a5a19ff10535463d91d39d69ced1f13110ff139d
[sfrench/cifs-2.6.git] / drivers / rtc / rtc-cmos.c
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
41 #include <linux/pm.h>
42 #include <linux/of.h>
43 #include <linux/of_platform.h>
44 #ifdef CONFIG_X86
45 #include <asm/i8259.h>
46 #include <asm/processor.h>
47 #include <linux/dmi.h>
48 #endif
49
50 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
51 #include <linux/mc146818rtc.h>
52
53 #ifdef CONFIG_ACPI
54 /*
55  * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
56  *
57  * If cleared, ACPI SCI is only used to wake up the system from suspend
58  *
59  * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
60  */
61
62 static bool use_acpi_alarm;
63 module_param(use_acpi_alarm, bool, 0444);
64
65 static inline int cmos_use_acpi_alarm(void)
66 {
67         return use_acpi_alarm;
68 }
69 #else /* !CONFIG_ACPI */
70
71 static inline int cmos_use_acpi_alarm(void)
72 {
73         return 0;
74 }
75 #endif
76
77 struct cmos_rtc {
78         struct rtc_device       *rtc;
79         struct device           *dev;
80         int                     irq;
81         struct resource         *iomem;
82         time64_t                alarm_expires;
83
84         void                    (*wake_on)(struct device *);
85         void                    (*wake_off)(struct device *);
86
87         u8                      enabled_wake;
88         u8                      suspend_ctrl;
89
90         /* newer hardware extends the original register set */
91         u8                      day_alrm;
92         u8                      mon_alrm;
93         u8                      century;
94
95         struct rtc_wkalrm       saved_wkalrm;
96 };
97
98 /* both platform and pnp busses use negative numbers for invalid irqs */
99 #define is_valid_irq(n)         ((n) > 0)
100
101 static const char driver_name[] = "rtc_cmos";
102
103 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
104  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
105  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
106  */
107 #define RTC_IRQMASK     (RTC_PF | RTC_AF | RTC_UF)
108
109 static inline int is_intr(u8 rtc_intr)
110 {
111         if (!(rtc_intr & RTC_IRQF))
112                 return 0;
113         return rtc_intr & RTC_IRQMASK;
114 }
115
116 /*----------------------------------------------------------------*/
117
118 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
119  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
120  * used in a broken "legacy replacement" mode.  The breakage includes
121  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
122  * other (better) use.
123  *
124  * When that broken mode is in use, platform glue provides a partial
125  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
126  * want to use HPET for anything except those IRQs though...
127  */
128 #ifdef CONFIG_HPET_EMULATE_RTC
129 #include <asm/hpet.h>
130 #else
131
132 static inline int is_hpet_enabled(void)
133 {
134         return 0;
135 }
136
137 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
138 {
139         return 0;
140 }
141
142 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
143 {
144         return 0;
145 }
146
147 static inline int
148 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
149 {
150         return 0;
151 }
152
153 static inline int hpet_set_periodic_freq(unsigned long freq)
154 {
155         return 0;
156 }
157
158 static inline int hpet_rtc_dropped_irq(void)
159 {
160         return 0;
161 }
162
163 static inline int hpet_rtc_timer_init(void)
164 {
165         return 0;
166 }
167
168 extern irq_handler_t hpet_rtc_interrupt;
169
170 static inline int hpet_register_irq_handler(irq_handler_t handler)
171 {
172         return 0;
173 }
174
175 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
176 {
177         return 0;
178 }
179
180 #endif
181
182 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
183 static inline int use_hpet_alarm(void)
184 {
185         return is_hpet_enabled() && !cmos_use_acpi_alarm();
186 }
187
188 /*----------------------------------------------------------------*/
189
190 #ifdef RTC_PORT
191
192 /* Most newer x86 systems have two register banks, the first used
193  * for RTC and NVRAM and the second only for NVRAM.  Caller must
194  * own rtc_lock ... and we won't worry about access during NMI.
195  */
196 #define can_bank2       true
197
198 static inline unsigned char cmos_read_bank2(unsigned char addr)
199 {
200         outb(addr, RTC_PORT(2));
201         return inb(RTC_PORT(3));
202 }
203
204 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
205 {
206         outb(addr, RTC_PORT(2));
207         outb(val, RTC_PORT(3));
208 }
209
210 #else
211
212 #define can_bank2       false
213
214 static inline unsigned char cmos_read_bank2(unsigned char addr)
215 {
216         return 0;
217 }
218
219 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
220 {
221 }
222
223 #endif
224
225 /*----------------------------------------------------------------*/
226
227 static int cmos_read_time(struct device *dev, struct rtc_time *t)
228 {
229         /*
230          * If pm_trace abused the RTC for storage, set the timespec to 0,
231          * which tells the caller that this RTC value is unusable.
232          */
233         if (!pm_trace_rtc_valid())
234                 return -EIO;
235
236         /* REVISIT:  if the clock has a "century" register, use
237          * that instead of the heuristic in mc146818_get_time().
238          * That'll make Y3K compatility (year > 2070) easy!
239          */
240         mc146818_get_time(t);
241         return 0;
242 }
243
244 static int cmos_set_time(struct device *dev, struct rtc_time *t)
245 {
246         /* REVISIT:  set the "century" register if available
247          *
248          * NOTE: this ignores the issue whereby updating the seconds
249          * takes effect exactly 500ms after we write the register.
250          * (Also queueing and other delays before we get this far.)
251          */
252         return mc146818_set_time(t);
253 }
254
255 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
256 {
257         struct cmos_rtc *cmos = dev_get_drvdata(dev);
258         unsigned char   rtc_control;
259
260         /* This not only a rtc_op, but also called directly */
261         if (!is_valid_irq(cmos->irq))
262                 return -EIO;
263
264         /* Basic alarms only support hour, minute, and seconds fields.
265          * Some also support day and month, for alarms up to a year in
266          * the future.
267          */
268
269         spin_lock_irq(&rtc_lock);
270         t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
271         t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
272         t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
273
274         if (cmos->day_alrm) {
275                 /* ignore upper bits on readback per ACPI spec */
276                 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
277                 if (!t->time.tm_mday)
278                         t->time.tm_mday = -1;
279
280                 if (cmos->mon_alrm) {
281                         t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
282                         if (!t->time.tm_mon)
283                                 t->time.tm_mon = -1;
284                 }
285         }
286
287         rtc_control = CMOS_READ(RTC_CONTROL);
288         spin_unlock_irq(&rtc_lock);
289
290         if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
291                 if (((unsigned)t->time.tm_sec) < 0x60)
292                         t->time.tm_sec = bcd2bin(t->time.tm_sec);
293                 else
294                         t->time.tm_sec = -1;
295                 if (((unsigned)t->time.tm_min) < 0x60)
296                         t->time.tm_min = bcd2bin(t->time.tm_min);
297                 else
298                         t->time.tm_min = -1;
299                 if (((unsigned)t->time.tm_hour) < 0x24)
300                         t->time.tm_hour = bcd2bin(t->time.tm_hour);
301                 else
302                         t->time.tm_hour = -1;
303
304                 if (cmos->day_alrm) {
305                         if (((unsigned)t->time.tm_mday) <= 0x31)
306                                 t->time.tm_mday = bcd2bin(t->time.tm_mday);
307                         else
308                                 t->time.tm_mday = -1;
309
310                         if (cmos->mon_alrm) {
311                                 if (((unsigned)t->time.tm_mon) <= 0x12)
312                                         t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
313                                 else
314                                         t->time.tm_mon = -1;
315                         }
316                 }
317         }
318
319         t->enabled = !!(rtc_control & RTC_AIE);
320         t->pending = 0;
321
322         return 0;
323 }
324
325 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
326 {
327         unsigned char   rtc_intr;
328
329         /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
330          * allegedly some older rtcs need that to handle irqs properly
331          */
332         rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
333
334         if (use_hpet_alarm())
335                 return;
336
337         rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
338         if (is_intr(rtc_intr))
339                 rtc_update_irq(cmos->rtc, 1, rtc_intr);
340 }
341
342 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
343 {
344         unsigned char   rtc_control;
345
346         /* flush any pending IRQ status, notably for update irqs,
347          * before we enable new IRQs
348          */
349         rtc_control = CMOS_READ(RTC_CONTROL);
350         cmos_checkintr(cmos, rtc_control);
351
352         rtc_control |= mask;
353         CMOS_WRITE(rtc_control, RTC_CONTROL);
354         if (use_hpet_alarm())
355                 hpet_set_rtc_irq_bit(mask);
356
357         if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
358                 if (cmos->wake_on)
359                         cmos->wake_on(cmos->dev);
360         }
361
362         cmos_checkintr(cmos, rtc_control);
363 }
364
365 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
366 {
367         unsigned char   rtc_control;
368
369         rtc_control = CMOS_READ(RTC_CONTROL);
370         rtc_control &= ~mask;
371         CMOS_WRITE(rtc_control, RTC_CONTROL);
372         if (use_hpet_alarm())
373                 hpet_mask_rtc_irq_bit(mask);
374
375         if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
376                 if (cmos->wake_off)
377                         cmos->wake_off(cmos->dev);
378         }
379
380         cmos_checkintr(cmos, rtc_control);
381 }
382
383 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
384 {
385         struct cmos_rtc *cmos = dev_get_drvdata(dev);
386         struct rtc_time now;
387
388         cmos_read_time(dev, &now);
389
390         if (!cmos->day_alrm) {
391                 time64_t t_max_date;
392                 time64_t t_alrm;
393
394                 t_max_date = rtc_tm_to_time64(&now);
395                 t_max_date += 24 * 60 * 60 - 1;
396                 t_alrm = rtc_tm_to_time64(&t->time);
397                 if (t_alrm > t_max_date) {
398                         dev_err(dev,
399                                 "Alarms can be up to one day in the future\n");
400                         return -EINVAL;
401                 }
402         } else if (!cmos->mon_alrm) {
403                 struct rtc_time max_date = now;
404                 time64_t t_max_date;
405                 time64_t t_alrm;
406                 int max_mday;
407
408                 if (max_date.tm_mon == 11) {
409                         max_date.tm_mon = 0;
410                         max_date.tm_year += 1;
411                 } else {
412                         max_date.tm_mon += 1;
413                 }
414                 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
415                 if (max_date.tm_mday > max_mday)
416                         max_date.tm_mday = max_mday;
417
418                 t_max_date = rtc_tm_to_time64(&max_date);
419                 t_max_date -= 1;
420                 t_alrm = rtc_tm_to_time64(&t->time);
421                 if (t_alrm > t_max_date) {
422                         dev_err(dev,
423                                 "Alarms can be up to one month in the future\n");
424                         return -EINVAL;
425                 }
426         } else {
427                 struct rtc_time max_date = now;
428                 time64_t t_max_date;
429                 time64_t t_alrm;
430                 int max_mday;
431
432                 max_date.tm_year += 1;
433                 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
434                 if (max_date.tm_mday > max_mday)
435                         max_date.tm_mday = max_mday;
436
437                 t_max_date = rtc_tm_to_time64(&max_date);
438                 t_max_date -= 1;
439                 t_alrm = rtc_tm_to_time64(&t->time);
440                 if (t_alrm > t_max_date) {
441                         dev_err(dev,
442                                 "Alarms can be up to one year in the future\n");
443                         return -EINVAL;
444                 }
445         }
446
447         return 0;
448 }
449
450 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
451 {
452         struct cmos_rtc *cmos = dev_get_drvdata(dev);
453         unsigned char mon, mday, hrs, min, sec, rtc_control;
454         int ret;
455
456         /* This not only a rtc_op, but also called directly */
457         if (!is_valid_irq(cmos->irq))
458                 return -EIO;
459
460         ret = cmos_validate_alarm(dev, t);
461         if (ret < 0)
462                 return ret;
463
464         mon = t->time.tm_mon + 1;
465         mday = t->time.tm_mday;
466         hrs = t->time.tm_hour;
467         min = t->time.tm_min;
468         sec = t->time.tm_sec;
469
470         rtc_control = CMOS_READ(RTC_CONTROL);
471         if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
472                 /* Writing 0xff means "don't care" or "match all".  */
473                 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
474                 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
475                 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
476                 min = (min < 60) ? bin2bcd(min) : 0xff;
477                 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
478         }
479
480         spin_lock_irq(&rtc_lock);
481
482         /* next rtc irq must not be from previous alarm setting */
483         cmos_irq_disable(cmos, RTC_AIE);
484
485         /* update alarm */
486         CMOS_WRITE(hrs, RTC_HOURS_ALARM);
487         CMOS_WRITE(min, RTC_MINUTES_ALARM);
488         CMOS_WRITE(sec, RTC_SECONDS_ALARM);
489
490         /* the system may support an "enhanced" alarm */
491         if (cmos->day_alrm) {
492                 CMOS_WRITE(mday, cmos->day_alrm);
493                 if (cmos->mon_alrm)
494                         CMOS_WRITE(mon, cmos->mon_alrm);
495         }
496
497         if (use_hpet_alarm()) {
498                 /*
499                  * FIXME the HPET alarm glue currently ignores day_alrm
500                  * and mon_alrm ...
501                  */
502                 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min,
503                                     t->time.tm_sec);
504         }
505
506         if (t->enabled)
507                 cmos_irq_enable(cmos, RTC_AIE);
508
509         spin_unlock_irq(&rtc_lock);
510
511         cmos->alarm_expires = rtc_tm_to_time64(&t->time);
512
513         return 0;
514 }
515
516 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
517 {
518         struct cmos_rtc *cmos = dev_get_drvdata(dev);
519         unsigned long   flags;
520
521         spin_lock_irqsave(&rtc_lock, flags);
522
523         if (enabled)
524                 cmos_irq_enable(cmos, RTC_AIE);
525         else
526                 cmos_irq_disable(cmos, RTC_AIE);
527
528         spin_unlock_irqrestore(&rtc_lock, flags);
529         return 0;
530 }
531
532 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
533
534 static int cmos_procfs(struct device *dev, struct seq_file *seq)
535 {
536         struct cmos_rtc *cmos = dev_get_drvdata(dev);
537         unsigned char   rtc_control, valid;
538
539         spin_lock_irq(&rtc_lock);
540         rtc_control = CMOS_READ(RTC_CONTROL);
541         valid = CMOS_READ(RTC_VALID);
542         spin_unlock_irq(&rtc_lock);
543
544         /* NOTE:  at least ICH6 reports battery status using a different
545          * (non-RTC) bit; and SQWE is ignored on many current systems.
546          */
547         seq_printf(seq,
548                    "periodic_IRQ\t: %s\n"
549                    "update_IRQ\t: %s\n"
550                    "HPET_emulated\t: %s\n"
551                    // "square_wave\t: %s\n"
552                    "BCD\t\t: %s\n"
553                    "DST_enable\t: %s\n"
554                    "periodic_freq\t: %d\n"
555                    "batt_status\t: %s\n",
556                    (rtc_control & RTC_PIE) ? "yes" : "no",
557                    (rtc_control & RTC_UIE) ? "yes" : "no",
558                    use_hpet_alarm() ? "yes" : "no",
559                    // (rtc_control & RTC_SQWE) ? "yes" : "no",
560                    (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
561                    (rtc_control & RTC_DST_EN) ? "yes" : "no",
562                    cmos->rtc->irq_freq,
563                    (valid & RTC_VRT) ? "okay" : "dead");
564
565         return 0;
566 }
567
568 #else
569 #define cmos_procfs     NULL
570 #endif
571
572 static const struct rtc_class_ops cmos_rtc_ops = {
573         .read_time              = cmos_read_time,
574         .set_time               = cmos_set_time,
575         .read_alarm             = cmos_read_alarm,
576         .set_alarm              = cmos_set_alarm,
577         .proc                   = cmos_procfs,
578         .alarm_irq_enable       = cmos_alarm_irq_enable,
579 };
580
581 static const struct rtc_class_ops cmos_rtc_ops_no_alarm = {
582         .read_time              = cmos_read_time,
583         .set_time               = cmos_set_time,
584         .proc                   = cmos_procfs,
585 };
586
587 /*----------------------------------------------------------------*/
588
589 /*
590  * All these chips have at least 64 bytes of address space, shared by
591  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
592  * by boot firmware.  Modern chips have 128 or 256 bytes.
593  */
594
595 #define NVRAM_OFFSET    (RTC_REG_D + 1)
596
597 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
598                            size_t count)
599 {
600         unsigned char *buf = val;
601         int     retval;
602
603         off += NVRAM_OFFSET;
604         spin_lock_irq(&rtc_lock);
605         for (retval = 0; count; count--, off++, retval++) {
606                 if (off < 128)
607                         *buf++ = CMOS_READ(off);
608                 else if (can_bank2)
609                         *buf++ = cmos_read_bank2(off);
610                 else
611                         break;
612         }
613         spin_unlock_irq(&rtc_lock);
614
615         return retval;
616 }
617
618 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
619                             size_t count)
620 {
621         struct cmos_rtc *cmos = priv;
622         unsigned char   *buf = val;
623         int             retval;
624
625         /* NOTE:  on at least PCs and Ataris, the boot firmware uses a
626          * checksum on part of the NVRAM data.  That's currently ignored
627          * here.  If userspace is smart enough to know what fields of
628          * NVRAM to update, updating checksums is also part of its job.
629          */
630         off += NVRAM_OFFSET;
631         spin_lock_irq(&rtc_lock);
632         for (retval = 0; count; count--, off++, retval++) {
633                 /* don't trash RTC registers */
634                 if (off == cmos->day_alrm
635                                 || off == cmos->mon_alrm
636                                 || off == cmos->century)
637                         buf++;
638                 else if (off < 128)
639                         CMOS_WRITE(*buf++, off);
640                 else if (can_bank2)
641                         cmos_write_bank2(*buf++, off);
642                 else
643                         break;
644         }
645         spin_unlock_irq(&rtc_lock);
646
647         return retval;
648 }
649
650 /*----------------------------------------------------------------*/
651
652 static struct cmos_rtc  cmos_rtc;
653
654 static irqreturn_t cmos_interrupt(int irq, void *p)
655 {
656         u8              irqstat;
657         u8              rtc_control;
658
659         spin_lock(&rtc_lock);
660
661         /* When the HPET interrupt handler calls us, the interrupt
662          * status is passed as arg1 instead of the irq number.  But
663          * always clear irq status, even when HPET is in the way.
664          *
665          * Note that HPET and RTC are almost certainly out of phase,
666          * giving different IRQ status ...
667          */
668         irqstat = CMOS_READ(RTC_INTR_FLAGS);
669         rtc_control = CMOS_READ(RTC_CONTROL);
670         if (use_hpet_alarm())
671                 irqstat = (unsigned long)irq & 0xF0;
672
673         /* If we were suspended, RTC_CONTROL may not be accurate since the
674          * bios may have cleared it.
675          */
676         if (!cmos_rtc.suspend_ctrl)
677                 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
678         else
679                 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
680
681         /* All Linux RTC alarms should be treated as if they were oneshot.
682          * Similar code may be needed in system wakeup paths, in case the
683          * alarm woke the system.
684          */
685         if (irqstat & RTC_AIE) {
686                 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
687                 rtc_control &= ~RTC_AIE;
688                 CMOS_WRITE(rtc_control, RTC_CONTROL);
689                 if (use_hpet_alarm())
690                         hpet_mask_rtc_irq_bit(RTC_AIE);
691                 CMOS_READ(RTC_INTR_FLAGS);
692         }
693         spin_unlock(&rtc_lock);
694
695         if (is_intr(irqstat)) {
696                 rtc_update_irq(p, 1, irqstat);
697                 return IRQ_HANDLED;
698         } else
699                 return IRQ_NONE;
700 }
701
702 #ifdef  CONFIG_PNP
703 #define INITSECTION
704
705 #else
706 #define INITSECTION     __init
707 #endif
708
709 static int INITSECTION
710 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
711 {
712         struct cmos_rtc_board_info      *info = dev_get_platdata(dev);
713         int                             retval = 0;
714         unsigned char                   rtc_control;
715         unsigned                        address_space;
716         u32                             flags = 0;
717         struct nvmem_config nvmem_cfg = {
718                 .name = "cmos_nvram",
719                 .word_size = 1,
720                 .stride = 1,
721                 .reg_read = cmos_nvram_read,
722                 .reg_write = cmos_nvram_write,
723                 .priv = &cmos_rtc,
724         };
725
726         /* there can be only one ... */
727         if (cmos_rtc.dev)
728                 return -EBUSY;
729
730         if (!ports)
731                 return -ENODEV;
732
733         /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
734          *
735          * REVISIT non-x86 systems may instead use memory space resources
736          * (needing ioremap etc), not i/o space resources like this ...
737          */
738         if (RTC_IOMAPPED)
739                 ports = request_region(ports->start, resource_size(ports),
740                                        driver_name);
741         else
742                 ports = request_mem_region(ports->start, resource_size(ports),
743                                            driver_name);
744         if (!ports) {
745                 dev_dbg(dev, "i/o registers already in use\n");
746                 return -EBUSY;
747         }
748
749         cmos_rtc.irq = rtc_irq;
750         cmos_rtc.iomem = ports;
751
752         /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
753          * driver did, but don't reject unknown configs.   Old hardware
754          * won't address 128 bytes.  Newer chips have multiple banks,
755          * though they may not be listed in one I/O resource.
756          */
757 #if     defined(CONFIG_ATARI)
758         address_space = 64;
759 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
760                         || defined(__sparc__) || defined(__mips__) \
761                         || defined(__powerpc__)
762         address_space = 128;
763 #else
764 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
765         address_space = 128;
766 #endif
767         if (can_bank2 && ports->end > (ports->start + 1))
768                 address_space = 256;
769
770         /* For ACPI systems extension info comes from the FADT.  On others,
771          * board specific setup provides it as appropriate.  Systems where
772          * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
773          * some almost-clones) can provide hooks to make that behave.
774          *
775          * Note that ACPI doesn't preclude putting these registers into
776          * "extended" areas of the chip, including some that we won't yet
777          * expect CMOS_READ and friends to handle.
778          */
779         if (info) {
780                 if (info->flags)
781                         flags = info->flags;
782                 if (info->address_space)
783                         address_space = info->address_space;
784
785                 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
786                         cmos_rtc.day_alrm = info->rtc_day_alarm;
787                 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
788                         cmos_rtc.mon_alrm = info->rtc_mon_alarm;
789                 if (info->rtc_century && info->rtc_century < 128)
790                         cmos_rtc.century = info->rtc_century;
791
792                 if (info->wake_on && info->wake_off) {
793                         cmos_rtc.wake_on = info->wake_on;
794                         cmos_rtc.wake_off = info->wake_off;
795                 }
796         }
797
798         cmos_rtc.dev = dev;
799         dev_set_drvdata(dev, &cmos_rtc);
800
801         cmos_rtc.rtc = devm_rtc_allocate_device(dev);
802         if (IS_ERR(cmos_rtc.rtc)) {
803                 retval = PTR_ERR(cmos_rtc.rtc);
804                 goto cleanup0;
805         }
806
807         rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
808
809         spin_lock_irq(&rtc_lock);
810
811         if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
812                 /* force periodic irq to CMOS reset default of 1024Hz;
813                  *
814                  * REVISIT it's been reported that at least one x86_64 ALI
815                  * mobo doesn't use 32KHz here ... for portability we might
816                  * need to do something about other clock frequencies.
817                  */
818                 cmos_rtc.rtc->irq_freq = 1024;
819                 if (use_hpet_alarm())
820                         hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
821                 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
822         }
823
824         /* disable irqs */
825         if (is_valid_irq(rtc_irq))
826                 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
827
828         rtc_control = CMOS_READ(RTC_CONTROL);
829
830         spin_unlock_irq(&rtc_lock);
831
832         if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
833                 dev_warn(dev, "only 24-hr supported\n");
834                 retval = -ENXIO;
835                 goto cleanup1;
836         }
837
838         if (use_hpet_alarm())
839                 hpet_rtc_timer_init();
840
841         if (is_valid_irq(rtc_irq)) {
842                 irq_handler_t rtc_cmos_int_handler;
843
844                 if (use_hpet_alarm()) {
845                         rtc_cmos_int_handler = hpet_rtc_interrupt;
846                         retval = hpet_register_irq_handler(cmos_interrupt);
847                         if (retval) {
848                                 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
849                                 dev_warn(dev, "hpet_register_irq_handler "
850                                                 " failed in rtc_init().");
851                                 goto cleanup1;
852                         }
853                 } else
854                         rtc_cmos_int_handler = cmos_interrupt;
855
856                 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
857                                 IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
858                                 cmos_rtc.rtc);
859                 if (retval < 0) {
860                         dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
861                         goto cleanup1;
862                 }
863
864                 cmos_rtc.rtc->ops = &cmos_rtc_ops;
865         } else {
866                 cmos_rtc.rtc->ops = &cmos_rtc_ops_no_alarm;
867         }
868
869         cmos_rtc.rtc->nvram_old_abi = true;
870         retval = rtc_register_device(cmos_rtc.rtc);
871         if (retval)
872                 goto cleanup2;
873
874         /* export at least the first block of NVRAM */
875         nvmem_cfg.size = address_space - NVRAM_OFFSET;
876         if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg))
877                 dev_err(dev, "nvmem registration failed\n");
878
879         dev_info(dev, "%s%s, %d bytes nvram%s\n",
880                  !is_valid_irq(rtc_irq) ? "no alarms" :
881                  cmos_rtc.mon_alrm ? "alarms up to one year" :
882                  cmos_rtc.day_alrm ? "alarms up to one month" :
883                  "alarms up to one day",
884                  cmos_rtc.century ? ", y3k" : "",
885                  nvmem_cfg.size,
886                  use_hpet_alarm() ? ", hpet irqs" : "");
887
888         return 0;
889
890 cleanup2:
891         if (is_valid_irq(rtc_irq))
892                 free_irq(rtc_irq, cmos_rtc.rtc);
893 cleanup1:
894         cmos_rtc.dev = NULL;
895 cleanup0:
896         if (RTC_IOMAPPED)
897                 release_region(ports->start, resource_size(ports));
898         else
899                 release_mem_region(ports->start, resource_size(ports));
900         return retval;
901 }
902
903 static void cmos_do_shutdown(int rtc_irq)
904 {
905         spin_lock_irq(&rtc_lock);
906         if (is_valid_irq(rtc_irq))
907                 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
908         spin_unlock_irq(&rtc_lock);
909 }
910
911 static void cmos_do_remove(struct device *dev)
912 {
913         struct cmos_rtc *cmos = dev_get_drvdata(dev);
914         struct resource *ports;
915
916         cmos_do_shutdown(cmos->irq);
917
918         if (is_valid_irq(cmos->irq)) {
919                 free_irq(cmos->irq, cmos->rtc);
920                 if (use_hpet_alarm())
921                         hpet_unregister_irq_handler(cmos_interrupt);
922         }
923
924         cmos->rtc = NULL;
925
926         ports = cmos->iomem;
927         if (RTC_IOMAPPED)
928                 release_region(ports->start, resource_size(ports));
929         else
930                 release_mem_region(ports->start, resource_size(ports));
931         cmos->iomem = NULL;
932
933         cmos->dev = NULL;
934 }
935
936 static int cmos_aie_poweroff(struct device *dev)
937 {
938         struct cmos_rtc *cmos = dev_get_drvdata(dev);
939         struct rtc_time now;
940         time64_t t_now;
941         int retval = 0;
942         unsigned char rtc_control;
943
944         if (!cmos->alarm_expires)
945                 return -EINVAL;
946
947         spin_lock_irq(&rtc_lock);
948         rtc_control = CMOS_READ(RTC_CONTROL);
949         spin_unlock_irq(&rtc_lock);
950
951         /* We only care about the situation where AIE is disabled. */
952         if (rtc_control & RTC_AIE)
953                 return -EBUSY;
954
955         cmos_read_time(dev, &now);
956         t_now = rtc_tm_to_time64(&now);
957
958         /*
959          * When enabling "RTC wake-up" in BIOS setup, the machine reboots
960          * automatically right after shutdown on some buggy boxes.
961          * This automatic rebooting issue won't happen when the alarm
962          * time is larger than now+1 seconds.
963          *
964          * If the alarm time is equal to now+1 seconds, the issue can be
965          * prevented by cancelling the alarm.
966          */
967         if (cmos->alarm_expires == t_now + 1) {
968                 struct rtc_wkalrm alarm;
969
970                 /* Cancel the AIE timer by configuring the past time. */
971                 rtc_time64_to_tm(t_now - 1, &alarm.time);
972                 alarm.enabled = 0;
973                 retval = cmos_set_alarm(dev, &alarm);
974         } else if (cmos->alarm_expires > t_now + 1) {
975                 retval = -EBUSY;
976         }
977
978         return retval;
979 }
980
981 static int cmos_suspend(struct device *dev)
982 {
983         struct cmos_rtc *cmos = dev_get_drvdata(dev);
984         unsigned char   tmp;
985
986         /* only the alarm might be a wakeup event source */
987         spin_lock_irq(&rtc_lock);
988         cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
989         if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
990                 unsigned char   mask;
991
992                 if (device_may_wakeup(dev))
993                         mask = RTC_IRQMASK & ~RTC_AIE;
994                 else
995                         mask = RTC_IRQMASK;
996                 tmp &= ~mask;
997                 CMOS_WRITE(tmp, RTC_CONTROL);
998                 if (use_hpet_alarm())
999                         hpet_mask_rtc_irq_bit(mask);
1000                 cmos_checkintr(cmos, tmp);
1001         }
1002         spin_unlock_irq(&rtc_lock);
1003
1004         if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1005                 cmos->enabled_wake = 1;
1006                 if (cmos->wake_on)
1007                         cmos->wake_on(dev);
1008                 else
1009                         enable_irq_wake(cmos->irq);
1010         }
1011
1012         cmos_read_alarm(dev, &cmos->saved_wkalrm);
1013
1014         dev_dbg(dev, "suspend%s, ctrl %02x\n",
1015                         (tmp & RTC_AIE) ? ", alarm may wake" : "",
1016                         tmp);
1017
1018         return 0;
1019 }
1020
1021 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1022  * after a detour through G3 "mechanical off", although the ACPI spec
1023  * says wakeup should only work from G1/S4 "hibernate".  To most users,
1024  * distinctions between S4 and S5 are pointless.  So when the hardware
1025  * allows, don't draw that distinction.
1026  */
1027 static inline int cmos_poweroff(struct device *dev)
1028 {
1029         if (!IS_ENABLED(CONFIG_PM))
1030                 return -ENOSYS;
1031
1032         return cmos_suspend(dev);
1033 }
1034
1035 static void cmos_check_wkalrm(struct device *dev)
1036 {
1037         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1038         struct rtc_wkalrm current_alarm;
1039         time64_t t_now;
1040         time64_t t_current_expires;
1041         time64_t t_saved_expires;
1042         struct rtc_time now;
1043
1044         /* Check if we have RTC Alarm armed */
1045         if (!(cmos->suspend_ctrl & RTC_AIE))
1046                 return;
1047
1048         cmos_read_time(dev, &now);
1049         t_now = rtc_tm_to_time64(&now);
1050
1051         /*
1052          * ACPI RTC wake event is cleared after resume from STR,
1053          * ACK the rtc irq here
1054          */
1055         if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1056                 cmos_interrupt(0, (void *)cmos->rtc);
1057                 return;
1058         }
1059
1060         cmos_read_alarm(dev, &current_alarm);
1061         t_current_expires = rtc_tm_to_time64(&current_alarm.time);
1062         t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1063         if (t_current_expires != t_saved_expires ||
1064             cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1065                 cmos_set_alarm(dev, &cmos->saved_wkalrm);
1066         }
1067 }
1068
1069 static void cmos_check_acpi_rtc_status(struct device *dev,
1070                                        unsigned char *rtc_control);
1071
1072 static int __maybe_unused cmos_resume(struct device *dev)
1073 {
1074         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1075         unsigned char tmp;
1076
1077         if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1078                 if (cmos->wake_off)
1079                         cmos->wake_off(dev);
1080                 else
1081                         disable_irq_wake(cmos->irq);
1082                 cmos->enabled_wake = 0;
1083         }
1084
1085         /* The BIOS might have changed the alarm, restore it */
1086         cmos_check_wkalrm(dev);
1087
1088         spin_lock_irq(&rtc_lock);
1089         tmp = cmos->suspend_ctrl;
1090         cmos->suspend_ctrl = 0;
1091         /* re-enable any irqs previously active */
1092         if (tmp & RTC_IRQMASK) {
1093                 unsigned char   mask;
1094
1095                 if (device_may_wakeup(dev) && use_hpet_alarm())
1096                         hpet_rtc_timer_init();
1097
1098                 do {
1099                         CMOS_WRITE(tmp, RTC_CONTROL);
1100                         if (use_hpet_alarm())
1101                                 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1102
1103                         mask = CMOS_READ(RTC_INTR_FLAGS);
1104                         mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1105                         if (!use_hpet_alarm() || !is_intr(mask))
1106                                 break;
1107
1108                         /* force one-shot behavior if HPET blocked
1109                          * the wake alarm's irq
1110                          */
1111                         rtc_update_irq(cmos->rtc, 1, mask);
1112                         tmp &= ~RTC_AIE;
1113                         hpet_mask_rtc_irq_bit(RTC_AIE);
1114                 } while (mask & RTC_AIE);
1115
1116                 if (tmp & RTC_AIE)
1117                         cmos_check_acpi_rtc_status(dev, &tmp);
1118         }
1119         spin_unlock_irq(&rtc_lock);
1120
1121         dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1122
1123         return 0;
1124 }
1125
1126 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1127
1128 /*----------------------------------------------------------------*/
1129
1130 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1131  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1132  * probably list them in similar PNPBIOS tables; so PNP is more common.
1133  *
1134  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1135  * predate even PNPBIOS should set up platform_bus devices.
1136  */
1137
1138 #ifdef  CONFIG_ACPI
1139
1140 #include <linux/acpi.h>
1141
1142 static u32 rtc_handler(void *context)
1143 {
1144         struct device *dev = context;
1145         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1146         unsigned char rtc_control = 0;
1147         unsigned char rtc_intr;
1148         unsigned long flags;
1149
1150
1151         /*
1152          * Always update rtc irq when ACPI is used as RTC Alarm.
1153          * Or else, ACPI SCI is enabled during suspend/resume only,
1154          * update rtc irq in that case.
1155          */
1156         if (cmos_use_acpi_alarm())
1157                 cmos_interrupt(0, (void *)cmos->rtc);
1158         else {
1159                 /* Fix me: can we use cmos_interrupt() here as well? */
1160                 spin_lock_irqsave(&rtc_lock, flags);
1161                 if (cmos_rtc.suspend_ctrl)
1162                         rtc_control = CMOS_READ(RTC_CONTROL);
1163                 if (rtc_control & RTC_AIE) {
1164                         cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1165                         CMOS_WRITE(rtc_control, RTC_CONTROL);
1166                         rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1167                         rtc_update_irq(cmos->rtc, 1, rtc_intr);
1168                 }
1169                 spin_unlock_irqrestore(&rtc_lock, flags);
1170         }
1171
1172         pm_wakeup_hard_event(dev);
1173         acpi_clear_event(ACPI_EVENT_RTC);
1174         acpi_disable_event(ACPI_EVENT_RTC, 0);
1175         return ACPI_INTERRUPT_HANDLED;
1176 }
1177
1178 static inline void rtc_wake_setup(struct device *dev)
1179 {
1180         acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1181         /*
1182          * After the RTC handler is installed, the Fixed_RTC event should
1183          * be disabled. Only when the RTC alarm is set will it be enabled.
1184          */
1185         acpi_clear_event(ACPI_EVENT_RTC);
1186         acpi_disable_event(ACPI_EVENT_RTC, 0);
1187 }
1188
1189 static void rtc_wake_on(struct device *dev)
1190 {
1191         acpi_clear_event(ACPI_EVENT_RTC);
1192         acpi_enable_event(ACPI_EVENT_RTC, 0);
1193 }
1194
1195 static void rtc_wake_off(struct device *dev)
1196 {
1197         acpi_disable_event(ACPI_EVENT_RTC, 0);
1198 }
1199
1200 #ifdef CONFIG_X86
1201 /* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
1202 static void use_acpi_alarm_quirks(void)
1203 {
1204         int year;
1205
1206         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1207                 return;
1208
1209         if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0))
1210                 return;
1211
1212         if (!is_hpet_enabled())
1213                 return;
1214
1215         if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) && year >= 2015)
1216                 use_acpi_alarm = true;
1217 }
1218 #else
1219 static inline void use_acpi_alarm_quirks(void) { }
1220 #endif
1221
1222 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1223  * its device node and pass extra config data.  This helps its driver use
1224  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1225  * that this board's RTC is wakeup-capable (per ACPI spec).
1226  */
1227 static struct cmos_rtc_board_info acpi_rtc_info;
1228
1229 static void cmos_wake_setup(struct device *dev)
1230 {
1231         if (acpi_disabled)
1232                 return;
1233
1234         use_acpi_alarm_quirks();
1235
1236         rtc_wake_setup(dev);
1237         acpi_rtc_info.wake_on = rtc_wake_on;
1238         acpi_rtc_info.wake_off = rtc_wake_off;
1239
1240         /* workaround bug in some ACPI tables */
1241         if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1242                 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1243                         acpi_gbl_FADT.month_alarm);
1244                 acpi_gbl_FADT.month_alarm = 0;
1245         }
1246
1247         acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1248         acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1249         acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1250
1251         /* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1252         if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1253                 dev_info(dev, "RTC can wake from S4\n");
1254
1255         dev->platform_data = &acpi_rtc_info;
1256
1257         /* RTC always wakes from S1/S2/S3, and often S4/STD */
1258         device_init_wakeup(dev, 1);
1259 }
1260
1261 static void cmos_check_acpi_rtc_status(struct device *dev,
1262                                        unsigned char *rtc_control)
1263 {
1264         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1265         acpi_event_status rtc_status;
1266         acpi_status status;
1267
1268         if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1269                 return;
1270
1271         status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1272         if (ACPI_FAILURE(status)) {
1273                 dev_err(dev, "Could not get RTC status\n");
1274         } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1275                 unsigned char mask;
1276                 *rtc_control &= ~RTC_AIE;
1277                 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1278                 mask = CMOS_READ(RTC_INTR_FLAGS);
1279                 rtc_update_irq(cmos->rtc, 1, mask);
1280         }
1281 }
1282
1283 #else
1284
1285 static void cmos_wake_setup(struct device *dev)
1286 {
1287 }
1288
1289 static void cmos_check_acpi_rtc_status(struct device *dev,
1290                                        unsigned char *rtc_control)
1291 {
1292 }
1293
1294 #endif
1295
1296 #ifdef  CONFIG_PNP
1297
1298 #include <linux/pnp.h>
1299
1300 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1301 {
1302         cmos_wake_setup(&pnp->dev);
1303
1304         if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1305                 unsigned int irq = 0;
1306 #ifdef CONFIG_X86
1307                 /* Some machines contain a PNP entry for the RTC, but
1308                  * don't define the IRQ. It should always be safe to
1309                  * hardcode it on systems with a legacy PIC.
1310                  */
1311                 if (nr_legacy_irqs())
1312                         irq = 8;
1313 #endif
1314                 return cmos_do_probe(&pnp->dev,
1315                                 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1316         } else {
1317                 return cmos_do_probe(&pnp->dev,
1318                                 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1319                                 pnp_irq(pnp, 0));
1320         }
1321 }
1322
1323 static void cmos_pnp_remove(struct pnp_dev *pnp)
1324 {
1325         cmos_do_remove(&pnp->dev);
1326 }
1327
1328 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1329 {
1330         struct device *dev = &pnp->dev;
1331         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1332
1333         if (system_state == SYSTEM_POWER_OFF) {
1334                 int retval = cmos_poweroff(dev);
1335
1336                 if (cmos_aie_poweroff(dev) < 0 && !retval)
1337                         return;
1338         }
1339
1340         cmos_do_shutdown(cmos->irq);
1341 }
1342
1343 static const struct pnp_device_id rtc_ids[] = {
1344         { .id = "PNP0b00", },
1345         { .id = "PNP0b01", },
1346         { .id = "PNP0b02", },
1347         { },
1348 };
1349 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1350
1351 static struct pnp_driver cmos_pnp_driver = {
1352         .name           = (char *) driver_name,
1353         .id_table       = rtc_ids,
1354         .probe          = cmos_pnp_probe,
1355         .remove         = cmos_pnp_remove,
1356         .shutdown       = cmos_pnp_shutdown,
1357
1358         /* flag ensures resume() gets called, and stops syslog spam */
1359         .flags          = PNP_DRIVER_RES_DO_NOT_CHANGE,
1360         .driver         = {
1361                         .pm = &cmos_pm_ops,
1362         },
1363 };
1364
1365 #endif  /* CONFIG_PNP */
1366
1367 #ifdef CONFIG_OF
1368 static const struct of_device_id of_cmos_match[] = {
1369         {
1370                 .compatible = "motorola,mc146818",
1371         },
1372         { },
1373 };
1374 MODULE_DEVICE_TABLE(of, of_cmos_match);
1375
1376 static __init void cmos_of_init(struct platform_device *pdev)
1377 {
1378         struct device_node *node = pdev->dev.of_node;
1379         const __be32 *val;
1380
1381         if (!node)
1382                 return;
1383
1384         val = of_get_property(node, "ctrl-reg", NULL);
1385         if (val)
1386                 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1387
1388         val = of_get_property(node, "freq-reg", NULL);
1389         if (val)
1390                 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1391 }
1392 #else
1393 static inline void cmos_of_init(struct platform_device *pdev) {}
1394 #endif
1395 /*----------------------------------------------------------------*/
1396
1397 /* Platform setup should have set up an RTC device, when PNP is
1398  * unavailable ... this could happen even on (older) PCs.
1399  */
1400
1401 static int __init cmos_platform_probe(struct platform_device *pdev)
1402 {
1403         struct resource *resource;
1404         int irq;
1405
1406         cmos_of_init(pdev);
1407         cmos_wake_setup(&pdev->dev);
1408
1409         if (RTC_IOMAPPED)
1410                 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1411         else
1412                 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1413         irq = platform_get_irq(pdev, 0);
1414         if (irq < 0)
1415                 irq = -1;
1416
1417         return cmos_do_probe(&pdev->dev, resource, irq);
1418 }
1419
1420 static int cmos_platform_remove(struct platform_device *pdev)
1421 {
1422         cmos_do_remove(&pdev->dev);
1423         return 0;
1424 }
1425
1426 static void cmos_platform_shutdown(struct platform_device *pdev)
1427 {
1428         struct device *dev = &pdev->dev;
1429         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1430
1431         if (system_state == SYSTEM_POWER_OFF) {
1432                 int retval = cmos_poweroff(dev);
1433
1434                 if (cmos_aie_poweroff(dev) < 0 && !retval)
1435                         return;
1436         }
1437
1438         cmos_do_shutdown(cmos->irq);
1439 }
1440
1441 /* work with hotplug and coldplug */
1442 MODULE_ALIAS("platform:rtc_cmos");
1443
1444 static struct platform_driver cmos_platform_driver = {
1445         .remove         = cmos_platform_remove,
1446         .shutdown       = cmos_platform_shutdown,
1447         .driver = {
1448                 .name           = driver_name,
1449                 .pm             = &cmos_pm_ops,
1450                 .of_match_table = of_match_ptr(of_cmos_match),
1451         }
1452 };
1453
1454 #ifdef CONFIG_PNP
1455 static bool pnp_driver_registered;
1456 #endif
1457 static bool platform_driver_registered;
1458
1459 static int __init cmos_init(void)
1460 {
1461         int retval = 0;
1462
1463 #ifdef  CONFIG_PNP
1464         retval = pnp_register_driver(&cmos_pnp_driver);
1465         if (retval == 0)
1466                 pnp_driver_registered = true;
1467 #endif
1468
1469         if (!cmos_rtc.dev) {
1470                 retval = platform_driver_probe(&cmos_platform_driver,
1471                                                cmos_platform_probe);
1472                 if (retval == 0)
1473                         platform_driver_registered = true;
1474         }
1475
1476         if (retval == 0)
1477                 return 0;
1478
1479 #ifdef  CONFIG_PNP
1480         if (pnp_driver_registered)
1481                 pnp_unregister_driver(&cmos_pnp_driver);
1482 #endif
1483         return retval;
1484 }
1485 module_init(cmos_init);
1486
1487 static void __exit cmos_exit(void)
1488 {
1489 #ifdef  CONFIG_PNP
1490         if (pnp_driver_registered)
1491                 pnp_unregister_driver(&cmos_pnp_driver);
1492 #endif
1493         if (platform_driver_registered)
1494                 platform_driver_unregister(&cmos_platform_driver);
1495 }
1496 module_exit(cmos_exit);
1497
1498
1499 MODULE_AUTHOR("David Brownell");
1500 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1501 MODULE_LICENSE("GPL");