Merge tag 'for-v5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux-power...
[sfrench/cifs-2.6.git] / drivers / parisc / ccio-dma.c
1 /*
2 ** ccio-dma.c:
3 **      DMA management routines for first generation cache-coherent machines.
4 **      Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
5 **
6 **      (c) Copyright 2000 Grant Grundler
7 **      (c) Copyright 2000 Ryan Bradetich
8 **      (c) Copyright 2000 Hewlett-Packard Company
9 **
10 ** This program is free software; you can redistribute it and/or modify
11 ** it under the terms of the GNU General Public License as published by
12 ** the Free Software Foundation; either version 2 of the License, or
13 ** (at your option) any later version.
14 **
15 **
16 **  "Real Mode" operation refers to U2/Uturn chip operation.
17 **  U2/Uturn were designed to perform coherency checks w/o using
18 **  the I/O MMU - basically what x86 does.
19 **
20 **  Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
21 **      CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc
22 **      cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
23 **
24 **  I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
25 **
26 **  Drawbacks of using Real Mode are:
27 **      o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
28 **      o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
29 **      o Ability to do scatter/gather in HW is lost.
30 **      o Doesn't work under PCX-U/U+ machines since they didn't follow
31 **        the coherency design originally worked out. Only PCX-W does.
32 */
33
34 #include <linux/types.h>
35 #include <linux/kernel.h>
36 #include <linux/init.h>
37 #include <linux/mm.h>
38 #include <linux/spinlock.h>
39 #include <linux/slab.h>
40 #include <linux/string.h>
41 #include <linux/pci.h>
42 #include <linux/reboot.h>
43 #include <linux/proc_fs.h>
44 #include <linux/seq_file.h>
45 #include <linux/scatterlist.h>
46 #include <linux/iommu-helper.h>
47 #include <linux/export.h>
48
49 #include <asm/byteorder.h>
50 #include <asm/cache.h>          /* for L1_CACHE_BYTES */
51 #include <linux/uaccess.h>
52 #include <asm/page.h>
53 #include <asm/dma.h>
54 #include <asm/io.h>
55 #include <asm/hardware.h>       /* for register_module() */
56 #include <asm/parisc-device.h>
57
58 #include "iommu.h"
59
60 /* 
61 ** Choose "ccio" since that's what HP-UX calls it.
62 ** Make it easier for folks to migrate from one to the other :^)
63 */
64 #define MODULE_NAME "ccio"
65
66 #undef DEBUG_CCIO_RES
67 #undef DEBUG_CCIO_RUN
68 #undef DEBUG_CCIO_INIT
69 #undef DEBUG_CCIO_RUN_SG
70
71 #ifdef CONFIG_PROC_FS
72 /* depends on proc fs support. But costs CPU performance. */
73 #undef CCIO_COLLECT_STATS
74 #endif
75
76 #include <asm/runway.h>         /* for proc_runway_root */
77
78 #ifdef DEBUG_CCIO_INIT
79 #define DBG_INIT(x...)  printk(x)
80 #else
81 #define DBG_INIT(x...)
82 #endif
83
84 #ifdef DEBUG_CCIO_RUN
85 #define DBG_RUN(x...)   printk(x)
86 #else
87 #define DBG_RUN(x...)
88 #endif
89
90 #ifdef DEBUG_CCIO_RES
91 #define DBG_RES(x...)   printk(x)
92 #else
93 #define DBG_RES(x...)
94 #endif
95
96 #ifdef DEBUG_CCIO_RUN_SG
97 #define DBG_RUN_SG(x...) printk(x)
98 #else
99 #define DBG_RUN_SG(x...)
100 #endif
101
102 #define CCIO_INLINE     inline
103 #define WRITE_U32(value, addr) __raw_writel(value, addr)
104 #define READ_U32(addr) __raw_readl(addr)
105
106 #define U2_IOA_RUNWAY 0x580
107 #define U2_BC_GSC     0x501
108 #define UTURN_IOA_RUNWAY 0x581
109 #define UTURN_BC_GSC     0x502
110
111 #define IOA_NORMAL_MODE      0x00020080 /* IO_CONTROL to turn on CCIO        */
112 #define CMD_TLB_DIRECT_WRITE 35         /* IO_COMMAND for I/O TLB Writes     */
113 #define CMD_TLB_PURGE        33         /* IO_COMMAND to Purge I/O TLB entry */
114
115 struct ioa_registers {
116         /* Runway Supervisory Set */
117         int32_t    unused1[12];
118         uint32_t   io_command;             /* Offset 12 */
119         uint32_t   io_status;              /* Offset 13 */
120         uint32_t   io_control;             /* Offset 14 */
121         int32_t    unused2[1];
122
123         /* Runway Auxiliary Register Set */
124         uint32_t   io_err_resp;            /* Offset  0 */
125         uint32_t   io_err_info;            /* Offset  1 */
126         uint32_t   io_err_req;             /* Offset  2 */
127         uint32_t   io_err_resp_hi;         /* Offset  3 */
128         uint32_t   io_tlb_entry_m;         /* Offset  4 */
129         uint32_t   io_tlb_entry_l;         /* Offset  5 */
130         uint32_t   unused3[1];
131         uint32_t   io_pdir_base;           /* Offset  7 */
132         uint32_t   io_io_low_hv;           /* Offset  8 */
133         uint32_t   io_io_high_hv;          /* Offset  9 */
134         uint32_t   unused4[1];
135         uint32_t   io_chain_id_mask;       /* Offset 11 */
136         uint32_t   unused5[2];
137         uint32_t   io_io_low;              /* Offset 14 */
138         uint32_t   io_io_high;             /* Offset 15 */
139 };
140
141 /*
142 ** IOA Registers
143 ** -------------
144 **
145 ** Runway IO_CONTROL Register (+0x38)
146 ** 
147 ** The Runway IO_CONTROL register controls the forwarding of transactions.
148 **
149 ** | 0  ...  13  |  14 15 | 16 ... 21 | 22 | 23 24 |  25 ... 31 |
150 ** |    HV       |   TLB  |  reserved | HV | mode  |  reserved  |
151 **
152 ** o mode field indicates the address translation of transactions
153 **   forwarded from Runway to GSC+:
154 **       Mode Name     Value        Definition
155 **       Off (default)   0          Opaque to matching addresses.
156 **       Include         1          Transparent for matching addresses.
157 **       Peek            3          Map matching addresses.
158 **
159 **       + "Off" mode: Runway transactions which match the I/O range
160 **         specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
161 **       + "Include" mode: all addresses within the I/O range specified
162 **         by the IO_IO_LOW and IO_IO_HIGH registers are transparently
163 **         forwarded. This is the I/O Adapter's normal operating mode.
164 **       + "Peek" mode: used during system configuration to initialize the
165 **         GSC+ bus. Runway Write_Shorts in the address range specified by
166 **         IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
167 **         *AND* the GSC+ address is remapped to the Broadcast Physical
168 **         Address space by setting the 14 high order address bits of the
169 **         32 bit GSC+ address to ones.
170 **
171 ** o TLB field affects transactions which are forwarded from GSC+ to Runway.
172 **   "Real" mode is the poweron default.
173 ** 
174 **   TLB Mode  Value  Description
175 **   Real        0    No TLB translation. Address is directly mapped and the
176 **                    virtual address is composed of selected physical bits.
177 **   Error       1    Software fills the TLB manually.
178 **   Normal      2    IOA fetches IO TLB misses from IO PDIR (in host memory).
179 **
180 **
181 ** IO_IO_LOW_HV   +0x60 (HV dependent)
182 ** IO_IO_HIGH_HV  +0x64 (HV dependent)
183 ** IO_IO_LOW      +0x78 (Architected register)
184 ** IO_IO_HIGH     +0x7c (Architected register)
185 **
186 ** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
187 ** I/O Adapter address space, respectively.
188 **
189 ** 0  ... 7 | 8 ... 15 |  16   ...   31 |
190 ** 11111111 | 11111111 |      address   |
191 **
192 ** Each LOW/HIGH pair describes a disjoint address space region.
193 ** (2 per GSC+ port). Each incoming Runway transaction address is compared
194 ** with both sets of LOW/HIGH registers. If the address is in the range
195 ** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
196 ** for forwarded to the respective GSC+ bus.
197 ** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
198 ** an address space region.
199 **
200 ** In order for a Runway address to reside within GSC+ extended address space:
201 **      Runway Address [0:7]    must identically compare to 8'b11111111
202 **      Runway Address [8:11]   must be equal to IO_IO_LOW(_HV)[16:19]
203 **      Runway Address [12:23]  must be greater than or equal to
204 **                 IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
205 **      Runway Address [24:39]  is not used in the comparison.
206 **
207 ** When the Runway transaction is forwarded to GSC+, the GSC+ address is
208 ** as follows:
209 **      GSC+ Address[0:3]       4'b1111
210 **      GSC+ Address[4:29]      Runway Address[12:37]
211 **      GSC+ Address[30:31]     2'b00
212 **
213 ** All 4 Low/High registers must be initialized (by PDC) once the lower bus
214 ** is interrogated and address space is defined. The operating system will
215 ** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
216 ** the PDC initialization.  However, the hardware version dependent IO_IO_LOW
217 ** and IO_IO_HIGH registers should not be subsequently altered by the OS.
218 ** 
219 ** Writes to both sets of registers will take effect immediately, bypassing
220 ** the queues, which ensures that subsequent Runway transactions are checked
221 ** against the updated bounds values. However reads are queued, introducing
222 ** the possibility of a read being bypassed by a subsequent write to the same
223 ** register. This sequence can be avoided by having software wait for read
224 ** returns before issuing subsequent writes.
225 */
226
227 struct ioc {
228         struct ioa_registers __iomem *ioc_regs;  /* I/O MMU base address */
229         u8  *res_map;                   /* resource map, bit == pdir entry */
230         u64 *pdir_base;                 /* physical base address */
231         u32 pdir_size;                  /* bytes, function of IOV Space size */
232         u32 res_hint;                   /* next available IOVP - 
233                                            circular search */
234         u32 res_size;                   /* size of resource map in bytes */
235         spinlock_t res_lock;
236
237 #ifdef CCIO_COLLECT_STATS
238 #define CCIO_SEARCH_SAMPLE 0x100
239         unsigned long avg_search[CCIO_SEARCH_SAMPLE];
240         unsigned long avg_idx;            /* current index into avg_search */
241         unsigned long used_pages;
242         unsigned long msingle_calls;
243         unsigned long msingle_pages;
244         unsigned long msg_calls;
245         unsigned long msg_pages;
246         unsigned long usingle_calls;
247         unsigned long usingle_pages;
248         unsigned long usg_calls;
249         unsigned long usg_pages;
250 #endif
251         unsigned short cujo20_bug;
252
253         /* STUFF We don't need in performance path */
254         u32 chainid_shift;              /* specify bit location of chain_id */
255         struct ioc *next;               /* Linked list of discovered iocs */
256         const char *name;               /* device name from firmware */
257         unsigned int hw_path;           /* the hardware path this ioc is associatd with */
258         struct pci_dev *fake_pci_dev;   /* the fake pci_dev for non-pci devs */
259         struct resource mmio_region[2]; /* The "routed" MMIO regions */
260 };
261
262 static struct ioc *ioc_list;
263 static int ioc_count;
264
265 /**************************************************************
266 *
267 *   I/O Pdir Resource Management
268 *
269 *   Bits set in the resource map are in use.
270 *   Each bit can represent a number of pages.
271 *   LSbs represent lower addresses (IOVA's).
272 *
273 *   This was was copied from sba_iommu.c. Don't try to unify
274 *   the two resource managers unless a way to have different
275 *   allocation policies is also adjusted. We'd like to avoid
276 *   I/O TLB thrashing by having resource allocation policy
277 *   match the I/O TLB replacement policy.
278 *
279 ***************************************************************/
280 #define IOVP_SIZE PAGE_SIZE
281 #define IOVP_SHIFT PAGE_SHIFT
282 #define IOVP_MASK PAGE_MASK
283
284 /* Convert from IOVP to IOVA and vice versa. */
285 #define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
286 #define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
287
288 #define PDIR_INDEX(iovp)    ((iovp)>>IOVP_SHIFT)
289 #define MKIOVP(pdir_idx)    ((long)(pdir_idx) << IOVP_SHIFT)
290 #define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
291
292 /*
293 ** Don't worry about the 150% average search length on a miss.
294 ** If the search wraps around, and passes the res_hint, it will
295 ** cause the kernel to panic anyhow.
296 */
297 #define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size)  \
298        for(; res_ptr < res_end; ++res_ptr) { \
299                 int ret;\
300                 unsigned int idx;\
301                 idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
302                 ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\
303                 if ((0 == (*res_ptr & mask)) && !ret) { \
304                         *res_ptr |= mask; \
305                         res_idx = idx;\
306                         ioc->res_hint = res_idx + (size >> 3); \
307                         goto resource_found; \
308                 } \
309         }
310
311 #define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
312        u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
313        u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
314        CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
315        res_ptr = (u##size *)&(ioc)->res_map[0]; \
316        CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
317
318 /*
319 ** Find available bit in this ioa's resource map.
320 ** Use a "circular" search:
321 **   o Most IOVA's are "temporary" - avg search time should be small.
322 ** o keep a history of what happened for debugging
323 ** o KISS.
324 **
325 ** Perf optimizations:
326 ** o search for log2(size) bits at a time.
327 ** o search for available resource bits using byte/word/whatever.
328 ** o use different search for "large" (eg > 4 pages) or "very large"
329 **   (eg > 16 pages) mappings.
330 */
331
332 /**
333  * ccio_alloc_range - Allocate pages in the ioc's resource map.
334  * @ioc: The I/O Controller.
335  * @pages_needed: The requested number of pages to be mapped into the
336  * I/O Pdir...
337  *
338  * This function searches the resource map of the ioc to locate a range
339  * of available pages for the requested size.
340  */
341 static int
342 ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
343 {
344         unsigned int pages_needed = size >> IOVP_SHIFT;
345         unsigned int res_idx;
346         unsigned long boundary_size;
347 #ifdef CCIO_COLLECT_STATS
348         unsigned long cr_start = mfctl(16);
349 #endif
350         
351         BUG_ON(pages_needed == 0);
352         BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
353      
354         DBG_RES("%s() size: %d pages_needed %d\n", 
355                 __func__, size, pages_needed);
356
357         /*
358         ** "seek and ye shall find"...praying never hurts either...
359         ** ggg sacrifices another 710 to the computer gods.
360         */
361
362         boundary_size = ALIGN((unsigned long long)dma_get_seg_boundary(dev) + 1,
363                               1ULL << IOVP_SHIFT) >> IOVP_SHIFT;
364
365         if (pages_needed <= 8) {
366                 /*
367                  * LAN traffic will not thrash the TLB IFF the same NIC
368                  * uses 8 adjacent pages to map separate payload data.
369                  * ie the same byte in the resource bit map.
370                  */
371 #if 0
372                 /* FIXME: bit search should shift it's way through
373                  * an unsigned long - not byte at a time. As it is now,
374                  * we effectively allocate this byte to this mapping.
375                  */
376                 unsigned long mask = ~(~0UL >> pages_needed);
377                 CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
378 #else
379                 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
380 #endif
381         } else if (pages_needed <= 16) {
382                 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
383         } else if (pages_needed <= 32) {
384                 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
385 #ifdef __LP64__
386         } else if (pages_needed <= 64) {
387                 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
388 #endif
389         } else {
390                 panic("%s: %s() Too many pages to map. pages_needed: %u\n",
391                        __FILE__,  __func__, pages_needed);
392         }
393
394         panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
395               __func__);
396         
397 resource_found:
398         
399         DBG_RES("%s() res_idx %d res_hint: %d\n",
400                 __func__, res_idx, ioc->res_hint);
401
402 #ifdef CCIO_COLLECT_STATS
403         {
404                 unsigned long cr_end = mfctl(16);
405                 unsigned long tmp = cr_end - cr_start;
406                 /* check for roll over */
407                 cr_start = (cr_end < cr_start) ?  -(tmp) : (tmp);
408         }
409         ioc->avg_search[ioc->avg_idx++] = cr_start;
410         ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
411         ioc->used_pages += pages_needed;
412 #endif
413         /* 
414         ** return the bit address.
415         */
416         return res_idx << 3;
417 }
418
419 #define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
420         u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
421         BUG_ON((*res_ptr & mask) != mask); \
422         *res_ptr &= ~(mask);
423
424 /**
425  * ccio_free_range - Free pages from the ioc's resource map.
426  * @ioc: The I/O Controller.
427  * @iova: The I/O Virtual Address.
428  * @pages_mapped: The requested number of pages to be freed from the
429  * I/O Pdir.
430  *
431  * This function frees the resouces allocated for the iova.
432  */
433 static void
434 ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
435 {
436         unsigned long iovp = CCIO_IOVP(iova);
437         unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
438
439         BUG_ON(pages_mapped == 0);
440         BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
441         BUG_ON(pages_mapped > BITS_PER_LONG);
442
443         DBG_RES("%s():  res_idx: %d pages_mapped %d\n", 
444                 __func__, res_idx, pages_mapped);
445
446 #ifdef CCIO_COLLECT_STATS
447         ioc->used_pages -= pages_mapped;
448 #endif
449
450         if(pages_mapped <= 8) {
451 #if 0
452                 /* see matching comments in alloc_range */
453                 unsigned long mask = ~(~0UL >> pages_mapped);
454                 CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
455 #else
456                 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffUL, 8);
457 #endif
458         } else if(pages_mapped <= 16) {
459                 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffffUL, 16);
460         } else if(pages_mapped <= 32) {
461                 CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
462 #ifdef __LP64__
463         } else if(pages_mapped <= 64) {
464                 CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
465 #endif
466         } else {
467                 panic("%s:%s() Too many pages to unmap.\n", __FILE__,
468                       __func__);
469         }
470 }
471
472 /****************************************************************
473 **
474 **          CCIO dma_ops support routines
475 **
476 *****************************************************************/
477
478 typedef unsigned long space_t;
479 #define KERNEL_SPACE 0
480
481 /*
482 ** DMA "Page Type" and Hints 
483 ** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
484 **   set for subcacheline DMA transfers since we don't want to damage the
485 **   other part of a cacheline.
486 ** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
487 **   This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
488 **   data can avoid this if the mapping covers full cache lines.
489 ** o STOP_MOST is needed for atomicity across cachelines.
490 **   Apparently only "some EISA devices" need this.
491 **   Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
492 **   to use this hint iff the EISA devices needs this feature.
493 **   According to the U2 ERS, STOP_MOST enabled pages hurt performance.
494 ** o PREFETCH should *not* be set for cases like Multiple PCI devices
495 **   behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
496 **   device can be fetched and multiply DMA streams will thrash the
497 **   prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
498 **   and Invalidation of Prefetch Entries".
499 **
500 ** FIXME: the default hints need to be per GSC device - not global.
501 ** 
502 ** HP-UX dorks: linux device driver programming model is totally different
503 **    than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
504 **    do special things to work on non-coherent platforms...linux has to
505 **    be much more careful with this.
506 */
507 #define IOPDIR_VALID    0x01UL
508 #define HINT_SAFE_DMA   0x02UL  /* used for pci_alloc_consistent() pages */
509 #ifdef CONFIG_EISA
510 #define HINT_STOP_MOST  0x04UL  /* LSL support */
511 #else
512 #define HINT_STOP_MOST  0x00UL  /* only needed for "some EISA devices" */
513 #endif
514 #define HINT_UDPATE_ENB 0x08UL  /* not used/supported by U2 */
515 #define HINT_PREFETCH   0x10UL  /* for outbound pages which are not SAFE */
516
517
518 /*
519 ** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
520 ** ccio_alloc_consistent() depends on this to get SAFE_DMA
521 ** when it passes in BIDIRECTIONAL flag.
522 */
523 static u32 hint_lookup[] = {
524         [PCI_DMA_BIDIRECTIONAL] = HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
525         [PCI_DMA_TODEVICE]      = HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
526         [PCI_DMA_FROMDEVICE]    = HINT_STOP_MOST | IOPDIR_VALID,
527 };
528
529 /**
530  * ccio_io_pdir_entry - Initialize an I/O Pdir.
531  * @pdir_ptr: A pointer into I/O Pdir.
532  * @sid: The Space Identifier.
533  * @vba: The virtual address.
534  * @hints: The DMA Hint.
535  *
536  * Given a virtual address (vba, arg2) and space id, (sid, arg1),
537  * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
538  * entry consists of 8 bytes as shown below (MSB == bit 0):
539  *
540  *
541  * WORD 0:
542  * +------+----------------+-----------------------------------------------+
543  * | Phys | Virtual Index  |               Phys                            |
544  * | 0:3  |     0:11       |               4:19                            |
545  * |4 bits|   12 bits      |              16 bits                          |
546  * +------+----------------+-----------------------------------------------+
547  * WORD 1:
548  * +-----------------------+-----------------------------------------------+
549  * |      Phys    |  Rsvd  | Prefetch |Update |Rsvd  |Lock  |Safe  |Valid  |
550  * |     20:39    |        | Enable   |Enable |      |Enable|DMA   |       |
551  * |    20 bits   | 5 bits | 1 bit    |1 bit  |2 bits|1 bit |1 bit |1 bit  |
552  * +-----------------------+-----------------------------------------------+
553  *
554  * The virtual index field is filled with the results of the LCI
555  * (Load Coherence Index) instruction.  The 8 bits used for the virtual
556  * index are bits 12:19 of the value returned by LCI.
557  */ 
558 static void CCIO_INLINE
559 ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba,
560                    unsigned long hints)
561 {
562         register unsigned long pa;
563         register unsigned long ci; /* coherent index */
564
565         /* We currently only support kernel addresses */
566         BUG_ON(sid != KERNEL_SPACE);
567
568         mtsp(sid,1);
569
570         /*
571         ** WORD 1 - low order word
572         ** "hints" parm includes the VALID bit!
573         ** "dep" clobbers the physical address offset bits as well.
574         */
575         pa = virt_to_phys(vba);
576         asm volatile("depw  %1,31,12,%0" : "+r" (pa) : "r" (hints));
577         ((u32 *)pdir_ptr)[1] = (u32) pa;
578
579         /*
580         ** WORD 0 - high order word
581         */
582
583 #ifdef __LP64__
584         /*
585         ** get bits 12:15 of physical address
586         ** shift bits 16:31 of physical address
587         ** and deposit them
588         */
589         asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
590         asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
591         asm volatile ("depd  %1,35,4,%0" : "+r" (pa) : "r" (ci));
592 #else
593         pa = 0;
594 #endif
595         /*
596         ** get CPU coherency index bits
597         ** Grab virtual index [0:11]
598         ** Deposit virt_idx bits into I/O PDIR word
599         */
600         asm volatile ("lci %%r0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba));
601         asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
602         asm volatile ("depw  %1,15,12,%0" : "+r" (pa) : "r" (ci));
603
604         ((u32 *)pdir_ptr)[0] = (u32) pa;
605
606
607         /* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
608         **        PCX-U/U+ do. (eg C200/C240)
609         **        PCX-T'? Don't know. (eg C110 or similar K-class)
610         **
611         ** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
612         **
613         ** "Since PCX-U employs an offset hash that is incompatible with
614         ** the real mode coherence index generation of U2, the PDIR entry
615         ** must be flushed to memory to retain coherence."
616         */
617         asm_io_fdc(pdir_ptr);
618         asm_io_sync();
619 }
620
621 /**
622  * ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
623  * @ioc: The I/O Controller.
624  * @iovp: The I/O Virtual Page.
625  * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
626  *
627  * Purge invalid I/O PDIR entries from the I/O TLB.
628  *
629  * FIXME: Can we change the byte_cnt to pages_mapped?
630  */
631 static CCIO_INLINE void
632 ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
633 {
634         u32 chain_size = 1 << ioc->chainid_shift;
635
636         iovp &= IOVP_MASK;      /* clear offset bits, just want pagenum */
637         byte_cnt += chain_size;
638
639         while(byte_cnt > chain_size) {
640                 WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
641                 iovp += chain_size;
642                 byte_cnt -= chain_size;
643         }
644 }
645
646 /**
647  * ccio_mark_invalid - Mark the I/O Pdir entries invalid.
648  * @ioc: The I/O Controller.
649  * @iova: The I/O Virtual Address.
650  * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
651  *
652  * Mark the I/O Pdir entries invalid and blow away the corresponding I/O
653  * TLB entries.
654  *
655  * FIXME: at some threshold it might be "cheaper" to just blow
656  *        away the entire I/O TLB instead of individual entries.
657  *
658  * FIXME: Uturn has 256 TLB entries. We don't need to purge every
659  *        PDIR entry - just once for each possible TLB entry.
660  *        (We do need to maker I/O PDIR entries invalid regardless).
661  *
662  * FIXME: Can we change byte_cnt to pages_mapped?
663  */ 
664 static CCIO_INLINE void
665 ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
666 {
667         u32 iovp = (u32)CCIO_IOVP(iova);
668         size_t saved_byte_cnt;
669
670         /* round up to nearest page size */
671         saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE);
672
673         while(byte_cnt > 0) {
674                 /* invalidate one page at a time */
675                 unsigned int idx = PDIR_INDEX(iovp);
676                 char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
677
678                 BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
679                 pdir_ptr[7] = 0;        /* clear only VALID bit */ 
680                 /*
681                 ** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
682                 **   PCX-U/U+ do. (eg C200/C240)
683                 ** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
684                 */
685                 asm_io_fdc(pdir_ptr);
686
687                 iovp     += IOVP_SIZE;
688                 byte_cnt -= IOVP_SIZE;
689         }
690
691         asm_io_sync();
692         ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
693 }
694
695 /****************************************************************
696 **
697 **          CCIO dma_ops
698 **
699 *****************************************************************/
700
701 /**
702  * ccio_dma_supported - Verify the IOMMU supports the DMA address range.
703  * @dev: The PCI device.
704  * @mask: A bit mask describing the DMA address range of the device.
705  */
706 static int 
707 ccio_dma_supported(struct device *dev, u64 mask)
708 {
709         if(dev == NULL) {
710                 printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
711                 BUG();
712                 return 0;
713         }
714
715         /* only support 32-bit or better devices (ie PCI/GSC) */
716         return (int)(mask >= 0xffffffffUL);
717 }
718
719 /**
720  * ccio_map_single - Map an address range into the IOMMU.
721  * @dev: The PCI device.
722  * @addr: The start address of the DMA region.
723  * @size: The length of the DMA region.
724  * @direction: The direction of the DMA transaction (to/from device).
725  *
726  * This function implements the pci_map_single function.
727  */
728 static dma_addr_t 
729 ccio_map_single(struct device *dev, void *addr, size_t size,
730                 enum dma_data_direction direction)
731 {
732         int idx;
733         struct ioc *ioc;
734         unsigned long flags;
735         dma_addr_t iovp;
736         dma_addr_t offset;
737         u64 *pdir_start;
738         unsigned long hint = hint_lookup[(int)direction];
739
740         BUG_ON(!dev);
741         ioc = GET_IOC(dev);
742         if (!ioc)
743                 return DMA_MAPPING_ERROR;
744
745         BUG_ON(size <= 0);
746
747         /* save offset bits */
748         offset = ((unsigned long) addr) & ~IOVP_MASK;
749
750         /* round up to nearest IOVP_SIZE */
751         size = ALIGN(size + offset, IOVP_SIZE);
752         spin_lock_irqsave(&ioc->res_lock, flags);
753
754 #ifdef CCIO_COLLECT_STATS
755         ioc->msingle_calls++;
756         ioc->msingle_pages += size >> IOVP_SHIFT;
757 #endif
758
759         idx = ccio_alloc_range(ioc, dev, size);
760         iovp = (dma_addr_t)MKIOVP(idx);
761
762         pdir_start = &(ioc->pdir_base[idx]);
763
764         DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n",
765                 __func__, addr, (long)iovp | offset, size);
766
767         /* If not cacheline aligned, force SAFE_DMA on the whole mess */
768         if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
769                 hint |= HINT_SAFE_DMA;
770
771         while(size > 0) {
772                 ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
773
774                 DBG_RUN(" pdir %p %08x%08x\n",
775                         pdir_start,
776                         (u32) (((u32 *) pdir_start)[0]),
777                         (u32) (((u32 *) pdir_start)[1]));
778                 ++pdir_start;
779                 addr += IOVP_SIZE;
780                 size -= IOVP_SIZE;
781         }
782
783         spin_unlock_irqrestore(&ioc->res_lock, flags);
784
785         /* form complete address */
786         return CCIO_IOVA(iovp, offset);
787 }
788
789
790 static dma_addr_t
791 ccio_map_page(struct device *dev, struct page *page, unsigned long offset,
792                 size_t size, enum dma_data_direction direction,
793                 unsigned long attrs)
794 {
795         return ccio_map_single(dev, page_address(page) + offset, size,
796                         direction);
797 }
798
799
800 /**
801  * ccio_unmap_page - Unmap an address range from the IOMMU.
802  * @dev: The PCI device.
803  * @addr: The start address of the DMA region.
804  * @size: The length of the DMA region.
805  * @direction: The direction of the DMA transaction (to/from device).
806  */
807 static void 
808 ccio_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
809                 enum dma_data_direction direction, unsigned long attrs)
810 {
811         struct ioc *ioc;
812         unsigned long flags; 
813         dma_addr_t offset = iova & ~IOVP_MASK;
814         
815         BUG_ON(!dev);
816         ioc = GET_IOC(dev);
817         if (!ioc) {
818                 WARN_ON(!ioc);
819                 return;
820         }
821
822         DBG_RUN("%s() iovp 0x%lx/%x\n",
823                 __func__, (long)iova, size);
824
825         iova ^= offset;        /* clear offset bits */
826         size += offset;
827         size = ALIGN(size, IOVP_SIZE);
828
829         spin_lock_irqsave(&ioc->res_lock, flags);
830
831 #ifdef CCIO_COLLECT_STATS
832         ioc->usingle_calls++;
833         ioc->usingle_pages += size >> IOVP_SHIFT;
834 #endif
835
836         ccio_mark_invalid(ioc, iova, size);
837         ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
838         spin_unlock_irqrestore(&ioc->res_lock, flags);
839 }
840
841 /**
842  * ccio_alloc - Allocate a consistent DMA mapping.
843  * @dev: The PCI device.
844  * @size: The length of the DMA region.
845  * @dma_handle: The DMA address handed back to the device (not the cpu).
846  *
847  * This function implements the pci_alloc_consistent function.
848  */
849 static void * 
850 ccio_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag,
851                 unsigned long attrs)
852 {
853       void *ret;
854 #if 0
855 /* GRANT Need to establish hierarchy for non-PCI devs as well
856 ** and then provide matching gsc_map_xxx() functions for them as well.
857 */
858         if(!hwdev) {
859                 /* only support PCI */
860                 *dma_handle = 0;
861                 return 0;
862         }
863 #endif
864         ret = (void *) __get_free_pages(flag, get_order(size));
865
866         if (ret) {
867                 memset(ret, 0, size);
868                 *dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL);
869         }
870
871         return ret;
872 }
873
874 /**
875  * ccio_free - Free a consistent DMA mapping.
876  * @dev: The PCI device.
877  * @size: The length of the DMA region.
878  * @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
879  * @dma_handle: The device address returned from the ccio_alloc_consistent.
880  *
881  * This function implements the pci_free_consistent function.
882  */
883 static void 
884 ccio_free(struct device *dev, size_t size, void *cpu_addr,
885                 dma_addr_t dma_handle, unsigned long attrs)
886 {
887         ccio_unmap_page(dev, dma_handle, size, 0, 0);
888         free_pages((unsigned long)cpu_addr, get_order(size));
889 }
890
891 /*
892 ** Since 0 is a valid pdir_base index value, can't use that
893 ** to determine if a value is valid or not. Use a flag to indicate
894 ** the SG list entry contains a valid pdir index.
895 */
896 #define PIDE_FLAG 0x80000000UL
897
898 #ifdef CCIO_COLLECT_STATS
899 #define IOMMU_MAP_STATS
900 #endif
901 #include "iommu-helpers.h"
902
903 /**
904  * ccio_map_sg - Map the scatter/gather list into the IOMMU.
905  * @dev: The PCI device.
906  * @sglist: The scatter/gather list to be mapped in the IOMMU.
907  * @nents: The number of entries in the scatter/gather list.
908  * @direction: The direction of the DMA transaction (to/from device).
909  *
910  * This function implements the pci_map_sg function.
911  */
912 static int
913 ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents, 
914             enum dma_data_direction direction, unsigned long attrs)
915 {
916         struct ioc *ioc;
917         int coalesced, filled = 0;
918         unsigned long flags;
919         unsigned long hint = hint_lookup[(int)direction];
920         unsigned long prev_len = 0, current_len = 0;
921         int i;
922         
923         BUG_ON(!dev);
924         ioc = GET_IOC(dev);
925         if (!ioc)
926                 return 0;
927         
928         DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
929
930         /* Fast path single entry scatterlists. */
931         if (nents == 1) {
932                 sg_dma_address(sglist) = ccio_map_single(dev,
933                                 sg_virt(sglist), sglist->length,
934                                 direction);
935                 sg_dma_len(sglist) = sglist->length;
936                 return 1;
937         }
938
939         for(i = 0; i < nents; i++)
940                 prev_len += sglist[i].length;
941         
942         spin_lock_irqsave(&ioc->res_lock, flags);
943
944 #ifdef CCIO_COLLECT_STATS
945         ioc->msg_calls++;
946 #endif
947
948         /*
949         ** First coalesce the chunks and allocate I/O pdir space
950         **
951         ** If this is one DMA stream, we can properly map using the
952         ** correct virtual address associated with each DMA page.
953         ** w/o this association, we wouldn't have coherent DMA!
954         ** Access to the virtual address is what forces a two pass algorithm.
955         */
956         coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range);
957
958         /*
959         ** Program the I/O Pdir
960         **
961         ** map the virtual addresses to the I/O Pdir
962         ** o dma_address will contain the pdir index
963         ** o dma_len will contain the number of bytes to map 
964         ** o page/offset contain the virtual address.
965         */
966         filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
967
968         spin_unlock_irqrestore(&ioc->res_lock, flags);
969
970         BUG_ON(coalesced != filled);
971
972         DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
973
974         for (i = 0; i < filled; i++)
975                 current_len += sg_dma_len(sglist + i);
976
977         BUG_ON(current_len != prev_len);
978
979         return filled;
980 }
981
982 /**
983  * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
984  * @dev: The PCI device.
985  * @sglist: The scatter/gather list to be unmapped from the IOMMU.
986  * @nents: The number of entries in the scatter/gather list.
987  * @direction: The direction of the DMA transaction (to/from device).
988  *
989  * This function implements the pci_unmap_sg function.
990  */
991 static void 
992 ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents, 
993               enum dma_data_direction direction, unsigned long attrs)
994 {
995         struct ioc *ioc;
996
997         BUG_ON(!dev);
998         ioc = GET_IOC(dev);
999         if (!ioc) {
1000                 WARN_ON(!ioc);
1001                 return;
1002         }
1003
1004         DBG_RUN_SG("%s() START %d entries, %p,%x\n",
1005                 __func__, nents, sg_virt(sglist), sglist->length);
1006
1007 #ifdef CCIO_COLLECT_STATS
1008         ioc->usg_calls++;
1009 #endif
1010
1011         while(sg_dma_len(sglist) && nents--) {
1012
1013 #ifdef CCIO_COLLECT_STATS
1014                 ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
1015 #endif
1016                 ccio_unmap_page(dev, sg_dma_address(sglist),
1017                                   sg_dma_len(sglist), direction, 0);
1018                 ++sglist;
1019         }
1020
1021         DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
1022 }
1023
1024 static const struct dma_map_ops ccio_ops = {
1025         .dma_supported =        ccio_dma_supported,
1026         .alloc =                ccio_alloc,
1027         .free =                 ccio_free,
1028         .map_page =             ccio_map_page,
1029         .unmap_page =           ccio_unmap_page,
1030         .map_sg =               ccio_map_sg,
1031         .unmap_sg =             ccio_unmap_sg,
1032 };
1033
1034 #ifdef CONFIG_PROC_FS
1035 static int ccio_proc_info(struct seq_file *m, void *p)
1036 {
1037         struct ioc *ioc = ioc_list;
1038
1039         while (ioc != NULL) {
1040                 unsigned int total_pages = ioc->res_size << 3;
1041 #ifdef CCIO_COLLECT_STATS
1042                 unsigned long avg = 0, min, max;
1043                 int j;
1044 #endif
1045
1046                 seq_printf(m, "%s\n", ioc->name);
1047                 
1048                 seq_printf(m, "Cujo 2.0 bug    : %s\n",
1049                            (ioc->cujo20_bug ? "yes" : "no"));
1050                 
1051                 seq_printf(m, "IO PDIR size    : %d bytes (%d entries)\n",
1052                            total_pages * 8, total_pages);
1053
1054 #ifdef CCIO_COLLECT_STATS
1055                 seq_printf(m, "IO PDIR entries : %ld free  %ld used (%d%%)\n",
1056                            total_pages - ioc->used_pages, ioc->used_pages,
1057                            (int)(ioc->used_pages * 100 / total_pages));
1058 #endif
1059
1060                 seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
1061                            ioc->res_size, total_pages);
1062
1063 #ifdef CCIO_COLLECT_STATS
1064                 min = max = ioc->avg_search[0];
1065                 for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
1066                         avg += ioc->avg_search[j];
1067                         if(ioc->avg_search[j] > max) 
1068                                 max = ioc->avg_search[j];
1069                         if(ioc->avg_search[j] < min) 
1070                                 min = ioc->avg_search[j];
1071                 }
1072                 avg /= CCIO_SEARCH_SAMPLE;
1073                 seq_printf(m, "  Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1074                            min, avg, max);
1075
1076                 seq_printf(m, "pci_map_single(): %8ld calls  %8ld pages (avg %d/1000)\n",
1077                            ioc->msingle_calls, ioc->msingle_pages,
1078                            (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1079
1080                 /* KLUGE - unmap_sg calls unmap_page for each mapped page */
1081                 min = ioc->usingle_calls - ioc->usg_calls;
1082                 max = ioc->usingle_pages - ioc->usg_pages;
1083                 seq_printf(m, "pci_unmap_single: %8ld calls  %8ld pages (avg %d/1000)\n",
1084                            min, max, (int)((max * 1000)/min));
1085  
1086                 seq_printf(m, "pci_map_sg()    : %8ld calls  %8ld pages (avg %d/1000)\n",
1087                            ioc->msg_calls, ioc->msg_pages,
1088                            (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
1089
1090                 seq_printf(m, "pci_unmap_sg()  : %8ld calls  %8ld pages (avg %d/1000)\n\n\n",
1091                            ioc->usg_calls, ioc->usg_pages,
1092                            (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
1093 #endif  /* CCIO_COLLECT_STATS */
1094
1095                 ioc = ioc->next;
1096         }
1097
1098         return 0;
1099 }
1100
1101 static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
1102 {
1103         struct ioc *ioc = ioc_list;
1104
1105         while (ioc != NULL) {
1106                 seq_hex_dump(m, "   ", DUMP_PREFIX_NONE, 32, 4, ioc->res_map,
1107                              ioc->res_size, false);
1108                 seq_putc(m, '\n');
1109                 ioc = ioc->next;
1110                 break; /* XXX - remove me */
1111         }
1112
1113         return 0;
1114 }
1115 #endif /* CONFIG_PROC_FS */
1116
1117 /**
1118  * ccio_find_ioc - Find the ioc in the ioc_list
1119  * @hw_path: The hardware path of the ioc.
1120  *
1121  * This function searches the ioc_list for an ioc that matches
1122  * the provide hardware path.
1123  */
1124 static struct ioc * ccio_find_ioc(int hw_path)
1125 {
1126         int i;
1127         struct ioc *ioc;
1128
1129         ioc = ioc_list;
1130         for (i = 0; i < ioc_count; i++) {
1131                 if (ioc->hw_path == hw_path)
1132                         return ioc;
1133
1134                 ioc = ioc->next;
1135         }
1136
1137         return NULL;
1138 }
1139
1140 /**
1141  * ccio_get_iommu - Find the iommu which controls this device
1142  * @dev: The parisc device.
1143  *
1144  * This function searches through the registered IOMMU's and returns
1145  * the appropriate IOMMU for the device based on its hardware path.
1146  */
1147 void * ccio_get_iommu(const struct parisc_device *dev)
1148 {
1149         dev = find_pa_parent_type(dev, HPHW_IOA);
1150         if (!dev)
1151                 return NULL;
1152
1153         return ccio_find_ioc(dev->hw_path);
1154 }
1155
1156 #define CUJO_20_STEP       0x10000000   /* inc upper nibble */
1157
1158 /* Cujo 2.0 has a bug which will silently corrupt data being transferred
1159  * to/from certain pages.  To avoid this happening, we mark these pages
1160  * as `used', and ensure that nothing will try to allocate from them.
1161  */
1162 void __init ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
1163 {
1164         unsigned int idx;
1165         struct parisc_device *dev = parisc_parent(cujo);
1166         struct ioc *ioc = ccio_get_iommu(dev);
1167         u8 *res_ptr;
1168
1169         ioc->cujo20_bug = 1;
1170         res_ptr = ioc->res_map;
1171         idx = PDIR_INDEX(iovp) >> 3;
1172
1173         while (idx < ioc->res_size) {
1174                 res_ptr[idx] |= 0xff;
1175                 idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
1176         }
1177 }
1178
1179 #if 0
1180 /* GRANT -  is this needed for U2 or not? */
1181
1182 /*
1183 ** Get the size of the I/O TLB for this I/O MMU.
1184 **
1185 ** If spa_shift is non-zero (ie probably U2),
1186 ** then calculate the I/O TLB size using spa_shift.
1187 **
1188 ** Otherwise we are supposed to get the IODC entry point ENTRY TLB
1189 ** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
1190 ** I think only Java (K/D/R-class too?) systems don't do this.
1191 */
1192 static int
1193 ccio_get_iotlb_size(struct parisc_device *dev)
1194 {
1195         if (dev->spa_shift == 0) {
1196                 panic("%s() : Can't determine I/O TLB size.\n", __func__);
1197         }
1198         return (1 << dev->spa_shift);
1199 }
1200 #else
1201
1202 /* Uturn supports 256 TLB entries */
1203 #define CCIO_CHAINID_SHIFT      8
1204 #define CCIO_CHAINID_MASK       0xff
1205 #endif /* 0 */
1206
1207 /* We *can't* support JAVA (T600). Venture there at your own risk. */
1208 static const struct parisc_device_id ccio_tbl[] __initconst = {
1209         { HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
1210         { HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
1211         { 0, }
1212 };
1213
1214 static int ccio_probe(struct parisc_device *dev);
1215
1216 static struct parisc_driver ccio_driver __refdata = {
1217         .name =         "ccio",
1218         .id_table =     ccio_tbl,
1219         .probe =        ccio_probe,
1220 };
1221
1222 /**
1223  * ccio_ioc_init - Initialize the I/O Controller
1224  * @ioc: The I/O Controller.
1225  *
1226  * Initialize the I/O Controller which includes setting up the
1227  * I/O Page Directory, the resource map, and initalizing the
1228  * U2/Uturn chip into virtual mode.
1229  */
1230 static void __init
1231 ccio_ioc_init(struct ioc *ioc)
1232 {
1233         int i;
1234         unsigned int iov_order;
1235         u32 iova_space_size;
1236
1237         /*
1238         ** Determine IOVA Space size from memory size.
1239         **
1240         ** Ideally, PCI drivers would register the maximum number
1241         ** of DMA they can have outstanding for each device they
1242         ** own.  Next best thing would be to guess how much DMA
1243         ** can be outstanding based on PCI Class/sub-class. Both
1244         ** methods still require some "extra" to support PCI
1245         ** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1246         */
1247
1248         iova_space_size = (u32) (totalram_pages() / count_parisc_driver(&ccio_driver));
1249
1250         /* limit IOVA space size to 1MB-1GB */
1251
1252         if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1253                 iova_space_size =  1 << (20 - PAGE_SHIFT);
1254 #ifdef __LP64__
1255         } else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1256                 iova_space_size =  1 << (30 - PAGE_SHIFT);
1257 #endif
1258         }
1259
1260         /*
1261         ** iova space must be log2() in size.
1262         ** thus, pdir/res_map will also be log2().
1263         */
1264
1265         /* We could use larger page sizes in order to *decrease* the number
1266         ** of mappings needed.  (ie 8k pages means 1/2 the mappings).
1267         **
1268         ** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1269         **   since the pages must also be physically contiguous - typically
1270         **   this is the case under linux."
1271         */
1272
1273         iov_order = get_order(iova_space_size << PAGE_SHIFT);
1274
1275         /* iova_space_size is now bytes, not pages */
1276         iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1277
1278         ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1279
1280         BUG_ON(ioc->pdir_size > 8 * 1024 * 1024);   /* max pdir size <= 8MB */
1281
1282         /* Verify it's a power of two */
1283         BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
1284
1285         DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
1286                         __func__, ioc->ioc_regs,
1287                         (unsigned long) totalram_pages() >> (20 - PAGE_SHIFT),
1288                         iova_space_size>>20,
1289                         iov_order + PAGE_SHIFT);
1290
1291         ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL, 
1292                                                  get_order(ioc->pdir_size));
1293         if(NULL == ioc->pdir_base) {
1294                 panic("%s() could not allocate I/O Page Table\n", __func__);
1295         }
1296         memset(ioc->pdir_base, 0, ioc->pdir_size);
1297
1298         BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
1299         DBG_INIT(" base %p\n", ioc->pdir_base);
1300
1301         /* resource map size dictated by pdir_size */
1302         ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
1303         DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1304         
1305         ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL, 
1306                                               get_order(ioc->res_size));
1307         if(NULL == ioc->res_map) {
1308                 panic("%s() could not allocate resource map\n", __func__);
1309         }
1310         memset(ioc->res_map, 0, ioc->res_size);
1311
1312         /* Initialize the res_hint to 16 */
1313         ioc->res_hint = 16;
1314
1315         /* Initialize the spinlock */
1316         spin_lock_init(&ioc->res_lock);
1317
1318         /*
1319         ** Chainid is the upper most bits of an IOVP used to determine
1320         ** which TLB entry an IOVP will use.
1321         */
1322         ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
1323         DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
1324
1325         /*
1326         ** Initialize IOA hardware
1327         */
1328         WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift, 
1329                   &ioc->ioc_regs->io_chain_id_mask);
1330
1331         WRITE_U32(virt_to_phys(ioc->pdir_base), 
1332                   &ioc->ioc_regs->io_pdir_base);
1333
1334         /*
1335         ** Go to "Virtual Mode"
1336         */
1337         WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
1338
1339         /*
1340         ** Initialize all I/O TLB entries to 0 (Valid bit off).
1341         */
1342         WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
1343         WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
1344
1345         for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
1346                 WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
1347                           &ioc->ioc_regs->io_command);
1348         }
1349 }
1350
1351 static void __init
1352 ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
1353 {
1354         int result;
1355
1356         res->parent = NULL;
1357         res->flags = IORESOURCE_MEM;
1358         /*
1359          * bracing ((signed) ...) are required for 64bit kernel because
1360          * we only want to sign extend the lower 16 bits of the register.
1361          * The upper 16-bits of range registers are hardcoded to 0xffff.
1362          */
1363         res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
1364         res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
1365         res->name = name;
1366         /*
1367          * Check if this MMIO range is disable
1368          */
1369         if (res->end + 1 == res->start)
1370                 return;
1371
1372         /* On some platforms (e.g. K-Class), we have already registered
1373          * resources for devices reported by firmware. Some are children
1374          * of ccio.
1375          * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1376          */
1377         result = insert_resource(&iomem_resource, res);
1378         if (result < 0) {
1379                 printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n", 
1380                         __func__, (unsigned long)res->start, (unsigned long)res->end);
1381         }
1382 }
1383
1384 static void __init ccio_init_resources(struct ioc *ioc)
1385 {
1386         struct resource *res = ioc->mmio_region;
1387         char *name = kmalloc(14, GFP_KERNEL);
1388
1389         snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
1390
1391         ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
1392         ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
1393 }
1394
1395 static int new_ioc_area(struct resource *res, unsigned long size,
1396                 unsigned long min, unsigned long max, unsigned long align)
1397 {
1398         if (max <= min)
1399                 return -EBUSY;
1400
1401         res->start = (max - size + 1) &~ (align - 1);
1402         res->end = res->start + size;
1403         
1404         /* We might be trying to expand the MMIO range to include
1405          * a child device that has already registered it's MMIO space.
1406          * Use "insert" instead of request_resource().
1407          */
1408         if (!insert_resource(&iomem_resource, res))
1409                 return 0;
1410
1411         return new_ioc_area(res, size, min, max - size, align);
1412 }
1413
1414 static int expand_ioc_area(struct resource *res, unsigned long size,
1415                 unsigned long min, unsigned long max, unsigned long align)
1416 {
1417         unsigned long start, len;
1418
1419         if (!res->parent)
1420                 return new_ioc_area(res, size, min, max, align);
1421
1422         start = (res->start - size) &~ (align - 1);
1423         len = res->end - start + 1;
1424         if (start >= min) {
1425                 if (!adjust_resource(res, start, len))
1426                         return 0;
1427         }
1428
1429         start = res->start;
1430         len = ((size + res->end + align) &~ (align - 1)) - start;
1431         if (start + len <= max) {
1432                 if (!adjust_resource(res, start, len))
1433                         return 0;
1434         }
1435
1436         return -EBUSY;
1437 }
1438
1439 /*
1440  * Dino calls this function.  Beware that we may get called on systems
1441  * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1442  * So it's legal to find no parent IOC.
1443  *
1444  * Some other issues: one of the resources in the ioc may be unassigned.
1445  */
1446 int ccio_allocate_resource(const struct parisc_device *dev,
1447                 struct resource *res, unsigned long size,
1448                 unsigned long min, unsigned long max, unsigned long align)
1449 {
1450         struct resource *parent = &iomem_resource;
1451         struct ioc *ioc = ccio_get_iommu(dev);
1452         if (!ioc)
1453                 goto out;
1454
1455         parent = ioc->mmio_region;
1456         if (parent->parent &&
1457             !allocate_resource(parent, res, size, min, max, align, NULL, NULL))
1458                 return 0;
1459
1460         if ((parent + 1)->parent &&
1461             !allocate_resource(parent + 1, res, size, min, max, align,
1462                                 NULL, NULL))
1463                 return 0;
1464
1465         if (!expand_ioc_area(parent, size, min, max, align)) {
1466                 __raw_writel(((parent->start)>>16) | 0xffff0000,
1467                              &ioc->ioc_regs->io_io_low);
1468                 __raw_writel(((parent->end)>>16) | 0xffff0000,
1469                              &ioc->ioc_regs->io_io_high);
1470         } else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
1471                 parent++;
1472                 __raw_writel(((parent->start)>>16) | 0xffff0000,
1473                              &ioc->ioc_regs->io_io_low_hv);
1474                 __raw_writel(((parent->end)>>16) | 0xffff0000,
1475                              &ioc->ioc_regs->io_io_high_hv);
1476         } else {
1477                 return -EBUSY;
1478         }
1479
1480  out:
1481         return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
1482 }
1483
1484 int ccio_request_resource(const struct parisc_device *dev,
1485                 struct resource *res)
1486 {
1487         struct resource *parent;
1488         struct ioc *ioc = ccio_get_iommu(dev);
1489
1490         if (!ioc) {
1491                 parent = &iomem_resource;
1492         } else if ((ioc->mmio_region->start <= res->start) &&
1493                         (res->end <= ioc->mmio_region->end)) {
1494                 parent = ioc->mmio_region;
1495         } else if (((ioc->mmio_region + 1)->start <= res->start) &&
1496                         (res->end <= (ioc->mmio_region + 1)->end)) {
1497                 parent = ioc->mmio_region + 1;
1498         } else {
1499                 return -EBUSY;
1500         }
1501
1502         /* "transparent" bus bridges need to register MMIO resources
1503          * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1504          * registered their resources in the PDC "bus walk" (See
1505          * arch/parisc/kernel/inventory.c).
1506          */
1507         return insert_resource(parent, res);
1508 }
1509
1510 /**
1511  * ccio_probe - Determine if ccio should claim this device.
1512  * @dev: The device which has been found
1513  *
1514  * Determine if ccio should claim this chip (return 0) or not (return 1).
1515  * If so, initialize the chip and tell other partners in crime they
1516  * have work to do.
1517  */
1518 static int __init ccio_probe(struct parisc_device *dev)
1519 {
1520         int i;
1521         struct ioc *ioc, **ioc_p = &ioc_list;
1522         struct pci_hba_data *hba;
1523
1524         ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
1525         if (ioc == NULL) {
1526                 printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
1527                 return -ENOMEM;
1528         }
1529
1530         ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
1531
1532         printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name,
1533                 (unsigned long)dev->hpa.start);
1534
1535         for (i = 0; i < ioc_count; i++) {
1536                 ioc_p = &(*ioc_p)->next;
1537         }
1538         *ioc_p = ioc;
1539
1540         ioc->hw_path = dev->hw_path;
1541         ioc->ioc_regs = ioremap_nocache(dev->hpa.start, 4096);
1542         if (!ioc->ioc_regs) {
1543                 kfree(ioc);
1544                 return -ENOMEM;
1545         }
1546         ccio_ioc_init(ioc);
1547         ccio_init_resources(ioc);
1548         hppa_dma_ops = &ccio_ops;
1549
1550         hba = kzalloc(sizeof(*hba), GFP_KERNEL);
1551         /* if this fails, no I/O cards will work, so may as well bug */
1552         BUG_ON(hba == NULL);
1553
1554         hba->iommu = ioc;
1555         dev->dev.platform_data = hba;
1556
1557 #ifdef CONFIG_PROC_FS
1558         if (ioc_count == 0) {
1559                 proc_create_single(MODULE_NAME, 0, proc_runway_root,
1560                                 ccio_proc_info);
1561                 proc_create_single(MODULE_NAME"-bitmap", 0, proc_runway_root,
1562                                 ccio_proc_bitmap_info);
1563         }
1564 #endif
1565         ioc_count++;
1566         return 0;
1567 }
1568
1569 /**
1570  * ccio_init - ccio initialization procedure.
1571  *
1572  * Register this driver.
1573  */
1574 void __init ccio_init(void)
1575 {
1576         register_parisc_driver(&ccio_driver);
1577 }
1578