Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[sfrench/cifs-2.6.git] / drivers / platform / mellanox / mlxbf-bootctl.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Mellanox boot control driver
4  *
5  * This driver provides a sysfs interface for systems management
6  * software to manage reset-time actions.
7  *
8  * Copyright (C) 2019 Mellanox Technologies
9  */
10
11 #include <linux/acpi.h>
12 #include <linux/arm-smccc.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15
16 #include "mlxbf-bootctl.h"
17
18 #define MLXBF_BOOTCTL_SB_SECURE_MASK            0x03
19 #define MLXBF_BOOTCTL_SB_TEST_MASK              0x0c
20
21 #define MLXBF_SB_KEY_NUM                        4
22
23 /* UUID used to probe ATF service. */
24 static const char *mlxbf_bootctl_svc_uuid_str =
25         "89c036b4-e7d7-11e6-8797-001aca00bfc4";
26
27 struct mlxbf_bootctl_name {
28         u32 value;
29         const char *name;
30 };
31
32 static struct mlxbf_bootctl_name boot_names[] = {
33         { MLXBF_BOOTCTL_EXTERNAL, "external" },
34         { MLXBF_BOOTCTL_EMMC, "emmc" },
35         { MLNX_BOOTCTL_SWAP_EMMC, "swap_emmc" },
36         { MLXBF_BOOTCTL_EMMC_LEGACY, "emmc_legacy" },
37         { MLXBF_BOOTCTL_NONE, "none" },
38 };
39
40 static const char * const mlxbf_bootctl_lifecycle_states[] = {
41         [0] = "Production",
42         [1] = "GA Secured",
43         [2] = "GA Non-Secured",
44         [3] = "RMA",
45 };
46
47 /* ARM SMC call which is atomic and no need for lock. */
48 static int mlxbf_bootctl_smc(unsigned int smc_op, int smc_arg)
49 {
50         struct arm_smccc_res res;
51
52         arm_smccc_smc(smc_op, smc_arg, 0, 0, 0, 0, 0, 0, &res);
53
54         return res.a0;
55 }
56
57 /* Return the action in integer or an error code. */
58 static int mlxbf_bootctl_reset_action_to_val(const char *action)
59 {
60         int i;
61
62         for (i = 0; i < ARRAY_SIZE(boot_names); i++)
63                 if (sysfs_streq(boot_names[i].name, action))
64                         return boot_names[i].value;
65
66         return -EINVAL;
67 }
68
69 /* Return the action in string. */
70 static const char *mlxbf_bootctl_action_to_string(int action)
71 {
72         int i;
73
74         for (i = 0; i < ARRAY_SIZE(boot_names); i++)
75                 if (boot_names[i].value == action)
76                         return boot_names[i].name;
77
78         return "invalid action";
79 }
80
81 static ssize_t post_reset_wdog_show(struct device *dev,
82                                     struct device_attribute *attr, char *buf)
83 {
84         int ret;
85
86         ret = mlxbf_bootctl_smc(MLXBF_BOOTCTL_GET_POST_RESET_WDOG, 0);
87         if (ret < 0)
88                 return ret;
89
90         return sprintf(buf, "%d\n", ret);
91 }
92
93 static ssize_t post_reset_wdog_store(struct device *dev,
94                                      struct device_attribute *attr,
95                                      const char *buf, size_t count)
96 {
97         unsigned long value;
98         int ret;
99
100         ret = kstrtoul(buf, 10, &value);
101         if (ret)
102                 return ret;
103
104         ret = mlxbf_bootctl_smc(MLXBF_BOOTCTL_SET_POST_RESET_WDOG, value);
105         if (ret < 0)
106                 return ret;
107
108         return count;
109 }
110
111 static ssize_t mlxbf_bootctl_show(int smc_op, char *buf)
112 {
113         int action;
114
115         action = mlxbf_bootctl_smc(smc_op, 0);
116         if (action < 0)
117                 return action;
118
119         return sprintf(buf, "%s\n", mlxbf_bootctl_action_to_string(action));
120 }
121
122 static int mlxbf_bootctl_store(int smc_op, const char *buf, size_t count)
123 {
124         int ret, action;
125
126         action = mlxbf_bootctl_reset_action_to_val(buf);
127         if (action < 0)
128                 return action;
129
130         ret = mlxbf_bootctl_smc(smc_op, action);
131         if (ret < 0)
132                 return ret;
133
134         return count;
135 }
136
137 static ssize_t reset_action_show(struct device *dev,
138                                  struct device_attribute *attr, char *buf)
139 {
140         return mlxbf_bootctl_show(MLXBF_BOOTCTL_GET_RESET_ACTION, buf);
141 }
142
143 static ssize_t reset_action_store(struct device *dev,
144                                   struct device_attribute *attr,
145                                   const char *buf, size_t count)
146 {
147         return mlxbf_bootctl_store(MLXBF_BOOTCTL_SET_RESET_ACTION, buf, count);
148 }
149
150 static ssize_t second_reset_action_show(struct device *dev,
151                                         struct device_attribute *attr,
152                                         char *buf)
153 {
154         return mlxbf_bootctl_show(MLXBF_BOOTCTL_GET_SECOND_RESET_ACTION, buf);
155 }
156
157 static ssize_t second_reset_action_store(struct device *dev,
158                                          struct device_attribute *attr,
159                                          const char *buf, size_t count)
160 {
161         return mlxbf_bootctl_store(MLXBF_BOOTCTL_SET_SECOND_RESET_ACTION, buf,
162                                    count);
163 }
164
165 static ssize_t lifecycle_state_show(struct device *dev,
166                                     struct device_attribute *attr, char *buf)
167 {
168         int lc_state;
169
170         lc_state = mlxbf_bootctl_smc(MLXBF_BOOTCTL_GET_TBB_FUSE_STATUS,
171                                      MLXBF_BOOTCTL_FUSE_STATUS_LIFECYCLE);
172         if (lc_state < 0)
173                 return lc_state;
174
175         lc_state &=
176                 MLXBF_BOOTCTL_SB_TEST_MASK | MLXBF_BOOTCTL_SB_SECURE_MASK;
177
178         /*
179          * If the test bits are set, we specify that the current state may be
180          * due to using the test bits.
181          */
182         if (lc_state & MLXBF_BOOTCTL_SB_TEST_MASK) {
183                 lc_state &= MLXBF_BOOTCTL_SB_SECURE_MASK;
184
185                 return sprintf(buf, "%s(test)\n",
186                                mlxbf_bootctl_lifecycle_states[lc_state]);
187         }
188
189         return sprintf(buf, "%s\n", mlxbf_bootctl_lifecycle_states[lc_state]);
190 }
191
192 static ssize_t secure_boot_fuse_state_show(struct device *dev,
193                                            struct device_attribute *attr,
194                                            char *buf)
195 {
196         int burnt, valid, key, key_state, buf_len = 0, upper_key_used = 0;
197         const char *status;
198
199         key_state = mlxbf_bootctl_smc(MLXBF_BOOTCTL_GET_TBB_FUSE_STATUS,
200                                       MLXBF_BOOTCTL_FUSE_STATUS_KEYS);
201         if (key_state < 0)
202                 return key_state;
203
204         /*
205          * key_state contains the bits for 4 Key versions, loaded from eFuses
206          * after a hard reset. Lower 4 bits are a thermometer code indicating
207          * key programming has started for key n (0000 = none, 0001 = version 0,
208          * 0011 = version 1, 0111 = version 2, 1111 = version 3). Upper 4 bits
209          * are a thermometer code indicating key programming has completed for
210          * key n (same encodings as the start bits). This allows for detection
211          * of an interruption in the progamming process which has left the key
212          * partially programmed (and thus invalid). The process is to burn the
213          * eFuse for the new key start bit, burn the key eFuses, then burn the
214          * eFuse for the new key complete bit.
215          *
216          * For example 0000_0000: no key valid, 0001_0001: key version 0 valid,
217          * 0011_0011: key 1 version valid, 0011_0111: key version 2 started
218          * programming but did not complete, etc. The most recent key for which
219          * both start and complete bit is set is loaded. On soft reset, this
220          * register is not modified.
221          */
222         for (key = MLXBF_SB_KEY_NUM - 1; key >= 0; key--) {
223                 burnt = key_state & BIT(key);
224                 valid = key_state & BIT(key + MLXBF_SB_KEY_NUM);
225
226                 if (burnt && valid)
227                         upper_key_used = 1;
228
229                 if (upper_key_used) {
230                         if (burnt)
231                                 status = valid ? "Used" : "Wasted";
232                         else
233                                 status = valid ? "Invalid" : "Skipped";
234                 } else {
235                         if (burnt)
236                                 status = valid ? "InUse" : "Incomplete";
237                         else
238                                 status = valid ? "Invalid" : "Free";
239                 }
240                 buf_len += sprintf(buf + buf_len, "%d:%s ", key, status);
241         }
242         buf_len += sprintf(buf + buf_len, "\n");
243
244         return buf_len;
245 }
246
247 static DEVICE_ATTR_RW(post_reset_wdog);
248 static DEVICE_ATTR_RW(reset_action);
249 static DEVICE_ATTR_RW(second_reset_action);
250 static DEVICE_ATTR_RO(lifecycle_state);
251 static DEVICE_ATTR_RO(secure_boot_fuse_state);
252
253 static struct attribute *mlxbf_bootctl_attrs[] = {
254         &dev_attr_post_reset_wdog.attr,
255         &dev_attr_reset_action.attr,
256         &dev_attr_second_reset_action.attr,
257         &dev_attr_lifecycle_state.attr,
258         &dev_attr_secure_boot_fuse_state.attr,
259         NULL
260 };
261
262 ATTRIBUTE_GROUPS(mlxbf_bootctl);
263
264 static const struct acpi_device_id mlxbf_bootctl_acpi_ids[] = {
265         {"MLNXBF04", 0},
266         {}
267 };
268
269 MODULE_DEVICE_TABLE(acpi, mlxbf_bootctl_acpi_ids);
270
271 static bool mlxbf_bootctl_guid_match(const guid_t *guid,
272                                      const struct arm_smccc_res *res)
273 {
274         guid_t id = GUID_INIT(res->a0, res->a1, res->a1 >> 16,
275                               res->a2, res->a2 >> 8, res->a2 >> 16,
276                               res->a2 >> 24, res->a3, res->a3 >> 8,
277                               res->a3 >> 16, res->a3 >> 24);
278
279         return guid_equal(guid, &id);
280 }
281
282 static int mlxbf_bootctl_probe(struct platform_device *pdev)
283 {
284         struct arm_smccc_res res = { 0 };
285         guid_t guid;
286         int ret;
287
288         /* Ensure we have the UUID we expect for this service. */
289         arm_smccc_smc(MLXBF_BOOTCTL_SIP_SVC_UID, 0, 0, 0, 0, 0, 0, 0, &res);
290         guid_parse(mlxbf_bootctl_svc_uuid_str, &guid);
291         if (!mlxbf_bootctl_guid_match(&guid, &res))
292                 return -ENODEV;
293
294         /*
295          * When watchdog is used, it sets boot mode to MLXBF_BOOTCTL_SWAP_EMMC
296          * in case of boot failures. However it doesn't clear the state if there
297          * is no failure. Restore the default boot mode here to avoid any
298          * unnecessary boot partition swapping.
299          */
300         ret = mlxbf_bootctl_smc(MLXBF_BOOTCTL_SET_RESET_ACTION,
301                                 MLXBF_BOOTCTL_EMMC);
302         if (ret < 0)
303                 dev_warn(&pdev->dev, "Unable to reset the EMMC boot mode\n");
304
305         return 0;
306 }
307
308 static struct platform_driver mlxbf_bootctl_driver = {
309         .probe = mlxbf_bootctl_probe,
310         .driver = {
311                 .name = "mlxbf-bootctl",
312                 .dev_groups = mlxbf_bootctl_groups,
313                 .acpi_match_table = mlxbf_bootctl_acpi_ids,
314         }
315 };
316
317 module_platform_driver(mlxbf_bootctl_driver);
318
319 MODULE_DESCRIPTION("Mellanox boot control driver");
320 MODULE_LICENSE("GPL v2");
321 MODULE_AUTHOR("Mellanox Technologies");