use_acpi_alarm_quirks(void)
1195 {
1196         int year;
1197
1198         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1199                 return;
1200
1201         if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0))
1202                 return;
1203
1204         if (!is_hpet_enabled())
1205                 return;
1206
1207         if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) && year >= 2015)
1208                 use_acpi_alarm = true;
1209 }
1210 #else
1211 static inline void use_acpi_alarm_quirks(void) { }
1212 #endif
1213
1214 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1215  * its device node and pass extra config data.  This helps its driver use
1216  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1217  * that this board's RTC is wakeup-capable (per ACPI spec).
1218  */
1219 static struct cmos_rtc_board_info acpi_rtc_info;
1220
1221 static void cmos_wake_setup(struct device *dev)
1222 {
1223         if (acpi_disabled)
1224                 return;
1225
1226         use_acpi_alarm_quirks();
1227
1228         rtc_wake_setup(dev);
1229         acpi_rtc_info.wake_on = rtc_wake_on;
1230         acpi_rtc_info.wake_off = rtc_wake_off;
1231
1232         /* workaround bug in some ACPI tables */
1233         if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1234                 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1235                         acpi_gbl_FADT.month_alarm);
1236                 acpi_gbl_FADT.month_alarm = 0;
1237         }
1238
1239         acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1240         acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1241         acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1242
1243         /* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1244         if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1245                 dev_info(dev, "RTC can wake from S4\n");
1246
1247         dev->platform_data = &acpi_rtc_info;
1248
1249         /* RTC always wakes from S1/S2/S3, and often S4/STD */
1250         device_init_wakeup(dev, 1);
1251 }
1252
1253 static void cmos_check_acpi_rtc_status(struct device *dev,
1254                                        unsigned char *rtc_control)
1255 {
1256         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1257         acpi_event_status rtc_status;
1258         acpi_status status;
1259
1260         if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1261                 return;
1262
1263         status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1264         if (ACPI_FAILURE(status)) {
1265                 dev_err(dev, "Could not get RTC status\n");
1266         } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1267                 unsigned char mask;
1268                 *rtc_control &= ~RTC_AIE;
1269                 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1270                 mask = CMOS_READ(RTC_INTR_FLAGS);
1271                 rtc_update_irq(cmos->rtc, 1, mask);
1272         }
1273 }
1274
1275 #else
1276
1277 static void cmos_wake_setup(struct device *dev)
1278 {
1279 }
1280
1281 static void cmos_check_acpi_rtc_status(struct device *dev,
1282                                        unsigned char *rtc_control)
1283 {
1284 }
1285
1286 #endif
1287
1288 #ifdef  CONFIG_PNP
1289
1290 #include <linux/pnp.h>
1291
1292 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1293 {
1294         cmos_wake_setup(&pnp->dev);
1295
1296         if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1297                 unsigned int irq = 0;
1298 #ifdef CONFIG_X86
1299                 /* Some machines contain a PNP entry for the RTC, but
1300                  * don't define the IRQ. It should always be safe to
1301                  * hardcode it on systems with a legacy PIC.
1302                  */
1303                 if (nr_legacy_irqs())
1304                         irq = 8;
1305 #endif
1306                 return cmos_do_probe(&pnp->dev,
1307                                 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1308         } else {
1309                 return cmos_do_probe(&pnp->dev,
1310                                 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1311                                 pnp_irq(pnp, 0));
1312         }
1313 }
1314
1315 static void cmos_pnp_remove(struct pnp_dev *pnp)
1316 {
1317         cmos_do_remove(&pnp->dev);
1318 }
1319
1320 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1321 {
1322         struct device *dev = &pnp->dev;
1323         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1324
1325         if (system_state == SYSTEM_POWER_OFF) {
1326                 int retval = cmos_poweroff(dev);
1327
1328                 if (cmos_aie_poweroff(dev) < 0 && !retval)
1329                         return;
1330         }
1331
1332         cmos_do_shutdown(cmos->irq);
1333 }
1334
1335 static const struct pnp_device_id rtc_ids[] = {
1336         { .id = "PNP0b00", },
1337         { .id = "PNP0b01", },
1338         { .id = "PNP0b02", },
1339         { },
1340 };
1341 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1342
1343 static struct pnp_driver cmos_pnp_driver = {
1344         .name           = (char *) driver_name,
1345         .id_table       = rtc_ids,
1346         .probe          = cmos_pnp_probe,
1347         .remove         = cmos_pnp_remove,
1348         .shutdown       = cmos_pnp_shutdown,
1349
1350         /* flag ensures resume() gets called, and stops syslog spam */
1351         .flags          = PNP_DRIVER_RES_DO_NOT_CHANGE,
1352         .driver         = {
1353                         .pm = &cmos_pm_ops,
1354         },
1355 };
1356
1357 #endif  /* CONFIG_PNP */
1358
1359 #ifdef CONFIG_OF
1360 static const struct of_device_id of_cmos_match[] = {
1361         {
1362                 .compatible = "motorola,mc146818",
1363         },
1364         { },
1365 };
1366 MODULE_DEVICE_TABLE(of, of_cmos_match);
1367
1368 static __init void cmos_of_init(struct platform_device *pdev)
1369 {
1370         struct device_node *node = pdev->dev.of_node;
1371         const __be32 *val;
1372
1373         if (!node)
1374                 return;
1375
1376         val = of_get_property(node, "ctrl-reg", NULL);
1377         if (val)
1378                 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1379
1380         val = of_get_property(node, "freq-reg", NULL);
1381         if (val)
1382                 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1383 }
1384 #else
1385 static inline void cmos_of_init(struct platform_device *pdev) {}
1386 #endif
1387 /*----------------------------------------------------------------*/
1388
1389 /* Platform setup should have set up an RTC device, when PNP is
1390  * unavailable ... this could happen even on (older) PCs.
1391  */
1392
1393 static int __init cmos_platform_probe(struct platform_device *pdev)
1394 {
1395         struct resource *resource;
1396         int irq;
1397
1398         cmos_of_init(pdev);
1399         cmos_wake_setup(&pdev->dev);
1400
1401         if (RTC_IOMAPPED)
1402                 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1403         else
1404                 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1405         irq = platform_get_irq(pdev, 0);
1406         if (irq < 0)
1407                 irq = -1;
1408
1409         return cmos_do_probe(&pdev->dev, resource, irq);
1410 }
1411
1412 static int cmos_platform_remove(struct platform_device *pdev)
1413 {
1414         cmos_do_remove(&pdev->dev);
1415         return 0;
1416 }
1417
1418 static void cmos_platform_shutdown(struct platform_device *pdev)
1419 {
1420         struct device *dev = &pdev->dev;
1421         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1422
1423         if (system_state == SYSTEM_POWER_OFF) {
1424                 int retval = cmos_poweroff(dev);
1425
1426                 if (cmos_aie_poweroff(dev) < 0 && !retval)
1427                         return;
1428         }
1429
1430         cmos_do_shutdown(cmos->irq);
1431 }
1432
1433 /* work with hotplug and coldplug */
1434 MODULE_ALIAS("platform:rtc_cmos");
1435
1436 static struct platform_driver cmos_platform_driver = {
1437         .remove         = cmos_platform_remove,
1438         .shutdown       = cmos_platform_shutdown,
1439         .driver = {
1440                 .name           = driver_name,
1441                 .pm             = &cmos_pm_ops,
1442                 .of_match_table = of_match_ptr(of_cmos_match),
1443         }
1444 };
1445
1446 #ifdef CONFIG_PNP
1447 static bool pnp_driver_registered;
1448 #endif
1449 static bool platform_driver_registered;
1450
1451 static int __init cmos_init(void)
1452 {
1453         int retval = 0;
1454
1455 #ifdef  CONFIG_PNP
1456         retval = pnp_register_driver(&cmos_pnp_driver);
1457         if (retval == 0)
1458                 pnp_driver_registered = true;
1459 #endif
1460
1461         if (!cmos_rtc.dev) {
1462                 retval = platform_driver_probe(&cmos_platform_driver,
1463                                                cmos_platform_probe);
1464                 if (retval == 0)
1465                         platform_driver_registered = true;
1466         }
1467
1468         if (retval == 0)
1469                 return 0;
1470
1471 #ifdef  CONFIG_PNP
1472         if (pnp_driver_registered)
1473                 pnp_unregister_driver(&cmos_pnp_driver);
1474 #endif
1475         return retval;
1476 }
1477 module_init(cmos_init);
1478
1479 static void __exit cmos_exit(void)
1480 {
1481 #ifdef  CONFIG_PNP
1482         if (pnp_driver_registered)
1483                 pnp_unregister_driver(&cmos_pnp_driver);
1484 #endif
1485         if (platform_driver_registered)
1486                 platform_driver_unregister(&cmos_platform_driver);
1487 }
1488 module_exit(cmos_exit);
1489
1490
1491 MODULE_AUTHOR("David Brownell");
1492 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1493 MODULE_LICENSE("GPL");