Merge tag 'trace-v4.17-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[sfrench/cifs-2.6.git] / drivers / pwm / pwm-lpss.c
1 /*
2  * Intel Low Power Subsystem PWM controller driver
3  *
4  * Copyright (C) 2014, Intel Corporation
5  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
6  * Author: Chew Kean Ho <kean.ho.chew@intel.com>
7  * Author: Chang Rebecca Swee Fun <rebecca.swee.fun.chang@intel.com>
8  * Author: Chew Chiau Ee <chiau.ee.chew@intel.com>
9  * Author: Alan Cox <alan@linux.intel.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  */
15
16 #include <linux/delay.h>
17 #include <linux/io.h>
18 #include <linux/iopoll.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/time.h>
23
24 #include "pwm-lpss.h"
25
26 #define PWM                             0x00000000
27 #define PWM_ENABLE                      BIT(31)
28 #define PWM_SW_UPDATE                   BIT(30)
29 #define PWM_BASE_UNIT_SHIFT             8
30 #define PWM_ON_TIME_DIV_MASK            0x000000ff
31
32 /* Size of each PWM register space if multiple */
33 #define PWM_SIZE                        0x400
34
35 struct pwm_lpss_chip {
36         struct pwm_chip chip;
37         void __iomem *regs;
38         const struct pwm_lpss_boardinfo *info;
39 };
40
41 static inline struct pwm_lpss_chip *to_lpwm(struct pwm_chip *chip)
42 {
43         return container_of(chip, struct pwm_lpss_chip, chip);
44 }
45
46 static inline u32 pwm_lpss_read(const struct pwm_device *pwm)
47 {
48         struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
49
50         return readl(lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
51 }
52
53 static inline void pwm_lpss_write(const struct pwm_device *pwm, u32 value)
54 {
55         struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
56
57         writel(value, lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
58 }
59
60 static int pwm_lpss_wait_for_update(struct pwm_device *pwm)
61 {
62         struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
63         const void __iomem *addr = lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM;
64         const unsigned int ms = 500 * USEC_PER_MSEC;
65         u32 val;
66         int err;
67
68         /*
69          * PWM Configuration register has SW_UPDATE bit that is set when a new
70          * configuration is written to the register. The bit is automatically
71          * cleared at the start of the next output cycle by the IP block.
72          *
73          * If one writes a new configuration to the register while it still has
74          * the bit enabled, PWM may freeze. That is, while one can still write
75          * to the register, it won't have an effect. Thus, we try to sleep long
76          * enough that the bit gets cleared and make sure the bit is not
77          * enabled while we update the configuration.
78          */
79         err = readl_poll_timeout(addr, val, !(val & PWM_SW_UPDATE), 40, ms);
80         if (err)
81                 dev_err(pwm->chip->dev, "PWM_SW_UPDATE was not cleared\n");
82
83         return err;
84 }
85
86 static inline int pwm_lpss_is_updating(struct pwm_device *pwm)
87 {
88         return (pwm_lpss_read(pwm) & PWM_SW_UPDATE) ? -EBUSY : 0;
89 }
90
91 static void pwm_lpss_prepare(struct pwm_lpss_chip *lpwm, struct pwm_device *pwm,
92                              int duty_ns, int period_ns)
93 {
94         unsigned long long on_time_div;
95         unsigned long c = lpwm->info->clk_rate, base_unit_range;
96         unsigned long long base_unit, freq = NSEC_PER_SEC;
97         u32 ctrl;
98
99         do_div(freq, period_ns);
100
101         /*
102          * The equation is:
103          * base_unit = round(base_unit_range * freq / c)
104          */
105         base_unit_range = BIT(lpwm->info->base_unit_bits) - 1;
106         freq *= base_unit_range;
107
108         base_unit = DIV_ROUND_CLOSEST_ULL(freq, c);
109
110         on_time_div = 255ULL * duty_ns;
111         do_div(on_time_div, period_ns);
112         on_time_div = 255ULL - on_time_div;
113
114         ctrl = pwm_lpss_read(pwm);
115         ctrl &= ~PWM_ON_TIME_DIV_MASK;
116         ctrl &= ~(base_unit_range << PWM_BASE_UNIT_SHIFT);
117         base_unit &= base_unit_range;
118         ctrl |= (u32) base_unit << PWM_BASE_UNIT_SHIFT;
119         ctrl |= on_time_div;
120         pwm_lpss_write(pwm, ctrl);
121 }
122
123 static inline void pwm_lpss_cond_enable(struct pwm_device *pwm, bool cond)
124 {
125         if (cond)
126                 pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_ENABLE);
127 }
128
129 static int pwm_lpss_apply(struct pwm_chip *chip, struct pwm_device *pwm,
130                           struct pwm_state *state)
131 {
132         struct pwm_lpss_chip *lpwm = to_lpwm(chip);
133         int ret;
134
135         if (state->enabled) {
136                 if (!pwm_is_enabled(pwm)) {
137                         pm_runtime_get_sync(chip->dev);
138                         ret = pwm_lpss_is_updating(pwm);
139                         if (ret) {
140                                 pm_runtime_put(chip->dev);
141                                 return ret;
142                         }
143                         pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
144                         pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_SW_UPDATE);
145                         pwm_lpss_cond_enable(pwm, lpwm->info->bypass == false);
146                         ret = pwm_lpss_wait_for_update(pwm);
147                         if (ret) {
148                                 pm_runtime_put(chip->dev);
149                                 return ret;
150                         }
151                         pwm_lpss_cond_enable(pwm, lpwm->info->bypass == true);
152                 } else {
153                         ret = pwm_lpss_is_updating(pwm);
154                         if (ret)
155                                 return ret;
156                         pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
157                         pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_SW_UPDATE);
158                         return pwm_lpss_wait_for_update(pwm);
159                 }
160         } else if (pwm_is_enabled(pwm)) {
161                 pwm_lpss_write(pwm, pwm_lpss_read(pwm) & ~PWM_ENABLE);
162                 pm_runtime_put(chip->dev);
163         }
164
165         return 0;
166 }
167
168 static const struct pwm_ops pwm_lpss_ops = {
169         .apply = pwm_lpss_apply,
170         .owner = THIS_MODULE,
171 };
172
173 struct pwm_lpss_chip *pwm_lpss_probe(struct device *dev, struct resource *r,
174                                      const struct pwm_lpss_boardinfo *info)
175 {
176         struct pwm_lpss_chip *lpwm;
177         unsigned long c;
178         int ret;
179
180         lpwm = devm_kzalloc(dev, sizeof(*lpwm), GFP_KERNEL);
181         if (!lpwm)
182                 return ERR_PTR(-ENOMEM);
183
184         lpwm->regs = devm_ioremap_resource(dev, r);
185         if (IS_ERR(lpwm->regs))
186                 return ERR_CAST(lpwm->regs);
187
188         lpwm->info = info;
189
190         c = lpwm->info->clk_rate;
191         if (!c)
192                 return ERR_PTR(-EINVAL);
193
194         lpwm->chip.dev = dev;
195         lpwm->chip.ops = &pwm_lpss_ops;
196         lpwm->chip.base = -1;
197         lpwm->chip.npwm = info->npwm;
198
199         ret = pwmchip_add(&lpwm->chip);
200         if (ret) {
201                 dev_err(dev, "failed to add PWM chip: %d\n", ret);
202                 return ERR_PTR(ret);
203         }
204
205         return lpwm;
206 }
207 EXPORT_SYMBOL_GPL(pwm_lpss_probe);
208
209 int pwm_lpss_remove(struct pwm_lpss_chip *lpwm)
210 {
211         return pwmchip_remove(&lpwm->chip);
212 }
213 EXPORT_SYMBOL_GPL(pwm_lpss_remove);
214
215 MODULE_DESCRIPTION("PWM driver for Intel LPSS");
216 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
217 MODULE_LICENSE("GPL v2");