Merge branch 'at91' into devel
[sfrench/cifs-2.6.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
25
26 #define REGULATOR_VERSION "0.5"
27
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
31 static int has_full_constraints;
32
33 /*
34  * struct regulator_map
35  *
36  * Used to provide symbolic supply names to devices.
37  */
38 struct regulator_map {
39         struct list_head list;
40         struct device *dev;
41         const char *supply;
42         struct regulator_dev *regulator;
43 };
44
45 /*
46  * struct regulator
47  *
48  * One for each consumer device.
49  */
50 struct regulator {
51         struct device *dev;
52         struct list_head list;
53         int uA_load;
54         int min_uV;
55         int max_uV;
56         char *supply_name;
57         struct device_attribute dev_attr;
58         struct regulator_dev *rdev;
59 };
60
61 static int _regulator_is_enabled(struct regulator_dev *rdev);
62 static int _regulator_disable(struct regulator_dev *rdev);
63 static int _regulator_get_voltage(struct regulator_dev *rdev);
64 static int _regulator_get_current_limit(struct regulator_dev *rdev);
65 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
66 static void _notifier_call_chain(struct regulator_dev *rdev,
67                                   unsigned long event, void *data);
68
69 /* gets the regulator for a given consumer device */
70 static struct regulator *get_device_regulator(struct device *dev)
71 {
72         struct regulator *regulator = NULL;
73         struct regulator_dev *rdev;
74
75         mutex_lock(&regulator_list_mutex);
76         list_for_each_entry(rdev, &regulator_list, list) {
77                 mutex_lock(&rdev->mutex);
78                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
79                         if (regulator->dev == dev) {
80                                 mutex_unlock(&rdev->mutex);
81                                 mutex_unlock(&regulator_list_mutex);
82                                 return regulator;
83                         }
84                 }
85                 mutex_unlock(&rdev->mutex);
86         }
87         mutex_unlock(&regulator_list_mutex);
88         return NULL;
89 }
90
91 /* Platform voltage constraint check */
92 static int regulator_check_voltage(struct regulator_dev *rdev,
93                                    int *min_uV, int *max_uV)
94 {
95         BUG_ON(*min_uV > *max_uV);
96
97         if (!rdev->constraints) {
98                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
99                        rdev->desc->name);
100                 return -ENODEV;
101         }
102         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
103                 printk(KERN_ERR "%s: operation not allowed for %s\n",
104                        __func__, rdev->desc->name);
105                 return -EPERM;
106         }
107
108         if (*max_uV > rdev->constraints->max_uV)
109                 *max_uV = rdev->constraints->max_uV;
110         if (*min_uV < rdev->constraints->min_uV)
111                 *min_uV = rdev->constraints->min_uV;
112
113         if (*min_uV > *max_uV)
114                 return -EINVAL;
115
116         return 0;
117 }
118
119 /* current constraint check */
120 static int regulator_check_current_limit(struct regulator_dev *rdev,
121                                         int *min_uA, int *max_uA)
122 {
123         BUG_ON(*min_uA > *max_uA);
124
125         if (!rdev->constraints) {
126                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
127                        rdev->desc->name);
128                 return -ENODEV;
129         }
130         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
131                 printk(KERN_ERR "%s: operation not allowed for %s\n",
132                        __func__, rdev->desc->name);
133                 return -EPERM;
134         }
135
136         if (*max_uA > rdev->constraints->max_uA)
137                 *max_uA = rdev->constraints->max_uA;
138         if (*min_uA < rdev->constraints->min_uA)
139                 *min_uA = rdev->constraints->min_uA;
140
141         if (*min_uA > *max_uA)
142                 return -EINVAL;
143
144         return 0;
145 }
146
147 /* operating mode constraint check */
148 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
149 {
150         switch (mode) {
151         case REGULATOR_MODE_FAST:
152         case REGULATOR_MODE_NORMAL:
153         case REGULATOR_MODE_IDLE:
154         case REGULATOR_MODE_STANDBY:
155                 break;
156         default:
157                 return -EINVAL;
158         }
159
160         if (!rdev->constraints) {
161                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
162                        rdev->desc->name);
163                 return -ENODEV;
164         }
165         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
166                 printk(KERN_ERR "%s: operation not allowed for %s\n",
167                        __func__, rdev->desc->name);
168                 return -EPERM;
169         }
170         if (!(rdev->constraints->valid_modes_mask & mode)) {
171                 printk(KERN_ERR "%s: invalid mode %x for %s\n",
172                        __func__, mode, rdev->desc->name);
173                 return -EINVAL;
174         }
175         return 0;
176 }
177
178 /* dynamic regulator mode switching constraint check */
179 static int regulator_check_drms(struct regulator_dev *rdev)
180 {
181         if (!rdev->constraints) {
182                 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
183                        rdev->desc->name);
184                 return -ENODEV;
185         }
186         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
187                 printk(KERN_ERR "%s: operation not allowed for %s\n",
188                        __func__, rdev->desc->name);
189                 return -EPERM;
190         }
191         return 0;
192 }
193
194 static ssize_t device_requested_uA_show(struct device *dev,
195                              struct device_attribute *attr, char *buf)
196 {
197         struct regulator *regulator;
198
199         regulator = get_device_regulator(dev);
200         if (regulator == NULL)
201                 return 0;
202
203         return sprintf(buf, "%d\n", regulator->uA_load);
204 }
205
206 static ssize_t regulator_uV_show(struct device *dev,
207                                 struct device_attribute *attr, char *buf)
208 {
209         struct regulator_dev *rdev = dev_get_drvdata(dev);
210         ssize_t ret;
211
212         mutex_lock(&rdev->mutex);
213         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
214         mutex_unlock(&rdev->mutex);
215
216         return ret;
217 }
218 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
219
220 static ssize_t regulator_uA_show(struct device *dev,
221                                 struct device_attribute *attr, char *buf)
222 {
223         struct regulator_dev *rdev = dev_get_drvdata(dev);
224
225         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
226 }
227 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
228
229 static ssize_t regulator_name_show(struct device *dev,
230                              struct device_attribute *attr, char *buf)
231 {
232         struct regulator_dev *rdev = dev_get_drvdata(dev);
233         const char *name;
234
235         if (rdev->constraints->name)
236                 name = rdev->constraints->name;
237         else if (rdev->desc->name)
238                 name = rdev->desc->name;
239         else
240                 name = "";
241
242         return sprintf(buf, "%s\n", name);
243 }
244
245 static ssize_t regulator_print_opmode(char *buf, int mode)
246 {
247         switch (mode) {
248         case REGULATOR_MODE_FAST:
249                 return sprintf(buf, "fast\n");
250         case REGULATOR_MODE_NORMAL:
251                 return sprintf(buf, "normal\n");
252         case REGULATOR_MODE_IDLE:
253                 return sprintf(buf, "idle\n");
254         case REGULATOR_MODE_STANDBY:
255                 return sprintf(buf, "standby\n");
256         }
257         return sprintf(buf, "unknown\n");
258 }
259
260 static ssize_t regulator_opmode_show(struct device *dev,
261                                     struct device_attribute *attr, char *buf)
262 {
263         struct regulator_dev *rdev = dev_get_drvdata(dev);
264
265         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
266 }
267 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
268
269 static ssize_t regulator_print_state(char *buf, int state)
270 {
271         if (state > 0)
272                 return sprintf(buf, "enabled\n");
273         else if (state == 0)
274                 return sprintf(buf, "disabled\n");
275         else
276                 return sprintf(buf, "unknown\n");
277 }
278
279 static ssize_t regulator_state_show(struct device *dev,
280                                    struct device_attribute *attr, char *buf)
281 {
282         struct regulator_dev *rdev = dev_get_drvdata(dev);
283
284         return regulator_print_state(buf, _regulator_is_enabled(rdev));
285 }
286 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
287
288 static ssize_t regulator_status_show(struct device *dev,
289                                    struct device_attribute *attr, char *buf)
290 {
291         struct regulator_dev *rdev = dev_get_drvdata(dev);
292         int status;
293         char *label;
294
295         status = rdev->desc->ops->get_status(rdev);
296         if (status < 0)
297                 return status;
298
299         switch (status) {
300         case REGULATOR_STATUS_OFF:
301                 label = "off";
302                 break;
303         case REGULATOR_STATUS_ON:
304                 label = "on";
305                 break;
306         case REGULATOR_STATUS_ERROR:
307                 label = "error";
308                 break;
309         case REGULATOR_STATUS_FAST:
310                 label = "fast";
311                 break;
312         case REGULATOR_STATUS_NORMAL:
313                 label = "normal";
314                 break;
315         case REGULATOR_STATUS_IDLE:
316                 label = "idle";
317                 break;
318         case REGULATOR_STATUS_STANDBY:
319                 label = "standby";
320                 break;
321         default:
322                 return -ERANGE;
323         }
324
325         return sprintf(buf, "%s\n", label);
326 }
327 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
328
329 static ssize_t regulator_min_uA_show(struct device *dev,
330                                     struct device_attribute *attr, char *buf)
331 {
332         struct regulator_dev *rdev = dev_get_drvdata(dev);
333
334         if (!rdev->constraints)
335                 return sprintf(buf, "constraint not defined\n");
336
337         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
338 }
339 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
340
341 static ssize_t regulator_max_uA_show(struct device *dev,
342                                     struct device_attribute *attr, char *buf)
343 {
344         struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346         if (!rdev->constraints)
347                 return sprintf(buf, "constraint not defined\n");
348
349         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
350 }
351 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
352
353 static ssize_t regulator_min_uV_show(struct device *dev,
354                                     struct device_attribute *attr, char *buf)
355 {
356         struct regulator_dev *rdev = dev_get_drvdata(dev);
357
358         if (!rdev->constraints)
359                 return sprintf(buf, "constraint not defined\n");
360
361         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
362 }
363 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
364
365 static ssize_t regulator_max_uV_show(struct device *dev,
366                                     struct device_attribute *attr, char *buf)
367 {
368         struct regulator_dev *rdev = dev_get_drvdata(dev);
369
370         if (!rdev->constraints)
371                 return sprintf(buf, "constraint not defined\n");
372
373         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
374 }
375 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
376
377 static ssize_t regulator_total_uA_show(struct device *dev,
378                                       struct device_attribute *attr, char *buf)
379 {
380         struct regulator_dev *rdev = dev_get_drvdata(dev);
381         struct regulator *regulator;
382         int uA = 0;
383
384         mutex_lock(&rdev->mutex);
385         list_for_each_entry(regulator, &rdev->consumer_list, list)
386             uA += regulator->uA_load;
387         mutex_unlock(&rdev->mutex);
388         return sprintf(buf, "%d\n", uA);
389 }
390 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
391
392 static ssize_t regulator_num_users_show(struct device *dev,
393                                       struct device_attribute *attr, char *buf)
394 {
395         struct regulator_dev *rdev = dev_get_drvdata(dev);
396         return sprintf(buf, "%d\n", rdev->use_count);
397 }
398
399 static ssize_t regulator_type_show(struct device *dev,
400                                   struct device_attribute *attr, char *buf)
401 {
402         struct regulator_dev *rdev = dev_get_drvdata(dev);
403
404         switch (rdev->desc->type) {
405         case REGULATOR_VOLTAGE:
406                 return sprintf(buf, "voltage\n");
407         case REGULATOR_CURRENT:
408                 return sprintf(buf, "current\n");
409         }
410         return sprintf(buf, "unknown\n");
411 }
412
413 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
414                                 struct device_attribute *attr, char *buf)
415 {
416         struct regulator_dev *rdev = dev_get_drvdata(dev);
417
418         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
419 }
420 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
421                 regulator_suspend_mem_uV_show, NULL);
422
423 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
424                                 struct device_attribute *attr, char *buf)
425 {
426         struct regulator_dev *rdev = dev_get_drvdata(dev);
427
428         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
429 }
430 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
431                 regulator_suspend_disk_uV_show, NULL);
432
433 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
434                                 struct device_attribute *attr, char *buf)
435 {
436         struct regulator_dev *rdev = dev_get_drvdata(dev);
437
438         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
439 }
440 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
441                 regulator_suspend_standby_uV_show, NULL);
442
443 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
444                                 struct device_attribute *attr, char *buf)
445 {
446         struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448         return regulator_print_opmode(buf,
449                 rdev->constraints->state_mem.mode);
450 }
451 static DEVICE_ATTR(suspend_mem_mode, 0444,
452                 regulator_suspend_mem_mode_show, NULL);
453
454 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
455                                 struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         return regulator_print_opmode(buf,
460                 rdev->constraints->state_disk.mode);
461 }
462 static DEVICE_ATTR(suspend_disk_mode, 0444,
463                 regulator_suspend_disk_mode_show, NULL);
464
465 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
466                                 struct device_attribute *attr, char *buf)
467 {
468         struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470         return regulator_print_opmode(buf,
471                 rdev->constraints->state_standby.mode);
472 }
473 static DEVICE_ATTR(suspend_standby_mode, 0444,
474                 regulator_suspend_standby_mode_show, NULL);
475
476 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
477                                    struct device_attribute *attr, char *buf)
478 {
479         struct regulator_dev *rdev = dev_get_drvdata(dev);
480
481         return regulator_print_state(buf,
482                         rdev->constraints->state_mem.enabled);
483 }
484 static DEVICE_ATTR(suspend_mem_state, 0444,
485                 regulator_suspend_mem_state_show, NULL);
486
487 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
488                                    struct device_attribute *attr, char *buf)
489 {
490         struct regulator_dev *rdev = dev_get_drvdata(dev);
491
492         return regulator_print_state(buf,
493                         rdev->constraints->state_disk.enabled);
494 }
495 static DEVICE_ATTR(suspend_disk_state, 0444,
496                 regulator_suspend_disk_state_show, NULL);
497
498 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
499                                    struct device_attribute *attr, char *buf)
500 {
501         struct regulator_dev *rdev = dev_get_drvdata(dev);
502
503         return regulator_print_state(buf,
504                         rdev->constraints->state_standby.enabled);
505 }
506 static DEVICE_ATTR(suspend_standby_state, 0444,
507                 regulator_suspend_standby_state_show, NULL);
508
509
510 /*
511  * These are the only attributes are present for all regulators.
512  * Other attributes are a function of regulator functionality.
513  */
514 static struct device_attribute regulator_dev_attrs[] = {
515         __ATTR(name, 0444, regulator_name_show, NULL),
516         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
517         __ATTR(type, 0444, regulator_type_show, NULL),
518         __ATTR_NULL,
519 };
520
521 static void regulator_dev_release(struct device *dev)
522 {
523         struct regulator_dev *rdev = dev_get_drvdata(dev);
524         kfree(rdev);
525 }
526
527 static struct class regulator_class = {
528         .name = "regulator",
529         .dev_release = regulator_dev_release,
530         .dev_attrs = regulator_dev_attrs,
531 };
532
533 /* Calculate the new optimum regulator operating mode based on the new total
534  * consumer load. All locks held by caller */
535 static void drms_uA_update(struct regulator_dev *rdev)
536 {
537         struct regulator *sibling;
538         int current_uA = 0, output_uV, input_uV, err;
539         unsigned int mode;
540
541         err = regulator_check_drms(rdev);
542         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
543             !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
544                 return;
545
546         /* get output voltage */
547         output_uV = rdev->desc->ops->get_voltage(rdev);
548         if (output_uV <= 0)
549                 return;
550
551         /* get input voltage */
552         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
553                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
554         else
555                 input_uV = rdev->constraints->input_uV;
556         if (input_uV <= 0)
557                 return;
558
559         /* calc total requested load */
560         list_for_each_entry(sibling, &rdev->consumer_list, list)
561             current_uA += sibling->uA_load;
562
563         /* now get the optimum mode for our new total regulator load */
564         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
565                                                   output_uV, current_uA);
566
567         /* check the new mode is allowed */
568         err = regulator_check_mode(rdev, mode);
569         if (err == 0)
570                 rdev->desc->ops->set_mode(rdev, mode);
571 }
572
573 static int suspend_set_state(struct regulator_dev *rdev,
574         struct regulator_state *rstate)
575 {
576         int ret = 0;
577
578         /* enable & disable are mandatory for suspend control */
579         if (!rdev->desc->ops->set_suspend_enable ||
580                 !rdev->desc->ops->set_suspend_disable) {
581                 printk(KERN_ERR "%s: no way to set suspend state\n",
582                         __func__);
583                 return -EINVAL;
584         }
585
586         if (rstate->enabled)
587                 ret = rdev->desc->ops->set_suspend_enable(rdev);
588         else
589                 ret = rdev->desc->ops->set_suspend_disable(rdev);
590         if (ret < 0) {
591                 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
592                 return ret;
593         }
594
595         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
596                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
597                 if (ret < 0) {
598                         printk(KERN_ERR "%s: failed to set voltage\n",
599                                 __func__);
600                         return ret;
601                 }
602         }
603
604         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
605                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
606                 if (ret < 0) {
607                         printk(KERN_ERR "%s: failed to set mode\n", __func__);
608                         return ret;
609                 }
610         }
611         return ret;
612 }
613
614 /* locks held by caller */
615 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
616 {
617         if (!rdev->constraints)
618                 return -EINVAL;
619
620         switch (state) {
621         case PM_SUSPEND_STANDBY:
622                 return suspend_set_state(rdev,
623                         &rdev->constraints->state_standby);
624         case PM_SUSPEND_MEM:
625                 return suspend_set_state(rdev,
626                         &rdev->constraints->state_mem);
627         case PM_SUSPEND_MAX:
628                 return suspend_set_state(rdev,
629                         &rdev->constraints->state_disk);
630         default:
631                 return -EINVAL;
632         }
633 }
634
635 static void print_constraints(struct regulator_dev *rdev)
636 {
637         struct regulation_constraints *constraints = rdev->constraints;
638         char buf[80];
639         int count;
640
641         if (rdev->desc->type == REGULATOR_VOLTAGE) {
642                 if (constraints->min_uV == constraints->max_uV)
643                         count = sprintf(buf, "%d mV ",
644                                         constraints->min_uV / 1000);
645                 else
646                         count = sprintf(buf, "%d <--> %d mV ",
647                                         constraints->min_uV / 1000,
648                                         constraints->max_uV / 1000);
649         } else {
650                 if (constraints->min_uA == constraints->max_uA)
651                         count = sprintf(buf, "%d mA ",
652                                         constraints->min_uA / 1000);
653                 else
654                         count = sprintf(buf, "%d <--> %d mA ",
655                                         constraints->min_uA / 1000,
656                                         constraints->max_uA / 1000);
657         }
658         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
659                 count += sprintf(buf + count, "fast ");
660         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
661                 count += sprintf(buf + count, "normal ");
662         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
663                 count += sprintf(buf + count, "idle ");
664         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
665                 count += sprintf(buf + count, "standby");
666
667         printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
668 }
669
670 /**
671  * set_machine_constraints - sets regulator constraints
672  * @rdev: regulator source
673  * @constraints: constraints to apply
674  *
675  * Allows platform initialisation code to define and constrain
676  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
677  * Constraints *must* be set by platform code in order for some
678  * regulator operations to proceed i.e. set_voltage, set_current_limit,
679  * set_mode.
680  */
681 static int set_machine_constraints(struct regulator_dev *rdev,
682         struct regulation_constraints *constraints)
683 {
684         int ret = 0;
685         const char *name;
686         struct regulator_ops *ops = rdev->desc->ops;
687
688         if (constraints->name)
689                 name = constraints->name;
690         else if (rdev->desc->name)
691                 name = rdev->desc->name;
692         else
693                 name = "regulator";
694
695         /* constrain machine-level voltage specs to fit
696          * the actual range supported by this regulator.
697          */
698         if (ops->list_voltage && rdev->desc->n_voltages) {
699                 int     count = rdev->desc->n_voltages;
700                 int     i;
701                 int     min_uV = INT_MAX;
702                 int     max_uV = INT_MIN;
703                 int     cmin = constraints->min_uV;
704                 int     cmax = constraints->max_uV;
705
706                 /* it's safe to autoconfigure fixed-voltage supplies
707                    and the constraints are used by list_voltage. */
708                 if (count == 1 && !cmin) {
709                         cmin = 1;
710                         cmax = INT_MAX;
711                         constraints->min_uV = cmin;
712                         constraints->max_uV = cmax;
713                 }
714
715                 /* voltage constraints are optional */
716                 if ((cmin == 0) && (cmax == 0))
717                         goto out;
718
719                 /* else require explicit machine-level constraints */
720                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
721                         pr_err("%s: %s '%s' voltage constraints\n",
722                                        __func__, "invalid", name);
723                         ret = -EINVAL;
724                         goto out;
725                 }
726
727                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
728                 for (i = 0; i < count; i++) {
729                         int     value;
730
731                         value = ops->list_voltage(rdev, i);
732                         if (value <= 0)
733                                 continue;
734
735                         /* maybe adjust [min_uV..max_uV] */
736                         if (value >= cmin && value < min_uV)
737                                 min_uV = value;
738                         if (value <= cmax && value > max_uV)
739                                 max_uV = value;
740                 }
741
742                 /* final: [min_uV..max_uV] valid iff constraints valid */
743                 if (max_uV < min_uV) {
744                         pr_err("%s: %s '%s' voltage constraints\n",
745                                        __func__, "unsupportable", name);
746                         ret = -EINVAL;
747                         goto out;
748                 }
749
750                 /* use regulator's subset of machine constraints */
751                 if (constraints->min_uV < min_uV) {
752                         pr_debug("%s: override '%s' %s, %d -> %d\n",
753                                        __func__, name, "min_uV",
754                                         constraints->min_uV, min_uV);
755                         constraints->min_uV = min_uV;
756                 }
757                 if (constraints->max_uV > max_uV) {
758                         pr_debug("%s: override '%s' %s, %d -> %d\n",
759                                        __func__, name, "max_uV",
760                                         constraints->max_uV, max_uV);
761                         constraints->max_uV = max_uV;
762                 }
763         }
764
765         rdev->constraints = constraints;
766
767         /* do we need to apply the constraint voltage */
768         if (rdev->constraints->apply_uV &&
769                 rdev->constraints->min_uV == rdev->constraints->max_uV &&
770                 ops->set_voltage) {
771                 ret = ops->set_voltage(rdev,
772                         rdev->constraints->min_uV, rdev->constraints->max_uV);
773                         if (ret < 0) {
774                                 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
775                                        __func__,
776                                        rdev->constraints->min_uV, name);
777                                 rdev->constraints = NULL;
778                                 goto out;
779                         }
780         }
781
782         /* do we need to setup our suspend state */
783         if (constraints->initial_state) {
784                 ret = suspend_prepare(rdev, constraints->initial_state);
785                 if (ret < 0) {
786                         printk(KERN_ERR "%s: failed to set suspend state for %s\n",
787                                __func__, name);
788                         rdev->constraints = NULL;
789                         goto out;
790                 }
791         }
792
793         if (constraints->initial_mode) {
794                 if (!ops->set_mode) {
795                         printk(KERN_ERR "%s: no set_mode operation for %s\n",
796                                __func__, name);
797                         ret = -EINVAL;
798                         goto out;
799                 }
800
801                 ret = ops->set_mode(rdev, constraints->initial_mode);
802                 if (ret < 0) {
803                         printk(KERN_ERR
804                                "%s: failed to set initial mode for %s: %d\n",
805                                __func__, name, ret);
806                         goto out;
807                 }
808         }
809
810         /* If the constraints say the regulator should be on at this point
811          * and we have control then make sure it is enabled.
812          */
813         if ((constraints->always_on || constraints->boot_on) && ops->enable) {
814                 ret = ops->enable(rdev);
815                 if (ret < 0) {
816                         printk(KERN_ERR "%s: failed to enable %s\n",
817                                __func__, name);
818                         rdev->constraints = NULL;
819                         goto out;
820                 }
821         }
822
823         print_constraints(rdev);
824 out:
825         return ret;
826 }
827
828 /**
829  * set_supply - set regulator supply regulator
830  * @rdev: regulator name
831  * @supply_rdev: supply regulator name
832  *
833  * Called by platform initialisation code to set the supply regulator for this
834  * regulator. This ensures that a regulators supply will also be enabled by the
835  * core if it's child is enabled.
836  */
837 static int set_supply(struct regulator_dev *rdev,
838         struct regulator_dev *supply_rdev)
839 {
840         int err;
841
842         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
843                                 "supply");
844         if (err) {
845                 printk(KERN_ERR
846                        "%s: could not add device link %s err %d\n",
847                        __func__, supply_rdev->dev.kobj.name, err);
848                        goto out;
849         }
850         rdev->supply = supply_rdev;
851         list_add(&rdev->slist, &supply_rdev->supply_list);
852 out:
853         return err;
854 }
855
856 /**
857  * set_consumer_device_supply: Bind a regulator to a symbolic supply
858  * @rdev:         regulator source
859  * @consumer_dev: device the supply applies to
860  * @supply:       symbolic name for supply
861  *
862  * Allows platform initialisation code to map physical regulator
863  * sources to symbolic names for supplies for use by devices.  Devices
864  * should use these symbolic names to request regulators, avoiding the
865  * need to provide board-specific regulator names as platform data.
866  */
867 static int set_consumer_device_supply(struct regulator_dev *rdev,
868         struct device *consumer_dev, const char *supply)
869 {
870         struct regulator_map *node;
871
872         if (supply == NULL)
873                 return -EINVAL;
874
875         list_for_each_entry(node, &regulator_map_list, list) {
876                 if (consumer_dev != node->dev)
877                         continue;
878                 if (strcmp(node->supply, supply) != 0)
879                         continue;
880
881                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
882                                 dev_name(&node->regulator->dev),
883                                 node->regulator->desc->name,
884                                 supply,
885                                 dev_name(&rdev->dev), rdev->desc->name);
886                 return -EBUSY;
887         }
888
889         node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
890         if (node == NULL)
891                 return -ENOMEM;
892
893         node->regulator = rdev;
894         node->dev = consumer_dev;
895         node->supply = supply;
896
897         list_add(&node->list, &regulator_map_list);
898         return 0;
899 }
900
901 static void unset_consumer_device_supply(struct regulator_dev *rdev,
902         struct device *consumer_dev)
903 {
904         struct regulator_map *node, *n;
905
906         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
907                 if (rdev == node->regulator &&
908                         consumer_dev == node->dev) {
909                         list_del(&node->list);
910                         kfree(node);
911                         return;
912                 }
913         }
914 }
915
916 static void unset_regulator_supplies(struct regulator_dev *rdev)
917 {
918         struct regulator_map *node, *n;
919
920         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
921                 if (rdev == node->regulator) {
922                         list_del(&node->list);
923                         kfree(node);
924                         return;
925                 }
926         }
927 }
928
929 #define REG_STR_SIZE    32
930
931 static struct regulator *create_regulator(struct regulator_dev *rdev,
932                                           struct device *dev,
933                                           const char *supply_name)
934 {
935         struct regulator *regulator;
936         char buf[REG_STR_SIZE];
937         int err, size;
938
939         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
940         if (regulator == NULL)
941                 return NULL;
942
943         mutex_lock(&rdev->mutex);
944         regulator->rdev = rdev;
945         list_add(&regulator->list, &rdev->consumer_list);
946
947         if (dev) {
948                 /* create a 'requested_microamps_name' sysfs entry */
949                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
950                         supply_name);
951                 if (size >= REG_STR_SIZE)
952                         goto overflow_err;
953
954                 regulator->dev = dev;
955                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
956                 if (regulator->dev_attr.attr.name == NULL)
957                         goto attr_name_err;
958
959                 regulator->dev_attr.attr.owner = THIS_MODULE;
960                 regulator->dev_attr.attr.mode = 0444;
961                 regulator->dev_attr.show = device_requested_uA_show;
962                 err = device_create_file(dev, &regulator->dev_attr);
963                 if (err < 0) {
964                         printk(KERN_WARNING "%s: could not add regulator_dev"
965                                 " load sysfs\n", __func__);
966                         goto attr_name_err;
967                 }
968
969                 /* also add a link to the device sysfs entry */
970                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
971                                  dev->kobj.name, supply_name);
972                 if (size >= REG_STR_SIZE)
973                         goto attr_err;
974
975                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
976                 if (regulator->supply_name == NULL)
977                         goto attr_err;
978
979                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
980                                         buf);
981                 if (err) {
982                         printk(KERN_WARNING
983                                "%s: could not add device link %s err %d\n",
984                                __func__, dev->kobj.name, err);
985                         device_remove_file(dev, &regulator->dev_attr);
986                         goto link_name_err;
987                 }
988         }
989         mutex_unlock(&rdev->mutex);
990         return regulator;
991 link_name_err:
992         kfree(regulator->supply_name);
993 attr_err:
994         device_remove_file(regulator->dev, &regulator->dev_attr);
995 attr_name_err:
996         kfree(regulator->dev_attr.attr.name);
997 overflow_err:
998         list_del(&regulator->list);
999         kfree(regulator);
1000         mutex_unlock(&rdev->mutex);
1001         return NULL;
1002 }
1003
1004 /**
1005  * regulator_get - lookup and obtain a reference to a regulator.
1006  * @dev: device for regulator "consumer"
1007  * @id: Supply name or regulator ID.
1008  *
1009  * Returns a struct regulator corresponding to the regulator producer,
1010  * or IS_ERR() condition containing errno.
1011  *
1012  * Use of supply names configured via regulator_set_device_supply() is
1013  * strongly encouraged.  It is recommended that the supply name used
1014  * should match the name used for the supply and/or the relevant
1015  * device pins in the datasheet.
1016  */
1017 struct regulator *regulator_get(struct device *dev, const char *id)
1018 {
1019         struct regulator_dev *rdev;
1020         struct regulator_map *map;
1021         struct regulator *regulator = ERR_PTR(-ENODEV);
1022
1023         if (id == NULL) {
1024                 printk(KERN_ERR "regulator: get() with no identifier\n");
1025                 return regulator;
1026         }
1027
1028         mutex_lock(&regulator_list_mutex);
1029
1030         list_for_each_entry(map, &regulator_map_list, list) {
1031                 if (dev == map->dev &&
1032                     strcmp(map->supply, id) == 0) {
1033                         rdev = map->regulator;
1034                         goto found;
1035                 }
1036         }
1037         mutex_unlock(&regulator_list_mutex);
1038         return regulator;
1039
1040 found:
1041         if (!try_module_get(rdev->owner))
1042                 goto out;
1043
1044         regulator = create_regulator(rdev, dev, id);
1045         if (regulator == NULL) {
1046                 regulator = ERR_PTR(-ENOMEM);
1047                 module_put(rdev->owner);
1048         }
1049
1050 out:
1051         mutex_unlock(&regulator_list_mutex);
1052         return regulator;
1053 }
1054 EXPORT_SYMBOL_GPL(regulator_get);
1055
1056 /**
1057  * regulator_put - "free" the regulator source
1058  * @regulator: regulator source
1059  *
1060  * Note: drivers must ensure that all regulator_enable calls made on this
1061  * regulator source are balanced by regulator_disable calls prior to calling
1062  * this function.
1063  */
1064 void regulator_put(struct regulator *regulator)
1065 {
1066         struct regulator_dev *rdev;
1067
1068         if (regulator == NULL || IS_ERR(regulator))
1069                 return;
1070
1071         mutex_lock(&regulator_list_mutex);
1072         rdev = regulator->rdev;
1073
1074         /* remove any sysfs entries */
1075         if (regulator->dev) {
1076                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1077                 kfree(regulator->supply_name);
1078                 device_remove_file(regulator->dev, &regulator->dev_attr);
1079                 kfree(regulator->dev_attr.attr.name);
1080         }
1081         list_del(&regulator->list);
1082         kfree(regulator);
1083
1084         module_put(rdev->owner);
1085         mutex_unlock(&regulator_list_mutex);
1086 }
1087 EXPORT_SYMBOL_GPL(regulator_put);
1088
1089 /* locks held by regulator_enable() */
1090 static int _regulator_enable(struct regulator_dev *rdev)
1091 {
1092         int ret = -EINVAL;
1093
1094         if (!rdev->constraints) {
1095                 printk(KERN_ERR "%s: %s has no constraints\n",
1096                        __func__, rdev->desc->name);
1097                 return ret;
1098         }
1099
1100         /* do we need to enable the supply regulator first */
1101         if (rdev->supply) {
1102                 ret = _regulator_enable(rdev->supply);
1103                 if (ret < 0) {
1104                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1105                                __func__, rdev->desc->name, ret);
1106                         return ret;
1107                 }
1108         }
1109
1110         /* check voltage and requested load before enabling */
1111         if (rdev->desc->ops->enable) {
1112
1113                 if (rdev->constraints &&
1114                         (rdev->constraints->valid_ops_mask &
1115                         REGULATOR_CHANGE_DRMS))
1116                         drms_uA_update(rdev);
1117
1118                 ret = rdev->desc->ops->enable(rdev);
1119                 if (ret < 0) {
1120                         printk(KERN_ERR "%s: failed to enable %s: %d\n",
1121                                __func__, rdev->desc->name, ret);
1122                         return ret;
1123                 }
1124                 rdev->use_count++;
1125                 return ret;
1126         }
1127
1128         return ret;
1129 }
1130
1131 /**
1132  * regulator_enable - enable regulator output
1133  * @regulator: regulator source
1134  *
1135  * Request that the regulator be enabled with the regulator output at
1136  * the predefined voltage or current value.  Calls to regulator_enable()
1137  * must be balanced with calls to regulator_disable().
1138  *
1139  * NOTE: the output value can be set by other drivers, boot loader or may be
1140  * hardwired in the regulator.
1141  */
1142 int regulator_enable(struct regulator *regulator)
1143 {
1144         struct regulator_dev *rdev = regulator->rdev;
1145         int ret = 0;
1146
1147         mutex_lock(&rdev->mutex);
1148         ret = _regulator_enable(rdev);
1149         mutex_unlock(&rdev->mutex);
1150         return ret;
1151 }
1152 EXPORT_SYMBOL_GPL(regulator_enable);
1153
1154 /* locks held by regulator_disable() */
1155 static int _regulator_disable(struct regulator_dev *rdev)
1156 {
1157         int ret = 0;
1158
1159         if (WARN(rdev->use_count <= 0,
1160                         "unbalanced disables for %s\n",
1161                         rdev->desc->name))
1162                 return -EIO;
1163
1164         /* are we the last user and permitted to disable ? */
1165         if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1166
1167                 /* we are last user */
1168                 if (rdev->desc->ops->disable) {
1169                         ret = rdev->desc->ops->disable(rdev);
1170                         if (ret < 0) {
1171                                 printk(KERN_ERR "%s: failed to disable %s\n",
1172                                        __func__, rdev->desc->name);
1173                                 return ret;
1174                         }
1175                 }
1176
1177                 /* decrease our supplies ref count and disable if required */
1178                 if (rdev->supply)
1179                         _regulator_disable(rdev->supply);
1180
1181                 rdev->use_count = 0;
1182         } else if (rdev->use_count > 1) {
1183
1184                 if (rdev->constraints &&
1185                         (rdev->constraints->valid_ops_mask &
1186                         REGULATOR_CHANGE_DRMS))
1187                         drms_uA_update(rdev);
1188
1189                 rdev->use_count--;
1190         }
1191         return ret;
1192 }
1193
1194 /**
1195  * regulator_disable - disable regulator output
1196  * @regulator: regulator source
1197  *
1198  * Disable the regulator output voltage or current.  Calls to
1199  * regulator_enable() must be balanced with calls to
1200  * regulator_disable().
1201  *
1202  * NOTE: this will only disable the regulator output if no other consumer
1203  * devices have it enabled, the regulator device supports disabling and
1204  * machine constraints permit this operation.
1205  */
1206 int regulator_disable(struct regulator *regulator)
1207 {
1208         struct regulator_dev *rdev = regulator->rdev;
1209         int ret = 0;
1210
1211         mutex_lock(&rdev->mutex);
1212         ret = _regulator_disable(rdev);
1213         mutex_unlock(&rdev->mutex);
1214         return ret;
1215 }
1216 EXPORT_SYMBOL_GPL(regulator_disable);
1217
1218 /* locks held by regulator_force_disable() */
1219 static int _regulator_force_disable(struct regulator_dev *rdev)
1220 {
1221         int ret = 0;
1222
1223         /* force disable */
1224         if (rdev->desc->ops->disable) {
1225                 /* ah well, who wants to live forever... */
1226                 ret = rdev->desc->ops->disable(rdev);
1227                 if (ret < 0) {
1228                         printk(KERN_ERR "%s: failed to force disable %s\n",
1229                                __func__, rdev->desc->name);
1230                         return ret;
1231                 }
1232                 /* notify other consumers that power has been forced off */
1233                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1234                         NULL);
1235         }
1236
1237         /* decrease our supplies ref count and disable if required */
1238         if (rdev->supply)
1239                 _regulator_disable(rdev->supply);
1240
1241         rdev->use_count = 0;
1242         return ret;
1243 }
1244
1245 /**
1246  * regulator_force_disable - force disable regulator output
1247  * @regulator: regulator source
1248  *
1249  * Forcibly disable the regulator output voltage or current.
1250  * NOTE: this *will* disable the regulator output even if other consumer
1251  * devices have it enabled. This should be used for situations when device
1252  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1253  */
1254 int regulator_force_disable(struct regulator *regulator)
1255 {
1256         int ret;
1257
1258         mutex_lock(&regulator->rdev->mutex);
1259         regulator->uA_load = 0;
1260         ret = _regulator_force_disable(regulator->rdev);
1261         mutex_unlock(&regulator->rdev->mutex);
1262         return ret;
1263 }
1264 EXPORT_SYMBOL_GPL(regulator_force_disable);
1265
1266 static int _regulator_is_enabled(struct regulator_dev *rdev)
1267 {
1268         int ret;
1269
1270         mutex_lock(&rdev->mutex);
1271
1272         /* sanity check */
1273         if (!rdev->desc->ops->is_enabled) {
1274                 ret = -EINVAL;
1275                 goto out;
1276         }
1277
1278         ret = rdev->desc->ops->is_enabled(rdev);
1279 out:
1280         mutex_unlock(&rdev->mutex);
1281         return ret;
1282 }
1283
1284 /**
1285  * regulator_is_enabled - is the regulator output enabled
1286  * @regulator: regulator source
1287  *
1288  * Returns positive if the regulator driver backing the source/client
1289  * has requested that the device be enabled, zero if it hasn't, else a
1290  * negative errno code.
1291  *
1292  * Note that the device backing this regulator handle can have multiple
1293  * users, so it might be enabled even if regulator_enable() was never
1294  * called for this particular source.
1295  */
1296 int regulator_is_enabled(struct regulator *regulator)
1297 {
1298         return _regulator_is_enabled(regulator->rdev);
1299 }
1300 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1301
1302 /**
1303  * regulator_count_voltages - count regulator_list_voltage() selectors
1304  * @regulator: regulator source
1305  *
1306  * Returns number of selectors, or negative errno.  Selectors are
1307  * numbered starting at zero, and typically correspond to bitfields
1308  * in hardware registers.
1309  */
1310 int regulator_count_voltages(struct regulator *regulator)
1311 {
1312         struct regulator_dev    *rdev = regulator->rdev;
1313
1314         return rdev->desc->n_voltages ? : -EINVAL;
1315 }
1316 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1317
1318 /**
1319  * regulator_list_voltage - enumerate supported voltages
1320  * @regulator: regulator source
1321  * @selector: identify voltage to list
1322  * Context: can sleep
1323  *
1324  * Returns a voltage that can be passed to @regulator_set_voltage(),
1325  * zero if this selector code can't be used on this sytem, or a
1326  * negative errno.
1327  */
1328 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1329 {
1330         struct regulator_dev    *rdev = regulator->rdev;
1331         struct regulator_ops    *ops = rdev->desc->ops;
1332         int                     ret;
1333
1334         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1335                 return -EINVAL;
1336
1337         mutex_lock(&rdev->mutex);
1338         ret = ops->list_voltage(rdev, selector);
1339         mutex_unlock(&rdev->mutex);
1340
1341         if (ret > 0) {
1342                 if (ret < rdev->constraints->min_uV)
1343                         ret = 0;
1344                 else if (ret > rdev->constraints->max_uV)
1345                         ret = 0;
1346         }
1347
1348         return ret;
1349 }
1350 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1351
1352 /**
1353  * regulator_set_voltage - set regulator output voltage
1354  * @regulator: regulator source
1355  * @min_uV: Minimum required voltage in uV
1356  * @max_uV: Maximum acceptable voltage in uV
1357  *
1358  * Sets a voltage regulator to the desired output voltage. This can be set
1359  * during any regulator state. IOW, regulator can be disabled or enabled.
1360  *
1361  * If the regulator is enabled then the voltage will change to the new value
1362  * immediately otherwise if the regulator is disabled the regulator will
1363  * output at the new voltage when enabled.
1364  *
1365  * NOTE: If the regulator is shared between several devices then the lowest
1366  * request voltage that meets the system constraints will be used.
1367  * Regulator system constraints must be set for this regulator before
1368  * calling this function otherwise this call will fail.
1369  */
1370 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1371 {
1372         struct regulator_dev *rdev = regulator->rdev;
1373         int ret;
1374
1375         mutex_lock(&rdev->mutex);
1376
1377         /* sanity check */
1378         if (!rdev->desc->ops->set_voltage) {
1379                 ret = -EINVAL;
1380                 goto out;
1381         }
1382
1383         /* constraints check */
1384         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1385         if (ret < 0)
1386                 goto out;
1387         regulator->min_uV = min_uV;
1388         regulator->max_uV = max_uV;
1389         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1390
1391 out:
1392         _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1393         mutex_unlock(&rdev->mutex);
1394         return ret;
1395 }
1396 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1397
1398 static int _regulator_get_voltage(struct regulator_dev *rdev)
1399 {
1400         /* sanity check */
1401         if (rdev->desc->ops->get_voltage)
1402                 return rdev->desc->ops->get_voltage(rdev);
1403         else
1404                 return -EINVAL;
1405 }
1406
1407 /**
1408  * regulator_get_voltage - get regulator output voltage
1409  * @regulator: regulator source
1410  *
1411  * This returns the current regulator voltage in uV.
1412  *
1413  * NOTE: If the regulator is disabled it will return the voltage value. This
1414  * function should not be used to determine regulator state.
1415  */
1416 int regulator_get_voltage(struct regulator *regulator)
1417 {
1418         int ret;
1419
1420         mutex_lock(&regulator->rdev->mutex);
1421
1422         ret = _regulator_get_voltage(regulator->rdev);
1423
1424         mutex_unlock(&regulator->rdev->mutex);
1425
1426         return ret;
1427 }
1428 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1429
1430 /**
1431  * regulator_set_current_limit - set regulator output current limit
1432  * @regulator: regulator source
1433  * @min_uA: Minimuum supported current in uA
1434  * @max_uA: Maximum supported current in uA
1435  *
1436  * Sets current sink to the desired output current. This can be set during
1437  * any regulator state. IOW, regulator can be disabled or enabled.
1438  *
1439  * If the regulator is enabled then the current will change to the new value
1440  * immediately otherwise if the regulator is disabled the regulator will
1441  * output at the new current when enabled.
1442  *
1443  * NOTE: Regulator system constraints must be set for this regulator before
1444  * calling this function otherwise this call will fail.
1445  */
1446 int regulator_set_current_limit(struct regulator *regulator,
1447                                int min_uA, int max_uA)
1448 {
1449         struct regulator_dev *rdev = regulator->rdev;
1450         int ret;
1451
1452         mutex_lock(&rdev->mutex);
1453
1454         /* sanity check */
1455         if (!rdev->desc->ops->set_current_limit) {
1456                 ret = -EINVAL;
1457                 goto out;
1458         }
1459
1460         /* constraints check */
1461         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1462         if (ret < 0)
1463                 goto out;
1464
1465         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1466 out:
1467         mutex_unlock(&rdev->mutex);
1468         return ret;
1469 }
1470 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1471
1472 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1473 {
1474         int ret;
1475
1476         mutex_lock(&rdev->mutex);
1477
1478         /* sanity check */
1479         if (!rdev->desc->ops->get_current_limit) {
1480                 ret = -EINVAL;
1481                 goto out;
1482         }
1483
1484         ret = rdev->desc->ops->get_current_limit(rdev);
1485 out:
1486         mutex_unlock(&rdev->mutex);
1487         return ret;
1488 }
1489
1490 /**
1491  * regulator_get_current_limit - get regulator output current
1492  * @regulator: regulator source
1493  *
1494  * This returns the current supplied by the specified current sink in uA.
1495  *
1496  * NOTE: If the regulator is disabled it will return the current value. This
1497  * function should not be used to determine regulator state.
1498  */
1499 int regulator_get_current_limit(struct regulator *regulator)
1500 {
1501         return _regulator_get_current_limit(regulator->rdev);
1502 }
1503 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1504
1505 /**
1506  * regulator_set_mode - set regulator operating mode
1507  * @regulator: regulator source
1508  * @mode: operating mode - one of the REGULATOR_MODE constants
1509  *
1510  * Set regulator operating mode to increase regulator efficiency or improve
1511  * regulation performance.
1512  *
1513  * NOTE: Regulator system constraints must be set for this regulator before
1514  * calling this function otherwise this call will fail.
1515  */
1516 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1517 {
1518         struct regulator_dev *rdev = regulator->rdev;
1519         int ret;
1520
1521         mutex_lock(&rdev->mutex);
1522
1523         /* sanity check */
1524         if (!rdev->desc->ops->set_mode) {
1525                 ret = -EINVAL;
1526                 goto out;
1527         }
1528
1529         /* constraints check */
1530         ret = regulator_check_mode(rdev, mode);
1531         if (ret < 0)
1532                 goto out;
1533
1534         ret = rdev->desc->ops->set_mode(rdev, mode);
1535 out:
1536         mutex_unlock(&rdev->mutex);
1537         return ret;
1538 }
1539 EXPORT_SYMBOL_GPL(regulator_set_mode);
1540
1541 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1542 {
1543         int ret;
1544
1545         mutex_lock(&rdev->mutex);
1546
1547         /* sanity check */
1548         if (!rdev->desc->ops->get_mode) {
1549                 ret = -EINVAL;
1550                 goto out;
1551         }
1552
1553         ret = rdev->desc->ops->get_mode(rdev);
1554 out:
1555         mutex_unlock(&rdev->mutex);
1556         return ret;
1557 }
1558
1559 /**
1560  * regulator_get_mode - get regulator operating mode
1561  * @regulator: regulator source
1562  *
1563  * Get the current regulator operating mode.
1564  */
1565 unsigned int regulator_get_mode(struct regulator *regulator)
1566 {
1567         return _regulator_get_mode(regulator->rdev);
1568 }
1569 EXPORT_SYMBOL_GPL(regulator_get_mode);
1570
1571 /**
1572  * regulator_set_optimum_mode - set regulator optimum operating mode
1573  * @regulator: regulator source
1574  * @uA_load: load current
1575  *
1576  * Notifies the regulator core of a new device load. This is then used by
1577  * DRMS (if enabled by constraints) to set the most efficient regulator
1578  * operating mode for the new regulator loading.
1579  *
1580  * Consumer devices notify their supply regulator of the maximum power
1581  * they will require (can be taken from device datasheet in the power
1582  * consumption tables) when they change operational status and hence power
1583  * state. Examples of operational state changes that can affect power
1584  * consumption are :-
1585  *
1586  *    o Device is opened / closed.
1587  *    o Device I/O is about to begin or has just finished.
1588  *    o Device is idling in between work.
1589  *
1590  * This information is also exported via sysfs to userspace.
1591  *
1592  * DRMS will sum the total requested load on the regulator and change
1593  * to the most efficient operating mode if platform constraints allow.
1594  *
1595  * Returns the new regulator mode or error.
1596  */
1597 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1598 {
1599         struct regulator_dev *rdev = regulator->rdev;
1600         struct regulator *consumer;
1601         int ret, output_uV, input_uV, total_uA_load = 0;
1602         unsigned int mode;
1603
1604         mutex_lock(&rdev->mutex);
1605
1606         regulator->uA_load = uA_load;
1607         ret = regulator_check_drms(rdev);
1608         if (ret < 0)
1609                 goto out;
1610         ret = -EINVAL;
1611
1612         /* sanity check */
1613         if (!rdev->desc->ops->get_optimum_mode)
1614                 goto out;
1615
1616         /* get output voltage */
1617         output_uV = rdev->desc->ops->get_voltage(rdev);
1618         if (output_uV <= 0) {
1619                 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1620                         __func__, rdev->desc->name);
1621                 goto out;
1622         }
1623
1624         /* get input voltage */
1625         if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1626                 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1627         else
1628                 input_uV = rdev->constraints->input_uV;
1629         if (input_uV <= 0) {
1630                 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1631                         __func__, rdev->desc->name);
1632                 goto out;
1633         }
1634
1635         /* calc total requested load for this regulator */
1636         list_for_each_entry(consumer, &rdev->consumer_list, list)
1637             total_uA_load += consumer->uA_load;
1638
1639         mode = rdev->desc->ops->get_optimum_mode(rdev,
1640                                                  input_uV, output_uV,
1641                                                  total_uA_load);
1642         ret = regulator_check_mode(rdev, mode);
1643         if (ret < 0) {
1644                 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1645                         " %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1646                         total_uA_load, input_uV, output_uV);
1647                 goto out;
1648         }
1649
1650         ret = rdev->desc->ops->set_mode(rdev, mode);
1651         if (ret < 0) {
1652                 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1653                         __func__, mode, rdev->desc->name);
1654                 goto out;
1655         }
1656         ret = mode;
1657 out:
1658         mutex_unlock(&rdev->mutex);
1659         return ret;
1660 }
1661 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1662
1663 /**
1664  * regulator_register_notifier - register regulator event notifier
1665  * @regulator: regulator source
1666  * @nb: notifier block
1667  *
1668  * Register notifier block to receive regulator events.
1669  */
1670 int regulator_register_notifier(struct regulator *regulator,
1671                               struct notifier_block *nb)
1672 {
1673         return blocking_notifier_chain_register(&regulator->rdev->notifier,
1674                                                 nb);
1675 }
1676 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1677
1678 /**
1679  * regulator_unregister_notifier - unregister regulator event notifier
1680  * @regulator: regulator source
1681  * @nb: notifier block
1682  *
1683  * Unregister regulator event notifier block.
1684  */
1685 int regulator_unregister_notifier(struct regulator *regulator,
1686                                 struct notifier_block *nb)
1687 {
1688         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1689                                                   nb);
1690 }
1691 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1692
1693 /* notify regulator consumers and downstream regulator consumers.
1694  * Note mutex must be held by caller.
1695  */
1696 static void _notifier_call_chain(struct regulator_dev *rdev,
1697                                   unsigned long event, void *data)
1698 {
1699         struct regulator_dev *_rdev;
1700
1701         /* call rdev chain first */
1702         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1703
1704         /* now notify regulator we supply */
1705         list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1706           mutex_lock(&_rdev->mutex);
1707           _notifier_call_chain(_rdev, event, data);
1708           mutex_unlock(&_rdev->mutex);
1709         }
1710 }
1711
1712 /**
1713  * regulator_bulk_get - get multiple regulator consumers
1714  *
1715  * @dev:           Device to supply
1716  * @num_consumers: Number of consumers to register
1717  * @consumers:     Configuration of consumers; clients are stored here.
1718  *
1719  * @return 0 on success, an errno on failure.
1720  *
1721  * This helper function allows drivers to get several regulator
1722  * consumers in one operation.  If any of the regulators cannot be
1723  * acquired then any regulators that were allocated will be freed
1724  * before returning to the caller.
1725  */
1726 int regulator_bulk_get(struct device *dev, int num_consumers,
1727                        struct regulator_bulk_data *consumers)
1728 {
1729         int i;
1730         int ret;
1731
1732         for (i = 0; i < num_consumers; i++)
1733                 consumers[i].consumer = NULL;
1734
1735         for (i = 0; i < num_consumers; i++) {
1736                 consumers[i].consumer = regulator_get(dev,
1737                                                       consumers[i].supply);
1738                 if (IS_ERR(consumers[i].consumer)) {
1739                         dev_err(dev, "Failed to get supply '%s'\n",
1740                                 consumers[i].supply);
1741                         ret = PTR_ERR(consumers[i].consumer);
1742                         consumers[i].consumer = NULL;
1743                         goto err;
1744                 }
1745         }
1746
1747         return 0;
1748
1749 err:
1750         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1751                 regulator_put(consumers[i].consumer);
1752
1753         return ret;
1754 }
1755 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1756
1757 /**
1758  * regulator_bulk_enable - enable multiple regulator consumers
1759  *
1760  * @num_consumers: Number of consumers
1761  * @consumers:     Consumer data; clients are stored here.
1762  * @return         0 on success, an errno on failure
1763  *
1764  * This convenience API allows consumers to enable multiple regulator
1765  * clients in a single API call.  If any consumers cannot be enabled
1766  * then any others that were enabled will be disabled again prior to
1767  * return.
1768  */
1769 int regulator_bulk_enable(int num_consumers,
1770                           struct regulator_bulk_data *consumers)
1771 {
1772         int i;
1773         int ret;
1774
1775         for (i = 0; i < num_consumers; i++) {
1776                 ret = regulator_enable(consumers[i].consumer);
1777                 if (ret != 0)
1778                         goto err;
1779         }
1780
1781         return 0;
1782
1783 err:
1784         printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1785         for (i = 0; i < num_consumers; i++)
1786                 regulator_disable(consumers[i].consumer);
1787
1788         return ret;
1789 }
1790 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1791
1792 /**
1793  * regulator_bulk_disable - disable multiple regulator consumers
1794  *
1795  * @num_consumers: Number of consumers
1796  * @consumers:     Consumer data; clients are stored here.
1797  * @return         0 on success, an errno on failure
1798  *
1799  * This convenience API allows consumers to disable multiple regulator
1800  * clients in a single API call.  If any consumers cannot be enabled
1801  * then any others that were disabled will be disabled again prior to
1802  * return.
1803  */
1804 int regulator_bulk_disable(int num_consumers,
1805                            struct regulator_bulk_data *consumers)
1806 {
1807         int i;
1808         int ret;
1809
1810         for (i = 0; i < num_consumers; i++) {
1811                 ret = regulator_disable(consumers[i].consumer);
1812                 if (ret != 0)
1813                         goto err;
1814         }
1815
1816         return 0;
1817
1818 err:
1819         printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1820         for (i = 0; i < num_consumers; i++)
1821                 regulator_enable(consumers[i].consumer);
1822
1823         return ret;
1824 }
1825 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1826
1827 /**
1828  * regulator_bulk_free - free multiple regulator consumers
1829  *
1830  * @num_consumers: Number of consumers
1831  * @consumers:     Consumer data; clients are stored here.
1832  *
1833  * This convenience API allows consumers to free multiple regulator
1834  * clients in a single API call.
1835  */
1836 void regulator_bulk_free(int num_consumers,
1837                          struct regulator_bulk_data *consumers)
1838 {
1839         int i;
1840
1841         for (i = 0; i < num_consumers; i++) {
1842                 regulator_put(consumers[i].consumer);
1843                 consumers[i].consumer = NULL;
1844         }
1845 }
1846 EXPORT_SYMBOL_GPL(regulator_bulk_free);
1847
1848 /**
1849  * regulator_notifier_call_chain - call regulator event notifier
1850  * @rdev: regulator source
1851  * @event: notifier block
1852  * @data: callback-specific data.
1853  *
1854  * Called by regulator drivers to notify clients a regulator event has
1855  * occurred. We also notify regulator clients downstream.
1856  * Note lock must be held by caller.
1857  */
1858 int regulator_notifier_call_chain(struct regulator_dev *rdev,
1859                                   unsigned long event, void *data)
1860 {
1861         _notifier_call_chain(rdev, event, data);
1862         return NOTIFY_DONE;
1863
1864 }
1865 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1866
1867 /*
1868  * To avoid cluttering sysfs (and memory) with useless state, only
1869  * create attributes that can be meaningfully displayed.
1870  */
1871 static int add_regulator_attributes(struct regulator_dev *rdev)
1872 {
1873         struct device           *dev = &rdev->dev;
1874         struct regulator_ops    *ops = rdev->desc->ops;
1875         int                     status = 0;
1876
1877         /* some attributes need specific methods to be displayed */
1878         if (ops->get_voltage) {
1879                 status = device_create_file(dev, &dev_attr_microvolts);
1880                 if (status < 0)
1881                         return status;
1882         }
1883         if (ops->get_current_limit) {
1884                 status = device_create_file(dev, &dev_attr_microamps);
1885                 if (status < 0)
1886                         return status;
1887         }
1888         if (ops->get_mode) {
1889                 status = device_create_file(dev, &dev_attr_opmode);
1890                 if (status < 0)
1891                         return status;
1892         }
1893         if (ops->is_enabled) {
1894                 status = device_create_file(dev, &dev_attr_state);
1895                 if (status < 0)
1896                         return status;
1897         }
1898         if (ops->get_status) {
1899                 status = device_create_file(dev, &dev_attr_status);
1900                 if (status < 0)
1901                         return status;
1902         }
1903
1904         /* some attributes are type-specific */
1905         if (rdev->desc->type == REGULATOR_CURRENT) {
1906                 status = device_create_file(dev, &dev_attr_requested_microamps);
1907                 if (status < 0)
1908                         return status;
1909         }
1910
1911         /* all the other attributes exist to support constraints;
1912          * don't show them if there are no constraints, or if the
1913          * relevant supporting methods are missing.
1914          */
1915         if (!rdev->constraints)
1916                 return status;
1917
1918         /* constraints need specific supporting methods */
1919         if (ops->set_voltage) {
1920                 status = device_create_file(dev, &dev_attr_min_microvolts);
1921                 if (status < 0)
1922                         return status;
1923                 status = device_create_file(dev, &dev_attr_max_microvolts);
1924                 if (status < 0)
1925                         return status;
1926         }
1927         if (ops->set_current_limit) {
1928                 status = device_create_file(dev, &dev_attr_min_microamps);
1929                 if (status < 0)
1930                         return status;
1931                 status = device_create_file(dev, &dev_attr_max_microamps);
1932                 if (status < 0)
1933                         return status;
1934         }
1935
1936         /* suspend mode constraints need multiple supporting methods */
1937         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
1938                 return status;
1939
1940         status = device_create_file(dev, &dev_attr_suspend_standby_state);
1941         if (status < 0)
1942                 return status;
1943         status = device_create_file(dev, &dev_attr_suspend_mem_state);
1944         if (status < 0)
1945                 return status;
1946         status = device_create_file(dev, &dev_attr_suspend_disk_state);
1947         if (status < 0)
1948                 return status;
1949
1950         if (ops->set_suspend_voltage) {
1951                 status = device_create_file(dev,
1952                                 &dev_attr_suspend_standby_microvolts);
1953                 if (status < 0)
1954                         return status;
1955                 status = device_create_file(dev,
1956                                 &dev_attr_suspend_mem_microvolts);
1957                 if (status < 0)
1958                         return status;
1959                 status = device_create_file(dev,
1960                                 &dev_attr_suspend_disk_microvolts);
1961                 if (status < 0)
1962                         return status;
1963         }
1964
1965         if (ops->set_suspend_mode) {
1966                 status = device_create_file(dev,
1967                                 &dev_attr_suspend_standby_mode);
1968                 if (status < 0)
1969                         return status;
1970                 status = device_create_file(dev,
1971                                 &dev_attr_suspend_mem_mode);
1972                 if (status < 0)
1973                         return status;
1974                 status = device_create_file(dev,
1975                                 &dev_attr_suspend_disk_mode);
1976                 if (status < 0)
1977                         return status;
1978         }
1979
1980         return status;
1981 }
1982
1983 /**
1984  * regulator_register - register regulator
1985  * @regulator_desc: regulator to register
1986  * @dev: struct device for the regulator
1987  * @init_data: platform provided init data, passed through by driver
1988  * @driver_data: private regulator data
1989  *
1990  * Called by regulator drivers to register a regulator.
1991  * Returns 0 on success.
1992  */
1993 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
1994         struct device *dev, struct regulator_init_data *init_data,
1995         void *driver_data)
1996 {
1997         static atomic_t regulator_no = ATOMIC_INIT(0);
1998         struct regulator_dev *rdev;
1999         int ret, i;
2000
2001         if (regulator_desc == NULL)
2002                 return ERR_PTR(-EINVAL);
2003
2004         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2005                 return ERR_PTR(-EINVAL);
2006
2007         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2008             regulator_desc->type != REGULATOR_CURRENT)
2009                 return ERR_PTR(-EINVAL);
2010
2011         if (!init_data)
2012                 return ERR_PTR(-EINVAL);
2013
2014         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2015         if (rdev == NULL)
2016                 return ERR_PTR(-ENOMEM);
2017
2018         mutex_lock(&regulator_list_mutex);
2019
2020         mutex_init(&rdev->mutex);
2021         rdev->reg_data = driver_data;
2022         rdev->owner = regulator_desc->owner;
2023         rdev->desc = regulator_desc;
2024         INIT_LIST_HEAD(&rdev->consumer_list);
2025         INIT_LIST_HEAD(&rdev->supply_list);
2026         INIT_LIST_HEAD(&rdev->list);
2027         INIT_LIST_HEAD(&rdev->slist);
2028         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2029
2030         /* preform any regulator specific init */
2031         if (init_data->regulator_init) {
2032                 ret = init_data->regulator_init(rdev->reg_data);
2033                 if (ret < 0)
2034                         goto clean;
2035         }
2036
2037         /* register with sysfs */
2038         rdev->dev.class = &regulator_class;
2039         rdev->dev.parent = dev;
2040         dev_set_name(&rdev->dev, "regulator.%d",
2041                      atomic_inc_return(&regulator_no) - 1);
2042         ret = device_register(&rdev->dev);
2043         if (ret != 0)
2044                 goto clean;
2045
2046         dev_set_drvdata(&rdev->dev, rdev);
2047
2048         /* set regulator constraints */
2049         ret = set_machine_constraints(rdev, &init_data->constraints);
2050         if (ret < 0)
2051                 goto scrub;
2052
2053         /* add attributes supported by this regulator */
2054         ret = add_regulator_attributes(rdev);
2055         if (ret < 0)
2056                 goto scrub;
2057
2058         /* set supply regulator if it exists */
2059         if (init_data->supply_regulator_dev) {
2060                 ret = set_supply(rdev,
2061                         dev_get_drvdata(init_data->supply_regulator_dev));
2062                 if (ret < 0)
2063                         goto scrub;
2064         }
2065
2066         /* add consumers devices */
2067         for (i = 0; i < init_data->num_consumer_supplies; i++) {
2068                 ret = set_consumer_device_supply(rdev,
2069                         init_data->consumer_supplies[i].dev,
2070                         init_data->consumer_supplies[i].supply);
2071                 if (ret < 0) {
2072                         for (--i; i >= 0; i--)
2073                                 unset_consumer_device_supply(rdev,
2074                                         init_data->consumer_supplies[i].dev);
2075                         goto scrub;
2076                 }
2077         }
2078
2079         list_add(&rdev->list, &regulator_list);
2080 out:
2081         mutex_unlock(&regulator_list_mutex);
2082         return rdev;
2083
2084 scrub:
2085         device_unregister(&rdev->dev);
2086         /* device core frees rdev */
2087         rdev = ERR_PTR(ret);
2088         goto out;
2089
2090 clean:
2091         kfree(rdev);
2092         rdev = ERR_PTR(ret);
2093         goto out;
2094 }
2095 EXPORT_SYMBOL_GPL(regulator_register);
2096
2097 /**
2098  * regulator_unregister - unregister regulator
2099  * @rdev: regulator to unregister
2100  *
2101  * Called by regulator drivers to unregister a regulator.
2102  */
2103 void regulator_unregister(struct regulator_dev *rdev)
2104 {
2105         if (rdev == NULL)
2106                 return;
2107
2108         mutex_lock(&regulator_list_mutex);
2109         unset_regulator_supplies(rdev);
2110         list_del(&rdev->list);
2111         if (rdev->supply)
2112                 sysfs_remove_link(&rdev->dev.kobj, "supply");
2113         device_unregister(&rdev->dev);
2114         mutex_unlock(&regulator_list_mutex);
2115 }
2116 EXPORT_SYMBOL_GPL(regulator_unregister);
2117
2118 /**
2119  * regulator_suspend_prepare - prepare regulators for system wide suspend
2120  * @state: system suspend state
2121  *
2122  * Configure each regulator with it's suspend operating parameters for state.
2123  * This will usually be called by machine suspend code prior to supending.
2124  */
2125 int regulator_suspend_prepare(suspend_state_t state)
2126 {
2127         struct regulator_dev *rdev;
2128         int ret = 0;
2129
2130         /* ON is handled by regulator active state */
2131         if (state == PM_SUSPEND_ON)
2132                 return -EINVAL;
2133
2134         mutex_lock(&regulator_list_mutex);
2135         list_for_each_entry(rdev, &regulator_list, list) {
2136
2137                 mutex_lock(&rdev->mutex);
2138                 ret = suspend_prepare(rdev, state);
2139                 mutex_unlock(&rdev->mutex);
2140
2141                 if (ret < 0) {
2142                         printk(KERN_ERR "%s: failed to prepare %s\n",
2143                                 __func__, rdev->desc->name);
2144                         goto out;
2145                 }
2146         }
2147 out:
2148         mutex_unlock(&regulator_list_mutex);
2149         return ret;
2150 }
2151 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2152
2153 /**
2154  * regulator_has_full_constraints - the system has fully specified constraints
2155  *
2156  * Calling this function will cause the regulator API to disable all
2157  * regulators which have a zero use count and don't have an always_on
2158  * constraint in a late_initcall.
2159  *
2160  * The intention is that this will become the default behaviour in a
2161  * future kernel release so users are encouraged to use this facility
2162  * now.
2163  */
2164 void regulator_has_full_constraints(void)
2165 {
2166         has_full_constraints = 1;
2167 }
2168 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2169
2170 /**
2171  * rdev_get_drvdata - get rdev regulator driver data
2172  * @rdev: regulator
2173  *
2174  * Get rdev regulator driver private data. This call can be used in the
2175  * regulator driver context.
2176  */
2177 void *rdev_get_drvdata(struct regulator_dev *rdev)
2178 {
2179         return rdev->reg_data;
2180 }
2181 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2182
2183 /**
2184  * regulator_get_drvdata - get regulator driver data
2185  * @regulator: regulator
2186  *
2187  * Get regulator driver private data. This call can be used in the consumer
2188  * driver context when non API regulator specific functions need to be called.
2189  */
2190 void *regulator_get_drvdata(struct regulator *regulator)
2191 {
2192         return regulator->rdev->reg_data;
2193 }
2194 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2195
2196 /**
2197  * regulator_set_drvdata - set regulator driver data
2198  * @regulator: regulator
2199  * @data: data
2200  */
2201 void regulator_set_drvdata(struct regulator *regulator, void *data)
2202 {
2203         regulator->rdev->reg_data = data;
2204 }
2205 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2206
2207 /**
2208  * regulator_get_id - get regulator ID
2209  * @rdev: regulator
2210  */
2211 int rdev_get_id(struct regulator_dev *rdev)
2212 {
2213         return rdev->desc->id;
2214 }
2215 EXPORT_SYMBOL_GPL(rdev_get_id);
2216
2217 struct device *rdev_get_dev(struct regulator_dev *rdev)
2218 {
2219         return &rdev->dev;
2220 }
2221 EXPORT_SYMBOL_GPL(rdev_get_dev);
2222
2223 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2224 {
2225         return reg_init_data->driver_data;
2226 }
2227 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2228
2229 static int __init regulator_init(void)
2230 {
2231         printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2232         return class_register(&regulator_class);
2233 }
2234
2235 /* init early to allow our consumers to complete system booting */
2236 core_initcall(regulator_init);
2237
2238 static int __init regulator_init_complete(void)
2239 {
2240         struct regulator_dev *rdev;
2241         struct regulator_ops *ops;
2242         struct regulation_constraints *c;
2243         int enabled, ret;
2244         const char *name;
2245
2246         mutex_lock(&regulator_list_mutex);
2247
2248         /* If we have a full configuration then disable any regulators
2249          * which are not in use or always_on.  This will become the
2250          * default behaviour in the future.
2251          */
2252         list_for_each_entry(rdev, &regulator_list, list) {
2253                 ops = rdev->desc->ops;
2254                 c = rdev->constraints;
2255
2256                 if (c->name)
2257                         name = c->name;
2258                 else if (rdev->desc->name)
2259                         name = rdev->desc->name;
2260                 else
2261                         name = "regulator";
2262
2263                 if (!ops->disable || c->always_on)
2264                         continue;
2265
2266                 mutex_lock(&rdev->mutex);
2267
2268                 if (rdev->use_count)
2269                         goto unlock;
2270
2271                 /* If we can't read the status assume it's on. */
2272                 if (ops->is_enabled)
2273                         enabled = ops->is_enabled(rdev);
2274                 else
2275                         enabled = 1;
2276
2277                 if (!enabled)
2278                         goto unlock;
2279
2280                 if (has_full_constraints) {
2281                         /* We log since this may kill the system if it
2282                          * goes wrong. */
2283                         printk(KERN_INFO "%s: disabling %s\n",
2284                                __func__, name);
2285                         ret = ops->disable(rdev);
2286                         if (ret != 0) {
2287                                 printk(KERN_ERR
2288                                        "%s: couldn't disable %s: %d\n",
2289                                        __func__, name, ret);
2290                         }
2291                 } else {
2292                         /* The intention is that in future we will
2293                          * assume that full constraints are provided
2294                          * so warn even if we aren't going to do
2295                          * anything here.
2296                          */
2297                         printk(KERN_WARNING
2298                                "%s: incomplete constraints, leaving %s on\n",
2299                                __func__, name);
2300                 }
2301
2302 unlock:
2303                 mutex_unlock(&rdev->mutex);
2304         }
2305
2306         mutex_unlock(&regulator_list_mutex);
2307
2308         return 0;
2309 }
2310 late_initcall(regulator_init_complete);