Merge tag 'iomap-4.21-merge-3' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[sfrench/cifs-2.6.git] / drivers / perf / arm_pmu.c
1 #undef DEBUG
2
3 /*
4  * ARM performance counter support.
5  *
6  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8  *
9  * This code is based on the sparc64 perf event code, which is in turn based
10  * on the x86 code.
11  */
12 #define pr_fmt(fmt) "hw perfevents: " fmt
13
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/perf/arm_pmu.h>
20 #include <linux/slab.h>
21 #include <linux/sched/clock.h>
22 #include <linux/spinlock.h>
23 #include <linux/irq.h>
24 #include <linux/irqdesc.h>
25
26 #include <asm/irq_regs.h>
27
28 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
29 static DEFINE_PER_CPU(int, cpu_irq);
30
31 static inline u64 arm_pmu_event_max_period(struct perf_event *event)
32 {
33         if (event->hw.flags & ARMPMU_EVT_64BIT)
34                 return GENMASK_ULL(63, 0);
35         else
36                 return GENMASK_ULL(31, 0);
37 }
38
39 static int
40 armpmu_map_cache_event(const unsigned (*cache_map)
41                                       [PERF_COUNT_HW_CACHE_MAX]
42                                       [PERF_COUNT_HW_CACHE_OP_MAX]
43                                       [PERF_COUNT_HW_CACHE_RESULT_MAX],
44                        u64 config)
45 {
46         unsigned int cache_type, cache_op, cache_result, ret;
47
48         cache_type = (config >>  0) & 0xff;
49         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
50                 return -EINVAL;
51
52         cache_op = (config >>  8) & 0xff;
53         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
54                 return -EINVAL;
55
56         cache_result = (config >> 16) & 0xff;
57         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
58                 return -EINVAL;
59
60         if (!cache_map)
61                 return -ENOENT;
62
63         ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
64
65         if (ret == CACHE_OP_UNSUPPORTED)
66                 return -ENOENT;
67
68         return ret;
69 }
70
71 static int
72 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
73 {
74         int mapping;
75
76         if (config >= PERF_COUNT_HW_MAX)
77                 return -EINVAL;
78
79         if (!event_map)
80                 return -ENOENT;
81
82         mapping = (*event_map)[config];
83         return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
84 }
85
86 static int
87 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
88 {
89         return (int)(config & raw_event_mask);
90 }
91
92 int
93 armpmu_map_event(struct perf_event *event,
94                  const unsigned (*event_map)[PERF_COUNT_HW_MAX],
95                  const unsigned (*cache_map)
96                                 [PERF_COUNT_HW_CACHE_MAX]
97                                 [PERF_COUNT_HW_CACHE_OP_MAX]
98                                 [PERF_COUNT_HW_CACHE_RESULT_MAX],
99                  u32 raw_event_mask)
100 {
101         u64 config = event->attr.config;
102         int type = event->attr.type;
103
104         if (type == event->pmu->type)
105                 return armpmu_map_raw_event(raw_event_mask, config);
106
107         switch (type) {
108         case PERF_TYPE_HARDWARE:
109                 return armpmu_map_hw_event(event_map, config);
110         case PERF_TYPE_HW_CACHE:
111                 return armpmu_map_cache_event(cache_map, config);
112         case PERF_TYPE_RAW:
113                 return armpmu_map_raw_event(raw_event_mask, config);
114         }
115
116         return -ENOENT;
117 }
118
119 int armpmu_event_set_period(struct perf_event *event)
120 {
121         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
122         struct hw_perf_event *hwc = &event->hw;
123         s64 left = local64_read(&hwc->period_left);
124         s64 period = hwc->sample_period;
125         u64 max_period;
126         int ret = 0;
127
128         max_period = arm_pmu_event_max_period(event);
129         if (unlikely(left <= -period)) {
130                 left = period;
131                 local64_set(&hwc->period_left, left);
132                 hwc->last_period = period;
133                 ret = 1;
134         }
135
136         if (unlikely(left <= 0)) {
137                 left += period;
138                 local64_set(&hwc->period_left, left);
139                 hwc->last_period = period;
140                 ret = 1;
141         }
142
143         /*
144          * Limit the maximum period to prevent the counter value
145          * from overtaking the one we are about to program. In
146          * effect we are reducing max_period to account for
147          * interrupt latency (and we are being very conservative).
148          */
149         if (left > (max_period >> 1))
150                 left = (max_period >> 1);
151
152         local64_set(&hwc->prev_count, (u64)-left);
153
154         armpmu->write_counter(event, (u64)(-left) & max_period);
155
156         perf_event_update_userpage(event);
157
158         return ret;
159 }
160
161 u64 armpmu_event_update(struct perf_event *event)
162 {
163         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
164         struct hw_perf_event *hwc = &event->hw;
165         u64 delta, prev_raw_count, new_raw_count;
166         u64 max_period = arm_pmu_event_max_period(event);
167
168 again:
169         prev_raw_count = local64_read(&hwc->prev_count);
170         new_raw_count = armpmu->read_counter(event);
171
172         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
173                              new_raw_count) != prev_raw_count)
174                 goto again;
175
176         delta = (new_raw_count - prev_raw_count) & max_period;
177
178         local64_add(delta, &event->count);
179         local64_sub(delta, &hwc->period_left);
180
181         return new_raw_count;
182 }
183
184 static void
185 armpmu_read(struct perf_event *event)
186 {
187         armpmu_event_update(event);
188 }
189
190 static void
191 armpmu_stop(struct perf_event *event, int flags)
192 {
193         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
194         struct hw_perf_event *hwc = &event->hw;
195
196         /*
197          * ARM pmu always has to update the counter, so ignore
198          * PERF_EF_UPDATE, see comments in armpmu_start().
199          */
200         if (!(hwc->state & PERF_HES_STOPPED)) {
201                 armpmu->disable(event);
202                 armpmu_event_update(event);
203                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
204         }
205 }
206
207 static void armpmu_start(struct perf_event *event, int flags)
208 {
209         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
210         struct hw_perf_event *hwc = &event->hw;
211
212         /*
213          * ARM pmu always has to reprogram the period, so ignore
214          * PERF_EF_RELOAD, see the comment below.
215          */
216         if (flags & PERF_EF_RELOAD)
217                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
218
219         hwc->state = 0;
220         /*
221          * Set the period again. Some counters can't be stopped, so when we
222          * were stopped we simply disabled the IRQ source and the counter
223          * may have been left counting. If we don't do this step then we may
224          * get an interrupt too soon or *way* too late if the overflow has
225          * happened since disabling.
226          */
227         armpmu_event_set_period(event);
228         armpmu->enable(event);
229 }
230
231 static void
232 armpmu_del(struct perf_event *event, int flags)
233 {
234         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
235         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
236         struct hw_perf_event *hwc = &event->hw;
237         int idx = hwc->idx;
238
239         armpmu_stop(event, PERF_EF_UPDATE);
240         hw_events->events[idx] = NULL;
241         armpmu->clear_event_idx(hw_events, event);
242         perf_event_update_userpage(event);
243         /* Clear the allocated counter */
244         hwc->idx = -1;
245 }
246
247 static int
248 armpmu_add(struct perf_event *event, int flags)
249 {
250         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
251         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
252         struct hw_perf_event *hwc = &event->hw;
253         int idx;
254
255         /* An event following a process won't be stopped earlier */
256         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
257                 return -ENOENT;
258
259         /* If we don't have a space for the counter then finish early. */
260         idx = armpmu->get_event_idx(hw_events, event);
261         if (idx < 0)
262                 return idx;
263
264         /*
265          * If there is an event in the counter we are going to use then make
266          * sure it is disabled.
267          */
268         event->hw.idx = idx;
269         armpmu->disable(event);
270         hw_events->events[idx] = event;
271
272         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
273         if (flags & PERF_EF_START)
274                 armpmu_start(event, PERF_EF_RELOAD);
275
276         /* Propagate our changes to the userspace mapping. */
277         perf_event_update_userpage(event);
278
279         return 0;
280 }
281
282 static int
283 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
284                                struct perf_event *event)
285 {
286         struct arm_pmu *armpmu;
287
288         if (is_software_event(event))
289                 return 1;
290
291         /*
292          * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
293          * core perf code won't check that the pmu->ctx == leader->ctx
294          * until after pmu->event_init(event).
295          */
296         if (event->pmu != pmu)
297                 return 0;
298
299         if (event->state < PERF_EVENT_STATE_OFF)
300                 return 1;
301
302         if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
303                 return 1;
304
305         armpmu = to_arm_pmu(event->pmu);
306         return armpmu->get_event_idx(hw_events, event) >= 0;
307 }
308
309 static int
310 validate_group(struct perf_event *event)
311 {
312         struct perf_event *sibling, *leader = event->group_leader;
313         struct pmu_hw_events fake_pmu;
314
315         /*
316          * Initialise the fake PMU. We only need to populate the
317          * used_mask for the purposes of validation.
318          */
319         memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
320
321         if (!validate_event(event->pmu, &fake_pmu, leader))
322                 return -EINVAL;
323
324         for_each_sibling_event(sibling, leader) {
325                 if (!validate_event(event->pmu, &fake_pmu, sibling))
326                         return -EINVAL;
327         }
328
329         if (!validate_event(event->pmu, &fake_pmu, event))
330                 return -EINVAL;
331
332         return 0;
333 }
334
335 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
336 {
337         struct arm_pmu *armpmu;
338         int ret;
339         u64 start_clock, finish_clock;
340
341         /*
342          * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
343          * the handlers expect a struct arm_pmu*. The percpu_irq framework will
344          * do any necessary shifting, we just need to perform the first
345          * dereference.
346          */
347         armpmu = *(void **)dev;
348         if (WARN_ON_ONCE(!armpmu))
349                 return IRQ_NONE;
350
351         start_clock = sched_clock();
352         ret = armpmu->handle_irq(armpmu);
353         finish_clock = sched_clock();
354
355         perf_sample_event_took(finish_clock - start_clock);
356         return ret;
357 }
358
359 static int
360 event_requires_mode_exclusion(struct perf_event_attr *attr)
361 {
362         return attr->exclude_idle || attr->exclude_user ||
363                attr->exclude_kernel || attr->exclude_hv;
364 }
365
366 static int
367 __hw_perf_event_init(struct perf_event *event)
368 {
369         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
370         struct hw_perf_event *hwc = &event->hw;
371         int mapping;
372
373         hwc->flags = 0;
374         mapping = armpmu->map_event(event);
375
376         if (mapping < 0) {
377                 pr_debug("event %x:%llx not supported\n", event->attr.type,
378                          event->attr.config);
379                 return mapping;
380         }
381
382         /*
383          * We don't assign an index until we actually place the event onto
384          * hardware. Use -1 to signify that we haven't decided where to put it
385          * yet. For SMP systems, each core has it's own PMU so we can't do any
386          * clever allocation or constraints checking at this point.
387          */
388         hwc->idx                = -1;
389         hwc->config_base        = 0;
390         hwc->config             = 0;
391         hwc->event_base         = 0;
392
393         /*
394          * Check whether we need to exclude the counter from certain modes.
395          */
396         if ((!armpmu->set_event_filter ||
397              armpmu->set_event_filter(hwc, &event->attr)) &&
398              event_requires_mode_exclusion(&event->attr)) {
399                 pr_debug("ARM performance counters do not support "
400                          "mode exclusion\n");
401                 return -EOPNOTSUPP;
402         }
403
404         /*
405          * Store the event encoding into the config_base field.
406          */
407         hwc->config_base            |= (unsigned long)mapping;
408
409         if (!is_sampling_event(event)) {
410                 /*
411                  * For non-sampling runs, limit the sample_period to half
412                  * of the counter width. That way, the new counter value
413                  * is far less likely to overtake the previous one unless
414                  * you have some serious IRQ latency issues.
415                  */
416                 hwc->sample_period  = arm_pmu_event_max_period(event) >> 1;
417                 hwc->last_period    = hwc->sample_period;
418                 local64_set(&hwc->period_left, hwc->sample_period);
419         }
420
421         if (event->group_leader != event) {
422                 if (validate_group(event) != 0)
423                         return -EINVAL;
424         }
425
426         return 0;
427 }
428
429 static int armpmu_event_init(struct perf_event *event)
430 {
431         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
432
433         /*
434          * Reject CPU-affine events for CPUs that are of a different class to
435          * that which this PMU handles. Process-following events (where
436          * event->cpu == -1) can be migrated between CPUs, and thus we have to
437          * reject them later (in armpmu_add) if they're scheduled on a
438          * different class of CPU.
439          */
440         if (event->cpu != -1 &&
441                 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
442                 return -ENOENT;
443
444         /* does not support taken branch sampling */
445         if (has_branch_stack(event))
446                 return -EOPNOTSUPP;
447
448         if (armpmu->map_event(event) == -ENOENT)
449                 return -ENOENT;
450
451         return __hw_perf_event_init(event);
452 }
453
454 static void armpmu_enable(struct pmu *pmu)
455 {
456         struct arm_pmu *armpmu = to_arm_pmu(pmu);
457         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
458         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
459
460         /* For task-bound events we may be called on other CPUs */
461         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
462                 return;
463
464         if (enabled)
465                 armpmu->start(armpmu);
466 }
467
468 static void armpmu_disable(struct pmu *pmu)
469 {
470         struct arm_pmu *armpmu = to_arm_pmu(pmu);
471
472         /* For task-bound events we may be called on other CPUs */
473         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
474                 return;
475
476         armpmu->stop(armpmu);
477 }
478
479 /*
480  * In heterogeneous systems, events are specific to a particular
481  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
482  * the same microarchitecture.
483  */
484 static int armpmu_filter_match(struct perf_event *event)
485 {
486         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
487         unsigned int cpu = smp_processor_id();
488         int ret;
489
490         ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus);
491         if (ret && armpmu->filter_match)
492                 return armpmu->filter_match(event);
493
494         return ret;
495 }
496
497 static ssize_t armpmu_cpumask_show(struct device *dev,
498                                    struct device_attribute *attr, char *buf)
499 {
500         struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
501         return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
502 }
503
504 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
505
506 static struct attribute *armpmu_common_attrs[] = {
507         &dev_attr_cpus.attr,
508         NULL,
509 };
510
511 static struct attribute_group armpmu_common_attr_group = {
512         .attrs = armpmu_common_attrs,
513 };
514
515 /* Set at runtime when we know what CPU type we are. */
516 static struct arm_pmu *__oprofile_cpu_pmu;
517
518 /*
519  * Despite the names, these two functions are CPU-specific and are used
520  * by the OProfile/perf code.
521  */
522 const char *perf_pmu_name(void)
523 {
524         if (!__oprofile_cpu_pmu)
525                 return NULL;
526
527         return __oprofile_cpu_pmu->name;
528 }
529 EXPORT_SYMBOL_GPL(perf_pmu_name);
530
531 int perf_num_counters(void)
532 {
533         int max_events = 0;
534
535         if (__oprofile_cpu_pmu != NULL)
536                 max_events = __oprofile_cpu_pmu->num_events;
537
538         return max_events;
539 }
540 EXPORT_SYMBOL_GPL(perf_num_counters);
541
542 static int armpmu_count_irq_users(const int irq)
543 {
544         int cpu, count = 0;
545
546         for_each_possible_cpu(cpu) {
547                 if (per_cpu(cpu_irq, cpu) == irq)
548                         count++;
549         }
550
551         return count;
552 }
553
554 void armpmu_free_irq(int irq, int cpu)
555 {
556         if (per_cpu(cpu_irq, cpu) == 0)
557                 return;
558         if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
559                 return;
560
561         if (!irq_is_percpu_devid(irq))
562                 free_irq(irq, per_cpu_ptr(&cpu_armpmu, cpu));
563         else if (armpmu_count_irq_users(irq) == 1)
564                 free_percpu_irq(irq, &cpu_armpmu);
565
566         per_cpu(cpu_irq, cpu) = 0;
567 }
568
569 int armpmu_request_irq(int irq, int cpu)
570 {
571         int err = 0;
572         const irq_handler_t handler = armpmu_dispatch_irq;
573         if (!irq)
574                 return 0;
575
576         if (!irq_is_percpu_devid(irq)) {
577                 unsigned long irq_flags;
578
579                 err = irq_force_affinity(irq, cpumask_of(cpu));
580
581                 if (err && num_possible_cpus() > 1) {
582                         pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
583                                 irq, cpu);
584                         goto err_out;
585                 }
586
587                 irq_flags = IRQF_PERCPU |
588                             IRQF_NOBALANCING |
589                             IRQF_NO_THREAD;
590
591                 irq_set_status_flags(irq, IRQ_NOAUTOEN);
592                 err = request_irq(irq, handler, irq_flags, "arm-pmu",
593                                   per_cpu_ptr(&cpu_armpmu, cpu));
594         } else if (armpmu_count_irq_users(irq) == 0) {
595                 err = request_percpu_irq(irq, handler, "arm-pmu",
596                                          &cpu_armpmu);
597         }
598
599         if (err)
600                 goto err_out;
601
602         per_cpu(cpu_irq, cpu) = irq;
603         return 0;
604
605 err_out:
606         pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
607         return err;
608 }
609
610 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
611 {
612         struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
613         return per_cpu(hw_events->irq, cpu);
614 }
615
616 /*
617  * PMU hardware loses all context when a CPU goes offline.
618  * When a CPU is hotplugged back in, since some hardware registers are
619  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
620  * junk values out of them.
621  */
622 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
623 {
624         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
625         int irq;
626
627         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
628                 return 0;
629         if (pmu->reset)
630                 pmu->reset(pmu);
631
632         per_cpu(cpu_armpmu, cpu) = pmu;
633
634         irq = armpmu_get_cpu_irq(pmu, cpu);
635         if (irq) {
636                 if (irq_is_percpu_devid(irq))
637                         enable_percpu_irq(irq, IRQ_TYPE_NONE);
638                 else
639                         enable_irq(irq);
640         }
641
642         return 0;
643 }
644
645 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
646 {
647         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
648         int irq;
649
650         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
651                 return 0;
652
653         irq = armpmu_get_cpu_irq(pmu, cpu);
654         if (irq) {
655                 if (irq_is_percpu_devid(irq))
656                         disable_percpu_irq(irq);
657                 else
658                         disable_irq_nosync(irq);
659         }
660
661         per_cpu(cpu_armpmu, cpu) = NULL;
662
663         return 0;
664 }
665
666 #ifdef CONFIG_CPU_PM
667 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
668 {
669         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
670         struct perf_event *event;
671         int idx;
672
673         for (idx = 0; idx < armpmu->num_events; idx++) {
674                 event = hw_events->events[idx];
675                 if (!event)
676                         continue;
677
678                 switch (cmd) {
679                 case CPU_PM_ENTER:
680                         /*
681                          * Stop and update the counter
682                          */
683                         armpmu_stop(event, PERF_EF_UPDATE);
684                         break;
685                 case CPU_PM_EXIT:
686                 case CPU_PM_ENTER_FAILED:
687                          /*
688                           * Restore and enable the counter.
689                           * armpmu_start() indirectly calls
690                           *
691                           * perf_event_update_userpage()
692                           *
693                           * that requires RCU read locking to be functional,
694                           * wrap the call within RCU_NONIDLE to make the
695                           * RCU subsystem aware this cpu is not idle from
696                           * an RCU perspective for the armpmu_start() call
697                           * duration.
698                           */
699                         RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
700                         break;
701                 default:
702                         break;
703                 }
704         }
705 }
706
707 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
708                              void *v)
709 {
710         struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
711         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
712         int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
713
714         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
715                 return NOTIFY_DONE;
716
717         /*
718          * Always reset the PMU registers on power-up even if
719          * there are no events running.
720          */
721         if (cmd == CPU_PM_EXIT && armpmu->reset)
722                 armpmu->reset(armpmu);
723
724         if (!enabled)
725                 return NOTIFY_OK;
726
727         switch (cmd) {
728         case CPU_PM_ENTER:
729                 armpmu->stop(armpmu);
730                 cpu_pm_pmu_setup(armpmu, cmd);
731                 break;
732         case CPU_PM_EXIT:
733                 cpu_pm_pmu_setup(armpmu, cmd);
734         case CPU_PM_ENTER_FAILED:
735                 armpmu->start(armpmu);
736                 break;
737         default:
738                 return NOTIFY_DONE;
739         }
740
741         return NOTIFY_OK;
742 }
743
744 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
745 {
746         cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
747         return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
748 }
749
750 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
751 {
752         cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
753 }
754 #else
755 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
756 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
757 #endif
758
759 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
760 {
761         int err;
762
763         err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
764                                        &cpu_pmu->node);
765         if (err)
766                 goto out;
767
768         err = cpu_pm_pmu_register(cpu_pmu);
769         if (err)
770                 goto out_unregister;
771
772         return 0;
773
774 out_unregister:
775         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
776                                             &cpu_pmu->node);
777 out:
778         return err;
779 }
780
781 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
782 {
783         cpu_pm_pmu_unregister(cpu_pmu);
784         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
785                                             &cpu_pmu->node);
786 }
787
788 static struct arm_pmu *__armpmu_alloc(gfp_t flags)
789 {
790         struct arm_pmu *pmu;
791         int cpu;
792
793         pmu = kzalloc(sizeof(*pmu), flags);
794         if (!pmu) {
795                 pr_info("failed to allocate PMU device!\n");
796                 goto out;
797         }
798
799         pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags);
800         if (!pmu->hw_events) {
801                 pr_info("failed to allocate per-cpu PMU data.\n");
802                 goto out_free_pmu;
803         }
804
805         pmu->pmu = (struct pmu) {
806                 .pmu_enable     = armpmu_enable,
807                 .pmu_disable    = armpmu_disable,
808                 .event_init     = armpmu_event_init,
809                 .add            = armpmu_add,
810                 .del            = armpmu_del,
811                 .start          = armpmu_start,
812                 .stop           = armpmu_stop,
813                 .read           = armpmu_read,
814                 .filter_match   = armpmu_filter_match,
815                 .attr_groups    = pmu->attr_groups,
816                 /*
817                  * This is a CPU PMU potentially in a heterogeneous
818                  * configuration (e.g. big.LITTLE). This is not an uncore PMU,
819                  * and we have taken ctx sharing into account (e.g. with our
820                  * pmu::filter_match callback and pmu::event_init group
821                  * validation).
822                  */
823                 .capabilities   = PERF_PMU_CAP_HETEROGENEOUS_CPUS,
824         };
825
826         pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
827                 &armpmu_common_attr_group;
828
829         for_each_possible_cpu(cpu) {
830                 struct pmu_hw_events *events;
831
832                 events = per_cpu_ptr(pmu->hw_events, cpu);
833                 raw_spin_lock_init(&events->pmu_lock);
834                 events->percpu_pmu = pmu;
835         }
836
837         return pmu;
838
839 out_free_pmu:
840         kfree(pmu);
841 out:
842         return NULL;
843 }
844
845 struct arm_pmu *armpmu_alloc(void)
846 {
847         return __armpmu_alloc(GFP_KERNEL);
848 }
849
850 struct arm_pmu *armpmu_alloc_atomic(void)
851 {
852         return __armpmu_alloc(GFP_ATOMIC);
853 }
854
855
856 void armpmu_free(struct arm_pmu *pmu)
857 {
858         free_percpu(pmu->hw_events);
859         kfree(pmu);
860 }
861
862 int armpmu_register(struct arm_pmu *pmu)
863 {
864         int ret;
865
866         ret = cpu_pmu_init(pmu);
867         if (ret)
868                 return ret;
869
870         ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
871         if (ret)
872                 goto out_destroy;
873
874         if (!__oprofile_cpu_pmu)
875                 __oprofile_cpu_pmu = pmu;
876
877         pr_info("enabled with %s PMU driver, %d counters available\n",
878                 pmu->name, pmu->num_events);
879
880         return 0;
881
882 out_destroy:
883         cpu_pmu_destroy(pmu);
884         return ret;
885 }
886
887 static int arm_pmu_hp_init(void)
888 {
889         int ret;
890
891         ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
892                                       "perf/arm/pmu:starting",
893                                       arm_perf_starting_cpu,
894                                       arm_perf_teardown_cpu);
895         if (ret)
896                 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
897                        ret);
898         return ret;
899 }
900 subsys_initcall(arm_pmu_hp_init);